JP2021012814A - Planar heating element and manufacturing method of the same - Google Patents

Planar heating element and manufacturing method of the same Download PDF

Info

Publication number
JP2021012814A
JP2021012814A JP2019126448A JP2019126448A JP2021012814A JP 2021012814 A JP2021012814 A JP 2021012814A JP 2019126448 A JP2019126448 A JP 2019126448A JP 2019126448 A JP2019126448 A JP 2019126448A JP 2021012814 A JP2021012814 A JP 2021012814A
Authority
JP
Japan
Prior art keywords
heating element
carbon fiber
planar heating
inorganic particles
fiber sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019126448A
Other languages
Japanese (ja)
Other versions
JP7271344B2 (en
Inventor
新吾 須藤
Shingo Sudo
新吾 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2019126448A priority Critical patent/JP7271344B2/en
Publication of JP2021012814A publication Critical patent/JP2021012814A/en
Application granted granted Critical
Publication of JP7271344B2 publication Critical patent/JP7271344B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)

Abstract

To provide a planar heating element which has excellent functional intensity, good heating efficiency, and in which a front surface uniformly generates heat, and to provide a manufacturing method of them.SOLUTION: A planar heating element is a planar heating element including: a carbon fiber sheet in which both side ends of a continuous carbon fiber have an electrode; and a matrix resin impregnated with the carbon fiber sheet. The carbon fiber sheet contains inorganic particles.SELECTED DRAWING: Figure 1

Description

本発明は、融雪、暖房、乾燥等に使用される面状発熱体及びその製造方法に関する。より詳しくは、マトリックス樹脂で被覆された連続炭素繊維を発熱体に用いた面状発熱体に関する。 The present invention relates to a planar heating element used for snow melting, heating, drying and the like, and a method for producing the same. More specifically, the present invention relates to a planar heating element using continuous carbon fibers coated with a matrix resin as a heating element.

一般に、面状発熱体は、ニクロム線ヒータやカーボンヒータのような線状発熱体と異なり、広い範囲を均一に加熱できる点で、例えば、融雪マット、床暖房、野菜乾燥機など多くの用途に使用されており、下記のように各種構成の面状発熱体が提案されている。 In general, a planar heating element is different from a linear heating element such as a nichrome wire heater or a carbon heater in that it can uniformly heat a wide range, and is used in many applications such as snow melting mats, floor heating, and vegetable dryers. It is used, and planar heating elements having various configurations have been proposed as described below.

例えば、特許文献1には、抵抗発熱材としての炭素繊維を方形形状の和紙の面全体に均一に分布して発熱体シート(炭素繊維混抄シート)を形成し、炭素繊維混抄シート表面の両側端に溶射皮膜からなる銅電極をそれぞれ形成し、発熱体シートの両面をFRP等の樹脂で被覆した面状発熱体の発明が開示されている。 For example, in Patent Document 1, carbon fibers as a resistance heat generating material are uniformly distributed over the entire surface of square-shaped Japanese paper to form a heating element sheet (carbon fiber mixed paper), and both ends of the surface of the carbon fiber mixed paper. The invention of a planar heating element in which copper electrodes made of a spray coating are formed on the surface of the heating element and both sides of the heating element sheet are coated with a resin such as FRP is disclosed.

また、特許文献2には、炭素繊維混抄シートの少なくとも一方の面にカーボン皮膜を形成したことが開示されている。 Further, Patent Document 2 discloses that a carbon film is formed on at least one surface of the carbon fiber mixed paper.

更に、特許文献3には、熱硬化樹脂に連続炭素繊維を含浸させた面状発熱体が開示されている。 Further, Patent Document 3 discloses a planar heating element in which a thermosetting resin is impregnated with continuous carbon fibers.

特開平5−258842号公報Japanese Unexamined Patent Publication No. 5-258842 特開2014−229459号公報Japanese Unexamined Patent Publication No. 2014-229459 特開昭57−92778号公報Japanese Unexamined Patent Publication No. 57-92778

しかしながら、特許文献1、2において用いられた炭素繊維を含む抄紙シートは、面全体で均一な発熱が得られるものの短繊維がランダムに配向していることで、機械的強度が低く、構造物の外層体に設置すると、外部からの衝撃や応力によって破れることがあるという問題があった。 However, the papermaking sheet containing carbon fibers used in Patent Documents 1 and 2 has low mechanical strength due to the randomly oriented short fibers, although uniform heat generation can be obtained over the entire surface, and is a structure. When installed on the outer layer, there is a problem that it may be torn by external impact or stress.

また、特許文献3に記載された連続炭素繊維シートは、機械強度に優れるものの、電極付近のみが過熱され、面内の発熱が不均一になるという問題があった。 Further, although the continuous carbon fiber sheet described in Patent Document 3 has excellent mechanical strength, there is a problem that only the vicinity of the electrode is overheated and the heat generation in the plane becomes non-uniform.

本発明は、上記問題点を解決するためになされたものであり、その目的は、機械的強度に優れ、発熱効率がよく、表面が均一に発熱する面状発熱体及びその製造方法を提供することにある。 The present invention has been made to solve the above problems, and an object of the present invention is to provide a planar heating element having excellent mechanical strength, good heat generation efficiency, and uniformly generating heat on the surface, and a method for manufacturing the same. There is.

本発明者らは、上記課題を解決するために鋭意検討の結果、連続炭素繊維と無機粒子とを含む炭素繊維シートを用いることで、上記課題を解決できることを見出した。本発明は、以下の[1]〜[10]を提供する。 As a result of diligent studies to solve the above problems, the present inventors have found that the above problems can be solved by using a carbon fiber sheet containing continuous carbon fibers and inorganic particles. The present invention provides the following [1] to [10].

[1] 連続炭素繊維の両側端にそれぞれ電極を備える炭素繊維シートと、前記炭素繊維シートに含浸したマトリックス樹脂と、を有する面状発熱体であって、
前記炭素繊維シートを構成する複数の炭素繊維間に無機粒子を含む、面状発熱体。
[2] 前記マトリックス樹脂が熱可塑性樹脂である、[1]に記載の面状発熱体。
[3] 前記無機粒子が、タルク、炭酸カルシウム、炭素粒子、シリカ粒子からなる群より選択される少なくとも1種である、[1]又は[2]に記載の面状発熱体。
[4] 前記無機粒子の平均粒子径が0.1〜20μmである、[1]〜[3]の何れかに記載の面状発熱体。
[5] 前記炭素繊維シートが炭素繊維織物を含む、[1]〜[4]の何れかに記載の面状発熱体。
[6] 前記炭素繊維シートに含まれる無機粒子の含有量は、前記連続炭素繊維に対し、0.1〜50質量%である、[1]〜[5]の何れかに記載の面状発熱体。
[7] 前記連続炭素繊維及びマトリックス樹脂の総和を100質量部とした場合に、前記連続炭素繊維が15〜90質量部、前記マトリックス樹脂が10〜85質量部、前記無機粒子が0.01〜20質量部含まれる、[1]〜[6]の何れかに記載の面状発熱体。
[8] 鉄道車両の外装融雪用シートとして使用される、[1]〜[7]の何れかに記載の面状発熱体。
[9] 連続炭素繊維の両端側に電極を形成する工程と、
前記連続炭素繊維に無機粒子を接触させる工程と、
前記無機粒子と接触した連続炭素繊維からなる炭素繊維シートにマトリックス樹脂を含浸させる含浸工程と、
を含む面状発熱体の製造方法。
[10] 前記含浸工程が、炭素繊維シートの少なくとも一面に熱可塑性樹脂フィルムを積層して、加熱加圧を行うことにより実施される、[9]に記載の面状発熱体の製造方法。
[1] A planar heating element having a carbon fiber sheet having electrodes on both side ends of the continuous carbon fiber and a matrix resin impregnated in the carbon fiber sheet.
A planar heating element containing inorganic particles between a plurality of carbon fibers constituting the carbon fiber sheet.
[2] The planar heating element according to [1], wherein the matrix resin is a thermoplastic resin.
[3] The planar heating element according to [1] or [2], wherein the inorganic particles are at least one selected from the group consisting of talc, calcium carbonate, carbon particles, and silica particles.
[4] The planar heating element according to any one of [1] to [3], wherein the average particle size of the inorganic particles is 0.1 to 20 μm.
[5] The planar heating element according to any one of [1] to [4], wherein the carbon fiber sheet contains a carbon fiber woven fabric.
[6] The planar heating element according to any one of [1] to [5], wherein the content of the inorganic particles contained in the carbon fiber sheet is 0.1 to 50% by mass with respect to the continuous carbon fibers. body.
[7] When the total of the continuous carbon fibers and the matrix resin is 100 parts by mass, the continuous carbon fibers are 15 to 90 parts by mass, the matrix resin is 10 to 85 parts by mass, and the inorganic particles are 0.01 to 0.01 parts. The planar heating element according to any one of [1] to [6], which contains 20 parts by mass.
[8] The planar heating element according to any one of [1] to [7], which is used as an exterior snowmelt sheet for a railway vehicle.
[9] A step of forming electrodes on both ends of the continuous carbon fiber and
The step of bringing the inorganic particles into contact with the continuous carbon fibers and
An impregnation step of impregnating a carbon fiber sheet made of continuous carbon fibers in contact with the inorganic particles with a matrix resin, and
A method for manufacturing a planar heating element including.
[10] The method for producing a planar heating element according to [9], wherein the impregnation step is carried out by laminating a thermoplastic resin film on at least one surface of a carbon fiber sheet and performing heating and pressurizing.

本発明によれば、連続炭素繊維と無機粒子とを含む炭素繊維シートを用いることで、従来の抄紙法で作られた面状発熱体に比べ、機械強度に優れ、かつ表面が均一に発熱する面状発熱体を提供することができる。特に鉄道等の輸送車両における外装融雪シート等の外部から衝撃を受ける部位に好適に用いることができる。また、発熱効率と遠赤外線の放射効率とを同時に高めた面状発熱体及びその製造方法を提供することができる。 According to the present invention, by using a carbon fiber sheet containing continuous carbon fibers and inorganic particles, the mechanical strength is excellent and the surface generates heat uniformly as compared with a planar heating element made by a conventional papermaking method. A planar heating element can be provided. In particular, it can be suitably used for a part that receives an impact from the outside such as an exterior snowmelt sheet in a transportation vehicle such as a railroad. Further, it is possible to provide a planar heating element in which the heat generation efficiency and the radiation efficiency of far infrared rays are simultaneously enhanced, and a method for manufacturing the same.

本発明の面状発熱体の一実施形態を示した概略断面図。The schematic sectional view which showed one Embodiment of the planar heating element of this invention. 本発明の面状発熱体の製造方法の一実施形態を示した工程概略図。The process schematic which showed one Embodiment of the manufacturing method of the planar heating element of this invention. 本発明の面状発熱体の製造方法の別の実施形態を示した工程概略図。The process schematic which showed another embodiment of the manufacturing method of the planar heating element of this invention.

以下、図面を参照して本発明を実施する好ましい形態の一例について説明する。ただし、下記の実施形態は本発明を説明するための例示であり、本発明は下記の実施形態に何ら限定されるものではない。 Hereinafter, an example of a preferred embodiment of the present invention will be described with reference to the drawings. However, the following embodiments are examples for explaining the present invention, and the present invention is not limited to the following embodiments.

本発明の面状発熱体1は、図1に示すように、炭素繊維シート2とマトリックス樹脂3とを有する構造である。炭素繊維シート2は、マトリックス樹脂3に含浸されて一体化している。炭素繊維シート2は連続炭素繊維20からなり、連続炭素繊維20の両端はそれぞれ電極30が形成されており、各電極30には導線40等で配線されている。 As shown in FIG. 1, the planar heating element 1 of the present invention has a structure having a carbon fiber sheet 2 and a matrix resin 3. The carbon fiber sheet 2 is impregnated with the matrix resin 3 and integrated. The carbon fiber sheet 2 is made of continuous carbon fibers 20, and electrodes 30 are formed at both ends of the continuous carbon fibers 20, and each electrode 30 is wired with a lead wire 40 or the like.

[炭素繊維シート]
炭素繊維シート2を構成する連続炭素繊維20としては、例えば、PAN系炭素繊維、PITCH系炭素繊維などが挙げられ、PAN系炭素繊維が好ましく用いられる。炭素繊維の平均径は、通常2μm以上、4μm以上が好ましく、6μm以上がより好ましい。また、炭素繊維の平均径は、30μm以下が好ましく、20μm以下がより好ましい。なお、本発明において、平均径とは、ランダムに選択した100個の炭素繊維の繊維径の相加平均値である。また、繊維径とは、繊維の長さ方向に直交する方向に沿った断面において、この断面の直径のことをいう。
[Carbon fiber sheet]
Examples of the continuous carbon fiber 20 constituting the carbon fiber sheet 2 include PAN-based carbon fiber and PITCH-based carbon fiber, and PAN-based carbon fiber is preferably used. The average diameter of the carbon fibers is usually preferably 2 μm or more, preferably 4 μm or more, and more preferably 6 μm or more. The average diameter of the carbon fibers is preferably 30 μm or less, more preferably 20 μm or less. In the present invention, the average diameter is an arithmetic mean value of the fiber diameters of 100 randomly selected carbon fibers. The fiber diameter refers to the diameter of a cross section along a direction orthogonal to the length direction of the fiber.

炭素繊維シート2を構成する連続炭素繊維20は、電極30間を通電できるものであれば特に限定されない。連続炭素繊維20は電極30間を繋ぐ繊維配向を備えることが好ましく、通電を阻害しない範囲であれば応力緩和のために部分的な切断箇所があってもよい。 The continuous carbon fibers 20 constituting the carbon fiber sheet 2 are not particularly limited as long as they can energize between the electrodes 30. The continuous carbon fiber 20 preferably has a fiber orientation connecting the electrodes 30, and may have a partial cut portion for stress relaxation as long as it does not interfere with energization.

本発明に使用される炭素繊維は、複数本の繊維を含み、炭素繊維が複数集まった炭素繊維束(トウ)であってもよい。各炭素繊維束を構成している炭素繊維の本数(ストランド一本あたりに含まれるフィラメントの数)は、通常1000本以上、好ましくは3000本以上、より好ましくは12000本以上、更に好ましくは24000本以上であり、一方上限は特に限定されないが、通常100000本以下、好ましくは50000本以下、より好ましくは48000本以下、特に好ましくは30000本以下である。 The carbon fiber used in the present invention may be a carbon fiber bundle (tow) containing a plurality of fibers and a plurality of carbon fibers gathered together. The number of carbon fibers (the number of filaments contained in one strand) constituting each carbon fiber bundle is usually 1000 or more, preferably 3000 or more, more preferably 12000 or more, and further preferably 24000. On the other hand, the upper limit is not particularly limited, but is usually 100,000 or less, preferably 50,000 or less, more preferably 48,000 or less, and particularly preferably 30,000 or less.

一般に炭素繊維束のフィラメント数が増える程、フィラメントあたりの機械物性及び樹脂の含浸性も低下する傾向にあるが、同様に炭素繊維束の重量あたりの価格も低下するため、用途に応じて適切なフィラメント数の炭素繊維束を選択することができる。 Generally, as the number of filaments in the carbon fiber bundle increases, the mechanical properties per filament and the impregnation property of the resin tend to decrease, but the price per weight of the carbon fiber bundle also decreases, so that it is appropriate depending on the application. The number of filaments of carbon fiber bundle can be selected.

炭素繊維束は、様々な形態で使用されてもよい。例えば、複数の繊維束が一方向に配向されてなる一方向連続繊維(UniDirection繊維、以下、単に「UD繊維」ともいう。)、複数の繊維束が織られて形成された織物、繊維束が編まれて形成された編物、複数の繊維束と熱可塑性樹脂繊維からなる不織布などの形態で使用されるとよい。これらの中では、一方向連続繊維及び織物が好ましく、縦横方向に高い機械物性を持つ織物がより好ましい。織物は、平織、綾織及び朱子織などで織られればよく、等方性を備える平織又は綾織りが好ましい。また、編物としては、各繊維配向方向に繊維が直進性をもった形で配置されるノンクリンプファブリックが好ましい。
一方向連続繊維は、グラム単位あたりの機械強度は最も優れるものの、配向方向以外への応力に極めて弱いため、車両の外装等に用いるのであれば織物がより好ましく用いられる。
The carbon fiber bundle may be used in various forms. For example, a unidirectional continuous fiber (UniDirection fiber, hereinafter simply referred to as "UD fiber") in which a plurality of fiber bundles are oriented in one direction, a woven fabric formed by weaving a plurality of fiber bundles, and a fiber bundle. It may be used in the form of a knitted fabric formed by knitting, a non-woven fabric composed of a plurality of fiber bundles and thermoplastic resin fibers, and the like. Among these, unidirectional continuous fibers and woven fabrics are preferable, and woven fabrics having high mechanical properties in the vertical and horizontal directions are more preferable. The woven fabric may be woven in plain weave, twill weave, satin weave or the like, and plain weave or twill weave having isotropic properties is preferable. Further, as the knitted fabric, a non-crimp fabric in which fibers are arranged in a shape having straightness in each fiber orientation direction is preferable.
Although the unidirectional continuous fiber has the highest mechanical strength per gram unit, it is extremely weak against stress in directions other than the orientation direction. Therefore, if it is used for the exterior of a vehicle, a woven fabric is more preferably used.

炭素繊維束は、一方向連続繊維を用いる場合は、48000本以上100000本以下が、織物の炭素繊維束を用いる場合は12000本以上48000本以下が好ましく用いられる。 The carbon fiber bundle is preferably 48,000 or more and 100,000 or less when unidirectional continuous fibers are used, and 12,000 or more and 48,000 or less when using a woven carbon fiber bundle.

炭素繊維シートを構成する連続炭素繊維の目付は、通常20〜800g/m2であることが好ましく、100〜400g/m2であることがより好ましく、特に、150〜300g/m2であることが好ましい。連続炭素繊維の目付が20g/m2以上であると、マトリックス樹脂に炭素繊維シートを含浸させた面状発熱体の機械的強度が向上する。また、連続炭素繊維の目付が800g/m2以下であると、炭素繊維シートにマトリックス樹脂を均一に含浸させることができ、面状発熱体の機械的強度が向上する。 Basis weight of the continuous carbon fibers constituting the carbon fiber sheet is preferably usually 20~800g / m 2, more preferably from 100 to 400 g / m 2, in particular, it is 150 to 300 g / m 2 Is preferable. When the basis weight of the continuous carbon fibers is 20 g / m 2 or more, the mechanical strength of the planar heating element in which the matrix resin is impregnated with the carbon fiber sheet is improved. Further, when the basis weight of the continuous carbon fibers is 800 g / m 2 or less, the carbon fiber sheet can be uniformly impregnated with the matrix resin, and the mechanical strength of the planar heating element is improved.

[無機粒子]
無機粒子としては、特に限定されないがシリカ粒子、アルミナ粒子、酸化チタン粒子、炭酸カルシウム粒子、炭素粒子、フライアッシュ、ポリシリコン、タルク等が挙げられる。これら無機粒子は、1種単独で使用してもよいし2種以上を併用してもよいが、面状発熱体の表面温度をより均一にする観点からは2種以上を併用することが好ましい。これらのなかでも、発熱性と熱伝導性の観点から、炭酸カルシウム粒子、タルク、炭素粒子、シリカ粒子の何れかが含まれることがより好ましい。また、炭素繊維シートをマトリックス樹脂に含浸する際に無機粒子が脱落してしまうことを抑制するために、無機粒子は表面処理が施されていてもよい。表面処理としては、沸騰水による表面水酸化処理や、シランカップリング剤による機能化処理を例示できる。
[Inorganic particles]
Examples of the inorganic particles include, but are not limited to, silica particles, alumina particles, titanium oxide particles, calcium carbonate particles, carbon particles, fly ash, polysilicon, talc and the like. These inorganic particles may be used alone or in combination of two or more, but it is preferable to use two or more of these inorganic particles in combination from the viewpoint of making the surface temperature of the planar heating element more uniform. .. Among these, from the viewpoint of heat generation and thermal conductivity, it is more preferable that any of calcium carbonate particles, talc, carbon particles and silica particles is contained. Further, the inorganic particles may be surface-treated in order to prevent the inorganic particles from falling off when the carbon fiber sheet is impregnated with the matrix resin. Examples of the surface treatment include a surface hydroxylation treatment with boiling water and a functionalization treatment with a silane coupling agent.

炭素粒子を用いる場合は、各種樹脂粒子を添加した後に炭化処理を行いアモルファスカーボン粒子としてもよい。好ましくは、ナフトキサジン樹脂溶液を事前加熱し、粒子を生成した粒子溶液に、連続炭素繊維を接触させ、粒子の炭化処理を行う方法が好ましく用いられる。 When carbon particles are used, various resin particles may be added and then carbonized to obtain amorphous carbon particles. Preferably, a method in which the naphthoxazine resin solution is preheated and the continuous carbon fibers are brought into contact with the particle solution in which the particles are generated to carry out carbonization treatment of the particles is preferably used.

無機粒子は、高発熱部と低発熱部とを面全体に均一に形成する観点から、平均粒径が1μm以上であることが好ましく、1.5μm以上であることがより好ましく、特に2μm以上であることが好ましい。また、平均粒子径の上限は15μm以下であることが好ましく、13μm以下であることがより好ましく、特に10μm以下であることが好ましい。なお、本発明において、平均粒子径とは、動的光散乱式の粒度分布計(例えば、マイクロトラック・ベル社製、型番:MT3300)により測定した体積基準の累積度数分布曲線において、累積度数が50%の値(D50)を意味する。 The average particle size of the inorganic particles is preferably 1 μm or more, more preferably 1.5 μm or more, and particularly 2 μm or more, from the viewpoint of uniformly forming the high heat generation portion and the low heat generation portion on the entire surface. It is preferable to have. The upper limit of the average particle size is preferably 15 μm or less, more preferably 13 μm or less, and particularly preferably 10 μm or less. In the present invention, the average particle size is defined as the cumulative frequency in the volume-based cumulative frequency distribution curve measured by a dynamic light scattering type particle size distribution meter (for example, manufactured by Microtrac Bell, model number: MT3300). It means a value of 50% (D 50 ).

高発熱部と低発熱部とを面全体で均一に形成する観点から、連続炭素シートに含まれる無機粒子の含有量は、連続炭素繊維に対し通常0.1〜50質量%であることが好ましく、1〜10質量%であることがより好ましい。なお、必要以上に無機粒子を含有すると、炭素繊維シート全体に占める炭素繊維含有率が低下し、機械物性が低下することがある。 From the viewpoint of uniformly forming the high heat generating portion and the low heat generating portion over the entire surface, the content of the inorganic particles contained in the continuous carbon sheet is usually preferably 0.1 to 50% by mass with respect to the continuous carbon fiber. More preferably, it is 1 to 10% by mass. If the inorganic particles are contained more than necessary, the carbon fiber content in the entire carbon fiber sheet may decrease, and the mechanical properties may decrease.

[マトリックス樹脂]
上記した炭素繊維シート20に含浸させるマトリックス樹脂3としては、熱硬化性樹脂、熱可塑性樹脂の何れであっても使用できるが、本発明においては面状発熱体に優れた曲げ弾性率及び曲げ強度を付与できる観点から、熱可塑性樹脂を好適に使用することができる。
[Matrix resin]
As the matrix resin 3 to be impregnated in the carbon fiber sheet 20 described above, either a thermosetting resin or a thermoplastic resin can be used, but in the present invention, the flexural modulus and bending strength excellent for the planar heating element are used. The thermoplastic resin can be preferably used from the viewpoint of imparting.

熱可塑性樹脂としては、例えば、ポリオレフィン系樹脂、アクリル樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリカーボネート樹脂、塩化ビニル樹脂、芳香族ポリエーテルケトンなどが挙げられるが、含浸性、機械物性、耐熱性のバランスに優れるポリカーボネート樹脂、芳香族ポリエーテルケトンが好ましい。 Examples of the thermoplastic resin include polyolefin resins, acrylic resins, polyamide resins, polyester resins, polycarbonate resins, vinyl chloride resins, aromatic polyetherketones, etc., and the balance between impregnation property, mechanical properties, and heat resistance is improved. Excellent polycarbonate resins and aromatic polyetherketones are preferable.

ポリカーボネート樹脂としては、ビスフェノールA型ポリカーボネート樹脂、イソソルビド骨格を有するポリカーボネート樹脂、ビスフェノールC型ポリカーボネート樹脂等が挙げられ、これらのなかでもビスフェノールA型ポリカーボネート樹脂が耐熱性と機械物性の観点から好ましく用いられる。 Examples of the polycarbonate resin include bisphenol A type polycarbonate resin, polycarbonate resin having an isosorbide skeleton, bisphenol C type polycarbonate resin, and the like, and among these, bisphenol A type polycarbonate resin is preferably used from the viewpoint of heat resistance and mechanical properties.

芳香族ポリエーテルケトンとしては、ポリエーテルエーテルケトン、ポリエーテルケトンケトン等が挙げられ、ポリエーテルエーテルケトンが耐熱性と機械物性の観点から好ましく用いられる。 Examples of the aromatic polyetherketone include polyetheretherketone and polyetherketoneketone, and polyetheretherketone is preferably used from the viewpoint of heat resistance and mechanical properties.

熱硬化性樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、メラミン樹脂、ポリウレタン樹脂などが挙げられ、不飽和ポリエステル樹脂及びエポキシ樹脂が好ましい。 Examples of the thermosetting resin include epoxy resin, unsaturated polyester resin, phenol resin, melamine resin, polyurethane resin and the like, and unsaturated polyester resin and epoxy resin are preferable.

マトリックス樹脂を含浸した炭素繊維シートにおいて、炭素繊維に対するマトリクス樹脂の体積割合(繊維体積含有率)は20〜60%が好ましく、30〜50%がより好ましい。繊維体積含有率が小さすぎると(即ち、マトリックス樹脂の割合が多すぎると)、発熱効率が低下する傾向にある。一方、繊維体積含有率が大きすぎると(即ち、マトリックス樹脂の割合が少なすぎると)、面状発熱体の機械的強度が不充分となる傾向にある。繊維体積含有率は、炭素繊維シートの目付等にもよるが、含浸させるマトリックス樹脂の量を調整することで上記範囲とすることができる。例えば、後記するように、フィルム含浸法によりマトリックス樹脂を含浸させる場合には、フィルムの厚さと加圧の程度によって繊維体積含有率を調整することができる。 In the carbon fiber sheet impregnated with the matrix resin, the volume ratio (fiber volume content) of the matrix resin to the carbon fiber is preferably 20 to 60%, more preferably 30 to 50%. If the fiber volume content is too small (that is, if the proportion of the matrix resin is too large), the heat generation efficiency tends to decrease. On the other hand, if the fiber volume content is too large (that is, if the proportion of the matrix resin is too small), the mechanical strength of the planar heating element tends to be insufficient. The fiber volume content depends on the basis weight of the carbon fiber sheet and the like, but can be within the above range by adjusting the amount of the matrix resin to be impregnated. For example, as described later, when the matrix resin is impregnated by the film impregnation method, the fiber volume content can be adjusted according to the thickness of the film and the degree of pressurization.

[電極]
本発明は連続炭素繊維の電極は、電源から連続炭素繊維に通電することが出来れば特に限定されないが、銀ペースト等の導電性接着材を介して接着された金属箔が好ましい。
金属箔は電気伝導率が高ければ特に限定されないが銅箔、銀箔、金箔等が挙げられ、取り扱い性から銅箔が好ましく用いられる。
[electrode]
The electrode of the continuous carbon fiber is not particularly limited as long as the continuous carbon fiber can be energized from a power source, but a metal foil bonded via a conductive adhesive such as silver paste is preferable.
The metal foil is not particularly limited as long as it has a high electric conductivity, and examples thereof include copper foil, silver foil, and gold foil, and copper foil is preferably used from the viewpoint of handleability.

[面状発熱体]
本発明の面状発熱体は、無機粒子を炭素繊維間に含む炭素繊維シートと、マトリックス樹脂とを備える。その好適な割合は、連続炭素繊維及びマトリックス樹脂の総和を100質量部とした場合に、連続炭素繊維が15〜90質量部、マトリックス樹脂が10〜85質量部、無機粒子が0.01〜20質量部であり、より好ましくは連続炭素繊維が40〜60質量部、マトリックス樹脂が25〜50質量部、無機粒子が0.01〜10質量部である。面状発熱体における各材料の割合が上記範囲であると、機械物性及び発熱特性が好適な範囲となる。
[Surface heating element]
The planar heating element of the present invention includes a carbon fiber sheet containing inorganic particles between the carbon fibers and a matrix resin. The preferred ratios are 15 to 90 parts by mass for continuous carbon fibers, 10 to 85 parts by mass for matrix resin, and 0.01 to 20 parts by mass for inorganic particles, when the total of continuous carbon fibers and matrix resin is 100 parts by mass. It is by mass, more preferably 40 to 60 parts by mass of continuous carbon fiber, 25 to 50 parts by mass of matrix resin, and 0.01 to 10 parts by mass of inorganic particles. When the ratio of each material in the planar heating element is in the above range, the mechanical properties and heat generating characteristics are in a preferable range.

面状発熱体の厚みは、目的とする表面温度、機械強度等に応じて任意に設定することができるが、通常0.1mm〜10mm、好ましくは0.2〜5mmである。上記範囲であると、飛来物等による面状発熱体の破損が抑制できるとともに、十分な表面温度を備えることができる。 The thickness of the planar heating element can be arbitrarily set according to the target surface temperature, mechanical strength, etc., but is usually 0.1 mm to 10 mm, preferably 0.2 to 5 mm. Within the above range, damage to the planar heating element due to flying objects or the like can be suppressed, and a sufficient surface temperature can be provided.

[作用の推測]
本発明の面状発熱体においては、炭素繊維シートが連続炭素繊維と無機粒子とを含むことにより、面状発熱体が均一に加熱されるという予期し得ない効果が得られた。その理由は定かではないが、以下のように推測される。
即ち、連続炭素繊維として使用されるUD繊維等では、連続炭素繊維ゆえに繊維間に凹部が生じ、また、連続炭素繊維を用いた織物等の織布においても、経糸と緯糸との交差部分に凸部が生じる。凹凸は特に織物において顕著である。本発明者らは、このような凹凸が面状発熱体の表面との距離を不均一にし、温度ムラの主要因になっていると考えた。
本発明は、上記の知見に基づくものであり、マトリックス樹脂を含浸させる炭素繊維シートとして連続炭素繊維と無機粒子とを併用することにより、炭素繊維シートの凸部に無機粒子が充填さることで面状発熱体表面との距離が均一化されるとともに、無機粒子の抵抗発熱や連続炭素繊維からの熱伝導によって、面状発熱体の表面温度が均質化できたものと考えられる。
また、炭素粒子と他の粒子を併用した時に更なる表面温度の均質化ができたた理由として、炭素粒子により炭素繊維が開繊され、通常であれば無機粒子が侵入できなかった狭部にも無機粒子が充填されたためと考えられる。
更に、連続炭素繊維からなる炭素繊維シートにマトリックス樹脂を含浸した構成とすることにより、優れた機械的強度も備えることができる。これに対し、短繊維を用いて抄紙法により形成された従来の面状発熱体は機械物性が不十分であり、機械物性の不足を補うためにマトリックス樹脂の量を多くしたり保護層(支持層)を設ける必要があるため、発熱効率が低下する。
[Guessing action]
In the planar heating element of the present invention, the carbon fiber sheet containing continuous carbon fibers and inorganic particles has obtained an unexpected effect that the planar heating element is uniformly heated. The reason is not clear, but it is presumed as follows.
That is, in UD fibers and the like used as continuous carbon fibers, recesses are formed between the fibers because of the continuous carbon fibers, and even in woven fabrics such as woven fabrics using continuous carbon fibers, the warp threads and weft threads are convex at the intersections. Part is generated. The unevenness is particularly remarkable in the woven fabric. The present inventors considered that such unevenness makes the distance from the surface of the planar heating element non-uniform and is a main cause of temperature unevenness.
The present invention is based on the above findings, and by using continuous carbon fibers and inorganic particles in combination as the carbon fiber sheet impregnated with the matrix resin, the convex portion of the carbon fiber sheet is filled with the inorganic particles. It is considered that the surface temperature of the planar heating element could be made uniform by the resistance heat generation of the inorganic particles and the heat conduction from the continuous carbon fibers while the distance from the surface of the planar heating element was made uniform.
In addition, the reason why the surface temperature could be further homogenized when the carbon particles and other particles were used together was that the carbon fibers were opened by the carbon particles, and the narrow part where the inorganic particles could not normally penetrate was formed. It is also considered that this is because the inorganic particles were filled.
Further, by forming a carbon fiber sheet made of continuous carbon fibers impregnated with a matrix resin, excellent mechanical strength can be provided. On the other hand, the conventional planar heating element formed by the papermaking method using short fibers has insufficient mechanical properties, and the amount of matrix resin is increased or a protective layer (support) is used to compensate for the lack of mechanical properties. Since it is necessary to provide a layer), the heat generation efficiency is reduced.

[面状発熱体の製造方法]
本発明の面状発熱体は、上記したような連続炭素繊維の両端側に電極を形成する工程と、前記連続炭素繊維に無機粒子を接触させる工程と、前記無機粒子と接触した連続炭素繊維からなる炭素繊維シートをマトリックス樹脂に含浸させる工程とを含む。
[Manufacturing method of planar heating element]
The planar heating element of the present invention is composed of the steps of forming electrodes on both ends of the continuous carbon fibers as described above, the steps of bringing the inorganic particles into contact with the continuous carbon fibers, and the continuous carbon fibers in contact with the inorganic particles. Includes a step of impregnating the matrix resin with the carbon fiber sheet.

電極は特に制限されることなく従来公知の手法により形成することができる。例えば、連続炭素繊維の両端に、銀ペースト等の導電性接着材を介して金属箔を貼着したり、かしめ電極を連続炭素繊維の両端に取付け、かしめることにより電極を形成してもよい。なお、電極に導電体からなる配線を接続しておくことで、電源から面状発熱体の両電極に通電することができる。 The electrode is not particularly limited and can be formed by a conventionally known method. For example, metal foils may be attached to both ends of the continuous carbon fiber via a conductive adhesive such as silver paste, or caulking electrodes may be attached to both ends of the continuous carbon fiber and caulked to form electrodes. .. By connecting the wiring made of a conductor to the electrodes, both electrodes of the planar heating element can be energized from the power source.

連続炭素繊維に無機粒子を接触させる工程は、無機粒子を連続炭素繊維の表面に散布することにより実施できる。無機粒子を連続炭素繊維に散布した後に、連続炭素繊維表面をヘラ等を用いて無機粒子を均一に散布させることが、連続炭素繊維の凸部に無機粒子が充填される点から好ましい。 The step of bringing the inorganic particles into contact with the continuous carbon fibers can be carried out by spraying the inorganic particles on the surface of the continuous carbon fibers. After spraying the inorganic particles on the continuous carbon fibers, it is preferable to uniformly spray the inorganic particles on the surface of the continuous carbon fibers using a spatula or the like from the viewpoint that the convex portions of the continuous carbon fibers are filled with the inorganic particles.

連続炭素繊維に無機粒子を接触させる工程は、連続炭素繊維の両端側に電極を形成する前であっても後であってもよいが、好ましくは電極を形成する前に無機粒子を接触させることが好ましい。 The step of bringing the inorganic particles into contact with the continuous carbon fibers may be before or after forming the electrodes on both ends of the continuous carbon fibers, but preferably, the inorganic particles are brought into contact with each other before forming the electrodes. Is preferable.

次いで、上記のようにして無機粒子を接触させた連続炭素繊維からなる炭素繊維シートを形成した後、当該炭素繊維シートにマトリックス樹脂を含浸させる。マトリックス樹脂を含浸させる方法は、特に限定されない。マトリックス樹脂が熱可塑性樹脂である場合には、例えば、溶融樹脂をシートダイなどを用いてフィルム状に押出し、炭素繊維シート上に積層した後に、加熱しながら圧縮することによりマトリックス樹脂を炭素繊維シートに含浸させる方法(フィルム含浸法)や、ダイからマトリックス樹脂と炭素繊維シートを一度に引き抜く押し出し成形方法などが挙げられる。生産性の観点からは、フィルム含浸法が好ましく用いられる。例えば、図2に示すように、一対の熱可塑性樹脂シート3A、3Bを準備し、炭素繊維シート2を挟持するように一対の熱可塑性樹脂シート3A、3Bを積層し、加熱下で加圧することにより、図1に示したような面状発熱体1を得ることができる。また、図3に示すように、一枚の熱可塑性樹脂シート3Cと炭素繊維シート2とを重ね合わせた後、加熱下で加圧することにより、図1に示したような面状発熱体1を得ることもできる。 Next, after forming a carbon fiber sheet made of continuous carbon fibers in which inorganic particles are brought into contact with each other as described above, the carbon fiber sheet is impregnated with a matrix resin. The method of impregnating the matrix resin is not particularly limited. When the matrix resin is a thermoplastic resin, for example, the molten resin is extruded into a film using a sheet die or the like, laminated on the carbon fiber sheet, and then compressed while heating to form the matrix resin into the carbon fiber sheet. Examples include a method of impregnating (film impregnation method) and an extruding method of pulling out the matrix resin and the carbon fiber sheet from the die at the same time. From the viewpoint of productivity, the film impregnation method is preferably used. For example, as shown in FIG. 2, a pair of thermoplastic resin sheets 3A and 3B are prepared, and a pair of thermoplastic resin sheets 3A and 3B are laminated so as to sandwich the carbon fiber sheet 2 and pressed under heating. As a result, the planar heating element 1 as shown in FIG. 1 can be obtained. Further, as shown in FIG. 3, a single thermoplastic resin sheet 3C and a carbon fiber sheet 2 are superposed on each other, and then pressurized under heating to form a planar heating element 1 as shown in FIG. You can also get it.

また、マトリックス樹脂が熱硬化性樹脂である場合には、例えば、金型内に炭素繊維シートを配置した後に、熱硬化性樹脂を注入し、硬化させる樹脂トランスファー成形(RTM法)が好ましく用いられる。 When the matrix resin is a thermosetting resin, for example, resin transfer molding (RTM method) in which a carbon fiber sheet is placed in a mold and then the thermosetting resin is injected and cured is preferably used. ..

[用途]
本発明の面状発熱体は、連続炭素繊維からなる炭素繊維シートを使用していることから、機械的強度に優れている。そのため、外部からの衝撃や応力がかかる用途にも好適に使用することができる。従って、従来の融雪マット、床暖房、野菜乾燥機などの用途だけでなく、例えば鉄道車両の外装融雪用シートのような外部からの衝撃や応力がかかる用途であっても、好適に使用することができる。
[Use]
Since the planar heating element of the present invention uses a carbon fiber sheet made of continuous carbon fibers, it is excellent in mechanical strength. Therefore, it can be suitably used for applications where an external impact or stress is applied. Therefore, it should be suitably used not only for conventional snow melting mats, floor heating, vegetable dryers, etc., but also for applications where external impact or stress is applied, such as the exterior snow melting sheet for railway vehicles. Can be done.

以下、本発明を実施例により更に詳細に説明するが、これらの例により本発明が限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these examples.

[実施例1]
150mm×150mm、質量4.68gの炭素繊維織物(台湾プラスチックス社製 フィラメント数3000本、綾織)に炭酸カルシウム(白石工業株式会社製 商品名「白艶華CCR」)を0.5gを散布し、ヘラを用いて表面の均一化を行った。
次に、炭素繊維織物の左右端部に銀ペースト系接着材を用いて銅箔を接着し、電極層を備えた炭素繊維シートを形成した。
続いて、2枚のポリカーボネート樹脂フィルム(帝人株式会社製、商品名「パンライトL−1225LM」、フィルム厚さ80μm)を準備し、炭素繊維シート、ポリカーボネート樹脂フィルム2枚の順に積層した後、270℃で加熱加圧成形を行うことにより、厚み0.33mmの面状発熱体を得た。
[Example 1]
Calcium carbonate (trade name "Shiraishi CCR" manufactured by Shiraishi Kogyo Co., Ltd.) is sprayed on a carbon fiber woven fabric (made by Formosa Plastics Group, 3000 filaments, twill weave) with a weight of 150 mm x 150 mm and a mass of 4.68 g. The surface was made uniform using.
Next, a copper foil was adhered to the left and right ends of the carbon fiber woven fabric using a silver paste-based adhesive to form a carbon fiber sheet having an electrode layer.
Subsequently, two polycarbonate resin films (manufactured by Teijin Limited, trade name "Panlite L-1225LM", film thickness 80 μm) were prepared, and the carbon fiber sheet and the two polycarbonate resin films were laminated in this order, and then 270. A planar heating element having a thickness of 0.33 mm was obtained by heat-press molding at ° C.

得られた面状発熱体の左右両端の電極中央部に電圧印加端子を接続し、4.0Vの電圧を400秒間印加した。400秒経過時点の表面温度を、キーエンス社株式会社製の温度電圧測定ユニット NR−TH08を用いて測定した。温度測定は、面状発熱体の角端部から内側に1cmの箇所と、中央部(端部から縦75mm、横75mm地点)の箇所の2点で行った。2点間の温度差を算出し、温度差が小さいほど表面温度の均一性が優れていると判断した。2点間の温度差は表1に示される通りであった。 A voltage application terminal was connected to the center of the electrodes at both the left and right ends of the obtained planar heating element, and a voltage of 4.0 V was applied for 400 seconds. The surface temperature after 400 seconds was measured using a temperature / voltage measuring unit NR-TH08 manufactured by KEYENCE CORPORATION. The temperature was measured at two points, 1 cm inward from the corner end of the planar heating element and at the center (75 mm long and 75 mm wide from the end). The temperature difference between the two points was calculated, and it was judged that the smaller the temperature difference, the better the uniformity of the surface temperature. The temperature difference between the two points was as shown in Table 1.

[実施例2]
無機粒子として使用した炭酸カルシウムをタルクに変更した以外は実施例1と同様にして温度測定を行い、2点間の温度差を計測した。計測結果は表1に示される通りであった。
[Example 2]
The temperature was measured in the same manner as in Example 1 except that the calcium carbonate used as the inorganic particles was changed to talc, and the temperature difference between the two points was measured. The measurement results are as shown in Table 1.

[実施例3]
<開繊含浸液の作製>
1,5−ジヒドロキシナフタレン(和光純薬株式会社製、商品名「048−02342」)10質量部、メチルアミン(和光純薬株式会社製、商品名「132−01857」)4質量部、及びホルマリン(ホルムアルデヒドの含有量:37質量%、和光純薬株式会社製、商品名「064−00406」)8質量部を含むモノマーと、溶媒としてエタノール水(エタノールの含有量:50質量%、和光純薬株式会社製、商品名「057−00456」)600質量部とを均一に混合して、モノマーを溶解してなるモノマー溶液(開繊含浸液)を調製した。
次いで、得られた開繊含浸液を攪拌しながら、溶液温度が60℃となるように加熱して30分間に亘って保持し、モノマーの一部を重合させて、ナフトキサジン樹脂粒子を析出させて、平均粒径2μmのナフトキサジン樹脂粒子を含むナフトキサジン樹脂粒子溶液を作製した。
[Example 3]
<Preparation of spread impregnated solution>
1,5-Dihydroxynaphthalene (manufactured by Wako Pure Chemical Industries, Ltd., trade name "048-02342") 10 parts by mass, methylamine (manufactured by Wako Pure Chemical Industries, Ltd., trade name "132-01857") 4 parts by mass, and formaldehyde (Formaldehyde content: 37% by mass, manufactured by Wako Pure Chemical Industries, Ltd., trade name "064-00406") A monomer containing 8 parts by mass and ethanol water as a solvent (ethanol content: 50% by mass, Wako Pure Chemical Industries, Ltd.) A monomer solution (open fiber impregnated solution) prepared by dissolving a monomer was prepared by uniformly mixing 600 parts by mass of (trade name "057-00456") manufactured by Co., Ltd.
Next, the obtained fiber-spreading impregnated solution was heated to a solution temperature of 60 ° C. and held for 30 minutes while stirring, and a part of the monomer was polymerized to precipitate naphthoxazine resin particles. , A naphthoxazine resin particle solution containing naphthoxazine resin particles having an average particle size of 2 μm was prepared.

続いて、実施例1と同様の炭素繊維織物をナフトキサジン樹脂粒子溶液に含浸させた後、200℃3分間の炭化処理を行うことで、ナフトキサジン樹脂由来のアモルファスカーボン粒子を含む連続炭素繊維織物を得た。 Subsequently, the same carbon fiber woven fabric as in Example 1 was impregnated with the naphthoxazine resin particle solution and then carbonized at 200 ° C. for 3 minutes to obtain a continuous carbon fiber woven fabric containing amorphous carbon particles derived from the naphthoxazine resin. It was.

炭素繊維織物に代えて、上記のようにして得られたアモルファスカーボン粒子を含む炭素繊維織物を用いた以外は実施例1と同様にして面状発熱体を作製し温度測定を行った。計測結果は表1に示される通りであった。 A planar heating element was prepared and the temperature was measured in the same manner as in Example 1 except that the carbon fiber woven fabric containing the amorphous carbon particles obtained as described above was used instead of the carbon fiber woven fabric. The measurement results are as shown in Table 1.

[実施例4]
実施例3で得られたアモルファスカーボン粒子を含む炭素繊維織物に対し、炭酸カルシウムを0.5g散布した以外は実施例1と同様にして面状発熱体を作製し温度測定を行った。計測結果は表1に示される通りであった。
[Example 4]
A planar heating element was prepared in the same manner as in Example 1 except that 0.5 g of calcium carbonate was sprayed on the carbon fiber woven fabric containing the amorphous carbon particles obtained in Example 3, and the temperature was measured. The measurement results are as shown in Table 1.

[実施例5]
炭酸カルシウムをタルクに変更した以外は、実施例4と同様にして面状発熱体を作製し、温度測定を行った。計測結果は表1に示される通りであった。
[Example 5]
A planar heating element was prepared in the same manner as in Example 4 except that calcium carbonate was changed to talc, and the temperature was measured. The measurement results are as shown in Table 1.

[実施例6]
炭酸カルシウムをシリカに変更した以外は、実施例4と同様にして面状発熱体を作製し、温度測定を行った。計測結果は表1に示される通りであった。
[Example 6]
A planar heating element was prepared in the same manner as in Example 4 except that calcium carbonate was changed to silica, and the temperature was measured. The measurement results are as shown in Table 1.

[実施例7]
炭酸カルシウムをフライアッシュに変更した以外は、実施例4と同様にして面状発熱体を作製し、温度測定を行った。計測結果は表1に示される通りであった。
[Example 7]
A planar heating element was prepared in the same manner as in Example 4 except that calcium carbonate was changed to fly ash, and the temperature was measured. The measurement results are as shown in Table 1.

[比較例1]
炭酸カルシウムを加えなかった以外は実施例1と同様して面状発熱体を作製し、温度測定を行った。計測結果は表1に示される通りであった。
[Comparative Example 1]
A planar heating element was prepared in the same manner as in Example 1 except that calcium carbonate was not added, and the temperature was measured. The measurement results are as shown in Table 1.

表1の評価結果からも明らかなように、無機粒子を含まない炭素繊維シートを使用した面状発熱体(比較例1)に比べ、無機粒子を含む炭素繊維シートを使用した面状発熱体(実施例1〜2)では、表面温度が均一になることがわかる。
また、無機粒子を含む炭素繊維シートを使用した面状発熱体において、単一の無機粒子を含む(実施例1、2))よりも、複数種の無機粒子を併用した方(実施例4,5)が表面温度をより一層均一化できることがわかる。
As is clear from the evaluation results in Table 1, a planar heating element using a carbon fiber sheet containing inorganic particles (Comparative Example 1) is compared with a planar heating element using a carbon fiber sheet containing no inorganic particles (Comparative Example 1). In Examples 1 and 2), it can be seen that the surface temperature becomes uniform.
Further, in a planar heating element using a carbon fiber sheet containing inorganic particles, a method in which a plurality of types of inorganic particles are used in combination rather than containing a single inorganic particle (Examples 1 and 2) (Example 4,). It can be seen that 5) can make the surface temperature even more uniform.

Claims (10)

連続炭素繊維の両側端にそれぞれ電極を備える炭素繊維シートと、前記炭素繊維シートに含浸したマトリックス樹脂と、を有する面状発熱体であって、
前記炭素繊維シートを構成する複数の炭素繊維間に無機粒子を含む、面状発熱体。
A planar heating element having a carbon fiber sheet having electrodes on both side ends of the continuous carbon fiber and a matrix resin impregnated in the carbon fiber sheet.
A planar heating element containing inorganic particles between a plurality of carbon fibers constituting the carbon fiber sheet.
前記マトリックス樹脂が熱可塑性樹脂である、請求項1に記載の面状発熱体。 The planar heating element according to claim 1, wherein the matrix resin is a thermoplastic resin. 前記無機粒子が、タルク、炭酸カルシウム、炭素粒子、シリカ粒子からなる群より選択される少なくとも1種である、請求項1又は2に記載の面状発熱体。 The planar heating element according to claim 1 or 2, wherein the inorganic particles are at least one selected from the group consisting of talc, calcium carbonate, carbon particles, and silica particles. 前記無機粒子の平均粒子径が0.1〜20μmである、請求項1〜3の何れか1項に記載の面状発熱体。 The planar heating element according to any one of claims 1 to 3, wherein the average particle size of the inorganic particles is 0.1 to 20 μm. 前記炭素繊維シートが炭素繊維織物を含む、請求項1〜4の何れか1項に記載の面状発熱体。 The planar heating element according to any one of claims 1 to 4, wherein the carbon fiber sheet contains a carbon fiber woven fabric. 前記炭素繊維シートに含まれる無機粒子の含有量は、前記連続炭素繊維に対し、0.1〜50質量%である、請求項1〜5の何れか1項に記載の面状発熱体。 The planar heating element according to any one of claims 1 to 5, wherein the content of the inorganic particles contained in the carbon fiber sheet is 0.1 to 50% by mass with respect to the continuous carbon fibers. 前記連続炭素繊維及びマトリックス樹脂の総和を100質量部とした場合に、前記連続炭素繊維が15〜90質量部、前記マトリックス樹脂が10〜85質量部、前記無機粒子が0.01〜20質量部含まれる、請求項1〜6の何れか1項に記載の面状発熱体。 When the total of the continuous carbon fibers and the matrix resin is 100 parts by mass, the continuous carbon fibers are 15 to 90 parts by mass, the matrix resin is 10 to 85 parts by mass, and the inorganic particles are 0.01 to 20 parts by mass. The planar heating element according to any one of claims 1 to 6, which is included. 鉄道車両の外装融雪用シートとして使用される、請求項1〜7の何れか1項に記載の面状発熱体。 The planar heating element according to any one of claims 1 to 7, which is used as an exterior snow melting sheet for a railway vehicle. 連続炭素繊維の両端側に電極を形成する工程と、
前記連続炭素繊維に無機粒子を接触させる工程と、
前記無機粒子と接触した連続炭素繊維からなる炭素繊維シートにマトリックス樹脂を含浸させる含浸工程と、
を含む面状発熱体の製造方法。
The process of forming electrodes on both ends of continuous carbon fiber,
The step of bringing the inorganic particles into contact with the continuous carbon fibers and
An impregnation step of impregnating a carbon fiber sheet made of continuous carbon fibers in contact with the inorganic particles with a matrix resin, and
A method for manufacturing a planar heating element including.
前記含浸工程が、炭素繊維シートの少なくとも一面に熱可塑性樹脂フィルムを積層して、加熱加圧を行うことにより実施される、請求項9に記載の面状発熱体の製造方法。 The method for producing a planar heating element according to claim 9, wherein the impregnation step is carried out by laminating a thermoplastic resin film on at least one surface of the carbon fiber sheet and performing heating and pressurizing.
JP2019126448A 2019-07-05 2019-07-05 Planar heating element and manufacturing method thereof Active JP7271344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019126448A JP7271344B2 (en) 2019-07-05 2019-07-05 Planar heating element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019126448A JP7271344B2 (en) 2019-07-05 2019-07-05 Planar heating element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2021012814A true JP2021012814A (en) 2021-02-04
JP7271344B2 JP7271344B2 (en) 2023-05-11

Family

ID=74227764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019126448A Active JP7271344B2 (en) 2019-07-05 2019-07-05 Planar heating element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP7271344B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116622238A (en) * 2023-04-04 2023-08-22 厦门斯研新材料技术有限公司 Heat-conducting composite material and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260264A (en) * 1993-03-02 1994-09-16 Dainippon Ink & Chem Inc Manufacture of surface heating element
JP2005093076A (en) * 2003-07-15 2005-04-07 Trinity:Kk Sheet-shaped heating element, its manufacturing method, and manufacturing device of sheet-shaped heating element
JP2017162782A (en) * 2016-03-11 2017-09-14 東日本旅客鉄道株式会社 Heating unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260264A (en) * 1993-03-02 1994-09-16 Dainippon Ink & Chem Inc Manufacture of surface heating element
JP2005093076A (en) * 2003-07-15 2005-04-07 Trinity:Kk Sheet-shaped heating element, its manufacturing method, and manufacturing device of sheet-shaped heating element
JP2017162782A (en) * 2016-03-11 2017-09-14 東日本旅客鉄道株式会社 Heating unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116622238A (en) * 2023-04-04 2023-08-22 厦门斯研新材料技术有限公司 Heat-conducting composite material and preparation method thereof
CN116622238B (en) * 2023-04-04 2024-03-26 厦门斯研新材料技术有限公司 Heat-conducting composite material and preparation method thereof

Also Published As

Publication number Publication date
JP7271344B2 (en) 2023-05-11

Similar Documents

Publication Publication Date Title
JP3821467B2 (en) Reinforcing fiber base material for composite materials
EP2607075B1 (en) Sandwich Laminate and manufacturing method
CN102046367B (en) Improved composite materials
JP4233560B2 (en) Manufacturing method of prepreg
JP5097203B2 (en) Planar heating element using carbon microfiber and method for producing the same
EP0014104B1 (en) Electrically conductive prepreg materials, articles manufactured therefrom, and a method of manufacturing said prepreg material
KR101538032B1 (en) Basalt fiber reinforced composite material and manufacturing method thereof
CN104245286B (en) Material with improved conductivity properties for the production of composite parts in combination with a resin
CN108431098B (en) Structural body
EP0361796A2 (en) Method of producing a formable composite material
EP3263633B1 (en) Curing method of resin composite material
JP2019534809A (en) Protective film
JP2013191551A (en) Planar heating element, manufacturing method therefor, and electrode for planar heating element
JP3463898B2 (en) Heating element and network structure for heating element
JPWO2017209300A1 (en) Sheet and rod member
JP2021012814A (en) Planar heating element and manufacturing method of the same
JPH01200914A (en) Resin impregnating method
CN111183019B (en) Aramid fabric, aramid fabric preparation method, aramid fabric prepreg and aramid fabric/thermoplastic polyurethane matrix resin composite
KR20130032890A (en) Electro-conductive textile
JP2876028B2 (en) Unidirectional preform sheet and method of manufacturing the same
JP2005179845A (en) Unidirectional woven carbon fiber fabric and method for producing the same
JP6780921B2 (en) High-performance carbon / carbon composite material with high carbon fiber contribution
CN207496160U (en) A kind of integration silicon rubber Compound Fabric heater
KR101543127B1 (en) Porous fabriclike aramid heat sheet and preparation method thereof
JPH09326291A (en) Flat heater element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230426

R151 Written notification of patent or utility model registration

Ref document number: 7271344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151