JP2019079714A - Planar heat generating cloth and manufacturing method thereof - Google Patents

Planar heat generating cloth and manufacturing method thereof Download PDF

Info

Publication number
JP2019079714A
JP2019079714A JP2017206238A JP2017206238A JP2019079714A JP 2019079714 A JP2019079714 A JP 2019079714A JP 2017206238 A JP2017206238 A JP 2017206238A JP 2017206238 A JP2017206238 A JP 2017206238A JP 2019079714 A JP2019079714 A JP 2019079714A
Authority
JP
Japan
Prior art keywords
heat
fabric
conductive
heat generating
generating member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017206238A
Other languages
Japanese (ja)
Inventor
隆 上杉
Takashi Uesugi
隆 上杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiren Co Ltd
Original Assignee
Seiren Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiren Co Ltd filed Critical Seiren Co Ltd
Priority to JP2017206238A priority Critical patent/JP2019079714A/en
Publication of JP2019079714A publication Critical patent/JP2019079714A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)

Abstract

To provide a planar heat generating cloth capable of uniform heat generation even in a complicated shape, and can be used as a heat-generating element even when the cloth is cut into a free shape.SOLUTION: A planar heat-generating cloth includes a heat generating member 1 formed by impregnating a base material having continuous voids with a resin composition including a conductive material including carbon particles, metal particles, a metal oxide, and a conductive polymer, a first conductive cloth 2 laminated on one side of the heat generating member 1, and a second conductive cloth 3 laminated on the other side of the heat generating member.SELECTED DRAWING: Figure 1

Description

本発明は、面状発熱布帛およびその製造方法に関する。詳しくは、複雑な形状であっても均一な発熱性を示す面状発熱布帛とその製造方法に関する。また、本発明の面状発熱布帛は、自由な形状に裁断しても利用できるという特徴を有する。   The present invention relates to a planar heat-generating fabric and a method for producing the same. More specifically, the present invention relates to a sheet-like heat-generating fabric that exhibits uniform heat build-up even with complicated shapes, and a method of manufacturing the same. Moreover, the planar heat-generating fabric of the present invention is characterized in that it can be used even if it is cut into a free shape.

従来、可撓性を有する面状発熱体としては、高分子フィルム上に金属等から成る電極(陰極、陽極)と、この陰極と陽極間にカーボン粒子などを含有した比較的高い電気抵抗を有する樹脂被膜とが形成された発熱体が用いられてきた。しかしながら、衣服や椅子、乗り物のシートなど、人体に接触するような箇所で従来の面状発熱体を使用した場合、基材に高分子フィルムを用いているために蒸れや硬さが問題となる。   Conventionally, as a flexible planar heating element, it has an electrode (a cathode, an anode) made of metal or the like on a polymer film, and a relatively high electric resistance containing carbon particles etc. between the cathode and the anode. A heating element having a resin coating formed thereon has been used. However, when using conventional sheet-like heating elements in places that come in contact with the human body, such as clothes, chairs, and seats of vehicles, the use of a polymer film for the base causes problems of stuffiness and hardness. .

面状発熱体の蒸れや硬さの問題を解消する方法として、基材に布帛を用いることが提案されている。例えば、特許文献1には、基材の表面にインキ状態の導電性材料および抵抗体材料を印刷・乾燥することで電極部・発熱部を形成してなる面状発熱体が開示されている。特許文献2には、導電性繊維を含む繊維構造体で形成された発熱部と、発熱部に通電するための電極部として導電剤とバインダー成分を含む、面状発熱体が提案されている。また、特許文献3には、導電性粉末を含む樹脂が不織布に担持されてなる導電性シートに、電極として金属線が縫い込まれており、この導電性シートおよび電極が絶縁性シートで挟持された面状発熱体が開示されている。   It has been proposed to use a fabric as the base material as a method of solving the problems of the stuffiness and hardness of the planar heating element. For example, Patent Document 1 discloses a planar heating element in which an electrode portion and a heat generating portion are formed by printing and drying a conductive material and a resistor material in the form of ink on the surface of a base material. Patent Document 2 proposes a planar heating element including a heat generating portion formed of a fiber structure containing conductive fibers, and a conductive agent and a binder component as an electrode portion for energizing the heat generating portion. Further, according to Patent Document 3, a metal wire is sewn into an electroconductive sheet in which a resin containing an electroconductive powder is supported by a non-woven fabric, and the electroconductive sheet and the electrode are sandwiched by an insulating sheet. A planar heating element is disclosed.

しかしながら、上記従来の面状発熱体においては、平面状に形成された発熱部に対して、同じ平面内でこの発熱部を挟むように電極が形成されている。つまり、発熱時に電流が流れる方向は、発熱部の面方向となる。このような面状発熱体の場合、発熱部の形状が方形であれば対向する2辺に電極を設けることで電極間距離は一定となり、均一な発熱が見込める。一方、発熱部の形状を円形とする場合、電極の配置や形状を工夫して形成したとしても、均一な発熱を得ることは困難である。また、自由な形状に裁断しても発熱可能な面状発熱体は得られない。   However, in the conventional planar heating element, an electrode is formed so as to sandwich the heat generating portion in the same plane with respect to the heat generating portion formed in a planar shape. That is, the direction in which the current flows when generating heat is the surface direction of the heat generating portion. In the case of such a planar heating element, if the shape of the heat generating portion is square, the distance between the electrodes becomes constant by providing the electrodes on two opposing sides, and uniform heat generation can be expected. On the other hand, when the shape of the heat generating portion is circular, it is difficult to obtain uniform heat generation even if the arrangement and shape of the electrodes are devised and formed. Moreover, even if it cut | judges in a free shape, the planar heating element which can be heated can not be obtained.

特開2008−269914号公報JP 2008-269914 A 特開2013−191551号公報JP, 2013-191551, A 特開2007−184230号公報JP 2007-184230 A

本発明は、複雑な形状であっても均一な発熱が可能な面状発熱布帛を提供する。また、自由な形状に裁断しても発熱体として利用可能な面状発熱布帛を提供する。   The present invention provides a planar heat-generating fabric capable of uniform heat generation even in a complicated shape. In addition, the present invention provides a planar heat-generating fabric that can be used as a heat-generating element even when cut into a free shape.

本発明者らは、鋭意検討した結果、厚み方向に電流を流す構成とした面状発熱布帛であれば、どのような形状であっても均一な発熱が得られることを見出し、本発明を完成させるに到った。   As a result of intensive investigations, the present inventors have found that, as long as the sheet-like heat generating fabric has a configuration in which current flows in the thickness direction, uniform heat generation can be obtained regardless of the shape, and the present invention is completed. It was up to you.

すなわち本発明の面状発熱布帛は、連続した空隙を有する基材に導電性材料を含有する樹脂組成物が含浸されて成る発熱部材と、前記発熱部材の一方の面に積層された第一導電性布帛と、前記発熱部材の他方の面に積層された第二導電性布帛と、を有する面状発熱布帛である。   That is, the planar heat-generating fabric of the present invention comprises a heat-generating member formed by impregnating a substrate having continuous voids with a resin composition containing a conductive material, and a first conductive layer laminated on one surface of the heat-generating member. It is a sheet-like heat generation cloth which has a sex cloth and the 2nd conductive cloth laminated on the other side of the heat generation member.

前記発熱部材の表面抵抗値が100Ω/□〜60kΩ/□であることが好ましい。   It is preferable that the surface resistance value of the said heat-generating member is 100 ohms / square-60 k ohms / square.

前記第一導電性布帛及び前記第二導電性布帛の表面抵抗値が、0.001Ω/□〜0.1Ω/□であることが好ましい。   It is preferable that the surface resistance value of the said 1st conductive fabric and the said 2nd conductive fabric is 0.001 ohm / square-0.1 ohm / square.

前記導電性材料が、カーボン粒子、金属粒子、金属酸化物、導電性高分子であることが好ましい。   The conductive material is preferably a carbon particle, a metal particle, a metal oxide, or a conductive polymer.

前記樹脂組成物が、ポリウレタン樹脂、ウレタン変性樹脂を主成分とすることが好ましい。   It is preferable that the said resin composition has a polyurethane resin and a urethane modified resin as a main component.

また、本発明の面状発熱布帛の製造方法は、連続した空隙を有する基材に、導電性材料を含有する樹脂組成物を含浸させて発熱部材を得る工程と、前記発熱部材の一方の面に第一導電性布帛を積層する工程と、前記発熱部材の他方の面に第二導電性布帛を積層する工程と、を含む。   In the method for producing a planar heat-generating fabric of the present invention, a substrate having continuous voids is impregnated with a resin composition containing a conductive material to obtain a heat-generating member, and one surface of the heat-generating member And laminating the second conductive fabric on the other surface of the heat generating member.

本発明によれば、複雑な形状であっても均一な発熱が得られる面状発熱布帛が得られる。また、自由な形状に切断したとしても、発熱が可能な面状発熱布帛が得られる。   According to the present invention, it is possible to obtain a sheet-like heat generating fabric which can obtain uniform heat generation even with a complicated shape. Moreover, even if it cut | disconnects in a free shape, the planar heat-generating cloth which can generate heat | fever is obtained.

本発明の面状発熱布帛の一例を示す断面図である。It is sectional drawing which shows an example of the planar heating cloth of this invention. 本発明の面状発熱布帛の発熱状態を撮影した写真である。It is the photograph which image | photographed the heat-generation state of the planar heat-generating fabric of this invention. 複数発熱部を有する本発明の面状発熱布帛の一例を示す断面図である。It is sectional drawing which shows an example of the planar heating cloth of this invention which has multiple heat-emitting part.

本発明の面状発熱布帛は、連続した空隙を有する基材に導電性材料を含有する樹脂組成物が含浸されている発熱部材を有している。連続した空隙を有する基材としては、連続気泡を有する発泡体や各種繊維から構成される布帛等が挙げられる。連続気泡を有する発泡体は、ウレタン樹脂、メラミン樹脂、合成ゴム等の合成樹脂を材料とする合成スポンジや海綿、天然ゴム等の天然物を材料とする天然スポンジなどが挙げられる。なかでも、種類が豊富で、入手が容易であるという理由でウレタン樹脂、メラミン樹脂が好ましい。これらの樹脂材料を用いて連続気泡を有する発泡体を製造する方法としては、発泡剤、機械的攪拌、化学反応等が挙げられる。   The planar heat-generating fabric of the present invention has a heat-generating member in which a resin composition containing a conductive material is impregnated in a substrate having continuous voids. As a base material which has a continuous space | gap, the fabric etc. which are comprised from the foam which has an open cell, and various fibers are mentioned. Examples of foams having open cells include synthetic sponges made of synthetic resins such as urethane resins, melamine resins and synthetic rubbers, and natural sponges made of natural products such as sponges and natural rubbers. Among them, urethane resins and melamine resins are preferable because they are abundant in type and easy to obtain. As a method of manufacturing the foam which has an open cell using these resin materials, a foaming agent, mechanical stirring, a chemical reaction, etc. are mentioned.

連続した空隙を有する基材としての布帛を構成する繊維種としては、合成繊維(ポリアミド、ポリエステル、ポリウレタン、ポリアクリル等)、半合成繊維(アセテート、トリアセテート等)、再生繊維(レーヨン、キュプラ等)、天然繊維(綿、麻、羊毛、絹等)等、特に限定されないが、強度や耐薬品性などの観点から合成繊維が好ましい。特に好ましい合成繊維としてはポリエステル、ポリアミド等が挙げられる。繊維の形態としてはモノフィラメント糸、マルチフィラメント糸、紡績糸、カバーリング糸等であってもよい。布帛の形態としては、織物(平織、綾織、朱子織等)、編物(丸編、経編等)、不織布が挙げられ、特に限定されない。   As fiber types constituting the fabric as a base material having continuous voids, synthetic fibers (polyamide, polyester, polyurethane, polyacrylic etc.), semi-synthetic fibers (acetate, triacetate etc.), regenerated fibers (rayon, cupra etc.) Natural fibers (cotton, hemp, wool, silk, etc.) are not particularly limited, but synthetic fibers are preferred from the viewpoint of strength and chemical resistance. Particularly preferred synthetic fibers include polyester, polyamide and the like. The form of the fibers may be monofilament yarn, multifilament yarn, spun yarn, covering yarn or the like. Examples of the form of the fabric include woven fabric (plain weave, twill weave, satin weave, etc.), knitted fabric (round knit, warp knit, etc.), non-woven fabric, and the like, and is not particularly limited.

連続した空隙を有する基材の厚みは、100μm〜1mmであることが好ましい。基材の厚みが100μm〜1mmの範囲であると、十分な発熱性を発現することができる。また、柔軟性の高い面状発熱布帛を得る事ができる。   It is preferable that the thickness of the base material which has a continuous space | gap is 100 micrometers-1 mm. When the thickness of the substrate is in the range of 100 μm to 1 mm, sufficient heat buildup can be expressed. In addition, it is possible to obtain a sheet-like heat generating cloth with high flexibility.

本発明における発熱部材は、前記連続した空隙を有する基材に対して、導電性材料を含有する樹脂組成物が含浸されることで構成される。すなわち、導電性材料を含有する樹脂組成物が、前記基材の内部に存在する連続した空隙に入り込んでいる。前記樹脂組成物は、前記基材の連続した空隙を埋めるように付与される。これにより、発熱部材は厚み方向に導電性が得られる。本発明の発熱部材は、厚み方向に1〜6,000Ω・cmの導電性を有することが好ましい。   The heat-generating member in the present invention is configured by impregnating a resin composition containing a conductive material with respect to the base having the continuous void. That is, the resin composition containing the conductive material has penetrated into the continuous voids present inside the substrate. The resin composition is applied to fill the continuous voids of the substrate. Thereby, the heat generating member can obtain conductivity in the thickness direction. The heat-generating member of the present invention preferably has conductivity of 1 to 6,000 Ω · cm in the thickness direction.

前記樹脂組成物に含有される導電性材料は、カーボン粒子や金属粒子、カーボンナノチューブ、金属酸化物、導電性高分子等、導電性を有する材料から成る粒子状の材料が挙げられる。金属粒子としては、銀粒子、銅粒子、ニッケル粒子、アルミニウム粒子等が挙げられる。導電性材料の粒径は0.1μm〜10μmであることが好ましい。粒径がこの範囲内であれば、基材の連続した空隙の内部にまで導電性材料が入り込みやすくなる。結果として、均一な導電性を有する発熱部材を得ることができる。   Examples of the conductive material contained in the resin composition include particulate materials made of a material having conductivity, such as carbon particles, metal particles, carbon nanotubes, metal oxides, and conductive polymers. Examples of metal particles include silver particles, copper particles, nickel particles, and aluminum particles. The particle diameter of the conductive material is preferably 0.1 μm to 10 μm. If the particle size is within this range, the conductive material is likely to penetrate into the continuous voids of the substrate. As a result, a heat generating member having uniform conductivity can be obtained.

前記樹脂組成物における前記導電性材料の含有率は、5質量%〜20質量%であることが好ましい。導電性材料の含有率がこの範囲内であれば、発熱部材に上記の導電性を付与することができる。   It is preferable that the content rate of the said electroconductive material in the said resin composition is 5 mass%-20 mass%. If the content of the conductive material is within this range, the above-described conductivity can be imparted to the heat-generating member.

前記導電性材料を樹脂成分に分散したものが本発明で用いる樹脂組成物である。ここで用いられる樹脂成分としては、アクリル樹脂、ウレタン樹脂、ポリエステル樹脂、シリコン樹脂、エポキシ樹脂、メラミン樹脂、ポリアミン樹脂等の合成樹脂や、天然ゴム、ダンマル、マスチック等の天然樹脂が挙げられる。   What disperse | distributed the said electroconductive material to the resin component is a resin composition used by this invention. Examples of the resin component used herein include synthetic resins such as acrylic resin, urethane resin, polyester resin, silicone resin, epoxy resin, melamine resin, and polyamine resin, and natural resins such as natural rubber, dammar and mastic.

本発明の樹脂組成物は、前記導電性材料と前記樹脂成分の他、溶媒やその他添加物を含有していてもよい。溶媒としては、水、アルコール、エステル等が挙げられる。その他添加物としては、分散安定剤、粘度調整剤、消泡剤等が挙げられる。   The resin composition of the present invention may contain, in addition to the conductive material and the resin component, a solvent and other additives. As the solvent, water, alcohol, ester and the like can be mentioned. Other additives include a dispersion stabilizer, a viscosity modifier, an antifoamer, and the like.

本発明における、第一導電性布帛と第二導電性布帛(両者をまとめて単に導電性布帛とも記載する)は、発熱部材の両面に各々積層され、電極として作用する(図1)。導電性布帛は、導電性繊維を用いて織編された布帛であってよい。あるいは、非導電性の繊維から成る布帛に、加工によって導電性を付与したものであってもよい。導電性繊維としては、炭素繊維、金属繊維等が挙げられる。更に、カーボン粒子や金属粒子が練り込まれた繊維、ポリアニリン、ポリチオフェン、ポリピロール等の導電性高分子材料からなる繊維が挙げられる。非導電性の繊維から成る布帛に導電性を付与する加工としては、金属蒸着加工や金属めっき加工等が挙げられる。これらのなかでも、表面抵抗値が極めて低い導電性布帛が得られるという点で、非導電性の繊維からなる布帛に、金属めっき加工が施された導電性布帛が好ましい。非導電性の繊維に予め金属めっき加工を施し、これを用いて形成された導電性布帛も好ましい態様として挙げられる。   In the present invention, the first conductive cloth and the second conductive cloth (both collectively and simply described as a conductive cloth) are respectively laminated on both surfaces of the heat-generating member and function as electrodes (FIG. 1). The conductive fabric may be a fabric woven and woven using conductive fibers. Alternatively, the fabric made of non-conductive fibers may be provided with conductivity by processing. Examples of the conductive fiber include carbon fiber, metal fiber and the like. Furthermore, fibers in which carbon particles and metal particles are mixed and fibers made of a conductive polymer material such as polyaniline, polythiophene and polypyrrole can be mentioned. Examples of processing for imparting conductivity to a fabric made of nonconductive fibers include metal deposition processing and metal plating processing. Among these, a conductive fabric in which metal plating is applied to a fabric made of non-conductive fibers is preferable in that a conductive fabric having an extremely low surface resistance can be obtained. A metal-plating process is beforehand performed to the nonelectroconductive fiber, and the electroconductive fabric formed using this is also mentioned as a preferable aspect.

布帛を構成する非導電性繊維としては、特に限定されず、合成繊維(ポリアミド、ポリエステル、ポリウレタン、ポリアクリル等)、半合成繊維(アセテート、トリアセテート等)、再生繊維(レーヨン、キュプラ等)、天然繊維(綿、麻、羊毛、絹等)等が利用できる。なかでも、金属めっき加工で使用される薬剤に耐性の高い合成繊維が好ましい。また、強度や汎用性の点でポリエステル、ポリアミドが好ましい。   The non-conductive fibers constituting the fabric are not particularly limited, and synthetic fibers (polyamide, polyester, polyurethane, polyacrylic etc.), semi-synthetic fibers (acetate, triacetate etc.), regenerated fibers (rayon, cupra etc.), natural Fibers (cotton, hemp, wool, silk etc) can be used. Among them, synthetic fibers having high resistance to chemicals used in metal plating are preferable. In addition, polyester and polyamide are preferable in terms of strength and versatility.

金属めっき加工において用いられる金属としては、銅、ニッケル、スズ、銀、金からなる群から選択される少なくとも1種の金属またはこれらの合金(たとえば銅とスズの合金など)が挙げられる。銅、銀が特に好ましい。   Examples of the metal used in the metal plating include at least one metal selected from the group consisting of copper, nickel, tin, silver and gold or an alloy thereof (for example, an alloy of copper and tin). Copper and silver are particularly preferred.

本発明の導電性布帛は、その表面抵抗値が0.001Ω/□〜0.1Ω/□であることが好ましい。表面抵抗値がこの範囲内であれば、均一な発熱が可能である面状発熱布帛を得ることができる。   The conductive fabric of the present invention preferably has a surface resistance value of 0.001 Ω / □ to 0.1 Ω / □. If the surface resistance value is within this range, it is possible to obtain a planar heat-generating fabric capable of uniform heat generation.

積層された前記発熱部材と前記導電性布帛との境界部には、接合部材が配されていてもよい。接合部材としては、接触抵抗が極めて小さい材料が好ましい。接合部材の具体例としては、はんだ、導電性接着剤、異方導電接着剤等の接着剤や、ポリウレタン、エチレン酢酸ビニル、ポリエステル等の所謂ホットメルト材料等が挙げられる。接触抵抗の値は1mΩ〜100mΩであることが好ましい。接触抵抗がこの範囲内であれば、発熱部材と導電性布帛との電気的な接続が十分となり、均一で効率の良い発熱が可能となる。   A bonding member may be disposed at the boundary between the laminated heat generating member and the conductive cloth. As a joining member, a material with very low contact resistance is preferable. Specific examples of the bonding member include adhesives such as solder, conductive adhesive and anisotropic conductive adhesive, and so-called hot melt materials such as polyurethane, ethylene vinyl acetate and polyester. The contact resistance value is preferably 1 mΩ to 100 mΩ. If the contact resistance is within this range, the electrical connection between the heat-generating member and the conductive fabric becomes sufficient, and uniform and efficient heat generation becomes possible.

本発明においては、図1に示すように第一導電性布帛、発熱部材、第二導電性布帛がこの順に積層されている。第一導電性布帛、発熱部材、第二導電性布帛は、各々その形状が概ね同一であり、且つ、その輪郭部が重なっており、はみ出さないように積層されていることが好ましい。これによれば、面状発熱布帛の外縁部における発熱不良を防ぐことができる。   In the present invention, as shown in FIG. 1, the first conductive fabric, the heat generating member, and the second conductive fabric are laminated in this order. It is preferable that the first conductive cloth, the heat-generating member, and the second conductive cloth have substantially the same shape and that their outlines overlap and be laminated so as not to protrude. According to this, it is possible to prevent the heat generation failure at the outer edge portion of the sheet-like heat generation fabric.

本発明の面状発熱布帛を発熱させるには、第一導電性布帛と第二導電性布帛に対し、外部の電源より電圧を印加する。電圧を印加するための導線は、各々の導電性布帛に接続されるがその方法は特に限定されない。導線を導電性布帛に縫い付けてもよいし、導電性接着剤によって接着させてもよい。低温はんだを用いて接続してもよい。   In order to cause the sheet-like heat generating fabric of the present invention to generate heat, a voltage is applied to the first conductive fabric and the second conductive fabric from an external power source. Although the conducting wire for applying a voltage is connected to each conductive fabric, the method is not particularly limited. The wire may be sewn to the conductive fabric or may be adhered by a conductive adhesive. It may be connected using low temperature solder.

本発明の面状発熱布帛は、発熱部材をその両面から挟み込む導電性布帛という構成であるため、電流は面状発熱布帛の厚み方向に流れることになる。したがって、面状発熱布帛の各部分における電流の流れる経路は長さが一定となり、バラツキが小さい。そのため均一な発熱が可能となる。この効果は面状発熱布帛の形状に関わりなく、複雑な形状であっても均一な発熱が可能である。加えて、第一導電性布帛/発熱部材/第二導電性布帛という三層構造を保持した状態であれば、これを自由な形状に裁断しても面状発熱布帛として機能し得る。   Since the sheet-like heat generating fabric of the present invention is configured as a conductive cloth sandwiching the heat generating member from both sides thereof, current flows in the thickness direction of the sheet-like heat generating fabric. Therefore, the path of the current flow in each part of the sheet-like heat generating fabric has a constant length and a small variation. Therefore, uniform heat generation is possible. This effect is independent of the shape of the planar heat-generating fabric, and even if it is a complicated shape, uniform heat generation is possible. In addition, as long as the three-layer structure of the first conductive fabric / the heat generating member / the second conductive fabric is held, it can function as a planar heat generating fabric even if it is cut into a free shape.

本発明の面状発熱布帛を製造する方法は、連続した空隙を有する基材に導電性材料を含有する樹脂組成物を含浸させ発熱部材を得る工程と、前記発熱部材の一方の面に第一導電性布帛を積層する工程と、前記発熱部材の他方の面に第二導電性布帛を積層する工程と、を含む。   The method for producing a planar heat-generating fabric according to the present invention comprises the steps of: impregnating a substrate having a continuous void with a resin composition containing a conductive material to obtain a heat-generating member; And a step of laminating a conductive cloth, and a step of laminating a second conductive cloth on the other surface of the heat generating member.

連続した空隙を有する基材に導電性材料を含有する樹脂組成物を含浸させる方法としては、ディップ・ニップ法、コーティング法、スプレー法、浸漬法、印刷法等が挙げられる。樹脂組成物を、基材の内部空隙に均一に付与できるという点で、ディップ・ニップ法、浸漬法が好ましい。基材に樹脂組成物を含浸させた後には、必要に応じて加熱し、溶媒を除去することができる。このようにして本発明における発熱部材が得られる。   As a method of impregnating the resin composition containing a conductive material in a base material having a continuous void, a dip-nip method, a coating method, a spray method, an immersion method, a printing method and the like can be mentioned. The dip-nip method and the immersion method are preferred in that the resin composition can be uniformly applied to the internal voids of the substrate. After the base material is impregnated with the resin composition, the solvent can be removed by heating as required. Thus, the heat generating member in the present invention is obtained.

上記工程にて得られた発熱部材の一方の面に、第一導電性布帛を積層する方法としては、接着材料を用いる方法が挙げられる。発熱部材を構成する基材が熱可塑性を有する材料である場合、発熱部材の表面を加熱して溶融させて第一導電性布帛を重ね合わせる、所謂熱融着の方法で積層することもできる。また、上記工程で用いる樹脂組成物が接着性を有する場合には、特に接着材料を用いることなく第一導電性布帛を積層し接着することができる。   As a method of laminating the first conductive fabric on one surface of the heat-generating member obtained in the above process, a method using an adhesive material can be mentioned. When the base material which comprises a heat-generation member is a material which has thermoplasticity, it can also be laminated | stacked by the method of what is called heat sealing which heats and fuses the surface of a heat-generation member, and superimposes a 1st conductive fabric. Moreover, when the resin composition used at the said process has adhesiveness, it can laminate | stack and adhere a 1st conductive fabric, without using an adhesive material in particular.

発熱部材の他方の面に第二導電性布帛を積層する方法については、上記第一導電性布帛の積層方法と同様である。   The method of laminating the second conductive fabric on the other surface of the heat generating member is the same as the method of laminating the first conductive fabric.

本発明の面状発熱布帛は、その技術的特徴を備える限り、他の形態とすることもできる。例えば連続した空隙を有する基材に、導電性材料を含有する樹脂組成物をパターン状に付与し、発熱部材における発熱部分をパターン状に形成してもよい(図3を参照)。このような発熱部材に対し、発熱部材全体をカバーする第一導電性布帛、第二導電性布帛を両面に積層する。これによれば、電源との接続は一対のみで、複数個の発熱部分を有するようなパターンを均一に発熱させることができる。   The planar heat-generating fabric of the present invention can be in other forms as long as it has the technical features. For example, a resin composition containing a conductive material may be applied in a pattern to a base material having continuous voids, and a heat generating portion in the heat generating member may be formed in a pattern (see FIG. 3). A first conductive cloth and a second conductive cloth covering the entire heat generating member are laminated on both sides of such a heat generating member. According to this, it is possible to generate heat uniformly in a pattern having a plurality of heat generation parts by only one pair of connections with the power supply.

以下に本発明を実施例により説明するが、本発明はこれらの実施例により何らの制限を受けるものではない。
本実施例における各種物性の評価方法は以下の通りである。
EXAMPLES The present invention will be described by way of examples, but the present invention is not limited by these examples.
The evaluation method of various physical properties in this example is as follows.

<発熱性>
発熱性布帛の第一導電性布帛、第二導電性布帛の各々に導線を接続して電圧を印加し、赤外線サーモグラフィー(フリアーシステムズ社製、型番FLIR C2)にて面状発熱布帛の表面温度を観察した。解析ソフト(フリアーシステムズ社製、FLIR Tools)にて、電圧9V印加した際の表面温度上昇値を10点計測し、その平均値と標準偏差を算出して発熱性および発熱の均一性を評価した(図2を参照)。
<Heat buildup>
A lead is connected to each of the first conductive fabric and the second conductive fabric of the heat-generating fabric, voltage is applied, and the surface temperature of the planar heat-generating fabric is measured by infrared thermography (model FLIR C2 manufactured by FLIR SYSTEMS, Inc.) Observed. The surface temperature rise value when 9 V voltage is applied is measured with analysis software (FLIR Tools, manufactured by FLIR Systems), and the average value and standard deviation are calculated to evaluate heat generation and uniformity of heat generation. (See Figure 2).

<表面抵抗値、体積抵抗率>
抵抗率計(三菱ケミカルアナリテック社製、ロレスタEP MCP−T360)にて発熱部材の表面抵抗値を測定した。また、デジタルシックネスゲージにて発熱部材の厚みを計測し、計測した表面抵抗値と発熱部材の厚みの積により、発熱部材の体積抵抗率を算出した。
<Surface resistance value, volume resistivity>
The surface resistance value of the heat generating member was measured with a resistivity meter (Loresta EP MCP-T360, manufactured by Mitsubishi Chemical Analytech Co., Ltd.). Further, the thickness of the heat generating member was measured by a digital thickness gauge, and the volume resistivity of the heat generating member was calculated from the product of the measured surface resistance value and the thickness of the heat generating member.

[実施例1]
連続した空隙を有する基材として、厚み0.5mmのポリエステル編物を用意した。導電性材料としてカーボン粒子を含有し、ポリウレタン樹脂を主成分とする樹脂組成物(Carbo e−Therm社製、PUR120−1W)を水にて5倍希釈したものを浸漬法にて基材全面に付与した。続いて、100℃で30分間乾燥をおこない、発熱部材を得た。付与量は乾燥重量にて0.006g/cmであった。得られた発熱部材の表面抵抗値は1.5kΩ/□、体積抵抗率は、75Ω・cmであった。ポリエステル平織り布帛(タテ:ポリエステル・ウーリー糸30d/36f 189本/インチ、ヨコ:ポリエステル・ウーリー糸62d/150f 120本/インチ)に銅と銀の二層の金属層をめっき加工にて形成した導電性布帛を2枚準備した。この導電性布帛の表面抵抗値は0.02Ω/□であった。ポリエステル系ポリウレタンから成るホットメルトシート(シーダム社製、エセランSHM101)を介して発熱部材の一方の面にこの導電性布帛を重ね、熱圧着(130℃、0.5MPa、30sec)にて接着して積層した。同様に、発熱部材の他方の面にも導電性布帛を積層し、本発明の面状発熱布帛を得た。得られた面状発熱布帛を3cm×3cmの正方形に切り出して発熱性を評価したところ、平均35.3K(ケルビン)、標準偏差0.80の均一性の高い発熱性を示した。
Example 1
A polyester knitted fabric with a thickness of 0.5 mm was prepared as a substrate having continuous voids. A resin composition containing carbon particles as a conductive material and containing a polyurethane resin as a main component (PUR120-1W, manufactured by Carbo-Therm Co., Ltd.) diluted 5 times with water is applied to the entire surface of the substrate by the immersion method. Granted. Subsequently, drying was performed at 100 ° C. for 30 minutes to obtain a heat generating member. The applied amount was 0.006 g / cm 2 in dry weight. The surface resistance value of the heat generating member obtained was 1.5 kΩ / □, and the volume resistivity was 75 Ω · cm. Conductivity obtained by plating two metal layers of copper and silver on a polyester plain weave fabric (vertical: polyester wooly yarn 30d / 36f 189 / inch, horizontal: polyester wooly yarn 62d / 150f 120 / inch) Two pieces of the fabric were prepared. The surface resistance value of this conductive fabric was 0.02 Ω / □. This conductive fabric is stacked on one side of the heat-generating member via a hot melt sheet (Easelan SHM 101, manufactured by Ceddam Co., Ltd.) made of polyester-based polyurethane, and adhered by thermocompression bonding (130 ° C., 0.5 MPa, 30 sec). Stacked. Similarly, a conductive cloth was laminated on the other surface of the heat generating member to obtain a planar heat generating cloth of the present invention. The obtained sheet-like heat-generating fabric was cut into a square of 3 cm × 3 cm, and the heat generation was evaluated. As a result, the heat generation was highly uniform with an average of 35.3 K (Kelvin) and a standard deviation of 0.80.

[実施例2]
実施例1で得られた面状発熱布帛を星形状に裁断して発熱性を評価した。その結果、平均35.4K、標準偏差1.19の均一性の高い発熱性を示した。
Example 2
The heat-generating property was evaluated by cutting the sheet-like heat-generating fabric obtained in Example 1 into a star shape. As a result, it showed a highly uniform heat buildup with an average of 35.4 K and a standard deviation of 1.19.

[実施例3]
実施例1で得られた面状発熱布帛を円状に裁断して発熱性を評価した。その結果、平均35.3K、標準偏差0.67の均一性の高い発熱性を示した。
[Example 3]
The heat-generating property was evaluated by cutting the sheet-like heat-generating fabric obtained in Example 1 into a circular shape. As a result, it showed a highly uniform heat buildup with an average of 35.3 K and a standard deviation of 0.67.

[比較例]
布帛としてポリエチレンテレフタレート繊維(56dtex/72f)から成る縦糸の織り密度が159本/インチ、緯糸の織り密度が120本/インチ、通気性は38cm/cm・sのポリエステル平織物を使用した。この布帛にPUR120−1Wをスクリーン印刷により円状に塗工した。続いて、100℃で30分間乾燥をおこない、膜厚30μmの発熱膜を形成した。続いて、前述の円状発熱膜を同一平面上で挟み込む形で対向する弓状電極を形成し、面状発熱布帛を得た。電極は導電性粒子として銀粒子を含有する樹脂組成物(デュポン社製、PE873)を使用し、スクリーン印刷により塗工した。得られた面状発熱布帛の発熱性を評価したところ、平均33.1K、標準偏差8.89と均一性はみられなかった。
[Comparative example]
As a fabric, a polyester plain woven fabric having a weave density of 159 yarns / inch of warp composed of polyethylene terephthalate fiber (56 dtex / 72f), a weave density of weft of 120 yarns / inch, and air permeability of 38 cm 3 / cm 2 · s was used. PUR120-1W was circularly coated on this fabric by screen printing. Subsequently, drying was performed at 100 ° C. for 30 minutes to form an exothermic film having a film thickness of 30 μm. Subsequently, opposing arc-shaped electrodes were formed in such a manner as to sandwich the above-mentioned circular heating film on the same plane, to obtain a planar heating cloth. The electrode was coated by screen printing using a resin composition (PE 873, manufactured by DuPont) containing silver particles as conductive particles. The heat generation property of the obtained planar heat-generating fabric was evaluated, and as a result, no uniformity was observed with an average of 33.1 K and a standard deviation of 8.89.

Figure 2019079714
Figure 2019079714

本発明の面状発熱布帛は、複雑な形状であっても均一な発熱が可能である。また、自由な形状に裁断しても発熱体として利用可能な面状発熱布帛である。このような本発明の面状発熱布帛は、接触しているものを暖めるほか、近接しているものを輻射熱によって暖めるなどの効果を有しており、衣料、産業資材、医療・福祉用具等に好適に利用することができる。   The planar heat-generating fabric of the present invention can generate uniform heat even if it has a complicated shape. Moreover, it is a planar heating cloth which can be used as a heating element even if it is cut into a free shape. Such a sheet-like heat-generating fabric of the present invention has the effect of warming those which are in contact with each other as well as those which are close to each other by radiant heat, and can be used for clothing, industrial materials, medical / welfare devices, etc. It can be suitably used.

1:発熱部材
2:第一導電性布帛
3:第二導電性布帛
4:基材
1: Heating member 2: First conductive fabric 3: Second conductive fabric 4: Base material

Claims (6)

連続した空隙を有する基材に導電性材料を含有する樹脂組成物が含浸されて成る発熱部材と、前記発熱部材の一方の面に積層された第一導電性布帛と、前記発熱部材の他方の面に積層された第二導電性布帛と、を有する面状発熱布帛。   A heat generating member formed by impregnating a substrate having a continuous void with a resin composition containing a conductive material, a first conductive fabric laminated on one surface of the heat generating member, and the other of the heat generating member A planar heat-generating fabric having a second conductive fabric laminated on a surface. 前記発熱部材の表面抵抗値が100Ω/□〜60kΩ/□であることを特徴とする、請求項1に記載の面状発熱布帛。   The surface heating value of the said heat-generating member is 100 ohms / square-60 k ohms / square, The planar heat-generating fabric of Claim 1 characterized by the above-mentioned. 前記第一導電性布帛及び前記第二導電性布帛の表面抵抗値が、0.001Ω/□〜0.1Ω/□であることを特徴とする、請求項1または2に記載の面状発熱布帛。   The planar heat-generating fabric according to claim 1 or 2, wherein the surface resistance value of the first conductive fabric and the second conductive fabric is 0.001 Ω / □ to 0.1 Ω / □. . 前記導電性材料が、カーボン粒子、金属粒子、金属酸化物、導電性高分子であることを特徴とする、請求項1〜3のいずれか1項に記載の面状発熱布帛。   The sheet-like heat generating fabric according to any one of claims 1 to 3, wherein the conductive material is a carbon particle, a metal particle, a metal oxide, or a conductive polymer. 前記樹脂組成物が、ポリウレタン樹脂、ウレタン変性樹脂を主成分とすることを特徴とする、請求項1〜3のいずれか1項に記載の面状発熱布帛。   The sheet-like heat generating fabric according to any one of claims 1 to 3, wherein the resin composition contains a polyurethane resin and a urethane-modified resin as main components. 連続した空隙を有する基材に導電性材料を含有する樹脂組成物を含浸させて発熱部材を得る工程と、前記発熱部材の一方の面に第一導電性布帛を積層する工程と、前記発熱部材の他方の面に第二導電性布帛を積層する工程と、を含む面状発熱布帛の製造方法。   A step of impregnating a substrate having a continuous void with a resin composition containing a conductive material to obtain a heat generating member, a step of laminating a first conductive cloth on one surface of the heat generating member, and the heat generating member And laminating the second conductive fabric on the other side of the sheet.
JP2017206238A 2017-10-25 2017-10-25 Planar heat generating cloth and manufacturing method thereof Pending JP2019079714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017206238A JP2019079714A (en) 2017-10-25 2017-10-25 Planar heat generating cloth and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017206238A JP2019079714A (en) 2017-10-25 2017-10-25 Planar heat generating cloth and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2019079714A true JP2019079714A (en) 2019-05-23

Family

ID=66628043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017206238A Pending JP2019079714A (en) 2017-10-25 2017-10-25 Planar heat generating cloth and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2019079714A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021018844A (en) * 2019-07-17 2021-02-15 セーレン株式会社 Illumination tape
WO2023286193A1 (en) * 2021-07-14 2023-01-19 日本たばこ産業株式会社 Flavour inhaler, and heater manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59175294U (en) * 1983-05-12 1984-11-22 株式会社フジクラ sheet heating element
JPH02168590A (en) * 1988-12-21 1990-06-28 Toyo Linoleum Co Ltd Facial heating element and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59175294U (en) * 1983-05-12 1984-11-22 株式会社フジクラ sheet heating element
JPH02168590A (en) * 1988-12-21 1990-06-28 Toyo Linoleum Co Ltd Facial heating element and manufacture thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021018844A (en) * 2019-07-17 2021-02-15 セーレン株式会社 Illumination tape
JP7399641B2 (en) 2019-07-17 2023-12-18 セーレン株式会社 Illumination tape
WO2023286193A1 (en) * 2021-07-14 2023-01-19 日本たばこ産業株式会社 Flavour inhaler, and heater manufacturing method

Similar Documents

Publication Publication Date Title
KR101328353B1 (en) Heating sheet using carbon nano tube
US11313073B2 (en) Method of manufacturing graphene conductive fabric
US20100206863A1 (en) Electrically conductive, flexible web material
US20070224898A1 (en) Electrically conductive water repellant fabric composite
JP5772978B2 (en) Cloth heater
JP2010509108A (en) Heat-generating fabric and manufacturing method thereof
JP2010509108A6 (en) Conductive fabric and manufacturing method thereof
TW200925344A (en) Electric heating fabric device
WO2018066708A1 (en) Sheet-like heating element, sheet-like heating device, electrode for sheet-like heating elements, and method for producing sheet-like heating element
JP2013191551A (en) Planar heating element, manufacturing method therefor, and electrode for planar heating element
JP5842666B2 (en) Cloth pressure sensor heater
JP2019079714A (en) Planar heat generating cloth and manufacturing method thereof
KR101938214B1 (en) Flexible printed electrically conductive fabric and method for fabricating the same
CN107447539B (en) High-elasticity electric heating fiber and preparation method and application thereof
JP2011243435A (en) Cloth material
JP5895593B2 (en) Cloth pressure sensor heater
JP5615656B2 (en) Planar heating element
KR20190002108U (en) Metal nanowire coated waterproof fabric heater
CN207496160U (en) A kind of integration silicon rubber Compound Fabric heater
JP6171665B2 (en) Conductive fabric, cloth heater, and vehicle heater
KR200433719Y1 (en) Planar Heating Panel
JP6778549B2 (en) Connection method and conductive fabric
TWM458829U (en) Wearable dc warming apparatus
KR100847055B1 (en) Planar heating apparatus and method of making the same
JPH09326291A (en) Flat heater element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220215