WO2019039690A1 - Apparatus for testing creep of turbine blade - Google Patents

Apparatus for testing creep of turbine blade Download PDF

Info

Publication number
WO2019039690A1
WO2019039690A1 PCT/KR2018/003626 KR2018003626W WO2019039690A1 WO 2019039690 A1 WO2019039690 A1 WO 2019039690A1 KR 2018003626 W KR2018003626 W KR 2018003626W WO 2019039690 A1 WO2019039690 A1 WO 2019039690A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbine blade
support portion
turbine
support
actuator
Prior art date
Application number
PCT/KR2018/003626
Other languages
French (fr)
Korean (ko)
Inventor
박훤
Original Assignee
한화에어로스페이스(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화에어로스페이스(주) filed Critical 한화에어로스페이스(주)
Publication of WO2019039690A1 publication Critical patent/WO2019039690A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0016Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings of aircraft wings or blades
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces

Definitions

  • Embodiments relate to a creep test apparatus for a turbine blade, and more particularly to a creep test apparatus for a turbine blade capable of performing a precise test on creep deformation of a turbine blade by establishing the same conditions as actual operating conditions.
  • Turbine blades used in gas turbines and the like are used under operating conditions of a high rotational speed of a high temperature atmosphere, and when the turbine blades are subjected to a stress load for a long time, a deformation such as a creep occurs in the turbine blades.
  • parts such as turbine blades used in high temperature and high speed rotation operating conditions need to be analyzed for damage taking into account the mechanical and thermal load applied during operation and the strength of material generated at high temperature.
  • Creep analysis and creep testing can be used to assess the life of a turbine blade at the design stage of the turbine blade or to verify the extent to which creep deformation has occurred by using turbine blades under actual operating conditions of the turbine, This is done to identify the cause of the damage.
  • a typical creep test apparatus such as that disclosed in U.S. Patent No. 5,425,276 applies stress in one direction (uniaxial direction) to a specimen that is formed to secure the creep property of the material.
  • a creep test system with a force exerted only in the direction of the short axis can not transmit stresses similar to the operating environment in which the turbine blades are actually used to the turbine blades.
  • the test specimen properties obtained by using the creep test apparatus which applies the force only in the direction of the short axis are not suitable for application to the turbine blades which are subjected to the stress load acting in various directions.
  • Embodiments provide a creep test apparatus for a turbine blade capable of testing the creep deformation of a turbine blade by establishing operating conditions similar to actual operating conditions.
  • Embodiments provide a turbine blade creep test apparatus capable of performing an accurate creep deformation test by applying a tensile force having a magnitude and direction similar to the actual operating conditions to the turbine blade, not the uniaxial tensile force.
  • the apparatus for testing a creep of a turbine blade includes a first support portion for supporting one end of the turbine blade and a second support portion for connecting one end of the turbine blade to the other surface of the first support portion facing the one end of the turbine blade, A plurality of elastic members having an elastic modulus; a connecting portion connected to the other end of the elastic member to support the elastic member; a second supporting portion for supporting the other end of the turbine blade; and a second supporting portion for applying a tensile force to at least one of the connecting portion and the second supporting portion An actuator, and a heating unit disposed adjacent to the surface of the turbine blade to apply heat.
  • the first support portion may include a plurality of moving blocks movable to contact the surface of the side surface of the turbine blade.
  • the moving block may be movably disposed between a position contacting the surface of the turbine blade by moving along one side of the first support and a position spaced from the surface of the turbine blade.
  • the first support portion may further include a flange protruding from one surface of the support portion and having a screw hole, and a set screw inserted in the screw hole and moving along the screw hole to press the movable block.
  • the flange can extend in the circumferential direction to form a space for accommodating one end of the turbine blade.
  • the actuator may include a first actuator that applies a tensile force to pull the connection portion away from the first support portion and a second actuator that applies a tensile force to pull the second support portion away from the turbine blade.
  • the plurality of heating portions are capable of heating different regions of the turbine blades in different temperature ranges so that the heating portions correspond respectively to different regions of the turbine blades.
  • the area corresponding to one end of the turbine blade of the areas of the turbine blade can be heated in a range of temperatures higher than the area corresponding to the other end of the turbine blade.
  • the plurality of elastic members When the actuator applies a tensile force, the plurality of elastic members extend by the same length, so that a plurality of elastic members having mutually different elastic moduli can transmit forces of mutually different sizes to the turbine blades.
  • the first support portion may further include a coupling hole into which one end of the elastic member is inserted.
  • FIG. 1 is a side view schematically showing a configuration of a creep test apparatus for a turbine blade according to an embodiment.
  • Fig. 2 is a block diagram schematically showing the connection relationship of the components of the creep test apparatus of the turbine blade according to the embodiment shown in Fig. 1;
  • FIG. 3 is a perspective view showing some components of a creep test apparatus for turbine blades according to the embodiment shown in Fig.
  • Figure 4 is a side view of some components of the creep test apparatus of the turbine blade of Figure 3;
  • Fig. 5 is a perspective view showing the bottom of some components of the creep test apparatus of the turbine blade of Fig. 3;
  • Fig. 6 is a cross-sectional view showing the coupling relationship of some components of the creep test apparatus of the turbine blade of Fig. 3; Fig.
  • Fig. 7 is a perspective view exemplarily showing a coupling relationship of some components of the creep test apparatus of the turbine blade of Fig. 3;
  • Fig. 8 is a side view showing an operating state of some components of the creep test apparatus of the turbine blade of Fig. 3; Fig.
  • FIG. 9 is a flowchart showing steps of a creep test method using a creep test apparatus for a turbine blade according to the embodiment shown in FIG.
  • FIG. 1 is a side view schematically showing a configuration of a creep test apparatus for a turbine blade according to an embodiment
  • FIG. 2 is a schematic view of a creep test apparatus for a turbine blade according to an embodiment shown in FIG. Fig.
  • the apparatus for testing a turbine blade creep includes a first support portion 10 for supporting one end 7a of the turbine blade 7 and a second support portion 10 for supporting the other end 7b of the turbine blade 7 32, 33 provided between the turbine blade 7 and the connecting portion 40 and a connecting portion 40 (not shown) for supporting the elastic members 31, 32, Actuators 55 and 60 for applying a tensile force to at least one of the connecting portion 40 and the second supporting portion 20 and a heating portion 80 for applying heat to the turbine blades 7.
  • the actuators 55 and 60 include a connecting portion 40 and a first actuator 55 for applying a tensile force to the first supporting portion 10 and a second actuator 60 for applying a tensile force to the second supporting portion 20.
  • the embodiment is not limited by the number of actuators 55, 60, and only one of the actuators 55, 60 may be installed to apply a tensile force only to either the connecting portion 40 or the second supporting portion 20, for example. .
  • the turbine blades (7) function to generate rotational force by contacting with the hot combustion gas of the gas turbine.
  • the turbine blade 7 has a shank at the other end 7b that can be connected to the body of the turbine blade assembly.
  • a creep test apparatus for a turbine blade is a device for testing the creep deformation of the turbine blade 7 by applying a tensile force to pull one end (7a) and the other end (7b) of the turbine blade (7) in opposite directions.
  • Fig. 3 is a perspective view showing some components of the creep test apparatus of the turbine blade according to the embodiment shown in Fig. 1, Fig. 4 is a side view of some components of the creep test apparatus of the turbine blade of Fig. 3, Fig. 6 is a cross-sectional side view showing the engagement relationship of some components of the creep test apparatus of the turbine blade of Fig. 3; Fig. 6 is a perspective view showing a bottom surface of some components of the creep test apparatus of the turbine blade of Fig.
  • the first support portion 10 has a function of supporting one end 7a of the turbine blade 7 by disposing the first support portion 10 to face one end 7a of the turbine blade 7 do.
  • the first support portion 10 includes a first support portion 10 which is in contact with one end 10b of the turbine blade 7 and which extends downward from the first surface 10b and extends in the circumferential direction, A flange 10p having an inner space 10s accommodating one end 7a of the wing 7 and a plurality of moving blocks 15a to 15c movably arranged in the space 10s of the flange 10p, Respectively.
  • the moving blocks 15a to 15c move along the one surface 10b of the first support portion 10 so as to come into contact with the surface of the side surface of the turbine blade 7 and move to a position for supporting one end 7a of the turbine blade 7 Can be moved between a position spaced from the surface of the side surface of the turbine blade (7).
  • the flange 10p of the first support portion 10 has a screw hole 10h which is formed so as to penetrate from the outer side of the flange 10p toward the inner space 10s and has a screw surface formed on the inner surface thereof.
  • the set screw 15s is engaged with the screw hole 10h of the flange 10p.
  • the set screw 15s moves along the screw hole 10h to press the moving blocks 15a to 15c toward the surface of the side surface of the turbine blades 7 or to move the moving blocks 15a to 15c to the turbine blades 7, As shown in Fig.
  • One end portions 31b to 33b of the elastic members 31, 32 and 33 are connected to the upper surface of the first support portion 10, that is, the other surface 10a of the first support portion 10.
  • the first supporting portion 10 has a coupling hole 10g through which one end 31b of the elastic member 31 is inserted and fixed to the other surface 10a.
  • the elastic members 31, 32 and 33 have elastic moduli different from each other, the elasticity of the elastic members 31, 32 and 33 is increased by the action of the connecting members 40 pulling the elastic members 31, Different sized forces act.
  • the three elastic members 31, 32, and 33 do not have to have different elastic moduli, and at least some of them may have different elastic moduli.
  • the two elastic members may have the same elastic modulus and the other elastic member may have different elastic moduli.
  • the elastic modulus of each of the plurality of elastic members 31, 32, and 33 may be derived using, for example, an inverse method.
  • the first support portion 10 supports the one end 7a of the turbine blade 7 by using the inversion method so as to exhibit a stress distribution similar to the actual operating condition of the turbine blade 7 when the force is transmitted,
  • the elastic modulus of each of the elastic members 31, 32, and 33 can be calculated.
  • the elastic force of the elastic members 31, 32, 33 is different from that of the elastic members 31, 32, 33,
  • the direction of the force transmitted to the one end 7a of the turbine blade 7 through the thrust bearing 7 may exhibit a stress distribution similar to the actual operating condition.
  • the connecting portions 40 are connected to the other end portions 31a to 33a of the elastic members 31, 32 and 33.
  • the connection portion 40 has a coupling hole 40g through which the other end portions 31a to 33a can be inserted and fixed.
  • the connecting portion 40 has a substantially circular plate shape and supports the other end portions 31a to 33a of the elastic members 31, 32 and 33 while transmitting the force transmitted through the first supporting shaft 50 to the elastic members 31, 32, and 33, respectively.
  • the connection portion 40 has a first support shaft 50 for supporting the connection portion 40.
  • the first support shaft 50 is formed in a substantially cylindrical shape, and the first support shaft 50 has a pin hole 50h into which an engagement pin can be inserted. Referring to FIG. 1, the first support shaft 50 is coupled to the expandable rod 55r of the first actuator 55 by an engagement pin 50p.
  • the first actuator 55 includes a rod 55r which is driven by the power supplied from the actuator driver 92 and is movable (extendable and retractable) with respect to the tube 55t.
  • the tube 55t of the first actuator 55 is supported by the frame 90.
  • the actuator driver 92 may be a hydraulic system including a hydraulic pump, a hydraulic valve, and the like to supply the hydraulic fluid, and the tube 55t may receive the hydraulic fluid to move the rod 55r.
  • a pneumatic system, an electric linear motor, or the like may be used for the first actuator 55.
  • the rod 55r of the first actuator 55 moves in the direction away from the turbine blade 7, that is, in the direction toward the upper side in Fig. 1, so that the first support shaft 50 moves upward.
  • a tensile force acts on the turbine blades 7 to pull one end 7a of the turbine blades 7 in a direction away from the turbine blades 7.
  • the second support 20 has a concave shape 20t corresponding to the shank of the turbine blade 7 to support the other end 7b of the turbine blade 7 A block 21 and a second support shaft 22 protruding downward from the lower end of the block 21.
  • the second support shaft 22 has a pin hole 20h into which the engagement pin can be inserted. Referring to Fig. 1, the second support shaft 22 is connected to the second actuator 60 by the engagement pin 60p.
  • the second actuator 60 is provided with a rod 60r which is received by the actuator driver 92 and is stretchable with respect to the tube 60t. Like the first actuator 55, the tube 60t of the second actuator 60 can receive the hydraulic fluid and move the rod 60r. The tube 60t of the second actuator 60 is supported by the frame 90.
  • the rod 60r of the second actuator 60 moves in the direction away from the turbine blade 7, that is, in the direction toward the lower side in Fig. 1, so that the second support portion 20 moves downward.
  • a tensile force acts on the turbine blade 7 to pull the other end 7b of the turbine blade 7 in a direction away from the turbine blade 7 as the second support portion 20 moves downward.
  • the first support portion 10 transmits the tensile force pulling the turbine blade 7 upward and the second support portion 20 simultaneously transmits the tensile force pulling the turbine blade 7 downward, Of the creep test operation is performed.
  • the embodiment is not limited to such a configuration.
  • only the first actuator 55 operates to transmit a tensile force that pulls the turbine blade 7 upward only by the first support portion 10, and a separate actuator is not coupled to the second support portion 20, (20) can perform only a function of holding and supporting the turbine blade (7) without applying a separate tensile force to the turbine blade (7).
  • Fig. 7 is a perspective view exemplarily showing a coupling relationship of some components of the creep test apparatus of the turbine blade of Fig. 3;
  • a plurality of heating portions 80 are disposed adjacent to the surface 7s of the turbine blades 7.
  • the heating section 80 functions to simulate the operating environment in which heat is transmitted to the turbine blades 7 when the turbine blades 7 are mounted on the turbine and actually used, by transferring heat to the turbine blades 7.
  • the embodiment is not limited by the configuration of the heating portion 80 as described above.
  • the number of the heating units 80 may be changed, and the arrangement position of the heating units 80 may be different from that shown in the drawing.
  • the heating unit 80 may be, for example, And an induction coil for generating heat as a result.
  • the heating unit 80 is electrically connected to the thermal driver 92 provided in the frame 90 and the heating action of the heating unit 80 can be controlled by electricity transmitted from the thermal driver 92.
  • the plurality of heating portions 80 may be disposed to correspond to different regions of the surface 7s of the turbine blades 7, respectively. Each of the plurality of heating portions 80 can heat different regions of the surface 7s of the turbine blade 7 in different temperature ranges.
  • the heating section 80 includes a first coil 81, a second coil 82, a third coil 83, and a fourth coil 84.
  • the first coil 81 and the second coil 82 also heat the upper regions 7a1 and 7a2 corresponding to one end 7a of the turbine blade 7 among different regions of the turbine blade 7.
  • the third coil 83 and the fourth coil 84 heat the lower regions 7b1 and 7b2 corresponding to the other end 7b of the turbine blade 7 among the different regions of the turbine blade 7.
  • the upper regions 7a1 and 7a2 may be heated in a temperature range of 1,000 degrees to 1,300 degrees Celsius and the lower regions 7b1 and 7b2 may be heated in a temperature range of 700 degrees Celsius to 1000 degrees Celsius.
  • the upper regions 7a1 and 7a2 corresponding to one end 7a of the turbine blade 7 can be heated to a higher temperature range than the lower regions 7b1 and 7b2 corresponding to the other end 7b.
  • the first coil 81 and the second coil 82 for heating the upper regions 7a1 and 7a2 of the turbine blade 7 can also operate in different temperature ranges.
  • the upper front region 7a1 corresponding to the leading edge of the upper regions 7a1 and 7a2 can be heated by the first coil 81 in a temperature range of 1,100 to 1,300 degrees Celsius have.
  • the upper rear region 7a2 corresponding to the trailing edge of the upper regions 7a1 and 7a2 can be heated by the second coil 82 in the temperature range of 1,000 to 1,200 degrees Celsius .
  • the third coil 83 and the fourth coil 84 for heating the lower regions 7b1 and 7b2 of the turbine blade 7 can also operate in different temperature ranges.
  • the lower front region 7b1 corresponding to the leading edge of the lower regions 7b1 and 7b2 may be heated by the third coil 83 in a temperature range of 800 to 1,000 degrees Celsius.
  • the lower rear region 7b2 corresponding to the trailing edge of the lower regions 7b1 and 7b2 can be heated by the fourth coil 84 in the temperature range of 700 to 900 degrees Celsius.
  • a current of a different magnitude is applied to each of the first to fourth coils 81 to 84 .
  • a controller 70 is connected to the creep testing apparatus of the turbine blade.
  • the controller 70 includes a tension controller 71 for applying a control signal to the actuator driver 91 to control the actuator driver 91, a thermal controller 72 for controlling the column driver 92, A user input receiving section 74 connected to the user interface 94 for receiving a user's input operation and generating a signal and a display controller 73 for controlling the display device 93 to operate on the turbine blades 7 A receiver 76 for receiving a signal of a sensor 95 for detecting a load and a temperature change related to a tensile force applied to the load 95 and a data receiver 77 for receiving or transmitting data from the storage 96, And a simulation condition setting unit 75 for setting simulation conditions for the creep test and generating control related information to be transmitted to the tension controller 71 and the thermal controller 72.
  • the controller 70 may be implemented by any one of, for example, a computer, a control circuit board, a control semiconductor chip mounted on a circuit board, control software embedded in a semiconductor chip or a computer, or a combination thereof.
  • Fig. 8 is a side view showing an operating state of some components of the creep test apparatus of the turbine blade of Fig. 3; Fig.
  • One end 7a of the turbine blade 7 is supported by the moving blocks 15a to 15b of the first support portion 10 and the first support portion 10 is supported by the elastic members 31, (40).
  • the upper surface of the connection portion 40 is connected to the first support shaft 50.
  • the tensile force is transmitted to the first supporting shaft 50 through the first supporting shaft 50, the connecting portion 40, the elastic members 31, 32, 33 and the first supporting shaft 50, (7a) of the turbine blade (7) through the turbine blade (10).
  • connection portion 40 the position of the connection portion 40 before the tensile force acts on the first support shaft 50 is shown by a dotted line. Since the tensile force does not act before the creep test apparatus starts to operate, the elastic members 31, 32, and 33 are not stretched, so that the connection unit 40 is positioned at the initial position indicated by the dotted line.
  • connection portion 40 When the creep test apparatus starts to operate, tensile force is transmitted through the first support shaft 50 and the connection portion 40 is pulled by the first support shaft 50 in the upward direction in FIG. When the connection portion 40 is pulled upward by the first support shaft 50, the connection portion 40 moves from the initial position shown by the dotted line to the position shown by the solid line. Since the elastic members 31, 32 and 33 connected to the connection unit 40 have different elastic moduli from each other, the connection unit 40 moves in the direction away from the first support unit 10 and the elastic members 31, 32 and 33 A different force is exerted on each of the elastic members 31, 32, 33.
  • the elastic modulus of the first elastic member 31 of the elastic members 31, 32 and 33 is K1 and the elastic modulus of the second elastic member 32 is K2, Assuming that the coefficient is K3 and the connecting portion 40 is moved upward by X distance to pull the elastic members 31, 32 and 33, a force of a different magnitude is applied to each of the elastic members 31, 32 and 33 .
  • the magnitude of the force acting on each of the elastic members 31, 32 and 33 is F1> F2> K3, where K1> K2> K3, F3.
  • the direction of the force acting on the turbine blades 7 through the first support 10 supporting the turbine blades 7 is not the direction of the arrows directed upwardly as shown in Figure 8 but the one end of the turbine blades 7 7a and directed in a direction twisted compared to the direction of the arrow, a force having a magnitude and direction similar to the actual operating conditions can be transmitted to the turbine blades 7.
  • the bending moment is applied to the first support portion 10 because the force of different magnitudes acts on the first support portion 10 supporting the turbine blade 7 at three points by the elastic members 31, Lt; / RTI > Therefore, both the shear stress and the tensile stress are transmitted to the one end 7a of the turbine blade 7 through the first support portion 10 so that a force having a magnitude and direction similar to the actual operating conditions is transmitted to the turbine blade 7 .
  • FIG. 9 is a flowchart showing steps of a creep test method using a creep test apparatus for a turbine blade according to the embodiment shown in FIG.
  • a creep test method using a creep test apparatus of a turbine blade includes a step (S100) of calculating a temperature and a stress gradient by an analytical method by substituting a design condition of a turbine blade in a computer simulation program or an experimentally obtained turbine blade design function, (S110) of determining the direction and magnitude of the tensile force to be applied to the turbine blade for the creep test, determining the elastic modulus of each elastic member of the elastic member (S120), determining the arrangement position of the heating part and the temperature range (S140) of designing and fabricating the first support portion, the second support portion and the heating portion (S140), and performing a creep test (S150) by mounting the turbine blade to the test apparatus.
  • step S110 of determining the direction and magnitude of the tensile force an inverse method may be used to determine the magnitude and direction of the tensile force applied to the first support to exhibit a stress distribution similar to the actual operating conditions.
  • the elastic modulus of each elastic member can be determined so as to realize the magnitude and direction of the determined tensile force.
  • step of determining the position and temperature of the heating part it is possible to invert the numerical values of the position and the temperature at which the heating part should be arranged so that the temperature distribution similar to the actual operating condition can be expressed using the inverse calculation method.
  • the creep test method using the creep test apparatus of the turbine blade as described above is a stress, temperature, and time that affect the creep deformation of the turbine blade. can do.
  • the apparatus and method for creep testing of turbine blades according to the above embodiments are useful for testing turbine blades produced by 3D printing.
  • 3D printing various shapes of turbine blades can be manufactured using various materials.
  • the turbine blade prepared by the 3D printing method is mounted directly on the turbine and there is a limitation such as the cost and the time required, the creep test apparatus and test method of the turbine blade according to the above- The manufactured turbine blades can be tested precisely and quickly under conditions very similar to actual operating conditions.

Abstract

An apparatus for testing creep of a turbine blade comprises: a first support portion for supporting one end of a turbine blade; a plurality of elastic members, each having one side end connected to the other surface opposite to one surface of the first support portion, which faces toward the one end of the turbine blade, wherein at least a few of the elastic members have a different elastic modulus; a connection portion connected to the other side end of the elastic member to support the elastic member; a second support portion for supporting the other end of the turbine blade; an actuator for applying tensile force to at least one of the connection portion and the second support portion; and a heating portion disposed adjacent to a surface of the turbine blade so as to apply heat to the surface of the turbine blade.

Description

터빈 날개의 크리프 시험장치Creep test equipment for turbine blades
실시예들은 터빈 날개의 크리프 시험장치에 관한 것으로, 보다 상세하게는 실제 작동조건과 동일한 조건을 조성함으로써 터빈 날개의 크리프 변형에 관한 정밀한 시험을 실시할 수 있는 터빈 날개의 크리프 시험장치에 관한 것이다.Embodiments relate to a creep test apparatus for a turbine blade, and more particularly to a creep test apparatus for a turbine blade capable of performing a precise test on creep deformation of a turbine blade by establishing the same conditions as actual operating conditions.
가스 터빈 등에 사용되는 터빈 날개(blade)는 고온 분위기의 고속 회전 속도의 작동조건에서 사용되므로 터빈 날개가 장시간에 걸쳐 응력 부하를 받으면 터빈 날개에 크리프(creep)와 같은 변형이 발생한다.Turbine blades used in gas turbines and the like are used under operating conditions of a high rotational speed of a high temperature atmosphere, and when the turbine blades are subjected to a stress load for a long time, a deformation such as a creep occurs in the turbine blades.
따라서 고온 및 고속 회전의 작동 조건에서 사용되는 터빈 날개와 같은 부품들은 작동 시 가해지는 기계적, 열적 하중과 고온에서 발생하는 재료의 강도저하 등을 고려한 손상 해석이 필요하다.Therefore, parts such as turbine blades used in high temperature and high speed rotation operating conditions need to be analyzed for damage taking into account the mechanical and thermal load applied during operation and the strength of material generated at high temperature.
크리프 해석 및 크리프 시험은 터빈 날개의 설계 단계에서 터빈 날개의 수명을 평가하거나, 터빈의 실제 작동조건에서 터빈 날개를 사용함으로써 크리프 변형이 발생하는 정도를 검증하고 제품의 성능을 인증하거나, 터빈 날개가 파손되는 원인을 규명하기 위한 목적으로 실행된다.Creep analysis and creep testing can be used to assess the life of a turbine blade at the design stage of the turbine blade or to verify the extent to which creep deformation has occurred by using turbine blades under actual operating conditions of the turbine, This is done to identify the cause of the damage.
미국 등록특허 제5,425,276호에 개시된 것과 같은 일반적인 크리프 시험장치는 정형화되어 있는 시편에 일방향(단축 방향)의 응력을 가하여 해당 소재의 크리프 물성치를 확보한다. 그러나 단축 방향으로만 힘을 가하는 방식의 크리프 시험장치로는 터빈 날개가 실제로 사용되는 작동환경과 유사한 응력을 터빈 날개에 전달할 수 없다. 이로 인해 단축 방향으로만 힘을 가하는 크리프 시험장치를 이용하여 확보한 시험 물성치는 다양한 방향에서 작용하는 응력 부하를 받으며 사용되는 터빈 날개에 적용하기에는 적합하지 않다.A typical creep test apparatus such as that disclosed in U.S. Patent No. 5,425,276 applies stress in one direction (uniaxial direction) to a specimen that is formed to secure the creep property of the material. However, a creep test system with a force exerted only in the direction of the short axis can not transmit stresses similar to the operating environment in which the turbine blades are actually used to the turbine blades. As a result, the test specimen properties obtained by using the creep test apparatus which applies the force only in the direction of the short axis are not suitable for application to the turbine blades which are subjected to the stress load acting in various directions.
터빈 날개의 크리프 변형에 대응하기 위한 다른 방법으로는 터빈 설계 시 터빈 날개의 작동환경을 고려하여 터빈 날개에 대한 수치해석을 실시하는 방법이 있다. 그러나 수치해석을 이용하여 터빈 날개의 크리프 변형을 예측하는 방법에는 정확성이 부족한 한계가 존재한다.Another way to cope with the creep deformation of turbine blades is to perform a numerical analysis on the turbine blade considering the operating environment of the turbine blades in designing the turbine. However, there are limitations in the method of predicting the creep deformation of turbine blades using numerical analysis.
실제 작동조건에 맞추어 터빈을 가동함으로써 실제 작동조건에서 사용되는 터빈 날개의 크리프 변형을 측정하는 방법을 고려할 수 있으나 과다한 비용이 소모되는 단점이 있다.It is possible to consider the creep deformation of turbine blades used in actual operating conditions by operating the turbine according to the actual operating conditions, but there is a disadvantage that excessive cost is consumed.
실시예들은 실제 작동조건과 유사한 작동조건을 조성함으로써 터빈 날개의 크리프 변형을 시험할 수 있는 터빈 날개의 크리프 시험장치를 제공한다.Embodiments provide a creep test apparatus for a turbine blade capable of testing the creep deformation of a turbine blade by establishing operating conditions similar to actual operating conditions.
실시예들은 터빈 날개에 단축 방향의 인장력이 아니라 실제 작동조건과 유사한 크기와 방향을 갖는 인장력을 가함으로써 정확한 크리프 변형 시험을 실시할 수 있는 터빈 날개의 크리프 시험장치를 제공한다.Embodiments provide a turbine blade creep test apparatus capable of performing an accurate creep deformation test by applying a tensile force having a magnitude and direction similar to the actual operating conditions to the turbine blade, not the uniaxial tensile force.
일 실시예에 관한 터빈 날개의 크리프 시험장치는 터빈 날개의 일단을 지지하는 제1 지지부와, 터빈 날개의 일단을 향하는 제1 지지부의 일면의 반대측의 타면에 일측 단부가 연결되며 적어도 일부는 서로 상이한 탄성계수를 갖는 복수 개의 탄성부재와, 탄성부재의 타측 단부에 연결되어 탄성부재를 지지하는 연결부와, 터빈 날개의 타단을 지지하는 제2 지지부와, 연결부와 제2 지지부의 적어도 하나에 인장력을 가하는 액추에이터와, 터빈 날개의 표면에 인접하도록 배치되어 열을 가하는 가열부를 구비한다.The apparatus for testing a creep of a turbine blade according to an embodiment includes a first support portion for supporting one end of the turbine blade and a second support portion for connecting one end of the turbine blade to the other surface of the first support portion facing the one end of the turbine blade, A plurality of elastic members having an elastic modulus; a connecting portion connected to the other end of the elastic member to support the elastic member; a second supporting portion for supporting the other end of the turbine blade; and a second supporting portion for applying a tensile force to at least one of the connecting portion and the second supporting portion An actuator, and a heating unit disposed adjacent to the surface of the turbine blade to apply heat.
제1 지지부는 터빈 날개의 측면의 표면에 접촉하도록 이동 가능한 복수 개의 이동블록을 구비할 수 있다.The first support portion may include a plurality of moving blocks movable to contact the surface of the side surface of the turbine blade.
이동블록은 제1 지지부의 일면을 따라 이동함으로써 터빈 날개의 표면에 접촉하는 위치와 터빈 날개의 표면으로부터 이격된 위치의 사이에서 이동 가능하게 배치될 수 있다.The moving block may be movably disposed between a position contacting the surface of the turbine blade by moving along one side of the first support and a position spaced from the surface of the turbine blade.
제1 지지부는 지지부의 일면에서 돌출되며 나사구멍을 구비하는 플랜지와, 나사구멍에 삽입되어 나사구멍을 따라 이동함으로써 이동블록을 가압하는 세트스크류를 더 구비할 수 있다.The first support portion may further include a flange protruding from one surface of the support portion and having a screw hole, and a set screw inserted in the screw hole and moving along the screw hole to press the movable block.
플랜지는 원주 방향으로 연장함으로써 터빈 날개의 일단을 수용하는 공간을 형성할 수 있다.The flange can extend in the circumferential direction to form a space for accommodating one end of the turbine blade.
액추에이터는 연결부를 제1 지지부로부터 멀어지는 방향으로 당기는 인장력을 가하는 제1 액추에이터와, 제2 지지부를 터빈 날개로부터 멀어지는 방향으로 당기는 인장력을 가하는 제2 액추에이터를 구비할 수 있다.The actuator may include a first actuator that applies a tensile force to pull the connection portion away from the first support portion and a second actuator that applies a tensile force to pull the second support portion away from the turbine blade.
가열부는 터빈 날개의 상이한 영역들에 각각 대응하도록 복수 개가 배치되며, 복수 개의 가열부는 터빈 날개의 상이한 영역들을 상이한 온도 범위에서 가열할 수 있다.The plurality of heating portions are capable of heating different regions of the turbine blades in different temperature ranges so that the heating portions correspond respectively to different regions of the turbine blades.
터빈 날개의 영역들 중 터빈 날개의 일단에 대응하는 영역이 터빈 날개의 타단에 대응하는 영역보다 높은 온도의 범위에서 가열될 수 있다.The area corresponding to one end of the turbine blade of the areas of the turbine blade can be heated in a range of temperatures higher than the area corresponding to the other end of the turbine blade.
액추에이터가 인장력을 가할 때 복수 개의 탄성부재가 동일한 길이만큼 연장함으로써 서로 상이한 탄성계수를 갖는 복수 개의 탄성부재가 터빈 날개에 서로 상이한 크기의 힘을 전달할 수 있다.When the actuator applies a tensile force, the plurality of elastic members extend by the same length, so that a plurality of elastic members having mutually different elastic moduli can transmit forces of mutually different sizes to the turbine blades.
제1 지지부는 타면에 탄성부재의 일측 단부가 삽입되는 결합공을 더 구비할 수 있다.The first support portion may further include a coupling hole into which one end of the elastic member is inserted.
상술한 바와 같은 실시예들에 관한 터빈 날개의 크리프 시험장치에 의하면 터빈 날개의 크리프 변형에 영향을 미치는 응력, 온도, 시간의 조건 등을 실제 작동조건과 동일하게 조성함으로써 터빈 날개의 크리프 변형에 관한 정밀한 시험을 실시할 수 있다.According to the creep test apparatus for turbine blades according to the embodiments as described above, stress, temperature and time conditions affecting the creep deformation of the turbine blades are made equal to the actual operating conditions, Precise testing can be carried out.
도 1은 일 실시예에 관한 터빈 날개의 크리프 시험장치의 구성을 개략적으로 도시한 측면도이다.1 is a side view schematically showing a configuration of a creep test apparatus for a turbine blade according to an embodiment.
도 2는 도 1에 나타난 실시예에 관한 터빈 날개의 크리프 시험장치의 구성요소들의 연결관계를 개략적으로 도시한 블록도이다.Fig. 2 is a block diagram schematically showing the connection relationship of the components of the creep test apparatus of the turbine blade according to the embodiment shown in Fig. 1;
도 3은 도 1에 나타난 실시예에 관한 터빈 날개의 크리프 시험장치의 일부 구성요소들을 도시한 사시도이다.3 is a perspective view showing some components of a creep test apparatus for turbine blades according to the embodiment shown in Fig.
도 4는 도 3의 터빈 날개의 크리프 시험장치의 일부 구성요소들의 측면도이다.Figure 4 is a side view of some components of the creep test apparatus of the turbine blade of Figure 3;
도 5는 도 3의 터빈 날개의 크리프 시험장치의 일부 구성요소들의 저면을 나타낸 사시도이다.Fig. 5 is a perspective view showing the bottom of some components of the creep test apparatus of the turbine blade of Fig. 3;
도 6은 도 3의 터빈 날개의 크리프 시험장치의 일부 구성요소들의 결합관계를 나타낸 횡방향의 단면도이다.Fig. 6 is a cross-sectional view showing the coupling relationship of some components of the creep test apparatus of the turbine blade of Fig. 3; Fig.
도 7은 도 3의 터빈 날개의 크리프 시험장치의 일부 구성요소들의 결합관계를 예시적으로 도시한 사시도이다.Fig. 7 is a perspective view exemplarily showing a coupling relationship of some components of the creep test apparatus of the turbine blade of Fig. 3;
도 8은 도 3의 터빈 날개의 크리프 시험장치의 일부 구성요소들의 작동상태를 도시한 측면도이다.Fig. 8 is a side view showing an operating state of some components of the creep test apparatus of the turbine blade of Fig. 3; Fig.
도 9는 도 1에 나타난 실시예에 관한 터빈 날개의 크리프 시험장치를 이용한 크리프 시험방법의 단계들을 나타낸 순서도이다.FIG. 9 is a flowchart showing steps of a creep test method using a creep test apparatus for a turbine blade according to the embodiment shown in FIG.
이하, 첨부 도면의 실시예들을 통하여, 실시예들에 관한 터빈 날개의 크리프 시험장치의 구성과 작용을 상세히 설명한다. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the configuration and operation of a turbine blade creep test apparatus according to embodiments will be described in detail with reference to the accompanying drawings.
도 1은 일 실시예에 관한 터빈 날개의 크리프 시험장치의 구성을 개략적으로 도시한 측면도이고, 도 2는 도 1에 나타난 실시예에 관한 터빈 날개의 크리프 시험장치의 구성요소들의 연결관계를 개략적으로 도시한 블록도이다.FIG. 1 is a side view schematically showing a configuration of a creep test apparatus for a turbine blade according to an embodiment, and FIG. 2 is a schematic view of a creep test apparatus for a turbine blade according to an embodiment shown in FIG. Fig.
도 1 및 도 2에 나타난 실시예에 관한 터빈 날개의 크리프 시험장치는 터빈 날개(7)의 일단(7a)을 지지하는 제1 지지부(10)와, 터빈 날개(7)의 타단(7b)을 지지하는 제2 지지부(20)와, 터빈 날개(7)와 연결부(40)의 사이에 설치된 탄성부재(31, 32, 33)와, 탄성부재(31, 32, 33)를 지지하는 연결부(40)와, 연결부(40)와 제2 지지부(20)의 적어도 하나에 인장력을 가하는 액추에이터(55, 60)와, 터빈 날개(7)에 열을 가하는 가열부(80)를 구비한다.The apparatus for testing a turbine blade creep according to the embodiment shown in Figs. 1 and 2 includes a first support portion 10 for supporting one end 7a of the turbine blade 7 and a second support portion 10 for supporting the other end 7b of the turbine blade 7 32, 33 provided between the turbine blade 7 and the connecting portion 40 and a connecting portion 40 (not shown) for supporting the elastic members 31, 32, Actuators 55 and 60 for applying a tensile force to at least one of the connecting portion 40 and the second supporting portion 20 and a heating portion 80 for applying heat to the turbine blades 7.
액추에이터(55, 60)는 연결부(40)와 제1 지지부(10)에 인장력을 가하는 제1 액추에이터(55)와, 제2 지지부(20)에 인장력을 가하는 제2 액추에이터(60)를 구비한다. 그러나 실시예는 액추에이터(55, 60)의 개수에 의해 제한되지 않으며, 예를 들어 연결부(40)와 제2 지지부(20)의 어느 하나에만 인장력을 가하도록 액추에이터(55, 60) 중 한 개만 설치할 수 있다.The actuators 55 and 60 include a connecting portion 40 and a first actuator 55 for applying a tensile force to the first supporting portion 10 and a second actuator 60 for applying a tensile force to the second supporting portion 20. However, the embodiment is not limited by the number of actuators 55, 60, and only one of the actuators 55, 60 may be installed to apply a tensile force only to either the connecting portion 40 or the second supporting portion 20, for example. .
터빈 날개(7)는 가스 터빈의 고온의 연소 가스와 접촉함으로써 회전력을 발생시키는 기능을 수행한다. 터빈 날개(7)는 타단(7b)에 터빈 날개 조립체의 본체에 연결될 수 있는 자루(shank)를 갖는다. 터빈 날개의 크리프 시험장치는 이러한 터빈 날개(7)의 일단(7a)과 타단(7b)을 반대방향으로 잡아당기는 인장력을 가함으로써 터빈 날개(7)의 크리프 변형을 시험하는 장치이다.The turbine blades (7) function to generate rotational force by contacting with the hot combustion gas of the gas turbine. The turbine blade 7 has a shank at the other end 7b that can be connected to the body of the turbine blade assembly. A creep test apparatus for a turbine blade is a device for testing the creep deformation of the turbine blade 7 by applying a tensile force to pull one end (7a) and the other end (7b) of the turbine blade (7) in opposite directions.
도 3은 도 1에 나타난 실시예에 관한 터빈 날개의 크리프 시험장치의 일부 구성요소들을 도시한 사시도이고, 도 4는 도 3의 터빈 날개의 크리프 시험장치의 일부 구성요소들의 측면도이며, 도 5는 도 3의 터빈 날개의 크리프 시험장치의 일부 구성요소들의 저면을 나타낸 사시도이고, 도 6은 도 3의 터빈 날개의 크리프 시험장치의 일부 구성요소들의 결합관계를 나타낸 횡방향의 단면도이다.Fig. 3 is a perspective view showing some components of the creep test apparatus of the turbine blade according to the embodiment shown in Fig. 1, Fig. 4 is a side view of some components of the creep test apparatus of the turbine blade of Fig. 3, Fig. 6 is a cross-sectional side view showing the engagement relationship of some components of the creep test apparatus of the turbine blade of Fig. 3; Fig. 6 is a perspective view showing a bottom surface of some components of the creep test apparatus of the turbine blade of Fig.
제1 지지부(10)는 제1 지지부(10)의 일면(10b)이 터빈 날개(7)의 일단(7a)을 향하도록 배치됨으로써 터빈 날개(7)의 일단(7a)을 지지하는 기능을 수행한다.The first support portion 10 has a function of supporting one end 7a of the turbine blade 7 by disposing the first support portion 10 to face one end 7a of the turbine blade 7 do.
도 4 내지 도 6을 참조하면, 제1 지지부(10)는 터빈 날개(7)의 일단(7a)에 일면(10b)이 접촉하며, 일면(10b)에서 하방으로 돌출하여 원주 방향으로 연장하며 터빈 날개(7)의 일단(7a)을 수용하는 내측의 공간(10s)을 갖는 플랜지(10p)와, 플랜지(10p)의 공간(10s)에 이동 가능하게 배치된 복수 개의 이동블록(15a~15c)을 구비한다.4 to 6, the first support portion 10 includes a first support portion 10 which is in contact with one end 10b of the turbine blade 7 and which extends downward from the first surface 10b and extends in the circumferential direction, A flange 10p having an inner space 10s accommodating one end 7a of the wing 7 and a plurality of moving blocks 15a to 15c movably arranged in the space 10s of the flange 10p, Respectively.
이동블록(15a~15c)은 제1 지지부(10)의 일면(10b)을 따라 이동함으로써 터빈 날개(7)의 측면의 표면에 접촉하여 터빈 날개(7)의 일단(7a)을 지지하는 위치와 터빈 날개(7)의 측면의 표면으로부터 이격된 위치의 사이에서 이동할 수 있다.The moving blocks 15a to 15c move along the one surface 10b of the first support portion 10 so as to come into contact with the surface of the side surface of the turbine blade 7 and move to a position for supporting one end 7a of the turbine blade 7 Can be moved between a position spaced from the surface of the side surface of the turbine blade (7).
제1 지지부(10)의 플랜지(10p)는 플랜지(10p)의 외측에서 내측의 공간(10s)을 향하여 관통 형성되며 내면에 나사면이 형성된 나사구멍(10h)을 구비한다. 플랜지(10p)의 나사구멍(10h)에는 세트스크류(15s)가 결합된다. 세트스크류(15s)는 나사구멍(10h)을 따라 이동함으로써 이동블록(15a~15c)을 터빈 날개(7)의 측면의 표면을 향해 가압하거나, 이동블록(15a~15c)을 터빈 날개(7)로부터 멀어지는 방향으로 이동시킬 수 있다.The flange 10p of the first support portion 10 has a screw hole 10h which is formed so as to penetrate from the outer side of the flange 10p toward the inner space 10s and has a screw surface formed on the inner surface thereof. The set screw 15s is engaged with the screw hole 10h of the flange 10p. The set screw 15s moves along the screw hole 10h to press the moving blocks 15a to 15c toward the surface of the side surface of the turbine blades 7 or to move the moving blocks 15a to 15c to the turbine blades 7, As shown in Fig.
제1 지지부(10)의 상면, 즉 제1 지지부(10)의 타면(10a)에는 탄성부재(31, 32, 33)의 일측 단부(31b~33b)가 연결된다. 제1 지지부(10)는 타면(10a)에 탄성부재(31, 32, 33)의 일측 단부(31b~33b)가 삽입되어 고정될 수 있는 결합공(10g)이 형성된다.One end portions 31b to 33b of the elastic members 31, 32 and 33 are connected to the upper surface of the first support portion 10, that is, the other surface 10a of the first support portion 10. The first supporting portion 10 has a coupling hole 10g through which one end 31b of the elastic member 31 is inserted and fixed to the other surface 10a.
탄성부재(31, 32, 33)은 서로 상이한 탄성계수를 가지므로, 연결부(40)가 탄성부재(31, 32, 33)를 잡아 당기는 작용에 의해 탄성부재(31, 32, 33)의 각각에 상이한 크기의 힘이 작용한다. 3개의 탄성부재(31, 32, 33)이 전부 서로 상이한 탄성계수를 가져야 하는 것은 아니며, 적어도 일부가 서로 상이한 탄성계수를 가질 수 있다. 예를 들어 2개의 탄성부재는 서로 동일한 탄성계수를 갖고 나머지 1개의 탄성부재가 상이한 탄성계수를 가질 수 있다.Since the elastic members 31, 32 and 33 have elastic moduli different from each other, the elasticity of the elastic members 31, 32 and 33 is increased by the action of the connecting members 40 pulling the elastic members 31, Different sized forces act. The three elastic members 31, 32, and 33 do not have to have different elastic moduli, and at least some of them may have different elastic moduli. For example, the two elastic members may have the same elastic modulus and the other elastic member may have different elastic moduli.
복수 개의 탄성부재(31, 32, 33)의 각각의 탄성계수는 예를 들어 역산법(inverse method)을 이용하여 도출될 수 있다. 역산법을 이용하여 제1 지지부(10)가 터빈 날개(7)의 일단(7a)을 지지하며 힘을 전달할 때에 터빈 날개(7)의 실제 작동 조건과 유사한 응력 분포를 나타낼 수 있도록 복수 개의 탄성부재(31, 32, 33)의 각각의 탄성계수를 계산할 수 있다. The elastic modulus of each of the plurality of elastic members 31, 32, and 33 may be derived using, for example, an inverse method. The first support portion 10 supports the one end 7a of the turbine blade 7 by using the inversion method so as to exhibit a stress distribution similar to the actual operating condition of the turbine blade 7 when the force is transmitted, The elastic modulus of each of the elastic members 31, 32, and 33 can be calculated.
복수 개의 탄성부재(31, 32, 33)의 적어도 일부의 탄성계수가 상이하게 설정되면 탄성부재(31, 32, 33)의 적어도 일부에 작용하는 힘의 크기가 상이해지므로 제1 지지부(10)를 통해 터빈 날개(7)의 일단(7a)에 전달되는 힘의 방향이 실제 작동 조건과 유사한 응력 분포를 나타낼 수 있다.The elastic force of the elastic members 31, 32, 33 is different from that of the elastic members 31, 32, 33, The direction of the force transmitted to the one end 7a of the turbine blade 7 through the thrust bearing 7 may exhibit a stress distribution similar to the actual operating condition.
탄성부재(31, 32, 33)의 타측 단부(31a~33a)에는 연결부(40)가 연결된다. 연결부(40)는 하면에 타측 단부(31a~33a)가 삽입되어 고정될 수 있는 결합공(40g)을 구비한다. 연결부(40)는 대략 원판의 형상을 가지며, 탄성부재(31, 32, 33)의 타측 단부(31a~33a)를 지지하면서 제1 지지축(50)을 통하여 전달된 힘을 탄성부재(31, 32, 33)에 전달하는 기능을 수행한다.The connecting portions 40 are connected to the other end portions 31a to 33a of the elastic members 31, 32 and 33. The connection portion 40 has a coupling hole 40g through which the other end portions 31a to 33a can be inserted and fixed. The connecting portion 40 has a substantially circular plate shape and supports the other end portions 31a to 33a of the elastic members 31, 32 and 33 while transmitting the force transmitted through the first supporting shaft 50 to the elastic members 31, 32, and 33, respectively.
연결부(40)는 연결부(40)를 지지하는 제1 지지축(50)을 구비한다. 제1 지지축(50)은 대략 원통형상으로 제작되며, 제1 지지축(50)은 상단에 결합핀이 삽입될 수 있는 핀 구멍(50h)을 구비한다. 도 1을 참조하면 제1 지지축(50)은 결합핀(50p)에 의해 제1 액추에이터(55)의 신축 가능한 로드(55r)에 결합된다.The connection portion 40 has a first support shaft 50 for supporting the connection portion 40. The first support shaft 50 is formed in a substantially cylindrical shape, and the first support shaft 50 has a pin hole 50h into which an engagement pin can be inserted. Referring to FIG. 1, the first support shaft 50 is coupled to the expandable rod 55r of the first actuator 55 by an engagement pin 50p.
도 1을 참조하면, 제1 액추에이터(55)는 액추에이터 구동기(92)로부터 공급되는 동력에 의해 구동되어 튜브(55t)에 대해 이동 가능(신축 가능)한 로드(55r)를 구비한다. 제1 액추에이터(55)의 튜브(55t)는 프레임(90)에 의해 지지된다.Referring to Fig. 1, the first actuator 55 includes a rod 55r which is driven by the power supplied from the actuator driver 92 and is movable (extendable and retractable) with respect to the tube 55t. The tube 55t of the first actuator 55 is supported by the frame 90. [
예를 들어 액추에이터 구동기(92)는 유압펌프와 유압밸브 등을 포함하여 유압 액체를 공급하는 유압 시스템일 수 있으며, 튜브(55t)는 유압 액체를 공급받아 로드(55r)를 이동시킬 수 있다. 유압 시스템 이외에도 예를 들어, 공압 시스템이나, 전기 리니어 모터 등이 제1 액추에이터(55)에 이용될 수 있다.For example, the actuator driver 92 may be a hydraulic system including a hydraulic pump, a hydraulic valve, and the like to supply the hydraulic fluid, and the tube 55t may receive the hydraulic fluid to move the rod 55r. In addition to the hydraulic system, for example, a pneumatic system, an electric linear motor, or the like may be used for the first actuator 55. [
제1 액추에이터(55)의 로드(55r)가 터빈 날개(7)로부터 멀어지는 방향, 즉 도 1에서 상측을 향하는 방향으로 이동함으로써 제1 지지축(50)이 상측으로 이동한다. 제1 지지축(50)이 상측으로 이동함에 따라 터빈 날개(7)에는 터빈 날개(7)의 일단(7a)을 터빈 날개(7)로부터 멀어지는 방향으로 당기는 인장력이 작용한다.The rod 55r of the first actuator 55 moves in the direction away from the turbine blade 7, that is, in the direction toward the upper side in Fig. 1, so that the first support shaft 50 moves upward. As the first support shaft 50 moves upward, a tensile force acts on the turbine blades 7 to pull one end 7a of the turbine blades 7 in a direction away from the turbine blades 7.
도 1 및 4를 참조하면, 제2 지지부(20)는 터빈 날개(7)의 타단(7b)을 지지하도록 터빈 날개(7)의 자루(shank)에 대응하는 오목한 형상부(20t)를 구비하는 블록(21)과, 블록(21)의 하단에서 하측으로 돌출하는 제2 지지축(22)을 구비한다. 제2 지지축(22)은 결합핀이 삽입될 수 있는 핀 구멍(20h)을 구비한다. 도 1을 참조하면 제2 지지축(22)은 결합핀(60p)에 의해 제2 액추에이터(60)에 연결된다.1 and 4, the second support 20 has a concave shape 20t corresponding to the shank of the turbine blade 7 to support the other end 7b of the turbine blade 7 A block 21 and a second support shaft 22 protruding downward from the lower end of the block 21. The second support shaft 22 has a pin hole 20h into which the engagement pin can be inserted. Referring to Fig. 1, the second support shaft 22 is connected to the second actuator 60 by the engagement pin 60p.
제2 액추에이터(60)는 액추에이터 구동기(92)에 의해 동력을 전달받아 튜브(60t)에 대해 신축 가능한 로드(60r)를 구비한다. 제1 액추에이터(55)와 마찬가지로 제2 액추에이터(60)의 튜브(60t)는 유압 액체를 공급받아 로드(60r)를 이동시킬 수 있다. 제2 액추에이터(60)의 튜브(60t)는 프레임(90)에 의해 지지된다.The second actuator 60 is provided with a rod 60r which is received by the actuator driver 92 and is stretchable with respect to the tube 60t. Like the first actuator 55, the tube 60t of the second actuator 60 can receive the hydraulic fluid and move the rod 60r. The tube 60t of the second actuator 60 is supported by the frame 90. [
제2 액추에이터(60)의 로드(60r)는 터빈 날개(7)로부터 멀어지는 방향, 즉 도 1에서 하측을 향하는 방향으로 이동함으로써 제2 지지부(20)가 하측으로 이동한다. 제2 지지부(20)가 하측으로 이동함에 따라 터빈 날개(7)의 타단(7b)을 터빈 날개(7)로부터 멀어지는 방향으로 당기는 인장력이 터빈 날개(7)에 작용한다.The rod 60r of the second actuator 60 moves in the direction away from the turbine blade 7, that is, in the direction toward the lower side in Fig. 1, so that the second support portion 20 moves downward. A tensile force acts on the turbine blade 7 to pull the other end 7b of the turbine blade 7 in a direction away from the turbine blade 7 as the second support portion 20 moves downward.
상술한 실시예에서 제1 지지부(10)가 터빈 날개(7)를 상측으로 당기는 인장력을 전달하고 제2 지지부(20)가 터빈 날개(7)를 하측으로 당기는 인장력을 동시에 전달함으로써 터빈 날개(7)의 크리프 시험 동작을 수행하는 구성이 설명되었으나, 실시예는 이와 같은 구성에 의해 한정되는 것은 아니다. 예를 들어 제1 액추에이터(55)만이 작동함으로써 제1 지지부(10)만이 터빈 날개(7)를 상측으로 당기는 인장력을 전달하고, 제2 지지부(20)에는 별도의 액추에이터가 결합되지 않고 제2 지지부(20)가 별도의 인장력을 터빈 날개(7)에 가하지 않고 터빈 날개(7)를 잡아서 지지하는 기능만을 수행할 수 있다.The first support portion 10 transmits the tensile force pulling the turbine blade 7 upward and the second support portion 20 simultaneously transmits the tensile force pulling the turbine blade 7 downward, Of the creep test operation is performed. However, the embodiment is not limited to such a configuration. For example, only the first actuator 55 operates to transmit a tensile force that pulls the turbine blade 7 upward only by the first support portion 10, and a separate actuator is not coupled to the second support portion 20, (20) can perform only a function of holding and supporting the turbine blade (7) without applying a separate tensile force to the turbine blade (7).
도 7은 도 3의 터빈 날개의 크리프 시험장치의 일부 구성요소들의 결합관계를 예시적으로 도시한 사시도이다.Fig. 7 is a perspective view exemplarily showing a coupling relationship of some components of the creep test apparatus of the turbine blade of Fig. 3;
도 1 및 도 7을 참조하면, 터빈 날개(7)의 표면(7s)에 인접하도록 복수 개의 가열부(80)가 배치된다. 가열부(80)는 터빈 날개(7)에 열을 전달함으로써 터빈 날개(7)가 터빈에 장착되어 실제로 사용될 때에 터빈 날개(7)에 열이 전달되는 작동환경을 모사하는 기능을 수행한다. Referring to Figs. 1 and 7, a plurality of heating portions 80 are disposed adjacent to the surface 7s of the turbine blades 7. The heating section 80 functions to simulate the operating environment in which heat is transmitted to the turbine blades 7 when the turbine blades 7 are mounted on the turbine and actually used, by transferring heat to the turbine blades 7. [
도면에서는 터빈 날개(7)의 측면의 표면(7s)에 인접하도록 4개의 가열부(80)가 배치되지만, 실시예는 이와 같은 가열부(80)의 구성에 의해 제한되지 않는다. 예를 들어, 가열부(80)의 개수가 달라질 수 있으며, 가열부(80)의 배치 위치도 도면에 도시된 것과 달라질 수 있다.가열부(80)는 예를 들어 전기가 인가되면 유도가열 방식으로 열을 발생시키는 인덕션 코일에 의해 구현될 수 있다. 가열부(80)에는 프레임(90)에 설치된 열 구동기(92)와 전기적으로 연결되며, 열 구동기(92)로부터 전달되는 전기에 의해 가열부(80)의 가열 작용이 제어될 수 있다.Although four heating portions 80 are disposed adjacent to the surface 7s of the side surface of the turbine blade 7 in the drawing, the embodiment is not limited by the configuration of the heating portion 80 as described above. For example, the number of the heating units 80 may be changed, and the arrangement position of the heating units 80 may be different from that shown in the drawing. The heating unit 80 may be, for example, And an induction coil for generating heat as a result. The heating unit 80 is electrically connected to the thermal driver 92 provided in the frame 90 and the heating action of the heating unit 80 can be controlled by electricity transmitted from the thermal driver 92. [
가열부(80)는 터빈 날개(7)의 표면(7s)의 상이한 영역들에 각각 대응하도록 복수 개가 배치될 수 있다. 복수 개의 가열부(80)의 각각은 터빈 날개(7)의 표면(7s)의 상이한 영역들을 상이한 온도 범위에서 가열할 수 있다.The plurality of heating portions 80 may be disposed to correspond to different regions of the surface 7s of the turbine blades 7, respectively. Each of the plurality of heating portions 80 can heat different regions of the surface 7s of the turbine blade 7 in different temperature ranges.
예를 들어, 가열부(80)는 제1 코일(81), 제2 코일(82), 제3 코일(83), 및 제4 코일(84)을 포함한다. 또한 제1 코일(81)과 제2 코일(82)은 터빈 날개(7)의 상이한 영역들 중 터빈 날개(7)의 일단(7a)에 대응하는 상부 영역들(7a1, 7a2)을 가열한다. 제3 코일(83)과 제4 코일(84)은 터빈 날개(7)의 상이한 영역들 중 터빈 날개(7)의 타단(7b)에 대응하는 하부 영역들(7b1, 7b2)을 가열한다.For example, the heating section 80 includes a first coil 81, a second coil 82, a third coil 83, and a fourth coil 84. The first coil 81 and the second coil 82 also heat the upper regions 7a1 and 7a2 corresponding to one end 7a of the turbine blade 7 among different regions of the turbine blade 7. [ The third coil 83 and the fourth coil 84 heat the lower regions 7b1 and 7b2 corresponding to the other end 7b of the turbine blade 7 among the different regions of the turbine blade 7. [
예를 들어, 상부 영역들(7a1, 7a2)은 섭씨 1,000도 내지 1,300도의 온도 범위에서 가열될 수 있고, 하부 영역들(7b1, 7b2)은 섭씨 700도 내지 1000도의 온도 범위에서 가열될 수 있다. 터빈 날개(7)의 일단(7a)에 대응하는 상부 영역들(7a1, 7a2)은 타단(7b)에 대응하는 하부 영역들(7b1, 7b2)보다 높은 온도의 범위에서 가열될 수 있다.For example, the upper regions 7a1 and 7a2 may be heated in a temperature range of 1,000 degrees to 1,300 degrees Celsius and the lower regions 7b1 and 7b2 may be heated in a temperature range of 700 degrees Celsius to 1000 degrees Celsius. The upper regions 7a1 and 7a2 corresponding to one end 7a of the turbine blade 7 can be heated to a higher temperature range than the lower regions 7b1 and 7b2 corresponding to the other end 7b.
터빈 날개(7)의 상부 영역들(7a1, 7a2)을 가열하는 제1 코일(81)과 제2 코일(82)도 상이한 온도 범위에서 작동할 수 있다. 예를 들어 상부 영역들(7a1, 7a2) 중 리딩 엣지(leading edge; 전연부)에 해당하는 상부 전방 영역(7a1)은 제1 코일(81)에 의해 섭씨 1,100 내지 1,300도의 온도 범위에서 가열될 수 있다. 또한 상부 영역들(7a1, 7a2) 중 트레일링 엣지(trailing edge; 후연부)에 해당하는 상부 후방 영역(7a2)은 제2 코일(82)에 의해 섭씨 1,000 내지 1,200도의 온도 범위에서 가열될 수 있다.The first coil 81 and the second coil 82 for heating the upper regions 7a1 and 7a2 of the turbine blade 7 can also operate in different temperature ranges. The upper front region 7a1 corresponding to the leading edge of the upper regions 7a1 and 7a2 can be heated by the first coil 81 in a temperature range of 1,100 to 1,300 degrees Celsius have. The upper rear region 7a2 corresponding to the trailing edge of the upper regions 7a1 and 7a2 can be heated by the second coil 82 in the temperature range of 1,000 to 1,200 degrees Celsius .
터빈 날개(7)의 하부 영역들(7b1, 7b2)을 가열하는 제3 코일(83)과 제4 코일(84)도 상이한 온도 범위에서 작동할 수 있다. 예를 들어 하부 영역들(7b1, 7b2)중 리딩 엣지에 해당하는 하부 전방 영역(7b1)은 제3 코일(83)에 의해 섭씨 800 내지 1,000도의 온도 범위에서 가열될 수 있다. 또한 하부 영역들(7b1, 7b2) 중 트레일링 엣지에 해당하는 하부 후방 영역(7b2)은 제4 코일(84)에 의해 섭씨 700 내지 900도의 온도 범위에서 가열될 수 있다.The third coil 83 and the fourth coil 84 for heating the lower regions 7b1 and 7b2 of the turbine blade 7 can also operate in different temperature ranges. For example, the lower front region 7b1 corresponding to the leading edge of the lower regions 7b1 and 7b2 may be heated by the third coil 83 in a temperature range of 800 to 1,000 degrees Celsius. The lower rear region 7b2 corresponding to the trailing edge of the lower regions 7b1 and 7b2 can be heated by the fourth coil 84 in the temperature range of 700 to 900 degrees Celsius.
상술한 바와 같이 가열부(80)의 제1 내지 제4 코일(81~84)의 각각이 상이한 온도 범위로 작동하기 위하여 제1 내지 제4 코일(81~84)의 각각에 상이한 크기의 전류가 인가될 수 있다.As described above, in order for each of the first to fourth coils 81 to 84 of the heating section 80 to operate in different temperature ranges, a current of a different magnitude is applied to each of the first to fourth coils 81 to 84 .
도 1 및 도 2를 다시 참조하면, 터빈 날개의 크리프 시험장치에는 제어기(70)가 연결된다.Referring again to Figures 1 and 2, a controller 70 is connected to the creep testing apparatus of the turbine blade.
제어기(70)는 액추에이터 구동기(91)에 제어신호를 인가하여 액추에이터 구동기(91)를 제어하는 인장력 제어기(71)와, 열 구동기(92)를 제어하는 열 제어기(72)와, 사용자에게 정보를 제공하는 표시기(93)를 제어하는 표시 제어기(73)와, 사용자의 입력조작을 수신하여 신호를 발생하는 사용자 인터페이스(94)와 연결되는 사용자 입력 수신부(74)와, 터빈 날개(7)에 작용하는 인장력과 관련된 부하와 온도 변화 등을 감지하는 센서(95)의 신호를 수신하는 수신기(76)와, 데이터를 저장한 저장장치(96)로부터 데이터를 수신하거나 송신하는 데이터 수신부(77)와, 크리프 시험을 위해 모사조건을 설정하여 인장력 제어기(71)와 열 제어기(72)에 전달될 제어 관련 정보를 생성하는 모사 조건 설정기(75)를 구비한다.The controller 70 includes a tension controller 71 for applying a control signal to the actuator driver 91 to control the actuator driver 91, a thermal controller 72 for controlling the column driver 92, A user input receiving section 74 connected to the user interface 94 for receiving a user's input operation and generating a signal and a display controller 73 for controlling the display device 93 to operate on the turbine blades 7 A receiver 76 for receiving a signal of a sensor 95 for detecting a load and a temperature change related to a tensile force applied to the load 95 and a data receiver 77 for receiving or transmitting data from the storage 96, And a simulation condition setting unit 75 for setting simulation conditions for the creep test and generating control related information to be transmitted to the tension controller 71 and the thermal controller 72.
제어기(70)는 예를 들어 컴퓨터나, 제어용 회로기판이나, 회로기판에 탑재되는 제어용 반도체칩이나, 반도체칩이나 컴퓨터에 내장되는 제어용 소프트웨어 등의 어느 하나 또는 이들의 조합으로 구현될 수 있다.The controller 70 may be implemented by any one of, for example, a computer, a control circuit board, a control semiconductor chip mounted on a circuit board, control software embedded in a semiconductor chip or a computer, or a combination thereof.
도 8은 도 3의 터빈 날개의 크리프 시험장치의 일부 구성요소들의 작동상태를 도시한 측면도이다.Fig. 8 is a side view showing an operating state of some components of the creep test apparatus of the turbine blade of Fig. 3; Fig.
터빈 날개(7)의 일단(7a)은 제1 지지부(10)의 이동블록(15a~15b)에 의해 지지되어 있으며, 제1 지지부(10)는 탄성부재(31, 32, 33)에 의해 연결부(40)와 연결된다. 연결부(40)의 상면은 제1 지지축(50)에 연결되어 있다.One end 7a of the turbine blade 7 is supported by the moving blocks 15a to 15b of the first support portion 10 and the first support portion 10 is supported by the elastic members 31, (40). The upper surface of the connection portion 40 is connected to the first support shaft 50.
제1 지지축(50)에 도 8에 도시된 화살표의 방향으로 인장력이 전달되면, 인장력은 제1 지지축(50)과 연결부(40)와 탄성부재(31, 32, 33)와 제1 지지부(10)를 통해 터빈 날개(7)의 일단(7a)까지 전달된다.8, the tensile force is transmitted to the first supporting shaft 50 through the first supporting shaft 50, the connecting portion 40, the elastic members 31, 32, 33 and the first supporting shaft 50, (7a) of the turbine blade (7) through the turbine blade (10).
도 8에는 제1 지지축(50)에 인장력이 작용하기 이전의 연결부(40)의 위치가 점선으로 도시되었다. 크리프 시험장치가 작동을 개시하기 이전에는 인장력이 작용하지 않으므로 탄성부재(31, 32, 33)이 늘어나지 않은 상태이므로 연결부(40)는 점선으로 표시된 초기 위치에 위치한다.In FIG. 8, the position of the connection portion 40 before the tensile force acts on the first support shaft 50 is shown by a dotted line. Since the tensile force does not act before the creep test apparatus starts to operate, the elastic members 31, 32, and 33 are not stretched, so that the connection unit 40 is positioned at the initial position indicated by the dotted line.
크리프 시험장치가 작동을 개시하면 제1 지지축(50)을 통해 인장력이 전달되어 연결부(40)가 제1 지지축(50)에 의해 도 8에서 상측을 향하는 방향으로 당겨진다. 제1 지지축(50)에 의해 연결부(40)가 상측으로 당겨지면 연결부(40)는 점선으로 도시된 초기 위치에서 실선으로 도시된 위치로 이동한다. 연결부(40)에 연결되어 있는 탄성부재(31, 32, 33)는 서로 상이한 탄성계수를 갖기 때문에 연결부(40)가 제1 지지부(10)로부터 멀어지는 방향으로 이동하며 탄성부재(31, 32, 33)를 잡아 당기면 탄성부재(31, 32, 33)의 각각에 서로 상이한 힘이 작용한다.When the creep test apparatus starts to operate, tensile force is transmitted through the first support shaft 50 and the connection portion 40 is pulled by the first support shaft 50 in the upward direction in FIG. When the connection portion 40 is pulled upward by the first support shaft 50, the connection portion 40 moves from the initial position shown by the dotted line to the position shown by the solid line. Since the elastic members 31, 32 and 33 connected to the connection unit 40 have different elastic moduli from each other, the connection unit 40 moves in the direction away from the first support unit 10 and the elastic members 31, 32 and 33 A different force is exerted on each of the elastic members 31, 32, 33.
도 8에서 탄성부재(31, 32, 33) 중 제1 탄성부재(31)의 탄성계수가 K1이고, 제2 탄성부재(32)의 탄성계수가 K2이며, 제3 탄성부재(33)의 탄성계수가 K3이라고 하고, 연결부(40)가 상측을 향해 X의 거리만큼 이동함으로써 탄성부재(31, 32, 33)를 잡아 당기면, 탄성부재(31, 32, 33)의 각각에는 상이한 크기의 힘이 작용한다. The elastic modulus of the first elastic member 31 of the elastic members 31, 32 and 33 is K1 and the elastic modulus of the second elastic member 32 is K2, Assuming that the coefficient is K3 and the connecting portion 40 is moved upward by X distance to pull the elastic members 31, 32 and 33, a force of a different magnitude is applied to each of the elastic members 31, 32 and 33 .
탄성부재(31, 32, 33)의 탄성계수의 크기가 서로 상이하여 K1 > K2 > K3 이라고 하면, 탄성부재(31, 32, 33)의 각각에 작용하는 힘의 크기의 관계는 F1 > F2 > F3 가 된다. 따라서 터빈 날개(7)를 지지하는 제1 지지부(10)를 통해 터빈 날개(7)에 작용하는 힘의 방향은 도 8에 도시된 상측 방향을 향하는 화살표 방향이 아니라 터빈 날개(7)의 일단(7a)으로부터 멀어지면서 화살표 방향에 비교하여 비틀어진 방향을 향하므로 실제 작동조건과 유사한 크기 및 방향을 갖는 힘이 터빈 날개(7)에 전달될 수 있다. 터빈 날개(7)를 지지하는 제1 지지부(10)에는 탄성부재(31, 32, 33)에 의해 상이한 크기의 힘이 3개의 지점에서 작용하므로 제1 지지부(10)에는 굽힘 모멘트(bending moment)가 발생한다. 따라서 터빈 날개(7)의 일단(7a)에는 제1 지지부(10)를 통해 전단응력과 인장응력이 모두 전달되어, 실제 작동조건과 유사한 크기 및 방향을 갖는 힘이 터빈 날개(7)에 전달될 수 있다.The magnitude of the force acting on each of the elastic members 31, 32 and 33 is F1> F2> K3, where K1> K2> K3, F3. The direction of the force acting on the turbine blades 7 through the first support 10 supporting the turbine blades 7 is not the direction of the arrows directed upwardly as shown in Figure 8 but the one end of the turbine blades 7 7a and directed in a direction twisted compared to the direction of the arrow, a force having a magnitude and direction similar to the actual operating conditions can be transmitted to the turbine blades 7. The bending moment is applied to the first support portion 10 because the force of different magnitudes acts on the first support portion 10 supporting the turbine blade 7 at three points by the elastic members 31, Lt; / RTI > Therefore, both the shear stress and the tensile stress are transmitted to the one end 7a of the turbine blade 7 through the first support portion 10 so that a force having a magnitude and direction similar to the actual operating conditions is transmitted to the turbine blade 7 .
도 9는 도 1에 나타난 실시예에 관한 터빈 날개의 크리프 시험장치를 이용한 크리프 시험방법의 단계들을 나타낸 순서도이다.FIG. 9 is a flowchart showing steps of a creep test method using a creep test apparatus for a turbine blade according to the embodiment shown in FIG.
터빈 날개의 크리프 시험장치를 이용한 크리프 시험방법은 컴퓨터 시뮬레이션 프로그램이나 실험적으로 확보한 터빈 날개 설계함수 등에 터빈 날개의 설계조건을 대입하여 해석적인 방법으로 온도 및 응력 구배를 산출하는 단계(S100)와, 크리프 시험을 위해 터빈 날개에 가해질 인장력의 방향과 크기를 결정하는 단계(S110)와, 탄성부재의 각각의 탄성계수를 결정하는 단계(S120)와, 가열부의 배치 위치와 가열부가 발생할 열의 온도 범위를 결정하는 단계(S130)와, 제1 지지부와 제2 지지부 및 가열부를 설계하고 제작하는 단계(S140)와, 터빈 날개를 시험장치에 장착하여 크리프 시험을 수행하는 단계(S150)를 포함한다.A creep test method using a creep test apparatus of a turbine blade includes a step (S100) of calculating a temperature and a stress gradient by an analytical method by substituting a design condition of a turbine blade in a computer simulation program or an experimentally obtained turbine blade design function, (S110) of determining the direction and magnitude of the tensile force to be applied to the turbine blade for the creep test, determining the elastic modulus of each elastic member of the elastic member (S120), determining the arrangement position of the heating part and the temperature range (S140) of designing and fabricating the first support portion, the second support portion and the heating portion (S140), and performing a creep test (S150) by mounting the turbine blade to the test apparatus.
인장력의 방향과 크기를 결정하는 단계(S110)에서는 역산법(inverse method)을 사용하여 실제 작동조건과 유사한 응력 분포를 나타내기 위해 제1 지지부에 가해질 인장력의 크기와 방향을 결정할 수 있다.In step S110 of determining the direction and magnitude of the tensile force, an inverse method may be used to determine the magnitude and direction of the tensile force applied to the first support to exhibit a stress distribution similar to the actual operating conditions.
탄성계수를 결정하는 단계(S120)에서는 결정된 인장력의 크기와 방향을 구현할 수 있도록 탄성부재의 각각의 탄성계수를 결정할 수 있다.In the step of determining the elastic modulus (S120), the elastic modulus of each elastic member can be determined so as to realize the magnitude and direction of the determined tensile force.
가열부의 위치 및 온도를 결정하는 단계(S130)에서도 역산법을 사용하여 실제 작동조건과 유사한 온도 분포를 나타낼 수 있도록 가열부가 배치되어야 하는 위치와 온도의 수치를 역산할 수 있다.In the step of determining the position and temperature of the heating part (S130), it is possible to invert the numerical values of the position and the temperature at which the heating part should be arranged so that the temperature distribution similar to the actual operating condition can be expressed using the inverse calculation method.
터빈 날개의 크리프 변형에 영향을 미치는 응력, 온도, 시간인데, 상술한 바와 같은 터빈 날개의 크리프 시험장치를 이용한 크리프 시험방법에 의하면 실제 동일한 조건을 조성함으로써 터빈 날개의 크리프 변형에 관한 정밀한 시험을 실시할 수 있다.The creep test method using the creep test apparatus of the turbine blade as described above is a stress, temperature, and time that affect the creep deformation of the turbine blade. can do.
상술한 실시예들에 관한 터빈 날개의 크리프 시험장치 및 시험방법은 3D 인쇄법(three dimensional printing)에 의해 제작된 터빈 날개의 시험에 유용하다. 3D 인쇄법을 이용하면 다양한 소재를 이용하여 다양한 형상의 터빈 날개를 제작할 수 있다. 3D 인쇄법으로 제작된 터빈 날개를 터빈에 바로 장착하여 시험하려 한다면 비용과 소요시간 등 제한사항이 존재하지만, 상술한 실시예들에 관한 터빈 날개의 크리프 시험장치 및 시험방법에 의하면 3D 인쇄법으로 제작된 터빈 날개를 실제 작동조건과 매우 유사한 환경 하에서 정밀하고 신속하게 시험할 수 있다.The apparatus and method for creep testing of turbine blades according to the above embodiments are useful for testing turbine blades produced by 3D printing. Using 3D printing, various shapes of turbine blades can be manufactured using various materials. However, if the turbine blade prepared by the 3D printing method is mounted directly on the turbine and there is a limitation such as the cost and the time required, the creep test apparatus and test method of the turbine blade according to the above- The manufactured turbine blades can be tested precisely and quickly under conditions very similar to actual operating conditions.
상술한 실시예들에 대한 구성과 효과에 대한 설명은 예시적인 것에 불과하며, 당해 기술 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위에 의해 정해져야 할 것이다.The construction and effect of the above-described embodiments are merely illustrative, and it will be understood by those skilled in the art that various modifications and equivalent other embodiments are possible. Accordingly, the true scope of protection of the invention should be determined by the appended claims.

Claims (10)

  1. 터빈 날개의 일단을 지지하는 제1 지지부;A first support for supporting one end of the turbine blade;
    상기 터빈 날개의 상기 일단을 향하는 상기 제1 지지부의 일면의 반대측의 타면에 일측 단부가 연결되며 적어도 일부는 서로 상이한 탄성계수를 갖는 복수 개의 탄성부재;A plurality of elastic members having one side end connected to the other side opposite to one surface of the first support portion facing the one end of the turbine blade and at least a portion having a different elastic modulus;
    상기 탄성부재의 타측 단부에 연결되어 상기 탄성부재를 지지하는 연결부;A connecting portion connected to the other end of the elastic member to support the elastic member;
    상기 터빈 날개의 타단을 지지하는 제2 지지부;A second support for supporting the other end of the turbine blade;
    상기 연결부와 상기 제2 지지부의 적어도 하나에 인장력을 가하는 액추에이터; 및An actuator for applying a tensile force to at least one of the connection portion and the second support portion; And
    상기 터빈 날개의 표면에 인접하도록 배치되어 열을 가하는 가열부;를 구비하는, 터빈 날개의 크리프 시험장치.And a heating portion disposed adjacent to the surface of the turbine blade and applying heat thereto.
  2. 제1항에 있어서,The method according to claim 1,
    상기 제1 지지부는 상기 터빈 날개의 측면의 표면에 접촉하도록 이동 가능한 복수 개의 이동블록을 구비하는, 터빈 날개의 크리프 시험장치.Wherein the first support portion comprises a plurality of moving blocks movable to contact a surface of a side surface of the turbine blade.
  3. 제2항에 있어서,3. The method of claim 2,
    상기 이동블록은 상기 제1 지지부의 상기 일면을 따라 이동함으로써 상기 터빈 날개의 상기 표면에 접촉하는 위치와 상기 터빈 날개의 상기 표면으로부터 이격된 위치의 사이에서 이동 가능하게 배치되는, 터빈 날개의 크리프 시험장치.Wherein the moving block is movably disposed between a position contacting the surface of the turbine blade and a position spaced from the surface of the turbine blade by moving along the one side of the first support, Device.
  4. 제2항에 있어서,3. The method of claim 2,
    상기 제1 지지부는 상기 지지부의 상기 일면에서 돌출되며 나사구멍을 구비하는 플랜지와, 상기 나사구멍에 삽입되어 상기 나사구멍을 따라 이동함으로써 상기 이동블록을 가압하는 세트스크류를 더 구비하는, 터빈 날개의 크리프 시험장치.Wherein the first support portion further comprises a flange projecting from the one surface of the support portion and having a screw hole and a set screw inserted in the screw hole to press the moving block by moving along the screw hole, Creep test equipment.
  5. 제4항에 있어서,5. The method of claim 4,
    상기 플랜지는 원주 방향으로 연장함으로써 상기 터빈 날개의 상기 일단을 수용하는 공간을 형성하는, 터빈 날개의 크리프 시험장치.Said flange extending circumferentially to define a space for receiving said one end of said turbine blade.
  6. 제1항에 있어서,The method according to claim 1,
    상기 액추에이터는 상기 연결부를 상기 제1 지지부로부터 멀어지는 방향으로 당기는 인장력을 가하는 제1 액추에이터와, 상기 제2 지지부를 상기 터빈 날개로부터 멀어지는 방향으로 당기는 인장력을 가하는 제2 액추에이터를 구비하는, 터빈 날개의 크리프 시험장치.Wherein the actuator includes a first actuator that applies a tensile force to pull the connection portion away from the first support portion and a second actuator that applies a tensile force to pull the second support portion away from the turbine blade, Test equipment.
  7. 제1항에 있어서,The method according to claim 1,
    상기 가열부는 상기 터빈 날개의 상이한 영역들에 각각 대응하도록 복수 개가 배치되며, 복수 개의 상기 가열부는 상기 터빈 날개의 상기 상이한 영역들을 상이한 온도 범위에서 가열하는, 터빈 날개의 크리프 시험장치.Wherein the plurality of heating portions heat the different regions of the turbine blades in different temperature ranges, wherein the plurality of heating portions heat the different regions of the turbine blades in different temperature ranges, the plurality of heating portions corresponding to the different regions of the turbine blades, respectively.
  8. 제7항에 있어서,8. The method of claim 7,
    상기 터빈 날개의 상기 영역들 중 상기 터빈 날개의 상기 일단에 대응하는 영역이 상기 터빈 날개의 상기 타단에 대응하는 영역보다 높은 온도의 범위에서 가열되는, 터빈 날개의 크리프 시험장치.Wherein an area corresponding to said one end of said turbine blade in said areas of said turbine blade is heated in a range of temperatures higher than a temperature corresponding to said other end of said turbine blade.
  9. 제7항에 있어서,8. The method of claim 7,
    상기 액추에이터가 인장력을 가할 때 복수 개의 상기 탄성부재가 동일한 길이만큼 연장함으로써 서로 상이한 탄성계수를 갖는 복수 개의 상기 탄성부재가 상기 터빈 날개에 서로 상이한 크기의 힘을 전달하는, 터빈 날개의 크리프 시험장치.Wherein the plurality of elastic members extend by the same length when the actuator applies the tensile force so that the plurality of elastic members having different elastic moduli transmit forces different in magnitude from each other to the turbine blades.
  10. 제1항에 있어서,The method according to claim 1,
    상기 제1 지지부는 상기 타면에 상기 탄성부재의 상기 일측 단부가 삽입되는 결합공을 더 구비하는, 터빈 날개의 크리프 시험장치.Wherein the first support portion further comprises a coupling hole into which the one end of the elastic member is inserted, on the other surface of the turbine blade.
PCT/KR2018/003626 2017-08-23 2018-03-27 Apparatus for testing creep of turbine blade WO2019039690A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0106641 2017-08-23
KR1020170106641A KR102350919B1 (en) 2017-08-23 2017-08-23 Creep testing apparatus for turbine blade

Publications (1)

Publication Number Publication Date
WO2019039690A1 true WO2019039690A1 (en) 2019-02-28

Family

ID=65439030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/003626 WO2019039690A1 (en) 2017-08-23 2018-03-27 Apparatus for testing creep of turbine blade

Country Status (2)

Country Link
KR (1) KR102350919B1 (en)
WO (1) WO2019039690A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110530590A (en) * 2019-07-02 2019-12-03 东北大学 A kind of turbine blade vibration test experimental bed considering more contact conditions
FR3124261A1 (en) * 2021-06-17 2022-12-23 Safran Aircraft Engines Set of test specimens and device for characterizing the contact between two turbine blades
FR3124262A1 (en) * 2021-06-17 2022-12-23 Safran Aircraft Engines Device, assembly and method for friction testing an aircraft turbine engine blade

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102164075B1 (en) * 2019-05-08 2020-10-12 주식회사 포스코 Warm test apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08184542A (en) * 1994-12-28 1996-07-16 Shimadzu Corp Test piece transfer system
KR100352886B1 (en) * 1994-08-30 2002-11-18 지에프아이 컨트롤 시스템즈 인코퍼레이티드 Improved two-stage pressure regulator
KR20130054101A (en) * 2012-02-01 2013-05-24 조영철 Load measuring device and apparatus for supporting a structure utilizing the same
JP2015108523A (en) * 2013-12-03 2015-06-11 株式会社東芝 Inspection device of turbine blade and inspection method thereof
KR20160035111A (en) * 2014-09-22 2016-03-31 수원대학교산학협력단 Tensile test system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5425276A (en) 1993-10-26 1995-06-20 Mts Systems Corporation Material testing system providing simultaneous force loads
CN104677727B (en) * 2015-02-09 2017-04-05 四川大学 The hydraulic spring type direct tensile test spacing rock sample fixing device of spring assembly

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100352886B1 (en) * 1994-08-30 2002-11-18 지에프아이 컨트롤 시스템즈 인코퍼레이티드 Improved two-stage pressure regulator
JPH08184542A (en) * 1994-12-28 1996-07-16 Shimadzu Corp Test piece transfer system
KR20130054101A (en) * 2012-02-01 2013-05-24 조영철 Load measuring device and apparatus for supporting a structure utilizing the same
JP2015108523A (en) * 2013-12-03 2015-06-11 株式会社東芝 Inspection device of turbine blade and inspection method thereof
KR20160035111A (en) * 2014-09-22 2016-03-31 수원대학교산학협력단 Tensile test system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110530590A (en) * 2019-07-02 2019-12-03 东北大学 A kind of turbine blade vibration test experimental bed considering more contact conditions
FR3124261A1 (en) * 2021-06-17 2022-12-23 Safran Aircraft Engines Set of test specimens and device for characterizing the contact between two turbine blades
FR3124262A1 (en) * 2021-06-17 2022-12-23 Safran Aircraft Engines Device, assembly and method for friction testing an aircraft turbine engine blade

Also Published As

Publication number Publication date
KR102350919B1 (en) 2022-01-13
KR20190021643A (en) 2019-03-06

Similar Documents

Publication Publication Date Title
WO2019039690A1 (en) Apparatus for testing creep of turbine blade
WO2015064819A1 (en) Flexible display bending test apparatus and bending test method using same
CN110243604B (en) Intermediary bearing vibration test device
WO2017217604A1 (en) Material testing apparatus and material testing method using same
WO2011062322A1 (en) Ultra-high frequency fatigue-testing apparatus
KR0180025B1 (en) Combined board construction for burn-in and burn-in equipment for use with combined board
CN105527092A (en) Aero-engine main force bearing component overall static strength assessment test system and method
CN108760360A (en) A kind of overload ambient heat centrifugal test device
WO2012153956A2 (en) Impact test apparatus using energy frame
WO2018212387A1 (en) Device and method for measuring creep crack growth properties by using small specimen having fine groove
CN112284749A (en) Comprehensive experiment platform for testing high-temperature components
WO2020171503A1 (en) Method for performing press-fitting test in consideration of amount of deformation of load cell
CN110595910A (en) Thermal-vibration combined tensile test device based on universal testing machine and test method thereof
CN111855396A (en) Be used for mandrel to weave carbon-carbon composite material ultra-high temperature tensile test anchor clamps
WO2019203469A1 (en) Blade structure testing equipment and method for testing blade specimen by using same
US20110283820A1 (en) Multi-sensor head
CN106289972A (en) High-temp strain controls device
CN112147007A (en) High-temperature fatigue test device
CN110243621A (en) A kind of aging testing system and ageing testing method of semaphore
CN212340833U (en) Be used for mandrel to weave carbon-carbon composite material ultra-high temperature tensile test anchor clamps
WO2023054974A1 (en) Impact test jig apparatus
CN113639909A (en) Engine cover pulling-out force testing device
CN110567672A (en) Method for testing output characteristics of stacked piezoelectric ceramics under large-range temperature change
CN217931956U (en) Testing arrangement of test motor life-span
WO2022060033A1 (en) Apparatus and method for assessing durability of battery module frame for automotive vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18847334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18847334

Country of ref document: EP

Kind code of ref document: A1