WO2019039272A1 - Forging mold device and forging method - Google Patents

Forging mold device and forging method Download PDF

Info

Publication number
WO2019039272A1
WO2019039272A1 PCT/JP2018/029688 JP2018029688W WO2019039272A1 WO 2019039272 A1 WO2019039272 A1 WO 2019039272A1 JP 2018029688 W JP2018029688 W JP 2018029688W WO 2019039272 A1 WO2019039272 A1 WO 2019039272A1
Authority
WO
WIPO (PCT)
Prior art keywords
die
row
forging
dies
circumferential direction
Prior art date
Application number
PCT/JP2018/029688
Other languages
French (fr)
Japanese (ja)
Inventor
昌巳 山口
潤 沼本
友文 小幡
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2019039272A1 publication Critical patent/WO2019039272A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/02Die constructions enabling assembly of the die parts in different ways
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J13/00Details of machines for forging, pressing, or hammering
    • B21J13/02Dies or mountings therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/14Making machine elements fittings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members

Definitions

  • the present invention relates to a forging die device and a forging method, and more particularly to a forging die device and a forging method for producing an inner joint member of a constant velocity universal joint having a track groove inclined with respect to a joint axis.
  • the inner joint member 1 is formed of a disk-shaped body having an axial center hole 2, and on the outer diameter surface thereof, a track groove 3 having a curved groove bottom cross-sectional shape is formed at a predetermined pitch along the circumferential direction.
  • this apparatus has a die row 6 in which a plurality of divided dies 5 are arranged in the circumferential direction, and a material W1 inserted inside the die row 6. It has a pair of upper and lower punches 7, 8 and the like which are compressed in the axial direction.
  • the die row 6 is disposed in a lower die (not shown) to which the lower punch 8 is attached, and the upper punch 7 is attached to an upper die (not shown).
  • the dividing die 5 is formed of a block body having a triangular shape in plan view in which a pair of side surfaces 5a and 5a are tapered surfaces approaching from the device outer diameter side toward the device inner diameter side, and FIGS. 25A and 25B and FIGS. As shown in FIG. 26B, eight dies are arranged along the circumferential direction to form the die row 6.
  • a track groove molding surface 5b and an outer surface molding surface 5c are provided in the inner diameter portion of each of the divided dies, and is always urged in the outer diameter direction by the elastic mechanism.
  • each of the divided dies 5 slides in the outer diameter direction, and between the divided dies 5 adjacent in the circumferential direction.
  • a gap is provided. Therefore, on the inner diameter side of the die row 6, a space larger than the material (workpiece) W1 to be inserted is formed.
  • the die row 6 is opened as shown in FIGS. 25A and 25B and FIGS. 26A and 26B in which the divided dies 5 are slid in the outer diameter direction.
  • the material W 1 is introduced into the space provided on the inner diameter side of the die row 6.
  • the lower punch 8 is raised, and the lower punch 8 receives the material W1.
  • the groove bottom has a curved track groove having an undercut shape (one having a linear portion and a curved portion), and the track groove is inclined with respect to the inner ring axial direction.
  • the dividing die 5 is expanded in diameter by an elastic mechanism (spring member) except at the time of molding in order to provide a sufficient gap so that the forged material in the undercut shape does not interfere in the discharging direction.
  • the gap between the divided die and the material W1 is large and the possibility of becoming unstable is high.
  • insertion failure in this case, the axis line WL of the material W1 is inclined with respect to the axis line L of the upper and lower punches 7 and 8) or as shown in FIGS.
  • lateral collapse a state in which the axis line WL of the material W1 is orthogonal to the axis line L of the upper and lower punches 7 and 8) or the like occurs. If such a defective insertion or falling sideways occurs, molding becomes impossible (mold breakage).
  • a forging die apparatus and a forging method capable of performing forging with high accuracy without causing insertion defects or lateral collapse of a material (work) upon material insertion.
  • the forging die device of the present invention is a forging die device for manufacturing an inner joint member of a constant velocity universal joint having a track groove inclined with respect to a joint axis, and includes a plurality of divided dies along a circumferential direction. And a reciprocating mechanism for reciprocating the dies in the die row along the radial direction, and a pair of upper and lower punches for axially compressing the material inserted inside the die row.
  • the reciprocation mechanism is controlled to move each die of the die row in the outer diameter direction to provide a gap between the adjacent dies along the circumferential direction, and each die of the die row in the inner diameter direction
  • a control mechanism for moving at a desired timing to switch between a closed state in which adjacent dies are brought into close contact with each other along the circumferential direction, and at least when the material is inserted, the control mechanism performs each die in the die row in the inner diameter direction. Move it In which the closed state to maintain the timber in a stable posture.
  • each die of the die row is moved in the inner diameter direction to maintain the material in a stable posture, so that the material is put in the closed state. It is possible to effectively prevent the occurrence of poor insertion or falling sideways.
  • the reciprocating mechanism may be constituted by a cylinder mechanism, and the operation of the cylinder mechanism may be controlled by the control mechanism.
  • the cylinder mechanism may be a pneumatic cylinder or a hydraulic cylinder.
  • the pneumatic cylinder has a simple structure and is easy to handle, can be inexpensive, and the response, size, weight, and information processing ability are average and balanced.
  • the hydraulic cylinder is a cylinder that can be widely used from a very low speed to a high speed because it can generate a large force even with a small hydraulic pump, has a very high response speed, and is easy to control. Positioning can also be accurately controlled, and a large output is possible. It may be an electric cylinder or the like.
  • the electric cylinder is an electrically driven cylinder composed of a ball screw, a linear guide, and an AC servomotor, and can be used like an air cylinder, it can be used with a simple wiring that does not require a pump and is connected to a power supply, and oil mist There are advantages such as no scattering and low running costs.
  • the inner joint member may be an undercut shape in which the track grooves adjacent in the circumferential direction are inclined in the opposite direction and the groove bottom longitudinal cross-sectional shape of each track groove has an arc portion and a straight portion.
  • the forging method of the present invention is a forging method of manufacturing an inner joint member of a constant velocity universal joint having a track groove inclined with respect to a joint axis, and a plurality of divided dies are disposed along a circumferential direction.
  • a forging die apparatus comprising a die row, a reciprocating mechanism for reciprocating each die in the die row along a radial direction, and a pair of upper and lower punches for axially compressing a material inserted inside the die row Using a material feeding process to put the material inside the die row, a closing process to make the upper and lower punches relatively approach, a forming process to make the upper and lower punches further approach to compress the material, and the upper and lower punches The method further comprises: an opening step relatively spaced apart, and a discharging step discharging the formed molded product, and in the material charging step, the closing step and the molding step, each die of the die row is moved in the inner diameter direction to The stable figure Are closed to, in the opening
  • each die in the die row is moved in the inner diameter direction to bring the material into a closed state to be in a stable posture. It is possible to effectively prevent the occurrence of poor insertion, falling sideways, etc. of the material. Further, in the opening step and the discharging step, each die of the die row is moved in the outer diameter direction to be in the open state, so that the forged finished product can be easily taken out from the forging die device.
  • the inner joint member may be an undercut shape in which the track grooves adjacent in the circumferential direction are inclined in the opposite direction and the groove bottom longitudinal cross-sectional shape of each track groove has an arc portion and a straight portion.
  • each die of the die row can be moved in the outer diameter direction to be in an open state, and the forged finished product can be easily taken out from the forging die device, and the productivity Excellent.
  • throwing-in to the conventional forging die apparatus is shown, and it is a top view of an insertion defect state.
  • throwing-in to the conventional forging die apparatus is shown, and it is sectional drawing of an insertion defect state.
  • throwing-in to the conventional forging die apparatus is shown, and it is a top view of a side fall state.
  • throwing-in to the conventional forging die apparatus is shown, and it is sectional drawing of a fall state.
  • FIGS. 1 to 23. 1 and 2 show a cross-sectional view of the main part of a forging die device according to the present invention.
  • This forging die apparatus is for forging and forming the inner joint member 143 of the constant velocity universal joint 141 shown in FIG. 22 and FIG.
  • the constant velocity universal joint 141 has a plurality of outer joint members 142 in which a plurality of track grooves 147 extending in the axial direction are formed in the spherical inner circumferential surface 146 and a plurality of pairs of track grooves 147 of the outer joint member 142 in the spherical outer circumferential surface 148.
  • a plurality of balls as torque transmission members that transmit torque by being interposed between the track groove 147 of the outer joint member 142 and the track groove 149 of the inner joint member 143 144 and a holder 145 for holding the ball 144.
  • the cage has a spherical outer circumferential surface 152 and a spherical inner circumferential surface 153 fitted respectively to the spherical inner circumferential surface 146 of the outer joint member 142 and the spherical outer circumferential surface 148 of the inner joint member 143.
  • the track groove 147 of the outer joint member 142 includes the joint center O at a working angle of 0 ° and is separated by a plane (joint central plane) orthogonal to the joint axis n-n
  • the back side and the opening side are respectively made into the circular arc part 147a and the linear part 147b which make the joint center O a curvature center.
  • the track groove 149 of the inner joint member 143 is such that the opening side and the back side with the joint center plane as an arc portion 149a and a straight portion 149b whose center of curvature is the joint center O, respectively.
  • the track grooves 147 and 149 are each inclined in the circumferential direction with respect to the axis of the joint, and the track grooves 147A and 147B and 149A and 149B whose inclination directions are adjacent to each other in the circumferential direction mutually It is formed in the opposite direction. Therefore, the arc portion 147a of the track groove 147A is called an arc portion 147Aa, the straight portion 147b of the track groove 147A is called an arc portion 147Ab, and the arc portion 147a of the track groove 147B is called an arc portion 147Ba, and the straight line of the track groove 147B.
  • the part 147b is called an arc part 147Bb.
  • the arc portion 149a of the track groove 149A is called an arc portion 149Aa
  • the straight portion 149b of the track groove 149A is called an arc portion 149Ab
  • the arc portion 149a of the track groove 149B is called an arc portion 149Ba
  • the straight portion of the track groove 149B is called an arc portion 149Bb.
  • a ball 144 is disposed at each intersection of the pair of track grooves 147A, 149A and 147B, 149B of the outer joint member 142 and the inner joint member 143. Therefore, when the joint members 142 and 143 rotate relative to each other at an operating angle of 0 ° as shown, the wedge angle formed between the track grooves 147A and 149A is opened and 147B and 149B.
  • the cage 145 is stable at the joint center O position, since the direction in which the wedge angle opens is opposite to each other, and forces in opposite directions from the ball 144 act on the pocket portions 145a adjacent in the circumferential direction of the cage 145 Do.
  • the forging die device of the present invention is a cylindrical material (work) W1 made of carbon steel etc. shown in FIG. 1 etc., having a finished shape of the track groove 149 and a shape having a spherical outer surface, ie, FIG.
  • the inner joint forging 143 'of the shape will be forged.
  • the forged material W obtained by this forging is a non-penetrated material in which the inner diameter hole 19 has a bottom wall 20 in the middle in the axial direction.
  • the bottom of the forged material W is punched out in a press process or removed by turning, a female spline is formed in the inner diameter hole, and the width surface and the spherical outer surface are finished by machining such as turning or grinding.
  • the inner joint member 143 of the constant velocity universal joint is formed by machining details such as the opening edge of the inner diameter hole and heat treatment.
  • the inner joint forged product 143 ' is a component which has not been subjected to machining finish processing and heat treatment, and has the same shape as the conventional inner joint member 1 of the constant velocity universal joint. Therefore, in FIG. 24 showing the conventional inner joint member 1, reference numeral 143 'of the inner joint forged product forged by the forging die device of the present invention is attached.
  • the forging die apparatus includes an upper die 21, a lower die 22, an upper punch member 23 disposed on the upper die 21 side, and a lower punch member disposed on the lower die 22 side. 24 and a die row 26 and the like disposed on the lower die 22 side.
  • the upper die 21 can be raised and lowered by an upper die lifting drive mechanism K1 (see FIG. 4) such as a hydraulic cylinder. Further, the upper mold 21 is formed with a hole 27 in which the upper punch member 23 is accommodated so as to be able to move up and down. The upper punch member 23 is moved up and down by the upper punch vertical movement mechanism U1 (see FIG. 4) such as a hydraulic cylinder. It is made movable.
  • the upper punch member 23 has a punch body 23a, an upper ring punch 23b disposed on the outer peripheral side of the punch body 23a, and a boss portion 23c for receiving these, as shown in FIGS. 6 to 13 and the like.
  • a guide structure 28 for guiding the upper punch member 23 is provided on the inner diameter surface of the hole 27.
  • the lower die 22 can be raised and lowered by a lower die elevating drive mechanism K2 (see FIG. 4) such as a hydraulic cylinder. Further, the lower die 22 is formed with a hole 30 in which the lower punch member 24 is accommodated so as to be able to move up and down. The lower punch member 24 is moved up and down by the lower punch up and down movement mechanism U2 (see FIG. 4) It is made movable. As shown in FIGS. 1 and 2, the lower punch member 24 has a punch body 24a, a ring punch 24b disposed on the outer peripheral side of the punch body 24a, and a boss 24c for receiving these. A guide structure 31 for guiding the lower punch member 24 is provided on the inner diameter surface of the hole 30.
  • the die row 26 disposed on the lower die 22 side includes a plurality of (eight in the illustrated example) divided dies 25 disposed along the circumferential direction.
  • Each dividing die 25 is formed of a block body having a triangular shape in a plan view, in which the pair of side surfaces 25a, 25a are tapered surfaces approaching from the apparatus outer diameter side toward the apparatus inner diameter side.
  • the side surfaces 25a, 25a extend in the radial direction, and as shown in FIGS. 14 and 15, the side surfaces facing each other of the division dies 25 adjacent to each other in the circumferential direction are in contact or in close contact by sliding to the center of the apparatus.
  • the die row 26 has a ring shape in plan view.
  • the track groove forming mold surface 25b and the outer diameter surface forming mold surface 25c are provided at a predetermined pitch.
  • the outer diameter portion of each of the divided dies 25 is a tapered surface portion 29 whose diameter increases in the outer diameter direction from the upper side to the lower side.
  • the tapered surface portion 29 includes a central first portion 29a, a pair of second portions 29b and 29b on both sides of the first portion 29a, and a pair of side portions 29c and 29c provided continuously with the second portions 29b and 29b. It consists of
  • the reciprocating mechanism M is constituted by a cylinder mechanism M1.
  • the cylinder mechanism M1 in this case is a single acting cylinder provided with a cylinder tube 32, a piston rod 33 fitted in the cylinder tube 32, and a spring 34 accommodated in the cylinder tube 32.
  • the cylinder tube 32 is provided with a first chamber 35 and a second chamber 36. That is, the cylinder tube 32 includes a main body portion 32a formed of a bottomed cylindrical body, and a lid member 32b provided at the opening of the main body portion 32a, and a concave portion of the bottom wall 32a1 of the main body portion 32a is provided.
  • the second chamber 36 is configured. Further, the first chamber 35 is configured between the lid member 32 b and the bottom wall 32 a 1 of the main body 32 a.
  • the piston rod 33 includes a piston portion 33a and a shaft body 33b.
  • the piston portion 33a is fitted in the first chamber 35 so as to be capable of reciprocating, and the shaft body 33b is inserted from the first chamber 35 through the through hole of the lid member 32b. Project outside.
  • a spring 34 is interposed between the piston 33a and the lid 32b. Therefore, in the free state, as shown in FIG. 1, the piston rod 33 is pressed by the elastic force of the spring 34, and the piston portion 33a is in contact with the bottom wall 32a1 of the main portion 32a.
  • a connecting member 37 connected to the split die 25 is attached to the projecting end of the shaft body 33 b of the piston rod 33.
  • the connecting member 37 is attached to the projecting end of the shaft body 33b of the piston rod 33 via the bolt member 40 and extends axially in the first portion 37a, and a second portion extending in the radial direction from the first portion 37a.
  • a third portion 37c extends in the axial direction (vertical direction) from the second portion 37b, and the third portion 37c is connected to the divided die 25 via the bolt member 41.
  • the dividing dies 25 are provided on the lower die 22 and received by the receiving table 42.
  • a hydraulic pressure passage 39 is connected to the second chamber 36, and the hydraulic pressure is supplied from the hydraulic pressure passage 39 to the second chamber 36.
  • the dividing die 25 has an inner diameter
  • the die row 26 in a state in which the mutually facing side surfaces 25a of the adjacent divided dies 25 along the circumferential direction are in contact is in a closed state.
  • the cylinder mechanism M1 is connected to each of a plurality of (in this case, eight) division dies 25 along the circumferential direction.
  • a hydraulic path 39 is connected to each cylinder mechanism M1.
  • a hydraulic pressure tank 45, a pressure reduction control valve 46, a control valve 47, shuttle valves 48 and 49, and the like are disposed in the hydraulic pressure passage 39, and a hydraulic circuit H is formed.
  • a die base 50 is disposed in the upper mold 21, and an upper plate 51 is provided inside the die base 50.
  • the die base 50 has a plurality of recesses 52 into which the outer diameter end of each of the divided dies 25 is fitted.
  • the inner surface of the recesses 52 is a die guide along the outer diameter of the divided dies 25.
  • the surface 53 is formed. That is, the die guide surface 53 is a surface that presses the divided die 25 in the inner diameter direction by the axial movement of the die base 50.
  • This apparatus comprises a control mechanism (control means) 55 as shown in FIG. It can be configured by a microcomputer or the like in which a ROM (Read Only Memory), a RAM (Random Access Memory), etc. are connected via a bus, centering on a CPU (Central Processing Unit). Further, the control mechanism 55 is provided with a storage device as storage means, and timing of vertical movement of the upper and lower molds 21 and 22, timing of vertical movement of the vertical punch members 23 and 24, timing of switching to the control valve 47 of the hydraulic circuit H Etc. are stored in advance.
  • a control mechanism (control means) 55 as shown in FIG. It can be configured by a microcomputer or the like in which a ROM (Read Only Memory), a RAM (Random Access Memory), etc. are connected via a bus, centering on a CPU (Central Processing Unit). Further, the control mechanism 55 is provided with a storage device as storage means, and timing of vertical movement of the upper and lower molds 21 and 22, timing of vertical movement of the vertical punch members 23 and 24, timing of switching to the control
  • a storage device as a storage means is composed of an HDD (Hard Disc Drive), a DVD (Digital Versatile Disk) drive, a CD-R (Compact Disc-Recordable) drive, an EEPROM (Electronically Erasable and Programmable Read Only Memory), and the like.
  • the ROM stores programs and data to be executed by the CPU. That is, the timing control of the vertical movement of the upper and lower dies 21 and 22, the vertical movement of the vertical punch, and the opening and closing movement of the die row is performed.
  • the forging method of the present invention includes the material charging step 61, the closing step 62, the forming step 63, the opening step 64, and the discharging step 65 using the above-described forging die device. .
  • the material introduction process 61 the material is transferred to the forging die apparatus with the die array 26 closed, in the preparation process (before material introduction (closed)) in which the die array before the material introduction to the forging die apparatus is closed.
  • the closing step 62 the upper and lower molds are made relatively close to each other in the step of bringing the upper and lower molds 21 and 22 into contact with the material while keeping the die row 26 closed.
  • the forming step 63 is a step of forming the upper and lower punch members 23 and 24 close to each other (during forming (closed)).
  • the opening step 64 the upper and lower dies 21 and 22 are separated from each other to open the die row (upper and lower dies open (open)), and the upper die 21 is raised with the die row 26 kept open.
  • the discharging step 65 is a step of discharging the forged material from the mold apparatus (during work discharge (open)). Note that (closed) in each step in FIG.
  • FIG. 6 the upper and lower molds 21 and 22 are separated from each other to open the mold apparatus. At this time, the lower punch member 24 is lowered. Further, without supplying hydraulic pressure to the second chamber 36 of the cylinder mechanism M1, the piston rod 33 is moved in the inner diameter direction by the elastic force of the spring 34 to move each of the divided dies 25 in the inner diameter direction. Move 25 in the inward direction. That is, as shown in FIG. 14, the die row closed state in which the side surfaces of the divided dies 25 adjacent in the circumferential direction are in contact with each other. This is a preparation process (before material input (closed)).
  • an insertion step (during material insertion (close)) of inserting a cylindrical material (workpiece) W1 into the inside of the die row 26 is performed.
  • the lower surface W1a of the material W1 is received by the upper surface 24a1 of the punch main body 24a of the lower punch member 24, and the outer peripheral surface W1c of the material W1 is a die as shown in FIG.
  • the inner surface of the row 26 is in contact.
  • the material W1 is held at the normal position where the axis thereof coincides with the axis of the upper and lower punch members 23 and 24.
  • the upper die 21 and the lower die 22 are relatively approached to bring the lower surface 23 a 1 of the punch body 23 a of the upper punch member 23 into contact with the upper surface W 1 b of the material W 1. That is, the upper and lower mold contact (closed) state of the closing step 62 shown in FIG. 5 is set. Thereafter, as shown in FIG. 9, the upper punch member 23 and the lower punch member 24 are brought closer to each other.
  • the upper punch member 23 and the lower punch member 24 are brought closer to each other, and the forged material W (in which the inner diameter hole 19 has the bottom wall 20 at the middle in the axial direction) Is molded as shown in FIG. That is, the molding (closing) shown in FIG. 5 is performed.
  • the lower surface 23b1 of the upper ring punch 23b is retracted upward with respect to the lower end portion of the punch main body 23a, and the lower punch 23b is lower than the upper end portion of the lower punch member 24. I'm going back.
  • the inner hole 19 with the bottom wall 20 is formed at the lower end portion of the punch main body 23a of the upper punch member 23 and the upper end portion of the punch main body 24a of the lower punch member 24.
  • the lower surface 23b1 forms the upper surface Wb of the forged material (forged work) W
  • the upper surface 24b1 (see FIG. 1) of the lower ring punch 24b of the lower punch member 24 corresponds to the lower surface of the forged work W Form Wa.
  • the upper and lower dies 21 and 22 are separated to raise the upper punch member 23, and as shown in FIG.
  • the open state the hydraulic pressure is supplied to the second chamber 36 of the cylinder mechanism M1, and the piston rod 33 is moved in the outer diameter direction against the elastic force of the spring 34 to move the divided dies 25 in the outer diameter direction).
  • the upper mold of FIG. 5 is lifted (opened).
  • the lower punch member 24 is raised to take out the forged work W (in this state, the die row 26 is in the state shown in FIG. 21). That is, it is assumed that the work is discharged (opened) in FIG. By this, forging processing is completed.
  • the dies 25 of the die row 26 are moved in the inner diameter direction to keep the material W1 in a stable posture, so that the material W1 is closed. It is possible to effectively prevent the occurrence of the insertion failure of the material W1 and the side fall.
  • each die 25 of the die row 26 can be moved in the outer diameter direction to be in an open state, and a forged workpiece (forged material) W which is a forged finished product It is easy to take out from the forging die device, and the productivity is excellent.
  • the material introduction process 61, the closing process 62, and the forming process 63 each die 25 of the die row 26 is moved in the inner diameter direction to bring the material into a closed state. While being inclined with respect to the above, even in the undercut shape, the occurrence of the insertion failure, the side fall, etc. can be effectively prevented, and the stable forging (forming) can be performed.
  • the reciprocating mechanism M is configured by the cylinder mechanism M1, and the operation of the cylinder mechanism M1 can be controlled by the control mechanism 55.
  • the cylinder mechanism M1 may be a pneumatic cylinder or a hydraulic cylinder.
  • the pneumatic cylinder has a simple structure and is easy to handle, can be inexpensive, and the response, size, weight, and information processing ability are average and balanced.
  • the hydraulic cylinder is a cylinder that can be widely used from a very low speed to a high speed because it can generate a large force even with a small hydraulic pump, has a very high response speed, and is easy to control. Positioning can also be accurately controlled, and a large output is possible. It may be an electric cylinder or the like.
  • the electric cylinder is an electrically driven cylinder composed of a ball screw, a linear guide, and an AC servomotor, and can be used like an air cylinder, it can be used with a simple wiring that does not require a pump and is connected to a power supply, and oil mist There are advantages such as no scattering and low running costs.
  • the embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment, and various modifications are possible.
  • the number of track grooves in the inner joint member can be arbitrarily increased or decreased.
  • the groove bottom is not limited to the undercut shape, and the groove bottom may be an arc portion only. That is, increase and decrease of the number of divided dies 25 of the die row 26 is arbitrary, and the shapes of the track groove forming surface 25b and the outer diameter surface forming surface 25c can be arbitrarily set.
  • the upper die 21 is fixed even if the lower die 22 is fixed and only the upper die 21 is moved up and down or both of the upper and lower dies 21 and 22 are moved up and down. Only the lower mold may be moved up and down.
  • the upper and lower punch members 23 and 24 are moved close to and away from each other, the lower punch member 24 is fixed and only the upper punch member 23 is moved up and down, or both of the upper and lower punch members 23 and 24 are moved up and down.
  • the upper punch member 23 may be fixed and only the lower punch member 24 may be moved up and down.
  • the die row 26 is closed in the material loading step 61, the closing step 62, and the forming step 63, and the die row 26 is opened in the opening step 64 and the discharging step 65. It is preferable to configure in this way for high precision forging.
  • the control mechanism (control means) 55 can switch between the open state of the die row 26 and the closed state of the die row 26 at a desired timing, the die is inserted at least in the material loading step 61. Since the row 26 only needs to be in the closed state, the die row 26 can be closed or opened in another process.
  • the constant velocity universal joint can be applied to a fixed type constant velocity universal joint of an undercut free type or a fixed type constant velocity universal joint of a Barfield type. Further, it may be a cross groove type sliding constant velocity universal joint. When the cross groove type constant velocity universal joint is used, it may be a float type or non-float type, and when it is a tripod type, it may be a single roller type or a double roller type.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Forging (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)

Abstract

In the present invention, an inner side joint member (143) of a constant speed universal joint (141) that has a track groove (147) which inclines with respect to a joint axis (n-n) is manufactured. The present invention comprises: a material inserting step (61) for inserting a material (W1) on the inner side of a die row (26); a closing step (62) for bringing upper and lower punches (23, 24) relatively close to one another; a molding step (63) for compressing the material by bringing the upper and lower punches even closer to one another; an opening step (64) for relatively separating the upper and lower punches; and a discharging step (65) for discharging the molded article obtained by the molding. In the material inserting step, the closing step, and the molding step, a closed state is set in which each die (25) of the die row is moved radially inward to cause the material to be set in a stable position, and in the opening step and the discharging step, an open state is set in which each die of the die row is moved radially outward.

Description

鍛造金型装置および鍛造方法Forging die apparatus and forging method
 本発明は、鍛造金型装置および鍛造方法に関し、特に、継手軸線に対して傾斜するトラック溝を有する等速自在継手の内側継手部材を製造するための鍛造金型装置および鍛造方法に関する。 The present invention relates to a forging die device and a forging method, and more particularly to a forging die device and a forging method for producing an inner joint member of a constant velocity universal joint having a track groove inclined with respect to a joint axis.
 図24に示すような等速自在継手の内側継手部材1を製造(成形)する装置としては、特許文献1等に記載の鍛造金型装置が知られている。内側継手部材1は、軸心孔2を有する円盤形状体からなり、その外径面に、溝底断面形状が曲線状のトラック溝3を周方向に沿って所定ピッチで形成したものである。この装置は、図25A及び図25Bと図26A及び図26Bに示すように、複数の分割ダイス5を円周方向に並べたダイス列6と、このダイス列6の内側に挿入された素材W1を軸方向に圧縮する上下一対のパンチ7,8等を備えたものである。なお、ダイス列6は、下方のパンチ8が付設される下型(図示省略)に配設され、上方パンチ7は上型(図示省略)に付設されている。 As an apparatus for manufacturing (forming) the inner joint member 1 of the constant velocity universal joint as shown in FIG. 24, a forging die apparatus described in Patent Document 1 etc. is known. The inner joint member 1 is formed of a disk-shaped body having an axial center hole 2, and on the outer diameter surface thereof, a track groove 3 having a curved groove bottom cross-sectional shape is formed at a predetermined pitch along the circumferential direction. As shown in FIGS. 25A and 25B and FIGS. 26A and 26B, this apparatus has a die row 6 in which a plurality of divided dies 5 are arranged in the circumferential direction, and a material W1 inserted inside the die row 6. It has a pair of upper and lower punches 7, 8 and the like which are compressed in the axial direction. The die row 6 is disposed in a lower die (not shown) to which the lower punch 8 is attached, and the upper punch 7 is attached to an upper die (not shown).
 分割ダイス5は、一対の側面5a、5aが装置外径側から装置内径側に向かって接近するテーパ面とされた平面視三角形状のブロック体からなり、図25A及び図25Bと図26A及び図26Bに示すように、8個が周方向に沿って配設されることによって、ダイス列6を形成する。そして、各分割ダイスの内径部には、トラック溝成形型面5bおよび外径面成形型面5cが設けられ、弾性機構によって、常時外径方向へ付勢されている。 The dividing die 5 is formed of a block body having a triangular shape in plan view in which a pair of side surfaces 5a and 5a are tapered surfaces approaching from the device outer diameter side toward the device inner diameter side, and FIGS. 25A and 25B and FIGS. As shown in FIG. 26B, eight dies are arranged along the circumferential direction to form the die row 6. A track groove molding surface 5b and an outer surface molding surface 5c are provided in the inner diameter portion of each of the divided dies, and is always urged in the outer diameter direction by the elastic mechanism.
 このため、自由状態では、図25A及び図25Bや図26A及び図26Bに示すように、各分割ダイス5は、外径方向にスライドした状態となって、周方向に隣り合う分割ダイス5間に隙間が設けられた状態となっている。従って、ダイス列6の内径側には、投入する素材(ワーク)W1よりも大きいスペースが形成される。 Therefore, in the free state, as shown in FIGS. 25A and 25B and FIGS. 26A and 26B, each of the divided dies 5 slides in the outer diameter direction, and between the divided dies 5 adjacent in the circumferential direction. A gap is provided. Therefore, on the inner diameter side of the die row 6, a space larger than the material (workpiece) W1 to be inserted is formed.
 このように設定された鍛造金型装置では、ダイス列6を、各分割ダイス5を外径方向にスライドさせた、図25A及び図25Bと図26A及び図26Bに示すような開状態として、このダイス列6の内径側に設けられたスペースに素材W1を投入する。この場合、下パンチ8を上昇させておいて、この下パンチ8にて素材W1を受ける。 In the forging die set as described above, the die row 6 is opened as shown in FIGS. 25A and 25B and FIGS. 26A and 26B in which the divided dies 5 are slid in the outer diameter direction. The material W 1 is introduced into the space provided on the inner diameter side of the die row 6. In this case, the lower punch 8 is raised, and the lower punch 8 receives the material W1.
 この状態で、上型を下降させる。この下降によって、ダイス列6の分割ダイス5が内径方向へ移動する。その後、上パンチ7の下降及び下パンチ8の上昇を行って、上パンチ7にて素材W1の上面を押圧するとともに、下パンチ8にて素材W1の下面を押圧する。すなわち、上パンチ7と下パンチ8にて素材W1を上下から圧縮する。これによって、素材が上下パンチ7,8で囲まれる空間内で塑性変形して鍛造成形が終了する。すなわち、鍛造済素材(図示省略)が形成される。その後は、この鍛造金型装置を開状態(上下型を分離状態)として、下パンチ8をノックアウトピンとして鍛造済素材を取り出すことになる。 In this state, lower the upper mold. By this descent, the divided dies 5 of the die row 6 move in the inner diameter direction. Thereafter, the upper punch 7 is lowered and the lower punch 8 is raised, and the upper punch 7 presses the upper surface of the material W1 and the lower punch 8 presses the lower surface of the material W1. That is, the material W1 is compressed from above and below by the upper punch 7 and the lower punch 8. As a result, the material is plastically deformed in the space surrounded by the upper and lower punches 7, 8 and forging is completed. That is, a forged material (not shown) is formed. After that, the forged material is taken out with the lower punch 8 as a knockout pin, with the forging die apparatus in the open state (the upper and lower molds are separated).
特開2002-130325号公報JP 2002-130325 A
 ところで、溝底縦断面形状がアンダーカット形状(溝底縦断面形状が直線部と曲線部とを有するもの)を持った曲線状のトラック溝を有し、且つトラック溝が内輪軸方向に対し傾斜角度を有する等速自在継手の内側継手部材を成形する場合、上記従来技術にて成形を行うが製品形状の特性から素材の比(全高/径)が1.1と小さくなる。 The groove bottom has a curved track groove having an undercut shape (one having a linear portion and a curved portion), and the track groove is inclined with respect to the inner ring axial direction. When molding the inner joint member of a constant velocity universal joint having an angle, molding is performed according to the above-mentioned prior art, but the ratio of the materials (total height / diameter) becomes as small as 1.1 from the characteristics of the product shape.
 また、分割ダイス5は、アンダーカット形状である鍛造済素材が排出方向へ干渉しないように、十分な隙間を設けるため、成形時以外は弾性機構(ばね部材)により拡径している。そこに素材W1を投入した場合、分割ダイスと素材W1の隙間が大きく不安定な状態となる可能性が高い。結果、図25A及び図25Bに示すように挿入不良(この場合、素材W1の軸線WLが上下パンチ7、8の軸線Lに対して傾斜する状態)になったり、図26A及び図26Bに示すように、横倒れ(素材W1の軸線WLが上下パンチ7、8の軸線Lに対して直交する状態)等が発生する。このような挿入不良や横倒れ等が発生すれば、成形不可能(金型破損)となる。 Further, the dividing die 5 is expanded in diameter by an elastic mechanism (spring member) except at the time of molding in order to provide a sufficient gap so that the forged material in the undercut shape does not interfere in the discharging direction. When the material W1 is put there, the gap between the divided die and the material W1 is large and the possibility of becoming unstable is high. As a result, as shown in FIGS. 25A and 25B, insertion failure (in this case, the axis line WL of the material W1 is inclined with respect to the axis line L of the upper and lower punches 7 and 8) or as shown in FIGS. In addition, lateral collapse (a state in which the axis line WL of the material W1 is orthogonal to the axis line L of the upper and lower punches 7 and 8) or the like occurs. If such a defective insertion or falling sideways occurs, molding becomes impossible (mold breakage).
 そこで、本発明は、上記課題に鑑みて、素材投入時に、素材(ワーク)が挿入不良や横倒れ等が発生することなく、高精度の鍛造成形を行うことができる鍛造金型装置および鍛造方法を提供するものである。 Therefore, in view of the above problems, according to the present invention, a forging die apparatus and a forging method capable of performing forging with high accuracy without causing insertion defects or lateral collapse of a material (work) upon material insertion. To provide
 本発明の鍛造金型装置は、継手軸線に対して傾斜するトラック溝を有する等速自在継手の内側継手部材を製造するための鍛造金型装置であって、複数の分割ダイスを周方向に沿って配設されてなるダイス列と、ダイス列の各ダイスを径方向に沿って往復動させる往復動機構と、ダイス列の内側に投入された素材を軸方向に圧縮する上下一対のパンチとを備え、前記往復動機構を制御して、ダイス列の各ダイスを外径方向に移動させて周方向に沿って隣り合うダイス間に隙間を設ける開状態と、ダイス列の各ダイスを内径方向に移動させて周方向に沿って隣り合うダイスを密着させる閉状態との切り換えを所望のタイミングで行わせる制御機構を設け、前記制御機構は、少なくとも素材投入時に、ダイス列の各ダイスを内径方向に移動させて素材を安定姿勢に維持する閉状態とするものである。 The forging die device of the present invention is a forging die device for manufacturing an inner joint member of a constant velocity universal joint having a track groove inclined with respect to a joint axis, and includes a plurality of divided dies along a circumferential direction. And a reciprocating mechanism for reciprocating the dies in the die row along the radial direction, and a pair of upper and lower punches for axially compressing the material inserted inside the die row. The reciprocation mechanism is controlled to move each die of the die row in the outer diameter direction to provide a gap between the adjacent dies along the circumferential direction, and each die of the die row in the inner diameter direction There is provided a control mechanism for moving at a desired timing to switch between a closed state in which adjacent dies are brought into close contact with each other along the circumferential direction, and at least when the material is inserted, the control mechanism performs each die in the die row in the inner diameter direction. Move it In which the closed state to maintain the timber in a stable posture.
 本発明の鍛造金型装置によれば、素材投入時に、ダイス列の各ダイスを内径方向に移動させて素材を安定姿勢に維持する閉状態とするものであるので、この装置に投入された素材の挿入不良や横倒れ等の発生を有効に防止できる。 According to the forging die device of the present invention, at the time of inserting the material, each die of the die row is moved in the inner diameter direction to maintain the material in a stable posture, so that the material is put in the closed state. It is possible to effectively prevent the occurrence of poor insertion or falling sideways.
 前記往復動機構をシリンダ機構にて構成し、このシリンダ機構の動作を前記制御機構にて制御することができる。シリンダ機構として、空気圧シリンダであっても、油圧シリンダであってもよい。空気圧シリンダは、シンプルな構造なので取り扱いが簡単で、価格も安くでき、また、応答性や大きさ・重量、情報処理能力は平均的でバランスが取れたシリンダとなる。油圧シリンダは、小型の油圧ポンプでも大きな力を出すことができ、応答速度が非常に速く、コントロールもしやすいことから、超低速から高速まで幅広く利用できるシリンダである。位置決めも正確にコントロールすることができ、大出力が可能である。電動シリンダ等であってもよい。電動シリンダは、ボールネジ、リニアガイド、ACサーボモータで構成された電気駆動のシリンダであり、エアシリンダと同様に使え、ポンプが不要で電源に接続するだけの簡単な配線で使えるほか、オイルミストの飛散がない、ランニングコストが安いなどの利点がある。 The reciprocating mechanism may be constituted by a cylinder mechanism, and the operation of the cylinder mechanism may be controlled by the control mechanism. The cylinder mechanism may be a pneumatic cylinder or a hydraulic cylinder. The pneumatic cylinder has a simple structure and is easy to handle, can be inexpensive, and the response, size, weight, and information processing ability are average and balanced. The hydraulic cylinder is a cylinder that can be widely used from a very low speed to a high speed because it can generate a large force even with a small hydraulic pump, has a very high response speed, and is easy to control. Positioning can also be accurately controlled, and a large output is possible. It may be an electric cylinder or the like. The electric cylinder is an electrically driven cylinder composed of a ball screw, a linear guide, and an AC servomotor, and can be used like an air cylinder, it can be used with a simple wiring that does not require a pump and is connected to a power supply, and oil mist There are advantages such as no scattering and low running costs.
 内側継手部材は、周方向に隣り合うトラック溝の傾斜方向が反対方向に形成され、各トラック溝の溝底縦断面形状が、円弧部と直線部とを有するアンダーカット形状であってもよい。 The inner joint member may be an undercut shape in which the track grooves adjacent in the circumferential direction are inclined in the opposite direction and the groove bottom longitudinal cross-sectional shape of each track groove has an arc portion and a straight portion.
 本発明の鍛造方法は、継手軸線に対して傾斜するトラック溝を有する等速自在継手の内側継手部材を製造する鍛造方法であって、複数の分割ダイスを周方向に沿って配設されてなるダイス列と、ダイス列の各ダイスを径方向に沿って往復動させる往復動機構と、ダイス列の内側に投入された素材を軸方向に圧縮する上下一対のパンチとを備えた鍛造金型装置を用い、素材をダイス列の内側に投入する素材投入工程と、上下のパンチを相対的に接近させる閉塞工程と、上下のパンチをさらに接近させて素材を圧縮する成形工程と、上下のパンチを相対的に離間させる開放工程と、成形されてなる成形品を排出する排出工程とを備え、素材投入工程と閉塞工程と成形工程とにおいては、ダイス列の各ダイスを内径方向に移動させて素材を安定姿勢とする閉状態とし、開放工程と排出工程とにおいては、ダイス列の各ダイスを外径方向に移動させた開状態とするものである。 The forging method of the present invention is a forging method of manufacturing an inner joint member of a constant velocity universal joint having a track groove inclined with respect to a joint axis, and a plurality of divided dies are disposed along a circumferential direction. A forging die apparatus comprising a die row, a reciprocating mechanism for reciprocating each die in the die row along a radial direction, and a pair of upper and lower punches for axially compressing a material inserted inside the die row Using a material feeding process to put the material inside the die row, a closing process to make the upper and lower punches relatively approach, a forming process to make the upper and lower punches further approach to compress the material, and the upper and lower punches The method further comprises: an opening step relatively spaced apart, and a discharging step discharging the formed molded product, and in the material charging step, the closing step and the molding step, each die of the die row is moved in the inner diameter direction to The stable figure Are closed to, in the opening step and the discharge step, it is an open state in which moving each die die row in the outer diameter direction.
 本発明の鍛造方法によれば、素材投入工程と閉塞工程と成形工程とにおいては、ダイス列の各ダイスを内径方向に移動させて素材を安定姿勢とする閉状態としているので、この装置に投入された素材の挿入不良や横倒れ等の発生を有効に防止できる。また、開放工程と排出工程とにおいては、ダイス列の各ダイスを外径方向に移動させた開状態とするので、鍛造完成品の鍛造金型装置からの取り出しが容易である。 According to the forging method of the present invention, in the material charging process, the closing process, and the forming process, each die in the die row is moved in the inner diameter direction to bring the material into a closed state to be in a stable posture. It is possible to effectively prevent the occurrence of poor insertion, falling sideways, etc. of the material. Further, in the opening step and the discharging step, each die of the die row is moved in the outer diameter direction to be in the open state, so that the forged finished product can be easily taken out from the forging die device.
 内側継手部材は、周方向に隣り合うトラック溝の傾斜方向が反対方向に形成され、各トラック溝の溝底縦断面形状が、円弧部と直線部とを有するアンダーカット形状であってもよい。 The inner joint member may be an undercut shape in which the track grooves adjacent in the circumferential direction are inclined in the opposite direction and the groove bottom longitudinal cross-sectional shape of each track groove has an arc portion and a straight portion.
 本発明では、投入された素材の挿入不良や横倒れ等を有効に防止できる。このため、高精度の鍛造加工(成形)を行うことができる。また、開放工程と排出工程とにおいては、ダイス列の各ダイスを外径方向に移動させた開状態とすることができ、鍛造完成品の鍛造金型装置からの取り出しが容易であり、生産性に優れる。 In the present invention, it is possible to effectively prevent the insertion failure, the side fall, etc. of the inserted material. Therefore, forging (forming) with high accuracy can be performed. Further, in the opening step and the discharging step, each die of the die row can be moved in the outer diameter direction to be in an open state, and the forged finished product can be easily taken out from the forging die device, and the productivity Excellent.
本発明の鍛造金型装置の閉塞工程前の要部拡大断面図である。It is a principal part expanded sectional view before the closing process of the forge metal mold | die apparatus of this invention. 本発明の鍛造金型装置の排出工程を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the discharge process of the forging die apparatus of this invention. 往復動機構の簡略図である。It is a simplified view of a reciprocating mechanism. 本発明の鍛造金型装置の制御回路の簡略ブロック図である。It is a simplified block diagram of the control circuit of the forging die device of the present invention. 図1に示した鍛造金型装置を用いた鍛造方法の作業工程のブロック図である。It is a block diagram of the work process of the forging method using the forging die device shown in FIG. 素材投入前の鍛造金型装置の要部拡大断面図である。It is a principal part expanded sectional view of a forge metallic mold apparatus before material input. 素材投入時の鍛造金型装置の要部拡大断面図である。It is a principal part expanded sectional view of a forging die device at the time of material injection. 上下型の接触時の鍛造金型装置の要部拡大断面図である。It is a principal part expanded sectional view of a forge metallic mold device at the time of contact of upper and lower molds. 上下型の閉塞時の鍛造金型装置の要部拡大断面図である。It is a principal part expanded sectional view of a forge metallic mold device at the time of closure of an upper and lower type. 成形時の鍛造金型装置の要部拡大断面図である。It is a principal part expanded sectional view of a forge metallic mold device at the time of molding. 上下型開放時の鍛造金型装置の要部拡大断面図である。It is a principal part expanded sectional view of a forge metallic mold device at the time of top and bottom mold opening. 上型上昇時の鍛造金型装置の要部拡大断面図である。It is a principal part expanded sectional view of a forging die device at the time of upper die rise. 鍛造完成品の排出時の鍛造金型装置の要部拡大断面図である。It is a principal part expanded sectional view of a forge metallic mold device at the time of discharge of a forged finished product. 素材投入前のダイス列の平面図である。It is a top view of the dice row before material input. 素材投入時のダイス列の平面図である。It is a top view of the dice row at the time of material injection. 素材に対して上下型が接触している状態のダイス列の平面図である。It is a top view of the dice row in the state where the upper and lower dies are in contact with the material. 上下型の閉塞時のダイス列の平面図である。It is a top view of the dice row at the time of closure of an up-and-down type. 成形時のダイス列の平面図である。It is a top view of the dice row at the time of molding. 上下型開放時のダイス列の平面図である。It is a top view of the dice row at the time of upper and lower mold opening. 上型上昇時のダイス列の平面図である。It is a top view of the dice row at the time of upper die rise. 鍛造完成品排出時のダイス列の平面図である。It is a top view of the dice row at the time of a forged finished product discharge. 本発明に係る鍛造金型装置で鍛造成形されてなる内側継手部材を用いた等速自在継手の縦断面図である。It is a longitudinal cross-sectional view of the constant velocity universal joint using the inner joint member formed by forging with the forging die device according to the present invention. 図22に示す等速自在継手の正面図である。It is a front view of the constant velocity universal joint shown in FIG. 等速自在継手の内側継手部材の一部省略した斜視図である。It is the perspective view which partially omitted the inner joint member of the constant velocity universal joint. 従来の鍛造金型装置への素材投入時のダイス列を示し、挿入不良状態の平面図である。The die row at the time of the material injection | throwing-in to the conventional forging die apparatus is shown, and it is a top view of an insertion defect state. 従来の鍛造金型装置への素材投入時のダイス列を示し、挿入不良状態の断面図である。The die row at the time of the material injection | throwing-in to the conventional forging die apparatus is shown, and it is sectional drawing of an insertion defect state. 従来の鍛造金型装置への素材投入時のダイス列を示し、横倒れ状態の平面図である。The die row at the time of the material injection | throwing-in to the conventional forging die apparatus is shown, and it is a top view of a side fall state. 従来の鍛造金型装置への素材投入時のダイス列を示し、横倒れ状態の断面図である。The die row at the time of the material injection | throwing-in to the conventional forging die apparatus is shown, and it is sectional drawing of a fall state.
  以下本発明の実施の形態を図1~図23に基づいて説明する。図1と図2は、本発明に係る鍛造金型装置の要部断面図を示す。この鍛造金型装置は、図22と図23に示す等速自在継手141の内側継手部材143を鍛造成形するものである。 Hereinafter, an embodiment of the present invention will be described based on FIGS. 1 to 23. 1 and 2 show a cross-sectional view of the main part of a forging die device according to the present invention. This forging die apparatus is for forging and forming the inner joint member 143 of the constant velocity universal joint 141 shown in FIG. 22 and FIG.
 等速自在継手141は、球状内周面146に軸方向に延びる複数のトラック溝147が形成された外側継手部材142と、球状外周面148に外側継手部材142のトラック溝147と対をなす複数のトラック溝149が形成された内側継手部材143と、外側継手部材142のトラック溝147と内側継手部材143のトラック溝149との間に介在してトルクを伝達するトルク伝達部材としての複数のボール144と、ボール144を保持する保持器145とを備える。保持器は、外側継手部材142の球状内周面146および内側継手部材143の球状外周面148にそれぞれ嵌合する球状外周面152および球状内周面153を有する。 The constant velocity universal joint 141 has a plurality of outer joint members 142 in which a plurality of track grooves 147 extending in the axial direction are formed in the spherical inner circumferential surface 146 and a plurality of pairs of track grooves 147 of the outer joint member 142 in the spherical outer circumferential surface 148. Of the inner joint member 143 in which the track groove 149 is formed, and a plurality of balls as torque transmission members that transmit torque by being interposed between the track groove 147 of the outer joint member 142 and the track groove 149 of the inner joint member 143 144 and a holder 145 for holding the ball 144. The cage has a spherical outer circumferential surface 152 and a spherical inner circumferential surface 153 fitted respectively to the spherical inner circumferential surface 146 of the outer joint member 142 and the spherical outer circumferential surface 148 of the inner joint member 143.
 この等速自在継手141において、外側継手部材142のトラック溝147は、作動角0°の状態で継手中心Oを含んで継手の軸線n-nと直交する平面(継手中心平面)を境にしてその奥側および開口側を、それぞれ、継手中心Oを曲率中心とする円弧部147aおよび直線部147bとしたものである。一方、内側継手部材143のトラック溝149は、継手中心平面を境にしてその開口側および奥側を、それぞれ、継手中心Oを曲率中心とする円弧部149aおよび直線部149bとしたものである。 In the constant velocity universal joint 141, the track groove 147 of the outer joint member 142 includes the joint center O at a working angle of 0 ° and is separated by a plane (joint central plane) orthogonal to the joint axis n-n The back side and the opening side are respectively made into the circular arc part 147a and the linear part 147b which make the joint center O a curvature center. On the other hand, the track groove 149 of the inner joint member 143 is such that the opening side and the back side with the joint center plane as an arc portion 149a and a straight portion 149b whose center of curvature is the joint center O, respectively.
 そして、図23に示すように、トラック溝147,149は、それぞれ、継手の軸線に対して周方向に傾斜すると共にその傾斜方向が周方向に隣り合うトラック溝147A,147Bおよび149A,149Bで互いに反対方向に形成されている。このため、トラック溝147Aの円弧部147aは円弧部147Aaと呼び、トラック溝147Aの直線部147bは円弧部147Abと呼び、トラック溝147Bの円弧部147aは円弧部147Baと呼び、トラック溝147Bの直線部147bは円弧部147Bbと呼びことになる。また、トラック溝149Aの円弧部149aは円弧部149Aaと呼び、トラック溝149Aの直線部149bは円弧部149Abと呼び、トラック溝149Bの円弧部149aは円弧部149Baと呼び、トラック溝149Bの直線部149bは円弧部149Bbと呼びことになる。 Then, as shown in FIG. 23, the track grooves 147 and 149 are each inclined in the circumferential direction with respect to the axis of the joint, and the track grooves 147A and 147B and 149A and 149B whose inclination directions are adjacent to each other in the circumferential direction mutually It is formed in the opposite direction. Therefore, the arc portion 147a of the track groove 147A is called an arc portion 147Aa, the straight portion 147b of the track groove 147A is called an arc portion 147Ab, and the arc portion 147a of the track groove 147B is called an arc portion 147Ba, and the straight line of the track groove 147B. The part 147b is called an arc part 147Bb. The arc portion 149a of the track groove 149A is called an arc portion 149Aa, the straight portion 149b of the track groove 149A is called an arc portion 149Ab, and the arc portion 149a of the track groove 149B is called an arc portion 149Ba, and the straight portion of the track groove 149B. The portion 149b is called an arc portion 149Bb.
  外側継手部材142および内側継手部材143の対をなすトラック溝147A,149Aおよび147B,149Bの各交差部にボール144が配置されている。したがって、図示のような作動角0°の状態で両継手部材142,143が相対回転すると、トラック溝147A,149Aの間に形成されるくさび角の開く方向と、147B,149Bの間に形成されるくさび角の開く方向とが互いに反対方向となり、保持器145の周方向に隣り合うポケット部145aにボール144から相反する方向の力が作用することから、保持器145は継手中心O位置で安定する。このため、保持器145の球状外周面152と外側継手部材142の球状内周面146との接触力、および保持器145の球状内周面153と内側継手部材143の球状外周面148との接触力が抑制され、継手の作動性が向上する結果、トルク損失や発熱が抑えられ、耐久性が向上する。 A ball 144 is disposed at each intersection of the pair of track grooves 147A, 149A and 147B, 149B of the outer joint member 142 and the inner joint member 143. Therefore, when the joint members 142 and 143 rotate relative to each other at an operating angle of 0 ° as shown, the wedge angle formed between the track grooves 147A and 149A is opened and 147B and 149B. The cage 145 is stable at the joint center O position, since the direction in which the wedge angle opens is opposite to each other, and forces in opposite directions from the ball 144 act on the pocket portions 145a adjacent in the circumferential direction of the cage 145 Do. Therefore, the contact force between the spherical outer circumferential surface 152 of the cage 145 and the spherical inner circumferential surface 146 of the outer joint member 142 and the contact between the spherical inner circumferential surface 153 of the cage 145 and the spherical outer circumferential surface 148 of the inner joint member 143 As a result of suppressing the force and improving the operability of the joint, torque loss and heat generation are suppressed, and the durability is improved.
 本発明の鍛造金型装置は、図1等に示す炭素鋼等からなる円柱状の素材(ワーク)W1を、トラック溝149の仕上がり形状および球形外面を有する形状のもの、すなわち、図24に示す形状の内側継手鍛造品143´を鍛造することになる。そして、この鍛造にて得た鍛造済素材Wは、図10等に示すように、内径孔19が、軸方向の中間に底壁20を有する未貫通のものである。このため、この鍛造済素材Wの底部をプレス工程で打ち抜き、または旋削加工で除去し、その内径孔に雌スプラインを形成し、幅面と球面外面とを旋削又は研削等の機械加工で仕上げる。さらに、内径孔の開口縁等の細部の機械加工を行い、熱処理を施すことによって、等速自在継手の内側継手部材143を形成する。なお、内側継手鍛造品143´は、機械加工による仕上げ加工、及び熱処理を行っていない部品であり、従来の等速自在継手の内側継手部材1と同一形状品である。このため、従来の内側継手部材1を示す図24に、本発明の鍛造金型装置で鍛造した内側継手鍛造品の符号143´を付している。 The forging die device of the present invention is a cylindrical material (work) W1 made of carbon steel etc. shown in FIG. 1 etc., having a finished shape of the track groove 149 and a shape having a spherical outer surface, ie, FIG. The inner joint forging 143 'of the shape will be forged. Then, as shown in FIG. 10 and the like, the forged material W obtained by this forging is a non-penetrated material in which the inner diameter hole 19 has a bottom wall 20 in the middle in the axial direction. For this reason, the bottom of the forged material W is punched out in a press process or removed by turning, a female spline is formed in the inner diameter hole, and the width surface and the spherical outer surface are finished by machining such as turning or grinding. Furthermore, the inner joint member 143 of the constant velocity universal joint is formed by machining details such as the opening edge of the inner diameter hole and heat treatment. The inner joint forged product 143 'is a component which has not been subjected to machining finish processing and heat treatment, and has the same shape as the conventional inner joint member 1 of the constant velocity universal joint. Therefore, in FIG. 24 showing the conventional inner joint member 1, reference numeral 143 'of the inner joint forged product forged by the forging die device of the present invention is attached.
 鍛造金型装置は、図6に示すように、上型21と、下型22と、上型21側に配設される上パンチ部材23と、下型22側に配設される下パンチ部材24と、下型22側に配設されるダイス列26等とを備える。 As shown in FIG. 6, the forging die apparatus includes an upper die 21, a lower die 22, an upper punch member 23 disposed on the upper die 21 side, and a lower punch member disposed on the lower die 22 side. 24 and a die row 26 and the like disposed on the lower die 22 side.
 上型21は、油圧シリンダ等の上型昇降駆動機構K1(図4参照)により昇降可能とされる。また、上型21には、上パンチ部材23が上下動可能に収納される孔部27が形成され、上パンチ部材23は、油圧シリンダ等の上パンチ上下動機構U1(図4参照)により上下動可能とされる。上パンチ部材23は、図6~図13等に示すように、パンチ本体23aと、このパンチ本体23aの外周側に配設される上リングパンチ23bと、これらを受けるボス部23cとを有する。なお、孔部27の内径面には、上パンチ部材23をガイドするガイド構造28が設けられている。 The upper die 21 can be raised and lowered by an upper die lifting drive mechanism K1 (see FIG. 4) such as a hydraulic cylinder. Further, the upper mold 21 is formed with a hole 27 in which the upper punch member 23 is accommodated so as to be able to move up and down. The upper punch member 23 is moved up and down by the upper punch vertical movement mechanism U1 (see FIG. 4) such as a hydraulic cylinder. It is made movable. The upper punch member 23 has a punch body 23a, an upper ring punch 23b disposed on the outer peripheral side of the punch body 23a, and a boss portion 23c for receiving these, as shown in FIGS. 6 to 13 and the like. A guide structure 28 for guiding the upper punch member 23 is provided on the inner diameter surface of the hole 27.
 下型22は、油圧シリンダ等の下型昇降駆動機構K2(図4参照)により昇降可能とされる。また、下型22には、下パンチ部材24が上下動可能に収納される孔部30が形成され、下パンチ部材24は、油圧シリンダ等の下パンチ上下動機構U2(図4参照)により上下動可能とされる。下パンチ部材24は、図1と図2に示すように、パンチ本体24aと、このパンチ本体24aの外周側に配設されるリングパンチ24bと、これらを受けるボス部24cとを有する。なお、孔部30の内径面には、下パンチ部材24をガイドするガイド構造31が設けられている。 The lower die 22 can be raised and lowered by a lower die elevating drive mechanism K2 (see FIG. 4) such as a hydraulic cylinder. Further, the lower die 22 is formed with a hole 30 in which the lower punch member 24 is accommodated so as to be able to move up and down. The lower punch member 24 is moved up and down by the lower punch up and down movement mechanism U2 (see FIG. 4) It is made movable. As shown in FIGS. 1 and 2, the lower punch member 24 has a punch body 24a, a ring punch 24b disposed on the outer peripheral side of the punch body 24a, and a boss 24c for receiving these. A guide structure 31 for guiding the lower punch member 24 is provided on the inner diameter surface of the hole 30.
 下型22側に配設されるダイス列26は、図14と図15等に示すように、周方向に沿って配設される複数個(図例では、8個)の分割ダイス25からなる。各分割ダイス25は、一対の側面25a,25aが装置外径側から装置内径側に向かって接近するテーパ面とされた平面視三角形状のブロック体からなる。 As shown in FIGS. 14 and 15, the die row 26 disposed on the lower die 22 side includes a plurality of (eight in the illustrated example) divided dies 25 disposed along the circumferential direction. . Each dividing die 25 is formed of a block body having a triangular shape in a plan view, in which the pair of side surfaces 25a, 25a are tapered surfaces approaching from the apparatus outer diameter side toward the apparatus inner diameter side.
 側面25a,25aは径方向に延びるものであって、図14と図15に示すように、装置中心にスライドして、周方向に隣り合う分割ダイス25の相対面する側面同士が接触乃至密接した状態となれば、ダイス列26が平面視リング形状をなすことになる。また、このダイス列26の各分割ダイスの内径部に、所定ピッチでトラック溝成形型面25bおよび外径面成形型面25cが設けられる。各分割ダイス25の外径部は、上方から下方に向かって外径方向へ拡径するテーパ面部29とされる。このテーパ面部29は、中央の第1部29aと、この第1部29aの両側の一対の第2部29b、29bと、第2部29b、29bに連設される一対の側部29c、29cとからなる。 The side surfaces 25a, 25a extend in the radial direction, and as shown in FIGS. 14 and 15, the side surfaces facing each other of the division dies 25 adjacent to each other in the circumferential direction are in contact or in close contact by sliding to the center of the apparatus. In the state, the die row 26 has a ring shape in plan view. Further, on the inner diameter portion of each divided die of this die row 26, the track groove forming mold surface 25b and the outer diameter surface forming mold surface 25c are provided at a predetermined pitch. The outer diameter portion of each of the divided dies 25 is a tapered surface portion 29 whose diameter increases in the outer diameter direction from the upper side to the lower side. The tapered surface portion 29 includes a central first portion 29a, a pair of second portions 29b and 29b on both sides of the first portion 29a, and a pair of side portions 29c and 29c provided continuously with the second portions 29b and 29b. It consists of
 各分割ダイス25は、図1と図2等に示すように、往復動機構Mを介して径方向に沿って往復動する。往復動機構Mはシリンダ機構M1にて構成される。この場合のシリンダ機構M1は、シリンダーチューブ32と、このシリンダーチューブ32内に嵌入されるピストンロッド33と、シリンダーチューブ32内に収容されるスプリング34とを備えた単動シリンダである。 Each of the divided dies 25 reciprocates in the radial direction via a reciprocating mechanism M as shown in FIG. 1 and FIG. The reciprocating mechanism M is constituted by a cylinder mechanism M1. The cylinder mechanism M1 in this case is a single acting cylinder provided with a cylinder tube 32, a piston rod 33 fitted in the cylinder tube 32, and a spring 34 accommodated in the cylinder tube 32.
 シリンダーチューブ32には、第1室35と第2室36とが設けられる。すなわち、シリンダーチューブ32は、有底円筒体からなる本体部32aと、この本体部32aの開口に設けられる蓋部材32bとを備え、本体部32aの底壁32a1の凹部が設けられ、この凹部が前記第2室36を構成する。また、蓋部材32bと本体部32aの底壁32a1との間で前記第1室35を構成する。 The cylinder tube 32 is provided with a first chamber 35 and a second chamber 36. That is, the cylinder tube 32 includes a main body portion 32a formed of a bottomed cylindrical body, and a lid member 32b provided at the opening of the main body portion 32a, and a concave portion of the bottom wall 32a1 of the main body portion 32a is provided. The second chamber 36 is configured. Further, the first chamber 35 is configured between the lid member 32 b and the bottom wall 32 a 1 of the main body 32 a.
 ピストンロッド33は、ピストン部33aと軸本体33bとからなり、ピストン部33aが第1室35に往復動自在に嵌入され、軸本体33bが蓋部材32bの貫通孔を介して第1室35から外部に突出する。そして、ピストン部33aと蓋部材32bとの間にスプリング34が介在されている。このため、自由状態では、図1に示すように、ピストンロッド33がこのスプリング34の弾性力に押圧されてピストン部33aが本体部32aの底壁32a1に接触した状態となっている。 The piston rod 33 includes a piston portion 33a and a shaft body 33b. The piston portion 33a is fitted in the first chamber 35 so as to be capable of reciprocating, and the shaft body 33b is inserted from the first chamber 35 through the through hole of the lid member 32b. Project outside. A spring 34 is interposed between the piston 33a and the lid 32b. Therefore, in the free state, as shown in FIG. 1, the piston rod 33 is pressed by the elastic force of the spring 34, and the piston portion 33a is in contact with the bottom wall 32a1 of the main portion 32a.
 ピストンロッド33の軸本体33bの突出端部には、分割ダイス25に連結される連結部材37が取付られている。この連結部材37は、ピストンロッド33の軸本体33bの突出端部にボルト部材40を介して取付られて軸方向に延びる第1部37aと、この第1部37aから内径方向に延びる第2部37bと、この第2部37bから軸方向(上下方向)に延びる第3部37cとからなり、第3部37cが分割ダイス25にボルト部材41を介して連結される。なお、分割ダイス25は、下型22に設けられて受け台42に受けられている。 A connecting member 37 connected to the split die 25 is attached to the projecting end of the shaft body 33 b of the piston rod 33. The connecting member 37 is attached to the projecting end of the shaft body 33b of the piston rod 33 via the bolt member 40 and extends axially in the first portion 37a, and a second portion extending in the radial direction from the first portion 37a. A third portion 37c extends in the axial direction (vertical direction) from the second portion 37b, and the third portion 37c is connected to the divided die 25 via the bolt member 41. The dividing dies 25 are provided on the lower die 22 and received by the receiving table 42.
 そして、第2室36には油圧路39が接続され、この油圧路39からこの第2室36に油圧が供給されることになる。このため、図1に示す状態(第2室36に油圧が供給されていな状態であって、ピストン部33aが本体部32aの底壁32a1に接触している状態)では、分割ダイス25が内径方向に移動して、図14と図15に示すように、周方向に沿って隣り合う分割ダイス25の相対面する側面25a、25aが接触する状態のダイス列26が閉状態となっている。 A hydraulic pressure passage 39 is connected to the second chamber 36, and the hydraulic pressure is supplied from the hydraulic pressure passage 39 to the second chamber 36. For this reason, in the state shown in FIG. 1 (in the state where the hydraulic pressure is not supplied to the second chamber 36 and the piston 33a is in contact with the bottom wall 32a1 of the main body 32a), the dividing die 25 has an inner diameter By moving in the direction, as shown in FIG. 14 and FIG. 15, the die row 26 in a state in which the mutually facing side surfaces 25a of the adjacent divided dies 25 along the circumferential direction are in contact is in a closed state.
 この図1に示す状態から、第2室36に油圧を供給すれば、ピストンロッド33が図2に示すように、外径方向へ移動することになる。このように移動すれば、連結部材37を介して連結されている分割ダイス25が外径方向に移動してダイス列26が開状態(周方向に沿って隣り合う分割ダイス25の相対面する側面25a、25a間に隙間が形成される状態、図19~図21等に示す状態)となる。 If hydraulic pressure is supplied to the second chamber 36 from the state shown in FIG. 1, the piston rod 33 moves in the outer diameter direction as shown in FIG. By moving in this manner, the divided dies 25 connected via the connecting member 37 move in the outer diameter direction, and the die row 26 is in the open state (the side faces of the adjacent divided dies 25 facing in the circumferential direction) A state in which a gap is formed between 25a and 25a (the state shown in FIGS. 19 to 21 etc.) is obtained.
 ところで、周方向に沿って複数個(この場合、8個)の分割ダイス25毎に図3に示すようにシリンダ機構M1が接続されることになる。各シリンダ機構M1には油圧路39が接続される。この油圧路39には、油圧タンク45と、減圧制御弁46と、制御弁47と、シャトル弁48,49等が配設され、油圧回路Hが形成される。 By the way, as shown in FIG. 3, the cylinder mechanism M1 is connected to each of a plurality of (in this case, eight) division dies 25 along the circumferential direction. A hydraulic path 39 is connected to each cylinder mechanism M1. A hydraulic pressure tank 45, a pressure reduction control valve 46, a control valve 47, shuttle valves 48 and 49, and the like are disposed in the hydraulic pressure passage 39, and a hydraulic circuit H is formed.
 また、上型21には、図6等に示すように、ダイスベース50が配置され、ダイスベース50の内側には上側プレート51が設けられている。このダイスベース50は、各分割ダイス25の外径端部が嵌合する複数の凹部52を有するものであり、この凹部52の内面に、分割ダイス25の外径部に沿うように、ダイスガイド面53が形成されている。すなわち、ダイスガイド面53がダイスベース50の軸方向の移動によって、分割ダイス25を内径方向へ押圧する面となる。 Further, as shown in FIG. 6 and the like, a die base 50 is disposed in the upper mold 21, and an upper plate 51 is provided inside the die base 50. The die base 50 has a plurality of recesses 52 into which the outer diameter end of each of the divided dies 25 is fitted. The inner surface of the recesses 52 is a die guide along the outer diameter of the divided dies 25. The surface 53 is formed. That is, the die guide surface 53 is a surface that presses the divided die 25 in the inner diameter direction by the axial movement of the die base 50.
 この装置は、図4に示すような制御機構(制御手段)55を備える。CPU(Central Processing Unit)を中心としてROM(Read Only Memory)やRAM(Random Access Memory)等がバスを介して相互に接続されたマイクロコンピューター等で構成することができる。また、制御機構55には、記憶手段としての記憶装置を備え、上下型21,22の上下動のタイミング、上下パンチ部材23,24の上下動のタイミング、油圧回路Hの制御弁47に切り換えるタイミング等は予め記憶されている。記憶手段としての記憶装置は、HDD(Hard Disc Drive)やDVD(Digital Versatile Disk)ドライブ、CD-R(Compact Disc-Recordable)ドライブ、EEPROM(Electronically Erasable and Programmable Read Only Memory)等からなる。なお、ROMには、CPUが実行するプログラムやデータが格納されている。すなわち、上下型21,22の昇降動作、上下パンチの上下動作、ダイス列の開閉動作のタイミング制御を行うことになる。 This apparatus comprises a control mechanism (control means) 55 as shown in FIG. It can be configured by a microcomputer or the like in which a ROM (Read Only Memory), a RAM (Random Access Memory), etc. are connected via a bus, centering on a CPU (Central Processing Unit). Further, the control mechanism 55 is provided with a storage device as storage means, and timing of vertical movement of the upper and lower molds 21 and 22, timing of vertical movement of the vertical punch members 23 and 24, timing of switching to the control valve 47 of the hydraulic circuit H Etc. are stored in advance. A storage device as a storage means is composed of an HDD (Hard Disc Drive), a DVD (Digital Versatile Disk) drive, a CD-R (Compact Disc-Recordable) drive, an EEPROM (Electronically Erasable and Programmable Read Only Memory), and the like. The ROM stores programs and data to be executed by the CPU. That is, the timing control of the vertical movement of the upper and lower dies 21 and 22, the vertical movement of the vertical punch, and the opening and closing movement of the die row is performed.
 本発明の鍛造方法は、前記鍛造金型装置を用いて、図5に示すように、素材投入工程61と、閉塞工程62と、成形工程63と、開放工程64と、排出工程65とを備える。素材投入工程61には、鍛造金型装置への素材投入前のダイス列を閉状態とする準備工程(素材投入前(閉))と、ダイス列26を閉状態で鍛造金型装置へ素材を投入する投入工程(素材投入時(閉))とがある。また、閉塞工程62には、ダイス列26を閉状態を維持しつつ上下型21,22を素材に接触させる工程(上下型接触時(閉))と、上下型を相対的に接近させて、金型装置を閉塞状態とする工程(上下型閉塞時(閉))とがある。成形工程63は上下パンチ部材部材23、24を相互に接近させて成形する工程(成形時(閉))である。開放工程64には、上下型21,22を相互に離間させてダイス列を開状態とする工程(上下型開放時(開))と、ダイス列26を開状態のまま上型21を上昇させる工程(上型上昇時(開))とがある。排出工程65は、鍛造済素材を金型装置から排出する工程(ワーク排出時(開))である。なお、図5の各工程の(閉)とは、ダイス列26が閉状態(シリンダ機構M1の第2室36に油圧を供給することなく、スプリング34の弾性力にてピストンロッド33を内径方向へ移動させて、各分割ダイス25を内径方向へ移動させている状態)であることを示し、図5の各工程の(開)とは、ダイス列26が開状態(シリンダ機構M1の第2室36に油圧を供給して、スプリング34の弾性力に抗してピストンロッド33を外径方向へ移動させて、各分割ダイス25を外径方向へ移動させている状態)であることを示している。 The forging method of the present invention, as shown in FIG. 5, includes the material charging step 61, the closing step 62, the forming step 63, the opening step 64, and the discharging step 65 using the above-described forging die device. . In the material introduction process 61, the material is transferred to the forging die apparatus with the die array 26 closed, in the preparation process (before material introduction (closed)) in which the die array before the material introduction to the forging die apparatus is closed. There is a charging process (when material is inserted (closed)) for charging. In the closing step 62, the upper and lower molds are made relatively close to each other in the step of bringing the upper and lower molds 21 and 22 into contact with the material while keeping the die row 26 closed. There is a step of closing the mold apparatus (upper and lower mold closing time (closed)). The forming step 63 is a step of forming the upper and lower punch members 23 and 24 close to each other (during forming (closed)). In the opening step 64, the upper and lower dies 21 and 22 are separated from each other to open the die row (upper and lower dies open (open)), and the upper die 21 is raised with the die row 26 kept open. There is a process (upper mold rise time (open)). The discharging step 65 is a step of discharging the forged material from the mold apparatus (during work discharge (open)). Note that (closed) in each step in FIG. 5 means that the die row 26 is in a closed state (the elastic force of the spring 34 does not supply the hydraulic pressure to the second chamber 36 of the cylinder mechanism M1). And the division die 25 is moved in the inner diameter direction), and (open) of each process in FIG. 5 is a state where the die row 26 is in an open state (the second state of the cylinder mechanism M1). The hydraulic pressure is supplied to the chamber 36, and the piston rods 33 are moved in the outer diameter direction against the elastic force of the spring 34 to move the divided dies 25 in the outer diameter direction. ing.
 次に、図5に示す工程を、図6~図13、及び図14~図21を用いて説明する。まず、図6に示すように、上型21と下型22とが離間した金型装置開状態とする。この際、下パンチ部材24を下降させておく。また、シリンダ機構M1の第2室36に油圧を供給することなく、スプリング34の弾性力にてピストンロッド33を内径方向へ移動させて、各分割ダイス25を内径方向へ移動させて、分割ダイス25を内径方向に移動させる。すなわち、図14に示すように、周方向に隣り合う分割ダイス25の側面を接触するダイス列閉状態とする。これが、準備工程(素材投入前(閉))である。 Next, steps shown in FIG. 5 will be described with reference to FIGS. 6 to 13 and FIGS. 14 to 21. First, as shown in FIG. 6, the upper and lower molds 21 and 22 are separated from each other to open the mold apparatus. At this time, the lower punch member 24 is lowered. Further, without supplying hydraulic pressure to the second chamber 36 of the cylinder mechanism M1, the piston rod 33 is moved in the inner diameter direction by the elastic force of the spring 34 to move each of the divided dies 25 in the inner diameter direction. Move 25 in the inward direction. That is, as shown in FIG. 14, the die row closed state in which the side surfaces of the divided dies 25 adjacent in the circumferential direction are in contact with each other. This is a preparation process (before material input (closed)).
 この状態で、図7に示すように、円柱形状の素材(ワーク)W1を、ダイス列26の内部に投入する投入工程(素材投入時(閉))を行う。このように素材W1を投入すれば、下パンチ部材24のパンチ本体24aの上面24a1で、素材W1の下面W1aが受けられ、また、素材W1の外周面W1cは、図15に示すように、ダイス列26の内径面部にて接触している。これによって、素材W1は、その軸線が上下パンチ部材23,24の軸線に一致した正規位置に保持される。 In this state, as shown in FIG. 7, an insertion step (during material insertion (close)) of inserting a cylindrical material (workpiece) W1 into the inside of the die row 26 is performed. As described above, when the material W1 is introduced, the lower surface W1a of the material W1 is received by the upper surface 24a1 of the punch main body 24a of the lower punch member 24, and the outer peripheral surface W1c of the material W1 is a die as shown in FIG. The inner surface of the row 26 is in contact. As a result, the material W1 is held at the normal position where the axis thereof coincides with the axis of the upper and lower punch members 23 and 24.
 次に、図8に示すように、上型21と下型22とを相対的に接近させて、上パンチ部材23のパンチ本体23aの下面23a1を素材W1の上面W1bに接触させる。すなわち、図5に示す閉塞工程62の上下型接触時(閉)状態とする。その後、図9に示すように、上パンチ部材23と下パンチ部材24とをさらに接近させる。これにより、素材W1の上面W1bに形成される凹部に上パンチ部材23の下部を嵌合させるとともに、素材W1の下面W1aに形成された凹部に下パンチ部材24の上部を嵌合させる工程、すなわち、図5に示す上下型閉塞時(閉)を行う。図8及び図9に示す状態では、図16及び図17に示すように、素材W1の外周面W1cはダイス列26の内径面部にて接触している。 Next, as shown in FIG. 8, the upper die 21 and the lower die 22 are relatively approached to bring the lower surface 23 a 1 of the punch body 23 a of the upper punch member 23 into contact with the upper surface W 1 b of the material W 1. That is, the upper and lower mold contact (closed) state of the closing step 62 shown in FIG. 5 is set. Thereafter, as shown in FIG. 9, the upper punch member 23 and the lower punch member 24 are brought closer to each other. Thereby, the lower part of the upper punch member 23 is fitted to the concave part formed on the upper surface W1b of the material W1, and the upper part of the lower punch member 24 is fitted to the concave part formed on the lower surface W1a of the material W1, ie, The upper and lower type closing (closing) shown in FIG. 5 is performed. In the state shown in FIGS. 8 and 9, as shown in FIGS. 16 and 17, the outer peripheral surface W1c of the material W1 is in contact with the inner diameter surface portion of the die row 26.
 次に、図10に示すように、上パンチ部材23と下パンチ部材24とをさらに接近させて、鍛造済素材W(内径孔19が、軸方向の中間に底壁20を有する未貫通のものである)を図18に示すように成形する。すなわち、図5の成形時(閉)を行う。この場合、上パンチ部材23は、そのパンチ本体23aの下端部よりも上リングパンチ23bの下面23b1が上方に後退しているとともに、下パンチ部材24の上端部よりも下リングパンチ24bの下方に後退している。 Next, as shown in FIG. 10, the upper punch member 23 and the lower punch member 24 are brought closer to each other, and the forged material W (in which the inner diameter hole 19 has the bottom wall 20 at the middle in the axial direction) Is molded as shown in FIG. That is, the molding (closing) shown in FIG. 5 is performed. In this case, in the upper punch member 23, the lower surface 23b1 of the upper ring punch 23b is retracted upward with respect to the lower end portion of the punch main body 23a, and the lower punch 23b is lower than the upper end portion of the lower punch member 24. I'm going back.
 このため、上パンチ部材23のパンチ本体23aの下端部及び下パンチ部材24のパンチ本体24aの上端部にて底壁20付きの内径孔19を成形し、上パンチ部材23の上リングパンチ23bの下面23b1(図6参照)が、鍛造済素材(鍛造済ワーク)Wの上面Wbを成形し、下パンチ部材24の下リングパンチ24bの上面24b1(図1参照)が、鍛造済ワークWの下面Waを成形する。その後は、図11に示すように、上下型21、22を離間させるとともに、ダイス列26の分割ダイス25を僅かに外径方向へスライドさせてダイス列26を、図19に示すように、開状態(シリンダ機構M1の第2室36に油圧を供給して、スプリング34の弾性力に抗してピストンロッド33を外径方向へ移動させて、各分割ダイス25を外径方向へ移動させている状態)とする。すなわち、図5に示す上下型開放時(開)とする。なお、図19に示す開状態では、分割ダイス25をさらに外径方向へスライド可能な状態の開状態である。 Therefore, the inner hole 19 with the bottom wall 20 is formed at the lower end portion of the punch main body 23a of the upper punch member 23 and the upper end portion of the punch main body 24a of the lower punch member 24. The lower surface 23b1 (see FIG. 6) forms the upper surface Wb of the forged material (forged work) W, and the upper surface 24b1 (see FIG. 1) of the lower ring punch 24b of the lower punch member 24 corresponds to the lower surface of the forged work W Form Wa. Thereafter, as shown in FIG. 11, the upper and lower dies 21 and 22 are separated, and the divided dies 25 of the die row 26 are slightly slid in the outer diameter direction to open the die row 26 as shown in FIG. State (The hydraulic pressure is supplied to the second chamber 36 of the cylinder mechanism M1, and the piston rod 33 is moved in the outer diameter direction against the elastic force of the spring 34, and the divided dies 25 are moved in the outer diameter direction. State). That is, the upper and lower molds are open (opened) shown in FIG. In the open state shown in FIG. 19, the split die 25 can be slid further in the outer diameter direction.
 その後は、図12に示すように、上下型21,22を離間させて上パンチ部材23を上昇させるとともに、図20に示すように、分割ダイス25をさらに外径方向へスライドさせてダイス列26を開状態(シリンダ機構M1の第2室36に油圧を供給して、スプリング34の弾性力に抗してピストンロッド33を外径方向へ移動させて、各分割ダイス25を外径方向へ移動させている状態)とする。すなわち、図5の上型上昇時(開)とする。つぎに、図13に示すように、下パンチ部材24を上昇させて、鍛造済ワークWの取り出しを行う(この状態では、ダイス列26は図21に示す状態である)。すなわち、図5のワーク排出時(開)とする。これによって、鍛造加工が終了する。 Thereafter, as shown in FIG. 12, the upper and lower dies 21 and 22 are separated to raise the upper punch member 23, and as shown in FIG. In the open state (the hydraulic pressure is supplied to the second chamber 36 of the cylinder mechanism M1, and the piston rod 33 is moved in the outer diameter direction against the elastic force of the spring 34 to move the divided dies 25 in the outer diameter direction). State). That is, it is assumed that the upper mold of FIG. 5 is lifted (opened). Next, as shown in FIG. 13, the lower punch member 24 is raised to take out the forged work W (in this state, the die row 26 is in the state shown in FIG. 21). That is, it is assumed that the work is discharged (opened) in FIG. By this, forging processing is completed.
 本発明の鍛造金型装置によれば、素材投入時に、ダイス列26の各ダイス25を内径方向に移動させて素材W1を安定姿勢に維持する閉状態とするものであるので、この装置に投入された素材W1の挿入不良や横倒れ等の発生を有効に防止できる。 According to the forging die apparatus of the present invention, when the material is introduced, the dies 25 of the die row 26 are moved in the inner diameter direction to keep the material W1 in a stable posture, so that the material W1 is closed. It is possible to effectively prevent the occurrence of the insertion failure of the material W1 and the side fall.
 投入された素材W1の挿入不良や横倒れ等を有効に防止できる。このため、高精度の造加工(成形)を行うことができる。また、開放工程64と排出工程64とにおいては、ダイス列26の各ダイス25を外径方向に移動させた開状態とすることができ、鍛造完成品である鍛造済ワーク(鍛造済素材)Wの鍛造金型装置からの取り出しが容易であり、生産性に優れる。また、素材投入工程61と閉塞工程62と成形工程63とにおいては、ダイス列26の各ダイス25を内径方向に移動させて素材を安定姿勢とする閉状態としているので、トラック溝149が継手軸線に対して傾斜するとともに、アンダーカット形状であっても、挿入不良や横倒れ等の発生を有効に防止することができ、安定した鍛造加工(成形)を行うことができる。 It is possible to effectively prevent the insertion failure and the side fall of the inserted material W1. For this reason, highly accurate manufacturing (molding) can be performed. Further, in the opening step 64 and the discharging step 64, each die 25 of the die row 26 can be moved in the outer diameter direction to be in an open state, and a forged workpiece (forged material) W which is a forged finished product It is easy to take out from the forging die device, and the productivity is excellent. Further, in the material introduction process 61, the closing process 62, and the forming process 63, each die 25 of the die row 26 is moved in the inner diameter direction to bring the material into a closed state. While being inclined with respect to the above, even in the undercut shape, the occurrence of the insertion failure, the side fall, etc. can be effectively prevented, and the stable forging (forming) can be performed.
 往復動機構Mをシリンダ機構M1にて構成し、このシリンダ機構M1の動作を制御機構55にて制御することができる。シリンダ機構M1として、空気圧シリンダであっても、油圧シリンダであってもよい。空気圧シリンダは、シンプルな構造なので取り扱いが簡単で、価格も安くでき、また、応答性や大きさ・重量、情報処理能力は平均的でバランスが取れたシリンダとなる。油圧シリンダは、小型の油圧ポンプでも大きな力を出すことができ、応答速度が非常に速く、コントロールもしやすいことから、超低速から高速まで幅広く利用できるシリンダである。位置決めも正確にコントロールすることができ、大出力が可能である。電動シリンダ等であってもよい。電動シリンダは、ボールネジ、リニアガイド、ACサーボモータで構成された電気駆動のシリンダであり、エアシリンダと同様に使え、ポンプが不要で電源に接続するだけの簡単な配線で使えるほか、オイルミストの飛散がない、ランニングコストが安いなどの利点がある。 The reciprocating mechanism M is configured by the cylinder mechanism M1, and the operation of the cylinder mechanism M1 can be controlled by the control mechanism 55. The cylinder mechanism M1 may be a pneumatic cylinder or a hydraulic cylinder. The pneumatic cylinder has a simple structure and is easy to handle, can be inexpensive, and the response, size, weight, and information processing ability are average and balanced. The hydraulic cylinder is a cylinder that can be widely used from a very low speed to a high speed because it can generate a large force even with a small hydraulic pump, has a very high response speed, and is easy to control. Positioning can also be accurately controlled, and a large output is possible. It may be an electric cylinder or the like. The electric cylinder is an electrically driven cylinder composed of a ball screw, a linear guide, and an AC servomotor, and can be used like an air cylinder, it can be used with a simple wiring that does not require a pump and is connected to a power supply, and oil mist There are advantages such as no scattering and low running costs.
 以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、内側継手部材のトラック溝数の増減は任意であり、溝形状として、アンダーカット形状に限るものではなく、溝底が円弧部のみのものであってもよい。すなわち、ダイス列26の分割ダイス25の数の増減は任意であり、トラック溝成形型面25bおよび外径面成形型面25cの形状も任意に設定できる。 The embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment, and various modifications are possible. The number of track grooves in the inner joint member can be arbitrarily increased or decreased. The groove bottom is not limited to the undercut shape, and the groove bottom may be an arc portion only. That is, increase and decrease of the number of divided dies 25 of the die row 26 is arbitrary, and the shapes of the track groove forming surface 25b and the outer diameter surface forming surface 25c can be arbitrarily set.
 上下型21,22を接近・離間させる場合、下型22を固定して上型21のみを上下動させても、上下型21,22の両者を上下動させても、上型21を固定して下型のみを上下動させてもよい。また、上下パンチ部材23,24を接近・離間させる場合、下パンチ部材24を固定して上パンチ部材23のみを上下動させても、上下パンチ部材23,24の両者を上下動させても、上パンチ部材23を固定して下パンチ部材24のみを上下動させてもよい。 When the upper and lower dies 21 and 22 are moved close to each other, the upper die 21 is fixed even if the lower die 22 is fixed and only the upper die 21 is moved up and down or both of the upper and lower dies 21 and 22 are moved up and down. Only the lower mold may be moved up and down. When the upper and lower punch members 23 and 24 are moved close to and away from each other, the lower punch member 24 is fixed and only the upper punch member 23 is moved up and down, or both of the upper and lower punch members 23 and 24 are moved up and down. The upper punch member 23 may be fixed and only the lower punch member 24 may be moved up and down.
 また、前記実施形態では、素材投入工程61と閉塞工程62と成形工程63とにおいてダイス列26を閉状態とし、開放工程64と排出工程65とにおいてダイス列26を開状態としている。このように構成することが、高精度の鍛造する上で好ましい。しかしながら、制御機構(制御手段)55にて、ダイス列26の開状態と、ダイス列26の閉状態との切り換えを所望のタイミングで行わせることができるので、少なくとも、素材投入工程61において、ダイス列26を閉状態となっていればよいので、他の工程において、ダイス列26を、閉状態としたり、開状態としたりできる。 Further, in the embodiment, the die row 26 is closed in the material loading step 61, the closing step 62, and the forming step 63, and the die row 26 is opened in the opening step 64 and the discharging step 65. It is preferable to configure in this way for high precision forging. However, since the control mechanism (control means) 55 can switch between the open state of the die row 26 and the closed state of the die row 26 at a desired timing, the die is inserted at least in the material loading step 61. Since the row 26 only needs to be in the closed state, the die row 26 can be closed or opened in another process.
 等速自在継手として、アンダーカットフリータイプの固定式等速自在継手や、バーフィールドタイプの固定式等速自在継手に適用できる。また、クロスグルーブタイプの摺動式等速自在継手であってもよい。クロスグルーブタイプの等速自在継手を用いる場合、フロートタイプやノンフロートタイプであってもよく、トリポードタイプを用いる場合、シングルローラタイプであっても、ダブルローラタイプであってもよい。 The constant velocity universal joint can be applied to a fixed type constant velocity universal joint of an undercut free type or a fixed type constant velocity universal joint of a Barfield type. Further, it may be a cross groove type sliding constant velocity universal joint. When the cross groove type constant velocity universal joint is used, it may be a float type or non-float type, and when it is a tripod type, it may be a single roller type or a double roller type.
23   上パンチ部材
24   下パンチ部材
25   分割ダイス
25a 側面
26   ダイス列
55   制御機構
61   素材投入工程
62   閉塞工程
63   成形工程
64   開放工程
65   排出工程
143 内側継手部材
149 トラック溝
149a      円弧部
149b      直線部
M     往復動機構
M1   シリンダ機構
W1   素材(ワーク)
W     鍛造済素材(鍛造済ワーク)
23 Upper punch member 24 Lower punch member 25 Divided die 25a Side surface 26 Die row 55 Control mechanism 61 Raw material input process 62 Closed process 63 Open process 65 Discharge process 143 Inner joint member 149 Track groove 149a Arc part 149b Straight part M Reciprocation Dynamic mechanism M1 Cylinder mechanism W1 Material (work)
W Forged material (forged work)

Claims (5)

  1.  継手軸線に対して傾斜するトラック溝を有する等速自在継手の内側継手部材を製造するための鍛造金型装置であって、
     複数の分割ダイスを周方向に沿って配設されてなるダイス列と、ダイス列の各ダイスを径方向に沿って往復動させる往復動機構と、ダイス列の内側に投入された素材を軸方向に圧縮する上下一対のパンチとを備え、
     前記往復動機構を制御して、ダイス列の各ダイスを外径方向に移動させて周方向に沿って隣り合うダイス間に隙間を設ける開状態と、ダイス列の各ダイスを内径方向に移動させて周方向に沿って隣り合うダイスを密着させる閉状態との切り換えを所望のタイミングで行わせる制御機構を設け、前記制御機構は、少なくとも素材投入時に、ダイス列の各ダイスを内径方向に移動させて素材を安定姿勢に維持する閉状態とすることを特徴とする鍛造金型装置。
    A forging die apparatus for manufacturing an inner joint member of a constant velocity universal joint having a track groove inclined with respect to a joint axis, comprising:
    A die row in which a plurality of divided dies are arranged along the circumferential direction, a reciprocating mechanism for reciprocating each die of the die row along the radial direction, and an axial direction of a material loaded inside the die row And a pair of upper and lower punches to compress
    The reciprocation mechanism is controlled to move each die in the row of dies in the outer diameter direction to open a gap between adjacent dies along the circumferential direction, and to move each die in the row of dies in the inner diameter direction A control mechanism for switching at a desired timing the switching between a closed state in which adjacent dies are in close contact with each other along the circumferential direction, the control mechanism moving at least each die in a row of dies in an inner diameter direction A forging die apparatus characterized in that it is in a closed state in which the material is maintained in a stable posture.
  2.  前記往復動機構をシリンダ機構にて構成し、このシリンダ機構の動作を前記制御機構にて制御することを特徴とする請求項1に記載の鍛造金型装置。 2. The forging die apparatus according to claim 1, wherein the reciprocating mechanism is a cylinder mechanism, and the operation of the cylinder mechanism is controlled by the control mechanism.
  3.  内側継手部材は、周方向に隣り合うトラック溝の傾斜方向が反対方向に形成され、各トラック溝の溝底縦断面形状が、円弧部と直線部とを有するアンダーカット形状であることを特徴とする請求項1又は請求項2に記載の鍛造金型装置。 The inner joint member is characterized in that the inclination directions of the track grooves adjacent in the circumferential direction are formed in opposite directions, and the groove bottom longitudinal cross-sectional shape of each track groove is an undercut shape having an arc portion and a straight portion. The forging die apparatus according to claim 1 or claim 2.
  4.  継手軸線に対して傾斜するトラック溝を有する等速自在継手の内側継手部材を製造する鍛造方法であって、
     複数の分割ダイスを周方向に沿って配設されてなるダイス列と、ダイス列の各ダイスを径方向に沿って往復動させる往復動機構と、ダイス列の内側に投入された素材を軸方向に圧縮する上下一対のパンチとを備えた鍛造金型装置を用い、
     素材をダイス列の内側に投入する素材投入工程と、上下のパンチを相対的に接近させる閉塞工程と、上下のパンチをさらに接近させて素材を圧縮する成形工程と、上下のパンチを相対的に離間させる開放工程と、成形されてなる成形品を排出する排出工程とを備え、 素材投入工程と閉塞工程と成形工程とにおいては、ダイス列の各ダイスを内径方向に移動させて素材を安定姿勢とする閉状態とし、開放工程と排出工程とにおいては、ダイス列の各ダイスを外径方向に移動させた開状態とすることを特徴とする鍛造方法。
    A forging method of manufacturing an inner joint member of a constant velocity universal joint having a track groove inclined with respect to a joint axis, comprising:
    A die row in which a plurality of divided dies are arranged along the circumferential direction, a reciprocating mechanism for reciprocating each die of the die row along the radial direction, and an axial direction of a material loaded inside the die row Using a forging die device equipped with a pair of upper and lower punches
    The material feeding process for charging the material into the die row, the closing process for relatively bringing the upper and lower punches closer, the forming process for compressing the material by further bringing the upper and lower punches closer, and the upper and lower punches The apparatus comprises: an opening process for separating the material and a discharging process for discharging the molded product which has been molded. In the material charging process, the closing process and the molding process, each die of the die row is moved in the inner diameter direction to stabilize the material. A forging method characterized in that in a closed state, in the opening step and the discharging step, each die of the die row is moved in an outer diameter direction.
  5.  内側継手部材は、周方向に隣り合うトラック溝の傾斜方向が反対方向に形成され、各トラック溝の溝底縦断面形状が、円弧部と直線部とを有するアンダーカット形状であることを特徴とする請求項4に記載の鍛造方法。 The inner joint member is characterized in that the inclination directions of the track grooves adjacent in the circumferential direction are formed in opposite directions, and the groove bottom longitudinal cross-sectional shape of each track groove is an undercut shape having an arc portion and a straight portion. The forging method according to claim 4.
PCT/JP2018/029688 2017-08-21 2018-08-07 Forging mold device and forging method WO2019039272A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017158515A JP6798949B2 (en) 2017-08-21 2017-08-21 Forging die equipment and forging method
JP2017-158515 2017-08-21

Publications (1)

Publication Number Publication Date
WO2019039272A1 true WO2019039272A1 (en) 2019-02-28

Family

ID=65438718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029688 WO2019039272A1 (en) 2017-08-21 2018-08-07 Forging mold device and forging method

Country Status (2)

Country Link
JP (1) JP6798949B2 (en)
WO (1) WO2019039272A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11883875B2 (en) 2019-04-26 2024-01-30 Proterial, Ltd. Forging device and method for manufacturing forged product

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5756132A (en) * 1980-09-19 1982-04-03 Ntn Toyo Bearing Co Ltd Formation device for inner ring of equal speed universal joint
JPH11114652A (en) * 1997-10-13 1999-04-27 Honda Motor Co Ltd Method and device for forging inner ring of constant velocity universal joint
JP2000140984A (en) * 1998-11-02 2000-05-23 Ntn Corp Method and device for production of inner wheel for constant velocity joint

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5756132A (en) * 1980-09-19 1982-04-03 Ntn Toyo Bearing Co Ltd Formation device for inner ring of equal speed universal joint
JPH11114652A (en) * 1997-10-13 1999-04-27 Honda Motor Co Ltd Method and device for forging inner ring of constant velocity universal joint
JP2000140984A (en) * 1998-11-02 2000-05-23 Ntn Corp Method and device for production of inner wheel for constant velocity joint

Also Published As

Publication number Publication date
JP6798949B2 (en) 2020-12-09
JP2019034326A (en) 2019-03-07

Similar Documents

Publication Publication Date Title
US7634934B2 (en) Forged roller
US5001920A (en) Method and apparatus for manufacturing a constant velocity joint and the like
US6178801B1 (en) Forging device for crown-shaped helical gear
KR20110084215A (en) Method and device for the non-cutting production of an outside thread on hollow metal work pieces
CN106623722A (en) Automatic closed forging forming die
CN111036830A (en) Automatic precision forging single-forging production line for bearings
CN107008801A (en) A kind of continuous punching hole forming process equipment
WO2019039272A1 (en) Forging mold device and forging method
US2624303A (en) Machine for metalworking
US4055977A (en) Method and apparatus for making double groove pulleys
US6857305B2 (en) Hydraulic swage press
KR102057332B1 (en) Forging device for metal ring
JP7115273B2 (en) Hollow part manufacturing method and manufacturing apparatus
JPH0227058B2 (en)
CN211803618U (en) Multipurpose forging hammer for bearing outer ring forge piece
JPH0252139A (en) Manufacture of gear
KR200303906Y1 (en) Punch for Cold Forge
JP6096051B2 (en) Manufacturing method of outer joint member for constant velocity universal joint, intermediate forged product and final forged product processed into outer joint member
JPS63224833A (en) Forming die
CN115722626B (en) Combined step extrusion die and forming method
CN110788227B (en) Double-station closing-in forming device for large and medium caliber cannon and using method thereof
US5934135A (en) Apparatus and method for near net warm forging of complex parts from axi-symmetrical workpieces
JP6708907B2 (en) Forging device and forging method
US6032507A (en) Pre-bending of workpieces in dies in near net warm forging
CN205732750U (en) Revolving body component of rod category exempts from machining forging Combined forging die

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18847694

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18847694

Country of ref document: EP

Kind code of ref document: A1