WO2019039208A1 - Group 13 element nitride layer, freestanding substrate and functional element - Google Patents

Group 13 element nitride layer, freestanding substrate and functional element Download PDF

Info

Publication number
WO2019039208A1
WO2019039208A1 PCT/JP2018/028563 JP2018028563W WO2019039208A1 WO 2019039208 A1 WO2019039208 A1 WO 2019039208A1 JP 2018028563 W JP2018028563 W JP 2018028563W WO 2019039208 A1 WO2019039208 A1 WO 2019039208A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
light emitting
layer
element nitride
crystal layer
Prior art date
Application number
PCT/JP2018/028563
Other languages
French (fr)
Japanese (ja)
Inventor
崇行 平尾
中西 宏和
幹也 市村
孝直 下平
坂井 正宏
隆史 吉野
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2017/030373 external-priority patent/WO2019038892A1/en
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2019538029A priority Critical patent/JP6854902B2/en
Publication of WO2019039208A1 publication Critical patent/WO2019039208A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen

Definitions

  • the present invention relates to a group 13 element nitride layer, a free-standing substrate and a functional device.
  • GaN gallium nitride
  • MQW multiple quantum well layer
  • the gallium nitride layer described in Patent Document 1 is polycrystalline gallium nitride composed of a large number of gallium nitride single crystal particles, and a large number of columnar gallium nitride single crystal particles are arranged in the lateral direction.
  • the gallium nitride layer described in Patent Document 2 is polycrystalline gallium nitride composed of a large number of gallium nitride single crystal particles, and a large number of columnar gallium nitride single crystal particles are arranged in the lateral direction.
  • the average tilt angle (average value of the inclination of crystal orientation (crystal axis) in the direction normal to the surface) on the surface is 1 to 10 °.
  • Patent Document 3 a large number of inclusions are included from the bottom to an intermediate position, and a plurality of grain boundaries including only a low concentration are formed diagonally from the lower surface from the intermediate position to the upper surface.
  • the grain boundaries extend obliquely in the direction having an angle of 50 to 70 ° with respect to the c axis.
  • Patent Document 5 describes that a gallium nitride crystal having a low dislocation density is obtained by increasing the Ga ratio in the melt.
  • the grain size can be increased to reduce the dislocation density by controlling the flow of the high Ga ratio and the flux, but voids are likely to be contained between grains.
  • An object of the present invention is to reduce dislocation density in a Group 13 element nitride crystal layer comprising a Group 13 element nitride crystal selected from gallium nitride, aluminum nitride, indium nitride or mixed crystals thereof and having top and bottom surfaces. It is possible to provide a microstructure which is capable of reducing the variation of the characteristics throughout.
  • a first aspect of the present invention is a Group 13 element nitride crystal layer comprising a Group 13 element nitride crystal selected from gallium nitride, aluminum nitride, indium nitride or mixed crystals thereof, and having a top surface and a bottom surface.
  • a Group 13 element nitride crystal selected from gallium nitride, aluminum nitride, indium nitride or mixed crystals thereof, and having a top surface and a bottom surface.
  • the second aspect of the present invention is a Group 13 element nitride crystal layer comprising a Group 13 element nitride crystal selected from gallium nitride, aluminum nitride, indium nitride or mixed crystals thereof, and having a top surface and a bottom surface.
  • a Group 13 element nitride crystal selected from gallium nitride, aluminum nitride, indium nitride or mixed crystals thereof, and having a top surface and a bottom surface.
  • the present invention also relates to a self-supporting substrate characterized by comprising the group 13 element nitride layer.
  • the present invention is A composite substrate, comprising: a support substrate; and the group 13 element nitride layer provided on the support substrate.
  • the present invention relates to a functional device having the above-mentioned self-supporting substrate and a functional layer provided on the above-mentioned Group 13 element nitride layer.
  • the present invention relates to a functional device including the composite substrate and a functional layer provided on the group 13 element nitride layer.
  • a linear high luminance light emitting portion and a low luminance light emitting region adjacent to the high luminance light emitting portion And the half width of (0002) plane reflection of the X-ray rocking curve on the upper surface is 3000 seconds or less and 20 seconds or more. This is because a linear high-intensity light emitting portion appears on the upper surface, so that a linear high-intensity light emitting portion in which a dopant component, a trace amount component, and the like contained in a Group 13 element nitride crystal are dark is generated. Means. At the same time, since the average tilt angle on the upper surface is small and the orientations of the crystal axes are substantially aligned, a very homogeneous microstructure similar to a single crystal is obtained.
  • a linear high luminance light emitting portion and a low luminance light emitting region adjacent to the high luminance light emitting portion And the half value width of (1000) plane reflection of the X-ray rocking curve on the upper surface of the group 13 element nitride crystal layer is 10000 seconds or less and 20 seconds or more. This means that since the linear high-intensity light emitting portion appears on the upper surface, the dopant component contained in the Group 13 element nitride crystal forms a very linear high-intensity light emitting portion that is very dark. doing. At the same time, since the average twist angle on the upper surface is small and the orientations of the crystal axes are substantially aligned, a very homogeneous microstructure similar to a single crystal is obtained.
  • Group 13 element nitride crystal layers having such novel microstructures can reduce dislocation density even if the size is increased (for example, even if the diameter is 6 inches or more), and the variation in characteristics can be reduced overall It is possible to provide a group 13 element nitride crystal layer.
  • the arithmetic average roughness Ra of the upper surface of the group 13 element nitride crystal layer is 0.05 nm or more and 1.0 nm or less. This makes it possible to suppress the generation of surface pits when epitaxially growing a functional device layer such as an LD device or an LED device on the top surface of a Group 13 element nitride crystal layer.
  • FIG. 6 is a schematic view for explaining a cathode luminescence image of the upper surface 13 a of the group 13 element nitride crystal layer 13. It is a photograph which shows the cathode luminescence image of upper surface 13a of 13 group element nitride crystal layer 13.
  • FIG. It is a partial enlarged photograph of FIG. It is a schematic diagram corresponding to the cathode luminescence image of FIG.
  • the Group 13 element nitride crystal layer of the present invention is composed of Group 13 element nitride crystals selected from gallium nitride, aluminum nitride, indium nitride or mixed crystals thereof, and has top and bottom surfaces.
  • the top surface 13a and the bottom surface 13b face each other.
  • the nitride constituting the Group 13 element nitride crystal layer is a gallium nitride based nitride.
  • GaN, Ga x Al 1- x N (1>x> 0.5), Ga x In 1-x N (1>x> 0.4), Ga x Al y In z N (1>x> 0.5 , 1>y> 0.3, x + y + z 1).
  • Group 13 element nitrides may be doped with zinc, calcium or other n-type dopants or p-type dopants, in which case polycrystalline group 13 element nitrides may be p-type electrodes, n-type electrodes, p It can be used as a member or layer other than a substrate such as a mold layer and an n-type layer.
  • Preferred examples of the p-type dopant include one or more selected from the group consisting of beryllium (Be), magnesium (Mg), strontium (Sr), and cadmium (Cd).
  • Preferred examples of the n-type dopant include one or more selected from the group consisting of silicon (Si), germanium (Ge), tin (Sn) and oxygen (O).
  • the upper surface 13a of the group 13 element nitride crystal layer 13 is observed by cathode luminescence, it is adjacent to the linear high-intensity light emitting portion 5 and the high-intensity light emitting portion 5 as schematically shown in FIG. And a low luminance light emitting area 6.
  • cathode luminescence shall be performed as follows.
  • SEM scanning electron microscope
  • a cathode luminescence detector is used.
  • measurement conditions are: acceleration voltage 10 kV, probe current “90” with CL detector inserted between sample and objective lens
  • the working distance (W.D.) is preferably 22.5 mm and observed at a magnification of 50 times.
  • the high luminance light emitting portion and the low luminance light emitting region are distinguished as follows from the observation by cathode luminescence.
  • Image analysis software for example, Mitani Shoji Co., Ltd. WinROOF Ver.
  • the low luminance light emitting region is adjacent to the linear high luminance light emitting portion.
  • adjacent low-intensity light emission areas are divided by the linear high-intensity light emission parts located between them.
  • the high brightness light emitting portion is linear means that the high brightness light emitting portion is elongated and elongated between adjacent low brightness light emitting regions to form a boundary line.
  • the line made by the high-intensity light emitting portion may be a straight line, a curved line, or a combination of a straight line and a curved line.
  • the curve may include various forms such as arc, ellipse, parabola, hyperbola and the like.
  • the terminal of the high-intensity light emission part may be cut off.
  • the low luminance light emitting region may be an exposed surface of the group 13 element nitride crystal grown therebelow, and is two-dimensionally spread in a planar manner.
  • the high brightness light emitting portion is linear, but extends in a one-dimensional manner as a boundary that divides adjacent low brightness light emitting regions. This is because, for example, a dopant component and a trace component are discharged from a Group 13 element nitride crystal grown from below, and are gathered between adjacent Group 13 element nitride crystals in the growth process, and the low luminance emission is adjacent on the top surface It is considered that linear bright light-emitting portions were generated between the regions.
  • FIG. 3 shows a photograph by cathode luminescence measurement of the top surface of the group 13 element nitride crystal layer obtained in the example.
  • 4 is a partial enlarged view of FIG. 3
  • FIG. 5 is a schematic view corresponding to FIG.
  • the low brightness light emitting area is two-dimensionally spread in a plane, and the high brightness light emitting portion is linear, and is one-dimensionally stretched like a boundary dividing the adjacent low brightness light emitting areas. I understand that.
  • the shape of the low luminance light emitting region is not particularly limited, and usually extends two-dimensionally in a planar shape.
  • the line formed by the high luminance light emitting portion needs to be elongated.
  • the width of the high brightness light emitting portion is preferably 100 ⁇ m or less, more preferably 20 ⁇ m or less, and particularly preferably 5 ⁇ m or less.
  • the width of the high brightness light emitting portion is usually 0.01 ⁇ m or more.
  • the ratio (length / width) of the length to the width of the high luminance light emitting portion is preferably 1 or more, and more preferably 10 or more.
  • the ratio of the area of the high luminance light emitting portion to the area of the low luminance light emitting region on the upper surface is 0.001 or more Is more preferably 0.01 or more.
  • the ratio of the area of the high luminance light emitting portion to the area of the low luminance light emitting region on the upper surface is 0.3 or less Is more preferably 0.1 or less.
  • the high brightness light emitting portion forms a continuous phase
  • the low brightness light emitting region forms a discontinuous phase partitioned by the high brightness light emitting portion.
  • the linear high brightness light emitting portion 5 forms a continuous phase
  • the low brightness light emitting region 6 forms a discontinuous phase partitioned by the high brightness light emitting portion 5.
  • the continuous phase means that the high brightness light emitting portion 5 is continuous on the upper surface, but it is not essential that all the high brightness light emitting portions 5 are completely continuous, and the whole It is to be allowed that a small amount of the high luminance light emitting portion 5 is separated from the other high luminance light emitting portions 5 without affecting the pattern.
  • the dispersed phase means that the low brightness light emitting region 6 is divided by the high brightness light emitting portion 5 and divided into a large number of regions which are not connected to each other.
  • the low brightness light emitting region 6 is separated by the high brightness light emitting portion 5 on the upper surface, it is acceptable that the low brightness light emitting region 6 is continuous inside the group 13 element nitride crystal layer.
  • the high brightness light emitting portion includes a portion extending along the m-plane of the Group 13 element nitride crystal.
  • the high-intensity light emission part 5 is extended in elongate linear form, and contains many parts 5a, 5b, 5c extended along m surface.
  • the directions along the m-plane of Group 13 element nitride crystal, which is a hexagonal crystal, are [-2110], [-12-10], [11-20], and [2-1-10].
  • the high-intensity light emitting unit 5 includes a part of the side of a substantially hexagonal shape reflecting the hexagonal crystal, which is a [1-210], [-1-120] direction.
  • the linear high-intensity light emitting portion extending along the m-plane means that the longitudinal direction of the high-intensity light emitting portion is [-2110], [-12-10], [11-20], [2- It means extending along one of 1-10 directions, [1-210] and [-1-120] directions.
  • the longitudinal direction of the linear high luminance light emitting part is preferably within ⁇ 1 °, more preferably within ⁇ 0.3 ° with respect to the m-plane is included.
  • the ratio of the portion extending in the direction along the m-plane to the total length of the high luminance light emitting portion is preferably 60% or more, more preferably 80% or more, and substantially occupies the entire high luminance light emitting portion It is also good.
  • the half width of (0002) plane reflection of the X-ray rocking curve on the top surface of the group 13 element nitride crystal layer is 3000 seconds or less and 20 seconds or more. This indicates that the top surface has a small surface tilt angle, and the crystal orientation as a whole is highly oriented like a single crystal.
  • a characteristic distribution on the upper surface of a Group 13 element nitride crystal layer as having a microstructure in which the crystal orientation on the surface as a whole is highly oriented while having the cathode luminescence distribution as described above It is possible to make the characteristics of the various functional elements provided thereon uniform, and to improve the yield of the functional elements.
  • the half value width of (0002) plane reflection of the X-ray rocking curve on the top surface of the group 13 element nitride crystal layer is preferably 1000 seconds or less and 20 seconds or more, and 500 seconds or less and 20 seconds or more It is even more preferable that there be. In addition, it is practically difficult to reduce the half width of (0002) plane reflection of the X-ray rocking curve on the upper surface of the group 13 element nitride crystal layer to less than 20 seconds.
  • the half width of the X-ray rocking curve (0002) surface reflection can be calculated by performing peak search using XRD analysis software (LEPTOS 4.03 manufactured by Bruker-AXS).
  • the peak search conditions are preferably Noise Filter “10”, Threshold “0.30”, and Points “10”.
  • a linear high-intensity light emitting portion that emits whitish may be observed.
  • the low brightness light emitting area is two-dimensionally spread in a planar manner, and the high brightness light emitting portion is linear, and extends like a boundary line which divides adjacent low brightness light emitting areas.
  • the observation method of such a high luminance light emitting portion and the low luminance light emitting region is the same as the observation method of the high luminance light emitting portion and the low luminance light emitting region on the upper surface.
  • the shape of the low luminance light emitting region in the cross section of the Group 13 element nitride crystal layer there is no particular limitation on the shape of the low luminance light emitting region in the cross section of the Group 13 element nitride crystal layer, and usually it is two-dimensionally extended in a planar shape.
  • the line formed by the high luminance light emitting portion needs to be elongated. From such a viewpoint, the width of the high brightness light emitting portion is preferably 50 ⁇ m or less, and more preferably 10 ⁇ m or less.
  • the linear high luminance light emitting portion in the cross section substantially perpendicular to the top surface of the Group 13 element nitride crystal layer, forms a continuous phase, and the low luminance light emitting region is formed by the high luminance light emitting portion. It forms a partitioned discontinuous phase.
  • the linear high brightness light emitting portion forms a continuous phase
  • the low brightness light emitting region forms a discontinuous phase partitioned by the high brightness light emitting portion.
  • the continuous phase means that the high brightness light emitting portion is continuous in the cross section, but it is not essential that all the high brightness light emitting portions are completely continuous, and the whole pattern It is acceptable that a small amount of high-intensity light emitting portions are separated from other high-intensity light emitting portions without affecting the above.
  • the dispersed phase means that the low brightness light emitting region is divided by the high brightness light emitting portion and divided into many regions which are not connected to each other.
  • no void is observed in a cross section substantially perpendicular to the top surface of the Group 13 element nitride crystal layer. That is, in the scanning electron micrograph shown in FIG. 7, different crystal phases other than voids (voids) and group 13 element nitride crystals are not observed. However, observation of void is performed as follows.
  • a void is observed when a cross section substantially perpendicular to the top surface of the Group 13 element nitride crystal layer is observed with a scanning electron microscope (SEM), and a void having a maximum width of 1 ⁇ m to 500 ⁇ m is a “void”.
  • SEM scanning electron microscope
  • For this SEM observation for example, S-3400N scanning electron microscope manufactured by Hitachi High-Technologies Corporation is used. Measurement conditions are preferably observed at an acceleration voltage of 15 kV, a probe current of "60", a working distance (W.D.) of 6.5 mm, and a magnification of 100 times.
  • the dislocation density on the top surface of the Group 13 element nitride crystal layer is 1 ⁇ 10 2 / cm 2 or more and 1 ⁇ 10 6 / cm 2 or less. It is particularly preferable to set the dislocation density to 1 ⁇ 10 6 / cm 2 or less from the viewpoint of improving the characteristics of the functional element. From this viewpoint, it is more preferable to set the dislocation density to 1 ⁇ 10 4 / cm 2 or less.
  • the dislocation density is measured as follows.
  • a scanning electron microscope (SEM) with a cathode luminescence detector can be used.
  • SEM scanning electron microscope
  • dislocation sites are observed as dark spots without light emission.
  • Dislocation density is calculated by measuring the dark spot density.
  • the measurement conditions while the CL detector is inserted between the sample and the objective lens, it is preferable to observe at an acceleration voltage of 10 kV, a probe current of "90", a working distance (W.D.) 22.5 mm, and a magnification of 1200 times. preferable.
  • the half width of (1000) plane reflection of the X-ray rocking curve on the top surface of the group 13 element nitride crystal layer is 10000 seconds or less, 20 seconds or more, and half of (1000) plane reflection.
  • the value range is 10000 seconds or less and 20 seconds or more. This indicates that both the surface tilt angle and the surface twist angle at the upper surface are small, and the crystal orientation is highly oriented as a whole, like a single crystal. With such a fine structure in which the crystal orientation at the surface as a whole is more highly oriented, the characteristic distribution on the upper surface of the group 13 element nitride crystal layer can be reduced, and the characteristics of various functional elements provided thereon Can be made uniform, and the yield of functional devices is also improved.
  • the half value width of (1000) plane reflection of the X-ray rocking curve on the upper surface of the group 13 element nitride crystal layer is 10000 seconds or less and 20 seconds or more. This means that the surface twist angle at the top surface is very low. It indicates that the crystal orientation as a whole is highly oriented like a single crystal.
  • a characteristic distribution on the upper surface of a Group 13 element nitride crystal layer as having a microstructure in which the crystal orientation on the surface as a whole is highly oriented while having the cathode luminescence distribution as described above It is possible to make the characteristics of the various functional elements provided thereon uniform, and to improve the yield of the functional elements.
  • the half value width of (1000) plane reflection of the X-ray rocking curve on the upper surface of the group 13 element nitride crystal layer is preferably 5000 seconds or less, more preferably 1000 seconds or less, further 20 seconds or more It is more preferable that In addition, it is practically difficult to reduce this half-width to less than 20 seconds.
  • the ⁇ step width may be set to 0.003 ° and the counting time to 4 seconds.
  • it is preferable to measure CuK ⁇ rays in parallel monochromatization (half-width 28 seconds) with a Ge (022) asymmetric reflection monochromator and centering around a tilt angle CHI 88 °.
  • the half value width of X-ray rocking curve (1000) surface reflection can be calculated by performing peak search using XRD analysis software (manufactured by Bruker-AXS, LEPTOS 4.03).
  • the peak search conditions are preferably Noise Filter “10”, Threshold “0.30”, and Points “10”.
  • the arithmetic average roughness Ra of the top surface of the group 13 element nitride crystal layer is 0.05 nm or more and 1.0 nm or less.
  • Arithmetic mean roughness Ra has shown the average value of the absolute value deviation from an average line
  • the group 13 element nitride crystal layer of the present invention can be produced by forming a seed crystal layer on a base substrate and forming a layer composed of group 13 element nitride crystal thereon.
  • the base substrate may be a single crystal substrate 1 on which an alumina layer 2 is formed.
  • Single crystal substrate 1 is a perovskite such as sapphire, AlN template, GaN template, GaN freestanding substrate, SiC single crystal, MgO single crystal, spinel (MgAl 2 O 4 ), LiAlO 2 , LiGaO 2 , LaAlO 3 , LaGaO 3 , NdGaO 3 and the like Type composite oxide, SCAM (ScAlMgO 4 ) can be exemplified.
  • the cubic perovskite structure complex oxide of 1) to 2) can also be used.
  • the alumina layer 2 can be formed by a known technique, and is prepared by sputtering, MBE (molecular beam epitaxy) method, vapor deposition, mist CVD method, sol gel method, aerosol deposition (AD) method, or tape forming.
  • MBE molecular beam epitaxy
  • vapor deposition mist CVD method
  • sol gel method sol gel method
  • aerosol deposition or tape forming.
  • the method of bonding an alumina sheet to the said single crystal substrate is illustrated, and especially the sputtering method is preferable. It is possible to use one to which heat treatment, plasma treatment, or ion beam irradiation has been added after forming the alumina layer, if necessary.
  • the method of heat treatment is not particularly limited, but heat treatment may be performed in an air atmosphere, vacuum, a reducing atmosphere such as hydrogen, or an inert atmosphere such as nitrogen / Ar, a hot press (HP) furnace, a hot isostatic press (HIP) Heat treatment may be performed under pressure using a furnace or the like.
  • a sapphire substrate to which the same heat treatment, plasma treatment, or ion beam irradiation as described above is added can be used as a base substrate.
  • a seed crystal layer 3 is provided on the alumina layer 2 or the single crystal substrate 1.
  • the material constituting the seed crystal layer 3 is a nitride of one or two or more kinds of Group 13 elements specified by IUPAC.
  • the group 13 element is preferably gallium, aluminum or indium.
  • group 13 element nitride crystals are GaN, AlN, InN, Ga x Al 1 -x N (1>x> 0), Ga x In 1-x N (1>x> 0) And Ga x Al y InN 1 -x-y (1>x> 0, 1>y> 0).
  • the method of producing the seed crystal layer 3 is not particularly limited, but MOCVD (organic metal vapor phase growth method), MBE (molecular beam epitaxy method), HVPE (hydride vapor phase growth method), vapor phase method such as sputtering, Na flux method Liquid phase methods such as ammonothermal method, hydrothermal method, sol-gel method, powder method utilizing solid phase growth of powder, and combinations thereof are preferably exemplified.
  • a seed crystal layer is formed by depositing a low-temperature growth buffer GaN layer at 450 to 550 ° C. for 20 to 50 nm and then laminating a GaN film having a thickness of 2 to 4 ⁇ m at 1000 to 1200 ° C.
  • MOCVD organic metal vapor phase growth method
  • MBE molecular beam epitaxy method
  • HVPE hydrogen vapor phase growth method
  • vapor phase method such as sputtering
  • Na flux method Liquid phase methods such as ammonothermal method, hydrothermal method, sol
  • Group 13 element nitride crystal layer 13 is formed to have a crystal orientation substantially conforming to the crystal orientation of seed crystal layer 3.
  • the method of forming the group 13 element nitride crystal layer is not particularly limited as long as it has a crystal orientation substantially following the crystal orientation of the seed crystal film, and a vapor phase method such as MOCVD or HVPE, Na flux method, ammonothermal method, A hydrothermal method, a liquid phase method such as a sol-gel method, a powder method utilizing solid phase growth of powder, and a combination thereof are preferably exemplified, but the Na flux method is particularly preferable.
  • Group 13 element nitride crystal layer by Na flux method, Group 13 metal, metal Na and optionally dopant (for example, germanium (Ge), silicon (Si), oxygen (O), etc., etc. in place of the seed crystal substrate) Filled with a melt composition containing n-type dopants or p-type dopants such as beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), zinc (Zn) and cadmium (Cd) After heating to 830 ° C. to 910 ° C. and 3.5 to 4.5 MPa in a nitrogen atmosphere, it is preferable to carry out rotation while maintaining the temperature and pressure. The holding time varies depending on the target film thickness, but may be about 10 to 100 hours.
  • the plate surface by grinding the gallium nitride crystal thus obtained by the Na flux method with a grindstone, and then to smooth the plate surface by lapping using diamond abrasive grains.
  • the freestanding substrate including the group 13 element nitride crystal layer can be obtained by separating the group 13 element nitride crystal layer from the single crystal substrate.
  • the method of separating the group 13 element nitride crystal layer from the single crystal substrate is not limited.
  • the Group 13 element nitride crystal layer is naturally exfoliated from the single crystal substrate in the temperature lowering step after the Group 13 element nitride crystal layer is grown.
  • the group 13 element nitride crystal layer can be separated from the single crystal substrate by chemical etching.
  • a strong acid such as sulfuric acid or hydrochloric acid, a mixed solution of sulfuric acid and phosphoric acid, or a strong alkali such as sodium hydroxide aqueous solution or potassium hydroxide aqueous solution is preferable.
  • a strong alkali such as sodium hydroxide aqueous solution or potassium hydroxide aqueous solution is preferable.
  • 70 degreeC or more is preferable.
  • the group 13 element nitride crystal layer can be separated from the single crystal substrate by a laser lift-off method.
  • the group 13 element nitride crystal layer can be peeled off from the single crystal substrate by grinding.
  • the group 13 element nitride crystal layer can be peeled off from the single crystal substrate with a wire saw.
  • a freestanding substrate can be obtained by separating the group 13 element nitride crystal layer from the single crystal substrate.
  • the term "self-supporting substrate” means a substrate which can be handled as a solid without deformation or breakage under its own weight.
  • the self-supporting substrate of the present invention can be used as a substrate for various semiconductor devices such as light emitting elements, but in addition to that, it can be an electrode (may be a p-type electrode or an n-type electrode), a p-type layer, an n-type layer, etc. It can be used as a member or layer other than the base material.
  • This freestanding substrate may further be provided with one or more other layers.
  • the thickness of the self-supporting substrate needs to be able to impart self-supporting properties to the substrate, preferably 20 ⁇ m or more, more preferably 100 ⁇ m or more, and still more preferably It is 300 ⁇ m or more.
  • the upper limit of the thickness of the free-standing substrate should not be defined, but 3000 ⁇ m or less is realistic in terms of manufacturing cost.
  • the method of adjusting the arithmetic average roughness Ra of the upper surface of the Group 13 element nitride crystal layer to 0.05 to 1.0 nm is not particularly limited, and examples thereof include polishing and etching.
  • Polishing refers to mechanical polishing, which is processing using loose abrasives, and chemical mechanical polishing (CMP) using colloidal silica or the like.
  • CMP chemical mechanical polishing
  • RIE reactive ion etching
  • the etching gas is preferably a chlorine gas or a fluorine gas.
  • the group 13 element nitride crystal layer can be used as a template substrate for forming another functional layer without separating the group 13 element nitride crystal layer.
  • the functional element structure provided on the Group 13 element nitride crystal layer of the present invention is not particularly limited, the light emitting function, the rectifying function or the power control function can be exemplified.
  • the structure of the light emitting device using the group 13 element nitride crystal layer of the present invention and the method for producing the same are not particularly limited.
  • a light emitting element is manufactured by providing a light emitting functional layer in a Group 13 element nitride crystal layer.
  • a light emitting element is manufactured using the Group 13 element nitride crystal layer as a member or layer other than the base material such as an electrode (which may be a p-type electrode or an n-type electrode), a p-type layer, or an n-type layer. It is also good.
  • FIG. 8 schematically shows a layer configuration of a light emitting element according to one embodiment of the present invention.
  • a light emitting element 21 shown in FIG. 8 includes a self-supporting substrate 13 and a light emitting functional layer 18 formed on the substrate.
  • the light emitting functional layer 18 provides light emission based on the principle of a light emitting element such as an LED by appropriately providing an electrode or the like and applying a voltage.
  • the light emitting functional layer 18 is formed on the substrate 13.
  • the light emitting functional layer 18 may be provided on the entire surface or a part of the substrate 13, or may be provided on the entire surface or a part of the buffer layer when the buffer layer described later is formed on the substrate 13. Good.
  • the light emitting functional layer 18 can adopt various known layer configurations that provide light emission based on the principle of a light emitting element represented by an LED by appropriately providing an electrode and / or a phosphor and applying a voltage. Therefore, the light emitting functional layer 18 may emit visible light such as blue and red, or may emit ultraviolet light without visible light or together with visible light.
  • the light emitting functional layer 18 preferably constitutes at least a part of a light emitting element utilizing a pn junction, and the pn junction includes a p-type layer 18a and an n-type layer 18c as shown in FIG.
  • the active layer 18 b may be included between At this time, a double hetero junction or a single hetero junction (hereinafter collectively referred to as a hetero junction) using a layer having a smaller band gap than the p-type layer and / or the n-type layer may be used as the active layer.
  • a quantum well structure in which the thickness of the active layer is reduced can be employed as one mode of the p-type layer-active layer-n-type layer.
  • the light emitting functional layer 18 is preferably provided with a pn junction and / or hetero junction and / or quantum well junction having a light emitting function.
  • 20 and 22 are examples of electrodes.
  • At least one layer constituting the light emitting functional layer 18 is at least selected from the group consisting of an n-type layer doped with an n-type dopant, a p-type layer doped with a p-type dopant, and an active layer. It can be one or more.
  • the n-type layer, the p-type layer and the active layer may be composed of the same material as the main component or may be composed of materials different from each other in the main component.
  • each layer constituting the light emitting functional layer 18 is not particularly limited as long as it grows substantially in accordance with the crystal orientation of the group 13 element nitride crystal layer and has a light emitting function, but a gallium nitride (GaN) based material It is preferable to be composed of a material mainly composed of at least one or more selected from zinc oxide (ZnO) based materials and aluminum nitride (AlN) based materials, and a dopant for controlling p type to n type is suitably selected It may be included. Particularly preferred materials are gallium nitride (GaN) based materials.
  • the material constituting the light emitting functional layer 18 may be, for example, a mixed crystal in which AlN, InN or the like is solid-solved in GaN in order to control the band gap.
  • the light emitting functional layer 18 may be a heterojunction made of a plurality of material systems. For example, a gallium nitride (GaN) based material may be used for the p-type layer, and a zinc oxide (ZnO) based material may be used for the n-type layer.
  • GaN gallium nitride
  • ZnO zinc oxide
  • a zinc oxide (ZnO) based material may be used for the p-type layer
  • a gallium nitride (GaN) based material may be used for the active layer and the n-type layer, and the combination of materials is not particularly limited.
  • the film formation method of the light emitting functional layer 18 and the buffer layer is not particularly limited as long as it is a method of growing substantially in accordance with the crystal orientation of the Group 13 element nitride crystal layer, but a vapor phase method such as MOCVD, MBE, HVPE, sputtering, etc.
  • a vapor phase method such as MOCVD, MBE, HVPE, sputtering, etc.
  • Preferred examples thereof include liquid phase methods such as Na flux method, ammonothermal method, hydrothermal method and sol-gel method, powder method utilizing solid phase growth of powder, and combinations thereof.
  • Example 1 (Preparation of a gallium nitride free-standing substrate) An alumina film 2 of 0.3 ⁇ m in thickness is formed on a sapphire substrate 1 with a diameter of 6 inches by sputtering, and then a seed crystal film 3 of 2 ⁇ m in thickness made of gallium nitride is formed by MOCVD. Obtained.
  • the crucible was placed in a stainless steel inner container, further placed in a stainless steel outer container capable of containing it, and closed with a container lid with a nitrogen introduction pipe.
  • the outer container was placed on a rotary table installed in a heating unit in a crystal manufacturing apparatus which has been vacuum baked in advance, and the pressure resistant container was covered and sealed.
  • the inside of the pressure resistant container was evacuated to 0.1 Pa or less by a vacuum pump.
  • nitrogen gas is introduced from a nitrogen gas cylinder to 4.0 MPa while heating the temperature of the heating space to 870 ° C. by adjusting the upper heater, middle heater and lower heater, and the outer container around the central axis It was rotated at a speed of 20 rpm in a constant cycle clockwise and counterclockwise.
  • the acceleration time was 12 seconds
  • the holding time was 600 seconds
  • the deceleration time was 12 seconds
  • the stop time was 0.5 seconds. And it hold
  • the vessel was naturally cooled to room temperature and depressurized to the atmospheric pressure, and then the lid of the pressure container was opened and the bale was taken out from the inside.
  • the solidified metallic sodium in the crucible was removed, and the crack-free gallium nitride free-standing substrate peeled off from the seed crystal substrate was recovered.
  • the upper surface of the gallium nitride free-standing substrate was polished on a cut surface and observed with a scanning electron microscope (SEM) equipped with a cathode luminescence (CL) detector.
  • SEM scanning electron microscope
  • CL cathode luminescence
  • FIG. 3 in the CL image, a high brightness light emitting portion emitting whitish light was confirmed inside the gallium nitride crystal.
  • FIG. 9 when the same field of view was imaged and confirmed with a scanning electron microscope, it was confirmed that a homogeneous gallium nitride crystal was grown without voids.
  • the gallium nitride free-standing substrate was cut into a cross section perpendicular to the upper surface, and the cut surface was polished and observed with a scanning electron microscope (SEM) equipped with a cathode luminescence (CL) detector.
  • SEM scanning electron microscope
  • CL cathode luminescence
  • FIG. 6 in the CL image, a high luminance light emitting portion emitting whitish light was confirmed inside the gallium nitride crystal.
  • FIG. 7 when the same field of view was imaged and confirmed with a scanning electron microscope (SEM), no void etc. were confirmed, and it was confirmed that a homogeneous gallium nitride crystal was grown.
  • the high brightness light emitting portion exists in CL observation but the same shape as the high brightness light emitting portion seen in the same field of view in the SEM There was no microstructure similar to it or that.
  • the dislocation density was measured on the top surface of the group 13 element nitride crystal layer.
  • the dislocation density was calculated by performing CL observation and measuring the density of dark spots as dislocation sites. As a result of observing five 80 ⁇ m ⁇ 105 ⁇ m fields of view, they varied within a range of 1.2 ⁇ 10 4 / cm 2 to 9.4 ⁇ 10 4 / cm 2 , and were 3.3 ⁇ 10 4 / cm 2 on average.
  • Arithmetic mean roughness Ra Arithmetic mean roughness Ra of the upper surface of the obtained free-standing substrate was measured with an atomic force microscope (model: AFM5400L) manufactured by Hitachi High-Tech Science. As a cantilever, MICRO CANTILEVER OMCL-AC160TS-C3 manufactured by OLYMPUS was used. The measurement conditions were a dynamic focus mode, a scanning frequency of 0.81 Hz, and a visual field of 10 ⁇ 10 ⁇ m. We used Nano Navi Real for analysis software. As a result, Ra was 0.08 nm.
  • n-type n-type layer was deposited 1 ⁇ m as an n-type layer at 1050 ° C. to have a Si atomic concentration of 5 ⁇ 10 18 / cm 3 as the n-type layer.
  • a multiple quantum well layer was deposited at 750 ° C. as a light emitting layer. Specifically, five layers of 2.5 nm well layers of InGaN and six layers of 10 nm of barrier layers of GaN were alternately stacked.
  • p-type layer 200 nm of p-GaN doped at a temperature of 950 ° C.
  • the Ni / Au film to be the anode electrode pad has a thickness of 5 nm and 60 nm, respectively, on a partial region of the upper surface of the Ni / Au film as the translucent anode electrode. Patterned.
  • the substrate thus obtained was cut into chips, and then mounted on lead frames to obtain light emitting elements of a vertical structure.
  • the upper surface of the obtained free-standing substrate was polished to adjust the arithmetic mean roughness Ra to 0.05, 0.1, and 1.0 nm, respectively.
  • Ra was adjusted as follows. The upper surface with Ra of 0.05 nm is adjusted by CMP, the upper surface with Ra of 0.1 nm is adjusted with RIE, and the upper surface with Ra of 1.0 nm is adjusted by mechanical polishing. did.
  • the light emitting functional layer was epitaxially grown on the upper surface of each freestanding substrate by the MOCVD method as described above. As a result, no surface pit was observed in any case.
  • a functional element having a rectifying function was produced. That is, a Schottky barrier diode structure was formed as follows on the upper surface of the freestanding substrate obtained in the example, and an electrode was formed to obtain a diode, and the characteristics were confirmed.
  • MOCVD metal organic chemical vapor deposition
  • a functional element having a power control function was produced.
  • a self-supporting substrate was produced in the same manner as in the above example. However, unlike Example 1, when forming a gallium nitride crystal film by Na flux method, doping of impurities was not performed. The upper surface of the free-standing substrate obtained in this manner, in the following manner, forming a Al 0.25 Ga 0.75 N / GaN HEMT structure by MOCVD to form the electrodes was confirmed transistor characteristics.
  • MOCVD metal organic chemical vapor deposition
  • a 3 ⁇ m-thick GaN layer was formed as an i-type layer at 1050 ° C. as an i-type layer on a free-standing substrate.
  • a 25 nm Al 0.25 Ga 0.75 N layer was deposited at 1050 ° C. as a functional layer. This resulted in an Al 0.25 Ga 0.75 N / GaN HEMT structure.
  • Ti / Al / Ni / Au films as source and drain electrodes were patterned to thicknesses of 15 nm, 70 nm, 12 nm, and 60 nm, respectively, using a photolithography process and a vacuum evaporation method. Thereafter, heat treatment at 700 ° C. in a nitrogen atmosphere was performed for 30 seconds in order to improve ohmic contact characteristics. Furthermore, using a photolithography process and a vacuum evaporation method, a Ni / Au film as a gate electrode was formed by Schottky junction with a thickness of 6 nm and 80 nm, respectively, and patterned. The substrate thus obtained was cut into chips, and then mounted on lead frames to obtain power control elements.
  • the upper surface of the Group 13 element nitride crystal in the present embodiment is an N-face, but the same effect can be obtained with a Ga-face.

Abstract

When the upper surface 13a of this group 13 element nitride crystal layer 13 is observed using cathode luminescence, there is a linear high luminance light-emitting portion 5 and a low luminance light-emitting region 6 adjoining the low luminance light-emitting portion 5. The half-width of (0002) plane reflection of the X-ray rocking curve on the upper surface 13a falls within the range of 20 seconds to 3000 seconds, and the arithmetic mean roughness Ra of the upper surface 13a falls within the range of 0.05 nm to 1.0 nm, inclusive.

Description

13族元素窒化物層、自立基板および機能素子 Group 13 element nitride layer, free-standing substrate and functional element
 本発明は、13族元素窒化物層、自立基板および機能素子に関するものである。 The present invention relates to a group 13 element nitride layer, a free-standing substrate and a functional device.
 単結晶基板を用いた発光ダイオード(LED)等の発光素子として、サファイア(α-アルミナ単結晶)上に各種窒化ガリウム(GaN)層を形成したものが知られている。例えば、サファイア基板上に、n型GaN層、InGaN層からなる量子井戸層とGaN層からなる障壁層とが交互積層された多重量子井戸層(MQW)、及びp型GaN層が順に積層形成された構造を有するものが量産化されている。 As a light emitting element such as a light emitting diode (LED) using a single crystal substrate, one in which various gallium nitride (GaN) layers are formed on sapphire (α-alumina single crystal) is known. For example, on a sapphire substrate, an n-type GaN layer, a multiple quantum well layer (MQW) in which quantum well layers composed of InGaN layers and barrier layers composed of GaN layers are alternately stacked, and p-type GaN layers are sequentially deposited. Those having a different structure are mass-produced.
 特許文献1に記載の窒化ガリウム層は、多数の窒化ガリウム単結晶粒子からなる多結晶窒化ガリウムであり、横方向に向かって多数の柱状窒化ガリウム単結晶粒子が配列されている。 The gallium nitride layer described in Patent Document 1 is polycrystalline gallium nitride composed of a large number of gallium nitride single crystal particles, and a large number of columnar gallium nitride single crystal particles are arranged in the lateral direction.
 特許文献2に記載の窒化ガリウム層は、多数の窒化ガリウム単結晶粒子からなる多結晶窒化ガリウムであり、横方向に向かって多数の柱状窒化ガリウム単結晶粒子が配列されている。また、表面における平均チルト角(表面に対する法線方向の結晶方位(結晶軸)の傾きの平均値))が1~10°である。 The gallium nitride layer described in Patent Document 2 is polycrystalline gallium nitride composed of a large number of gallium nitride single crystal particles, and a large number of columnar gallium nitride single crystal particles are arranged in the lateral direction. In addition, the average tilt angle (average value of the inclination of crystal orientation (crystal axis) in the direction normal to the surface) on the surface is 1 to 10 °.
 特許文献3では、底面から途中位置まではインクルージョンを高濃度で含み、途中位置から上面までは低濃度しか含まない粒界が下面から斜め方向に複数形成されている。また、粒界がc軸に対して50~70°の角度をもつ方向に斜めに伸びている。 In Patent Document 3, a large number of inclusions are included from the bottom to an intermediate position, and a plurality of grain boundaries including only a low concentration are formed diagonally from the lower surface from the intermediate position to the upper surface. In addition, the grain boundaries extend obliquely in the direction having an angle of 50 to 70 ° with respect to the c axis.
 特許文献5には、融液中のGa比率を高くすることによって低転位密度を有する窒化ガリウム結晶を得ることが記載されている。 Patent Document 5 describes that a gallium nitride crystal having a low dislocation density is obtained by increasing the Ga ratio in the melt.
特許第5770905号Patent No. 5770905 特許第6154066号Patent No. 6154066 特許第5897790号Patent No. 5897790 WO 2011/046203WO 2011/046203 WO2010/084682WO 2010/084682
 特許文献1および2の窒化ガリウム結晶の上に発光素子を作製した場合、素子サイズと粒径のバランスに因るが、電流パスが遮断されて発光効率の低下の原因となる場合もあることが判明してきた。この理由は明らかではないが、単結晶粒子間の方位の異方性が関与している可能性がある。 When light emitting devices are fabricated on gallium nitride crystals described in Patent Documents 1 and 2, the current path may be interrupted to cause a decrease in light emission efficiency depending on the balance between the device size and the particle diameter. It turned out. Although the reason for this is not clear, anisotropy in orientation between single crystal grains may be involved.
 特許文献3および4の窒化ガリウム結晶では、大口径になるほど、基板全面での融液の流れの制御が困難となり、結晶の外周にボイドが残存する場合がある。 In the gallium nitride crystals of Patent Documents 3 and 4, the larger the diameter, the more difficult it is to control the flow of the melt over the entire surface of the substrate, and in some cases voids may remain around the crystal.
 特許文献5では、高Ga比とフラックスの流れ制御でグレインサイズを大きくして転位密度を低減する事ができるが、グレインとグレインの間にボイドが含有されやすくなる。 In Patent Document 5, the grain size can be increased to reduce the dislocation density by controlling the flow of the high Ga ratio and the flux, but voids are likely to be contained between grains.
 本発明の課題は、窒化ガリウム、窒化アルミニウム、窒化インジウムまたはこれらの混晶から選択された13族元素窒化物結晶からなり、上面及び底面を有する13族元素窒化物結晶層において、転位密度を低くでき、全体にわたって特性のばらつきを少なくできるような微構造を提供することである。 An object of the present invention is to reduce dislocation density in a Group 13 element nitride crystal layer comprising a Group 13 element nitride crystal selected from gallium nitride, aluminum nitride, indium nitride or mixed crystals thereof and having top and bottom surfaces. It is possible to provide a microstructure which is capable of reducing the variation of the characteristics throughout.
 本発明の第一の態様は、窒化ガリウム、窒化アルミニウム、窒化インジウムまたはこれらの混晶から選択された13族元素窒化物結晶からなり、上面及び底面を有する13族元素窒化物結晶層であって、
 前記上面をカソードルミネッセンスによって観測したときに、線状の高輝度発光部と、前記高輝度発光部に隣接する低輝度発光領域とを有しており、
 前記上面におけるX線ロッキングカーブの(0002)面反射の半値幅が3000秒以下、20秒以上であり、
 前記上面の算術平均粗さRaが0.05nm以上、1.0nm以下であることを特徴とする。
A first aspect of the present invention is a Group 13 element nitride crystal layer comprising a Group 13 element nitride crystal selected from gallium nitride, aluminum nitride, indium nitride or mixed crystals thereof, and having a top surface and a bottom surface. ,
When the upper surface is observed by cathode luminescence, it has a linear high luminance light emitting portion and a low luminance light emitting region adjacent to the high luminance light emitting portion,
The half value width of (0002) plane reflection of the X-ray rocking curve on the upper surface is 3000 seconds or less and 20 seconds or more,
Arithmetic mean roughness Ra of the upper surface is 0.05 nm or more and 1.0 nm or less.
 また、本発明の第二の態様は、窒化ガリウム、窒化アルミニウム、窒化インジウムまたはこれらの混晶から選択された13族元素窒化物結晶からなり、上面及び底面を有する13族元素窒化物結晶層であって、
 前記上面をカソードルミネッセンスによって観測したときに、高輝度発光部と、前記高輝度発光部に隣接する低輝度発光領域とを有しており、
 前記上面におけるX線ロッキングカーブの(1000)面反射の半値幅が10000秒以下、20秒以上であり、
 前記上面の算術平均粗さRaが0.05nm以上、1.0nm以下であることを特徴とする。
The second aspect of the present invention is a Group 13 element nitride crystal layer comprising a Group 13 element nitride crystal selected from gallium nitride, aluminum nitride, indium nitride or mixed crystals thereof, and having a top surface and a bottom surface. There,
When the upper surface is observed by cathode luminescence, it has a high brightness light emitting portion and a low brightness light emitting region adjacent to the high brightness light emitting portion,
The half value width of (1000) plane reflection of the X-ray rocking curve on the upper surface is 10000 seconds or less and 20 seconds or more,
Arithmetic mean roughness Ra of the upper surface is 0.05 nm or more and 1.0 nm or less.
 また、本発明は、前記13族元素窒化物層からなることを特徴とする、自立基板に係るものである。 The present invention also relates to a self-supporting substrate characterized by comprising the group 13 element nitride layer.
 また、本発明は、
 支持基板、および
 前記支持基板上に設けられた前記13族元素窒化物層
を備えていることを特徴とする、複合基板に係るものである。
Also, the present invention is
A composite substrate, comprising: a support substrate; and the group 13 element nitride layer provided on the support substrate.
 また、本発明は、前記自立基板、および
 前記13族元素窒化物層上に設けられた機能層を有することを特徴とする、機能素子に係るものである。
Further, the present invention relates to a functional device having the above-mentioned self-supporting substrate and a functional layer provided on the above-mentioned Group 13 element nitride layer.
 また、本発明は、前記複合基板、および
 前記13族元素窒化物層上に設けられた機能層を有することを特徴とする、機能素子に係るものである。
In addition, the present invention relates to a functional device including the composite substrate and a functional layer provided on the group 13 element nitride layer.
 本発明の第一の態様によれば、13族元素窒化物結晶層の上面をカソードルミネッセンスによって観測したときに、線状の高輝度発光部と、高輝度発光部に隣接する低輝度発光領域とを有しており、かつ上面におけるX線ロッキングカーブの(0002)面反射の半値幅が3000秒以下、20秒以上である。これは、上面に線状の高輝度発光部が現れていることから、13族元素窒化物結晶に含有されるドーパント成分や微量成分等が濃い線状の高輝度発光部を生成していることを意味している。これと同時に、上面における平均チルト角が小さく、結晶軸の方位がほぼ揃った状態となっていることから、単結晶に類似した非常に均質性の高い微構造が得られているものである。 According to the first aspect of the present invention, when the top surface of the Group 13 element nitride crystal layer is observed by cathode luminescence, a linear high luminance light emitting portion and a low luminance light emitting region adjacent to the high luminance light emitting portion And the half width of (0002) plane reflection of the X-ray rocking curve on the upper surface is 3000 seconds or less and 20 seconds or more. This is because a linear high-intensity light emitting portion appears on the upper surface, so that a linear high-intensity light emitting portion in which a dopant component, a trace amount component, and the like contained in a Group 13 element nitride crystal are dark is generated. Means. At the same time, since the average tilt angle on the upper surface is small and the orientations of the crystal axes are substantially aligned, a very homogeneous microstructure similar to a single crystal is obtained.
 本発明の第二の態様によれば、13族元素窒化物結晶層の上面をカソードルミネッセンスによって観測したときに、線状の高輝度発光部と、高輝度発光部に隣接する低輝度発光領域とを有しており、かつ13族元素窒化物結晶層の上面におけるX線ロッキングカーブの(1000)面反射の半値幅が10000秒以下、20秒以上である。これは、上面に線状の高輝度発光部が現れていることから、13族元素窒化物結晶に含有されるドーパント成分が非常に濃い線状の高輝度発光部を生成していることを意味している。これと同時に、上面における平均ツイスト角が小さく、結晶軸の方位がほぼ揃った状態となっていることから、単結晶に類似した非常に均質性の高い微構造が得られているものである。 According to the second aspect of the present invention, when the upper surface of the Group 13 element nitride crystal layer is observed by cathode luminescence, a linear high luminance light emitting portion and a low luminance light emitting region adjacent to the high luminance light emitting portion And the half value width of (1000) plane reflection of the X-ray rocking curve on the upper surface of the group 13 element nitride crystal layer is 10000 seconds or less and 20 seconds or more. This means that since the linear high-intensity light emitting portion appears on the upper surface, the dopant component contained in the Group 13 element nitride crystal forms a very linear high-intensity light emitting portion that is very dark. doing. At the same time, since the average twist angle on the upper surface is small and the orientations of the crystal axes are substantially aligned, a very homogeneous microstructure similar to a single crystal is obtained.
 これらのような新規な微構造を有する13族元素窒化物結晶層によって、寸法を大きくしても(例えば径6インチ以上としても)、転位密度を低くでき、全体にわたって特性のばらつきを少なくできるような13族元素窒化物結晶層を提供することができる。
 これに加えて、13族元素窒化物結晶層の上面の算術平均粗さRaが0.05nm以上、1.0nm以下である。これによって、13族元素窒化物結晶層の上面にLD素子やLED素子などの機能素子層をエピタキシャル成長させる際に、表面ピットの発生を抑制することができる。
Group 13 element nitride crystal layers having such novel microstructures can reduce dislocation density even if the size is increased (for example, even if the diameter is 6 inches or more), and the variation in characteristics can be reduced overall It is possible to provide a group 13 element nitride crystal layer.
In addition to this, the arithmetic average roughness Ra of the upper surface of the group 13 element nitride crystal layer is 0.05 nm or more and 1.0 nm or less. This makes it possible to suppress the generation of surface pits when epitaxially growing a functional device layer such as an LD device or an LED device on the top surface of a Group 13 element nitride crystal layer.
(a)は、支持基板1上にアルミナ層2、種結晶層3および13族元素窒化物結晶層13を設けた状態を示し、(b)は、支持基板から分離された13族元素窒化物結晶層13を示す。(A) shows the state in which the alumina layer 2, the seed crystal layer 3 and the group 13 element nitride crystal layer 13 are provided on the support substrate 1, and (b) is a group 13 element nitride separated from the support substrate The crystal layer 13 is shown. 13族元素窒化物結晶層13の上面13aのカソードルミネセンス像を説明するための模式図である。FIG. 6 is a schematic view for explaining a cathode luminescence image of the upper surface 13 a of the group 13 element nitride crystal layer 13. 13族元素窒化物結晶層13の上面13aのカソードルミネセンス像を示す写真である。It is a photograph which shows the cathode luminescence image of upper surface 13a of 13 group element nitride crystal layer 13. FIG. 図3の部分拡大写真である。It is a partial enlarged photograph of FIG. 図4のカソードルミネセンス像に対応する模式図である。It is a schematic diagram corresponding to the cathode luminescence image of FIG. 13族元素窒化物結晶層13の断面のカソードルミネセンス像を示す写真である。It is a photograph which shows the cathode luminescence image of the section of 13 group element nitride crystal layer 13. 13族元素窒化物結晶層13の断面を示す走査型電子顕微鏡写真である。7 is a scanning electron micrograph showing a cross section of a Group 13 element nitride crystal layer 13; 本発明に係る機能素子21を示す模式図である。It is a schematic diagram which shows the functional element 21 which concerns on this invention. 13族元素窒化物結晶層の上面の走査型電子顕微鏡による撮像写真である。It is a photography picture with a scanning electron microscope of the upper surface of 13 group element nitride crystal layer. CL画像から生成したグレースケールのヒストグラムを示す。2 shows a gray scale histogram generated from a CL image.
 以下、本発明を更に詳細に説明する。
(13族元素窒化物結晶層)
 本発明の13族元素窒化物結晶層は、窒化ガリウム、窒化アルミニウム、窒化インジウムまたはこれらの混晶から選択された13族元素窒化物結晶からなり、上面及び底面を有する。例えば、図1(b)に示すように、13族元素窒化物結晶層13では上面13aと底面13bとが対向している。
Hereinafter, the present invention will be described in more detail.
(Group 13 element nitride crystal layer)
The Group 13 element nitride crystal layer of the present invention is composed of Group 13 element nitride crystals selected from gallium nitride, aluminum nitride, indium nitride or mixed crystals thereof, and has top and bottom surfaces. For example, as shown in FIG. 1B, in the group 13 element nitride crystal layer 13, the top surface 13a and the bottom surface 13b face each other.
 13族元素窒化物結晶層を構成する窒化物は、窒化ガリウム、窒化アルミニウム、窒化インジウムまたはこれらの混晶である。具体的には、GaN、AlN、InN、GaAl1-xN(1>x>0)、GaIn1-xN(1>x>0)、GaAlInzN(1>x>0、1>y>0、x+y+z=1)である。 The nitride constituting the Group 13 element nitride crystal layer is gallium nitride, aluminum nitride, indium nitride or mixed crystals thereof. Specifically, GaN, AlN, InN, Ga x Al 1-x N (1>x> 0), Ga x In 1-x N (1>x> 0), Ga x Al y In z N (1 >X> 0, 1>y> 0, x + y + z = 1).
 特に好ましくは、13族元素窒化物結晶層を構成する窒化物が窒化ガリウム系窒化物である。具体的には、GaN、GaAl1-xN(1>x>0.5)、GaIn1-xN(1>x>0.4)、GaAlInzN(1>x>0.5、1>y>0.3、x+y+z=1)である。 Particularly preferably, the nitride constituting the Group 13 element nitride crystal layer is a gallium nitride based nitride. Specifically, GaN, Ga x Al 1- x N (1>x> 0.5), Ga x In 1-x N (1>x> 0.4), Ga x Al y In z N (1>x> 0.5 , 1>y> 0.3, x + y + z = 1).
 13族元素窒化物は、亜鉛、カルシウムや、その他のn型ドーパント又はp型ドーパントでドープされていてもよく、この場合、多結晶13族元素窒化物を、p型電極、n型電極、p型層、n型層等の基材以外の部材又は層として使用することができる。p型ドーパントの好ましい例としては、ベリリウム(Be)、マグネシウム(Mg)、ストロンチウム(Sr)、及びカドミウム(Cd)からなる群から選択される1種以上が挙げられる。n型ドーパントの好ましい例としては、シリコン(Si)、ゲルマニウム(Ge)、スズ(Sn)及び酸素(O)からなる群から選択される1種以上が挙げられる。 Group 13 element nitrides may be doped with zinc, calcium or other n-type dopants or p-type dopants, in which case polycrystalline group 13 element nitrides may be p-type electrodes, n-type electrodes, p It can be used as a member or layer other than a substrate such as a mold layer and an n-type layer. Preferred examples of the p-type dopant include one or more selected from the group consisting of beryllium (Be), magnesium (Mg), strontium (Sr), and cadmium (Cd). Preferred examples of the n-type dopant include one or more selected from the group consisting of silicon (Si), germanium (Ge), tin (Sn) and oxygen (O).
 ここで、13族元素窒化物結晶層13の上面13aをカソードルミネッセンスによって観測したときに、図2に模式的に示すように、線状の高輝度発光部5と、高輝度発光部5に隣接する低輝度発光領域6とを有している。 Here, when the upper surface 13a of the group 13 element nitride crystal layer 13 is observed by cathode luminescence, it is adjacent to the linear high-intensity light emitting portion 5 and the high-intensity light emitting portion 5 as schematically shown in FIG. And a low luminance light emitting area 6.
 ただし、カソードルミネッセンス(CL)による観測は以下のようにして行うものとする。
 CL観察には、カソードルミネッセンス検出器付きの走査電子顕微鏡(SEM)を用いる。例えばGatan製MiniCLシステム付きの日立ハイテクノロジーズ製S-3400N走査電子顕微鏡を用いた場合、測定条件は、CL検出器を試料と対物レンズの間に挿入した状態で、加速電圧10kV、プローブ電流「90」、ワーキングディスタンス(W.D.)22.5mm、倍率50倍で観察するのが好ましい。
 また、高輝度発光部と低輝度発光領域とは、カソードルミネッセンスによる観測から以下のようにして区別する。
 加速電圧10kV、プローブ電流「90」、ワーキングディスタンス(W.D.)22.5mm、倍率50倍でCL観察した画像の輝度を、画像解析ソフト(例えば、三谷商事(株)製WinROOF Ver6.1.3)を用いて、縦軸を度数、横軸を輝度(GRAY)として、256段階のグレースケールのヒストグラムを作成する。ヒストグラムには、図10のように、2つのピークが確認され、2つのピーク間で度数が最小値となる輝度を境界として、高い側を高輝度発光部、低い側を低輝度発光領域と定義する。
However, observation by cathode luminescence (CL) shall be performed as follows.
For CL observation, a scanning electron microscope (SEM) with a cathode luminescence detector is used. For example, when using Hitachi High-Technologies S-3400N scanning electron microscope with Gatan MiniCL system, measurement conditions are: acceleration voltage 10 kV, probe current “90” with CL detector inserted between sample and objective lens The working distance (W.D.) is preferably 22.5 mm and observed at a magnification of 50 times.
Further, the high luminance light emitting portion and the low luminance light emitting region are distinguished as follows from the observation by cathode luminescence.
Image analysis software (for example, Mitani Shoji Co., Ltd. WinROOF Ver. 6.1), the luminance of the image observed CL at an acceleration voltage of 10 kV, probe current “90”, working distance (W.D.) 22.5 mm, magnification 50 × 3. Create a 256-step gray scale histogram using the vertical axis as the frequency and the horizontal axis as the luminance (GRAY) using 3). In the histogram, as shown in FIG. 10, two peaks are confirmed, and the high side is defined as a high brightness light emitting portion and the low side as a low brightness light emitting region with the brightness at which the frequency is minimum between the two peaks as a boundary. Do.
 また、13族元素窒化物結晶層の上面では、線状の高輝度発光部に低輝度発光領域が隣接する。これによって、隣り合う低輝度発光領域は、それらの間にある線状の高輝度発光部によって区分される。ここで、高輝度発光部が線状であるとは、隣り合う低輝度発光領域の間で高輝度発光部が細長く伸びていて境界線をなしている状態を示す。 Further, on the top surface of the group 13 element nitride crystal layer, the low luminance light emitting region is adjacent to the linear high luminance light emitting portion. By this, adjacent low-intensity light emission areas are divided by the linear high-intensity light emission parts located between them. Here, that the high brightness light emitting portion is linear means that the high brightness light emitting portion is elongated and elongated between adjacent low brightness light emitting regions to form a boundary line.
 ここで、高輝度発光部がなしている線は、直線であってよく、また曲線であってよく、更には直線と曲線との組み合わせであってもよい。曲線は円弧、楕円、放物線、双曲線などの種々の形態を含んでいても良い。また、互いに方向の異なる高輝度発光部が連続していて良いが、高輝度発光部の末端が切れていても良い。 Here, the line made by the high-intensity light emitting portion may be a straight line, a curved line, or a combination of a straight line and a curved line. The curve may include various forms such as arc, ellipse, parabola, hyperbola and the like. Moreover, although the high-intensity light emission part from which a direction mutually differs may be continuous, the terminal of the high-intensity light emission part may be cut off.
 13族元素窒化物結晶層の上面においては、低輝度発光領域は、その下に成長してきた13族元素窒化物結晶の露出面であってよく、面状に、二次元的に広がっている。一方、高輝度発光部は線状をなしているが、隣り合う低輝度発光領域を区分する境界線のように一次元的に伸びている。これは、例えば、下から成長してきた13族元素窒化物結晶からドーパント成分や微量成分等が排出され、成長過程で隣り合う13族元素窒化物結晶の間に集まり、上面において隣り合う低輝度発光領域の間に、線状に強く発光する部分を生成したものと考えられる。 In the upper surface of the group 13 element nitride crystal layer, the low luminance light emitting region may be an exposed surface of the group 13 element nitride crystal grown therebelow, and is two-dimensionally spread in a planar manner. On the other hand, the high brightness light emitting portion is linear, but extends in a one-dimensional manner as a boundary that divides adjacent low brightness light emitting regions. This is because, for example, a dopant component and a trace component are discharged from a Group 13 element nitride crystal grown from below, and are gathered between adjacent Group 13 element nitride crystals in the growth process, and the low luminance emission is adjacent on the top surface It is considered that linear bright light-emitting portions were generated between the regions.
 例えば図3に、実施例で得られた13族元素窒化物結晶層の上面のカソードルミネッセンス測定による写真を示す。図4は、図3の部分拡大図であり、図5は図4に対応する模式図である。低輝度発光領域が面状に、二次元的に広がっており、高輝度発光部は線状をなしており、隣り合う低輝度発光領域を区分する境界線のように一次元的に伸びていることがわかる。 For example, FIG. 3 shows a photograph by cathode luminescence measurement of the top surface of the group 13 element nitride crystal layer obtained in the example. 4 is a partial enlarged view of FIG. 3, and FIG. 5 is a schematic view corresponding to FIG. The low brightness light emitting area is two-dimensionally spread in a plane, and the high brightness light emitting portion is linear, and is one-dimensionally stretched like a boundary dividing the adjacent low brightness light emitting areas. I understand that.
 このことから、低輝度発光領域の形状には特に制限はなく、通常は面状に、二次元的に伸びているものである。一方、高輝度発光部が形成する線は、細長いものである必要がある。こうした観点からは、高輝度発光部の幅は、100μm以下であることが好ましく、20μm以下であることが更に好ましく、5μm以下であることが特に好ましい。また、高輝度発光部の幅は通常0.01μm以上である。 From this, the shape of the low luminance light emitting region is not particularly limited, and usually extends two-dimensionally in a planar shape. On the other hand, the line formed by the high luminance light emitting portion needs to be elongated. From such a viewpoint, the width of the high brightness light emitting portion is preferably 100 μm or less, more preferably 20 μm or less, and particularly preferably 5 μm or less. In addition, the width of the high brightness light emitting portion is usually 0.01 μm or more.
 また、本発明の観点からは、高輝度発光部の長さと幅との比率(長さ/幅)は、1以上が好ましく、10以上が更に好ましい。 From the viewpoint of the present invention, the ratio (length / width) of the length to the width of the high luminance light emitting portion is preferably 1 or more, and more preferably 10 or more.
 また、本発明の観点からは、上面において、高輝度発光部の面積の低輝度発光領域の面積に対する比率(高輝度発光部の面積/低輝度発光領域の面積)は、0.001以上であることが好ましく、0.01以上であることが更に好ましい。
 また、本発明の観点からは、上面において、高輝度発光部の面積の低輝度発光領域の面積に対する比率(高輝度発光部の面積/低輝度発光領域の面積)は、0.3以下であることが好ましく、0.1以下であることが更に好ましい。
From the viewpoint of the present invention, the ratio of the area of the high luminance light emitting portion to the area of the low luminance light emitting region on the upper surface (area of high luminance light emitting portion / area of low luminance light emitting region) is 0.001 or more Is more preferably 0.01 or more.
From the viewpoint of the present invention, the ratio of the area of the high luminance light emitting portion to the area of the low luminance light emitting region on the upper surface (area of high luminance light emitting portion / area of low luminance light emitting region) is 0.3 or less Is more preferably 0.1 or less.
 好適な実施形態においては、13族元素窒化物結晶層の上面において、高輝度発光部が連続相を形成しており、低輝度発光領域が高輝度発光部によって区画された不連続相を形成している。例えば、図2、図5の模式図では、線状の高輝度発光部5は連続相を形成しており、低輝度発光領域6が高輝度発光部5によって区画された不連続相を形成している。 In a preferred embodiment, on the upper surface of the Group 13 element nitride crystal layer, the high brightness light emitting portion forms a continuous phase, and the low brightness light emitting region forms a discontinuous phase partitioned by the high brightness light emitting portion. ing. For example, in the schematic views of FIGS. 2 and 5, the linear high brightness light emitting portion 5 forms a continuous phase, and the low brightness light emitting region 6 forms a discontinuous phase partitioned by the high brightness light emitting portion 5. ing.
 ただし、連続相とは、上面において、高輝度発光部5が連続していることを意味するが、高輝度発光部5すべてが完全に連続していることを必須としているわけではなく、全体のパターンに影響しない範囲で少量の高輝度発光部5が他の高輝度発光部5に対して分離されていることは許容するものとする。 However, the continuous phase means that the high brightness light emitting portion 5 is continuous on the upper surface, but it is not essential that all the high brightness light emitting portions 5 are completely continuous, and the whole It is to be allowed that a small amount of the high luminance light emitting portion 5 is separated from the other high luminance light emitting portions 5 without affecting the pattern.
 また、分散相とは、低輝度発光領域6が概ね高輝度発光部5によって区画されていて、互いにつながらない多数の領域に分かれていることを意味する。また、上面において、低輝度発光領域6が高輝度発光部5によって分離されていても、13族元素窒化物結晶層の内部において低輝度発光領域6が連続していることは許容される。 Further, the dispersed phase means that the low brightness light emitting region 6 is divided by the high brightness light emitting portion 5 and divided into a large number of regions which are not connected to each other. In addition, even if the low brightness light emitting region 6 is separated by the high brightness light emitting portion 5 on the upper surface, it is acceptable that the low brightness light emitting region 6 is continuous inside the group 13 element nitride crystal layer.
 好適な実施形態においては、高輝度発光部が、13族元素窒化物結晶のm面に沿って延びる部分を含む。例えば、図2、図5の例においては、高輝度発光部5は細長い線状に延びており、m面に沿って伸びる部分5a、5b、5cを多く含んでいる。六方晶である13族元素窒化物結晶のm面に沿った方向とは、具体的には、[-2110]、[-12-10]、[11-20]、[2-1-10]、[1-210]、[-1-120]方向であり、高輝度発光部5は、六方晶を反映した略六角形の辺の一部を含む。また、線状の高輝度発光部がm面に沿って伸びているとは、高輝度発光部の長手方向が[-2110]、[-12-10]、[11-20]、[2-1-10]、[1-210]、[-1-120]方向のいずれかに沿って延びていることを意味している。具体的には、線状高輝度発光部の長手方向がm面に対して、好ましくは±1°以内、さらに好ましくは±0.3°以内である場合を含む。 In a preferred embodiment, the high brightness light emitting portion includes a portion extending along the m-plane of the Group 13 element nitride crystal. For example, in the example of FIG. 2, FIG. 5, the high-intensity light emission part 5 is extended in elongate linear form, and contains many parts 5a, 5b, 5c extended along m surface. Specifically, the directions along the m-plane of Group 13 element nitride crystal, which is a hexagonal crystal, are [-2110], [-12-10], [11-20], and [2-1-10]. The high-intensity light emitting unit 5 includes a part of the side of a substantially hexagonal shape reflecting the hexagonal crystal, which is a [1-210], [-1-120] direction. The linear high-intensity light emitting portion extending along the m-plane means that the longitudinal direction of the high-intensity light emitting portion is [-2110], [-12-10], [11-20], [2- It means extending along one of 1-10 directions, [1-210] and [-1-120] directions. Specifically, the case where the longitudinal direction of the linear high luminance light emitting part is preferably within ± 1 °, more preferably within ± 0.3 ° with respect to the m-plane is included.
 高輝度発光部の全長に占めるm面に沿った方向に延びる部分の割合は、60%以上が好ましく、80%以上であることが更に好ましく、実質的に高輝度発光部の全体を占めていてもよい。 The ratio of the portion extending in the direction along the m-plane to the total length of the high luminance light emitting portion is preferably 60% or more, more preferably 80% or more, and substantially occupies the entire high luminance light emitting portion It is also good.
 本発明の第一の態様においては、13族元素窒化物結晶層の上面におけるX線ロッキングカーブの(0002)面反射の半値幅が3000秒以下、20秒以上である。これは、上面において、表面チルト角が小さく、結晶方位が全体として単結晶のように高度に配向していることを示している。前述したようなカソードルミネッセンス分布を有している上で、このような全体として表面での結晶方位が高度に配向している微構造であると、13族元素窒化物結晶層の上面における特性分布が小さくでき、その上に設けられる各種機能素子の特性を均一に揃えることが可能であり、また機能素子の歩留りも改善する。 In the first aspect of the present invention, the half width of (0002) plane reflection of the X-ray rocking curve on the top surface of the group 13 element nitride crystal layer is 3000 seconds or less and 20 seconds or more. This indicates that the top surface has a small surface tilt angle, and the crystal orientation as a whole is highly oriented like a single crystal. A characteristic distribution on the upper surface of a Group 13 element nitride crystal layer as having a microstructure in which the crystal orientation on the surface as a whole is highly oriented while having the cathode luminescence distribution as described above It is possible to make the characteristics of the various functional elements provided thereon uniform, and to improve the yield of the functional elements.
 こうした観点からは、13族元素窒化物結晶層の上面におけるX線ロッキングカーブの(0002)面反射の半値幅が1000秒以下、20秒以上であることが好ましく、500秒以下、20秒以上であることがより一層好ましい。なお、13族元素窒化物結晶層の上面におけるX線ロッキングカーブの(0002)面反射の半値幅を20秒未満まで小さくすることは現実的には困難である。 From such a viewpoint, the half value width of (0002) plane reflection of the X-ray rocking curve on the top surface of the group 13 element nitride crystal layer is preferably 1000 seconds or less and 20 seconds or more, and 500 seconds or less and 20 seconds or more It is even more preferable that there be. In addition, it is practically difficult to reduce the half width of (0002) plane reflection of the X-ray rocking curve on the upper surface of the group 13 element nitride crystal layer to less than 20 seconds.
 ただし、X線ロッキングカーブ(0002)面反射は以下のように測定する。XRD装置(例えばBruker-AXS製D8-DISCOVER)を用いて、測定条件は管電圧40kV、管電流40mA、コリメータ径0.1mm、アンチスキャッタリングスリット3mmで、ω=ピーク位置角度±0.3°の範囲、ωステップ幅0.003°、及び計数時間1秒に設定して行えばよい。この測定ではGe(022)非対称反射モノクロメーターでCuKα線を平行単色光化(半値幅28秒)し、あおり角CHI=0°付近で軸立てた上で測定するのが好ましい。そして、X線ロッキングカーブ(0002)面反射の半値幅は、XRD解析ソフトウェア(Bruker-AXS製、LEPTOS4.03)を用いてピークサーチを行い算出する事ができる。ピークサーチ条件は、Noise Filter「10」、Threshold「0.30」、Points「10」とすることが好ましい。 However, X-ray rocking curve (0002) surface reflection is measured as follows. Measurement conditions are: tube voltage 40 kV, tube current 40 mA, collimator diameter 0.1 mm, anti-scattering slit 3 mm, using an XRD apparatus (for example, D8-DISCOVER manufactured by Bruker-AXS), ω = peak position angle ± 0.3 ° And the ω step width of 0.003 ° and the counting time of 1 second. In this measurement, it is preferable to parallelize CuKα rays (half-width 28 seconds) with a Ge (022) asymmetric reflection monochromator and measure the axis after setting the axis at a tilt angle CHI of about 0 °. The half width of the X-ray rocking curve (0002) surface reflection can be calculated by performing peak search using XRD analysis software (LEPTOS 4.03 manufactured by Bruker-AXS). The peak search conditions are preferably Noise Filter “10”, Threshold “0.30”, and Points “10”.
 13族元素窒化物結晶層の上面に略垂直な断面は、カソードルミネッセンスによって観測すると、図6に示すように、白っぽく発光する線状の高輝度発光部が観測されることがある。なお、図6において、低輝度発光領域が面状に、二次元的に広がっており、高輝度発光部は線状をなしており、隣り合う低輝度発光領域を区分する境界線のように伸びていることがわかる。こうした高輝度発光部および低輝度発光領域の観測方法は、上面における高輝度発光部および低輝度発光領域の観測方法と同じである。 When a cross section substantially perpendicular to the top surface of the group 13 element nitride crystal layer is observed by cathode luminescence, as shown in FIG. 6, a linear high-intensity light emitting portion that emits whitish may be observed. In FIG. 6, the low brightness light emitting area is two-dimensionally spread in a planar manner, and the high brightness light emitting portion is linear, and extends like a boundary line which divides adjacent low brightness light emitting areas. Know that The observation method of such a high luminance light emitting portion and the low luminance light emitting region is the same as the observation method of the high luminance light emitting portion and the low luminance light emitting region on the upper surface.
 13族元素窒化物結晶層の断面における低輝度発光領域の形状には特に制限はなく、通常は面状に、二次元的に伸びているものである。一方、高輝度発光部が形成する線は、細長いものである必要がある。こうした観点からは、高輝度発光部の幅は、50μm以下であることが好ましく、10μm以下であることが更に好ましい。 There is no particular limitation on the shape of the low luminance light emitting region in the cross section of the Group 13 element nitride crystal layer, and usually it is two-dimensionally extended in a planar shape. On the other hand, the line formed by the high luminance light emitting portion needs to be elongated. From such a viewpoint, the width of the high brightness light emitting portion is preferably 50 μm or less, and more preferably 10 μm or less.
 好適な実施形態においては、13族元素窒化物結晶層の上面と略垂直な前記断面において、線状の高輝度発光部が連続相を形成しており、低輝度発光領域が高輝度発光部によって区画された不連続相を形成している。例えば、図6のカソードルミネッセンス像では、線状の高輝度発光部は連続相を形成しており、低輝度発光領域が高輝度発光部によって区画された不連続相を形成している。 In a preferred embodiment, in the cross section substantially perpendicular to the top surface of the Group 13 element nitride crystal layer, the linear high luminance light emitting portion forms a continuous phase, and the low luminance light emitting region is formed by the high luminance light emitting portion. It forms a partitioned discontinuous phase. For example, in the cathode luminescence image of FIG. 6, the linear high brightness light emitting portion forms a continuous phase, and the low brightness light emitting region forms a discontinuous phase partitioned by the high brightness light emitting portion.
 ただし、連続相とは、前記断面において、高輝度発光部が連続していることを意味するが、高輝度発光部すべてが完全に連続していることを必須としているわけではなく、全体のパターンに影響しない範囲で少量の高輝度発光部が他の高輝度発光部に対して分離されていることは許容するものとする。 However, the continuous phase means that the high brightness light emitting portion is continuous in the cross section, but it is not essential that all the high brightness light emitting portions are completely continuous, and the whole pattern It is acceptable that a small amount of high-intensity light emitting portions are separated from other high-intensity light emitting portions without affecting the above.
 また、分散相とは、低輝度発光領域が概ね高輝度発光部によって区画されていて、互いにつながらない多数の領域に分かれていることを意味する。 Further, the dispersed phase means that the low brightness light emitting region is divided by the high brightness light emitting portion and divided into many regions which are not connected to each other.
 好適な実施形態においては、13族元素窒化物結晶層の上面に略垂直な断面においてボイドが観測されない。すなわち、図7に示す走査型電子顕微鏡写真において、ボイド(空隙)や13族元素窒化物結晶以外の異なる結晶相は観測されない。ただし、ボイドの観測は以下のようにして行う。 In a preferred embodiment, no void is observed in a cross section substantially perpendicular to the top surface of the Group 13 element nitride crystal layer. That is, in the scanning electron micrograph shown in FIG. 7, different crystal phases other than voids (voids) and group 13 element nitride crystals are not observed. However, observation of void is performed as follows.
 ボイドは、13族元素窒化物結晶層の上面に略垂直な断面を走査型電子顕微鏡(SEM)で観察した際に観察され、最大幅が1μm~500μmの大きさの空隙を「ボイド」とする。このSEM観察には、例えば日立ハイテクノロジーズ製S-3400N走査電子顕微鏡を用いる。測定条件は、加速電圧15kV、プローブ電流「60」、ワーキングディスタンス(W.D.)6.5mm、倍率100倍で観察するのが好ましい。 A void is observed when a cross section substantially perpendicular to the top surface of the Group 13 element nitride crystal layer is observed with a scanning electron microscope (SEM), and a void having a maximum width of 1 μm to 500 μm is a “void”. . For this SEM observation, for example, S-3400N scanning electron microscope manufactured by Hitachi High-Technologies Corporation is used. Measurement conditions are preferably observed at an acceleration voltage of 15 kV, a probe current of "60", a working distance (W.D.) of 6.5 mm, and a magnification of 100 times.
 また、好適な実施形態においては、13族元素窒化物結晶層の上面における転位密度が1×10/cm以上、1×10/cm以下である。この転位密度を1×10/cm以下とすることが機能素子の特性向上の観点から特に好ましい。この観点からは、この転位密度を1×10/cm以下とすることが更に好ましい。この転位密度は以下のようにして測定するものとする。 In a preferred embodiment, the dislocation density on the top surface of the Group 13 element nitride crystal layer is 1 × 10 2 / cm 2 or more and 1 × 10 6 / cm 2 or less. It is particularly preferable to set the dislocation density to 1 × 10 6 / cm 2 or less from the viewpoint of improving the characteristics of the functional element. From this viewpoint, it is more preferable to set the dislocation density to 1 × 10 4 / cm 2 or less. The dislocation density is measured as follows.
 転位密度の測定には、カソードルミネッセンス検出器付きの走査電子顕微鏡(SEM)を用いることができる。例えばGatan製MiniCLシステム付きの日立ハイテクノロジーズ製S-3400N走査電子顕微鏡を用いた場合、転位箇所が発光せずに黒点(ダークスポット)として観察される。そのダークスポット密度を計測する事により、転位密度が算出される。測定条件は、CL検出器を試料と対物レンズの間に挿入した状態で、加速電圧10kV、プローブ電流「90」、ワーキングディスタンス(W.D.)22.5mm、倍率1200倍で観察するのが好ましい。 For the measurement of dislocation density, a scanning electron microscope (SEM) with a cathode luminescence detector can be used. For example, when using a Hitachi High-Technologies S-3400N scanning electron microscope with Gatan MiniCL system, dislocation sites are observed as dark spots without light emission. Dislocation density is calculated by measuring the dark spot density. As the measurement conditions, while the CL detector is inserted between the sample and the objective lens, it is preferable to observe at an acceleration voltage of 10 kV, a probe current of "90", a working distance (W.D.) 22.5 mm, and a magnification of 1200 times. preferable.
 また、好適な実施形態においては、13族元素窒化物結晶層の上面におけるX線ロッキングカーブの(1000)面反射の半値幅が10000秒以下、20秒以上、かつ、 (1000)面反射の半値幅が10000秒以下、20秒以上である。これは上面における表面チルト角および表面ツイスト角が共に小さく、結晶方位が全体として単結晶のようにより高度に配向していることを示している。このような全体として表面での結晶方位がより高度に配向している微構造であると、13族元素窒化物結晶層の上面における特性分布が小さくでき、その上に設けられる各種機能素子の特性を均一に揃えることが可能であり、また機能素子の歩留りも改善する。 In a preferred embodiment, the half width of (1000) plane reflection of the X-ray rocking curve on the top surface of the group 13 element nitride crystal layer is 10000 seconds or less, 20 seconds or more, and half of (1000) plane reflection. The value range is 10000 seconds or less and 20 seconds or more. This indicates that both the surface tilt angle and the surface twist angle at the upper surface are small, and the crystal orientation is highly oriented as a whole, like a single crystal. With such a fine structure in which the crystal orientation at the surface as a whole is more highly oriented, the characteristic distribution on the upper surface of the group 13 element nitride crystal layer can be reduced, and the characteristics of various functional elements provided thereon Can be made uniform, and the yield of functional devices is also improved.
 本発明の第二の態様においては、13族元素窒化物結晶層の上面におけるX線ロッキングカーブの(1000)面反射の半値幅が10000秒以下、20秒以上である。これは、上面における表面ツイスト角度が非常に低いことを意味している。結晶方位が全体として単結晶のように高度に配向していることを示している。前述したようなカソードルミネッセンス分布を有している上で、このような全体として表面での結晶方位が高度に配向している微構造であると、13族元素窒化物結晶層の上面における特性分布が小さくでき、その上に設けられる各種機能素子の特性を均一に揃えることが可能であり、また機能素子の歩留りも改善する。 In the second aspect of the present invention, the half value width of (1000) plane reflection of the X-ray rocking curve on the upper surface of the group 13 element nitride crystal layer is 10000 seconds or less and 20 seconds or more. This means that the surface twist angle at the top surface is very low. It indicates that the crystal orientation as a whole is highly oriented like a single crystal. A characteristic distribution on the upper surface of a Group 13 element nitride crystal layer as having a microstructure in which the crystal orientation on the surface as a whole is highly oriented while having the cathode luminescence distribution as described above It is possible to make the characteristics of the various functional elements provided thereon uniform, and to improve the yield of the functional elements.
こうした観点からは、13族元素窒化物結晶層の上面におけるX線ロッキングカーブの(1000)面反射の半値幅は、5000秒以下であることが好ましく、更には1000秒以下、更には20秒以上であることが一層好ましい。また、この半値幅を20秒未満まで低下させることは現実的には困難である。 From such a viewpoint, the half value width of (1000) plane reflection of the X-ray rocking curve on the upper surface of the group 13 element nitride crystal layer is preferably 5000 seconds or less, more preferably 1000 seconds or less, further 20 seconds or more It is more preferable that In addition, it is practically difficult to reduce this half-width to less than 20 seconds.
 ただし、X線ロッキングカーブ(1000)面反射は以下のように測定する。XRD装置(例えばBruker-AXS製D8-DISCOVER)を用いて、測定条件は管電圧40kV、管電流40mA、コリメータなし、アンチスキャッタリングスリット3mmで、ω=ピーク位置角度±0.3°の範囲、ωステップ幅0.003°、及び計数時間4秒に設定して行えばよい。この測定ではGe(022)非対称反射モノクロメーターでCuKα線を平行単色光化(半値幅28秒)し、あおり角CHI=88°付近で軸立てた上で測定するのが好ましい。そして、X線ロッキングカーブ(1000)面反射の半値幅は、XRD解析ソフトウェア(Bruker-AXS製、LEPTOS4.03)を用いてピークサーチを行い算出する事ができる。ピークサーチ条件は、Noise Filter「10」、Threshold「0.30」、Points「10」とすることが好ましい。 However, X-ray rocking curve (1000) surface reflection is measured as follows. Measurement conditions are: tube voltage 40 kV, tube current 40 mA, no collimator, anti-scattering slit 3 mm, range of ω = peak position angle ± 0.3 °, using an XRD apparatus (for example, D8-DISCOVER manufactured by Bruker-AXS) The ω step width may be set to 0.003 ° and the counting time to 4 seconds. In this measurement, it is preferable to measure CuKα rays in parallel monochromatization (half-width 28 seconds) with a Ge (022) asymmetric reflection monochromator and centering around a tilt angle CHI = 88 °. And the half value width of X-ray rocking curve (1000) surface reflection can be calculated by performing peak search using XRD analysis software (manufactured by Bruker-AXS, LEPTOS 4.03). The peak search conditions are preferably Noise Filter “10”, Threshold “0.30”, and Points “10”.
 更に、本発明の第一の態様および第二の態様においては、13族元素窒化物結晶層の上面の算術平均粗さRaが0.05nm以上、1.0nm以下である。
 算術平均粗さRaとは、平均線からの絶対値偏差の平均値を示しており、「JIS0601」に従って測定される数値である。
Furthermore, in the first aspect and the second aspect of the present invention, the arithmetic average roughness Ra of the top surface of the group 13 element nitride crystal layer is 0.05 nm or more and 1.0 nm or less.
Arithmetic mean roughness Ra has shown the average value of the absolute value deviation from an average line | wire, and is a numerical value measured according to "JIS0601".
(好適な製法例)
 以下、13族元素窒化物結晶層の好適な製法を例示する。
 本発明の13族元素窒化物結晶層は、下地基板上に種結晶層を形成し、その上に13族元素窒化物結晶から構成される層を形成することにより製造することができる。
(Example of suitable manufacturing method)
Hereafter, the suitable manufacturing method of a group 13 element nitride crystal layer is illustrated.
The group 13 element nitride crystal layer of the present invention can be produced by forming a seed crystal layer on a base substrate and forming a layer composed of group 13 element nitride crystal thereon.
 例えば図1に例示するように、下地基板は、単結晶基板1上にアルミナ層2を形成したものを用いることができる。単結晶基板1はサファイア、AlNテンプレート、GaNテンプレート、GaN自立基板、SiC単結晶、MgO単結晶、スピネル(MgAl)、LiAlO、LiGaO、LaAlO,LaGaO,NdGaO等のペロブスカイト型複合酸化物、SCAM(ScAlMgO)を例示できる。また組成式〔A1-y(Sr1-xBa〕〔(Al1-zGa1-u・D〕O(Aは、希土類元素である;Dは、ニオブおよびタンタルからなる群より選ばれた一種以上の元素である;y=0.3~0.98;x=0~1;z=0~1;u=0.15~0.49;x+z=0.1~2)の立方晶系のペロブスカイト構造複合酸化物も使用できる。 For example, as illustrated in FIG. 1, the base substrate may be a single crystal substrate 1 on which an alumina layer 2 is formed. Single crystal substrate 1 is a perovskite such as sapphire, AlN template, GaN template, GaN freestanding substrate, SiC single crystal, MgO single crystal, spinel (MgAl 2 O 4 ), LiAlO 2 , LiGaO 2 , LaAlO 3 , LaGaO 3 , NdGaO 3 and the like Type composite oxide, SCAM (ScAlMgO 4 ) can be exemplified. The composition formula [A 1-y (Sr 1- x Ba x) y ] [(Al 1-z Ga z) 1-u · D u ] O 3 (A is a rare earth element; D is niobium and One or more elements selected from the group consisting of tantalum; y = 0.3 to 0.98; x = 0 to 1; z = 0 to 1; u = 0.15 to 0.49; x + z = 0 The cubic perovskite structure complex oxide of 1) to 2) can also be used.
 アルミナ層2の形成方法は公知の技術を用いることができ、スパッタリング、MBE(分子線エピタキシー)法、蒸着、ミストCVD法、ゾルゲル法、エアロゾルデポジション(AD)法、或いはテープ成形等で作製したアルミナシートを上記単結晶基板に貼り合せる手法が例示され、特にスパッタリング法が好ましい。必要に応じてアルミナ層を形成後に熱処理やプラズマ処理、イオンビーム照射を加えたものを用いることができる。熱処理の方法は特に限定がないが、大気雰囲気、真空、或いは水素等の還元雰囲気、窒素・Ar等の不活性雰囲気で熱処理すればよく、ホットプレス(HP)炉、熱間静水圧プレス(HIP)炉等を用いて加圧下で熱処理を行っても良い。 The alumina layer 2 can be formed by a known technique, and is prepared by sputtering, MBE (molecular beam epitaxy) method, vapor deposition, mist CVD method, sol gel method, aerosol deposition (AD) method, or tape forming. The method of bonding an alumina sheet to the said single crystal substrate is illustrated, and especially the sputtering method is preferable. It is possible to use one to which heat treatment, plasma treatment, or ion beam irradiation has been added after forming the alumina layer, if necessary. The method of heat treatment is not particularly limited, but heat treatment may be performed in an air atmosphere, vacuum, a reducing atmosphere such as hydrogen, or an inert atmosphere such as nitrogen / Ar, a hot press (HP) furnace, a hot isostatic press (HIP) Heat treatment may be performed under pressure using a furnace or the like.
 また、下地基板としてサファイア基板に上記と同様の熱処理やプラズマ処理、イオンビーム照射を加えたものも用いることができる。
 次いで、例えば図1(a)に示すように、アルミナ層2上または単結晶基板1上に種結晶層3を設ける。種結晶層3を構成する材質は、IUPACで規定する13族元素の一種または二種以上の窒化物とする。この13族元素は、好ましくはガリウム、アルミニウム、インジウムである。また、13族元素窒化物結晶は、具体的には、GaN、AlN、InN、GaAl1-xN(1>x>0)、GaIn1-xN(1>x>0)、GaAlInN1―x-y(1>x>0、1>y>0)が好ましい。
Further, a sapphire substrate to which the same heat treatment, plasma treatment, or ion beam irradiation as described above is added can be used as a base substrate.
Next, as shown in FIG. 1A, for example, a seed crystal layer 3 is provided on the alumina layer 2 or the single crystal substrate 1. The material constituting the seed crystal layer 3 is a nitride of one or two or more kinds of Group 13 elements specified by IUPAC. The group 13 element is preferably gallium, aluminum or indium. Further, specifically, group 13 element nitride crystals are GaN, AlN, InN, Ga x Al 1 -x N (1>x> 0), Ga x In 1-x N (1>x> 0) And Ga x Al y InN 1 -x-y (1>x> 0, 1>y> 0).
 種結晶層3の作製方法は特に限定されないが、MOCVD(有機金属気相成長法)、MBE(分子線エピタキシー法)、HVPE(ハイドライド気相成長法)、スパッタリング等の気相法、Naフラックス法、アモノサーマル法、水熱法、ゾルゲル法等の液相法、粉末の固相成長を利用した粉末法、及びこれらの組み合わせが好ましく例示される。
 例えば、MOCVD法による種結晶層の形成は、450~550℃にて低温成長緩衝GaN層を20~50nm堆積させた後に、1000~1200℃にて厚さ2~4μmのGaN膜を積層させることにより行うのが好ましい。
The method of producing the seed crystal layer 3 is not particularly limited, but MOCVD (organic metal vapor phase growth method), MBE (molecular beam epitaxy method), HVPE (hydride vapor phase growth method), vapor phase method such as sputtering, Na flux method Liquid phase methods such as ammonothermal method, hydrothermal method, sol-gel method, powder method utilizing solid phase growth of powder, and combinations thereof are preferably exemplified.
For example, a seed crystal layer is formed by depositing a low-temperature growth buffer GaN layer at 450 to 550 ° C. for 20 to 50 nm and then laminating a GaN film having a thickness of 2 to 4 μm at 1000 to 1200 ° C. Preferably by
 13族元素窒化物結晶層13は、種結晶層3の結晶方位に概ね倣った結晶方位を有するように形成する。13族元素窒化物結晶層の形成方法は、種結晶膜の結晶方位に概ね倣った結晶方位を有する限り特に限定がなく、MOCVD、HVPE等の気相法、Naフラックス法、アモノサーマル法、水熱法、ゾルゲル法等の液相法、粉末の固相成長を利用した粉末法、及びこれらの組み合わせが好ましく例示されるが、Naフラックス法により行われるのが特に好ましい。 Group 13 element nitride crystal layer 13 is formed to have a crystal orientation substantially conforming to the crystal orientation of seed crystal layer 3. The method of forming the group 13 element nitride crystal layer is not particularly limited as long as it has a crystal orientation substantially following the crystal orientation of the seed crystal film, and a vapor phase method such as MOCVD or HVPE, Na flux method, ammonothermal method, A hydrothermal method, a liquid phase method such as a sol-gel method, a powder method utilizing solid phase growth of powder, and a combination thereof are preferably exemplified, but the Na flux method is particularly preferable.
 Naフラックス法による13族元素窒化物結晶層を形成する際には、融液を強く攪拌し、融液を充分に均一に混ぜることが好ましい。こうした攪拌方法として、揺動や回転、振動方式が挙げられるが、方法は限定されない。 When forming a Group 13 element nitride crystal layer by Na flux method, it is preferable to strongly stir the melt and mix the melt sufficiently uniformly. As such a stirring method, a swing, rotation, vibration method may be mentioned, but the method is not limited.
 Naフラックス法による13族元素窒化物結晶層の形成は、種結晶基板を設置した坩堝に13族金属、金属Na及び所望によりドーパント(例えばゲルマニウム(Ge)、シリコン(Si)、酸素(O)等のn型ドーパント、又はベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、亜鉛(Zn)、カドミウム(Cd)等のp型ドーパント)を含む融液組成物を充填し、窒素雰囲気中で830~910℃、3.5~4.5MPaまで昇温加圧した後、温度及び圧力を保持しつつ回転することにより行うのが好ましい。保持時間は目的の膜厚によって異なるが、10~100時間程度としてもよい。 Formation of Group 13 element nitride crystal layer by Na flux method, Group 13 metal, metal Na and optionally dopant (for example, germanium (Ge), silicon (Si), oxygen (O), etc., etc. in place of the seed crystal substrate) Filled with a melt composition containing n-type dopants or p-type dopants such as beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), zinc (Zn) and cadmium (Cd) After heating to 830 ° C. to 910 ° C. and 3.5 to 4.5 MPa in a nitrogen atmosphere, it is preferable to carry out rotation while maintaining the temperature and pressure. The holding time varies depending on the target film thickness, but may be about 10 to 100 hours.
 また、こうしてNaフラックス法により得られた窒化ガリウム結晶を砥石で研削して板面を平坦にした後、ダイヤモンド砥粒を用いたラップ加工により板面を平滑化するのが好ましい。 Further, it is preferable to flatten the plate surface by grinding the gallium nitride crystal thus obtained by the Na flux method with a grindstone, and then to smooth the plate surface by lapping using diamond abrasive grains.
(13族元素窒化物結晶層の分離方法)
 次いで、13族元素窒化物結晶層を単結晶基板から分離することによって、13族元素窒化物結晶層を含む自立基板を得ることができる。
(Separation method of Group 13 element nitride crystal layer)
Then, the freestanding substrate including the group 13 element nitride crystal layer can be obtained by separating the group 13 element nitride crystal layer from the single crystal substrate.
 ここで、13族元素窒化物結晶層を単結晶基板から分離する方法は限定されない。好適な実施形態においては、13族元素窒化物結晶層を育成した後の降温工程において13族元素窒化物結晶層を単結晶基板から自然剥離させる。 Here, the method of separating the group 13 element nitride crystal layer from the single crystal substrate is not limited. In a preferred embodiment, the Group 13 element nitride crystal layer is naturally exfoliated from the single crystal substrate in the temperature lowering step after the Group 13 element nitride crystal layer is grown.
 あるいは、13族元素窒化物結晶層を単結晶基板からケミカルエッチングによって分離することができる。
 ケミカルエッチングを行う際のエッチャントとしては、硫酸、塩酸等の強酸や硫酸とリン酸の混合液、もしくは水酸化ナトリウム水溶液、水酸化カリウム水溶液等の強アルカリが好ましい。また、ケミカルエッチングを行う際の温度は、70℃以上が好ましい。
Alternatively, the group 13 element nitride crystal layer can be separated from the single crystal substrate by chemical etching.
As an etchant at the time of chemical etching, a strong acid such as sulfuric acid or hydrochloric acid, a mixed solution of sulfuric acid and phosphoric acid, or a strong alkali such as sodium hydroxide aqueous solution or potassium hydroxide aqueous solution is preferable. Moreover, as for the temperature at the time of performing chemical etching, 70 degreeC or more is preferable.
 あるいは、13族元素窒化物結晶層を単結晶基板からレーザーリフトオフ法によって剥離することができる。
 あるいは、13族元素窒化物結晶層を単結晶基板から研削によって剥離することができる。
 あるいは、13族元素窒化物結晶層を単結晶基板からワイヤーソーで剥離することができる。
Alternatively, the group 13 element nitride crystal layer can be separated from the single crystal substrate by a laser lift-off method.
Alternatively, the group 13 element nitride crystal layer can be peeled off from the single crystal substrate by grinding.
Alternatively, the group 13 element nitride crystal layer can be peeled off from the single crystal substrate with a wire saw.
(自立基板)
 13族元素窒化物結晶層を単結晶基板から分離することで、自立基板を得ることができる。本発明において「自立基板」とは、取り扱う際に自重で変形又は破損せず、固形物として取り扱うことのできる基板を意味する。本発明の自立基板は発光素子等の各種半導体デバイスの基板として使用可能であるが、それ以外にも、電極(p型電極又はn型電極でありうる)、p型層、n型層等の基材以外の部材又は層として使用可能なものである。この自立基板には、一層以上の他の層が更に設けられていても良い。
(Self-standing substrate)
A freestanding substrate can be obtained by separating the group 13 element nitride crystal layer from the single crystal substrate. In the present invention, the term "self-supporting substrate" means a substrate which can be handled as a solid without deformation or breakage under its own weight. The self-supporting substrate of the present invention can be used as a substrate for various semiconductor devices such as light emitting elements, but in addition to that, it can be an electrode (may be a p-type electrode or an n-type electrode), a p-type layer, an n-type layer, etc. It can be used as a member or layer other than the base material. This freestanding substrate may further be provided with one or more other layers.
 13族元素窒化物結晶層が自立基板を構成する場合には、自立基板の厚さは基板に自立性を付与できる必要があり、20μm以上が好ましく、より好ましくは100μm以上であり、さらに好ましくは300μm以上である。自立基板の厚さに上限は規定されるべきではないが、製造コストの観点では3000μm以下が現実的である。 When the group 13 element nitride crystal layer constitutes a self-supporting substrate, the thickness of the self-supporting substrate needs to be able to impart self-supporting properties to the substrate, preferably 20 μm or more, more preferably 100 μm or more, and still more preferably It is 300 μm or more. The upper limit of the thickness of the free-standing substrate should not be defined, but 3000 μm or less is realistic in terms of manufacturing cost.
(上面の算術平均粗さRaの調整方法)
 13族元素窒化物結晶層の上面の算術平均粗さRaを0.05~1.0nmに調整する方法は特に限定されないが、例えば,研磨,エッチングを例示できる。
 研磨とは、遊離砥粒を利用した加工である機械研磨や、コロイダルシリカなどを用いた化学機械的研磨(CMP)を言う。エッチング方法としては、反応性イオンエッチング(RIE)が挙げられる。エッチングガスとしては塩素系やフッ素系ガスが好ましい。
(How to adjust the arithmetic mean roughness Ra of the upper surface)
The method of adjusting the arithmetic average roughness Ra of the upper surface of the Group 13 element nitride crystal layer to 0.05 to 1.0 nm is not particularly limited, and examples thereof include polishing and etching.
Polishing refers to mechanical polishing, which is processing using loose abrasives, and chemical mechanical polishing (CMP) using colloidal silica or the like. As an etching method, reactive ion etching (RIE) may be mentioned. The etching gas is preferably a chlorine gas or a fluorine gas.
(複合基板)
 単結晶基板上に13族元素窒化物結晶層を設けた状態で、13族元素窒化物結晶層を分離することなく、他の機能層を形成するためのテンプレート基板として用いることができる。
(Composite substrate)
When a group 13 element nitride crystal layer is provided on a single crystal substrate, the group 13 element nitride crystal layer can be used as a template substrate for forming another functional layer without separating the group 13 element nitride crystal layer.
(機能素子)
 本発明の13族元素窒化物結晶層上に設けられた機能素子構造は特に限定されないが、発光機能、整流機能または電力制御機能を例示できる。
 本発明の13族元素窒化物結晶層を用いた発光素子の構造やその作製方法は特に限定されるものではない。典型的には、発光素子は、13族元素窒化物結晶層に発光機能層を設けることにより作製される。もっとも、13族元素窒化物結晶層を電極(p型電極又はn型電極でありうる)、p型層、n型層等の基材以外の部材又は層として利用して発光素子を作製してもよい。
(Functional element)
Although the functional element structure provided on the Group 13 element nitride crystal layer of the present invention is not particularly limited, the light emitting function, the rectifying function or the power control function can be exemplified.
The structure of the light emitting device using the group 13 element nitride crystal layer of the present invention and the method for producing the same are not particularly limited. Typically, a light emitting element is manufactured by providing a light emitting functional layer in a Group 13 element nitride crystal layer. However, a light emitting element is manufactured using the Group 13 element nitride crystal layer as a member or layer other than the base material such as an electrode (which may be a p-type electrode or an n-type electrode), a p-type layer, or an n-type layer. It is also good.
 図8に、本発明の一態様による発光素子の層構成を模式的に示す。図8に示される発光素子21は、自立基板13と、この基板上に形成される発光機能層18とを備えてなる。この発光機能層18は、電極等を適宜設けて電圧を印加することによりLED等の発光素子の原理に基づき発光をもたらすものである。 FIG. 8 schematically shows a layer configuration of a light emitting element according to one embodiment of the present invention. A light emitting element 21 shown in FIG. 8 includes a self-supporting substrate 13 and a light emitting functional layer 18 formed on the substrate. The light emitting functional layer 18 provides light emission based on the principle of a light emitting element such as an LED by appropriately providing an electrode or the like and applying a voltage.
 発光機能層18が基板13上に形成される。発光機能層18は、基板13上の全面又は一部に設けられてもよいし、後述するバッファ層が基板13上に形成される場合にはバッファ層上の全面又は一部に設けられてもよい。発光機能層18は、電極及び/又は蛍光体を適宜設けて電圧を印加することによりLEDに代表される発光素子の原理に基づき発光をもたらす公知の様々な層構成を採りうる。したがって、発光機能層18は青色、赤色等の可視光を放出するものであってもよいし、可視光を伴わずに又は可視光と共に紫外光を発光するものであってもよい。発光機能層18は、p-n接合を利用した発光素子の少なくとも一部を構成するのが好ましく、このp-n接合は、図8に示されるように、p型層18aとn型層18cの間に活性層18bを含んでいてもよい。このとき、活性層としてp型層及び/又はn型層よりもバンドギャップが小さい層を用いたダブルへテロ接合又はシングルへテロ接合(以下、ヘテロ接合と総称する)としてもよい。また、p型層-活性層-n型層の一形態として、活性層の厚みを薄くした量子井戸構造を採りうる。量子井戸を得るためには活性層のバンドギャップがp型層及びn型層よりも小さくしたダブルへテロ接合が採用されるべきことは言うまでもない。また、これらの量子井戸構造を多数積層した多重量子井戸構造(MQW)としてもよい。これらの構造をとることで、p-n接合と比べて発光効率を高めることができる。このように、発光機能層18は、発光機能を有するp-n接合及び/又はへテロ接合及び/又は量子井戸接合を備えたものであるのが好ましい。なお、20、22は電極の例である。 The light emitting functional layer 18 is formed on the substrate 13. The light emitting functional layer 18 may be provided on the entire surface or a part of the substrate 13, or may be provided on the entire surface or a part of the buffer layer when the buffer layer described later is formed on the substrate 13. Good. The light emitting functional layer 18 can adopt various known layer configurations that provide light emission based on the principle of a light emitting element represented by an LED by appropriately providing an electrode and / or a phosphor and applying a voltage. Therefore, the light emitting functional layer 18 may emit visible light such as blue and red, or may emit ultraviolet light without visible light or together with visible light. The light emitting functional layer 18 preferably constitutes at least a part of a light emitting element utilizing a pn junction, and the pn junction includes a p-type layer 18a and an n-type layer 18c as shown in FIG. The active layer 18 b may be included between At this time, a double hetero junction or a single hetero junction (hereinafter collectively referred to as a hetero junction) using a layer having a smaller band gap than the p-type layer and / or the n-type layer may be used as the active layer. In addition, a quantum well structure in which the thickness of the active layer is reduced can be employed as one mode of the p-type layer-active layer-n-type layer. It goes without saying that in order to obtain a quantum well, a double hetero junction in which the band gap of the active layer is smaller than that of the p-type layer and the n-type layer should be employed. Further, a multiple quantum well structure (MQW) in which a large number of these quantum well structures are stacked may be used. With these structures, the light emission efficiency can be enhanced as compared to a pn junction. Thus, the light emitting functional layer 18 is preferably provided with a pn junction and / or hetero junction and / or quantum well junction having a light emitting function. 20 and 22 are examples of electrodes.
 したがって、発光機能層18を構成する一以上の層は、n型ドーパントがドープされているn型層、p型ドーパントがドープされているp型層、及び活性層からなる群から選択される少なくとも一以上を含むものであることができる。n型層、p型層及び(存在する場合には)活性層は、主成分が同じ材料で構成されてもよいし、互いに主成分が異なる材料で構成されてもよい。 Therefore, at least one layer constituting the light emitting functional layer 18 is at least selected from the group consisting of an n-type layer doped with an n-type dopant, a p-type layer doped with a p-type dopant, and an active layer. It can be one or more. The n-type layer, the p-type layer and the active layer (if present) may be composed of the same material as the main component or may be composed of materials different from each other in the main component.
 発光機能層18を構成する各層の材質は、13族元素窒化物結晶層の結晶方位に概ね倣って成長し且つ発光機能を有するものであれば特に限定されないが、窒化ガリウム(GaN)系材料、酸化亜鉛(ZnO)系材料及び窒化アルミニウム(AlN)系材料から選択される少なくとも1種以上を主成分とする材料で構成されるのが好ましく、p型ないしn型に制御するためのドーパントを適宜含むものであってよい。特に好ましい材料は、窒化ガリウム(GaN)系材料である。また、発光機能層18を構成する材料は、そのバンドギャップを制御するため、例えばGaNにAlN、InN等を固溶させた混晶としてもよい。また、直前の段落で述べたとおり、発光機能層18は複数種の材料系からなるヘテロ接合としてもよい。例えば、p型層に窒化ガリウム(GaN)系材料、n型層に酸化亜鉛(ZnO)系材料を用いてもよい。また、p型層に酸化亜鉛(ZnO)系材料、活性層とn型層に窒化ガリウム(GaN)系材料を用いてもよく、材料の組み合わせに特に限定はない。 The material of each layer constituting the light emitting functional layer 18 is not particularly limited as long as it grows substantially in accordance with the crystal orientation of the group 13 element nitride crystal layer and has a light emitting function, but a gallium nitride (GaN) based material It is preferable to be composed of a material mainly composed of at least one or more selected from zinc oxide (ZnO) based materials and aluminum nitride (AlN) based materials, and a dopant for controlling p type to n type is suitably selected It may be included. Particularly preferred materials are gallium nitride (GaN) based materials. Further, the material constituting the light emitting functional layer 18 may be, for example, a mixed crystal in which AlN, InN or the like is solid-solved in GaN in order to control the band gap. In addition, as described in the immediately preceding paragraph, the light emitting functional layer 18 may be a heterojunction made of a plurality of material systems. For example, a gallium nitride (GaN) based material may be used for the p-type layer, and a zinc oxide (ZnO) based material may be used for the n-type layer. Further, a zinc oxide (ZnO) based material may be used for the p-type layer, and a gallium nitride (GaN) based material may be used for the active layer and the n-type layer, and the combination of materials is not particularly limited.
 発光機能層18及びバッファ層の成膜方法は、13族元素窒化物結晶層の結晶方位に概ね倣って成長する方法であれば特に限定されないが、MOCVD、MBE、HVPE、スパッタリング等の気相法、Naフラックス法、アモノサーマル法、水熱法、ゾルゲル法等の液相法、粉末の固相成長を利用した粉末法、及びこれらの組み合わせが好ましく例示される。 The film formation method of the light emitting functional layer 18 and the buffer layer is not particularly limited as long as it is a method of growing substantially in accordance with the crystal orientation of the Group 13 element nitride crystal layer, but a vapor phase method such as MOCVD, MBE, HVPE, sputtering, etc. Preferred examples thereof include liquid phase methods such as Na flux method, ammonothermal method, hydrothermal method and sol-gel method, powder method utilizing solid phase growth of powder, and combinations thereof.
(実施例1)
(窒化ガリウム自立基板の作製)
 径φ6インチのサファイア基板1上に、0.3μmのアルミナ膜2をスパッタリング法で成膜した後、MOCVD法で厚さ2μmの窒化ガリウムからなる種結晶膜3を成膜し、種結晶基板を得た。
Example 1
(Preparation of a gallium nitride free-standing substrate)
An alumina film 2 of 0.3 μm in thickness is formed on a sapphire substrate 1 with a diameter of 6 inches by sputtering, and then a seed crystal film 3 of 2 μm in thickness made of gallium nitride is formed by MOCVD. Obtained.
 この種結晶基板を、窒素雰囲気のグローブボックス内でアルミナ坩堝の中に配置した。次に、Ga/Ga+Na(mol%)=15mol%となるように金属ガリウムと金属ナトリウムを坩堝内に充填し、アルミナ板で蓋をした。その坩堝をステンレス製内容器に入れ、さらにそれを収納できるステンレス製外容器に入れて、窒素導入パイプの付いた容器蓋で閉じた。この外容器を、予め真空ベークしてある結晶製造装置内の加熱部に設置されている回転台の上に配置し、耐圧容器に蓋をして密閉した。 The seed crystal substrate was placed in an alumina crucible in a nitrogen atmosphere glove box. Next, metallic gallium and metallic sodium were filled in the crucible so that Ga / Ga + Na (mol%) = 15 mol%, and the lid was covered with an alumina plate. The crucible was placed in a stainless steel inner container, further placed in a stainless steel outer container capable of containing it, and closed with a container lid with a nitrogen introduction pipe. The outer container was placed on a rotary table installed in a heating unit in a crystal manufacturing apparatus which has been vacuum baked in advance, and the pressure resistant container was covered and sealed.
 次いで、耐圧容器内を真空ポンプにて0.1Pa以下まで真空引きした。続いて、上段ヒータ、中段ヒータ及び下段ヒータを調節して加熱空間の温度を870℃になるように加熱しながら、4.0MPaまで窒素ガスボンベから窒素ガスを導入し、外容器を中心軸周りに20rpmの速度で一定周期の時計回りと反時計回りで回転させた。加速時間=12秒、保持時間=600秒、減速時間=12秒、停止時間=0.5秒とした。そして、この状態で40時間保持した。その後、室温まで自然冷却して大気圧にまで減圧した後、耐圧容器の蓋を開けて中から坩堝を取り出した。坩堝の中の固化した金属ナトリウムを除去し、種結晶基板から剥離したクラックのない窒化ガリウム自立基板を回収した。 Subsequently, the inside of the pressure resistant container was evacuated to 0.1 Pa or less by a vacuum pump. Subsequently, nitrogen gas is introduced from a nitrogen gas cylinder to 4.0 MPa while heating the temperature of the heating space to 870 ° C. by adjusting the upper heater, middle heater and lower heater, and the outer container around the central axis It was rotated at a speed of 20 rpm in a constant cycle clockwise and counterclockwise. The acceleration time was 12 seconds, the holding time was 600 seconds, the deceleration time was 12 seconds, and the stop time was 0.5 seconds. And it hold | maintained in this state for 40 hours. Thereafter, the vessel was naturally cooled to room temperature and depressurized to the atmospheric pressure, and then the lid of the pressure container was opened and the bale was taken out from the inside. The solidified metallic sodium in the crucible was removed, and the crack-free gallium nitride free-standing substrate peeled off from the seed crystal substrate was recovered.
(評価)
 窒化ガリウム表面を研磨加工した窒化ガリウム自立基板13の上面13aをカソードルミネッセンス(CL)検出器付きの走査電子顕微鏡(SEM)でCL観察すると、図3~図5に示すような高輝度発光部5および低輝度発光領域6が確認された。
(Evaluation)
When CL observation of the upper surface 13a of the gallium nitride free-standing substrate 13 obtained by polishing processing the gallium nitride surface with a scanning electron microscope (SEM) equipped with a cathode luminescence (CL) detector, the high brightness light emitting portion 5 as shown in FIGS. And the low luminance light emitting area 6 was confirmed.
 また、窒化ガリウム自立基板の上面を、切断面を研磨加工してカソードルミネッセンス(CL)検出器付きの走査電子顕微鏡(SEM)で観察した。その結果、図3に示すように、CL像では窒化ガリウム結晶内部に、白っぽく発光する高輝度発光部が確認された。しかし、同時に、図9に示すように、同一視野を走査型電子顕微鏡で撮像確認したところ、ボイドが無く、均質な窒化ガリウム結晶が成長していることが確認された。 In addition, the upper surface of the gallium nitride free-standing substrate was polished on a cut surface and observed with a scanning electron microscope (SEM) equipped with a cathode luminescence (CL) detector. As a result, as shown in FIG. 3, in the CL image, a high brightness light emitting portion emitting whitish light was confirmed inside the gallium nitride crystal. However, at the same time, as shown in FIG. 9, when the same field of view was imaged and confirmed with a scanning electron microscope, it was confirmed that a homogeneous gallium nitride crystal was grown without voids.
 また、窒化ガリウム自立基板を、その上面に対して垂直な断面に切断し、切断面を研磨加工してカソードルミネッセンス(CL)検出器付きの走査電子顕微鏡(SEM)で観察した。その結果、図6に示すように、CL像では窒化ガリウム結晶内部に、白っぽく発光する高輝度発光部が確認された。しかし、同時に、図7に示すように、同一視野を走査型電子顕微鏡(SEM)で撮像確認したところ、ボイド等が確認されず、均質な窒化ガリウム結晶が成長していることが確認された。すなわち、13族元素窒化物結晶層の上面においても、断面と同様に、CL観察では高輝度発光部が存在しているが、SEMでは同じ視野にCL像で見られる高輝度発光部と同一形状、もしくはそれに類する微構造が存在していなかった。 Further, the gallium nitride free-standing substrate was cut into a cross section perpendicular to the upper surface, and the cut surface was polished and observed with a scanning electron microscope (SEM) equipped with a cathode luminescence (CL) detector. As a result, as shown in FIG. 6, in the CL image, a high luminance light emitting portion emitting whitish light was confirmed inside the gallium nitride crystal. However, at the same time, as shown in FIG. 7, when the same field of view was imaged and confirmed with a scanning electron microscope (SEM), no void etc. were confirmed, and it was confirmed that a homogeneous gallium nitride crystal was grown. That is, even on the top surface of the Group 13 element nitride crystal layer, as in the cross section, the high brightness light emitting portion exists in CL observation but the same shape as the high brightness light emitting portion seen in the same field of view in the SEM There was no microstructure similar to it or that.
(転位密度の測定)
 ついで、13族元素窒化物結晶層の上面について転位密度を測定した。CL観察を行い、転位箇所であるダークスポットの密度を計測する事により、転位密度が算出した。80μm×105μm視野を5視野観察した結果、1.2×10/cm~9.4×10/cmの範囲でばらつき、平均3.3×10/cmであった。
(Measurement of dislocation density)
Then, the dislocation density was measured on the top surface of the group 13 element nitride crystal layer. The dislocation density was calculated by performing CL observation and measuring the density of dark spots as dislocation sites. As a result of observing five 80 μm × 105 μm fields of view, they varied within a range of 1.2 × 10 4 / cm 2 to 9.4 × 10 4 / cm 2 , and were 3.3 × 10 4 / cm 2 on average.
(表面チルト角の測定)
 窒化ガリウム結晶層の上面におけるX線ロッキングカーブの(0002)面反射の半値幅を測定した結果、73秒であった。
(Measurement of surface tilt angle)
It was 73 seconds as a result of measuring the half value width of (0002) plane reflection of the X ray rocking curve in the upper surface of a gallium nitride crystal layer.
(表面ツイスト角の測定)
 窒化ガリウム結晶層の上面におけるX線ロッキングカーブの(1000)面反射の半値幅を測定したところ、85秒であった。
(Measurement of surface twist angle)
It was 85 seconds when the half value width of (1000) plane reflection of the X-ray rocking curve in the upper surface of the gallium nitride crystal layer was measured.
(算術平均粗さRa)
 得られた自立基板の上面の算術平均粗さRaを、日立ハイテクサイエンス製の原子間力顕微鏡(型式:AFM5400L)で測定した。カンチレバーは、OLYMPUS製MICRO CANTILEVER OMCL-AC160TS-C3を使用した。測定条件は、ダイナミックフォーカスモードで、走査周波数は0.81Hz、視野は10×10μmとした。解析ソフトにはNano Navi Realを使用した。この結果、Raは、0.08nmであった。
(Arithmetic mean roughness Ra)
Arithmetic mean roughness Ra of the upper surface of the obtained free-standing substrate was measured with an atomic force microscope (model: AFM5400L) manufactured by Hitachi High-Tech Science. As a cantilever, MICRO CANTILEVER OMCL-AC160TS-C3 manufactured by OLYMPUS was used. The measurement conditions were a dynamic focus mode, a scanning frequency of 0.81 Hz, and a visual field of 10 × 10 μm. We used Nano Navi Real for analysis software. As a result, Ra was 0.08 nm.
(MOCVD法による発光機能層の成膜)
 MOCVD法を用いて、窒化ガリウム自立基板の上面にn型層として1050℃でSi原子濃度が5×1018/cmになるようにドーピングしたn-GaN層を1μm堆積した。次に発光層として750℃で多重量子井戸層を堆積した。具体的にはInGaNによる2.5nmの井戸層を5層、GaNによる10nmの障壁層を6層にて交互に積層した。次にp型層として950℃でMg原子濃度が1×1019/cmになるようにドーピングしたp-GaNを200nm堆積した。その後、MOCVD装置から取り出し、p型層のMgイオンの活性化処理として、窒素雰囲気中で800℃の熱処理を10分間行った。
 得られた発光機能層の表面にはピットは観測されなかった。
(Deposition of light emitting functional layer by MOCVD method)
Using an MOCVD method, an n-type n-type layer was deposited 1 μm as an n-type layer at 1050 ° C. to have a Si atomic concentration of 5 × 10 18 / cm 3 as the n-type layer. Next, a multiple quantum well layer was deposited at 750 ° C. as a light emitting layer. Specifically, five layers of 2.5 nm well layers of InGaN and six layers of 10 nm of barrier layers of GaN were alternately stacked. Next, as a p-type layer, 200 nm of p-GaN doped at a temperature of 950 ° C. so that the Mg atom concentration is 1 × 10 19 / cm 3 was deposited. Thereafter, it was taken out of the MOCVD apparatus, and heat treatment at 800 ° C. in a nitrogen atmosphere was performed for 10 minutes as activation treatment of Mg ions in the p-type layer.
No pits were observed on the surface of the obtained light emitting functional layer.
(発光素子の作製)
 フォトリソグラフィープロセスと真空蒸着法とを用いて、窒化ガリウム自立基板のn-GaN層及びp-GaN層とは反対側の面にカソード電極としてのTi/Al/Ni/Au膜をそれぞれ15nm、70nm、12nm、60nmの厚みでパターニングした。その後、オーム性接触特性を良好なものとするために、窒素雰囲気中での700℃の熱処理を30秒間行った。さらに、フォトリソグラフィープロセスと真空蒸着法とを用いて、p型層に透光性アノード電極としてNi/Au膜をそれぞれ6nm、12nmの厚みにパターニングした。その後、オーム性接触特性を良好なものとするために窒素雰囲気中で500℃の熱処理を30秒間行った。さらに、フォトリソグラフィープロセスと真空蒸着法とを用いて、透光性アノード電極としてのNi/Au膜の上面の一部領域に、アノード電極パッドとなるNi/Au膜をそれぞれ5nm、60nmの厚みにパターニングした。こうして得られた基板を切断してチップ化し、さらにリードフレームに実装して、縦型構造の発光素子を得た。
(Fabrication of light emitting element)
15 nm and 70 nm Ti / Al / Ni / Au film as cathode electrode on the opposite side of n-GaN layer and p-GaN layer of gallium nitride freestanding substrate by photolithography process and vacuum evaporation method It patterned in thickness of 12 nm and 60 nm. Thereafter, heat treatment at 700 ° C. in a nitrogen atmosphere was performed for 30 seconds in order to improve ohmic contact characteristics. Further, a Ni / Au film was patterned to a thickness of 6 nm and 12 nm as a light transmitting anode electrode in the p-type layer using a photolithography process and a vacuum evaporation method. Thereafter, a heat treatment at 500 ° C. was performed for 30 seconds in a nitrogen atmosphere in order to improve ohmic contact characteristics. Furthermore, using a photolithography process and a vacuum evaporation method, the Ni / Au film to be the anode electrode pad has a thickness of 5 nm and 60 nm, respectively, on a partial region of the upper surface of the Ni / Au film as the translucent anode electrode. Patterned. The substrate thus obtained was cut into chips, and then mounted on lead frames to obtain light emitting elements of a vertical structure.
(発光素子の評価)
 作製した素子から任意に選んだ100個の個体について、カソード電極とアノード電極間に通電し、I-V測定を行ったところ、90個について整流性が確認された。また、順方向の電流を流したところ、波長460nmの発光が確認された。
(Evaluation of light emitting element)
When current was applied between the cathode electrode and the anode electrode, and IV measurement was carried out for 100 individuals arbitrarily selected from the manufactured elements, rectification was confirmed for 90 pieces. In addition, when forward current flowed, emission of wavelength 460 nm was confirmed.
(上面の算術平均粗さRaの調整と発光機能層の成膜)
 得られた自立基板の上面を研磨加工し、算術平均粗さRaを0.05、0.1、1.0nmにそれぞれ調節した。ただし、Raは以下のようにして調整した。
 Raが0.05nmの上面は、CMPをすることで調整し、Raが0.1nmの上面は、RIEをすることで調整し、Raが1.0nmの上面は、機械研磨をすることで調整した。
 次いで、各自立基板の上面に上記のようにしてMOCVD法によって発光機能層をエピタキシャル成長させた。この結果、いずれの場合も、表面ピットが観察されなかった。
(Adjustment of the arithmetic mean roughness Ra on the upper surface and deposition of the light emitting functional layer)
The upper surface of the obtained free-standing substrate was polished to adjust the arithmetic mean roughness Ra to 0.05, 0.1, and 1.0 nm, respectively. However, Ra was adjusted as follows.
The upper surface with Ra of 0.05 nm is adjusted by CMP, the upper surface with Ra of 0.1 nm is adjusted with RIE, and the upper surface with Ra of 1.0 nm is adjusted by mechanical polishing. did.
Next, the light emitting functional layer was epitaxially grown on the upper surface of each freestanding substrate by the MOCVD method as described above. As a result, no surface pit was observed in any case.
 (整流機能素子の作成)
 整流機能を有する機能素子を作製した。
 すなわち、実施例で得られた前記自立基板の上面に、以下のようにして、ショットキーバリアダイオード構造を成膜し、電極を形成することで、ダイオードを得、特性を確認した。
(Creation of rectification function element)
A functional element having a rectifying function was produced.
That is, a Schottky barrier diode structure was formed as follows on the upper surface of the freestanding substrate obtained in the example, and an electrode was formed to obtain a diode, and the characteristics were confirmed.
(MOCVD法による整流機能層の成膜)
 MOCVD(有機金属化学的気相成長)法を用いて、自立基板上にn型層として1050℃でSi原子濃度が1×1016/cmになるようにドーピングしたn-GaN層を5μm成膜した。
(Deposition of rectifying function layer by MOCVD method)
A 5 μm thick n-GaN layer doped as an n-type layer at 1050 ° C. and having a Si atomic concentration of 1 × 10 16 / cm 3 on a free-standing substrate using MOCVD (metal organic chemical vapor deposition) method I made a film.
  フォトリソグラフィープロセスと真空蒸着法とを用いて、自立基板上のn-GaN層とは反対側の面にオーミック電極としてTi/Al/Ni/Au膜をそれぞれ15nm、70nm、12nm、60nmの厚みでパターニングした。その後、オーム性接触特性を良好なものとするために、窒素雰囲気中での700℃の熱処理を30秒間行った。さらに、フォトリソグラフィープロセスと真空蒸着法とを用いて、MOCVD法で成膜したn-GaN層にショットキー電極としてNi/Au膜をそれぞれ6nm、80nmの厚みでパターニングした。こうして得られた基板を切断してチップ化し、さらにリードフレーム(lead frame)に実装して、整流素子を得た。 Ti / Al / Ni / Au films with a thickness of 15 nm, 70 nm, 12 nm, and 60 nm as ohmic electrodes on the surface of the free-standing substrate opposite to the n-GaN layer using photolithography process and vacuum evaporation method Patterned. Thereafter, heat treatment at 700 ° C. in a nitrogen atmosphere was performed for 30 seconds in order to improve ohmic contact characteristics. Further, a Ni / Au film was patterned as a Schottky electrode to a thickness of 6 nm and 80 nm, respectively, on the n-GaN layer formed by the MOCVD method using a photolithography process and a vacuum evaporation method. The substrate obtained in this manner was cut into chips, and then mounted on lead frames to obtain rectifying devices.
(整流素子の評価)
  I-V測定を行ったところ、整流特性が確認された。
(Evaluation of rectifier)
When the IV measurement was performed, the rectification characteristic was confirmed.
(電力制御素子の作成)
 電力制御機能を有する機能素子を作製した。
 前記実施例と同様に自立基板を作製した。ただし、実施例1と異なり、Naフラックス法によって窒化ガリウム結晶を成膜する際に、不純物のドーピングは行わなかった。このようにして得られた自立基板の上面に、以下のようにして、MOCVD法でAl0.25Ga0.75N/GaN HEMT構造を成膜し、電極を形成し、トランジスタ特性を確認した。
(Creating a power control element)
A functional element having a power control function was produced.
A self-supporting substrate was produced in the same manner as in the above example. However, unlike Example 1, when forming a gallium nitride crystal film by Na flux method, doping of impurities was not performed. The upper surface of the free-standing substrate obtained in this manner, in the following manner, forming a Al 0.25 Ga 0.75 N / GaN HEMT structure by MOCVD to form the electrodes was confirmed transistor characteristics.
  MOCVD(有機金属化学的気相成長)法を用いて、自立基板上にi型層として1050℃で不純物ドーピングをしていないGaN層を3μm成膜した。次に機能層として同じ1050℃でAl0.25Ga0.75N層を25nm成膜した。これによりAl0.25Ga0.75N/GaN HEMT構造が得られた。 Using an MOCVD (metal organic chemical vapor deposition) method, a 3 μm-thick GaN layer was formed as an i-type layer at 1050 ° C. as an i-type layer on a free-standing substrate. Next, a 25 nm Al 0.25 Ga 0.75 N layer was deposited at 1050 ° C. as a functional layer. This resulted in an Al 0.25 Ga 0.75 N / GaN HEMT structure.
  フォトリソグラフィープロセスと真空蒸着法とを用いて、ソース電極及びドレイン電極としてのTi/Al/Ni/Au膜をそれぞれ15nm、70nm、12nm、60nmの厚みでパターニングした。その後、オーム性接触特性を良好なものとするために、窒素雰囲気中での700℃の熱処理を30秒間行った。さらに、フォトリソグラフィープロセスと真空蒸着法とを用いて、ゲート電極としてNi/Au膜をそれぞれ6nm、80nmの厚みでショットキー接合にて形成し、パターニングした。こうして得られた基板を切断してチップ化し、さらにリードフレーム(lead frame)に実装して、電力制御素子を得た。 Ti / Al / Ni / Au films as source and drain electrodes were patterned to thicknesses of 15 nm, 70 nm, 12 nm, and 60 nm, respectively, using a photolithography process and a vacuum evaporation method. Thereafter, heat treatment at 700 ° C. in a nitrogen atmosphere was performed for 30 seconds in order to improve ohmic contact characteristics. Furthermore, using a photolithography process and a vacuum evaporation method, a Ni / Au film as a gate electrode was formed by Schottky junction with a thickness of 6 nm and 80 nm, respectively, and patterned. The substrate thus obtained was cut into chips, and then mounted on lead frames to obtain power control elements.
(電力制御素子の評価)
 I-V特性を測定したところ、良好なピンチオフ特性が確認され、最大ドレイン電流は710mA/mm、最大相互コンダクタンス210mS/mm特性を得た。
(Evaluation of power control element)
When the IV characteristics were measured, good pinch-off characteristics were confirmed, and the maximum drain current was 710 mA / mm, and the maximum transconductance was 210 mS / mm.
 本実施例における13族元素窒化物結晶の上面はN面であるが、Ga面でも同様の効果を得ることができる。 The upper surface of the Group 13 element nitride crystal in the present embodiment is an N-face, but the same effect can be obtained with a Ga-face.

Claims (27)

  1.  窒化ガリウム、窒化アルミニウム、窒化インジウムまたはこれらの混晶から選択された13族元素窒化物結晶からなり、上面及び底面を有する13族元素窒化物結晶層であって、
     前記上面をカソードルミネッセンスによって観測したときに、高輝度発光部と、前記高輝度発光部に隣接する低輝度発光領域とを有しており、
     前記上面におけるX線ロッキングカーブの(0002)面反射の半値幅が3000秒以下、20秒以上であり、
     前記上面の算術平均粗さRaが0.05nm以上、1.0nm以下であることを特徴とする、13族元素窒化物層。
    13. Group 13 element nitride crystal layer comprising a group 13 element nitride crystal selected from gallium nitride, aluminum nitride, indium nitride or mixed crystals thereof, having a top surface and a bottom surface,
    When the upper surface is observed by cathode luminescence, it has a high brightness light emitting portion and a low brightness light emitting region adjacent to the high brightness light emitting portion,
    The half value width of (0002) plane reflection of the X-ray rocking curve on the upper surface is 3000 seconds or less and 20 seconds or more,
    Arithmetic mean roughness Ra of the upper surface is 0.05 nm or more and 1.0 nm or less, and the group 13 element nitride layer is characterized.
  2.  前記13族元素窒化物結晶層の前記上面に略垂直な断面においてボイドが観測されないことを特徴とする、請求項1記載の13族元素窒化物結晶層。 The group 13 element nitride crystal layer according to claim 1, wherein no void is observed in a cross section substantially perpendicular to the upper surface of the group 13 element nitride crystal layer.
  3.  前記13族元素窒化物結晶層の前記上面における転位密度が1×10/cm以下であることを特徴とする、請求項1または2記載の13族元素窒化物結晶層。 The group 13 element nitride crystal layer according to claim 1 or 2, wherein a dislocation density on the upper surface of the group 13 element nitride crystal layer is 1 × 10 6 / cm 2 or less.
  4.  前記13族元素窒化物結晶層の前記上面における前記転位密度が1×10/cm以上、1×10/cm以下であることを特徴とする、請求項3記載の13族元素窒化物結晶層。 The group 13 element nitrided according to claim 3, wherein the dislocation density on the upper surface of the group 13 element nitride crystal layer is 1 x 10 2 / cm 2 or more and 1 x 10 6 / cm 2 or less. Crystal layer.
  5.  前記高輝度発光部が連続相を形成しており、前記低輝度発光領域が前記高輝度発光部によって区画された不連続相を形成していることを特徴とする、請求項1~4のいずれか一つの請求項に記載の13族元素窒化物結晶層。 The high brightness light emitting portion forms a continuous phase, and the low brightness light emitting region forms a discontinuous phase partitioned by the high brightness light emitting portion. A group 13 element nitride crystal layer according to any one of the claims.
  6. 前記高輝度発光部が前記13族元素窒化物結晶のm面に沿って延びている部分を含むことを特徴とする、請求項1~5のいずれか一つの請求項に記載の13族元素窒化物結晶層。 The group 13 element nitrided according to any one of claims 1 to 5, wherein the high brightness light emitting portion includes a portion extending along the m-plane of the group 13 element nitride crystal. Crystal layer.
  7. 前記上面におけるX線ロッキングカーブの(1000)面反射の半値幅が10000秒以下、20秒以上であることを特徴とする、請求項1~6のいずれか一つの請求項に記載の13族元素窒化物層。 The group 13 element according to any one of claims 1 to 6, wherein a half value width of (1000) plane reflection of the X-ray rocking curve on the upper surface is 10000 seconds or less and 20 seconds or more. Nitride layer.
  8.  前記13族元素窒化物が窒化ガリウム系窒化物である、請求項1~7のいずれか一項に記載の13族元素窒化物層。 The Group 13 element nitride layer according to any one of claims 1 to 7, wherein the Group 13 element nitride is a gallium nitride based nitride.
  9.  請求項1~8のいずれか一つの請求項に記載の13族元素窒化物層からなることを特徴とする、自立基板。 A freestanding substrate comprising the group 13 element nitride layer according to any one of claims 1 to 8.
  10.  請求項9記載の自立基板、および
     前記13族元素窒化物層上に設けられた機能層を有することを特徴とする、機能素子。
    A functional device comprising: the self-supporting substrate according to claim 9; and a functional layer provided on the group 13 element nitride layer.
  11.  前記機能層の機能が、発光機能、整流機能または電力制御機能であることを特徴とする、請求項10記載の機能素子。 The functional device according to claim 10, wherein the function of the functional layer is a light emitting function, a rectifying function or a power control function.
  12.  支持基板、および
     前記支持基板上に設けられた請求項1~8のいずれか一つの請求項に記載の13族元素窒化物層
    を備えていることを特徴とする、複合基板。
    A composite substrate, comprising: a support substrate; and the Group 13 element nitride layer according to any one of claims 1 to 8 provided on the support substrate.
  13.  請求項12記載の複合基板、および
     前記13族元素窒化物層上に設けられた機能層を有することを特徴とする、機能素子。
    A functional device comprising the composite substrate according to claim 12 and a functional layer provided on the group 13 element nitride layer.
  14.  前記機能層の機能が、発光機能、整流機能または電力制御機能であることを特徴とする、請求項13記載の機能素子。 The functional device according to claim 13, wherein the function of the functional layer is a light emitting function, a rectifying function or a power control function.
  15.  窒化ガリウム、窒化アルミニウム、窒化インジウムまたはこれらの混晶から選択された13族元素窒化物結晶からなり、上面及び底面を有する13族元素窒化物結晶層であって、
     前記上面をカソードルミネッセンスによって観測したときに、高輝度発光部と、前記高輝度発光部に隣接する低輝度発光領域とを有しており、
     前記上面におけるX線ロッキングカーブの(1000)面反射の半値幅が10000秒以下、20秒以上であり、
     前記上面の算術平均粗さRaが0.05nm以上、1.0nm以下であることを特徴とする、13族元素窒化物層。
    13. Group 13 element nitride crystal layer comprising a group 13 element nitride crystal selected from gallium nitride, aluminum nitride, indium nitride or mixed crystals thereof, having a top surface and a bottom surface,
    When the upper surface is observed by cathode luminescence, it has a high brightness light emitting portion and a low brightness light emitting region adjacent to the high brightness light emitting portion,
    The half value width of (1000) plane reflection of the X-ray rocking curve on the upper surface is 10000 seconds or less and 20 seconds or more,
    Arithmetic mean roughness Ra of the upper surface is 0.05 nm or more and 1.0 nm or less, and the group 13 element nitride layer is characterized.
  16.  前記13族元素窒化物結晶層の前記上面に略垂直な断面においてボイドが観測されないことを特徴とする、請求項15記載の13族元素窒化物結晶層。 The group 13 element nitride crystal layer according to claim 15, wherein no void is observed in a cross section substantially perpendicular to the upper surface of the group 13 element nitride crystal layer.
  17.  前記13族元素窒化物結晶層の前記上面における転位密度が1×10/cm以下であることを特徴とする、請求項15または16記載の13族元素窒化物結晶層。 The group 13 element nitride crystal layer according to claim 15 or 16, wherein a dislocation density on the upper surface of the group 13 element nitride crystal layer is 1 × 10 6 / cm 2 or less.
  18.  前記13族元素窒化物結晶層の前記上面における前記転位密度が1×10/cm以上、1×10/cm以下であることを特徴とする、請求項17記載の13族元素窒化物結晶層。 The group 13 element nitrided according to claim 17, wherein the dislocation density on the upper surface of the group 13 element nitride crystal layer is 1 x 10 2 / cm 2 or more and 1 x 10 6 / cm 2 or less. Crystal layer.
  19.  前記高輝度発光部が連続相を形成しており、前記低輝度発光領域が前記高輝度発光部によって区画された不連続相を形成していることを特徴とする、請求項15~18のいずれか一つの請求項に記載の13族元素窒化物結晶層。 19. The high-intensity light emitting portion forms a continuous phase, and the low-intensity light emitting region forms a discontinuous phase partitioned by the high-intensity light emitting portion. A group 13 element nitride crystal layer according to any one of the claims.
  20. 前記高輝度発光部が前記13族元素窒化物結晶のm面に沿って延びている部分を含むことを特徴とする、請求項15~19のいずれか一つの請求項に記載の13族元素窒化物結晶層。 20. The group 13 element nitrided according to any one of claims 15 to 19, wherein the high brightness light emitting portion includes a portion extending along the m-plane of the group 13 element nitride crystal. Crystal layer.
  21.  前記13族元素窒化物が窒化ガリウム系窒化物である、請求項15~20のいずれか一項に記載の13族元素窒化物層。 The group 13 element nitride layer according to any one of claims 15 to 20, wherein the group 13 element nitride is a gallium nitride based nitride.
  22.  請求項15~21のいずれか一つの請求項に記載の13族元素窒化物層からなることを特徴とする、自立基板。 A freestanding substrate comprising the group 13 element nitride layer according to any one of claims 15 to 21.
  23.  請求項22載の自立基板、および
     前記13族元素窒化物層上に設けられた機能層を有することを特徴とする、機能素子。
    A functional element comprising: the self-supporting substrate according to claim 22; and a functional layer provided on the group 13 element nitride layer.
  24.  前記機能層の機能が、発光機能、整流機能または電力制御機能であることを特徴とする、請求項23記載の機能素子。 The functional device according to claim 23, wherein the function of the functional layer is a light emitting function, a rectifying function or a power control function.
  25.  支持基板、および
     前記支持基板上に設けられた請求項15~21のいずれか一つの請求項に記載の13族元素窒化物層
    を備えていることを特徴とする、複合基板。
    A composite substrate comprising: a support substrate; and the group 13 element nitride layer according to any one of claims 15 to 21 provided on the support substrate.
  26.  請求項25記載の複合基板、および
     前記13族元素窒化物層上に設けられた機能層を有することを特徴とする、機能素子。
    A functional element comprising: the composite substrate according to claim 25; and a functional layer provided on the group 13 element nitride layer.
  27.  前記機能層の機能が、発光機能、整流機能または電力制御機能であることを特徴とする、請求項26記載の機能素子。 The functional device according to claim 26, wherein the function of the functional layer is a light emitting function, a rectifying function or a power control function.
PCT/JP2018/028563 2017-08-24 2018-07-31 Group 13 element nitride layer, freestanding substrate and functional element WO2019039208A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019538029A JP6854902B2 (en) 2017-08-24 2018-07-31 Group 13 element nitride layer, self-supporting substrate and functional element

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JPPCT/JP2017/030373 2017-08-24
PCT/JP2017/030373 WO2019038892A1 (en) 2017-08-24 2017-08-24 Group 13 element nitride layer, freestanding substrate and functional element
JPPCT/JP2017/034035 2017-09-21
PCT/JP2017/034035 WO2019038933A1 (en) 2017-08-24 2017-09-21 Group 13 element nitride layer, freestanding substrate and functional element
JP2018061535 2018-03-28
JP2018-061535 2018-03-28

Publications (1)

Publication Number Publication Date
WO2019039208A1 true WO2019039208A1 (en) 2019-02-28

Family

ID=65438692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028563 WO2019039208A1 (en) 2017-08-24 2018-07-31 Group 13 element nitride layer, freestanding substrate and functional element

Country Status (2)

Country Link
JP (1) JP6854902B2 (en)
WO (1) WO2019039208A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277803A (en) * 1999-03-24 2000-10-06 Nichia Chem Ind Ltd Nitride semiconductor substrate and device using the same
JP2001284736A (en) * 2000-03-31 2001-10-12 Sanyo Electric Co Ltd Nitride-based semiconductor light emitting device and nitride-based semiconductor substrate
JP2005154254A (en) * 2003-10-31 2005-06-16 Sumitomo Electric Ind Ltd Group iii nitride crystal, its manufacturing method, and manufacturing device of group iii nitride crystal
JP2009147271A (en) * 2007-12-18 2009-07-02 Tohoku Univ Substrate manufacturing method and group-iii nitride semiconductor crystal
JP2010180111A (en) * 2009-02-06 2010-08-19 Mitsubishi Chemicals Corp Self-support substrate and method for manufacturing the same
WO2015068458A1 (en) * 2013-11-07 2015-05-14 日本碍子株式会社 GaN TEMPLATE SUBSTRATE AND DEVICE SUBSTRATE
US20160020284A1 (en) * 2014-07-21 2016-01-21 Soraa, Inc. Reusable nitride wafer, method of making, and use thereof
WO2016121853A1 (en) * 2015-01-29 2016-08-04 日本碍子株式会社 Free-standing substrate, function element and method for producing same
JP2016160151A (en) * 2015-03-03 2016-09-05 国立大学法人大阪大学 Manufacturing method of group iii nitride semiconductor crystal substrate
JP2017052660A (en) * 2015-09-08 2017-03-16 株式会社豊田中央研究所 Gallium nitride crystal and its production, and crystal growth apparatus
WO2017077989A1 (en) * 2015-11-02 2017-05-11 日本碍子株式会社 Epitaxial substrate for semiconductor elements, semiconductor element, and production method for epitaxial substrates for semiconductor elements

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6344987B2 (en) * 2014-06-11 2018-06-20 日本碍子株式会社 Group 13 element nitride crystal layer and functional device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277803A (en) * 1999-03-24 2000-10-06 Nichia Chem Ind Ltd Nitride semiconductor substrate and device using the same
JP2001284736A (en) * 2000-03-31 2001-10-12 Sanyo Electric Co Ltd Nitride-based semiconductor light emitting device and nitride-based semiconductor substrate
JP2005154254A (en) * 2003-10-31 2005-06-16 Sumitomo Electric Ind Ltd Group iii nitride crystal, its manufacturing method, and manufacturing device of group iii nitride crystal
JP2009147271A (en) * 2007-12-18 2009-07-02 Tohoku Univ Substrate manufacturing method and group-iii nitride semiconductor crystal
JP2010180111A (en) * 2009-02-06 2010-08-19 Mitsubishi Chemicals Corp Self-support substrate and method for manufacturing the same
WO2015068458A1 (en) * 2013-11-07 2015-05-14 日本碍子株式会社 GaN TEMPLATE SUBSTRATE AND DEVICE SUBSTRATE
US20160020284A1 (en) * 2014-07-21 2016-01-21 Soraa, Inc. Reusable nitride wafer, method of making, and use thereof
WO2016121853A1 (en) * 2015-01-29 2016-08-04 日本碍子株式会社 Free-standing substrate, function element and method for producing same
JP2016160151A (en) * 2015-03-03 2016-09-05 国立大学法人大阪大学 Manufacturing method of group iii nitride semiconductor crystal substrate
JP2017052660A (en) * 2015-09-08 2017-03-16 株式会社豊田中央研究所 Gallium nitride crystal and its production, and crystal growth apparatus
WO2017077989A1 (en) * 2015-11-02 2017-05-11 日本碍子株式会社 Epitaxial substrate for semiconductor elements, semiconductor element, and production method for epitaxial substrates for semiconductor elements

Also Published As

Publication number Publication date
JPWO2019039208A1 (en) 2020-11-12
JP6854902B2 (en) 2021-04-07

Similar Documents

Publication Publication Date Title
US11011678B2 (en) Group 13 element nitride layer, free-standing substrate and functional element
US20200194621A1 (en) Group 13 element nitride layer, free-standing substrate and functional element
US11309455B2 (en) Group 13 element nitride layer, free-standing substrate and functional element
US11555257B2 (en) Group 13 element nitride layer, free-standing substrate and functional element
JP6764035B2 (en) Group 13 element nitride layer, self-supporting substrate and functional element
WO2021049170A1 (en) Method for producing group 13 element nitride crystal layer, and seed crystal substrate
JP6854902B2 (en) Group 13 element nitride layer, self-supporting substrate and functional element
JP6851486B2 (en) Group 13 element nitride layer, self-supporting substrate and functional element
JP6851485B2 (en) Group 13 element nitride layer, self-supporting substrate and functional element
JP2020073438A (en) Group 13 element nitride crystal layer, free-standing substrate, and function element
WO2019039055A1 (en) Method for producing group 13 element nitride layer
WO2019039342A1 (en) Gallium nitride substrate, self-supporting substrate, and functional element
JPWO2019039055A1 (en) Method for manufacturing group 13 element nitride layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18847688

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019538029

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18847688

Country of ref document: EP

Kind code of ref document: A1