WO2019039055A1 - Method for producing group 13 element nitride layer - Google Patents

Method for producing group 13 element nitride layer Download PDF

Info

Publication number
WO2019039055A1
WO2019039055A1 PCT/JP2018/022796 JP2018022796W WO2019039055A1 WO 2019039055 A1 WO2019039055 A1 WO 2019039055A1 JP 2018022796 W JP2018022796 W JP 2018022796W WO 2019039055 A1 WO2019039055 A1 WO 2019039055A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
light emitting
layer
element nitride
nitride crystal
Prior art date
Application number
PCT/JP2018/022796
Other languages
French (fr)
Japanese (ja)
Inventor
坂井 正宏
崇行 平尾
中西 宏和
幹也 市村
孝直 下平
隆史 吉野
克宏 今井
倉岡 義孝
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2017/030373 external-priority patent/WO2019038892A1/en
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2019537943A priority Critical patent/JP7157062B2/en
Publication of WO2019039055A1 publication Critical patent/WO2019039055A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Definitions

  • the present invention relates to a method of manufacturing a Group 13 element nitride layer.
  • GaN gallium nitride
  • MQW multiple quantum well layer
  • the gallium nitride layer described in Patent Document 1 is polycrystalline gallium nitride composed of a large number of gallium nitride single crystal particles, and a large number of columnar gallium nitride single crystal particles are arranged in the lateral direction.
  • the gallium nitride layer described in Patent Document 2 is polycrystalline gallium nitride composed of a large number of gallium nitride single crystal particles, and a large number of columnar gallium nitride single crystal particles are arranged in the lateral direction.
  • the average tilt angle (average value of the inclination of crystal orientation (crystal axis) in the direction normal to the surface) on the surface is 1 to 10 °.
  • Patent Document 3 a large number of inclusions are included from the bottom to an intermediate position, and a plurality of grain boundaries including only a low concentration are formed diagonally from the lower surface from the intermediate position to the upper surface.
  • the grain boundaries extend obliquely in the direction having an angle of 50 to 70 ° with respect to the c axis.
  • Patent Document 5 describes that a gallium nitride crystal having a low dislocation density is obtained by increasing the Ga ratio in the melt.
  • the grain size can be increased to reduce the dislocation density by controlling the flow of the high Ga ratio and the flux, but voids are likely to be contained between grains.
  • An object of the present invention is to suppress dislocation defects in a Group 13 element nitride crystal layer comprising a Group 13 element nitride crystal selected from gallium nitride, aluminum nitride, indium nitride or mixed crystals thereof and having a top surface and a bottom surface. To improve the yield of functional devices and improve their characteristics.
  • the present invention provides a process of forming an aluminum oxide layer by surface treating a sapphire substrate, Forming a seed crystal film of Group 13 element nitride on the aluminum oxide layer; and Group 13 selected from gallium nitride, aluminum nitride, indium nitride, or mixed crystals thereof on the seed crystal film.
  • the present invention relates to a method for producing a Group 13 element nitride layer, including the step of providing a Group 13 element nitride layer comprising an element nitride.
  • dislocation defects in a Group 13 element nitride crystal layer can be suppressed, the yield of functional devices can be improved, and a Group 13 element nitride crystal layer capable of improving characteristics can be provided. .
  • FIG. 6 is a schematic view for explaining a cathode luminescence image of the upper surface 13 a of the group 13 element nitride crystal layer 13. It is a photograph which shows the cathode luminescence image of upper surface 13a of 13 group element nitride crystal layer 13.
  • FIG. It is a partial enlarged photograph of FIG. It is a schematic diagram corresponding to the cathode luminescence image of FIG. It is a photograph which shows the cathode luminescence image of the section of 13 group element nitride crystal layer 13.
  • 7 is a scanning electron micrograph showing a cross section of a Group 13 element nitride crystal layer 13; It is a schematic diagram which shows the functional element 21 which concerns on this invention. It is a photography picture with a scanning electron microscope of the upper surface of 13 group element nitride crystal layer. 2 shows a gray scale histogram generated from a CL image.
  • FIG. 1 (a) the surface 25a of the sapphire substrate 25 is surface-treated as shown by the arrow K to form an aluminum oxide layer 2 as shown in FIG. 1 (b).
  • the surface treatment method of the sapphire substrate is not particularly limited as long as the aluminum oxide layer can be formed, but methods (1) to (4) as described later can be preferably exemplified.
  • (1) Surface treatment is performed by irradiating the sapphire substrate with an ion beam or high-speed atomic beam.
  • (2) Surface treatment is performed by grinding the sapphire substrate.
  • (3) The sapphire substrate is subjected to surface treatment by reactive ion etching.
  • the sapphire substrate is subjected to surface treatment by annealing in an atmosphere containing at least hydrogen.
  • the sapphire substrate is irradiated with an ion beam or a high-speed atomic beam.
  • ion species of ion beam argon ion, helium ion, neon ion, krypton ion, xenon ion, gallium ion, hydrogen ion can be exemplified, and as atomic species of fast atom beam, argon, helium, neon, Krypton, xenon and nitrogen can be exemplified.
  • the power and gas flow rate are not particularly limited, but the power is preferably 5 W or more and 500 W or less, and the gas flow rate is preferably 1 sccm or more and 80 sccm or less.
  • power, gas flow rate, and vacuum degree before start of irradiation are not particularly limited, but power is preferably 4 W or more and 500 W or less, and gas flow rate is 20 sccm or more and 80 sccm or less.
  • the degree of vacuum before the start of irradiation is preferably as low as possible, and preferably 1 ⁇ 10 ⁇ 5 Pa or less.
  • grinding refers to scraping off the surface of an object by bringing the fixed abrasive in which the abrasive is fixed by bonding into contact with the object while rotating at high speed. By such grinding, a rough surface is formed, and a process-altered layer is formed on the outermost surface.
  • the sapphire substrate is subjected to reactive ion etching to perform surface treatment.
  • the gas type used is preferably chlorine, boron trichloride, silicon tetrachloride or a mixed gas thereof.
  • argon, krypton and xenon may be mixed.
  • an ICP type, an ECR type, and a parallel plate type can be exemplified.
  • the power, bias power, pressure in the chamber, and flow rate of the used gas are not particularly limited, but the power is 100 W or more and 1000 W or less, bias power is 50 W or more and 300 W or less, the pressure in the chamber is 0.1 Pa or more and 10 Pa or less, the used gas flow rate It is preferable to be 1 sccm or more and 100 sccm or less.
  • the surface treatment is performed by annealing the sapphire substrate in an atmosphere containing at least hydrogen.
  • the atmosphere may be hydrogen alone or may contain ammonia, nitrogen and argon in addition to hydrogen.
  • the annealing temperature is preferably 1000 ° C. or more, more preferably 1200 ° C. or more. From a practical viewpoint, the annealing temperature is preferably 1500 ° C. or less, more preferably 1400 ° C. or less.
  • the pressure at the time of the annealing treatment may be any of reduced pressure, atmospheric pressure and increased pressure, and is not particularly limited, but reduced pressure is preferable from the viewpoint of gas use efficiency.
  • the aluminum oxide layer is formed by surface treatment of the sapphire substrate.
  • the composition of the aluminum oxide may be Al 2 O 3 but may deviate from this composition because it is a thin layer.
  • elements other than aluminum and oxygen used for surface treatment may be contained in the aluminum oxide layer, or may be attached to the surface of the aluminum oxide layer.
  • the thickness of the aluminum oxide layer is not particularly limited, but is preferably 30 angstroms or more, from the viewpoint of obtaining a Group 13 element nitride crystal layer which can lower dislocation density and reduce variation in characteristics throughout. More than angstroms are more preferred. Further, from the practical viewpoint, the thickness of the aluminum oxide layer is preferably 50,000 angstroms or less, more preferably 20,000 angstroms or less.
  • the presence of the aluminum oxide layer is confirmed by transmission electron microscopy.
  • H-9000NAR manufactured by Hitachi High-Technologies Corporation is used, and the magnification during observation is preferably 2,000,000 times.
  • the aluminum oxide layer contains an amorphous phase
  • the diffraction contrast due to the crystal lattice disappears in the amorphous phase, so that a bright contrast is obtained and a uniform image can be obtained. It can be confirmed and the thickness of the aluminum oxide layer can be measured.
  • the aluminum oxide layer includes a defect-introduced portion
  • the defect is displayed as a linear dark contrast, so it can be confirmed that a defect is newly introduced.
  • the aluminum oxide layer contains a polycrystalline phase, it can be distinguished from the amorphous phase because different color contrasts can be seen in the layer.
  • the aluminum oxide layer contains a defect-introduced portion, it is displayed as a darker line-like contrast, so it can be confirmed that a defect is newly introduced.
  • diffraction spots aligned regularly in a single crystal, concentric circular rings in a polycrystal, and broad circular ring electron beam diffraction patterns in an amorphous phase are observed. Therefore, the single crystal phase, the polycrystalline phase, and the amorphous phase can be distinguished.
  • a seed crystal layer 3 is provided on the aluminum oxide layer 2.
  • the material constituting the seed crystal layer 3 is a nitride of one or two or more kinds of Group 13 elements specified by IUPAC.
  • the group 13 element is preferably gallium, aluminum or indium.
  • group 13 element nitride crystals are GaN, AlN, InN, Ga x Al 1 -x N (1>x> 0), Ga x In 1-x N (1>x> 0) And Ga x Al y InN 1 -x-y (1>x> 0, 1>y> 0).
  • the method of producing the seed crystal layer 3 is not particularly limited, but MOCVD (organic metal vapor phase growth method), MBE (molecular beam epitaxy method), HVPE (hydride vapor phase growth method), vapor phase method such as sputtering, Na flux method Liquid phase methods such as ammonothermal method, hydrothermal method, sol-gel method, powder method utilizing solid phase growth of powder, and combinations thereof are preferably exemplified.
  • a seed crystal layer is formed by depositing a low-temperature growth buffer GaN layer at 450 to 550 ° C. for 20 to 50 nm and then laminating a GaN film having a thickness of 2 to 4 ⁇ m at 1000 to 1200 ° C.
  • MOCVD organic metal vapor phase growth method
  • MBE molecular beam epitaxy method
  • HVPE hydrogen vapor phase growth method
  • vapor phase method such as sputtering
  • Na flux method Liquid phase methods such as ammonothermal method, hydrothermal method, sol
  • Group 13 element nitride crystal layer 13 is formed to have a crystal orientation substantially conforming to the crystal orientation of seed crystal layer 3.
  • the method of forming the group 13 element nitride crystal layer is not particularly limited as long as it has a crystal orientation substantially following the crystal orientation of the seed crystal film, and a vapor phase method such as MOCVD or HVPE, Na flux method, ammonothermal method, A hydrothermal method, a liquid phase method such as a sol-gel method, a powder method utilizing solid phase growth of powder, and a combination thereof are preferably exemplified, but the Na flux method is particularly preferable.
  • Group 13 element nitride crystal layer by Na flux method, Group 13 metal, metal Na and optionally dopant (for example, germanium (Ge), silicon (Si), oxygen (O), etc., etc. in place of the seed crystal substrate) Filled with a melt composition containing n-type dopants or p-type dopants such as beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), zinc (Zn) and cadmium (Cd) After heating to 830 ° C. to 910 ° C. and 3.5 to 4.5 MPa in a nitrogen atmosphere, it is preferable to carry out rotation while maintaining the temperature and pressure. The holding time varies depending on the target film thickness, but may be about 10 to 100 hours.
  • the plate surface by grinding the gallium nitride crystal thus obtained by the Na flux method with a grindstone, and then to smooth the plate surface by lapping using diamond abrasive grains.
  • the Group 13 element nitride crystal layer can be formed on the above-described aluminum oxide layer.
  • the group 13 element nitride crystal layer is made of group 13 element nitride crystal selected from gallium nitride, aluminum nitride, indium nitride or mixed crystals thereof, and has top and bottom surfaces. For example, as shown in FIG. 2B, in the group 13 element nitride crystal layer 13, the top surface 13a and the bottom surface 13b face each other.
  • the nitride constituting the Group 13 element nitride crystal layer is a gallium nitride based nitride.
  • GaN, Ga x Al 1- x N (1>x> 0.5), Ga x In 1-x N (1>x> 0.4), Ga x Al y In z N (1>x> 0.5 , 1>y> 0.3, x + y + z 1).
  • Group 13 element nitrides may be doped with zinc, calcium or other n-type dopants or p-type dopants, in which case polycrystalline group 13 element nitrides may be p-type electrodes, n-type electrodes, p It can be used as a member or layer other than a substrate such as a mold layer and an n-type layer.
  • Preferred examples of the p-type dopant include one or more selected from the group consisting of beryllium (Be), magnesium (Mg), strontium (Sr), and cadmium (Cd).
  • Preferred examples of the n-type dopant include one or more selected from the group consisting of silicon (Si), germanium (Ge), tin (Sn) and oxygen (O).
  • the top surface of the Group 13 element nitride crystal layer when the top surface of the Group 13 element nitride crystal layer is observed by cathodoluminescence, it has a linear high luminance light emitting portion and a low luminance light emitting region adjacent to the high luminance light emitting portion.
  • the high brightness light emitting portion includes a portion extending along the m-plane of the Group 13 element nitride crystal. This is because a linear high-intensity light emitting portion appears on the upper surface, so that a linear high-intensity light emitting portion in which a dopant component, a trace amount component, and the like contained in a Group 13 element nitride crystal are dark is generated. Means.
  • the fact that the linear high-intensity light emitting part extends along the m-plane means that the dopant is gathered along the m-plane during crystal growth, and as a result, the dark linear high-intensity light emitting part is m It means to appear along the face.
  • Group 13 element nitride crystal layers having such novel microstructures can reduce dislocation density even if the size is increased (for example, even if the diameter is 6 inches or more), and the variation in characteristics can be reduced overall It is possible to provide a group 13 element nitride crystal layer.
  • a group 13 element nitride crystal layer when the upper surface 13a of the group 13 element nitride crystal layer 13 is observed by cathode luminescence (CL), as schematically shown in FIG. 3, a linear high-intensity light emitting portion 5 and a high-intensity light emitting portion And a low luminance light emitting region 6 adjacent to the fifth one.
  • observation by CL shall be performed as follows.
  • a scanning electron microscope (SEM) with a CL detector is used.
  • SEM scanning electron microscope
  • measurement conditions are: acceleration voltage 10 kV, probe current “90” with CL detector inserted between sample and objective lens
  • the working distance (W.D.) is preferably 22.5 mm and observed at a magnification of 50 times.
  • the high luminance light emitting portion and the low luminance light emitting region are distinguished as follows from the observation by cathode luminescence.
  • Image analysis software for example, Mitani Shoji Co., Ltd. WinROOF Ver. 6 against the luminance of the image observed with CL at a magnification of 50 ⁇ with an acceleration voltage of 10 kV, a probe current of “90”, a working distance (W.D.) of 22.5 mm.
  • GRAY luminance
  • the low luminance light emitting region is adjacent to the linear high luminance light emitting portion.
  • adjacent low-intensity light emission areas are divided by the linear high-intensity light emission parts located between them.
  • the high brightness light emitting portion is linear means that the high brightness light emitting portion is elongated and elongated between adjacent low brightness light emitting regions to form a boundary line.
  • the line made by the high-intensity light emitting portion may be a straight line, a curved line, or a combination of a straight line and a curved line.
  • the curve may include various forms such as arc, ellipse, parabola, hyperbola and the like.
  • the terminal of the high-intensity light emission part may be cut off.
  • the low luminance light emitting region may be an exposed surface of the group 13 element nitride crystal grown therebelow, and is two-dimensionally spread in a planar manner.
  • the high brightness light emitting portion is linear, but extends in a one-dimensional manner as a boundary that divides adjacent low brightness light emitting regions. This is because, for example, a dopant component and a trace component are discharged from a Group 13 element nitride crystal grown from below, and are gathered between adjacent Group 13 element nitride crystals in the growth process, and the low luminance emission is adjacent on the top surface It is considered that linear bright light-emitting portions were generated between the regions.
  • FIG. 4 shows a photograph by CL observation of the top surface of the Group 13 element nitride crystal layer obtained in the example.
  • FIG. 5 is a partial enlarged view of FIG. 4 and
  • FIG. 6 is a schematic view corresponding to FIG.
  • the low brightness light emitting area is two-dimensionally spread in a plane, and the high brightness light emitting portion is linear, and is one-dimensionally stretched like a boundary dividing the adjacent low brightness light emitting areas. I understand that.
  • the shape of the low luminance light emitting region is not particularly limited, and usually extends two-dimensionally in a planar shape.
  • the line formed by the high luminance light emitting portion needs to be elongated.
  • the width of the high brightness light emitting portion is preferably 100 ⁇ m or less, more preferably 20 ⁇ m or less, and particularly preferably 5 ⁇ m or less.
  • the width of the high brightness light emitting portion is usually 0.01 ⁇ m or more.
  • the ratio (length / width) of the length to the width of the high luminance light emitting portion is preferably 1 or more, and more preferably 10 or more.
  • the ratio of the area of the high luminance light emitting portion to the area of the low luminance light emitting region on the upper surface is 0.001 or more Is more preferably 0.01 or more.
  • the ratio of the area of the high luminance light emitting portion to the area of the low luminance light emitting region on the upper surface is 0.3 or less Is more preferably 0.1 or less.
  • the high brightness light emitting portion includes a portion extending along the m-plane of the Group 13 element nitride crystal.
  • the high-intensity light emission part 5 is extended in elongate linear form, and includes many parts 5a, 5b, 5c extended along m surface.
  • the directions along the m-plane of Group 13 element nitride crystal, which is a hexagonal crystal, are [-2110], [-12-10], [11-20], and [2-1-10].
  • the high-intensity light emitting unit 5 includes a part of the side of a substantially hexagonal shape reflecting the hexagonal crystal, which is a [1-210], [-1-120] direction.
  • the linear high-intensity light emitting portion extending along the m-plane means that the longitudinal direction of the high-intensity light emitting portion is [-2110], [-12-10], [11-20], [2- It means extending along one of 1-10 directions, [1-210] and [-1-120] directions.
  • the longitudinal direction of the linear high luminance light emitting part is preferably within ⁇ 1 °, more preferably within ⁇ 0.3 ° with respect to the m-plane is included.
  • linear high-intensity light emitting portions extend generally along the m-plane of the Group 13 element nitride crystal.
  • the main part of the high luminance light emitting part extends along the m plane, and preferably the continuous phase of the high luminance light emitting part extends along substantially the m plane.
  • the portion extending in the direction along the m-plane preferably occupies 60% or more, more preferably 80% or more, of the total length of the high brightness light emitting portion, and substantially high brightness It may occupy the whole of the light emitting part.
  • the high brightness light emitting portion forms a continuous phase
  • the low brightness light emitting region forms a discontinuous phase partitioned by the high brightness light emitting portion.
  • the linear high brightness light emitting portion 5 forms a continuous phase
  • the low brightness light emitting region 6 forms a discontinuous phase partitioned by the high brightness light emitting portion 5.
  • the continuous phase means that the high brightness light emitting portion 5 is continuous on the upper surface, but it is not essential that all the high brightness light emitting portions 5 are completely continuous, and the whole It is to be allowed that a small amount of the high luminance light emitting portion 5 is separated from the other high luminance light emitting portions 5 without affecting the pattern.
  • the dispersed phase means that the low brightness light emitting region 6 is divided by the high brightness light emitting portion 5 and divided into a large number of regions which are not connected to each other.
  • the low brightness light emitting region 6 is separated by the high brightness light emitting portion 5 on the upper surface, it is acceptable that the low brightness light emitting region 6 is continuous inside the group 13 element nitride crystal layer.
  • the half width of (0002) plane reflection of the X-ray rocking curve on the top surface of the group 13 element nitride crystal layer is 3000 seconds or less and 20 seconds or more. This indicates that the top surface has a small surface tilt angle, and the crystal orientation as a whole is highly oriented like a single crystal.
  • a characteristic distribution on the upper surface of a Group 13 element nitride crystal layer as having a microstructure in which the crystal orientation on the surface as a whole is highly oriented while having the cathode luminescence distribution as described above It is possible to make the characteristics of the various functional elements provided thereon uniform, and to improve the yield of the functional elements.
  • the half value width of (0002) plane reflection of the X-ray rocking curve on the top surface of the group 13 element nitride crystal layer is preferably 1000 seconds or less and 20 seconds or more, and 500 seconds or less and 20 seconds or more It is even more preferable that there be. In addition, it is practically difficult to reduce the half width of (0002) plane reflection of the X-ray rocking curve on the upper surface of the group 13 element nitride crystal layer to less than 20 seconds.
  • the half width of the X-ray rocking curve (0002) surface reflection can be calculated by performing peak search using XRD analysis software (LEPTOS 4.03 manufactured by Bruker-AXS).
  • the peak search conditions are preferably Noise Filter “10”, Threshold “0.30”, and Points “10”.
  • a linear high-intensity light emitting portion emitting white may be observed.
  • the low luminance light emitting region is spread in a two-dimensional manner in a planar manner, and the high luminance light emitting portion is linear and extends like a boundary dividing the adjacent low luminance light emitting regions.
  • the observation method of such a high luminance light emitting portion and the low luminance light emitting region is the same as the observation method of the high luminance light emitting portion and the low luminance light emitting region on the upper surface.
  • the shape of the low luminance light emitting region in the cross section of the Group 13 element nitride crystal layer there is no particular limitation on the shape of the low luminance light emitting region in the cross section of the Group 13 element nitride crystal layer, and usually it is two-dimensionally extended in a planar shape.
  • the line formed by the high luminance light emitting portion needs to be elongated.
  • the width of the high brightness light emitting portion is preferably 100 ⁇ m or less, and more preferably 20 ⁇ m or less.
  • the width of the high brightness light emitting portion is usually 0.01 ⁇ m or more.
  • the ratio (length / width) of length to width of the light emitting portion in the cross section of the group 13 element nitride crystal layer is preferably 1 or more, and more preferably 10 or more.
  • the linear high luminance light emitting portion in the cross section substantially perpendicular to the top surface of the Group 13 element nitride crystal layer, forms a continuous phase, and the low luminance light emitting region is formed by the high luminance light emitting portion. It forms a partitioned discontinuous phase.
  • the linear high-intensity light emitting portion forms a continuous phase
  • the low-intensity light emitting region forms a discontinuous phase partitioned by the high-intensity light emitting portion.
  • the continuous phase means that the high brightness light emitting portion is continuous in the cross section, but it is not essential that all the high brightness light emitting portions are completely continuous, and the whole pattern It is acceptable that a small amount of high-intensity light emitting portions are separated from other high-intensity light emitting portions without affecting the above.
  • the dispersed phase means that the low brightness light emitting region is divided by the high brightness light emitting portion and divided into many regions which are not connected to each other.
  • no void is observed in a cross section substantially perpendicular to the top surface of the Group 13 element nitride crystal layer. That is, in the SEM photograph shown in FIG. 8 which is the same field of view as the CL photograph in FIG. 7, different crystal phases other than voids (voids) and group 13 element nitride crystals are not observed. However, observation of void is performed as follows.
  • a void is observed when a cross section substantially perpendicular to the top surface of the Group 13 element nitride crystal layer is observed with a scanning electron microscope (SEM), and a void having a maximum width of 1 ⁇ m to 500 ⁇ m is a “void”.
  • SEM scanning electron microscope
  • For this SEM observation for example, S-3400N scanning electron microscope manufactured by Hitachi High-Technologies Corporation is used. Measurement conditions are preferably observed at an acceleration voltage of 15 kV, a probe current of "60", a working distance (W.D.) of 6.5 mm, and a magnification of 100 times.
  • the dislocation density on the top surface of the Group 13 element nitride crystal layer is 1 ⁇ 10 2 / cm 2 or more and 1 ⁇ 10 6 / cm 2 or less. It is particularly preferable to set the dislocation density to 1 ⁇ 10 6 / cm 2 or less from the viewpoint of improving the characteristics of the functional element. From this viewpoint, it is more preferable to set the dislocation density to 1 ⁇ 10 4 / cm 2 or less.
  • the dislocation density is measured as follows.
  • a scanning electron microscope (SEM) with a CL detector can be used.
  • SEM scanning electron microscope
  • dislocation sites are observed as black spots (dark spots) without light emission.
  • Dislocation density is calculated by measuring the dark spot density.
  • the measurement conditions while the CL detector is inserted between the sample and the objective lens, it is preferable to observe at an acceleration voltage of 10 kV, a probe current of "90", a working distance (W.D.) 22.5 mm, and a magnification of 1200 times. preferable.
  • the half width of (0002) plane reflection of the X-ray rocking curve on the top surface of the group 13 element nitride crystal layer is 3,000 seconds or less, 20 seconds or more, and half of (1000) plane reflection.
  • the value range is 10000 seconds or less and 20 seconds or more. This indicates that both the surface tilt angle and the surface twist angle at the upper surface are small, and the crystal orientation is highly oriented as a whole, like a single crystal. With such a fine structure in which the crystal orientation at the surface as a whole is more highly oriented, the characteristic distribution on the upper surface of the group 13 element nitride crystal layer can be reduced, and the characteristics of various functional elements provided thereon Can be made uniform, and the yield of functional devices is also improved.
  • the half value width of (1000) plane reflection of the X-ray rocking curve on the upper surface of the group 13 element nitride crystal layer is 10000 seconds or less and 20 seconds or more. This means that the surface twist angle at the top surface is very low. It indicates that the crystal orientation as a whole is highly oriented like a single crystal.
  • a characteristic distribution on the upper surface of a Group 13 element nitride crystal layer as having a microstructure in which the crystal orientation on the surface as a whole is highly oriented while having the cathode luminescence distribution as described above It is possible to make the characteristics of the various functional elements provided thereon uniform, and to improve the yield of the functional elements.
  • the half value width of (1000) plane reflection of the X-ray rocking curve on the upper surface of the group 13 element nitride crystal layer is preferably 5000 seconds or less, more preferably 1000 seconds or less, further 20 seconds or more It is more preferable that In addition, it is practically difficult to reduce this half-width to less than 20 seconds.
  • the ⁇ step width may be set to 0.003 ° and the counting time to 4 seconds.
  • it is preferable to measure CuK ⁇ rays in parallel monochromatization (half-width 28 seconds) with a Ge (022) asymmetric reflection monochromator and centering around a tilt angle CHI 88 °.
  • the half value width of X-ray rocking curve (1000) surface reflection can be calculated by performing peak search using XRD analysis software (manufactured by Bruker-AXS, LEPTOS 4.03).
  • the peak search conditions are preferably Noise Filter “10”, Threshold “0.30”, and Points “10”.
  • the method of separating the group 13 element nitride crystal layer from the sapphire substrate is not limited.
  • the Group 13 element nitride crystal layer is naturally exfoliated from the single crystal substrate in the temperature lowering step after the Group 13 element nitride crystal layer is grown.
  • the Group 13 element nitride crystal layer can be separated from the sapphire substrate by chemical etching.
  • a strong acid such as sulfuric acid or hydrochloric acid, a mixed solution of sulfuric acid and phosphoric acid, or a strong alkali such as sodium hydroxide aqueous solution or potassium hydroxide aqueous solution is preferable.
  • a strong alkali such as sodium hydroxide aqueous solution or potassium hydroxide aqueous solution is preferable.
  • 70 degreeC or more is preferable.
  • the group 13 element nitride crystal layer can be separated from the sapphire substrate by a laser lift-off method.
  • the group 13 element nitride crystal layer can be peeled off from the sapphire substrate by grinding.
  • the group 13 element nitride crystal layer can be peeled off from the sapphire substrate with a wire saw.
  • a freestanding substrate can be obtained by separating the group 13 element nitride crystal layer from the sapphire substrate.
  • the term "self-supporting substrate” means a substrate which can be handled as a solid without deformation or breakage under its own weight.
  • the self-supporting substrate of the present invention can be used as a substrate for various semiconductor devices such as light emitting elements, but in addition to that, it can be an electrode (may be a p-type electrode or an n-type electrode), a p-type layer, an n-type layer, etc. It can be used as a member or layer other than the base material.
  • This freestanding substrate may further be provided with one or more other layers.
  • the thickness of the self-supporting substrate needs to be able to impart self-supporting properties to the substrate, preferably 20 ⁇ m or more, more preferably 100 ⁇ m or more, and still more preferably It is 300 ⁇ m or more.
  • the upper limit of the thickness of the free-standing substrate should not be defined, but 3000 ⁇ m or less is realistic in terms of manufacturing cost.
  • a group 13 element nitride crystal layer When a group 13 element nitride crystal layer is provided on a sapphire substrate, it can be used as a template substrate for forming another functional layer without separating the group 13 element nitride crystal layer.
  • the functional element structure provided on the Group 13 element nitride crystal layer of the present invention is not particularly limited, the light emitting function, the rectifying function or the power control function can be exemplified.
  • a light emitting element is manufactured by providing a light emitting functional layer in a Group 13 element nitride crystal layer.
  • a light emitting element is manufactured using the Group 13 element nitride crystal layer as a member or layer other than the base material such as an electrode (which may be a p-type electrode or an n-type electrode), a p-type layer, or an n-type layer. It is also good.
  • FIG. 9 schematically shows a layer configuration of a light emitting element according to one embodiment of the present invention.
  • a light emitting element 21 shown in FIG. 9 includes a self-supporting substrate 13 and a light emitting functional layer 18 formed on the substrate.
  • the light emitting functional layer 18 provides light emission based on the principle of a light emitting element such as an LED by appropriately providing an electrode or the like and applying a voltage.
  • the light emitting functional layer 18 is formed on the substrate 13.
  • the light emitting functional layer 18 may be provided on the entire surface or a part of the substrate 13, or may be provided on the entire surface or a part of the buffer layer when the buffer layer described later is formed on the substrate 13. Good.
  • the light emitting functional layer 18 can adopt various known layer configurations that provide light emission based on the principle of a light emitting element represented by an LED by appropriately providing an electrode and / or a phosphor and applying a voltage. Therefore, the light emitting functional layer 18 may emit visible light such as blue and red, or may emit ultraviolet light without visible light or together with visible light.
  • the light emitting functional layer 18 preferably constitutes at least a part of a light emitting element utilizing a pn junction, and the pn junction includes a p-type layer 18a and an n-type layer 18c as shown in FIG.
  • the active layer 18 b may be included between At this time, a double hetero junction or a single hetero junction (hereinafter collectively referred to as a hetero junction) using a layer having a smaller band gap than the p-type layer and / or the n-type layer may be used as the active layer.
  • a quantum well structure in which the thickness of the active layer is reduced can be employed as one mode of the p-type layer-active layer-n-type layer.
  • the light emitting functional layer 18 is preferably provided with a pn junction and / or hetero junction and / or quantum well junction having a light emitting function.
  • 20 and 22 are examples of electrodes.
  • At least one layer constituting the light emitting functional layer 18 is at least selected from the group consisting of an n-type layer doped with an n-type dopant, a p-type layer doped with a p-type dopant, and an active layer. It can be one or more.
  • the n-type layer, the p-type layer and the active layer may be composed of the same material as the main component or may be composed of materials different from each other in the main component.
  • each layer constituting the light emitting functional layer 18 is not particularly limited as long as it grows substantially in accordance with the crystal orientation of the group 13 element nitride crystal layer and has a light emitting function, but a gallium nitride (GaN) based material It is preferable to be composed of a material mainly composed of at least one or more selected from zinc oxide (ZnO) based materials and aluminum nitride (AlN) based materials, and a dopant for controlling p type to n type is suitably selected It may be included. Particularly preferred materials are gallium nitride (GaN) based materials.
  • the material constituting the light emitting functional layer 18 may be, for example, a mixed crystal in which AlN, InN or the like is solid-solved in GaN in order to control the band gap.
  • the light emitting functional layer 18 may be a heterojunction made of a plurality of material systems. For example, a gallium nitride (GaN) based material may be used for the p-type layer, and a zinc oxide (ZnO) based material may be used for the n-type layer.
  • GaN gallium nitride
  • ZnO zinc oxide
  • a zinc oxide (ZnO) based material may be used for the p-type layer
  • a gallium nitride (GaN) based material may be used for the active layer and the n-type layer, and the combination of materials is not particularly limited.
  • the film formation method of the light emitting functional layer 18 and the buffer layer is not particularly limited as long as it is a method of growing substantially in accordance with the crystal orientation of the Group 13 element nitride crystal layer, but a vapor phase method such as MOCVD, MBE, HVPE, sputtering, etc.
  • a vapor phase method such as MOCVD, MBE, HVPE, sputtering, etc.
  • Preferred examples thereof include liquid phase methods such as Na flux method, ammonothermal method, hydrothermal method and sol-gel method, powder method utilizing solid phase growth of powder, and combinations thereof.
  • Example 1-1 A gallium nitride crystal layer was grown on a sapphire substrate according to the method described with reference to FIGS. 1 and 2. Specifically, an Ar ion beam was scanned on the surface 25 a of the sapphire substrate 25. At this time, an ion trimming apparatus manufactured by AM Systems, Inc. was used, the gas type was Ar, the ion beam irradiation power was 120 W, and the gas flow rate was 6 sccm. When the obtained aluminum oxide layer was observed with a transmission electron microscope, it was an amorphous structure and had a thickness of 40 angstrom.
  • a buffer layer consisting of gallium nitride was formed on the aluminum oxide layer at 500 ° C. by the MOCVD method, and then a seed crystal film 3 consisting of gallium nitride having a thickness of 3 ⁇ m was formed to obtain a seed crystal substrate.
  • the crucible was placed in a stainless steel inner container, further placed in a stainless steel outer container capable of containing it, and closed with a container lid with a nitrogen introduction pipe.
  • the outer container was placed on a rotary table installed in a heating unit in a crystal manufacturing apparatus which has been vacuum baked in advance, and the pressure resistant container was covered and sealed.
  • the inside of the pressure resistant container was evacuated to 0.1 Pa or less by a vacuum pump.
  • nitrogen gas is introduced from a nitrogen gas cylinder to 4.0 MPa while heating the temperature of the heating space to 870 ° C. by adjusting the upper heater, middle heater and lower heater, and the outer container around the central axis It was rotated at a speed of 20 rpm in a constant cycle clockwise and counterclockwise.
  • the acceleration time was 12 seconds
  • the holding time was 600 seconds
  • the deceleration time was 12 seconds
  • the stop time was 0.5 seconds. And it hold
  • the vessel was naturally cooled to room temperature and depressurized to the atmospheric pressure, and then the lid of the pressure container was opened and the bale was taken out from the inside.
  • the solidified metallic sodium in the crucible was removed.
  • the sapphire substrate was removed from the gallium nitride crystal layer by a laser lift-off method to obtain a freestanding substrate made of a gallium nitride crystal layer having a thickness of 600 ⁇ m.
  • the gallium nitride free-standing substrate was cut into a cross section perpendicular to the upper surface, and the cut surface was polished and subjected to CL observation with a scanning electron microscope (SEM) equipped with a CL detector.
  • SEM scanning electron microscope
  • FIG. 7 in the CL image, a high-intensity light emitting portion emitting white light was confirmed inside the gallium nitride crystal.
  • FIG. 8 when the same field of view was observed by SEM, no void etc. were confirmed, and it was confirmed that a homogeneous gallium nitride crystal was grown.
  • the high brightness light emitting portion exists in CL observation as in the upper surface, but the same shape as the high brightness light emitting portion seen in the same field of view in the SEM There was no microstructure similar to it or that.
  • the dislocation density was measured on the top surface of the group 13 element nitride crystal layer.
  • the dislocation density was calculated by performing CL observation and measuring the density of dark spots as dislocation sites. As a result of CL observation of an 80 ⁇ m ⁇ 105 ⁇ m field, it was 5 ⁇ 10 4 / cm 2 .
  • n-type n-type layer was deposited 1 ⁇ m as an n-type layer at 1050 ° C. to have a Si atomic concentration of 5 ⁇ 10 18 / cm 3 as the n-type layer.
  • a multiple quantum well layer was deposited at 750 ° C. as a light emitting layer. Specifically, five layers of 2.5 nm well layers of InGaN and six layers of 10 nm of barrier layers of GaN were alternately stacked.
  • p-type layer 200 nm of p-GaN doped at a temperature of 950 ° C.
  • Mg atom concentration 1 ⁇ 10 19 / cm 3 was deposited. Thereafter, it was taken out of the MOCVD apparatus, and heat treatment at 800 ° C. in a nitrogen atmosphere was performed for 10 minutes as activation treatment of Mg ions in the p-type layer.
  • the Ni / Au film to be the anode electrode pad has a thickness of 5 nm and 60 nm, respectively, on a partial region of the upper surface of the Ni / Au film as the translucent anode electrode. Patterned.
  • the substrate thus obtained was cut into chips, and then mounted on lead frames to obtain light emitting elements of a vertical structure.
  • Example 1-2 An aluminum oxide layer and a group 13 element nitride crystal layer were formed on a sapphire substrate in the same manner as in Example 1-1, and the group 13 element nitride crystal layer was peeled off from the sapphire substrate to obtain a freestanding substrate.
  • the ion trimming apparatus manufactured by AM Systems, Inc. was used, the gas type was He, the ion beam irradiation power was 120 W, and the gas flow rate was 12 sccm.
  • the gas type was He
  • the ion beam irradiation power was 120 W
  • the gas flow rate was 12 sccm.
  • a gallium nitride crystal layer was formed thereon in the same manner as in Example 1-1.
  • Example 1-1 With respect to the upper surface of the obtained Group 13 element nitride crystal layer, the number of dark spots was observed by CL with a view of 80 ⁇ m ⁇ 105 ⁇ m, and the dislocation density was calculated to be 2 ⁇ 10 4 / cm 2 . Further, using the obtained free standing substrate, a light emitting diode was produced in the same manner as in Example 1-1, and the light emission intensity and the yield were measured. The measurement results are shown in Table 1. Further, as a result of CL observation on the upper surface and the cross section of the obtained free-standing substrate, observation results of the surface twist angle and the surface tilt angle of the upper surface were also equivalent to Example 1-1.
  • Example 1-3 An aluminum oxide layer and a group 13 element nitride crystal layer were formed on a sapphire substrate in the same manner as in Example 1-1, and the group 13 element nitride crystal layer was peeled off from the sapphire substrate to obtain a freestanding substrate.
  • a high-speed Ar atom beam was scanned on the sapphire substrate.
  • the degree of vacuum reached in the chamber before the start of scanning was set to 10 -6 Pa or so.
  • a beam source a saddle field type high-speed atomic beam source was used.
  • Ar gas was introduced into the chamber, and a high voltage was applied to the electrode from a DC power supply.
  • the current value was 200 mA
  • the voltage was 1.8 kV
  • the argon flow rate was 80 sccm
  • the irradiation time was 900 seconds.
  • an aluminum oxide layer of amorphous structure with a thickness of 60 angstroms was obtained.
  • a gallium nitride crystal layer was formed thereon in the same manner as in Example 1-1.
  • Example 1-1 The number of dark spots was observed with CL on the top surface of the obtained Group 13 element nitride crystal layer, and the dislocation density was calculated to be 7 ⁇ 10 4 / cm 2 . Further, using the obtained free standing substrate, a light emitting diode was produced in the same manner as in Example 1-1, and the light emission intensity and the yield were measured. The measurement results are shown in Table 1. Further, as a result of CL observation on the upper surface and the cross section of the obtained free-standing substrate, observation results of the surface twist angle and the surface tilt angle of the upper surface were also equivalent to Example 1-1.
  • Example 2-1 An aluminum oxide layer and a group 13 element nitride crystal layer were formed on a sapphire substrate in the same manner as in Example 1-1, and the group 13 element nitride crystal layer was peeled off from the sapphire substrate to obtain a freestanding substrate.
  • the surface of the sapphire substrate was ground with a whetstone # 2000.
  • a 0.2 ⁇ m thick process-altered layer was obtained.
  • an amorphous phase, a polycrystalline phase, and crystal defects were observed in the aluminum oxide layer in the TEM photograph. These were observable as described above by the change in contrast to the sapphire single crystal.
  • a gallium nitride crystal layer was formed thereon in the same manner as in Example 1-1.
  • the number of dark spots was observed by CL on the upper surface of the obtained Group 13 element nitride crystal layer, and the dislocation density was calculated to be 5 ⁇ 10 4 / cm 2 .
  • a light emitting diode was produced in the same manner as in Example 1-1, and the light emission intensity and the yield were measured. The measurement results are shown in Table 1. Further, as a result of CL observation on the upper surface and the cross section of the obtained free-standing substrate, observation results of the surface twist angle and the surface tilt angle of the upper surface were also equivalent to Example 1-1.
  • Example 2-2 In the same manner as in Example 2-1, an aluminum oxide layer and a group 13 element nitride crystal layer were formed on a sapphire substrate, and the group 13 element nitride crystal layer was peeled off from the sapphire substrate to obtain a freestanding substrate.
  • the surface of the sapphire substrate was ground with a whetstone # 325. As a result, a 1.5 ⁇ m thick process-altered layer was obtained.
  • a gallium nitride crystal layer was formed thereon in the same manner as in Example 1-1.
  • the number of dark spots was observed by CL on the top surface of the obtained Group 13 element nitride crystal layer, and the dislocation density was calculated to be 2 ⁇ 10 4 / cm 2 .
  • a light emitting diode was produced in the same manner as in Example 1-1, and the light emission intensity and the yield were measured. The measurement results are shown in Table 1. Further, as a result of CL observation on the upper surface and the cross section of the obtained free-standing substrate, observation results of the surface twist angle and the surface tilt angle of the upper surface were also equivalent to Example 1-1.
  • Example 3 An aluminum oxide layer and a group 13 element nitride crystal layer were formed on a sapphire substrate in the same manner as in Example 1-1, and the group 13 element nitride crystal layer was peeled off from the sapphire substrate to obtain a freestanding substrate.
  • the sapphire substrate surface was etched by reactive ion etching. Specifically, using a RIE apparatus "Model E640" manufactured by Panasonic Corporation, RF power is 400 W, bias voltage is 200 W, working gas is chlorine (flow rate 40 sccm), pressure is 1 Pa, RIE time is 20 minutes. did. As a result, a 40 angstrom thick aluminum oxide layer was obtained.
  • a gallium nitride crystal layer was formed thereon in the same manner as in Example 1-1.
  • the number of dark spots was observed by CL on the upper surface of the obtained Group 13 element nitride crystal layer, and the dislocation density was calculated to be 7 ⁇ 10 5 / cm 2 .
  • a light emitting diode was produced in the same manner as in Example 1-1, and the light emission intensity and the yield were measured. The measurement results are shown in Table 1. Further, as a result of CL observation on the upper surface and the cross section of the obtained free-standing substrate, observation results of the surface twist angle and the surface tilt angle of the upper surface were also equivalent to Example 1-1.
  • Example 4-1 An aluminum oxide layer and a group 13 element nitride crystal layer were formed on a sapphire substrate in the same manner as in Example 1-1, and the group 13 element nitride crystal layer was peeled off from the sapphire substrate to obtain a freestanding substrate.
  • the sapphire substrate surface was annealed under hydrogen gas. Specifically, using a MOCVD apparatus, the temperature was raised to 1200 ° C. at a heating rate of 120 ° C./min under a hydrogen atmosphere. Then, it hold
  • the heater setting value was lowered at a temperature lowering rate of 120 ° C./min, and when the actual temperature fell below 500 ° C., the atmosphere was switched to a nitrogen atmosphere and the temperature was lowered to room temperature. As a result, an aluminum oxide layer with a thickness of 80 angstroms was obtained.
  • a gallium nitride crystal layer was formed thereon in the same manner as in Example 1-1.
  • the number of dark spots was observed by CL on the upper surface of the obtained Group 13 element nitride crystal layer, and the dislocation density was calculated to be 5 ⁇ 10 5 / cm 2 .
  • a light emitting diode was produced in the same manner as in Example 1-1, and the light emission intensity and the yield were measured. The measurement results are shown in Table 1. Further, as a result of CL observation on the upper surface and the cross section of the obtained free-standing substrate, observation results of the surface twist angle and the surface tilt angle of the upper surface were also equivalent to Example 1-1.
  • Example 4-2 In the same manner as in Example 4-1, an aluminum oxide layer and a Group 13 element nitride crystal layer were formed on a sapphire substrate, and the Group 13 element nitride crystal layer was peeled from the sapphire substrate to obtain a freestanding substrate.
  • the sapphire substrate surface was annealed under a mixed gas of hydrogen, ammonia and nitrogen. Specifically, using a MOCVD apparatus, the temperature was raised to 1200 ° C. at a heating rate of 120 ° C./min under a hydrogen atmosphere.
  • the atmosphere was changed to a mixed gas of hydrogen, ammonia and nitrogen, and was held for 15 minutes for annealing. Thereafter, the heater setting value was lowered at a temperature lowering rate of 120 ° C./min, and when the actual temperature fell below 500 ° C., the atmosphere was switched to a nitrogen atmosphere and the temperature was lowered to room temperature. As a result, an aluminum oxide layer having a thickness of 60 angstroms was obtained.
  • a gallium nitride crystal layer was formed thereon in the same manner as in Example 1-1.
  • the number of dark spots was observed by CL on the top surface of the obtained Group 13 element nitride crystal layer, and the dislocation density was calculated to be 3 ⁇ 10 5 / cm 2 .
  • a light emitting diode was produced in the same manner as in Example 1-1, and the light emission intensity and the yield were measured. The measurement results are shown in Table 1. Further, as a result of CL observation on the upper surface and the cross section of the obtained free-standing substrate, observation results of the surface twist angle and the surface tilt angle of the upper surface were also equivalent to Example 1-1.
  • a seed crystal film made of gallium nitride was grown by MOCVD in the same manner as in Example 1-1. Then, a gallium nitride crystal layer was grown by the Na flux method in the same manner as in Example 1-1 (thickness 600 ⁇ m). Then, in the same manner as in Example 1-1, the sapphire substrate was removed by a laser lift-off method, and the top and bottom surfaces of the obtained freestanding substrate composed of a Group 13 element nitride crystal layer were polished.
  • the number of dark spots was observed by CL on the upper surface of the obtained Group 13 element nitride crystal layer, and the dislocation density was calculated to be 7 ⁇ 10 6 / cm 2 . Further, using the obtained free standing substrate, a light emitting diode was produced in the same manner as in Example 1-1, and the light emission intensity and the yield were measured. The measurement results are shown in Table 1.
  • a functional element having a rectifying function was produced. That is, a Schottky barrier diode structure was formed on the upper surface of the freestanding substrate obtained in Example 1-1 as follows, and an electrode was formed to obtain a diode, and the characteristics were confirmed.
  • MOCVD metal organic chemical vapor deposition
  • a Ni / Au film was patterned as a Schottky electrode to a thickness of 6 nm and 80 nm, respectively, on the n-GaN layer formed by the MOCVD method using a photolithography process and a vacuum evaporation method.
  • the substrate obtained in this manner was cut into chips, and then mounted on lead frames to obtain rectifying devices.
  • a functional element having a power control function was produced.
  • a self-supporting substrate was produced in the same manner as in Example 1-1. However, unlike Example 1, when forming a gallium nitride crystal film by Na flux method, doping of impurities was not performed. The upper surface of the free-standing substrate obtained in this manner, in the following manner, forming a Al 0.25 Ga 0.75 / GaN HEMT structure by MOCVD to form the electrodes was confirmed transistor characteristics.
  • MOCVD metal organic chemical vapor deposition
  • a 3 ⁇ m-thick GaN layer was formed as an i-type layer at 1050 ° C. as an i-type layer on a free-standing substrate.
  • a 25 nm Al 0.25 Ga 0.75 N layer was deposited at 1050 ° C. as a functional layer. This resulted in an Al 0.25 Ga 0.75 N / GaN HEMT structure.
  • Ti / Al / Ni / Au films as source and drain electrodes were patterned to thicknesses of 15 nm, 70 nm, 12 nm, and 60 nm, respectively, using a photolithography process and a vacuum evaporation method. Thereafter, heat treatment at 700 ° C. in a nitrogen atmosphere was performed for 30 seconds in order to improve ohmic contact characteristics. Furthermore, using a photolithography process and a vacuum evaporation method, a Ni / Au film as a gate electrode was formed by Schottky junction with a thickness of 6 nm and 80 nm, respectively, and patterned. The substrate thus obtained was cut into chips, and then mounted on lead frames to obtain power control elements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

[Problem] To provide a group 13 element nitride crystal layer having a top surface and a bottom surface, wherein dislocation defects can be suppressed, the yield of a functional element can be improved, and characteristics of the functional element can be enhanced. [Solution] An aluminum oxide layer 2 is formed by subjecting a sapphire substrate 25 to a surface treatment (shown by the arrow K), a seed crystal film comprising a group 13 element nitride is formed on the aluminum oxide layer 2, and a group 13 element nitride layer comprising a group 13 element nitride selected from among gallium nitride, aluminum nitride, indium nitride and mixed crystals of these is provided on the seed crystal film.

Description

13族元素窒化物層の製造方法Method of manufacturing Group 13 element nitride layer
 本発明は、13族元素窒化物層の製造方法に関するものである。 The present invention relates to a method of manufacturing a Group 13 element nitride layer.
 単結晶基板を用いた発光ダイオード(LED)等の発光素子として、サファイア(α-アルミニウム酸化物単結晶)上に各種窒化ガリウム(GaN)層を形成したものが知られている。例えば、サファイア基板上に、n型GaN層、InGaN層からなる量子井戸層とGaN層からなる障壁層とが交互積層された多重量子井戸層(MQW)、及びp型GaN層が順に積層形成された構造を有するものが量産化されている。 As a light emitting element such as a light emitting diode (LED) using a single crystal substrate, one in which various gallium nitride (GaN) layers are formed on sapphire (α-aluminum oxide single crystal) is known. For example, on a sapphire substrate, an n-type GaN layer, a multiple quantum well layer (MQW) in which quantum well layers composed of InGaN layers and barrier layers composed of GaN layers are alternately stacked, and p-type GaN layers are sequentially deposited. Those having a different structure are mass-produced.
 特許文献1に記載の窒化ガリウム層は、多数の窒化ガリウム単結晶粒子からなる多結晶窒化ガリウムであり、横方向に向かって多数の柱状窒化ガリウム単結晶粒子が配列されている。 The gallium nitride layer described in Patent Document 1 is polycrystalline gallium nitride composed of a large number of gallium nitride single crystal particles, and a large number of columnar gallium nitride single crystal particles are arranged in the lateral direction.
 特許文献2に記載の窒化ガリウム層は、多数の窒化ガリウム単結晶粒子からなる多結晶窒化ガリウムであり、横方向に向かって多数の柱状窒化ガリウム単結晶粒子が配列されている。また、表面における平均チルト角(表面に対する法線方向の結晶方位(結晶軸)の傾きの平均値))が1~10°である。 The gallium nitride layer described in Patent Document 2 is polycrystalline gallium nitride composed of a large number of gallium nitride single crystal particles, and a large number of columnar gallium nitride single crystal particles are arranged in the lateral direction. In addition, the average tilt angle (average value of the inclination of crystal orientation (crystal axis) in the direction normal to the surface) on the surface is 1 to 10 °.
 特許文献3では、底面から途中位置まではインクルージョンを高濃度で含み、途中位置から上面までは低濃度しか含まない粒界が下面から斜め方向に複数形成されている。また、粒界がc軸に対して50~70°の角度をもつ方向に斜めに伸びている。 In Patent Document 3, a large number of inclusions are included from the bottom to an intermediate position, and a plurality of grain boundaries including only a low concentration are formed diagonally from the lower surface from the intermediate position to the upper surface. In addition, the grain boundaries extend obliquely in the direction having an angle of 50 to 70 ° with respect to the c axis.
 特許文献5には、融液中のGa比率を高くすることによって低転位密度を有する窒化ガリウム結晶を得ることが記載されている。 Patent Document 5 describes that a gallium nitride crystal having a low dislocation density is obtained by increasing the Ga ratio in the melt.
特許第5770905号Patent No. 5770905 特許第6154066号Patent No. 6154066 特許第5897790号Patent No. 5897790 WO 2011/046203WO 2011/046203 WO 2010/084682WO 2010/084682
 特許文献1および2の窒化ガリウム結晶の上に発光素子を作製した場合、素子サイズと粒径のバランスに因るが、電流パスが遮断されて発光効率の低下の原因となる場合もあることが判明してきた。この理由は明らかではないが、単結晶粒子間の方位の異方性が関与している可能性がある。 When light emitting devices are fabricated on gallium nitride crystals described in Patent Documents 1 and 2, the current path may be interrupted to cause a decrease in light emission efficiency depending on the balance between the device size and the particle diameter. It turned out. Although the reason for this is not clear, anisotropy in orientation between single crystal grains may be involved.
 特許文献3および4の窒化ガリウム結晶では、大口径になるほど、基板全面での融液の流れの制御が困難となり、結晶の外周にボイドが残存する場合がある。 In the gallium nitride crystals of Patent Documents 3 and 4, the larger the diameter, the more difficult it is to control the flow of the melt over the entire surface of the substrate, and in some cases voids may remain around the crystal.
 特許文献5では、高Ga比とフラックスの流れ制御でグレインサイズを大きくして転位密度を低減する事ができるが、グレインとグレインの間にボイドが含有されやすくなる。 In Patent Document 5, the grain size can be increased to reduce the dislocation density by controlling the flow of the high Ga ratio and the flux, but voids are likely to be contained between grains.
 本発明の課題は、窒化ガリウム、窒化アルミニウム、窒化インジウムまたはこれらの混晶から選択された13族元素窒化物結晶からなり、上面及び底面を有する13族元素窒化物結晶層において、転位欠陥を抑制でき、機能素子の歩留りを改善し、特性を向上させることができるようにすることである。 An object of the present invention is to suppress dislocation defects in a Group 13 element nitride crystal layer comprising a Group 13 element nitride crystal selected from gallium nitride, aluminum nitride, indium nitride or mixed crystals thereof and having a top surface and a bottom surface. To improve the yield of functional devices and improve their characteristics.
 本発明は、サファイア基板を表面処理することによってアルミニウム酸化物層を形成する工程、
 前記アルミニウム酸化物層上に、13族元素窒化物からなる種結晶膜を形成する工程、および
 前記種結晶膜上に、窒化ガリウム、窒化アルミニウム、窒化インジウムまたはこれらの混晶から選ばれた13族元素窒化物からなる13族元素窒化物層を設ける工程
を有することを特徴とする、13族元素窒化物層の製造方法に係るものである。
The present invention provides a process of forming an aluminum oxide layer by surface treating a sapphire substrate,
Forming a seed crystal film of Group 13 element nitride on the aluminum oxide layer; and Group 13 selected from gallium nitride, aluminum nitride, indium nitride, or mixed crystals thereof on the seed crystal film. The present invention relates to a method for producing a Group 13 element nitride layer, including the step of providing a Group 13 element nitride layer comprising an element nitride.
 本発明によれば、13族元素窒化物結晶層の転位欠陥を抑制でき、機能素子の歩留りを改善し、特性を向上させることができるような13族元素窒化物結晶層を提供することができる。 According to the present invention, dislocation defects in a Group 13 element nitride crystal layer can be suppressed, the yield of functional devices can be improved, and a Group 13 element nitride crystal layer capable of improving characteristics can be provided. .
(a)は、サファイア基板25の表面25aに表面処理Kを施す状態を示す模式図であり、(b)は、サファイア基板1の表面1aにアルニウム酸化物層2を設けた状態を示す。(A) is a schematic view showing the surface 25 a of the sapphire substrate 25 subjected to the surface treatment K, and (b) shows the surface 1 a of the sapphire substrate 1 provided with the aluminum oxide layer 2. (a)は、支持基板1上にアルミニウム酸化物層2、種結晶層3および13族元素窒化物結晶層13を設けた状態を示し、(b)は、支持基板から分離された13族元素窒化物結晶層13を示す。(A) shows a state in which the aluminum oxide layer 2, the seed crystal layer 3 and the group 13 element nitride crystal layer 13 are provided on the support substrate 1, and (b) shows the group 13 element separated from the support substrate The nitride crystal layer 13 is shown. 13族元素窒化物結晶層13の上面13aのカソードルミネセンス像を説明するための模式図である。FIG. 6 is a schematic view for explaining a cathode luminescence image of the upper surface 13 a of the group 13 element nitride crystal layer 13. 13族元素窒化物結晶層13の上面13aのカソードルミネセンス像を示す写真である。It is a photograph which shows the cathode luminescence image of upper surface 13a of 13 group element nitride crystal layer 13. FIG. 図4の部分拡大写真である。It is a partial enlarged photograph of FIG. 図5のカソードルミネセンス像に対応する模式図である。It is a schematic diagram corresponding to the cathode luminescence image of FIG. 13族元素窒化物結晶層13の断面のカソードルミネセンス像を示す写真である。It is a photograph which shows the cathode luminescence image of the section of 13 group element nitride crystal layer 13. 13族元素窒化物結晶層13の断面を示す走査型電子顕微鏡写真である。7 is a scanning electron micrograph showing a cross section of a Group 13 element nitride crystal layer 13; 本発明に係る機能素子21を示す模式図である。It is a schematic diagram which shows the functional element 21 which concerns on this invention. 13族元素窒化物結晶層の上面の走査型電子顕微鏡による撮像写真である。It is a photography picture with a scanning electron microscope of the upper surface of 13 group element nitride crystal layer. CL画像から生成したグレースケールのヒストグラムを示す。2 shows a gray scale histogram generated from a CL image.
 以下、本発明を更に詳細に説明する。
(サファイア基板の表面処理工程)
 本発明では、図1(a)に示すように、サファイア基板25の表面25aを矢印Kのように表面処理することによって、図1(b)に示すようなアルミニウム酸化物層2を形成する。
Hereinafter, the present invention will be described in more detail.
(Surface treatment process of sapphire substrate)
In the present invention, as shown in FIG. 1 (a), the surface 25a of the sapphire substrate 25 is surface-treated as shown by the arrow K to form an aluminum oxide layer 2 as shown in FIG. 1 (b).
 ここで、サファイア基板の表面処理方法は、アルミニウム酸化物層を形成できる限り特に限定されないが、後述するような方法(1)~(4)を好ましく例示できる。
(1) サファイア基板に対してイオンビームまたは高速原子ビームを照射することにより表面処理を行う。
(2) サファイア基板を研削加工することによって表面処理を行う。
(3) サファイア基板を反応性イオンエッチング処理することによって表面処理を行う。
(4) サファイア基板を、少なくとも水素を含む雰囲気下にアニール処理することによって表面処理を行う。
Here, the surface treatment method of the sapphire substrate is not particularly limited as long as the aluminum oxide layer can be formed, but methods (1) to (4) as described later can be preferably exemplified.
(1) Surface treatment is performed by irradiating the sapphire substrate with an ion beam or high-speed atomic beam.
(2) Surface treatment is performed by grinding the sapphire substrate.
(3) The sapphire substrate is subjected to surface treatment by reactive ion etching.
(4) The sapphire substrate is subjected to surface treatment by annealing in an atmosphere containing at least hydrogen.
 (1)の方法では、サファイア基板に対してイオンビームまたは高速原子ビームを照射する。この場合、イオンビームのイオン種としては、アルゴンイオン、ヘリウムイオン、ネオンイオン、クリプトンイオン、キセノンイオン、ガリウムイオン、水素イオンを例示でき、高速原子ビームの原子種としては、アルゴン、ヘリウム、ネオン、クリプトン、キセノン、窒素を例示できる。
 イオンビーム照射の場合は、電力、ガス流量は特に限定されないが、電力は5W以上、500W以下、ガス流量は1sccm以上、80sccm以下とすることが好ましい。
 高速原子ビーム照射の場合は、電力、ガス流量、照射開始前真空度は特に限定されないが、電力は4W以上、500W以下、ガス流量は20sccm以上、80sccm以下とすることが好ましい。また、照射開始前の真空度は可能な限り低い方が望ましく、1×10-5Pa以下が好ましい。
In the method of (1), the sapphire substrate is irradiated with an ion beam or a high-speed atomic beam. In this case, as ion species of ion beam, argon ion, helium ion, neon ion, krypton ion, xenon ion, gallium ion, hydrogen ion can be exemplified, and as atomic species of fast atom beam, argon, helium, neon, Krypton, xenon and nitrogen can be exemplified.
In the case of ion beam irradiation, the power and gas flow rate are not particularly limited, but the power is preferably 5 W or more and 500 W or less, and the gas flow rate is preferably 1 sccm or more and 80 sccm or less.
In the case of high-speed atom beam irradiation, power, gas flow rate, and vacuum degree before start of irradiation are not particularly limited, but power is preferably 4 W or more and 500 W or less, and gas flow rate is 20 sccm or more and 80 sccm or less. In addition, the degree of vacuum before the start of irradiation is preferably as low as possible, and preferably 1 × 10 −5 Pa or less.
 (2)の方法では、サファイア基板を研削加工することによって表面処理を行う。この方法では,研削加工によって加工変質層を生成させる。
 研削(グライディング)とは、砥粒をボンドで固定した固定砥粒を高速回転させながら対象物に接触させて、対象物の面を削り取ることをいう。かかる研削によって、粗い面が形成され、最表面に加工変質層が形成される。サファイア基板を研削する場合、硬度の高いSiC、Al2O3、ダイヤモンドおよびCBN(キュービックボロンナイトライド、以下同じ)などで形成され、粒径が10μm以上、100μm以下程度の砥粒を含む固定砥粒が好ましく用いられる。
In the method of (2), surface treatment is performed by grinding the sapphire substrate. In this method, a damaged layer is generated by grinding.
Grinding (grinding) refers to scraping off the surface of an object by bringing the fixed abrasive in which the abrasive is fixed by bonding into contact with the object while rotating at high speed. By such grinding, a rough surface is formed, and a process-altered layer is formed on the outermost surface. In the case of grinding a sapphire substrate, it is preferable to use a fixed abrasive including abrasive grains having a particle diameter of about 10 μm to 100 μm which is formed of SiC, Al 2 O 3, diamond and CBN (cubic boron nitride, the same applies hereinafter) having high hardness. Used.
 (3)の方法では、サファイア基板を反応性イオンエッチング処理することによって表面処理を行う。使用するガス種は、塩素、三塩化ホウ素、四塩化ケイ素、またはそれらの混合ガスが好ましい。
反応性ガスの他に、アルゴン、クリプトン、キセノンを混合してもよい。
 プラズマ発生源としてはICP型、ECR型、平行平板型を例示できる。電力、バイアス電力、チャンバー内圧力、使用ガス流量は特に限定されないが、電力は100W以上、1000W以下、バイアス電力は50W以上、300W以下、チャンバー内圧力は0.1Pa以上、10Pa以下、使用ガス流量は1sccm以上、100sccm以下とすることが好ましい。
In the method (3), the sapphire substrate is subjected to reactive ion etching to perform surface treatment. The gas type used is preferably chlorine, boron trichloride, silicon tetrachloride or a mixed gas thereof.
In addition to the reactive gas, argon, krypton and xenon may be mixed.
As a plasma generation source, an ICP type, an ECR type, and a parallel plate type can be exemplified. The power, bias power, pressure in the chamber, and flow rate of the used gas are not particularly limited, but the power is 100 W or more and 1000 W or less, bias power is 50 W or more and 300 W or less, the pressure in the chamber is 0.1 Pa or more and 10 Pa or less, the used gas flow rate It is preferable to be 1 sccm or more and 100 sccm or less.
 (4)の方法では、サファイア基板を、少なくとも水素を含む雰囲気下にアニール処理することによって前記表面処理を行う。この雰囲気は、水素単独であってよく、あるいは水素以外に、アンモニア、窒素、アルゴンを含有していてもよい。
 アニール処理温度は1000℃以上が好ましく、1200°以上が更に好ましい。実際上の観点からは、アニール処理温度は、1500℃以下が好ましく、1400℃以下が更に好ましい。アニール処理時の圧力は減圧、大気圧、加圧いずれでもよく、特に限定されないが、ガスの使用効率の観点からは減圧が好ましい。
In the method (4), the surface treatment is performed by annealing the sapphire substrate in an atmosphere containing at least hydrogen. The atmosphere may be hydrogen alone or may contain ammonia, nitrogen and argon in addition to hydrogen.
The annealing temperature is preferably 1000 ° C. or more, more preferably 1200 ° C. or more. From a practical viewpoint, the annealing temperature is preferably 1500 ° C. or less, more preferably 1400 ° C. or less. The pressure at the time of the annealing treatment may be any of reduced pressure, atmospheric pressure and increased pressure, and is not particularly limited, but reduced pressure is preferable from the viewpoint of gas use efficiency.
(アルミニウム酸化物層)
 本発明では、サファイア基板の表面処理によってアルミニウム酸化物層を生成させる。ここで、アルミニウム酸化物の組成は、Alであってよいが、薄い層であるためにこの組成から外れていても良い。具体的には、アルミニウム酸化物の組成比率は、Al(x=0.15~0.65:y=0.35~0.85、X+Y=1)であってよい。また、表面処理に使用したアルミニウムおよび酸素以外の元素が、アルミニウム酸化物層中に含まれていても良く、アルミニウム酸化物層の表面に付着していても良い。
(Aluminum oxide layer)
In the present invention, the aluminum oxide layer is formed by surface treatment of the sapphire substrate. Here, the composition of the aluminum oxide may be Al 2 O 3 but may deviate from this composition because it is a thin layer. Specifically, the composition ratio of the aluminum oxide may be Al x O y (x = 0.15 to 0.65: y = 0.35 to 0.85, X + Y = 1). In addition, elements other than aluminum and oxygen used for surface treatment may be contained in the aluminum oxide layer, or may be attached to the surface of the aluminum oxide layer.
 アルミニウム酸化物層の厚さは特に限定されないが、転位密度を低くでき、全体にわたって特性のばらつきを少なくできるような13族元素窒化物結晶層を得るという観点からは、30オングストローム以上が好ましく、40オングストローム以上が更に好ましい。また、アルミニウム酸化物層の厚さは、実際上の観点からは、50,000オングストローム以下が好ましく、20,000オングストローム以下が更に好ましい。 The thickness of the aluminum oxide layer is not particularly limited, but is preferably 30 angstroms or more, from the viewpoint of obtaining a Group 13 element nitride crystal layer which can lower dislocation density and reduce variation in characteristics throughout. More than angstroms are more preferred. Further, from the practical viewpoint, the thickness of the aluminum oxide layer is preferably 50,000 angstroms or less, more preferably 20,000 angstroms or less.
 アルミニウム酸化物層の存在は透過型電子顕微鏡観察によって確認する。この透過型電子顕微鏡装置には、日立ハイテクノロジーズ製 H-9000NARを用い、観察時の倍率は2.000,000倍が好ましい。 The presence of the aluminum oxide layer is confirmed by transmission electron microscopy. For this transmission electron microscope apparatus, H-9000NAR manufactured by Hitachi High-Technologies Corporation is used, and the magnification during observation is preferably 2,000,000 times.
 また、アルミニウム酸化物層がアモルファス相を含む場合には、アモルファス相中では結晶格子による回折コントラストがなくなるため、明るいコントラストになり、また均一な画像となるので、結晶と区別でき、アモルファス相であることを確認できるし、アルミニウム酸化物層の厚さを測定できる。また、アルミニウム酸化物層が欠陥導入部を含む場合には、欠陥は線状の暗いコントラストとして表示されるので、新たに欠陥が導入されたことが確認できる。
 アルミニウム酸化物層が多結晶相を含む場合には、層内に色の異なるコントラストが見られるため、アモルファス相と区別できる。アルミニウム酸化物層が欠陥導入部を含む時は更に暗い線状のコントラストとして表示されるので、新たに欠陥が導入されたことが確認できる。
 また、極微電子線回折法という手法を用いることにより、単結晶では規則正しく並んだ回折斑点(スポット)、多結晶では同心円状の円環、アモルファス相ではブロードな円環状の電子線回折図形が観察されるため、単結晶相、多結晶相、アモルファス相の区別をすることが出来る。
In addition, when the aluminum oxide layer contains an amorphous phase, the diffraction contrast due to the crystal lattice disappears in the amorphous phase, so that a bright contrast is obtained and a uniform image can be obtained. It can be confirmed and the thickness of the aluminum oxide layer can be measured. In addition, when the aluminum oxide layer includes a defect-introduced portion, the defect is displayed as a linear dark contrast, so it can be confirmed that a defect is newly introduced.
When the aluminum oxide layer contains a polycrystalline phase, it can be distinguished from the amorphous phase because different color contrasts can be seen in the layer. When the aluminum oxide layer contains a defect-introduced portion, it is displayed as a darker line-like contrast, so it can be confirmed that a defect is newly introduced.
In addition, by using a technique called ultra-fine electron beam diffraction, diffraction spots (spots) aligned regularly in a single crystal, concentric circular rings in a polycrystal, and broad circular ring electron beam diffraction patterns in an amorphous phase are observed. Therefore, the single crystal phase, the polycrystalline phase, and the amorphous phase can be distinguished.
(種結晶層)
 例えば図2(a)に示すように、アルミニウム酸化物層2上に種結晶層3を設ける。種結晶層3を構成する材質は、IUPACで規定する13族元素の一種または二種以上の窒化物とする。この13族元素は、好ましくはガリウム、アルミニウム、インジウムである。また、13族元素窒化物結晶は、具体的には、GaN、AlN、InN、GaAl1-xN(1>x>0)、GaIn1-xN(1>x>0)、GaAlInN1―x-y(1>x>0、1>y>0)が好ましい。
(Seed crystal layer)
For example, as shown in FIG. 2A, a seed crystal layer 3 is provided on the aluminum oxide layer 2. The material constituting the seed crystal layer 3 is a nitride of one or two or more kinds of Group 13 elements specified by IUPAC. The group 13 element is preferably gallium, aluminum or indium. Further, specifically, group 13 element nitride crystals are GaN, AlN, InN, Ga x Al 1 -x N (1>x> 0), Ga x In 1-x N (1>x> 0) And Ga x Al y InN 1 -x-y (1>x> 0, 1>y> 0).
 種結晶層3の作製方法は特に限定されないが、MOCVD(有機金属気相成長法)、MBE(分子線エピタキシー法)、HVPE(ハイドライド気相成長法)、スパッタリング等の気相法、Naフラックス法、アモノサーマル法、水熱法、ゾルゲル法等の液相法、粉末の固相成長を利用した粉末法、及びこれらの組み合わせが好ましく例示される。
 例えば、MOCVD法による種結晶層の形成は、450~550℃にて低温成長緩衝GaN層を20~50nm堆積させた後に、1000~1200℃にて厚さ2~4μmのGaN膜を積層させることにより行うのが好ましい。
The method of producing the seed crystal layer 3 is not particularly limited, but MOCVD (organic metal vapor phase growth method), MBE (molecular beam epitaxy method), HVPE (hydride vapor phase growth method), vapor phase method such as sputtering, Na flux method Liquid phase methods such as ammonothermal method, hydrothermal method, sol-gel method, powder method utilizing solid phase growth of powder, and combinations thereof are preferably exemplified.
For example, a seed crystal layer is formed by depositing a low-temperature growth buffer GaN layer at 450 to 550 ° C. for 20 to 50 nm and then laminating a GaN film having a thickness of 2 to 4 μm at 1000 to 1200 ° C. Preferably by
(13族元素窒化物結晶層)
 13族元素窒化物結晶層13は、種結晶層3の結晶方位に概ね倣った結晶方位を有するように形成する。13族元素窒化物結晶層の形成方法は、種結晶膜の結晶方位に概ね倣った結晶方位を有する限り特に限定がなく、MOCVD、HVPE等の気相法、Naフラックス法、アモノサーマル法、水熱法、ゾルゲル法等の液相法、粉末の固相成長を利用した粉末法、及びこれらの組み合わせが好ましく例示されるが、Naフラックス法により行われるのが特に好ましい。
(Group 13 element nitride crystal layer)
Group 13 element nitride crystal layer 13 is formed to have a crystal orientation substantially conforming to the crystal orientation of seed crystal layer 3. The method of forming the group 13 element nitride crystal layer is not particularly limited as long as it has a crystal orientation substantially following the crystal orientation of the seed crystal film, and a vapor phase method such as MOCVD or HVPE, Na flux method, ammonothermal method, A hydrothermal method, a liquid phase method such as a sol-gel method, a powder method utilizing solid phase growth of powder, and a combination thereof are preferably exemplified, but the Na flux method is particularly preferable.
 Naフラックス法による13族元素窒化物結晶層を形成する際には、融液を強く攪拌し、融液を充分に均一に混ぜることが好ましい。こうした攪拌方法として、揺動や回転、振動方式が挙げられるが、方法は限定されない。 When forming a Group 13 element nitride crystal layer by Na flux method, it is preferable to strongly stir the melt and mix the melt sufficiently uniformly. As such a stirring method, a swing, rotation, vibration method may be mentioned, but the method is not limited.
 Naフラックス法による13族元素窒化物結晶層の形成は、種結晶基板を設置した坩堝に13族金属、金属Na及び所望によりドーパント(例えばゲルマニウム(Ge)、シリコン(Si)、酸素(O)等のn型ドーパント、又はベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、亜鉛(Zn)、カドミウム(Cd)等のp型ドーパント)を含む融液組成物を充填し、窒素雰囲気中で830~910℃、3.5~4.5MPaまで昇温加圧した後、温度及び圧力を保持しつつ回転することにより行うのが好ましい。保持時間は目的の膜厚によって異なるが、10~100時間程度としてもよい。 Formation of Group 13 element nitride crystal layer by Na flux method, Group 13 metal, metal Na and optionally dopant (for example, germanium (Ge), silicon (Si), oxygen (O), etc., etc. in place of the seed crystal substrate) Filled with a melt composition containing n-type dopants or p-type dopants such as beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), zinc (Zn) and cadmium (Cd) After heating to 830 ° C. to 910 ° C. and 3.5 to 4.5 MPa in a nitrogen atmosphere, it is preferable to carry out rotation while maintaining the temperature and pressure. The holding time varies depending on the target film thickness, but may be about 10 to 100 hours.
 また、こうしてNaフラックス法により得られた窒化ガリウム結晶を砥石で研削して板面を平坦にした後、ダイヤモンド砥粒を用いたラップ加工により板面を平滑化するのが好ましい。 Further, it is preferable to flatten the plate surface by grinding the gallium nitride crystal thus obtained by the Na flux method with a grindstone, and then to smooth the plate surface by lapping using diamond abrasive grains.
(13族元素窒化物結晶層)
 本発明では、前記したアルミニウム酸化物層上に13族元素窒化物結晶層を成膜できる。
 この13族元素窒化物結晶層は、窒化ガリウム、窒化アルミニウム、窒化インジウムまたはこれらの混晶から選択された13族元素窒化物結晶からなり、上面及び底面を有する。例えば、図2(b)に示すように、13族元素窒化物結晶層13では上面13aと底面13bとが対向している。
(Group 13 element nitride crystal layer)
In the present invention, the Group 13 element nitride crystal layer can be formed on the above-described aluminum oxide layer.
The group 13 element nitride crystal layer is made of group 13 element nitride crystal selected from gallium nitride, aluminum nitride, indium nitride or mixed crystals thereof, and has top and bottom surfaces. For example, as shown in FIG. 2B, in the group 13 element nitride crystal layer 13, the top surface 13a and the bottom surface 13b face each other.
 13族元素窒化物結晶層を構成する窒化物は、窒化ガリウム、窒化アルミニウム、窒化インジウムまたはこれらの混晶である。具体的には、GaN、AlN、InN、GaAl1-xN(1>x>0)、GaIn1-xN(1>x>0)、GaAlInzN(1>x>0、1>y>0、x+y+z=1)である。 The nitride constituting the Group 13 element nitride crystal layer is gallium nitride, aluminum nitride, indium nitride or mixed crystals thereof. Specifically, GaN, AlN, InN, Ga x Al 1-x N (1>x> 0), Ga x In 1-x N (1>x> 0), Ga x Al y In z N (1 >X> 0, 1>y> 0, x + y + z = 1).
 特に好ましくは、13族元素窒化物結晶層を構成する窒化物が窒化ガリウム系窒化物である。具体的には、GaN、GaAl1-xN(1>x>0.5)、GaIn1-xN(1>x>0.4)、GaAlInzN(1>x>0.5、1>y>0.3、x+y+z=1)である。 Particularly preferably, the nitride constituting the Group 13 element nitride crystal layer is a gallium nitride based nitride. Specifically, GaN, Ga x Al 1- x N (1>x> 0.5), Ga x In 1-x N (1>x> 0.4), Ga x Al y In z N (1>x> 0.5 , 1>y> 0.3, x + y + z = 1).
 13族元素窒化物は、亜鉛、カルシウムや、その他のn型ドーパント又はp型ドーパントでドープされていてもよく、この場合、多結晶13族元素窒化物を、p型電極、n型電極、p型層、n型層等の基材以外の部材又は層として使用することができる。p型ドーパントの好ましい例としては、ベリリウム(Be)、マグネシウム(Mg)、ストロンチウム(Sr)、及びカドミウム(Cd)からなる群から選択される1種以上が挙げられる。n型ドーパントの好ましい例としては、シリコン(Si)、ゲルマニウム(Ge)、スズ(Sn)及び酸素(O)からなる群から選択される1種以上が挙げられる。 Group 13 element nitrides may be doped with zinc, calcium or other n-type dopants or p-type dopants, in which case polycrystalline group 13 element nitrides may be p-type electrodes, n-type electrodes, p It can be used as a member or layer other than a substrate such as a mold layer and an n-type layer. Preferred examples of the p-type dopant include one or more selected from the group consisting of beryllium (Be), magnesium (Mg), strontium (Sr), and cadmium (Cd). Preferred examples of the n-type dopant include one or more selected from the group consisting of silicon (Si), germanium (Ge), tin (Sn) and oxygen (O).
 好適な実施形態においては、13族元素窒化物結晶層の上面をカソードルミネッセンスによって観測したときに、線状の高輝度発光部と、高輝度発光部に隣接する低輝度発光領域とを有しており、かつ高輝度発光部が、13族元素窒化物結晶のm面に沿って延びている部分を含む。これは、上面に線状の高輝度発光部が現れていることから、13族元素窒化物結晶に含有されるドーパント成分や微量成分等が濃い線状の高輝度発光部を生成していることを意味している。これと同時に、線状の高輝度発光部がm面に沿って延びているということは、結晶成長時にそのm面に沿ってドーパントが集まり、この結果、濃い線状の高輝度発光部がm面に沿って現れることを意味する。 In a preferred embodiment, when the top surface of the Group 13 element nitride crystal layer is observed by cathodoluminescence, it has a linear high luminance light emitting portion and a low luminance light emitting region adjacent to the high luminance light emitting portion. And the high brightness light emitting portion includes a portion extending along the m-plane of the Group 13 element nitride crystal. This is because a linear high-intensity light emitting portion appears on the upper surface, so that a linear high-intensity light emitting portion in which a dopant component, a trace amount component, and the like contained in a Group 13 element nitride crystal are dark is generated. Means. At the same time, the fact that the linear high-intensity light emitting part extends along the m-plane means that the dopant is gathered along the m-plane during crystal growth, and as a result, the dark linear high-intensity light emitting part is m It means to appear along the face.
 これらのような新規な微構造を有する13族元素窒化物結晶層によって、寸法を大きくしても(例えば径6インチ以上としても)、転位密度を低くでき、全体にわたって特性のばらつきを少なくできるような13族元素窒化物結晶層を提供することができる。
 ここで、13族元素窒化物結晶層13の上面13aをカソードルミネッセンス(CL)によって観測したときに、図3に模式的に示すように、線状の高輝度発光部5と、高輝度発光部5に隣接する低輝度発光領域6とを有している。
Group 13 element nitride crystal layers having such novel microstructures can reduce dislocation density even if the size is increased (for example, even if the diameter is 6 inches or more), and the variation in characteristics can be reduced overall It is possible to provide a group 13 element nitride crystal layer.
Here, when the upper surface 13a of the group 13 element nitride crystal layer 13 is observed by cathode luminescence (CL), as schematically shown in FIG. 3, a linear high-intensity light emitting portion 5 and a high-intensity light emitting portion And a low luminance light emitting region 6 adjacent to the fifth one.
 ただし、CLによる観測は以下のようにして行うものとする。
 CL観察には、CL検出器付きの走査型電子顕微鏡(SEM)を用いる。例えばGatan製MiniCLシステム付きの日立ハイテクノロジーズ製S-3400N走査電子顕微鏡を用いた場合、測定条件は、CL検出器を試料と対物レンズの間に挿入した状態で、加速電圧10kV、プローブ電流「90」、ワーキングディスタンス(W.D.)22.5mm、倍率50倍で観察するのが好ましい。
However, observation by CL shall be performed as follows.
For CL observation, a scanning electron microscope (SEM) with a CL detector is used. For example, when using Hitachi High-Technologies S-3400N scanning electron microscope with Gatan MiniCL system, measurement conditions are: acceleration voltage 10 kV, probe current “90” with CL detector inserted between sample and objective lens The working distance (W.D.) is preferably 22.5 mm and observed at a magnification of 50 times.
 また、高輝度発光部と低輝度発光領域とは、カソードルミネッセンスによる観測から以下のようにして区別する。
 加速電圧10kV、プローブ電流「90」、ワーキングディスタンス(W.D.)22.5mm、倍率50倍でCL観察した画像の輝度に対して、画像解析ソフト(例えば、三谷商事(株)製WinROOF Ver6.1.3)を用いて、縦軸を度数、横軸を輝度(GRAY)として、256段階のグレースケールのヒストグラムを作成する。ヒストグラムには、図11のように、2つのピークが確認され、2つのピーク間で度数が最小値となる輝度を境界として、高い側を高輝度発光部、低い側を低輝度発光領域と定義する。
Further, the high luminance light emitting portion and the low luminance light emitting region are distinguished as follows from the observation by cathode luminescence.
Image analysis software (for example, Mitani Shoji Co., Ltd. WinROOF Ver. 6) against the luminance of the image observed with CL at a magnification of 50 × with an acceleration voltage of 10 kV, a probe current of “90”, a working distance (W.D.) of 22.5 mm. Using .1.3), create a 256-step gray scale histogram with the vertical axis as frequency and the horizontal axis as luminance (GRAY). In the histogram, as shown in FIG. 11, two peaks are confirmed, and the high side is defined as a high brightness light emitting portion and the low side as a low brightness light emitting area with the brightness at which the frequency is minimum between the two peaks as a boundary. Do.
 また、13族元素窒化物結晶層の上面では、線状の高輝度発光部に低輝度発光領域が隣接する。これによって、隣り合う低輝度発光領域は、それらの間にある線状の高輝度発光部によって区分される。ここで、高輝度発光部が線状であるとは、隣り合う低輝度発光領域の間で高輝度発光部が細長く伸びていて境界線をなしている状態を示す。 Further, on the top surface of the group 13 element nitride crystal layer, the low luminance light emitting region is adjacent to the linear high luminance light emitting portion. By this, adjacent low-intensity light emission areas are divided by the linear high-intensity light emission parts located between them. Here, that the high brightness light emitting portion is linear means that the high brightness light emitting portion is elongated and elongated between adjacent low brightness light emitting regions to form a boundary line.
 ここで、高輝度発光部がなしている線は、直線であってよく、また曲線であってよく、更には直線と曲線との組み合わせであってもよい。曲線は円弧、楕円、放物線、双曲線などの種々の形態を含んでいても良い。また、互いに方向の異なる高輝度発光部が連続していて良いが、高輝度発光部の末端が切れていても良い。 Here, the line made by the high-intensity light emitting portion may be a straight line, a curved line, or a combination of a straight line and a curved line. The curve may include various forms such as arc, ellipse, parabola, hyperbola and the like. Moreover, although the high-intensity light emission part from which a direction mutually differs may be continuous, the terminal of the high-intensity light emission part may be cut off.
 13族元素窒化物結晶層の上面においては、低輝度発光領域は、その下に成長してきた13族元素窒化物結晶の露出面であってよく、面状に、二次元的に広がっている。一方、高輝度発光部は線状をなしているが、隣り合う低輝度発光領域を区分する境界線のように一次元的に伸びている。これは、例えば、下から成長してきた13族元素窒化物結晶からドーパント成分や微量成分等が排出され、成長過程で隣り合う13族元素窒化物結晶の間に集まり、上面において隣り合う低輝度発光領域の間に、線状に強く発光する部分を生成したものと考えられる。 In the upper surface of the group 13 element nitride crystal layer, the low luminance light emitting region may be an exposed surface of the group 13 element nitride crystal grown therebelow, and is two-dimensionally spread in a planar manner. On the other hand, the high brightness light emitting portion is linear, but extends in a one-dimensional manner as a boundary that divides adjacent low brightness light emitting regions. This is because, for example, a dopant component and a trace component are discharged from a Group 13 element nitride crystal grown from below, and are gathered between adjacent Group 13 element nitride crystals in the growth process, and the low luminance emission is adjacent on the top surface It is considered that linear bright light-emitting portions were generated between the regions.
 例えば図4に、実施例で得られた13族元素窒化物結晶層の上面のCL観察による写真を示す。図5は、図4の部分拡大図であり、図6は図5に対応する模式図である。低輝度発光領域が面状に、二次元的に広がっており、高輝度発光部は線状をなしており、隣り合う低輝度発光領域を区分する境界線のように一次元的に伸びていることがわかる。 For example, FIG. 4 shows a photograph by CL observation of the top surface of the Group 13 element nitride crystal layer obtained in the example. FIG. 5 is a partial enlarged view of FIG. 4 and FIG. 6 is a schematic view corresponding to FIG. The low brightness light emitting area is two-dimensionally spread in a plane, and the high brightness light emitting portion is linear, and is one-dimensionally stretched like a boundary dividing the adjacent low brightness light emitting areas. I understand that.
 このことから、低輝度発光領域の形状には特に制限はなく、通常は面状に、二次元的に伸びているものである。一方、高輝度発光部が形成する線は、細長いものである必要がある。こうした観点からは、高輝度発光部の幅は、100μm以下であることが好ましく、20μm以下であることが更に好ましく、5μm以下であることが特に好ましい。また、高輝度発光部の幅は通常0.01μm以上である。 From this, the shape of the low luminance light emitting region is not particularly limited, and usually extends two-dimensionally in a planar shape. On the other hand, the line formed by the high luminance light emitting portion needs to be elongated. From such a viewpoint, the width of the high brightness light emitting portion is preferably 100 μm or less, more preferably 20 μm or less, and particularly preferably 5 μm or less. In addition, the width of the high brightness light emitting portion is usually 0.01 μm or more.
 また、本発明の観点からは、高輝度発光部の長さと幅との比率(長さ/幅)は、1以上が好ましく、10以上が更に好ましい。 From the viewpoint of the present invention, the ratio (length / width) of the length to the width of the high luminance light emitting portion is preferably 1 or more, and more preferably 10 or more.
 また、本発明の観点からは、上面において、高輝度発光部の面積の低輝度発光領域の面積に対する比率(高輝度発光部の面積/低輝度発光領域の面積)は、0.001以上であることが好ましく、0.01以上であることが更に好ましい。
 また、本発明の観点からは、上面において、高輝度発光部の面積の低輝度発光領域の面積に対する比率(高輝度発光部の面積/低輝度発光領域の面積)は、0.3以下であることが好ましく、0.1以下であることが更に好ましい。
From the viewpoint of the present invention, the ratio of the area of the high luminance light emitting portion to the area of the low luminance light emitting region on the upper surface (area of high luminance light emitting portion / area of low luminance light emitting region) is 0.001 or more Is more preferably 0.01 or more.
From the viewpoint of the present invention, the ratio of the area of the high luminance light emitting portion to the area of the low luminance light emitting region on the upper surface (area of high luminance light emitting portion / area of low luminance light emitting region) is 0.3 or less Is more preferably 0.1 or less.
 好適な実施形態においては、高輝度発光部が、13族元素窒化物結晶のm面に沿って延びる部分を含む。例えば、図3、図6の例においては、高輝度発光部5は細長い線状に延びており、m面に沿って伸びる部分5a、5b、5cを多く含んでいる。六方晶である13族元素窒化物結晶のm面に沿った方向とは、具体的には、[-2110]、[-12-10]、[11-20]、[2-1-10]、[1-210]、[-1-120]方向であり、高輝度発光部5は、六方晶を反映した略六角形の辺の一部を含む。また、線状の高輝度発光部がm面に沿って伸びているとは、高輝度発光部の長手方向が[-2110]、[-12-10]、[11-20]、[2-1-10]、[1-210]、[-1-120]方向のいずれかに沿って延びていることを意味している。具体的には、線状高輝度発光部の長手方向がm面に対して、好ましくは±1°以内、さらに好ましくは±0.3°以内である場合を含む。 In a preferred embodiment, the high brightness light emitting portion includes a portion extending along the m-plane of the Group 13 element nitride crystal. For example, in the example of FIG. 3, FIG. 6, the high-intensity light emission part 5 is extended in elongate linear form, and includes many parts 5a, 5b, 5c extended along m surface. Specifically, the directions along the m-plane of Group 13 element nitride crystal, which is a hexagonal crystal, are [-2110], [-12-10], [11-20], and [2-1-10]. The high-intensity light emitting unit 5 includes a part of the side of a substantially hexagonal shape reflecting the hexagonal crystal, which is a [1-210], [-1-120] direction. The linear high-intensity light emitting portion extending along the m-plane means that the longitudinal direction of the high-intensity light emitting portion is [-2110], [-12-10], [11-20], [2- It means extending along one of 1-10 directions, [1-210] and [-1-120] directions. Specifically, the case where the longitudinal direction of the linear high luminance light emitting part is preferably within ± 1 °, more preferably within ± 0.3 ° with respect to the m-plane is included.
 好適な実施形態においては、上面において、線状の高輝度発光部が、概ね13族元素窒化物結晶のm面に沿って延びている。これは高輝度発光部の主要部分がm面に沿って延びていることを意味しており、好ましくは高輝度発光部の連続相がほぼm面に沿って延びている。この際、m面に沿った方向に伸びる部分は、高輝度発光部の全長のうち60%以上を占めていることが好ましく、80%以上を占めていることが更に好ましく、実質的に高輝度発光部の全体を占めていてもよい。 In a preferred embodiment, at the top surface, linear high-intensity light emitting portions extend generally along the m-plane of the Group 13 element nitride crystal. This means that the main part of the high luminance light emitting part extends along the m plane, and preferably the continuous phase of the high luminance light emitting part extends along substantially the m plane. At this time, the portion extending in the direction along the m-plane preferably occupies 60% or more, more preferably 80% or more, of the total length of the high brightness light emitting portion, and substantially high brightness It may occupy the whole of the light emitting part.
 好適な実施形態においては、13族元素窒化物結晶層の上面において、高輝度発光部が連続相を形成しており、低輝度発光領域が高輝度発光部によって区画された不連続相を形成している。例えば、図3、図6の模式図では、線状の高輝度発光部5は連続相を形成しており、低輝度発光領域6が高輝度発光部5によって区画された不連続相を形成している。 In a preferred embodiment, on the upper surface of the Group 13 element nitride crystal layer, the high brightness light emitting portion forms a continuous phase, and the low brightness light emitting region forms a discontinuous phase partitioned by the high brightness light emitting portion. ing. For example, in the schematic views of FIGS. 3 and 6, the linear high brightness light emitting portion 5 forms a continuous phase, and the low brightness light emitting region 6 forms a discontinuous phase partitioned by the high brightness light emitting portion 5. ing.
 ただし、連続相とは、上面において、高輝度発光部5が連続していることを意味するが、高輝度発光部5すべてが完全に連続していることを必須としているわけではなく、全体のパターンに影響しない範囲で少量の高輝度発光部5が他の高輝度発光部5に対して分離されていることは許容するものとする。 However, the continuous phase means that the high brightness light emitting portion 5 is continuous on the upper surface, but it is not essential that all the high brightness light emitting portions 5 are completely continuous, and the whole It is to be allowed that a small amount of the high luminance light emitting portion 5 is separated from the other high luminance light emitting portions 5 without affecting the pattern.
 また、分散相とは、低輝度発光領域6が概ね高輝度発光部5によって区画されていて、互いにつながらない多数の領域に分かれていることを意味する。また、上面において、低輝度発光領域6が高輝度発光部5によって分離されていても、13族元素窒化物結晶層の内部において低輝度発光領域6が連続していることは許容される。 Further, the dispersed phase means that the low brightness light emitting region 6 is divided by the high brightness light emitting portion 5 and divided into a large number of regions which are not connected to each other. In addition, even if the low brightness light emitting region 6 is separated by the high brightness light emitting portion 5 on the upper surface, it is acceptable that the low brightness light emitting region 6 is continuous inside the group 13 element nitride crystal layer.
 好適な実施形態においては、13族元素窒化物結晶層の上面におけるX線ロッキングカーブの(0002)面反射の半値幅が3000秒以下、20秒以上である。これは、上面において、表面チルト角が小さく、結晶方位が全体として単結晶のように高度に配向していることを示している。前述したようなカソードルミネッセンス分布を有している上で、このような全体として表面での結晶方位が高度に配向している微構造であると、13族元素窒化物結晶層の上面における特性分布が小さくでき、その上に設けられる各種機能素子の特性を均一に揃えることが可能であり、また機能素子の歩留りも改善する。 In a preferred embodiment, the half width of (0002) plane reflection of the X-ray rocking curve on the top surface of the group 13 element nitride crystal layer is 3000 seconds or less and 20 seconds or more. This indicates that the top surface has a small surface tilt angle, and the crystal orientation as a whole is highly oriented like a single crystal. A characteristic distribution on the upper surface of a Group 13 element nitride crystal layer as having a microstructure in which the crystal orientation on the surface as a whole is highly oriented while having the cathode luminescence distribution as described above It is possible to make the characteristics of the various functional elements provided thereon uniform, and to improve the yield of the functional elements.
 こうした観点からは、13族元素窒化物結晶層の上面におけるX線ロッキングカーブの(0002)面反射の半値幅が1000秒以下、20秒以上であることが好ましく、500秒以下、20秒以上であることがより一層好ましい。なお、13族元素窒化物結晶層の上面におけるX線ロッキングカーブの(0002)面反射の半値幅を20秒未満まで小さくすることは現実的には困難である。 From such a viewpoint, the half value width of (0002) plane reflection of the X-ray rocking curve on the top surface of the group 13 element nitride crystal layer is preferably 1000 seconds or less and 20 seconds or more, and 500 seconds or less and 20 seconds or more It is even more preferable that there be. In addition, it is practically difficult to reduce the half width of (0002) plane reflection of the X-ray rocking curve on the upper surface of the group 13 element nitride crystal layer to less than 20 seconds.
 ただし、X線ロッキングカーブ(0002)面反射は以下のように測定する。XRD装置(例えばBruker-AXS製D8-DISCOVER)を用いて、測定条件は管電圧40kV、管電流40mA、コリメータ径0.1mm、アンチスキャッタリングスリット3mmで、ω=ピーク位置角度±0.3°の範囲、ωステップ幅0.003°、及び計数時間1秒に設定して行えばよい。この測定ではGe(022)非対称反射モノクロメーターでCuKα線を平行単色光化(半値幅28秒)し、あおり角CHI=0°付近で軸立てた上で測定するのが好ましい。そして、X線ロッキングカーブ(0002)面反射の半値幅は、XRD解析ソフトウェア(Bruker-AXS製、LEPTOS4.03)を用いてピークサーチを行い算出する事ができる。ピークサーチ条件は、Noise Filter「10」、Threshold「0.30」、Points「10」とすることが好ましい。 However, X-ray rocking curve (0002) surface reflection is measured as follows. Measurement conditions are: tube voltage 40 kV, tube current 40 mA, collimator diameter 0.1 mm, anti-scattering slit 3 mm, using an XRD apparatus (for example, D8-DISCOVER manufactured by Bruker-AXS), ω = peak position angle ± 0.3 ° And the ω step width of 0.003 ° and the counting time of 1 second. In this measurement, it is preferable to parallelize CuKα rays (half-width 28 seconds) with a Ge (022) asymmetric reflection monochromator and measure the axis after setting the axis at a tilt angle CHI of about 0 °. The half width of the X-ray rocking curve (0002) surface reflection can be calculated by performing peak search using XRD analysis software (LEPTOS 4.03 manufactured by Bruker-AXS). The peak search conditions are preferably Noise Filter “10”, Threshold “0.30”, and Points “10”.
 13族元素窒化物結晶層の上面に略垂直な断面は、CLによって観察すると、図7に示すように、白く発光する線状の高輝度発光部が観察されることがある。なお、図7において、低輝度発光領域が面状に、二次元的に広がっており、高輝度発光部は線状をなしており、隣り合う低輝度発光領域を区分する境界線のように伸びていることがわかる。こうした高輝度発光部および低輝度発光領域の観測方法は、上面における高輝度発光部および低輝度発光領域の観測方法と同じである。 When a cross section substantially perpendicular to the top surface of the group 13 element nitride crystal layer is observed by CL, as shown in FIG. 7, a linear high-intensity light emitting portion emitting white may be observed. Note that in FIG. 7, the low luminance light emitting region is spread in a two-dimensional manner in a planar manner, and the high luminance light emitting portion is linear and extends like a boundary dividing the adjacent low luminance light emitting regions. Know that The observation method of such a high luminance light emitting portion and the low luminance light emitting region is the same as the observation method of the high luminance light emitting portion and the low luminance light emitting region on the upper surface.
 13族元素窒化物結晶層の断面における低輝度発光領域の形状には特に制限はなく、通常は面状に、二次元的に伸びているものである。一方、高輝度発光部が形成する線は、細長いものである必要がある。こうした観点からは、高輝度発光部の幅は、100μm以下であることが好ましく、20μm以下であることが更に好ましい。また、高輝度発光部の幅は通常0.01μm以上である。 There is no particular limitation on the shape of the low luminance light emitting region in the cross section of the Group 13 element nitride crystal layer, and usually it is two-dimensionally extended in a planar shape. On the other hand, the line formed by the high luminance light emitting portion needs to be elongated. From such a viewpoint, the width of the high brightness light emitting portion is preferably 100 μm or less, and more preferably 20 μm or less. In addition, the width of the high brightness light emitting portion is usually 0.01 μm or more.
 また、本発明の観点からは、13族元素窒化物結晶層の断面における発光部の長さと幅との比率(長さ/幅)は、1以上が好ましく、 10以上が更に好ましい。 Further, from the viewpoint of the present invention, the ratio (length / width) of length to width of the light emitting portion in the cross section of the group 13 element nitride crystal layer is preferably 1 or more, and more preferably 10 or more.
 好適な実施形態においては、13族元素窒化物結晶層の上面と略垂直な前記断面において、線状の高輝度発光部が連続相を形成しており、低輝度発光領域が高輝度発光部によって区画された不連続相を形成している。例えば、図7のCL写真では、線状の高輝度発光部は連続相を形成しており、低輝度発光領域が高輝度発光部によって区画された不連続相を形成している。 In a preferred embodiment, in the cross section substantially perpendicular to the top surface of the Group 13 element nitride crystal layer, the linear high luminance light emitting portion forms a continuous phase, and the low luminance light emitting region is formed by the high luminance light emitting portion. It forms a partitioned discontinuous phase. For example, in the CL photograph of FIG. 7, the linear high-intensity light emitting portion forms a continuous phase, and the low-intensity light emitting region forms a discontinuous phase partitioned by the high-intensity light emitting portion.
 ただし、連続相とは、前記断面において、高輝度発光部が連続していることを意味するが、高輝度発光部すべてが完全に連続していることを必須としているわけではなく、全体のパターンに影響しない範囲で少量の高輝度発光部が他の高輝度発光部に対して分離されていることは許容するものとする。 However, the continuous phase means that the high brightness light emitting portion is continuous in the cross section, but it is not essential that all the high brightness light emitting portions are completely continuous, and the whole pattern It is acceptable that a small amount of high-intensity light emitting portions are separated from other high-intensity light emitting portions without affecting the above.
 また、分散相とは、低輝度発光領域が概ね高輝度発光部によって区画されていて、互いにつながらない多数の領域に分かれていることを意味する。 Further, the dispersed phase means that the low brightness light emitting region is divided by the high brightness light emitting portion and divided into many regions which are not connected to each other.
 好適な実施形態においては、13族元素窒化物結晶層の上面に略垂直な断面においてボイドが観測されない。すなわち、図7のCL写真と同一視野である、図8に示すSEM写真において、ボイド(空隙)や13族元素窒化物結晶以外の異なる結晶相は観測されない。ただし、ボイドの観測は以下のようにして行う。 In a preferred embodiment, no void is observed in a cross section substantially perpendicular to the top surface of the Group 13 element nitride crystal layer. That is, in the SEM photograph shown in FIG. 8 which is the same field of view as the CL photograph in FIG. 7, different crystal phases other than voids (voids) and group 13 element nitride crystals are not observed. However, observation of void is performed as follows.
 ボイドは、13族元素窒化物結晶層の上面に略垂直な断面を走査型電子顕微鏡(SEM)で観察した際に観察され、最大幅が1μm~500μmの大きさの空隙を「ボイド」とする。このSEM観察には、例えば日立ハイテクノロジーズ製S-3400N走査電子顕微鏡を用いる。測定条件は、加速電圧15kV、プローブ電流「60」、ワーキングディスタンス(W.D.)6.5mm、倍率100倍で観察するのが好ましい。 A void is observed when a cross section substantially perpendicular to the top surface of the Group 13 element nitride crystal layer is observed with a scanning electron microscope (SEM), and a void having a maximum width of 1 μm to 500 μm is a “void”. . For this SEM observation, for example, S-3400N scanning electron microscope manufactured by Hitachi High-Technologies Corporation is used. Measurement conditions are preferably observed at an acceleration voltage of 15 kV, a probe current of "60", a working distance (W.D.) of 6.5 mm, and a magnification of 100 times.
 また、走査型電子顕微鏡(上記した観察条件)では、13族元素窒化物結晶層の上面に略垂直な断面を観察した際に、ボイドなどの構造的マクロ欠陥を伴うような明らかな粒界は観察されない。こうした微構造であると、発光素子などの機能素子を13族元素窒化物結晶層上に作製した場合、明らかな粒界に起因するような抵抗上昇や特性のばらつきを抑制する事ができると考えられる。 Also, in the scanning electron microscope (the observation conditions described above), when observing a cross section substantially perpendicular to the top surface of the Group 13 element nitride crystal layer, apparent grain boundaries accompanied by structural macro defects such as voids are Not observed. With such a microstructure, it is believed that when a functional element such as a light emitting element is fabricated on a Group 13 element nitride crystal layer, it is possible to suppress an increase in resistance and characteristic variations caused by apparent grain boundaries. Be
 また、好適な実施形態においては、13族元素窒化物結晶層の上面における転位密度が1×10/cm以上、1×10/cm以下である。この転位密度を1×10/cm以下とすることが機能素子の特性向上の観点から特に好ましい。この観点からは、この転位密度を1×10/cm以下とすることが更に好ましい。この転位密度は以下のようにして測定するものとする。 In a preferred embodiment, the dislocation density on the top surface of the Group 13 element nitride crystal layer is 1 × 10 2 / cm 2 or more and 1 × 10 6 / cm 2 or less. It is particularly preferable to set the dislocation density to 1 × 10 6 / cm 2 or less from the viewpoint of improving the characteristics of the functional element. From this viewpoint, it is more preferable to set the dislocation density to 1 × 10 4 / cm 2 or less. The dislocation density is measured as follows.
 転位密度の測定には、CL検出器付きの走査型電子顕微鏡(SEM)を用いることができる。例えばGatan製MiniCLシステム付きの日立ハイテクノロジーズ製S-3400N走査電子顕微鏡を用いてCL観察した場合、転位箇所が発光せずに黒点(ダークスポット)として観察される。そのダークスポット密度を計測する事により、転位密度が算出される。測定条件は、CL検出器を試料と対物レンズの間に挿入した状態で、加速電圧10kV、プローブ電流「90」、ワーキングディスタンス(W.D.)22.5mm、倍率1200倍で観察するのが好ましい。 For measurement of dislocation density, a scanning electron microscope (SEM) with a CL detector can be used. For example, when CL observation is carried out using a Hitachi High-Technologies S-3400N scanning electron microscope with a MiniCL system manufactured by Gatan, dislocation sites are observed as black spots (dark spots) without light emission. Dislocation density is calculated by measuring the dark spot density. As the measurement conditions, while the CL detector is inserted between the sample and the objective lens, it is preferable to observe at an acceleration voltage of 10 kV, a probe current of "90", a working distance (W.D.) 22.5 mm, and a magnification of 1200 times. preferable.
 また、好適な実施形態においては、13族元素窒化物結晶層の上面におけるX線ロッキングカーブの(0002)面反射の半値幅が3000秒以下、20秒以上、かつ、 (1000)面反射の半値幅が10000秒以下、20秒以上である。これは上面における表面チルト角および表面ツイスト角が共に小さく、結晶方位が全体として単結晶のようにより高度に配向していることを示している。このような全体として表面での結晶方位がより高度に配向している微構造であると、13族元素窒化物結晶層の上面における特性分布が小さくでき、その上に設けられる各種機能素子の特性を均一に揃えることが可能であり、また機能素子の歩留りも改善する。 In a preferred embodiment, the half width of (0002) plane reflection of the X-ray rocking curve on the top surface of the group 13 element nitride crystal layer is 3,000 seconds or less, 20 seconds or more, and half of (1000) plane reflection. The value range is 10000 seconds or less and 20 seconds or more. This indicates that both the surface tilt angle and the surface twist angle at the upper surface are small, and the crystal orientation is highly oriented as a whole, like a single crystal. With such a fine structure in which the crystal orientation at the surface as a whole is more highly oriented, the characteristic distribution on the upper surface of the group 13 element nitride crystal layer can be reduced, and the characteristics of various functional elements provided thereon Can be made uniform, and the yield of functional devices is also improved.
 また、好適な実施形態においては、13族元素窒化物結晶層の上面におけるX線ロッキングカーブの(1000)面反射の半値幅が10000秒以下、20秒以上である。これは、上面における表面ツイスト角度が非常に低いことを意味している。結晶方位が全体として単結晶のように高度に配向していることを示している。前述したようなカソードルミネッセンス分布を有している上で、このような全体として表面での結晶方位が高度に配向している微構造であると、13族元素窒化物結晶層の上面における特性分布が小さくでき、その上に設けられる各種機能素子の特性を均一に揃えることが可能であり、また機能素子の歩留りも改善する。 In a preferred embodiment, the half value width of (1000) plane reflection of the X-ray rocking curve on the upper surface of the group 13 element nitride crystal layer is 10000 seconds or less and 20 seconds or more. This means that the surface twist angle at the top surface is very low. It indicates that the crystal orientation as a whole is highly oriented like a single crystal. A characteristic distribution on the upper surface of a Group 13 element nitride crystal layer as having a microstructure in which the crystal orientation on the surface as a whole is highly oriented while having the cathode luminescence distribution as described above It is possible to make the characteristics of the various functional elements provided thereon uniform, and to improve the yield of the functional elements.
こうした観点からは、13族元素窒化物結晶層の上面におけるX線ロッキングカーブの(1000)面反射の半値幅は、5000秒以下であることが好ましく、更には1000秒以下、更には20秒以上であることが一層好ましい。また、この半値幅を20秒未満まで低下させることは現実的には困難である。 From such a viewpoint, the half value width of (1000) plane reflection of the X-ray rocking curve on the upper surface of the group 13 element nitride crystal layer is preferably 5000 seconds or less, more preferably 1000 seconds or less, further 20 seconds or more It is more preferable that In addition, it is practically difficult to reduce this half-width to less than 20 seconds.
 ただし、X線ロッキングカーブ(1000)面反射は以下のように測定する。XRD装置(例えばBruker-AXS製D8-DISCOVER)を用いて、測定条件は管電圧40kV、管電流40mA、コリメータなし、アンチスキャッタリングスリット3mmで、ω=ピーク位置角度±0.3°の範囲、ωステップ幅0.003°、及び計数時間4秒に設定して行えばよい。この測定ではGe(022)非対称反射モノクロメーターでCuKα線を平行単色光化(半値幅28秒)し、あおり角CHI=88°付近で軸立てた上で測定するのが好ましい。そして、X線ロッキングカーブ(1000)面反射の半値幅は、XRD解析ソフトウェア(Bruker-AXS製、LEPTOS4.03)を用いてピークサーチを行い算出する事ができる。ピークサーチ条件は、Noise Filter「10」、Threshold「0.30」、Points「10」とすることが好ましい。 However, X-ray rocking curve (1000) surface reflection is measured as follows. Measurement conditions are: tube voltage 40 kV, tube current 40 mA, no collimator, anti-scattering slit 3 mm, range of ω = peak position angle ± 0.3 °, using an XRD apparatus (for example, D8-DISCOVER manufactured by Bruker-AXS) The ω step width may be set to 0.003 ° and the counting time to 4 seconds. In this measurement, it is preferable to measure CuKα rays in parallel monochromatization (half-width 28 seconds) with a Ge (022) asymmetric reflection monochromator and centering around a tilt angle CHI = 88 °. And the half value width of X-ray rocking curve (1000) surface reflection can be calculated by performing peak search using XRD analysis software (manufactured by Bruker-AXS, LEPTOS 4.03). The peak search conditions are preferably Noise Filter “10”, Threshold “0.30”, and Points “10”.
(13族元素窒化物結晶層の分離方法)
 13族元素窒化物結晶層をサファイア基板から分離することによって、13族元素窒化物結晶層を含む自立基板を得ることができる。
(Separation method of Group 13 element nitride crystal layer)
By separating the group 13 element nitride crystal layer from the sapphire substrate, it is possible to obtain a freestanding substrate including the group 13 element nitride crystal layer.
 ここで、13族元素窒化物結晶層をサファイア基板から分離する方法は限定されない。好適な実施形態においては、13族元素窒化物結晶層を育成した後の降温工程において13族元素窒化物結晶層を単結晶基板から自然剥離させる。 Here, the method of separating the group 13 element nitride crystal layer from the sapphire substrate is not limited. In a preferred embodiment, the Group 13 element nitride crystal layer is naturally exfoliated from the single crystal substrate in the temperature lowering step after the Group 13 element nitride crystal layer is grown.
 あるいは、13族元素窒化物結晶層をサファイア基板からケミカルエッチングによって分離することができる。
 ケミカルエッチングを行う際のエッチャントとしては、硫酸、塩酸等の強酸や硫酸とリン酸の混合液、もしくは水酸化ナトリウム水溶液、水酸化カリウム水溶液等の強アルカリが好ましい。また、ケミカルエッチングを行う際の温度は、70℃以上が好ましい。
Alternatively, the Group 13 element nitride crystal layer can be separated from the sapphire substrate by chemical etching.
As an etchant at the time of chemical etching, a strong acid such as sulfuric acid or hydrochloric acid, a mixed solution of sulfuric acid and phosphoric acid, or a strong alkali such as sodium hydroxide aqueous solution or potassium hydroxide aqueous solution is preferable. Moreover, as for the temperature at the time of performing chemical etching, 70 degreeC or more is preferable.
 あるいは、13族元素窒化物結晶層をサファイア基板からレーザーリフトオフ法によって剥離することができる。
 あるいは、13族元素窒化物結晶層をサファイア基板から研削によって剥離することができる。
 あるいは、13族元素窒化物結晶層をサファイア基板からワイヤーソーで剥離することができる。
Alternatively, the group 13 element nitride crystal layer can be separated from the sapphire substrate by a laser lift-off method.
Alternatively, the group 13 element nitride crystal layer can be peeled off from the sapphire substrate by grinding.
Alternatively, the group 13 element nitride crystal layer can be peeled off from the sapphire substrate with a wire saw.
(自立基板)
 13族元素窒化物結晶層をサファイア基板から分離することで、自立基板を得ることができる。本発明において「自立基板」とは、取り扱う際に自重で変形又は破損せず、固形物として取り扱うことのできる基板を意味する。本発明の自立基板は発光素子等の各種半導体デバイスの基板として使用可能であるが、それ以外にも、電極(p型電極又はn型電極でありうる)、p型層、n型層等の基材以外の部材又は層として使用可能なものである。この自立基板には、一層以上の他の層が更に設けられていても良い。
(Self-standing substrate)
A freestanding substrate can be obtained by separating the group 13 element nitride crystal layer from the sapphire substrate. In the present invention, the term "self-supporting substrate" means a substrate which can be handled as a solid without deformation or breakage under its own weight. The self-supporting substrate of the present invention can be used as a substrate for various semiconductor devices such as light emitting elements, but in addition to that, it can be an electrode (may be a p-type electrode or an n-type electrode), a p-type layer, an n-type layer, etc. It can be used as a member or layer other than the base material. This freestanding substrate may further be provided with one or more other layers.
 13族元素窒化物結晶層が自立基板を構成する場合には、自立基板の厚さは基板に自立性を付与できる必要があり、20μm以上が好ましく、より好ましくは100μm以上であり、さらに好ましくは300μm以上である。自立基板の厚さに上限は規定されるべきではないが、製造コストの観点では3000μm以下が現実的である。 When the group 13 element nitride crystal layer constitutes a self-supporting substrate, the thickness of the self-supporting substrate needs to be able to impart self-supporting properties to the substrate, preferably 20 μm or more, more preferably 100 μm or more, and still more preferably It is 300 μm or more. The upper limit of the thickness of the free-standing substrate should not be defined, but 3000 μm or less is realistic in terms of manufacturing cost.
(複合基板)
 サファイア基板上に13族元素窒化物結晶層を設けた状態で、13族元素窒化物結晶層を分離することなく、他の機能層を形成するためのテンプレート基板として用いることができる。
(Composite substrate)
When a group 13 element nitride crystal layer is provided on a sapphire substrate, it can be used as a template substrate for forming another functional layer without separating the group 13 element nitride crystal layer.
(機能素子)
 本発明の13族元素窒化物結晶層上に設けられた機能素子構造は特に限定されないが、発光機能、整流機能または電力制御機能を例示できる。
(Functional element)
Although the functional element structure provided on the Group 13 element nitride crystal layer of the present invention is not particularly limited, the light emitting function, the rectifying function or the power control function can be exemplified.
 本発明の13族元素窒化物結晶層を用いた発光素子の構造やその作製方法は特に限定されるものではない。典型的には、発光素子は、13族元素窒化物結晶層に発光機能層を設けることにより作製される。もっとも、13族元素窒化物結晶層を電極(p型電極又はn型電極でありうる)、p型層、n型層等の基材以外の部材又は層として利用して発光素子を作製してもよい。 The structure of the light emitting device using the group 13 element nitride crystal layer of the present invention and the method for producing the same are not particularly limited. Typically, a light emitting element is manufactured by providing a light emitting functional layer in a Group 13 element nitride crystal layer. However, a light emitting element is manufactured using the Group 13 element nitride crystal layer as a member or layer other than the base material such as an electrode (which may be a p-type electrode or an n-type electrode), a p-type layer, or an n-type layer. It is also good.
 図9に、本発明の一態様による発光素子の層構成を模式的に示す。図9に示される発光素子21は、自立基板13と、この基板上に形成される発光機能層18とを備えてなる。この発光機能層18は、電極等を適宜設けて電圧を印加することによりLED等の発光素子の原理に基づき発光をもたらすものである。 FIG. 9 schematically shows a layer configuration of a light emitting element according to one embodiment of the present invention. A light emitting element 21 shown in FIG. 9 includes a self-supporting substrate 13 and a light emitting functional layer 18 formed on the substrate. The light emitting functional layer 18 provides light emission based on the principle of a light emitting element such as an LED by appropriately providing an electrode or the like and applying a voltage.
 発光機能層18が基板13上に形成される。発光機能層18は、基板13上の全面又は一部に設けられてもよいし、後述するバッファ層が基板13上に形成される場合にはバッファ層上の全面又は一部に設けられてもよい。発光機能層18は、電極及び/又は蛍光体を適宜設けて電圧を印加することによりLEDに代表される発光素子の原理に基づき発光をもたらす公知の様々な層構成を採りうる。したがって、発光機能層18は青色、赤色等の可視光を放出するものであってもよいし、可視光を伴わずに又は可視光と共に紫外光を発光するものであってもよい。発光機能層18は、p-n接合を利用した発光素子の少なくとも一部を構成するのが好ましく、このp-n接合は、図9に示されるように、p型層18aとn型層18cの間に活性層18bを含んでいてもよい。このとき、活性層としてp型層及び/又はn型層よりもバンドギャップが小さい層を用いたダブルへテロ接合又はシングルへテロ接合(以下、ヘテロ接合と総称する)としてもよい。また、p型層-活性層-n型層の一形態として、活性層の厚みを薄くした量子井戸構造を採りうる。量子井戸を得るためには活性層のバンドギャップがp型層及びn型層よりも小さくしたダブルへテロ接合が採用されるべきことは言うまでもない。また、これらの量子井戸構造を多数積層した多重量子井戸構造(MQW)としてもよい。これらの構造をとることで、p-n接合と比べて発光効率を高めることができる。このように、発光機能層18は、発光機能を有するp-n接合及び/又はへテロ接合及び/又は量子井戸接合を備えたものであるのが好ましい。なお、20、22は電極の例である。 The light emitting functional layer 18 is formed on the substrate 13. The light emitting functional layer 18 may be provided on the entire surface or a part of the substrate 13, or may be provided on the entire surface or a part of the buffer layer when the buffer layer described later is formed on the substrate 13. Good. The light emitting functional layer 18 can adopt various known layer configurations that provide light emission based on the principle of a light emitting element represented by an LED by appropriately providing an electrode and / or a phosphor and applying a voltage. Therefore, the light emitting functional layer 18 may emit visible light such as blue and red, or may emit ultraviolet light without visible light or together with visible light. The light emitting functional layer 18 preferably constitutes at least a part of a light emitting element utilizing a pn junction, and the pn junction includes a p-type layer 18a and an n-type layer 18c as shown in FIG. The active layer 18 b may be included between At this time, a double hetero junction or a single hetero junction (hereinafter collectively referred to as a hetero junction) using a layer having a smaller band gap than the p-type layer and / or the n-type layer may be used as the active layer. In addition, a quantum well structure in which the thickness of the active layer is reduced can be employed as one mode of the p-type layer-active layer-n-type layer. It goes without saying that in order to obtain a quantum well, a double hetero junction in which the band gap of the active layer is smaller than that of the p-type layer and the n-type layer should be employed. Further, a multiple quantum well structure (MQW) in which a large number of these quantum well structures are stacked may be used. With these structures, the light emission efficiency can be enhanced as compared to a pn junction. Thus, the light emitting functional layer 18 is preferably provided with a pn junction and / or hetero junction and / or quantum well junction having a light emitting function. 20 and 22 are examples of electrodes.
 したがって、発光機能層18を構成する一以上の層は、n型ドーパントがドープされているn型層、p型ドーパントがドープされているp型層、及び活性層からなる群から選択される少なくとも一以上を含むものであることができる。n型層、p型層及び(存在する場合には)活性層は、主成分が同じ材料で構成されてもよいし、互いに主成分が異なる材料で構成されてもよい。 Therefore, at least one layer constituting the light emitting functional layer 18 is at least selected from the group consisting of an n-type layer doped with an n-type dopant, a p-type layer doped with a p-type dopant, and an active layer. It can be one or more. The n-type layer, the p-type layer and the active layer (if present) may be composed of the same material as the main component or may be composed of materials different from each other in the main component.
 発光機能層18を構成する各層の材質は、13族元素窒化物結晶層の結晶方位に概ね倣って成長し且つ発光機能を有するものであれば特に限定されないが、窒化ガリウム(GaN)系材料、酸化亜鉛(ZnO)系材料及び窒化アルミニウム(AlN)系材料から選択される少なくとも1種以上を主成分とする材料で構成されるのが好ましく、p型ないしn型に制御するためのドーパントを適宜含むものであってよい。特に好ましい材料は、窒化ガリウム(GaN)系材料である。また、発光機能層18を構成する材料は、そのバンドギャップを制御するため、例えばGaNにAlN、InN等を固溶させた混晶としてもよい。また、直前の段落で述べたとおり、発光機能層18は複数種の材料系からなるヘテロ接合としてもよい。例えば、p型層に窒化ガリウム(GaN)系材料、n型層に酸化亜鉛(ZnO)系材料を用いてもよい。また、p型層に酸化亜鉛(ZnO)系材料、活性層とn型層に窒化ガリウム(GaN)系材料を用いてもよく、材料の組み合わせに特に限定はない。 The material of each layer constituting the light emitting functional layer 18 is not particularly limited as long as it grows substantially in accordance with the crystal orientation of the group 13 element nitride crystal layer and has a light emitting function, but a gallium nitride (GaN) based material It is preferable to be composed of a material mainly composed of at least one or more selected from zinc oxide (ZnO) based materials and aluminum nitride (AlN) based materials, and a dopant for controlling p type to n type is suitably selected It may be included. Particularly preferred materials are gallium nitride (GaN) based materials. Further, the material constituting the light emitting functional layer 18 may be, for example, a mixed crystal in which AlN, InN or the like is solid-solved in GaN in order to control the band gap. In addition, as described in the immediately preceding paragraph, the light emitting functional layer 18 may be a heterojunction made of a plurality of material systems. For example, a gallium nitride (GaN) based material may be used for the p-type layer, and a zinc oxide (ZnO) based material may be used for the n-type layer. Further, a zinc oxide (ZnO) based material may be used for the p-type layer, and a gallium nitride (GaN) based material may be used for the active layer and the n-type layer, and the combination of materials is not particularly limited.
 発光機能層18及びバッファ層の成膜方法は、13族元素窒化物結晶層の結晶方位に概ね倣って成長する方法であれば特に限定されないが、MOCVD、MBE、HVPE、スパッタリング等の気相法、Naフラックス法、アモノサーマル法、水熱法、ゾルゲル法等の液相法、粉末の固相成長を利用した粉末法、及びこれらの組み合わせが好ましく例示される。 The film formation method of the light emitting functional layer 18 and the buffer layer is not particularly limited as long as it is a method of growing substantially in accordance with the crystal orientation of the Group 13 element nitride crystal layer, but a vapor phase method such as MOCVD, MBE, HVPE, sputtering, etc. Preferred examples thereof include liquid phase methods such as Na flux method, ammonothermal method, hydrothermal method and sol-gel method, powder method utilizing solid phase growth of powder, and combinations thereof.
(実施例1-1)
 図1、図2を参照しつつ説明した方法に従い、サファイア基板上に窒化ガリウム結晶層を育成した。
 具体的には、サファイア基板25の表面25aにArイオンビームをスキャンした。この際には、AMSystems社製イオントリミング装置を用い、ガス種はArとし、イオンビーム照射パワーは120Wとし、ガス流量を6sccmとした。
 得られたアルミニウム酸化物層を透過型電子顕微鏡で観察したところ、アモルファス構造であり、厚さは40オングストロームであった。
Example 1-1
A gallium nitride crystal layer was grown on a sapphire substrate according to the method described with reference to FIGS. 1 and 2.
Specifically, an Ar ion beam was scanned on the surface 25 a of the sapphire substrate 25. At this time, an ion trimming apparatus manufactured by AM Systems, Inc. was used, the gas type was Ar, the ion beam irradiation power was 120 W, and the gas flow rate was 6 sccm.
When the obtained aluminum oxide layer was observed with a transmission electron microscope, it was an amorphous structure and had a thickness of 40 angstrom.
 次いで、アルミニウム酸化物層上にMOCVD法で500℃で窒化ガリウムからなるバッファ層を形成した後、厚さ3μmの窒化ガリウムからなる種結晶膜3を成膜し、種結晶基板を得た。 Next, a buffer layer consisting of gallium nitride was formed on the aluminum oxide layer at 500 ° C. by the MOCVD method, and then a seed crystal film 3 consisting of gallium nitride having a thickness of 3 μm was formed to obtain a seed crystal substrate.
 この種結晶基板を、窒素雰囲気のグローブボックス内でアルミニウム酸化物坩堝の中に配置した。次に、Ga/Ga+Na(mol%)=15mol%となるように金属ガリウムと金属ナトリウムを坩堝内に充填し、アルミニウム酸化物板で蓋をした。その坩堝をステンレス製内容器に入れ、さらにそれを収納できるステンレス製外容器に入れて、窒素導入パイプの付いた容器蓋で閉じた。この外容器を、予め真空ベークしてある結晶製造装置内の加熱部に設置されている回転台の上に配置し、耐圧容器に蓋をして密閉した。 The seed crystal substrate was placed in an aluminum oxide crucible in a nitrogen atmosphere glove box. Next, metallic gallium and metallic sodium were filled in the crucible so that Ga / Ga + Na (mol%) = 15 mol%, and a lid was covered with an aluminum oxide plate. The crucible was placed in a stainless steel inner container, further placed in a stainless steel outer container capable of containing it, and closed with a container lid with a nitrogen introduction pipe. The outer container was placed on a rotary table installed in a heating unit in a crystal manufacturing apparatus which has been vacuum baked in advance, and the pressure resistant container was covered and sealed.
 次いで、耐圧容器内を真空ポンプにて0.1Pa以下まで真空引きした。続いて、上段ヒータ、中段ヒータ及び下段ヒータを調節して加熱空間の温度を870℃になるように加熱しながら、4.0MPaまで窒素ガスボンベから窒素ガスを導入し、外容器を中心軸周りに20rpmの速度で一定周期の時計回りと反時計回りで回転させた。加速時間=12秒、保持時間=600秒、減速時間=12秒、停止時間=0.5秒とした。そして、この状態で40時間保持した。その後、室温まで自然冷却して大気圧にまで減圧した後、耐圧容器の蓋を開けて中から坩堝を取り出した。坩堝の中の固化した金属ナトリウムを除去した。
 次いで、レーザーリフトオフ法によって、窒化ガリウム結晶層からサファイア基板を除去し、厚さ600μmの窒化ガリウム結晶層からちなる自立基板を得た。
Subsequently, the inside of the pressure resistant container was evacuated to 0.1 Pa or less by a vacuum pump. Subsequently, nitrogen gas is introduced from a nitrogen gas cylinder to 4.0 MPa while heating the temperature of the heating space to 870 ° C. by adjusting the upper heater, middle heater and lower heater, and the outer container around the central axis It was rotated at a speed of 20 rpm in a constant cycle clockwise and counterclockwise. The acceleration time was 12 seconds, the holding time was 600 seconds, the deceleration time was 12 seconds, and the stop time was 0.5 seconds. And it hold | maintained in this state for 40 hours. Thereafter, the vessel was naturally cooled to room temperature and depressurized to the atmospheric pressure, and then the lid of the pressure container was opened and the bale was taken out from the inside. The solidified metallic sodium in the crucible was removed.
Next, the sapphire substrate was removed from the gallium nitride crystal layer by a laser lift-off method to obtain a freestanding substrate made of a gallium nitride crystal layer having a thickness of 600 μm.
(評価)
 窒化ガリウム自立基板の上面を研磨加工して、CL検出器付きの操作型電子顕微鏡(SEM)でCL観察した。その結果、図4に示すように、CL写真では窒化ガリウム結晶意内部に、白く発光する高輝度発光部が確認された。しかし、同時に、図10に示すように、同一視野をSEM観察したところ、ボイド等が確認されず、均質な窒化ガリウム結晶が成長していることが確認された。
(Evaluation)
The upper surface of the gallium nitride free-standing substrate was polished and CL was observed with a scanning electron microscope (SEM) equipped with a CL detector. As a result, as shown in FIG. 4, a high luminance light emitting portion emitting white light was confirmed inside the gallium nitride crystal in the CL photograph. However, at the same time, as shown in FIG. 10, when the same field of view was observed by SEM, no void etc. were confirmed, and it was confirmed that a homogeneous gallium nitride crystal was grown.
 また、窒化ガリウム自立基板を、その上面に対して垂直な断面に切断し、切断面を研磨加工してCL検出器付きの走査電子顕微鏡(SEM)でCL観察した。その結果、図7に示すように、CL像では窒化ガリウム結晶内部に、白く発光する高輝度発光部が確認された。しかし、同時に、図8に示すように、同一視野をSEM観察したところ、ボイド等が確認されず、均質な窒化ガリウム結晶が成長していることが確認された。すなわち、13族元素窒化物結晶層の断面においても、上面と同様に、CL観察では高輝度発光部が存在しているが、SEMでは同じ視野にCL写真で見られる高輝度発光部と同一形状、もしくはそれに類する微構造が存在していなかった。 In addition, the gallium nitride free-standing substrate was cut into a cross section perpendicular to the upper surface, and the cut surface was polished and subjected to CL observation with a scanning electron microscope (SEM) equipped with a CL detector. As a result, as shown in FIG. 7, in the CL image, a high-intensity light emitting portion emitting white light was confirmed inside the gallium nitride crystal. However, at the same time, as shown in FIG. 8, when the same field of view was observed by SEM, no void etc. were confirmed, and it was confirmed that a homogeneous gallium nitride crystal was grown. That is, even in the cross section of the group 13 element nitride crystal layer, the high brightness light emitting portion exists in CL observation as in the upper surface, but the same shape as the high brightness light emitting portion seen in the same field of view in the SEM There was no microstructure similar to it or that.
(ダークスポットの測定)
 ついで、13族元素窒化物結晶層の上面について転位密度を測定した。CL観察を行い、転位箇所であるダークスポットの密度を計測する事により、転位密度が算出した。80μm×105μm視野をCL観察した結果、5×10/cmであった。
(Dark spot measurement)
Then, the dislocation density was measured on the top surface of the group 13 element nitride crystal layer. The dislocation density was calculated by performing CL observation and measuring the density of dark spots as dislocation sites. As a result of CL observation of an 80 μm × 105 μm field, it was 5 × 10 4 / cm 2 .
(表面チルト角の測定)
 窒化ガリウム結晶層の上面におけるX線ロッキングカーブの(0002)面反射の半値幅を測定した結果、86秒であった。
(Measurement of surface tilt angle)
It was 86 seconds as a result of measuring the half value width of (0002) plane reflection of the X ray rocking curve in the upper surface of a gallium nitride crystal layer.
(表面ツイスト角の測定)
 窒化ガリウム結晶層の上面におけるX線ロッキングカーブの(1000)面反射の半値幅を測定したところ、89秒であった。
(Measurement of surface twist angle)
It was 89 seconds when the half value width of (1000) plane reflection of the X-ray rocking curve in the upper surface of the gallium nitride crystal layer was measured.
(MOCVD法による発光機能層の成膜)
 MOCVD法を用いて、窒化ガリウム自立基板の上面にn型層として1050℃でSi原子濃度が5×1018/cmになるようにドーピングしたn-GaN層を1μm堆積した。次に発光層として750℃で多重量子井戸層を堆積した。具体的にはInGaNによる2.5nmの井戸層を5層、GaNによる10nmの障壁層を6層にて交互に積層した。次にp型層として950℃でMg原子濃度が1×1019/cmになるようにドーピングしたp-GaNを200nm堆積した。その後、MOCVD装置から取り出し、p型層のMgイオンの活性化処理として、窒素雰囲気中で800℃の熱処理を10分間行った。
(Deposition of light emitting functional layer by MOCVD method)
Using an MOCVD method, an n-type n-type layer was deposited 1 μm as an n-type layer at 1050 ° C. to have a Si atomic concentration of 5 × 10 18 / cm 3 as the n-type layer. Next, a multiple quantum well layer was deposited at 750 ° C. as a light emitting layer. Specifically, five layers of 2.5 nm well layers of InGaN and six layers of 10 nm of barrier layers of GaN were alternately stacked. Next, as a p-type layer, 200 nm of p-GaN doped at a temperature of 950 ° C. so that the Mg atom concentration is 1 × 10 19 / cm 3 was deposited. Thereafter, it was taken out of the MOCVD apparatus, and heat treatment at 800 ° C. in a nitrogen atmosphere was performed for 10 minutes as activation treatment of Mg ions in the p-type layer.
(発光素子の作製)
 フォトリソグラフィープロセスと真空蒸着法とを用いて、窒化ガリウム自立基板のn-GaN層及びp-GaN層とは反対側の面にカソード電極としてのTi/Al/Ni/Au膜をそれぞれ15nm、70nm、12nm、60nmの厚みでパターニングした。その後、オーム性接触特性を良好なものとするために、窒素雰囲気中での700℃の熱処理を30秒間行った。さらに、フォトリソグラフィープロセスと真空蒸着法とを用いて、p型層に透光性アノード電極としてNi/Au膜をそれぞれ6nm、12nmの厚みにパターニングした。その後、オーム性接触特性を良好なものとするために窒素雰囲気中で500℃の熱処理を30秒間行った。さらに、フォトリソグラフィープロセスと真空蒸着法とを用いて、透光性アノード電極としてのNi/Au膜の上面の一部領域に、アノード電極パッドとなるNi/Au膜をそれぞれ5nm、60nmの厚みにパターニングした。こうして得られた基板を切断してチップ化し、さらにリードフレームに実装して、縦型構造の発光素子を得た。
(Fabrication of light emitting element)
15 nm and 70 nm Ti / Al / Ni / Au film as cathode electrode on the opposite side of n-GaN layer and p-GaN layer of gallium nitride freestanding substrate by photolithography process and vacuum evaporation method It patterned in thickness of 12 nm and 60 nm. Thereafter, heat treatment at 700 ° C. in a nitrogen atmosphere was performed for 30 seconds in order to improve ohmic contact characteristics. Further, a Ni / Au film was patterned to a thickness of 6 nm and 12 nm as a light transmitting anode electrode in the p-type layer using a photolithography process and a vacuum evaporation method. Thereafter, a heat treatment at 500 ° C. was performed for 30 seconds in a nitrogen atmosphere in order to improve ohmic contact characteristics. Furthermore, using a photolithography process and a vacuum evaporation method, the Ni / Au film to be the anode electrode pad has a thickness of 5 nm and 60 nm, respectively, on a partial region of the upper surface of the Ni / Au film as the translucent anode electrode. Patterned. The substrate thus obtained was cut into chips, and then mounted on lead frames to obtain light emitting elements of a vertical structure.
(発光素子の評価)
 作製した100個の素子について、カソード電極とアノード電極間に通電し、I-V測定を行ったところ、91個の素子について整流性が確認された。すなわち、歩留りは91%であった。また、順方向の電流を流したところ、波長460nmの発光が確認された。発光強度は0.96であった(実施例2-2の発光強度を1.0としたときの相対値)。
(Evaluation of light emitting element)
When current was applied between the cathode electrode and the anode electrode and IV measurement was performed for 100 elements produced, rectification was confirmed for 91 elements. That is, the yield was 91%. In addition, when forward current flowed, emission of wavelength 460 nm was confirmed. The light emission intensity was 0.96 (a relative value when the light emission intensity of Example 2-2 was 1.0).
(実施例1-2)
 実施例1-1と同様にしてサファイア基板上にアルミニウム酸化物層および13族元素窒化物結晶層を形成し、13族元素窒化物結晶層をサファイア基板から剥離させて自立基板を得た。
 ただし、本例では、実施例1-1とは異なり、AMSystems社製イオントリミング装置を用い、ガス種をHeとし、イオンビーム照射パワーを120Wとし、ガス流量を12sccmとした。この結果、厚さ200オングストロームのアモルファス構造のアルミニウム酸化物層が得られた。この上に実施例1-1と同様にして窒化ガリウム結晶層を作製した。
(Example 1-2)
An aluminum oxide layer and a group 13 element nitride crystal layer were formed on a sapphire substrate in the same manner as in Example 1-1, and the group 13 element nitride crystal layer was peeled off from the sapphire substrate to obtain a freestanding substrate.
However, in this example, unlike Example 1-1, the ion trimming apparatus manufactured by AM Systems, Inc. was used, the gas type was He, the ion beam irradiation power was 120 W, and the gas flow rate was 12 sccm. As a result, an aluminum oxide layer of amorphous structure with a thickness of 200 angstroms was obtained. A gallium nitride crystal layer was formed thereon in the same manner as in Example 1-1.
 得られた13族元素窒化物結晶層の上面について、80μm×105μm視野についてダークスポット数をCLで観察し、転位密度を算出した結果、2×10/cmであった。また、得られた自立基板を用い、実施例1-1と同様にして発光ダイオードを作製し、発光強度および歩留りを測定した。測定結果を表1に示す。また、得られた自立基板の上面、断面におけるCL観察結果、上面の表面ツイスト角、表面チルト角の観察結果も実施例1-1と同等であった。 With respect to the upper surface of the obtained Group 13 element nitride crystal layer, the number of dark spots was observed by CL with a view of 80 μm × 105 μm, and the dislocation density was calculated to be 2 × 10 4 / cm 2 . Further, using the obtained free standing substrate, a light emitting diode was produced in the same manner as in Example 1-1, and the light emission intensity and the yield were measured. The measurement results are shown in Table 1. Further, as a result of CL observation on the upper surface and the cross section of the obtained free-standing substrate, observation results of the surface twist angle and the surface tilt angle of the upper surface were also equivalent to Example 1-1.
(実施例1-3)
 実施例1-1と同様にしてサファイア基板上にアルミニウム酸化物層および13族元素窒化物結晶層を形成し、13族元素窒化物結晶層をサファイア基板から剥離させて自立基板を得た。
 ただし、本例では、実施例1-1とは異なり、サファイア基板に高速Ar原子ビームをスキャンした。
 スキャン開始前のチャンバー内到達真空度は10-6Pa台とした。ビーム源として、サドルフィールド型の高速原子ビーム源を使用した。チャンバーにArガスを導入し、電極へ直流電源から高電圧を印加した。電流値は200mA、電圧1.8kV、アルゴン流量80sccm、照射時間は900秒とした。
 この結果、厚さ60オングストロームのアモルファス構造のアルミニウム酸化物層が得られた。この上に実施例1-1と同様にして窒化ガリウム結晶層を作製した。
(Example 1-3)
An aluminum oxide layer and a group 13 element nitride crystal layer were formed on a sapphire substrate in the same manner as in Example 1-1, and the group 13 element nitride crystal layer was peeled off from the sapphire substrate to obtain a freestanding substrate.
However, in this example, unlike the example 1-1, a high-speed Ar atom beam was scanned on the sapphire substrate.
The degree of vacuum reached in the chamber before the start of scanning was set to 10 -6 Pa or so. As a beam source, a saddle field type high-speed atomic beam source was used. Ar gas was introduced into the chamber, and a high voltage was applied to the electrode from a DC power supply. The current value was 200 mA, the voltage was 1.8 kV, the argon flow rate was 80 sccm, and the irradiation time was 900 seconds.
As a result, an aluminum oxide layer of amorphous structure with a thickness of 60 angstroms was obtained. A gallium nitride crystal layer was formed thereon in the same manner as in Example 1-1.
 得られた13族元素窒化物結晶層の上面についてダークスポット数をCLで観察し、転位密度を算出した結果、7×10/cmであった。また、得られた自立基板を用い、実施例1-1と同様にして発光ダイオードを作製し、発光強度および歩留りを測定した。測定結果を表1に示す。また、得られた自立基板の上面、断面におけるCL観察結果、上面の表面ツイスト角、表面チルト角の観察結果も実施例1-1と同等であった。 The number of dark spots was observed with CL on the top surface of the obtained Group 13 element nitride crystal layer, and the dislocation density was calculated to be 7 × 10 4 / cm 2 . Further, using the obtained free standing substrate, a light emitting diode was produced in the same manner as in Example 1-1, and the light emission intensity and the yield were measured. The measurement results are shown in Table 1. Further, as a result of CL observation on the upper surface and the cross section of the obtained free-standing substrate, observation results of the surface twist angle and the surface tilt angle of the upper surface were also equivalent to Example 1-1.
(実施例2-1)
 実施例1-1と同様にしてサファイア基板上にアルミニウム酸化物層および13族元素窒化物結晶層を形成し、13族元素窒化物結晶層をサファイア基板から剥離させて自立基板を得た。
 ただし、本例では、実施例1-1とは異なり、サファイア基板表面を、番手♯2000の砥石で研削加工した。この結果、厚さ0.2μmの加工変質層を得た。
 加工変質層においては、TEM写真において、アルミニウム酸化物層中にアモルファス相、多結晶相、結晶欠陥が観察された。これらはサファイア単結晶に対するコントラスト変化によって前述のようにして観察可能であった。
(Example 2-1)
An aluminum oxide layer and a group 13 element nitride crystal layer were formed on a sapphire substrate in the same manner as in Example 1-1, and the group 13 element nitride crystal layer was peeled off from the sapphire substrate to obtain a freestanding substrate.
However, in this example, unlike the example 1-1, the surface of the sapphire substrate was ground with a whetstone # 2000. As a result, a 0.2 μm thick process-altered layer was obtained.
In the work-affected layer, an amorphous phase, a polycrystalline phase, and crystal defects were observed in the aluminum oxide layer in the TEM photograph. These were observable as described above by the change in contrast to the sapphire single crystal.
 この上に実施例1-1と同様にして窒化ガリウム結晶層を作製した。得られた13族元素窒化物結晶層の上面についてダークスポット数をCLで観察し、転位密度を算出した結果、5×10/cmであった。また、得られた自立基板を用い、実施例1-1と同様にして発光ダイオードを作製し、発光強度および歩留りを測定した。測定結果を表1に示す。また、得られた自立基板の上面、断面におけるCL観察結果、上面の表面ツイスト角、表面チルト角の観察結果も実施例1-1と同等であった。 A gallium nitride crystal layer was formed thereon in the same manner as in Example 1-1. The number of dark spots was observed by CL on the upper surface of the obtained Group 13 element nitride crystal layer, and the dislocation density was calculated to be 5 × 10 4 / cm 2 . Further, using the obtained free standing substrate, a light emitting diode was produced in the same manner as in Example 1-1, and the light emission intensity and the yield were measured. The measurement results are shown in Table 1. Further, as a result of CL observation on the upper surface and the cross section of the obtained free-standing substrate, observation results of the surface twist angle and the surface tilt angle of the upper surface were also equivalent to Example 1-1.
(実施例2-2)
 実施例2-1と同様にしてサファイア基板上にアルミニウム酸化物層および13族元素窒化物結晶層を形成し、13族元素窒化物結晶層をサファイア基板から剥離させて自立基板を得た。
 ただし、本例では、実施例2-1とは異なり、サファイア基板表面を、番手♯325の砥石で研削加工した。この結果、厚さ1.5μmの加工変質層を得た。
(Example 2-2)
In the same manner as in Example 2-1, an aluminum oxide layer and a group 13 element nitride crystal layer were formed on a sapphire substrate, and the group 13 element nitride crystal layer was peeled off from the sapphire substrate to obtain a freestanding substrate.
However, in the present example, unlike the example 2-1, the surface of the sapphire substrate was ground with a whetstone # 325. As a result, a 1.5 μm thick process-altered layer was obtained.
 この上に実施例1-1と同様にして窒化ガリウム結晶層を作製した。得られた13族元素窒化物結晶層の上面についてダークスポット数をCLで観察し、転位密度を算出した結果、2×10/cmであった。また、得られた自立基板を用い、実施例1-1と同様にして発光ダイオードを作製し、発光強度および歩留りを測定した。測定結果を表1に示す。また、得られた自立基板の上面、断面におけるCL観察結果、上面の表面ツイスト角、表面チルト角の観察結果も実施例1-1と同等であった。 A gallium nitride crystal layer was formed thereon in the same manner as in Example 1-1. The number of dark spots was observed by CL on the top surface of the obtained Group 13 element nitride crystal layer, and the dislocation density was calculated to be 2 × 10 4 / cm 2 . Further, using the obtained free standing substrate, a light emitting diode was produced in the same manner as in Example 1-1, and the light emission intensity and the yield were measured. The measurement results are shown in Table 1. Further, as a result of CL observation on the upper surface and the cross section of the obtained free-standing substrate, observation results of the surface twist angle and the surface tilt angle of the upper surface were also equivalent to Example 1-1.
(実施例3)
 実施例1-1と同様にしてサファイア基板上にアルミニウム酸化物層および13族元素窒化物結晶層を形成し、13族元素窒化物結晶層をサファイア基板から剥離させて自立基板を得た。
 ただし、本例では、実施例1-1とは異なり、反応性イオンエッチング法によってサファイア基板表面をエッチングした。具体的には、パナソニック社製RIE装置「型番E640」を用い、RFパワーを400Wとし、バイアス電圧を200Wとし、使用ガスを塩素(流量40sccm)とし、圧力を1Paとし、RIE時間を20分間とした。この結果、厚さ40オングストロームのアルミニウム酸化物層を得た。
(Example 3)
An aluminum oxide layer and a group 13 element nitride crystal layer were formed on a sapphire substrate in the same manner as in Example 1-1, and the group 13 element nitride crystal layer was peeled off from the sapphire substrate to obtain a freestanding substrate.
However, in this example, unlike the example 1-1, the sapphire substrate surface was etched by reactive ion etching. Specifically, using a RIE apparatus "Model E640" manufactured by Panasonic Corporation, RF power is 400 W, bias voltage is 200 W, working gas is chlorine (flow rate 40 sccm), pressure is 1 Pa, RIE time is 20 minutes. did. As a result, a 40 angstrom thick aluminum oxide layer was obtained.
 この上に実施例1-1と同様にして窒化ガリウム結晶層を作製した。得られた13族元素窒化物結晶層の上面についてダークスポット数をCLで観察し、転位密度を算出した結果、7×105/cmであった。また、得られた自立基板を用い、実施例1-1と同様にして発光ダイオードを作製し、発光強度および歩留りを測定した。測定結果を表1に示す。また、得られた自立基板の上面、断面におけるCL観察結果、上面の表面ツイスト角、表面チルト角の観察結果も実施例1-1と同等であった。 A gallium nitride crystal layer was formed thereon in the same manner as in Example 1-1. The number of dark spots was observed by CL on the upper surface of the obtained Group 13 element nitride crystal layer, and the dislocation density was calculated to be 7 × 10 5 / cm 2 . Further, using the obtained free standing substrate, a light emitting diode was produced in the same manner as in Example 1-1, and the light emission intensity and the yield were measured. The measurement results are shown in Table 1. Further, as a result of CL observation on the upper surface and the cross section of the obtained free-standing substrate, observation results of the surface twist angle and the surface tilt angle of the upper surface were also equivalent to Example 1-1.
(実施例4-1)
 実施例1-1と同様にしてサファイア基板上にアルミニウム酸化物層および13族元素窒化物結晶層を形成し、13族元素窒化物結晶層をサファイア基板から剥離させて自立基板を得た。
 ただし、本例では、実施例1-1とは異なり、サファイア基板表面を、水素ガス下でアニールした。具体的には、MOCVD装置を使用し、水素雰囲気、昇温速度120℃/分で1200℃まで昇温した。その後、水素雰囲気は変えずに30分間保持してアニールした。その後、ヒーター設定値を降温速度120℃/分で降温し、実温度が500℃を下回った時点で、窒素雰囲気に切り替え、室温まで降温した。
 この結果、厚さ 80オングストロームのアルミニウム酸化物層を得た。
Example 4-1
An aluminum oxide layer and a group 13 element nitride crystal layer were formed on a sapphire substrate in the same manner as in Example 1-1, and the group 13 element nitride crystal layer was peeled off from the sapphire substrate to obtain a freestanding substrate.
However, in this example, unlike Example 1-1, the sapphire substrate surface was annealed under hydrogen gas. Specifically, using a MOCVD apparatus, the temperature was raised to 1200 ° C. at a heating rate of 120 ° C./min under a hydrogen atmosphere. Then, it hold | maintained and annealed for 30 minutes, without changing hydrogen atmosphere. Thereafter, the heater setting value was lowered at a temperature lowering rate of 120 ° C./min, and when the actual temperature fell below 500 ° C., the atmosphere was switched to a nitrogen atmosphere and the temperature was lowered to room temperature.
As a result, an aluminum oxide layer with a thickness of 80 angstroms was obtained.
 この上に実施例1-1と同様にして窒化ガリウム結晶層を作製した。得られた13族元素窒化物結晶層の上面についてダークスポット数をCLで観察し、転位密度を算出した結果、5×10/cmであった。また、得られた自立基板を用い、実施例1-1と同様にして発光ダイオードを作製し、発光強度および歩留りを測定した。測定結果を表1に示す。また、得られた自立基板の上面、断面におけるCL観察結果、上面の表面ツイスト角、表面チルト角の観察結果も実施例1-1と同等であった。 A gallium nitride crystal layer was formed thereon in the same manner as in Example 1-1. The number of dark spots was observed by CL on the upper surface of the obtained Group 13 element nitride crystal layer, and the dislocation density was calculated to be 5 × 10 5 / cm 2 . Further, using the obtained free standing substrate, a light emitting diode was produced in the same manner as in Example 1-1, and the light emission intensity and the yield were measured. The measurement results are shown in Table 1. Further, as a result of CL observation on the upper surface and the cross section of the obtained free-standing substrate, observation results of the surface twist angle and the surface tilt angle of the upper surface were also equivalent to Example 1-1.
(実施例4-2)
 実施例4-1と同様にしてサファイア基板上にアルミニウム酸化物層および13族元素窒化物結晶層を形成し、13族元素窒化物結晶層をサファイア基板から剥離させて自立基板を得た。
 ただし、本例では、実施例4-1とは異なり、サファイア基板表面を、水素、アンモニア、窒素の混合ガス下でアニールした。具体的には、MOCVD装置を使用し、水素雰囲気、昇温速度120℃/分で1200℃まで昇温した。この後、水素雰囲気は変えずに15分間保持してアニールした後、雰囲気を水素、アンモニア、窒素の混合ガスに変え、15分間保持してアニールした。その後、ヒーター設定値を降温速度120℃/分で降温し、実温度が500℃を下回った時点で、窒素雰囲気に切り替え、室温まで降温した。
 この結果、厚さ60オングストロームのアルミニウム酸化物層を得た。
(Example 4-2)
In the same manner as in Example 4-1, an aluminum oxide layer and a Group 13 element nitride crystal layer were formed on a sapphire substrate, and the Group 13 element nitride crystal layer was peeled from the sapphire substrate to obtain a freestanding substrate.
However, in this example, unlike Example 4-1, the sapphire substrate surface was annealed under a mixed gas of hydrogen, ammonia and nitrogen. Specifically, using a MOCVD apparatus, the temperature was raised to 1200 ° C. at a heating rate of 120 ° C./min under a hydrogen atmosphere. Then, after holding and annealing for 15 minutes without changing the hydrogen atmosphere, the atmosphere was changed to a mixed gas of hydrogen, ammonia and nitrogen, and was held for 15 minutes for annealing. Thereafter, the heater setting value was lowered at a temperature lowering rate of 120 ° C./min, and when the actual temperature fell below 500 ° C., the atmosphere was switched to a nitrogen atmosphere and the temperature was lowered to room temperature.
As a result, an aluminum oxide layer having a thickness of 60 angstroms was obtained.
 この上に実施例1-1と同様にして窒化ガリウム結晶層を作製した。得られた13族元素窒化物結晶層の上面についてダークスポット数をCLで観察し、転位密度を算出した結果、3×10/cmであった。また、得られた自立基板を用い、実施例1-1と同様にして発光ダイオードを作製し、発光強度および歩留りを測定した。測定結果を表1に示す。また、得られた自立基板の上面、断面におけるCL観察結果、上面の表面ツイスト角、表面チルト角の観察結果も実施例1-1と同等であった。 A gallium nitride crystal layer was formed thereon in the same manner as in Example 1-1. The number of dark spots was observed by CL on the top surface of the obtained Group 13 element nitride crystal layer, and the dislocation density was calculated to be 3 × 10 5 / cm 2 . Further, using the obtained free standing substrate, a light emitting diode was produced in the same manner as in Example 1-1, and the light emission intensity and the yield were measured. The measurement results are shown in Table 1. Further, as a result of CL observation on the upper surface and the cross section of the obtained free-standing substrate, observation results of the surface twist angle and the surface tilt angle of the upper surface were also equivalent to Example 1-1.
(比較例)
 サファイア基板上に、MOCVD法によって、実施例1-1と同様にして窒化ガリウムからなる種結晶膜を育成した。次いで、Naフラックス法によって、実施例1-1と同様にして窒化ガリウム結晶層を育成した(厚さ600μm)。次いで、実施例1-1と同様にしてレーザーリフトオフ法によってサファイア基板を除去し、得られた13族元素窒化物結晶層からなる自立基板の上面と底面とを研磨した。
(Comparative example)
On a sapphire substrate, a seed crystal film made of gallium nitride was grown by MOCVD in the same manner as in Example 1-1. Then, a gallium nitride crystal layer was grown by the Na flux method in the same manner as in Example 1-1 (thickness 600 μm). Then, in the same manner as in Example 1-1, the sapphire substrate was removed by a laser lift-off method, and the top and bottom surfaces of the obtained freestanding substrate composed of a Group 13 element nitride crystal layer were polished.
 得られた13族元素窒化物結晶層の上面についてダークスポット数をCLで観察し、転位密度を算出した結果、7×10/cmであった。また、得られた自立基板を用い、実施例1-1と同様にして発光ダイオードを作製し、発光強度および歩留りを測定した。測定結果を表1に示す。 The number of dark spots was observed by CL on the upper surface of the obtained Group 13 element nitride crystal layer, and the dislocation density was calculated to be 7 × 10 6 / cm 2 . Further, using the obtained free standing substrate, a light emitting diode was produced in the same manner as in Example 1-1, and the light emission intensity and the yield were measured. The measurement results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 (整流機能素子の作成)
 整流機能を有する機能素子を作製した。
 すなわち、実施例1-1で得られた前記自立基板の上面に、以下のようにして、ショットキーバリアダイオード構造を成膜し、電極を形成することで、ダイオードを得、特性を確認した。
(Creation of rectification function element)
A functional element having a rectifying function was produced.
That is, a Schottky barrier diode structure was formed on the upper surface of the freestanding substrate obtained in Example 1-1 as follows, and an electrode was formed to obtain a diode, and the characteristics were confirmed.
(MOCVD法による整流機能層の成膜)
 MOCVD(有機金属化学的気相成長)法を用いて、自立基板上にn型層として1050℃でSi原子濃度が1×1016/cmになるようにドーピングしたn-GaN層を5μm成膜した。
  フォトリソグラフィープロセスと真空蒸着法とを用いて、自立基板上のn-GaN層とは反対側の面にオーミック電極としてTi/Al/Ni/Au膜をそれぞれ15nm、70nm、12nm、60nmの厚みでパターニングした。その後、オーム性接触特性を良好なものとするために、窒素雰囲気中での700℃の熱処理を30秒間行った。さらに、フォトリソグラフィープロセスと真空蒸着法とを用いて、MOCVD法で成膜したn-GaN層にショットキー電極としてNi/Au膜をそれぞれ6nm、80nmの厚みでパターニングした。こうして得られた基板を切断してチップ化し、さらにリードフレーム(lead frame)に実装して、整流素子を得た。
(Deposition of rectifying function layer by MOCVD method)
A 5 μm thick n-GaN layer doped as an n-type layer at 1050 ° C. and having a Si atomic concentration of 1 × 10 16 / cm 3 on a free-standing substrate using MOCVD (metal organic chemical vapor deposition) method I made a film.
Ti / Al / Ni / Au films with a thickness of 15 nm, 70 nm, 12 nm, and 60 nm as ohmic electrodes on the surface of the free-standing substrate opposite to the n-GaN layer using photolithography process and vacuum evaporation method Patterned. Thereafter, heat treatment at 700 ° C. in a nitrogen atmosphere was performed for 30 seconds in order to improve ohmic contact characteristics. Further, a Ni / Au film was patterned as a Schottky electrode to a thickness of 6 nm and 80 nm, respectively, on the n-GaN layer formed by the MOCVD method using a photolithography process and a vacuum evaporation method. The substrate obtained in this manner was cut into chips, and then mounted on lead frames to obtain rectifying devices.
(整流素子の評価)
  I-V測定を行ったところ、整流特性が確認された。
(Evaluation of rectifier)
When the IV measurement was performed, the rectification characteristic was confirmed.
(電力制御素子の作成)
 電力制御機能を有する機能素子を作製した。
 前記実施例1-1と同様に自立基板を作製した。ただし、実施例1と異なり、Naフラックス法によって窒化ガリウム結晶を成膜する際に、不純物のドーピングは行わなかった。このようにして得られた自立基板の上面に、以下のようにして、MOCVD法でAl0.25Ga0.75/GaN HEMT構造を成膜し、電極を形成し、トランジスタ特性を確認した。
(Creating a power control element)
A functional element having a power control function was produced.
A self-supporting substrate was produced in the same manner as in Example 1-1. However, unlike Example 1, when forming a gallium nitride crystal film by Na flux method, doping of impurities was not performed. The upper surface of the free-standing substrate obtained in this manner, in the following manner, forming a Al 0.25 Ga 0.75 / GaN HEMT structure by MOCVD to form the electrodes was confirmed transistor characteristics.
  MOCVD(有機金属化学的気相成長)法を用いて、自立基板上にi型層として1050℃で不純物ドーピングをしていないGaN層を3μm成膜した。次に機能層として同じ1050℃でAl0.25Ga0.75N層を25nm成膜した。これによりAl0.25Ga0.75N/GaN HEMT構造が得られた。 Using an MOCVD (metal organic chemical vapor deposition) method, a 3 μm-thick GaN layer was formed as an i-type layer at 1050 ° C. as an i-type layer on a free-standing substrate. Next, a 25 nm Al 0.25 Ga 0.75 N layer was deposited at 1050 ° C. as a functional layer. This resulted in an Al 0.25 Ga 0.75 N / GaN HEMT structure.
  フォトリソグラフィープロセスと真空蒸着法とを用いて、ソース電極及びドレイン電極としてのTi/Al/Ni/Au膜をそれぞれ15nm、70nm、12nm、60nmの厚みでパターニングした。その後、オーム性接触特性を良好なものとするために、窒素雰囲気中での700℃の熱処理を30秒間行った。さらに、フォトリソグラフィープロセスと真空蒸着法とを用いて、ゲート電極としてNi/Au膜をそれぞれ6nm、80nmの厚みでショットキー接合にて形成し、パターニングした。こうして得られた基板を切断してチップ化し、さらにリードフレーム(lead frame)に実装して、電力制御素子を得た。 Ti / Al / Ni / Au films as source and drain electrodes were patterned to thicknesses of 15 nm, 70 nm, 12 nm, and 60 nm, respectively, using a photolithography process and a vacuum evaporation method. Thereafter, heat treatment at 700 ° C. in a nitrogen atmosphere was performed for 30 seconds in order to improve ohmic contact characteristics. Furthermore, using a photolithography process and a vacuum evaporation method, a Ni / Au film as a gate electrode was formed by Schottky junction with a thickness of 6 nm and 80 nm, respectively, and patterned. The substrate thus obtained was cut into chips, and then mounted on lead frames to obtain power control elements.
(電力制御素子の評価)
 I-V特性を測定したところ、良好なピンチオフ特性が確認され、最大ドレイン電流は760mA/mm、最大相互コンダクタンス240mS/mm特性を得た。
(Evaluation of power control element)
When the IV characteristics were measured, good pinch-off characteristics were confirmed, and the maximum drain current was 760 mA / mm, and the maximum mutual conductance 240 mS / mm was obtained.

Claims (16)

  1.  サファイア基板を表面処理することによってアルミニウム酸化物層を形成する工程、
     前記アルミニウム酸化物層上に、13族元素窒化物からなる種結晶膜を形成する工程、および
     前記種結晶膜上に、窒化ガリウム、窒化アルミニウム、窒化インジウムまたはこれらの混晶から選ばれた13族元素窒化物からなる13族元素窒化物層を設ける工程
    を有することを特徴とする、13族元素窒化物層の製造方法。
    Forming an aluminum oxide layer by surface treating a sapphire substrate;
    Forming a seed crystal film of Group 13 element nitride on the aluminum oxide layer; and Group 13 selected from gallium nitride, aluminum nitride, indium nitride, or mixed crystals thereof on the seed crystal film. A method for producing a Group 13 element nitride layer, comprising the step of providing a Group 13 element nitride layer comprising an element nitride.
  2.  前記サファイア基板に対してイオンビームまたは高速原子ビームを照射することにより前記表面処理を行うことを特徴とする、請求項1記載の方法。 The method according to claim 1, wherein the surface treatment is performed by irradiating the sapphire substrate with an ion beam or a high-speed atomic beam.
  3.  前記サファイア基板を研削加工することによって前記表面処理を行うことを特徴とする、請求項1記載の方法。 The method according to claim 1, wherein the surface treatment is performed by grinding the sapphire substrate.
  4.  前記サファイア基板を反応性イオンエッチング処理することによって前記表面処理を行うことを特徴とする、請求項1記載の方法。 The method according to claim 1, wherein the surface treatment is performed by reactive ion etching of the sapphire substrate.
  5.  前記サファイア基板を、少なくとも水素を含む雰囲気下にアニール処理することによって前記表面処理を行うことを特徴とする、請求項1記載の方法。 The method according to claim 1, wherein the surface treatment is performed by annealing the sapphire substrate in an atmosphere containing at least hydrogen.
  6.  前記アルミニウム酸化物層が、アモルファス相、多結晶相または欠陥導入部を含むことを特徴とする、請求項1~5のいずれか一つの請求項に記載の方法。 The method according to any one of the preceding claims, wherein the aluminum oxide layer comprises an amorphous phase, a polycrystalline phase or a defect induced part.
  7.  前記アルミニウム酸化物層が加工変質層であることを特徴とする、請求項3記載の方法。 The method according to claim 3, wherein the aluminum oxide layer is a processing-altered layer.
  8.  前記13族元素窒化物結晶層が、前記上面をカソードルミネッセンスによって観測したときに、線状の高輝度発光部と、前記高輝度発光部に隣接する低輝度発光領域とを有しており、
     前記高輝度発光部が前記13族元素窒化物結晶のm面に沿って延びている部分を含むことを特徴とする、請求項1~7のいずれか一つの請求項に記載の方法。
    The group 13 element nitride crystal layer has a linear high luminance light emitting portion and a low luminance light emitting region adjacent to the high luminance light emitting portion when the upper surface is observed by cathode luminescence.
    The method according to any one of claims 1 to 7, wherein the high brightness light emitting portion includes a portion extending along the m-plane of the group 13 element nitride crystal.
  9.  前記高輝度発光部が概ね前記13族元素窒化物結晶の前記m面に沿って延びていることを特徴とする、請求項8記載の方法。 9. The method of claim 8, wherein the high brightness light emitting portion extends substantially along the m-plane of the Group 13 element nitride crystal.
  10.  前記上面におけるX線ロッキングカーブの(0002)面反射の半値幅が3000秒以下、20秒以上であることを特徴とする、請求項8または9記載の方法。 10. The method according to claim 8, wherein the half width of (0002) plane reflection of the X-ray rocking curve on the upper surface is 3000 seconds or less and 20 seconds or more.
  11.  前記13族元素窒化物結晶層の前記上面に略垂直な断面においてボイドが観測されないことを特徴とする、請求項8~10のいずれか一つの請求項に記載の方法。 The method according to any one of claims 8 to 10, wherein no void is observed in a cross section substantially perpendicular to the upper surface of the group 13 element nitride crystal layer.
  12.  前記13族元素窒化物結晶層の前記上面における転位密度が1×10/cm以下であることを特徴とする、請求項8~11のいずれか一つの請求項に記載の方法。 The method according to any one of claims 8 to 11, characterized in that the dislocation density on the top surface of the group 13 element nitride crystal layer is 1 x 10 6 / cm 2 or less.
  13.  前記高輝度発光部が連続相を形成しており、前記低輝度発光領域が前記高輝度発光部によって区画された不連続相を形成していることを特徴とする、請求項8~12のいずれか一つの請求項に記載の方法。 13. The high-intensity light emitting portion forms a continuous phase, and the low-intensity light emitting region forms a discontinuous phase partitioned by the high-intensity light emitting portion. Method according to any one of the claims.
  14. 前記上面におけるX線ロッキングカーブの(1000)面反射の半値幅が10000秒以下、20秒以上であることを特徴とする、請求項8~13のいずれか一つの請求項に記載の方法。 The method according to any one of claims 8 to 13, characterized in that the half value width of (1000) plane reflection of the X-ray rocking curve on the upper surface is 10000 seconds or less and 20 seconds or more.
  15.  前記13族元素窒化物が窒化ガリウム系窒化物である、請求項1~14のいずれか一項に記載の方法。 The method according to any one of claims 1 to 14, wherein the Group 13 element nitride is a gallium nitride based nitride.
  16.  前記13族元素窒化物層をナトリウムフラックス法によって成膜することを特徴とする、請求項1~15のいずれか一つの請求項に記載の方法。 The method according to any one of the preceding claims, characterized in that the Group 13 element nitride layer is deposited by a sodium flux method.
PCT/JP2018/022796 2017-08-24 2018-06-14 Method for producing group 13 element nitride layer WO2019039055A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019537943A JP7157062B2 (en) 2017-08-24 2018-06-14 Method for producing group 13 element nitride layer

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JPPCT/JP2017/030373 2017-08-24
PCT/JP2017/030373 WO2019038892A1 (en) 2017-08-24 2017-08-24 Group 13 element nitride layer, freestanding substrate and functional element
JPPCT/JP2017/034035 2017-09-21
PCT/JP2017/034035 WO2019038933A1 (en) 2017-08-24 2017-09-21 Group 13 element nitride layer, freestanding substrate and functional element
JP2018-067056 2018-03-30
JP2018067056 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019039055A1 true WO2019039055A1 (en) 2019-02-28

Family

ID=65438569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022796 WO2019039055A1 (en) 2017-08-24 2018-06-14 Method for producing group 13 element nitride layer

Country Status (1)

Country Link
WO (1) WO2019039055A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005005723A (en) * 2004-06-25 2005-01-06 Hitachi Cable Ltd Method for manufacturing nitride semiconductor epitaxial wafer and nitride semiconductor epitaxial wafer
JP2012240866A (en) * 2011-05-17 2012-12-10 Philtech Inc Substrate, and light emitting diode
WO2014098261A1 (en) * 2012-12-20 2014-06-26 日本碍子株式会社 Seed crystal substrate, composite substrate and function element
JP2015024940A (en) * 2013-07-29 2015-02-05 住友金属鉱山株式会社 Production method of aluminum nitride crystal
WO2015068458A1 (en) * 2013-11-07 2015-05-14 日本碍子株式会社 GaN TEMPLATE SUBSTRATE AND DEVICE SUBSTRATE
JP2016139751A (en) * 2015-01-29 2016-08-04 住友金属鉱山株式会社 Sapphire substrate polishing method and sapphire substrate obtained
WO2017163548A1 (en) * 2016-03-24 2017-09-28 日本碍子株式会社 Production method for seed crystal substrate, production method for group-13 element nitride crystal, and seed crystal substrate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005005723A (en) * 2004-06-25 2005-01-06 Hitachi Cable Ltd Method for manufacturing nitride semiconductor epitaxial wafer and nitride semiconductor epitaxial wafer
JP2012240866A (en) * 2011-05-17 2012-12-10 Philtech Inc Substrate, and light emitting diode
WO2014098261A1 (en) * 2012-12-20 2014-06-26 日本碍子株式会社 Seed crystal substrate, composite substrate and function element
JP2015024940A (en) * 2013-07-29 2015-02-05 住友金属鉱山株式会社 Production method of aluminum nitride crystal
WO2015068458A1 (en) * 2013-11-07 2015-05-14 日本碍子株式会社 GaN TEMPLATE SUBSTRATE AND DEVICE SUBSTRATE
JP2016139751A (en) * 2015-01-29 2016-08-04 住友金属鉱山株式会社 Sapphire substrate polishing method and sapphire substrate obtained
WO2017163548A1 (en) * 2016-03-24 2017-09-28 日本碍子株式会社 Production method for seed crystal substrate, production method for group-13 element nitride crystal, and seed crystal substrate

Similar Documents

Publication Publication Date Title
US11088299B2 (en) Group 13 element nitride layer, free-standing substrate and functional element
US11611017B2 (en) Group 13 element nitride layer, free-standing substrate and functional element
US11309455B2 (en) Group 13 element nitride layer, free-standing substrate and functional element
US11555257B2 (en) Group 13 element nitride layer, free-standing substrate and functional element
WO2021049170A1 (en) Method for producing group 13 element nitride crystal layer, and seed crystal substrate
JP6764035B2 (en) Group 13 element nitride layer, self-supporting substrate and functional element
JP7157062B2 (en) Method for producing group 13 element nitride layer
WO2019039055A1 (en) Method for producing group 13 element nitride layer
JP6851485B2 (en) Group 13 element nitride layer, self-supporting substrate and functional element
JP6854902B2 (en) Group 13 element nitride layer, self-supporting substrate and functional element
JP6851486B2 (en) Group 13 element nitride layer, self-supporting substrate and functional element
JP2020073438A (en) Group 13 element nitride crystal layer, free-standing substrate, and function element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18848314

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019537943

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18848314

Country of ref document: EP

Kind code of ref document: A1