WO2019039342A1 - Gallium nitride substrate, self-supporting substrate, and functional element - Google Patents

Gallium nitride substrate, self-supporting substrate, and functional element Download PDF

Info

Publication number
WO2019039342A1
WO2019039342A1 PCT/JP2018/030222 JP2018030222W WO2019039342A1 WO 2019039342 A1 WO2019039342 A1 WO 2019039342A1 JP 2018030222 W JP2018030222 W JP 2018030222W WO 2019039342 A1 WO2019039342 A1 WO 2019039342A1
Authority
WO
WIPO (PCT)
Prior art keywords
gallium nitride
light emitting
nitride substrate
substrate
emitting portion
Prior art date
Application number
PCT/JP2018/030222
Other languages
French (fr)
Japanese (ja)
Inventor
佳範 磯田
崇行 平尾
中西 宏和
幹也 市村
孝直 下平
坂井 正宏
隆史 吉野
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2017/030373 external-priority patent/WO2019038892A1/en
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2019537568A priority Critical patent/JP7160815B2/en
Publication of WO2019039342A1 publication Critical patent/WO2019039342A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Definitions

  • the present invention relates to a gallium nitride substrate, a free standing substrate and a functional device.
  • GaN gallium nitride
  • MQW multiple quantum well layer
  • Patent Document 1 shows that, in a gallium nitride single crystal produced by the HVPE method, the elastic constant C11 is 340 to 380 GPa. Specifically, if the elastic constant C11 is 348 GPa or more and 365 GPa or less and the elastic constant C13 is 90 GPa or more and 98 GPa or less, or the elastic constant C11 is 352 GPa or more and 362 GPa or less and the elastic constant C13 is 86 GPa or more and 93 GPa or less " For example, when growing a gallium nitride single crystal body and when processing the grown gallium nitride single crystal body into a substrate or the like, a semiconductor layer is formed on the substrate-like gallium nitride single crystal body to manufacture a semiconductor device. At the same time, it is possible to suppress the occurrence of cracks.
  • Patent Document 2 shows that the elastic constant C11 of gallium nitride is 296 to 396 GPa from calculation and experiment.
  • Patent No. 4957751 Appl. Phys. Lett., Vol. 70, No. 9, 3 March 1997
  • a semiconductor light emitting element as a high luminance light source such as a headlamp for a car or a light source for a projector. For this reason, when a laser diode (LD) element or an LED element is manufactured on a gallium nitride substrate, further improvement of the light emission efficiency is required. However, when the light emitting element is formed on the conventional gallium nitride substrate, improvement of the light emission efficiency is still limited, and a breakthrough is required. Further, also in semiconductor-based functional elements other than light-emitting elements, such as rectifying elements, further improvement of the function is required.
  • LD laser diode
  • An object of the present invention is to further improve functions such as luminous efficiency in a semiconductor functional element provided on a gallium nitride substrate.
  • the present invention is a gallium nitride substrate having a top surface and a bottom surface, wherein When the upper surface is observed by cathode luminescence, it has a linear high luminance light emitting portion and a low luminance light emitting region adjacent to the high luminance light emitting portion, and the elastic constant C11 is 200 GPa or more and 290 GPa or less It is characterized by
  • the present invention relates to a self-supporting substrate comprising the above-mentioned gallium nitride substrate.
  • the present invention relates to a functional element characterized by having a functional layer provided on the free-standing substrate and the upper surface of the gallium nitride substrate.
  • the present invention also relates to a composite substrate comprising a support substrate and the gallium nitride substrate provided on the support substrate.
  • the present invention relates to a functional device including the composite substrate and a functional layer provided on the upper surface of the gallium nitride substrate.
  • the gallium nitride substrate of the present invention has a linear high luminance light emitting portion and a low luminance light emitting region adjacent to the high luminance light emitting portion when the upper surface is observed by cathode luminescence, and the elastic constant C11 is 200-290 GPa, lower than conventional ones.
  • FIG. 5 is a schematic view for explaining a cathode luminescence image of the upper surface 13 a of the gallium nitride substrate 13. It is a photograph which shows the cathode luminescence image of upper surface 13a of gallium nitride substrate 13. It is a partial enlarged photograph of FIG. It is a schematic diagram corresponding to the cathode luminescence image of FIG.
  • FIG. 5 is a scanning electron micrograph showing a cross section of a gallium nitride substrate 13; It is a schematic diagram which shows the functional element 21 which concerns on this invention. It is a photography picture by a scanning electron microscope of the upper surface of a gallium nitride substrate. 2 shows a gray scale histogram generated from a CL image.
  • the gallium nitride substrate of the present invention is made of gallium nitride and has top and bottom surfaces.
  • the top surface 13a and the bottom surface 13b face each other.
  • the gallium nitride constituting the gallium nitride substrate may be doped with zinc, calcium or other n-type dopant or p-type dopant, in which case the gallium nitride substrate is a p-type electrode, an n-type electrode, p It can be used as a member or layer other than a substrate such as a mold layer and an n-type layer.
  • Preferred examples of the p-type dopant include one or more selected from the group consisting of beryllium (Be), magnesium (Mg), strontium (Sr), and cadmium (Cd).
  • Preferred examples of the n-type dopant include one or more selected from the group consisting of silicon (Si), germanium (Ge), tin (Sn) and oxygen (O).
  • the upper surface 13 a of the gallium nitride substrate 13 is observed by cathode luminescence (CL), it is adjacent to the linear high luminance light emitting portion 5 and the high luminance light emitting portion 5 as schematically shown in FIG. And a low luminance light emitting area 6.
  • the elastic constant C11 of the gallium nitride substrate is set to 200 GPa or more and 290 GPa or less.
  • the elastic constant C11 is set to 290 GPa or less, the stress on the functional layer provided on the gallium nitride substrate is reduced, and the function of the functional layer is significantly improved over the whole.
  • the elastic constant C11 of the gallium nitride substrate is measured as follows. That is, a test piece of 35 mm long ⁇ 5 mm wide ⁇ 0.3 mm thick (c axis in the thickness direction) is prepared, and the test piece is subjected to a three-point bending test by strain gauge method in air at room temperature, load-strain diagram Obtain and determine the flexural modulus. The test speed is 0.5 mm / min, and the distance between fulcrums is 30 mm.
  • the density of gallium nitride constituting the gallium nitride substrate is 6.0 g / cm 3 or more and 6.2 g / cm 3 or less.
  • the density of gallium nitride is 6.0 g / cm 3 or more, the crystallinity of the functional layer can be further improved.
  • the density of gallium nitride exceeds 6.2 g / cm 3 , the impurity concentration is high and the crystallinity is lowered.
  • the density of gallium nitride is calculated by geometrical measurement according to JIS Z 8807.
  • the dislocation density on the upper surface of the gallium nitride substrate is 1 ⁇ 10 6 / cm 2 or less, thereby reducing defects in the functional layer provided on the gallium nitride substrate. From such a viewpoint, it is particularly preferable to set the transition density on the upper surface of the gallium nitride substrate to 1 ⁇ 10 4 / cm 2 or less from the viewpoint of improving the characteristics of the functional element. Also, the dislocation density is often 1 ⁇ 10 2 / cm 2 or more.
  • a scanning electron microscope (SEM) with a CL detector can be used.
  • SEM scanning electron microscope
  • dislocation sites are observed as black spots (dark spots) without light emission.
  • Dislocation density is calculated by measuring the dark spot density.
  • the measurement conditions while the CL detector is inserted between the sample and the objective lens, it is preferable to observe at an acceleration voltage of 10 kV, a probe current of "90", a working distance (W.D.) 22.5 mm, and a magnification of 1200 times. preferable.
  • the absorption coefficient of gallium nitride constituting the gallium nitride substrate for light with a wavelength of 400 to 1500 nm is 4 cm ⁇ 1 or less.
  • the absorption coefficient of gallium nitride substrate for light with a wavelength of 400 to 1500 nm is 4 cm ⁇ 1 or less.
  • the absorption coefficient of gallium nitride substrate for light with a wavelength of 400 to 1500 nm is often 3 cm -1 or more.
  • the absorption coefficient of gallium nitride is calculated by measuring the total transmittance and total reflectance of the light of the target wavelength using a spectrophotometer.
  • the measurement conditions are as follows.
  • Measuring device SolidSpec-3700DUV UV-visible near-infrared spectrophotometer (manufactured by Shimadzu Corporation) Slit width: 8 nm (250 to 720 nm) 20 nm (720 to 1600 nm)
  • Light source Halogen lamp detector: PMT (870 nm or less) InGaAs (870 nm to 1650 nm)
  • the resistivity of gallium nitride constituting the gallium nitride substrate is 1 ⁇ 10 2 ⁇ cm or less, whereby a substrate with high conductivity can be obtained. From such a viewpoint, it is more preferable to set the resistivity of gallium nitride to 5 ⁇ 10 ⁇ 1 ⁇ cm or less.
  • the specific resistivity of gallium nitride is determined from a hall measurement (a hall measuring instrument manufactured by Toyo Technology Co., Ltd.).
  • the gallium nitride substrate when the upper surface of the gallium nitride substrate is observed by cathodoluminescence, it has a linear high luminance light emitting portion and a low luminance light emitting region adjacent to the high luminance light emitting portion. This means that a linear high-intensity light emitting part appears in the upper surface, so that a linear high-intensity light emitting part in which the dopant component and the trace component contained in the gallium nitride crystal are dark is generated. ing.
  • the high brightness light emitting portion includes a portion extending along the m-plane of the gallium nitride crystal.
  • the fact that the linear high-intensity light emitting portion extends along the m-plane means that the dopants gather along the m-plane during crystal growth, and as a result, the dark linear high-intensity light emitting portion along the m-plane It means to appear.
  • Gallium nitride substrates having a novel microstructure such as these can reduce dislocation density even if the size is increased (eg, even if the diameter is 6 inches or more), and the variation in characteristics can be reduced overall Can be provided.
  • observation by CL shall be performed as follows.
  • a scanning electron microscope (SEM) with a CL detector is used.
  • SEM scanning electron microscope
  • measurement conditions are: acceleration voltage 10 kV, probe current “90” with CL detector inserted between sample and objective lens
  • the working distance (W.D.) is preferably 22.5 mm and observed at a magnification of 50 times.
  • the high luminance light emitting portion and the low luminance light emitting region are distinguished as follows from the observation by cathode luminescence.
  • Image analysis software for example, Mitani Shoji Co., Ltd. WinROOF Ver. 6 against the luminance of the image observed with CL at a magnification of 50 ⁇ with an acceleration voltage of 10 kV, a probe current of “90”, a working distance (W.D.) of 22.5 mm.
  • GRAY luminance
  • the low luminance light emitting region is adjacent to the linear high luminance light emitting portion.
  • adjacent low-intensity light emission areas are divided by the linear high-intensity light emission parts located between them.
  • the high brightness light emitting portion is linear means that the high brightness light emitting portion is elongated and elongated between adjacent low brightness light emitting regions to form a boundary line.
  • the line made by the high-intensity light emitting portion may be a straight line, a curved line, or a combination of a straight line and a curved line.
  • the curve may include various forms such as arc, ellipse, parabola, hyperbola and the like.
  • the terminal of the high-intensity light emission part may be cut off.
  • the low luminance light emitting region may be an exposed surface of the gallium nitride crystal grown therebelow, and is two-dimensionally spread in a planar manner.
  • the high brightness light emitting portion is linear, but extends in a one-dimensional manner as a boundary that divides adjacent low brightness light emitting regions. This is because, for example, a dopant component, a trace component and the like are discharged from a gallium nitride crystal grown from the bottom, gathered between adjacent gallium nitride crystals in the growth process, and a line between adjacent low brightness light emitting regions on the top surface It is considered that a portion that emits strong light in a shape is generated.
  • FIG. 3 shows a photograph by CL observation of the top surface of the gallium nitride substrate obtained in the example.
  • 4 is a partial enlarged view of FIG. 3
  • FIG. 5 is a schematic view corresponding to FIG.
  • the low brightness light emitting area is two-dimensionally spread in a plane, and the high brightness light emitting portion is linear, and is one-dimensionally stretched like a boundary dividing the adjacent low brightness light emitting areas. I understand that.
  • the shape of the low luminance light emitting region is not particularly limited, and usually extends two-dimensionally in a planar shape.
  • the line formed by the high luminance light emitting portion needs to be elongated.
  • the width of the high brightness light emitting portion is preferably 100 ⁇ m or less, more preferably 20 ⁇ m or less, and particularly preferably 5 ⁇ m or less.
  • the width of the high brightness light emitting portion is usually 0.01 ⁇ m or more.
  • the ratio (length / width) of the length to the width of the high luminance light emitting portion is preferably 1 or more, and more preferably 10 or more.
  • the ratio of the area of the high luminance light emitting portion to the area of the low luminance light emitting region on the upper surface is 0.001 or more Is more preferably 0.01 or more.
  • the ratio of the area of the high luminance light emitting portion to the area of the low luminance light emitting region on the upper surface is 0.3 or less Is more preferably 0.1 or less.
  • the high brightness light emitting portion includes a portion extending along the m-plane of the gallium nitride crystal.
  • the high-intensity light emission part 5 is extended in elongate linear form, and contains many parts 5a, 5b, 5c extended along m surface.
  • the directions along the m-plane of the hexagonal gallium nitride crystal are [-2110], [-12-10], [11-20], [2-1-10], and [1].
  • the high-intensity light emitting unit 5 includes a part of the side of a substantially hexagonal shape reflecting hexagonal crystals.
  • the linear high-intensity light emitting portion extending along the m-plane means that the longitudinal direction of the high-intensity light emitting portion is [-2110], [-12-10], [11-20], [2- It means extending along one of 1-10 directions, [1-210] and [-1-120] directions.
  • the longitudinal direction of the linear high luminance light emitting part is preferably within ⁇ 1 °, more preferably within ⁇ 0.3 ° with respect to the m-plane is included.
  • linear high-intensity light emitting portions extend generally along the m-plane of the gallium nitride crystal.
  • the main part of the high luminance light emitting part extends along the m plane, and preferably the continuous phase of the high luminance light emitting part extends along substantially the m plane.
  • the portion extending in the direction along the m-plane preferably occupies 60% or more, more preferably 80% or more, of the total length of the high brightness light emitting portion, and substantially high brightness It may occupy the whole of the light emitting part.
  • the high brightness light emitting portion forms a continuous phase
  • the low brightness light emitting region forms a discontinuous phase partitioned by the high brightness light emitting portion.
  • the linear high brightness light emitting portion 5 forms a continuous phase
  • the low brightness light emitting region 6 forms a discontinuous phase partitioned by the high brightness light emitting portion 5.
  • the continuous phase means that the high brightness light emitting portion 5 is continuous on the upper surface, but it is not essential that all the high brightness light emitting portions 5 are completely continuous, and the whole It is to be allowed that a small amount of the high luminance light emitting portion 5 is separated from the other high luminance light emitting portions 5 without affecting the pattern.
  • the dispersed phase means that the low brightness light emitting region 6 is divided by the high brightness light emitting portion 5 and divided into a large number of regions which are not connected to each other.
  • the low brightness light emitting region 6 is separated by the high brightness light emitting portion 5 on the upper surface, it is acceptable that the low brightness light emitting region 6 is continuous inside the gallium nitride substrate.
  • the half width of (0002) plane reflection of the X-ray rocking curve on the upper surface of the gallium nitride substrate is 3000 seconds or less and 20 seconds or more. This indicates that the top surface has a small surface tilt angle, and the crystal orientation as a whole is highly oriented like a single crystal.
  • the characteristic distribution on the upper surface of the gallium nitride substrate can be made smaller if such a microstructure having a crystal orientation at the surface as a whole as described above is highly oriented.
  • the characteristics of various functional elements provided thereon can be made uniform, and the yield of functional elements is also improved.
  • the half value width of (0002) plane reflection of the X-ray rocking curve on the upper surface of the gallium nitride substrate is preferably 1000 seconds or less and 20 seconds or more, more preferably 500 seconds or less and 20 seconds or more More preferred. It is practically difficult to reduce the half width of (0002) plane reflection of the X-ray rocking curve on the upper surface of the gallium nitride substrate to less than 20 seconds.
  • the half width of the X-ray rocking curve (0002) surface reflection can be calculated by performing peak search using XRD analysis software (LEPTOS 4.03 manufactured by Bruker-AXS).
  • the peak search conditions are preferably Noise Filter “10”, Threshold “0.30”, and Points “10”.
  • a linear high-intensity light emitting portion that emits white light may be observed.
  • the low brightness light emitting area is two-dimensionally spread in a planar manner, and the high brightness light emitting portion is linear, and extends like a boundary line which divides adjacent low brightness light emitting areas.
  • the observation method of such a high luminance light emitting portion and the low luminance light emitting region is the same as the observation method of the high luminance light emitting portion and the low luminance light emitting region on the upper surface.
  • the shape of the low luminance light emitting region in the cross section of the gallium nitride substrate there is no particular limitation on the shape of the low luminance light emitting region in the cross section of the gallium nitride substrate, and it usually extends two-dimensionally in a planar shape.
  • the line formed by the high luminance light emitting portion needs to be elongated.
  • the width of the high brightness light emitting portion is preferably 100 ⁇ m or less, and more preferably 20 ⁇ m or less.
  • the width of the high brightness light emitting portion is usually 0.01 ⁇ m or more.
  • the ratio (length / width) of the length to the width of the light emitting portion in the cross section of the gallium nitride substrate is preferably 1 or more, and more preferably 10 or more.
  • the linear high luminance light emitting portion in the cross section substantially perpendicular to the upper surface of the gallium nitride substrate, forms a continuous phase, and the low luminance light emitting region is partitioned by the high luminance light emitting portion. It forms a continuous phase.
  • the linear high-intensity light emitting portion forms a continuous phase
  • the low-intensity light emitting region forms a discontinuous phase partitioned by the high-intensity light emitting portion.
  • the continuous phase means that the high brightness light emitting portion is continuous in the cross section, but it is not essential that all the high brightness light emitting portions are completely continuous, and the whole pattern It is acceptable that a small amount of high-intensity light emitting portions are separated from other high-intensity light emitting portions without affecting the above.
  • the dispersed phase means that the low brightness light emitting region is divided by the high brightness light emitting portion and divided into many regions which are not connected to each other.
  • no voids are observed in a cross section substantially perpendicular to the top surface of the gallium nitride substrate. That is, in the SEM photograph shown in FIG. 7 which is the same field of view as the CL photograph in FIG. 6, different crystal phases other than the void (void) and the gallium nitride crystal phase are not observed. However, observation of void is performed as follows.
  • a void is observed when a cross section substantially perpendicular to the upper surface of the gallium nitride substrate is observed with a scanning electron microscope (SEM), and a void having a maximum width of 1 ⁇ m to 500 ⁇ m is a “void”.
  • SEM scanning electron microscope
  • Measurement conditions are preferably observed at an acceleration voltage of 15 kV, a probe current of "60", a working distance (W.D.) of 6.5 mm, and a magnification of 100 times.
  • the half width of (0002) plane reflection of the X-ray rocking curve on the upper surface of the gallium nitride substrate is 3000 seconds or less, 20 seconds or more, and the half width of (1000) plane reflection is 10000 seconds. Below, it is 20 seconds or more.
  • the crystal orientation is highly oriented as a whole, like a single crystal.
  • the half value width of (1000) plane reflection of the X-ray rocking curve on the upper surface of the gallium nitride substrate is 10000 seconds or less and 20 seconds or more. This indicates that the surface twist angle at the top surface is very low, and the crystal orientation as a whole is highly oriented like a single crystal.
  • the characteristic distribution on the upper surface of the gallium nitride substrate can be made smaller if such a microstructure having a crystal orientation at the surface as a whole as described above is highly oriented.
  • the characteristics of various functional elements provided thereon can be made uniform, and the yield of functional elements is also improved.
  • the half value width of (1000) plane reflection of the X-ray rocking curve on the upper surface of the gallium nitride substrate is preferably 5000 seconds or less, more preferably 1000 seconds or less, further 20 seconds or more. More preferred. It is practically difficult to reduce this half-width to less than 20 seconds.
  • the ⁇ step width may be set to 0.003 ° and the counting time to 4 seconds.
  • it is preferable to measure CuK ⁇ rays in parallel monochromatization (half-width 28 seconds) with a Ge (022) asymmetric reflection monochromator and centering around a tilt angle CHI 88 °.
  • the half value width of X-ray rocking curve (1000) surface reflection can be calculated by performing peak search using XRD analysis software (manufactured by Bruker-AXS, LEPTOS 4.03).
  • the peak search conditions are preferably Noise Filter “10”, Threshold “0.30”, and Points “10”.
  • the gallium nitride substrate of the present invention can be manufactured by forming a seed crystal layer on a base substrate and forming a substrate composed of gallium nitride crystals thereon.
  • the base substrate may be a single crystal substrate 1 on which an alumina layer 2 is formed.
  • Single crystal substrate 1 is a perovskite such as sapphire, AlN template, GaN template, GaN freestanding substrate, SiC single crystal, MgO single crystal, spinel (MgAl 2 O 4 ), LiAlO 2 , LiGaO 2 , LaAlO 3 , LaGaO 3 , NdGaO 3 and the like Type composite oxide, SCAM (ScAlMgO 4 ) can be exemplified.
  • the cubic perovskite structure complex oxide of 1) to 2) can also be used.
  • the alumina layer 2 can be formed by a known technique, and is prepared by sputtering, MBE (molecular beam epitaxy) method, vapor deposition, mist CVD method, sol gel method, aerosol deposition (AD) method, or tape forming.
  • MBE molecular beam epitaxy
  • vapor deposition mist CVD method
  • sol gel method sol gel method
  • aerosol deposition or tape forming.
  • the method of bonding an alumina sheet to the said single crystal substrate is illustrated, and especially the sputtering method is preferable. It is possible to use one to which heat treatment, plasma treatment, or ion beam irradiation has been added after forming the alumina layer, if necessary.
  • the method of heat treatment is not particularly limited, but heat treatment may be performed in an air atmosphere, vacuum, a reducing atmosphere such as hydrogen, or an inert atmosphere such as nitrogen / Ar, a hot press (HP) furnace, a hot isostatic press (HIP) Heat treatment may be performed under pressure using a furnace or the like.
  • a sapphire substrate to which the same heat treatment, plasma treatment, or ion beam irradiation as described above is added can be used as a base substrate.
  • the seed crystal layer 3 is formed on the alumina layer 2 prepared as described above or on the single crystal substrate 1 to which the heat treatment, plasma treatment and ion beam irradiation are applied as described above.
  • the material constituting the seed crystal layer 3 is a nitride of one or two or more kinds of Group 13 elements specified by IUPAC.
  • the group 13 element is preferably gallium, aluminum or indium.
  • group 13 element nitride crystals are GaN, AlN, InN, Ga x Al 1 -x N (1>x> 0), Ga x In 1-x N (1>x> 0) And Ga x Al y InN 1 -x-y (1>x> 0, 1>y> 0).
  • the method of producing the seed crystal layer 3 is not particularly limited, but MOCVD (organic metal vapor phase growth method), MBE (molecular beam epitaxy method), HVPE (hydride vapor phase growth method), vapor phase method such as sputtering, Na flux method Liquid phase methods such as ammonothermal method, hydrothermal method, sol-gel method, powder method utilizing solid phase growth of powder, and combinations thereof are preferably exemplified.
  • a seed crystal layer is formed by depositing a low-temperature growth buffer GaN layer at 450 to 550 ° C. for 20 to 50 nm and then laminating a GaN film having a thickness of 2 to 4 ⁇ m at 1000 to 1200 ° C.
  • MOCVD organic metal vapor phase growth method
  • MBE molecular beam epitaxy method
  • HVPE hydrogen vapor phase growth method
  • vapor phase method such as sputtering
  • Na flux method Liquid phase methods such as ammonothermal method, hydrothermal method, sol
  • the gallium nitride substrate 13 is formed to have a crystal orientation substantially following the crystal orientation of the seed crystal layer 3.
  • the method for forming the gallium nitride substrate is not particularly limited as long as it has a crystal orientation substantially following the crystal orientation of the seed crystal film, and a vapor phase method such as MOCVD or HVPE, Na flux method, ammonothermal method, hydrothermal method, A liquid phase method such as a sol-gel method, a powder method utilizing solid phase growth of powder, and a combination thereof are preferably exemplified, but the Na flux method is particularly preferable.
  • a stirring method When forming a gallium nitride substrate by the Na flux method, it is preferable to strongly stir the melt and mix the melt sufficiently uniformly.
  • a swing, rotation, vibration method may be mentioned, but the method is not limited.
  • Formation of a gallium nitride substrate by the Na flux method is carried out by using a group 13 metal, metal Na and optionally a dopant (eg, germanium (Ge), silicon (Si), oxygen (O), etc.) n-type Or a melt composition containing p-type dopants such as beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), zinc (Zn), cadmium (Cd), etc., in a nitrogen atmosphere
  • the temperature is raised to 830 ° C. to 910 ° C. and 3.5 to 4.5 MPa, followed by rotation while maintaining the temperature and pressure.
  • the holding time varies depending on the target film thickness, but may be about 10 to 100 hours.
  • the pressure increase rate in a nitrogen atmosphere is preferably 0.01 MPa / min or more and 0.1 MPa / min or less, and is 0.02 MPa / min or more and 0.05 MPa / min or less Is more preferred. Further, it is preferable to set the temperature increase rate in a nitrogen atmosphere to 5 ° C./min or more and 20 ° C./min or less, and more preferably 7 ° C./min or more and 12 ° C./min or less.
  • the plate surface by grinding the gallium nitride crystal thus obtained by the Na flux method with a grindstone, and then to smooth the plate surface by lapping using diamond abrasive grains.
  • the gallium nitride substrate is separated from the single crystal substrate to obtain a freestanding substrate including the gallium nitride substrate.
  • the method of separating the gallium nitride substrate from the single crystal substrate is not limited.
  • the gallium nitride substrate is naturally peeled from the single crystal substrate in the temperature lowering step after growing the gallium nitride substrate.
  • the gallium nitride substrate can be separated from the single crystal substrate by chemical etching.
  • a strong acid such as sulfuric acid or hydrochloric acid, a mixed solution of sulfuric acid and phosphoric acid, or a strong alkali such as sodium hydroxide aqueous solution or potassium hydroxide aqueous solution is preferable.
  • a strong acid such as sulfuric acid or hydrochloric acid, a mixed solution of sulfuric acid and phosphoric acid, or a strong alkali such as sodium hydroxide aqueous solution or potassium hydroxide aqueous solution is preferable.
  • 70 degreeC or more is preferable.
  • the gallium nitride substrate can be peeled off from the single crystal substrate by a laser lift-off method.
  • the gallium nitride substrate can be peeled off from the single crystal substrate by grinding.
  • the gallium nitride substrate can be peeled off from the single crystal substrate with a wire saw.
  • a freestanding substrate can be obtained by separating a gallium nitride substrate from a single crystal substrate.
  • the term "self-supporting substrate” means a substrate which can be handled as a solid without deformation or breakage under its own weight.
  • the self-supporting substrate of the present invention can be used as a substrate for various semiconductor devices such as light emitting elements, but in addition to that, it can be an electrode (may be a p-type electrode or an n-type electrode), a p-type layer, an n-type layer, etc. It can be used as a member or layer other than the base material.
  • This freestanding substrate may further be provided with one or more other layers.
  • the thickness of the self-supporting substrate needs to be capable of giving self-supporting properties to the substrate, preferably 20 ⁇ m or more, more preferably 100 ⁇ m or more, and still more preferably 300 ⁇ m or more .
  • the upper limit of the thickness of the free-standing substrate should not be defined, but 3000 ⁇ m or less is realistic in terms of manufacturing cost.
  • the gallium nitride substrate can be used as a template substrate for forming another functional layer without separating the gallium nitride substrate in a state where the gallium nitride substrate is provided over a single crystal substrate.
  • the thickness of the gallium nitride substrate is preferably 20 ⁇ m or more, more preferably 100 ⁇ m or more, and still more preferably 300 ⁇ m or more.
  • the upper limit of the thickness of the gallium nitride substrate should not be defined, but 3000 ⁇ m or less is realistic in terms of manufacturing cost.
  • the functional element structure provided on the gallium nitride substrate of the present invention is not particularly limited, but can exemplify a light emitting function, a rectifying function or a power control function.
  • a light emitting device is manufactured by providing a light emitting functional layer on a gallium nitride substrate.
  • the light emitting element may be manufactured using a gallium nitride substrate as a member or layer other than a substrate such as an electrode (which may be a p-type electrode or an n-type electrode), a p-type layer, or an n-type layer.
  • FIG. 8 schematically shows a layer configuration of a light emitting element according to one embodiment of the present invention.
  • a light emitting element 21 shown in FIG. 8 includes a self-supporting substrate 13 and a light emitting functional layer 18 formed on the substrate.
  • the light emitting functional layer 18 provides light emission based on the principle of a light emitting element such as an LED by appropriately providing an electrode or the like and applying a voltage.
  • the light emitting functional layer 18 is formed on the substrate 13.
  • the light emitting functional layer 18 may be provided on the entire surface or a part of the substrate 13, or may be provided on the entire surface or a part of the buffer layer when the buffer layer described later is formed on the substrate 13. Good.
  • the light emitting functional layer 18 can adopt various known layer configurations that provide light emission based on the principle of a light emitting element represented by an LED by appropriately providing an electrode and / or a phosphor and applying a voltage. Therefore, the light emitting functional layer 18 may emit visible light such as blue and red, or may emit ultraviolet light without visible light or together with visible light.
  • the light emitting functional layer 18 preferably constitutes at least a part of a light emitting element utilizing a pn junction, and the pn junction includes a p-type layer 18a and an n-type layer 18c as shown in FIG.
  • the active layer 18 b may be included between At this time, a double hetero junction or a single hetero junction (hereinafter collectively referred to as a hetero junction) using a layer having a smaller band gap than the p-type layer and / or the n-type layer may be used as the active layer.
  • a quantum well structure in which the thickness of the active layer is reduced can be employed as one mode of the p-type layer-active layer-n-type layer.
  • the light emitting functional layer 18 is preferably provided with a pn junction and / or hetero junction and / or quantum well junction having a light emitting function.
  • 20 and 22 are examples of electrodes.
  • At least one layer constituting the light emitting functional layer 18 is at least selected from the group consisting of an n-type layer doped with an n-type dopant, a p-type layer doped with a p-type dopant, and an active layer. It can be one or more.
  • the n-type layer, the p-type layer and the active layer may be composed of the same material as the main component or may be composed of materials different from each other in the main component.
  • each layer constituting the light emitting functional layer 18 is not particularly limited as long as it is grown substantially in accordance with the crystal orientation of the crystal constituting the gallium nitride substrate and has a light emitting function, but a gallium nitride (GaN) based material It is preferable to be composed of a material mainly composed of at least one or more selected from zinc oxide (ZnO) based materials and aluminum nitride (AlN) based materials, and a dopant for controlling p type to n type is suitably selected It may be included. Particularly preferred materials are gallium nitride (GaN) based materials.
  • the material constituting the light emitting functional layer 18 may be, for example, a mixed crystal in which AlN, InN or the like is solid-solved in GaN in order to control the band gap.
  • the light emitting functional layer 18 may be a heterojunction made of a plurality of material systems. For example, a gallium nitride (GaN) based material may be used for the p-type layer, and a zinc oxide (ZnO) based material may be used for the n-type layer.
  • GaN gallium nitride
  • ZnO zinc oxide
  • a zinc oxide (ZnO) based material may be used for the p-type layer
  • a gallium nitride (GaN) based material may be used for the active layer and the n-type layer, and the combination of materials is not particularly limited.
  • the film formation method of the light emitting functional layer 18 and the buffer layer is not particularly limited as long as it is a method of growing substantially in accordance with the crystal orientation of the Group 13 element nitride crystal layer, but a vapor phase method such as MOCVD, MBE, HVPE, sputtering, etc.
  • a vapor phase method such as MOCVD, MBE, HVPE, sputtering, etc.
  • Preferred examples thereof include liquid phase methods such as Na flux method, ammonothermal method, hydrothermal method and sol-gel method, powder method utilizing solid phase growth of powder, and combinations thereof.
  • Example 1 (Preparation of a gallium nitride free-standing substrate) An alumina film 2 of 0.3 ⁇ m in thickness is formed on a sapphire substrate 1 with a diameter of 6 inches by sputtering, and then a seed crystal film 3 of 2 ⁇ m in thickness made of gallium nitride is formed by MOCVD. Obtained.
  • the seed crystal substrate was placed in an alumina crucible in a nitrogen atmosphere glove box.
  • the crucible was placed in a stainless steel inner container and further put in a stainless steel outer container capable of containing it, and the lid was covered.
  • the outer container was placed on a rotary table installed in a heating unit in a crystal manufacturing apparatus which has been vacuum baked in advance, and the pressure resistant container was covered and sealed.
  • the inside of the pressure resistant container was evacuated to 0.1 Pa or less by a vacuum pump.
  • nitrogen gas was introduced from a nitrogen gas cylinder to 4.0 MPa while heating the temperature of the heating space to 875 ° C. by adjusting the upper heater, middle heater and lower heater.
  • the pressure increase rate in the nitrogen atmosphere was 0.02 MPa / min, and the temperature increase rate in the nitrogen atmosphere was 8 ° C./min.
  • the outer container was rotated clockwise and counterclockwise at a constant speed of 20 rpm around the central axis.
  • the acceleration time was 12 seconds
  • the holding time was 600 seconds
  • the deceleration time was 12 seconds
  • the stop time was 0.5 seconds. And it hold
  • the vessel was naturally cooled to room temperature and depressurized to the atmospheric pressure, and then the lid of the pressure container was opened and the bale was taken out from the inside.
  • the solidified metallic sodium in the crucible was removed, and the crack-free gallium nitride free-standing substrate peeled off from the seed crystal substrate was recovered.
  • the upper surface of the gallium nitride free-standing substrate was polished and CL was observed with a scanning electron microscope (SEM) equipped with a CL detector.
  • SEM scanning electron microscope
  • FIG. 3 a high luminance light emitting portion emitting white light was confirmed inside the gallium nitride crystal in the CL photograph.
  • FIG. 9 when the same field of view was observed by SEM, no void etc. were confirmed, and it was confirmed that a homogeneous gallium nitride crystal was grown.
  • the gallium nitride free-standing substrate was cut into a cross section perpendicular to the upper surface, and the cut surface was polished and subjected to CL observation with a scanning electron microscope (SEM) equipped with a CL detector.
  • SEM scanning electron microscope
  • FIG. 6 in the CL image, a high brightness light emitting portion emitting white light was confirmed inside the gallium nitride crystal.
  • FIG. 7 when the same field of view was observed by SEM, no void etc. were confirmed, and it was confirmed that a homogeneous gallium nitride crystal was grown.
  • the high brightness light emitting portion exists in CL observation as in the upper surface, but the same shape as the high brightness light emitting portion seen in the same field of view in the SEM There was no microstructure similar to it or that.
  • n-type n-type layer was deposited 1 ⁇ m as an n-type layer at 1050 ° C. to have a Si atomic concentration of 5 ⁇ 10 18 / cm 3 as the n-type layer.
  • a multiple quantum well layer was deposited at 750 ° C. as a light emitting layer. Specifically, five layers of 2.5 nm well layers of InGaN and six layers of 10 nm of barrier layers of GaN were alternately stacked.
  • p-type layer 200 nm of p-GaN doped at a temperature of 950 ° C.
  • Mg atom concentration 1 ⁇ 10 19 / cm 3 was deposited. Thereafter, it was taken out of the MOCVD apparatus, and heat treatment at 800 ° C. in a nitrogen atmosphere was performed for 10 minutes as activation treatment of Mg ions in the p-type layer.
  • the Ni / Au film to be the anode electrode pad has a thickness of 5 nm and 60 nm, respectively, on a partial region of the upper surface of the Ni / Au film as the translucent anode electrode. Patterned.
  • the substrate thus obtained was cut into chips, and then mounted on lead frames to obtain light emitting elements of a vertical structure.
  • Example 2 A gallium nitride substrate and a light emitting device were produced in the same manner as in Example 1, and various characteristics were measured in the same manner as in Example 1. However, unlike Example 1, the growth temperature was 870 ° C., the pressure increase rate in a nitrogen atmosphere was 0.04 MPa / min, and the temperature increase rate in a nitrogen atmosphere was 10 ° C./min. The obtained results are shown in Table 1.
  • Example 3 A gallium nitride substrate and a light emitting device were produced in the same manner as in Example 1, and various characteristics were measured in the same manner as in Example 1. However, unlike Example 1, the crucible is not filled with metallic germanium, the growth temperature is set to 865 ° C., the pressure increase rate in a nitrogen atmosphere is 0.02 MPa / min, and the temperature increase rate in a nitrogen atmosphere is determined. The temperature was 12 ° C./min. The obtained results are shown in Table 1.
  • Example 4 A gallium nitride substrate and a light emitting device were produced in the same manner as in Example 1, and various characteristics were measured in the same manner as in Example 1. However, unlike Example 1, the growth temperature was 860 ° C., the pressure increase rate in the nitrogen atmosphere was 0.02 MPa / min, and the temperature increase rate in the nitrogen atmosphere was 8 ° C./min. The obtained results are shown in Table 1.
  • a gallium nitride substrate was produced by the hydride VPE method as follows. Specifically, gallium nitride crystal was grown by a hydride VPE method using gallium chloride (GaCl) as a group III raw material and using ammonia (NH 3 ) gas as a group V raw material. The seed crystal substrate was set in a hydride VPE growth apparatus, and heated to a growth temperature of 1150 ° C. in an ammonia atmosphere.
  • GaCl gallium chloride
  • NH 3 ammonia
  • gallium nitride crystals When held in this state for 4 hours, cooled to normal temperature in an ammonia gas atmosphere and taken out from the growth apparatus, gallium nitride crystals were grown to about 300 microns.
  • the obtained gallium nitride crystal was separated from the seed crystal substrate in the same manner as in Example 1 to obtain a gallium nitride substrate.
  • the elastic constant C11, the density, the dislocation density on the upper surface, the absorption coefficient for light with a wavelength of 400 to 1500 nm, the content of each atom, and the specific resistivity were measured for the obtained gallium nitride substrate.
  • the measurement results are shown in Table 1.
  • a light emitting element was produced in the same manner as in Example 1, and the measurement result of luminous efficiency is shown in Table 1.
  • Comparative example 2 A gallium nitride substrate and a light emitting device were produced in the same manner as in Comparative Example 1, and various characteristics were measured. However, unlike the comparative example 1, the growth temperature was set to 1130 ° C. The obtained results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Led Devices (AREA)

Abstract

This gallium nitride substrate is provided with an upper surface and a bottom surface. When observed using cathode luminescence, the upper surface has: a linear high luminance light emission portion; and a low luminance light emission region disposed next to the high luminance light emission portion. The elastic constant C11 is in the range of 200-290 GPa inclusive.

Description

窒化ガリウム基板、自立基板および機能素子Gallium nitride substrate, free-standing substrate and functional device
 本発明は、窒化ガリウム基板、自立基板および機能素子に関するものである。 The present invention relates to a gallium nitride substrate, a free standing substrate and a functional device.
 単結晶基板を用いた発光ダイオード(LED)等の発光素子として、サファイア(α-アルミナ単結晶)上に各種窒化ガリウム(GaN)層を形成したものが知られている。例えば、サファイア基板上に、n型GaN層、InGaN層からなる量子井戸層とGaN層からなる障壁層とが交互積層された多重量子井戸層(MQW)、及びp型GaN層が順に積層形成された構造を有するものが量産化されている。 As a light emitting element such as a light emitting diode (LED) using a single crystal substrate, one in which various gallium nitride (GaN) layers are formed on sapphire (α-alumina single crystal) is known. For example, on a sapphire substrate, an n-type GaN layer, a multiple quantum well layer (MQW) in which quantum well layers composed of InGaN layers and barrier layers composed of GaN layers are alternately stacked, and p-type GaN layers are sequentially deposited. Those having a different structure are mass-produced.
 特許文献1には、HVPE法で作製された窒化ガリウム単結晶において、弾性定数C11 が340~380GPaであることが示されている。具体的には、「弾性定数C11が348GPa以上、365GPa以下かつ弾性定数C13が90GPa以上、98GPa以下、または、弾性定数C11が352GPa以上、362GPa以下かつ弾性定数C13が86GPa以上、93GPa以下」であれば、窒化ガリウム単結晶体を成長させる際および成長させた窒化ガリウム単結晶体を基板状などに加工する際、ならびに基板状の窒化ガリウム単結晶体上に半導体層を形成して半導体デバイスを製造する際に、クラックの発生が抑制できるとしている。 Patent Document 1 shows that, in a gallium nitride single crystal produced by the HVPE method, the elastic constant C11 is 340 to 380 GPa. Specifically, if the elastic constant C11 is 348 GPa or more and 365 GPa or less and the elastic constant C13 is 90 GPa or more and 98 GPa or less, or the elastic constant C11 is 352 GPa or more and 362 GPa or less and the elastic constant C13 is 86 GPa or more and 93 GPa or less " For example, when growing a gallium nitride single crystal body and when processing the grown gallium nitride single crystal body into a substrate or the like, a semiconductor layer is formed on the substrate-like gallium nitride single crystal body to manufacture a semiconductor device. At the same time, it is possible to suppress the occurrence of cracks.
 また、特許文献2では、計算や実験から窒化ガリウムの弾性定数C11が296~396GPaであることが示されている。 Further, Patent Document 2 shows that the elastic constant C11 of gallium nitride is 296 to 396 GPa from calculation and experiment.
特許第4957751Patent No. 4957751 Appl. Phys. Lett., Vol.70,  No.9, 3 March 1997Appl. Phys. Lett., Vol. 70, No. 9, 3 March 1997
 最近の技術動向では、半導体系の発光素子を自動車用ヘッドランプやプロジェクター用光源などの高輝度光源に用いることが求められている。このため、窒化ガリウム基板上にレーザーダイオード(LD)素子やLED素子を作製した場合、発光効率のさらなる向上が求められている。しかし、従来の窒化ガリウム基板上に発光素子を成膜した場合、発光効率の改善にはまだ限界があり、ブレークスルーが求められていた。また、発光素子以外の半導体系機能素子、例えば整流素子などにおいても、機能のさらなる向上が求められる。 In recent technological trends, it is required to use a semiconductor light emitting element as a high luminance light source such as a headlamp for a car or a light source for a projector. For this reason, when a laser diode (LD) element or an LED element is manufactured on a gallium nitride substrate, further improvement of the light emission efficiency is required. However, when the light emitting element is formed on the conventional gallium nitride substrate, improvement of the light emission efficiency is still limited, and a breakthrough is required. Further, also in semiconductor-based functional elements other than light-emitting elements, such as rectifying elements, further improvement of the function is required.
 本発明の課題は、窒化ガリウム基板上に設けられた半導体系機能素子において、発光効率等の機能を更に向上させることである。 An object of the present invention is to further improve functions such as luminous efficiency in a semiconductor functional element provided on a gallium nitride substrate.
 本発明は、上面及び底面を有する窒化ガリウム基板であって、
 前記上面をカソードルミネッセンスによって観測したときに、線状の高輝度発光部と、前記高輝度発光部に隣接する低輝度発光領域とを有しており、弾性定数C11が200GPa以上、290GPa以下であることを特徴とする。
The present invention is a gallium nitride substrate having a top surface and a bottom surface, wherein
When the upper surface is observed by cathode luminescence, it has a linear high luminance light emitting portion and a low luminance light emitting region adjacent to the high luminance light emitting portion, and the elastic constant C11 is 200 GPa or more and 290 GPa or less It is characterized by
 また、本発明は、前記窒化ガリウム基板からなることを特徴とする、自立基板に係るものである。 Further, the present invention relates to a self-supporting substrate comprising the above-mentioned gallium nitride substrate.
 また、本発明は、前記自立基板および
 前記窒化ガリウム基板の上面上に設けられた機能層を有することを特徴とする、機能素子に係るものである。
Further, the present invention relates to a functional element characterized by having a functional layer provided on the free-standing substrate and the upper surface of the gallium nitride substrate.
 また、本発明は、支持基板、および
 前記支持基板上に設けられた前記窒化ガリウム基板
を備えていることを特徴とする、複合基板に係るものである。
The present invention also relates to a composite substrate comprising a support substrate and the gallium nitride substrate provided on the support substrate.
 また、本発明は、前記複合基板、および
 前記窒化ガリウム基板の上面上に設けられた機能層を有することを特徴とする、機能素子に係るものである。
In addition, the present invention relates to a functional device including the composite substrate and a functional layer provided on the upper surface of the gallium nitride substrate.
 本発明の窒化ガリウム基板は、上面をカソードルミネッセンスによって観測したときに、線状の高輝度発光部と、前記高輝度発光部に隣接する低輝度発光領域とを有しており、弾性定数C11が200~290GPaと従来のものよりも低い。こうした窒化ガリウム基板の上面上に、発光層などの機能層を形成することで、機能層の応力が低下し、ピエゾ分極が低減することで機能向上することが判明した。特に、これによって正孔と電子の再結合確率が増加し、発光効率を向上させることができる。 The gallium nitride substrate of the present invention has a linear high luminance light emitting portion and a low luminance light emitting region adjacent to the high luminance light emitting portion when the upper surface is observed by cathode luminescence, and the elastic constant C11 is 200-290 GPa, lower than conventional ones. By forming a functional layer such as a light emitting layer on the upper surface of such a gallium nitride substrate, it was found that the stress of the functional layer is reduced and the function is improved by the reduction of the piezoelectric polarization. In particular, this can increase the probability of recombination of holes and electrons and improve the light emission efficiency.
(a)は、支持基板1上にアルミナ層2、種結晶層3および窒化ガリウム基板13を設けた状態を示し、(b)は、支持基板から分離された窒化ガリウム基板13を示す。(A) shows the state which provided the alumina layer 2, the seed-crystal layer 3, and the gallium nitride board | substrate 13 on the support substrate 1, (b) shows the gallium nitride board | substrate 13 isolate | separated from the support substrate. 窒化ガリウム基板13の上面13aのカソードルミネセンス像を説明するための模式図である。FIG. 5 is a schematic view for explaining a cathode luminescence image of the upper surface 13 a of the gallium nitride substrate 13. 窒化ガリウム基板13の上面13aのカソードルミネセンス像を示す写真である。It is a photograph which shows the cathode luminescence image of upper surface 13a of gallium nitride substrate 13. 図3の部分拡大写真である。It is a partial enlarged photograph of FIG. 図4のカソードルミネセンス像に対応する模式図である。It is a schematic diagram corresponding to the cathode luminescence image of FIG. 窒化ガリウム基板13の断面のカソードルミネセンス像を示す写真である。It is a photograph which shows the cathode luminescence image of the cross section of the gallium nitride board | substrate 13. FIG. 窒化ガリウム基板13の断面を示す走査型電子顕微鏡写真である。5 is a scanning electron micrograph showing a cross section of a gallium nitride substrate 13; 本発明に係る機能素子21を示す模式図である。It is a schematic diagram which shows the functional element 21 which concerns on this invention. 窒化ガリウム基板の上面の走査型電子顕微鏡による撮像写真である。It is a photography picture by a scanning electron microscope of the upper surface of a gallium nitride substrate. CL画像から生成したグレースケールのヒストグラムを示す。2 shows a gray scale histogram generated from a CL image.
 以下、本発明を更に詳細に説明する。
(窒化ガリウム基板)
 本発明の窒化ガリウム基板は、窒化ガリウムからなり、上面及び底面を有する。例えば、図1(b)に示すように、窒化ガリウム基板13では、上面13aと底面13bとが対向している。
Hereinafter, the present invention will be described in more detail.
(Gallium nitride substrate)
The gallium nitride substrate of the present invention is made of gallium nitride and has top and bottom surfaces. For example, as shown in FIG. 1B, in the gallium nitride substrate 13, the top surface 13a and the bottom surface 13b face each other.
 窒化ガリウム基板を構成する窒化ガリウムには、亜鉛、カルシウムや、その他のn型ドーパント又はp型ドーパントでドープされていてもよく、この場合、窒化ガリウム基板を、p型電極、n型電極、p型層、n型層等の基材以外の部材又は層として使用することができる。p型ドーパントの好ましい例としては、ベリリウム(Be)、マグネシウム(Mg)、ストロンチウム(Sr)、及びカドミウム(Cd)からなる群から選択される1種以上が挙げられる。n型ドーパントの好ましい例としては、シリコン(Si)、ゲルマニウム(Ge)、スズ(Sn)及び酸素(O)からなる群から選択される1種以上が挙げられる。 The gallium nitride constituting the gallium nitride substrate may be doped with zinc, calcium or other n-type dopant or p-type dopant, in which case the gallium nitride substrate is a p-type electrode, an n-type electrode, p It can be used as a member or layer other than a substrate such as a mold layer and an n-type layer. Preferred examples of the p-type dopant include one or more selected from the group consisting of beryllium (Be), magnesium (Mg), strontium (Sr), and cadmium (Cd). Preferred examples of the n-type dopant include one or more selected from the group consisting of silicon (Si), germanium (Ge), tin (Sn) and oxygen (O).
 ここで、窒化ガリウム基板13の上面13aをカソードルミネッセンス(CL)によって観測したときに、図2に模式的に示すように、線状の高輝度発光部5と、高輝度発光部5に隣接する低輝度発光領域6とを有している。 Here, when the upper surface 13 a of the gallium nitride substrate 13 is observed by cathode luminescence (CL), it is adjacent to the linear high luminance light emitting portion 5 and the high luminance light emitting portion 5 as schematically shown in FIG. And a low luminance light emitting area 6.
 更に、本発明においては、窒化ガリウム基板の弾性定数C11を200GPa以上、290GPa以下とする。弾性定数C11を290GPa以下とすることによって、窒化ガリウム基板上に設けられる機能層に対する応力が低減され、機能層の機能が全体にわたって著しく向上する。この観点からは、窒化ガリウム基板の弾性定数C11を270GPa以下とすることが更に好ましい。また、窒化ガリウム基板の弾性定数C11を200GPa未満とすることは現実的には困難であるので、200GPa以上とするが、210GPa以上とすることが更に好ましい。 Furthermore, in the present invention, the elastic constant C11 of the gallium nitride substrate is set to 200 GPa or more and 290 GPa or less. By setting the elastic constant C11 to 290 GPa or less, the stress on the functional layer provided on the gallium nitride substrate is reduced, and the function of the functional layer is significantly improved over the whole. From this viewpoint, it is more preferable to set the elastic constant C11 of the gallium nitride substrate to 270 GPa or less. Further, since it is practically difficult to set the elastic constant C11 of the gallium nitride substrate to less than 200 GPa, it is set to 200 GPa or more, and more preferably to 210 GPa or more.
 窒化ガリウム基板の弾性定数C11は、以下のようにして測定する。すなわち、長さ35mm×幅5mm×厚み0.3mmの試験片(厚み方向がc軸)を作製し、試験片について室温、大気中でひずみゲージ法により3点曲げ試験を行い、荷重-ひずみ線図を取得し、曲げ弾性率を求める。試験速度を0.5mm/minとし、支点間距離を30mmとする。 The elastic constant C11 of the gallium nitride substrate is measured as follows. That is, a test piece of 35 mm long × 5 mm wide × 0.3 mm thick (c axis in the thickness direction) is prepared, and the test piece is subjected to a three-point bending test by strain gauge method in air at room temperature, load-strain diagram Obtain and determine the flexural modulus. The test speed is 0.5 mm / min, and the distance between fulcrums is 30 mm.
 好適な実施形態においては、窒化ガリウム基板を構成する窒化ガリウムの密度が6.0g/cm3以上、6.2g/cm3以下である。窒化ガリウムの密度を6.0g/cm3以上とすることで、機能層の結晶性を更に向上させることができる。また、窒化ガリウムの密度が6.2g/cm3超になると不純物濃度が高く結晶性が低下してしまう。
 窒化ガリウムの密度は、JIS Z 8807に従い、幾何学的測定により算出するものとする。
In a preferred embodiment, the density of gallium nitride constituting the gallium nitride substrate is 6.0 g / cm 3 or more and 6.2 g / cm 3 or less. By setting the density of gallium nitride to 6.0 g / cm 3 or more, the crystallinity of the functional layer can be further improved. When the density of gallium nitride exceeds 6.2 g / cm 3 , the impurity concentration is high and the crystallinity is lowered.
The density of gallium nitride is calculated by geometrical measurement according to JIS Z 8807.
 好適な実施形態においては、窒化ガリウム基板の上面における転位密度が1×106/cm以下であり、これによって窒化ガリウム基板上に設けられる機能層の欠陥を低減できる。こうした観点からは、窒化ガリウム基板の上面における転移密度を1×104/cm以下とすることが機能素子の特性向上の観点から特に好ましい。また、この転位密度は1×10/cm以上となることが多い。 In a preferred embodiment, the dislocation density on the upper surface of the gallium nitride substrate is 1 × 10 6 / cm 2 or less, thereby reducing defects in the functional layer provided on the gallium nitride substrate. From such a viewpoint, it is particularly preferable to set the transition density on the upper surface of the gallium nitride substrate to 1 × 10 4 / cm 2 or less from the viewpoint of improving the characteristics of the functional element. Also, the dislocation density is often 1 × 10 2 / cm 2 or more.
 転位密度の測定には、CL検出器付きの走査型電子顕微鏡(SEM)を用いることができる。例えばGatan製MiniCLシステム付きの日立ハイテクノロジーズ製S-3400N走査電子顕微鏡を用いてCL観察した場合、転位箇所が発光せずに黒点(ダークスポット)として観察される。そのダークスポット密度を計測する事により、転位密度が算出される。測定条件は、CL検出器を試料と対物レンズの間に挿入した状態で、加速電圧10kV、プローブ電流「90」、ワーキングディスタンス(W.D.)22.5mm、倍率1200倍で観察するのが好ましい。 For measurement of dislocation density, a scanning electron microscope (SEM) with a CL detector can be used. For example, when CL observation is carried out using a Hitachi High-Technologies S-3400N scanning electron microscope with a MiniCL system manufactured by Gatan, dislocation sites are observed as black spots (dark spots) without light emission. Dislocation density is calculated by measuring the dark spot density. As the measurement conditions, while the CL detector is inserted between the sample and the objective lens, it is preferable to observe at an acceleration voltage of 10 kV, a probe current of "90", a working distance (W.D.) 22.5 mm, and a magnification of 1200 times. preferable.
 好適な実施形態においては、窒化ガリウム基板を構成する窒化ガリウムの波長400~1500nmの光に対する吸収係数が4cm-1以下である。
このような窒化ガリウム基板であれば、例えば発光素子に用いた際に、発光波長の光に対する吸収が小さいため、高効率な発光素子を得ることができる。こうした観点からは、窒化ガリウムの波長400~1500nmの光に対する吸収係数を3cm-1以下とすることが更に好ましい。また、窒化ガリウムの波長400~1500nmの光に対する吸収係数は3cm-1以上であることが多い。
In a preferred embodiment, the absorption coefficient of gallium nitride constituting the gallium nitride substrate for light with a wavelength of 400 to 1500 nm is 4 cm −1 or less.
With such a gallium nitride substrate, for example, when used in a light emitting element, the absorption of light of the light emission wavelength is small, so that a highly efficient light emitting element can be obtained. From such a viewpoint, it is more preferable to set the absorption coefficient of gallium nitride to light having a wavelength of 400 to 1,500 nm at 3 cm -1 or less. In addition, the absorption coefficient of gallium nitride for light with a wavelength of 400 to 1500 nm is often 3 cm -1 or more.
窒化ガリウムの吸収係数は、分光光度計を用いて対象とする波長の光の全透過率および全反射率を測定することにより、算出する。測定条件は以下の通りである。
 
測定装置: SolidSpec-3700DUV 紫外可視近赤外分光光度計(島津社製)
スリット幅: 8nm (250~720nm)  20nm(720~1600nm)
光源: ハロゲンランプ
検出器: PMT(870nm以下)
InGaAs (870nm~1650nm)
付属装置: 大型試料室 積分球(60 mmφ) スペクトラロン
入射角: 透過測定:0°  全反射測定:8°
リファレンス: 全反射測定: Alミラー
The absorption coefficient of gallium nitride is calculated by measuring the total transmittance and total reflectance of the light of the target wavelength using a spectrophotometer. The measurement conditions are as follows.

Measuring device: SolidSpec-3700DUV UV-visible near-infrared spectrophotometer (manufactured by Shimadzu Corporation)
Slit width: 8 nm (250 to 720 nm) 20 nm (720 to 1600 nm)
Light source: Halogen lamp detector: PMT (870 nm or less)
InGaAs (870 nm to 1650 nm)
Accessories: Large-sized sample chamber Integral sphere (60 mmφ) Spectralon incidence angle: Transmission measurement: 0 ° Total reflection measurement: 8 °
Reference: Total Reflection Measurement: Al Mirror
 好適な実施形態においては、窒化ガリウム基板を構成する窒化ガリウムの比抵抗率が1×102Ωcm以下であり、これによって導電性が高い基板を得ることができる。こうした観点からは、窒化ガリウムの比抵抗率を5×10-1Ωcm以下とすることが更に好ましい。
 窒化ガリウムの比抵抗率は、ホール測定(東陽テクニカ社製ホール測定器)から求める。
In a preferred embodiment, the resistivity of gallium nitride constituting the gallium nitride substrate is 1 × 10 2 Ωcm or less, whereby a substrate with high conductivity can be obtained. From such a viewpoint, it is more preferable to set the resistivity of gallium nitride to 5 × 10 −1 Ωcm or less.
The specific resistivity of gallium nitride is determined from a hall measurement (a hall measuring instrument manufactured by Toyo Technology Co., Ltd.).
 本発明によれば、窒化ガリウム基板の上面をカソードルミネッセンスによって観測したときに、線状の高輝度発光部と、高輝度発光部に隣接する低輝度発光領域とを有している。これは、上面に線状の高輝度発光部が現れていることから、窒化ガリウム結晶に含有されるドーパント成分や微量成分等が濃い線状の高輝度発光部を生成していることを意味している。 According to the present invention, when the upper surface of the gallium nitride substrate is observed by cathodoluminescence, it has a linear high luminance light emitting portion and a low luminance light emitting region adjacent to the high luminance light emitting portion. This means that a linear high-intensity light emitting part appears in the upper surface, so that a linear high-intensity light emitting part in which the dopant component and the trace component contained in the gallium nitride crystal are dark is generated. ing.
 好適な実施形態においては、高輝度発光部が、窒化ガリウム結晶のm面に沿って延びている部分を含む。線状の高輝度発光部がm面に沿って延びているということは、結晶成長時にそのm面に沿ってドーパントが集まり、この結果、濃い線状の高輝度発光部がm面に沿って現れることを意味する。 In a preferred embodiment, the high brightness light emitting portion includes a portion extending along the m-plane of the gallium nitride crystal. The fact that the linear high-intensity light emitting portion extends along the m-plane means that the dopants gather along the m-plane during crystal growth, and as a result, the dark linear high-intensity light emitting portion along the m-plane It means to appear.
 これらのような新規な微構造を有する窒化ガリウム基板によって、寸法を大きくしても(例えば径6インチ以上としても)、転位密度を低くでき、全体にわたって特性のばらつきを少なくできるような窒化ガリウム基板を提供することができる。 Gallium nitride substrates having a novel microstructure such as these can reduce dislocation density even if the size is increased (eg, even if the diameter is 6 inches or more), and the variation in characteristics can be reduced overall Can be provided.
 ただし、CLによる観測は以下のようにして行うものとする。
 CL観察には、CL検出器付きの走査型電子顕微鏡(SEM)を用いる。例えばGatan製MiniCLシステム付きの日立ハイテクノロジーズ製S-3400N走査電子顕微鏡を用いた場合、測定条件は、CL検出器を試料と対物レンズの間に挿入した状態で、加速電圧10kV、プローブ電流「90」、ワーキングディスタンス(W.D.)22.5mm、倍率50倍で観察するのが好ましい。
However, observation by CL shall be performed as follows.
For CL observation, a scanning electron microscope (SEM) with a CL detector is used. For example, when using Hitachi High-Technologies S-3400N scanning electron microscope with Gatan MiniCL system, measurement conditions are: acceleration voltage 10 kV, probe current “90” with CL detector inserted between sample and objective lens The working distance (W.D.) is preferably 22.5 mm and observed at a magnification of 50 times.
 また、高輝度発光部と低輝度発光領域とは、カソードルミネッセンスによる観測から以下のようにして区別する。
 加速電圧10kV、プローブ電流「90」、ワーキングディスタンス(W.D.)22.5mm、倍率50倍でCL観察した画像の輝度に対して、画像解析ソフト(例えば、三谷商事(株)製WinROOF Ver6.1.3)を用いて、縦軸を度数、横軸を輝度(GRAY)として、256段階のグレースケールのヒストグラムを作成する。ヒストグラムには、図10のように、2つのピークが確認され、2つのピーク間で度数が最小値となる輝度を境界として、高い側を高輝度発光部、低い側を低輝度発光領域と定義する。
Further, the high luminance light emitting portion and the low luminance light emitting region are distinguished as follows from the observation by cathode luminescence.
Image analysis software (for example, Mitani Shoji Co., Ltd. WinROOF Ver. 6) against the luminance of the image observed with CL at a magnification of 50 × with an acceleration voltage of 10 kV, a probe current of “90”, a working distance (W.D.) of 22.5 mm. Using .1.3), create a 256-step gray scale histogram with the vertical axis as frequency and the horizontal axis as luminance (GRAY). In the histogram, as shown in FIG. 10, two peaks are confirmed, and the high side is defined as a high brightness light emitting portion and the low side as a low brightness light emitting region with the brightness at which the frequency is minimum between the two peaks as a boundary. Do.
 また、窒化ガリウム基板の上面では、線状の高輝度発光部に低輝度発光領域が隣接する。これによって、隣り合う低輝度発光領域は、それらの間にある線状の高輝度発光部によって区分される。ここで、高輝度発光部が線状であるとは、隣り合う低輝度発光領域の間で高輝度発光部が細長く伸びていて境界線をなしている状態を示す。 Further, on the upper surface of the gallium nitride substrate, the low luminance light emitting region is adjacent to the linear high luminance light emitting portion. By this, adjacent low-intensity light emission areas are divided by the linear high-intensity light emission parts located between them. Here, that the high brightness light emitting portion is linear means that the high brightness light emitting portion is elongated and elongated between adjacent low brightness light emitting regions to form a boundary line.
 ここで、高輝度発光部がなしている線は、直線であってよく、また曲線であってよく、更には直線と曲線との組み合わせであってもよい。曲線は円弧、楕円、放物線、双曲線などの種々の形態を含んでいても良い。また、互いに方向の異なる高輝度発光部が連続していて良いが、高輝度発光部の末端が切れていても良い。 Here, the line made by the high-intensity light emitting portion may be a straight line, a curved line, or a combination of a straight line and a curved line. The curve may include various forms such as arc, ellipse, parabola, hyperbola and the like. Moreover, although the high-intensity light emission part from which a direction mutually differs may be continuous, the terminal of the high-intensity light emission part may be cut off.
 窒化ガリウム基板の上面においては、低輝度発光領域は、その下に成長してきた窒化ガリウム結晶の露出面であってよく、面状に、二次元的に広がっている。一方、高輝度発光部は線状をなしているが、隣り合う低輝度発光領域を区分する境界線のように一次元的に伸びている。これは、例えば、下から成長してきた窒化ガリウム結晶からドーパント成分や微量成分等が排出され、成長過程で隣り合う窒化ガリウム結晶の間に集まり、上面において隣り合う低輝度発光領域の間に、線状に強く発光する部分を生成したものと考えられる。 On the upper surface of the gallium nitride substrate, the low luminance light emitting region may be an exposed surface of the gallium nitride crystal grown therebelow, and is two-dimensionally spread in a planar manner. On the other hand, the high brightness light emitting portion is linear, but extends in a one-dimensional manner as a boundary that divides adjacent low brightness light emitting regions. This is because, for example, a dopant component, a trace component and the like are discharged from a gallium nitride crystal grown from the bottom, gathered between adjacent gallium nitride crystals in the growth process, and a line between adjacent low brightness light emitting regions on the top surface It is considered that a portion that emits strong light in a shape is generated.
 例えば図3に、実施例で得られた窒化ガリウム基板の上面のCL観察による写真を示す。図4は、図3の部分拡大図であり、図5は図4に対応する模式図である。低輝度発光領域が面状に、二次元的に広がっており、高輝度発光部は線状をなしており、隣り合う低輝度発光領域を区分する境界線のように一次元的に伸びていることがわかる。 For example, FIG. 3 shows a photograph by CL observation of the top surface of the gallium nitride substrate obtained in the example. 4 is a partial enlarged view of FIG. 3, and FIG. 5 is a schematic view corresponding to FIG. The low brightness light emitting area is two-dimensionally spread in a plane, and the high brightness light emitting portion is linear, and is one-dimensionally stretched like a boundary dividing the adjacent low brightness light emitting areas. I understand that.
 このことから、低輝度発光領域の形状には特に制限はなく、通常は面状に、二次元的に伸びているものである。一方、高輝度発光部が形成する線は、細長いものである必要がある。こうした観点からは、高輝度発光部の幅は、100μm以下であることが好ましく、20μm以下であることが更に好ましく、5μm以下であることが特に好ましい。また、高輝度発光部の幅は通常0.01μm以上である。 From this, the shape of the low luminance light emitting region is not particularly limited, and usually extends two-dimensionally in a planar shape. On the other hand, the line formed by the high luminance light emitting portion needs to be elongated. From such a viewpoint, the width of the high brightness light emitting portion is preferably 100 μm or less, more preferably 20 μm or less, and particularly preferably 5 μm or less. In addition, the width of the high brightness light emitting portion is usually 0.01 μm or more.
 また、本発明の観点からは、高輝度発光部の長さと幅との比率(長さ/幅)は、1以上が好ましく、10以上が更に好ましい。 From the viewpoint of the present invention, the ratio (length / width) of the length to the width of the high luminance light emitting portion is preferably 1 or more, and more preferably 10 or more.
 また、本発明の観点からは、上面において、高輝度発光部の面積の低輝度発光領域の面積に対する比率(高輝度発光部の面積/低輝度発光領域の面積)は、0.001以上であることが好ましく、0.01以上であることが更に好ましい。
 また、本発明の観点からは、上面において、高輝度発光部の面積の低輝度発光領域の面積に対する比率(高輝度発光部の面積/低輝度発光領域の面積)は、0.3以下であることが好ましく、0.1以下であることが更に好ましい。
From the viewpoint of the present invention, the ratio of the area of the high luminance light emitting portion to the area of the low luminance light emitting region on the upper surface (area of high luminance light emitting portion / area of low luminance light emitting region) is 0.001 or more Is more preferably 0.01 or more.
From the viewpoint of the present invention, the ratio of the area of the high luminance light emitting portion to the area of the low luminance light emitting region on the upper surface (area of high luminance light emitting portion / area of low luminance light emitting region) is 0.3 or less Is more preferably 0.1 or less.
 好適な実施形態においては、高輝度発光部が、窒化ガリウム結晶のm面に沿って延びる部分を含む。例えば、図2、図5の例においては、高輝度発光部5は細長い線状に延びており、m面に沿って伸びる部分5a、5b、5cを多く含んでいる。六方晶である窒化ガリウム結晶のm面に沿った方向とは、具体的には、[-2110]、[-12-10]、[11-20]、[2-1-10]、[1-210]、[-1-120]方向であり、高輝度発光部5は、六方晶を反映した略六角形の辺の一部を含む。また、線状の高輝度発光部がm面に沿って伸びているとは、高輝度発光部の長手方向が[-2110]、[-12-10]、[11-20]、[2-1-10]、[1-210]、[-1-120]方向のいずれかに沿って延びていることを意味している。具体的には、線状高輝度発光部の長手方向がm面に対して、好ましくは±1°以内、さらに好ましくは±0.3°以内である場合を含む。 In a preferred embodiment, the high brightness light emitting portion includes a portion extending along the m-plane of the gallium nitride crystal. For example, in the example of FIG. 2, FIG. 5, the high-intensity light emission part 5 is extended in elongate linear form, and contains many parts 5a, 5b, 5c extended along m surface. Specifically, the directions along the m-plane of the hexagonal gallium nitride crystal are [-2110], [-12-10], [11-20], [2-1-10], and [1]. The high-intensity light emitting unit 5 includes a part of the side of a substantially hexagonal shape reflecting hexagonal crystals. The linear high-intensity light emitting portion extending along the m-plane means that the longitudinal direction of the high-intensity light emitting portion is [-2110], [-12-10], [11-20], [2- It means extending along one of 1-10 directions, [1-210] and [-1-120] directions. Specifically, the case where the longitudinal direction of the linear high luminance light emitting part is preferably within ± 1 °, more preferably within ± 0.3 ° with respect to the m-plane is included.
 好適な実施形態においては、上面において、線状の高輝度発光部が、概ね窒化ガリウム結晶のm面に沿って延びている。これは高輝度発光部の主要部分がm面に沿って延びていることを意味しており、好ましくは高輝度発光部の連続相がほぼm面に沿って延びている。この際、m面に沿った方向に伸びる部分は、高輝度発光部の全長のうち60%以上を占めていることが好ましく、80%以上を占めていることが更に好ましく、実質的に高輝度発光部の全体を占めていてもよい。 In a preferred embodiment, at the top, linear high-intensity light emitting portions extend generally along the m-plane of the gallium nitride crystal. This means that the main part of the high luminance light emitting part extends along the m plane, and preferably the continuous phase of the high luminance light emitting part extends along substantially the m plane. At this time, the portion extending in the direction along the m-plane preferably occupies 60% or more, more preferably 80% or more, of the total length of the high brightness light emitting portion, and substantially high brightness It may occupy the whole of the light emitting part.
 好適な実施形態においては、窒化ガリウム基板の上面において、高輝度発光部が連続相を形成しており、低輝度発光領域が高輝度発光部によって区画された不連続相を形成している。例えば、図2、図5の模式図では、線状の高輝度発光部5は連続相を形成しており、低輝度発光領域6が高輝度発光部5によって区画された不連続相を形成している。 In a preferred embodiment, on the upper surface of the gallium nitride substrate, the high brightness light emitting portion forms a continuous phase, and the low brightness light emitting region forms a discontinuous phase partitioned by the high brightness light emitting portion. For example, in the schematic views of FIGS. 2 and 5, the linear high brightness light emitting portion 5 forms a continuous phase, and the low brightness light emitting region 6 forms a discontinuous phase partitioned by the high brightness light emitting portion 5. ing.
 ただし、連続相とは、上面において、高輝度発光部5が連続していることを意味するが、高輝度発光部5すべてが完全に連続していることを必須としているわけではなく、全体のパターンに影響しない範囲で少量の高輝度発光部5が他の高輝度発光部5に対して分離されていることは許容するものとする。 However, the continuous phase means that the high brightness light emitting portion 5 is continuous on the upper surface, but it is not essential that all the high brightness light emitting portions 5 are completely continuous, and the whole It is to be allowed that a small amount of the high luminance light emitting portion 5 is separated from the other high luminance light emitting portions 5 without affecting the pattern.
 また、分散相とは、低輝度発光領域6が概ね高輝度発光部5によって区画されていて、互いにつながらない多数の領域に分かれていることを意味する。また、上面において、低輝度発光領域6が高輝度発光部5によって分離されていても、窒化ガリウム基板の内部において低輝度発光領域6が連続していることは許容される。 Further, the dispersed phase means that the low brightness light emitting region 6 is divided by the high brightness light emitting portion 5 and divided into a large number of regions which are not connected to each other. In addition, even if the low brightness light emitting region 6 is separated by the high brightness light emitting portion 5 on the upper surface, it is acceptable that the low brightness light emitting region 6 is continuous inside the gallium nitride substrate.
 好適な実施形態においては、窒化ガリウム基板の上面におけるX線ロッキングカーブの(0002)面反射の半値幅が3000秒以下、20秒以上である。これは、上面において、表面チルト角が小さく、結晶方位が全体として単結晶のように高度に配向していることを示している。前述したようなカソードルミネッセンス分布を有している上で、このような全体として表面での結晶方位が高度に配向している微構造であると、窒化ガリウム基板の上面における特性分布が小さくでき、その上に設けられる各種機能素子の特性を均一に揃えることが可能であり、また機能素子の歩留りも改善する。 In a preferred embodiment, the half width of (0002) plane reflection of the X-ray rocking curve on the upper surface of the gallium nitride substrate is 3000 seconds or less and 20 seconds or more. This indicates that the top surface has a small surface tilt angle, and the crystal orientation as a whole is highly oriented like a single crystal. In addition to having the cathode luminescence distribution as described above, the characteristic distribution on the upper surface of the gallium nitride substrate can be made smaller if such a microstructure having a crystal orientation at the surface as a whole as described above is highly oriented. The characteristics of various functional elements provided thereon can be made uniform, and the yield of functional elements is also improved.
 こうした観点からは、窒化ガリウム基板の上面におけるX線ロッキングカーブの(0002)面反射の半値幅が1000秒以下、20秒以上であることが好ましく、500秒以下、20秒以上であることがより一層好ましい。なお、窒化ガリウム基板の上面におけるX線ロッキングカーブの(0002)面反射の半値幅を20秒未満まで小さくすることは現実的には困難である。 From such a viewpoint, the half value width of (0002) plane reflection of the X-ray rocking curve on the upper surface of the gallium nitride substrate is preferably 1000 seconds or less and 20 seconds or more, more preferably 500 seconds or less and 20 seconds or more More preferred. It is practically difficult to reduce the half width of (0002) plane reflection of the X-ray rocking curve on the upper surface of the gallium nitride substrate to less than 20 seconds.
 ただし、X線ロッキングカーブ(0002)面反射は以下のように測定する。XRD装置(例えばBruker-AXS製D8-DISCOVER)を用いて、測定条件は管電圧40kV、管電流40mA、コリメータ径0.1mm、アンチスキャッタリングスリット3mmで、ω=ピーク位置角度±0.3°の範囲、ωステップ幅0.003°、及び計数時間1秒に設定して行えばよい。この測定ではGe(022)非対称反射モノクロメーターでCuKα線を平行単色光化(半値幅28秒)し、あおり角CHI=0°付近で軸立てた上で測定するのが好ましい。そして、X線ロッキングカーブ(0002)面反射の半値幅は、XRD解析ソフトウェア(Bruker-AXS製、LEPTOS4.03)を用いてピークサーチを行い算出する事ができる。ピークサーチ条件は、Noise Filter「10」、Threshold「0.30」、Points「10」とすることが好ましい。 However, X-ray rocking curve (0002) surface reflection is measured as follows. Measurement conditions are: tube voltage 40 kV, tube current 40 mA, collimator diameter 0.1 mm, anti-scattering slit 3 mm, using an XRD apparatus (for example, D8-DISCOVER manufactured by Bruker-AXS), ω = peak position angle ± 0.3 ° And the ω step width of 0.003 ° and the counting time of 1 second. In this measurement, it is preferable to parallelize CuKα rays (half-width 28 seconds) with a Ge (022) asymmetric reflection monochromator and measure the axis after setting the axis at a tilt angle CHI of about 0 °. The half width of the X-ray rocking curve (0002) surface reflection can be calculated by performing peak search using XRD analysis software (LEPTOS 4.03 manufactured by Bruker-AXS). The peak search conditions are preferably Noise Filter “10”, Threshold “0.30”, and Points “10”.
 窒化ガリウム基板の上面に略垂直な断面は、CLによって観察すると、図6に示すように、白く発光する線状の高輝度発光部が観察されることがある。なお、図6において、低輝度発光領域が面状に、二次元的に広がっており、高輝度発光部は線状をなしており、隣り合う低輝度発光領域を区分する境界線のように伸びていることがわかる。こうした高輝度発光部および低輝度発光領域の観測方法は、上面における高輝度発光部および低輝度発光領域の観測方法と同じである。 When a cross section substantially perpendicular to the upper surface of the gallium nitride substrate is observed by CL, as shown in FIG. 6, a linear high-intensity light emitting portion that emits white light may be observed. In FIG. 6, the low brightness light emitting area is two-dimensionally spread in a planar manner, and the high brightness light emitting portion is linear, and extends like a boundary line which divides adjacent low brightness light emitting areas. Know that The observation method of such a high luminance light emitting portion and the low luminance light emitting region is the same as the observation method of the high luminance light emitting portion and the low luminance light emitting region on the upper surface.
 窒化ガリウム基板の断面における低輝度発光領域の形状には特に制限はなく、通常は面状に、二次元的に伸びているものである。一方、高輝度発光部が形成する線は、細長いものである必要がある。こうした観点からは、高輝度発光部の幅は、100μm以下であることが好ましく、20μm以下であることが更に好ましい。また、高輝度発光部の幅は通常0.01μm以上である。 There is no particular limitation on the shape of the low luminance light emitting region in the cross section of the gallium nitride substrate, and it usually extends two-dimensionally in a planar shape. On the other hand, the line formed by the high luminance light emitting portion needs to be elongated. From such a viewpoint, the width of the high brightness light emitting portion is preferably 100 μm or less, and more preferably 20 μm or less. In addition, the width of the high brightness light emitting portion is usually 0.01 μm or more.
 また、本発明の観点からは、窒化ガリウム基板の断面における発光部の長さと幅との比率(長さ/幅)は、1以上が好ましく、 10以上が更に好ましい。 Further, from the viewpoint of the present invention, the ratio (length / width) of the length to the width of the light emitting portion in the cross section of the gallium nitride substrate is preferably 1 or more, and more preferably 10 or more.
 好適な実施形態においては、窒化ガリウム基板の上面と略垂直な前記断面において、線状の高輝度発光部が連続相を形成しており、低輝度発光領域が高輝度発光部によって区画された不連続相を形成している。例えば、図6のCL写真では、線状の高輝度発光部は連続相を形成しており、低輝度発光領域が高輝度発光部によって区画された不連続相を形成している。 In a preferred embodiment, in the cross section substantially perpendicular to the upper surface of the gallium nitride substrate, the linear high luminance light emitting portion forms a continuous phase, and the low luminance light emitting region is partitioned by the high luminance light emitting portion. It forms a continuous phase. For example, in the CL photograph of FIG. 6, the linear high-intensity light emitting portion forms a continuous phase, and the low-intensity light emitting region forms a discontinuous phase partitioned by the high-intensity light emitting portion.
 ただし、連続相とは、前記断面において、高輝度発光部が連続していることを意味するが、高輝度発光部すべてが完全に連続していることを必須としているわけではなく、全体のパターンに影響しない範囲で少量の高輝度発光部が他の高輝度発光部に対して分離されていることは許容するものとする。 However, the continuous phase means that the high brightness light emitting portion is continuous in the cross section, but it is not essential that all the high brightness light emitting portions are completely continuous, and the whole pattern It is acceptable that a small amount of high-intensity light emitting portions are separated from other high-intensity light emitting portions without affecting the above.
 また、分散相とは、低輝度発光領域が概ね高輝度発光部によって区画されていて、互いにつながらない多数の領域に分かれていることを意味する。 Further, the dispersed phase means that the low brightness light emitting region is divided by the high brightness light emitting portion and divided into many regions which are not connected to each other.
 好適な実施形態においては、窒化ガリウム基板の上面に略垂直な断面においてボイドが観測されない。すなわち、図6のCL写真と同一視野である、図7に示すSEM写真において、ボイド(空隙)や窒化ガリウム結晶相以外の異なる結晶相は観測されない。ただし、ボイドの観測は以下のようにして行う。 In a preferred embodiment, no voids are observed in a cross section substantially perpendicular to the top surface of the gallium nitride substrate. That is, in the SEM photograph shown in FIG. 7 which is the same field of view as the CL photograph in FIG. 6, different crystal phases other than the void (void) and the gallium nitride crystal phase are not observed. However, observation of void is performed as follows.
 ボイドは、窒化ガリウム基板の上面に略垂直な断面を走査型電子顕微鏡(SEM)で観察した際に観察され、最大幅が1μm~500μmの大きさの空隙を「ボイド」とする。このSEM観察には、例えば日立ハイテクノロジーズ製S-3400N走査電子顕微鏡を用いる。測定条件は、加速電圧15kV、プローブ電流「60」、ワーキングディスタンス(W.D.)6.5mm、倍率100倍で観察するのが好ましい。
 また、走査型電子顕微鏡(上記した観察条件)では、窒化ガリウム基板の上面に略垂直な断面を観察した際に、ボイドなどの構造的マクロ欠陥を伴うような明らかな粒界は観察されない。こうした微構造であると、発光素子などの機能素子を窒化ガリウム基板上に作製した場合、明らかな粒界に起因するような抵抗上昇や特性のばらつきを抑制する事ができると考えられる。
A void is observed when a cross section substantially perpendicular to the upper surface of the gallium nitride substrate is observed with a scanning electron microscope (SEM), and a void having a maximum width of 1 μm to 500 μm is a “void”. For this SEM observation, for example, S-3400N scanning electron microscope manufactured by Hitachi High-Technologies Corporation is used. Measurement conditions are preferably observed at an acceleration voltage of 15 kV, a probe current of "60", a working distance (W.D.) of 6.5 mm, and a magnification of 100 times.
Further, in a scanning electron microscope (observation conditions described above), when observing a cross section substantially perpendicular to the top surface of the gallium nitride substrate, no apparent grain boundary accompanied by structural macro defects such as voids is observed. With such a fine structure, when a functional element such as a light emitting element is fabricated on a gallium nitride substrate, it is considered that the increase in resistance and the variation in characteristics due to apparent grain boundaries can be suppressed.
 また、好適な実施形態においては、窒化ガリウム基板の上面におけるX線ロッキングカーブの(0002)面反射の半値幅が3000秒以下、20秒以上、かつ、 (1000)面反射の半値幅が10000秒以下、20秒以上である。これは上面における表面チルト角および表面ツイスト角が共に小さく、結晶方位が全体として単結晶のようにより高度に配向していることを示している。このような全体として表面での結晶方位がより高度に配向している微構造であると、窒化ガリウム基板の上面における特性分布が小さくでき、その上に設けられる各種機能素子の特性を均一に揃えることが可能であり、また機能素子の歩留りも改善する。 In a preferred embodiment, the half width of (0002) plane reflection of the X-ray rocking curve on the upper surface of the gallium nitride substrate is 3000 seconds or less, 20 seconds or more, and the half width of (1000) plane reflection is 10000 seconds. Below, it is 20 seconds or more. This indicates that both the surface tilt angle and the surface twist angle at the upper surface are small, and the crystal orientation is highly oriented as a whole, like a single crystal. With such a fine structure in which the crystal orientation at the surface as a whole is more highly oriented, the characteristic distribution on the upper surface of the gallium nitride substrate can be made smaller, and the characteristics of various functional elements provided thereon become uniform. It also improves the yield of functional devices.
 また、好適な実施形態においては、窒化ガリウム基板の上面におけるX線ロッキングカーブの(1000)面反射の半値幅が10000秒以下、20秒以上である。これは、上面における表面ツイスト角度が非常に低く、結晶方位が全体として単結晶のように高度に配向していることを示している。前述したようなカソードルミネッセンス分布を有している上で、このような全体として表面での結晶方位が高度に配向している微構造であると、窒化ガリウム基板の上面における特性分布が小さくでき、その上に設けられる各種機能素子の特性を均一に揃えることが可能であり、また機能素子の歩留りも改善する。 In a preferred embodiment, the half value width of (1000) plane reflection of the X-ray rocking curve on the upper surface of the gallium nitride substrate is 10000 seconds or less and 20 seconds or more. This indicates that the surface twist angle at the top surface is very low, and the crystal orientation as a whole is highly oriented like a single crystal. In addition to having the cathode luminescence distribution as described above, the characteristic distribution on the upper surface of the gallium nitride substrate can be made smaller if such a microstructure having a crystal orientation at the surface as a whole as described above is highly oriented. The characteristics of various functional elements provided thereon can be made uniform, and the yield of functional elements is also improved.
こうした観点からは、窒化ガリウム基板の上面におけるX線ロッキングカーブの(1000)面反射の半値幅は、5000秒以下であることが好ましく、更には1000秒以下、更には20秒以上であることが一層好ましい。この半値幅を20秒未満まで低下させることは現実的には困難である。 From such a viewpoint, the half value width of (1000) plane reflection of the X-ray rocking curve on the upper surface of the gallium nitride substrate is preferably 5000 seconds or less, more preferably 1000 seconds or less, further 20 seconds or more. More preferred. It is practically difficult to reduce this half-width to less than 20 seconds.
 ただし、X線ロッキングカーブ(1000)面反射は以下のように測定する。XRD装置(例えばBruker-AXS製D8-DISCOVER)を用いて、測定条件は管電圧40kV、管電流40mA、コリメータなし、アンチスキャッタリングスリット3mmで、ω=ピーク位置角度±0.3°の範囲、ωステップ幅0.003°、及び計数時間4秒に設定して行えばよい。この測定ではGe(022)非対称反射モノクロメーターでCuKα線を平行単色光化(半値幅28秒)し、あおり角CHI=88°付近で軸立てた上で測定するのが好ましい。そして、X線ロッキングカーブ(1000)面反射の半値幅は、XRD解析ソフトウェア(Bruker-AXS製、LEPTOS4.03)を用いてピークサーチを行い算出する事ができる。ピークサーチ条件は、Noise Filter「10」、Threshold「0.30」、Points「10」とすることが好ましい。 However, X-ray rocking curve (1000) surface reflection is measured as follows. Measurement conditions are: tube voltage 40 kV, tube current 40 mA, no collimator, anti-scattering slit 3 mm, range of ω = peak position angle ± 0.3 °, using an XRD apparatus (for example, D8-DISCOVER manufactured by Bruker-AXS) The ω step width may be set to 0.003 ° and the counting time to 4 seconds. In this measurement, it is preferable to measure CuKα rays in parallel monochromatization (half-width 28 seconds) with a Ge (022) asymmetric reflection monochromator and centering around a tilt angle CHI = 88 °. And the half value width of X-ray rocking curve (1000) surface reflection can be calculated by performing peak search using XRD analysis software (manufactured by Bruker-AXS, LEPTOS 4.03). The peak search conditions are preferably Noise Filter “10”, Threshold “0.30”, and Points “10”.
(好適な製法例)
 以下、窒化ガリウム基板の好適な製法を例示する。
 本発明の窒化ガリウム基板は、下地基板上に種結晶層を形成し、その上に窒化ガリウム結晶から構成される基板を形成することにより製造することができる。
(Example of suitable manufacturing method)
Hereafter, the suitable manufacturing method of a gallium nitride board | substrate is illustrated.
The gallium nitride substrate of the present invention can be manufactured by forming a seed crystal layer on a base substrate and forming a substrate composed of gallium nitride crystals thereon.
 例えば図1に例示するように、下地基板は、単結晶基板1上にアルミナ層2を形成したものを用いることができる。単結晶基板1はサファイア、AlNテンプレート、GaNテンプレート、GaN自立基板、SiC単結晶、MgO単結晶、スピネル(MgAl)、LiAlO、LiGaO、LaAlO,LaGaO,NdGaO等のペロブスカイト型複合酸化物、SCAM(ScAlMgO)を例示できる。また組成式〔A1-y(Sr1-xBa〕〔(Al1-zGa1-u・D〕O(Aは、希土類元素である;Dは、ニオブおよびタンタルからなる群より選ばれた一種以上の元素である;y=0.3~0.98;x=0~1;z=0~1;u=0.15~0.49;x+z=0.1~2)の立方晶系のペロブスカイト構造複合酸化物も使用できる。 For example, as illustrated in FIG. 1, the base substrate may be a single crystal substrate 1 on which an alumina layer 2 is formed. Single crystal substrate 1 is a perovskite such as sapphire, AlN template, GaN template, GaN freestanding substrate, SiC single crystal, MgO single crystal, spinel (MgAl 2 O 4 ), LiAlO 2 , LiGaO 2 , LaAlO 3 , LaGaO 3 , NdGaO 3 and the like Type composite oxide, SCAM (ScAlMgO 4 ) can be exemplified. The composition formula [A 1-y (Sr 1- x Ba x) y ] [(Al 1-z Ga z) 1-u · D u ] O 3 (A is a rare earth element; D is niobium and One or more elements selected from the group consisting of tantalum; y = 0.3 to 0.98; x = 0 to 1; z = 0 to 1; u = 0.15 to 0.49; x + z = 0 The cubic perovskite structure complex oxide of 1) to 2) can also be used.
 アルミナ層2の形成方法は公知の技術を用いることができ、スパッタリング、MBE(分子線エピタキシー)法、蒸着、ミストCVD法、ゾルゲル法、エアロゾルデポジション(AD)法、或いはテープ成形等で作製したアルミナシートを上記単結晶基板に貼り合わせる手法が例示され、特にスパッタリング法が好ましい。必要に応じてアルミナ層を形成後に熱処理やプラズマ処理、イオンビーム照射を加えたものを用いることができる。熱処理の方法は特に限定がないが、大気雰囲気、真空、或いは水素等の還元雰囲気、窒素・Ar等の不活性雰囲気で熱処理すればよく、ホットプレス(HP)炉、熱間静水圧プレス(HIP)炉等を用いて加圧下で熱処理を行っても良い。 The alumina layer 2 can be formed by a known technique, and is prepared by sputtering, MBE (molecular beam epitaxy) method, vapor deposition, mist CVD method, sol gel method, aerosol deposition (AD) method, or tape forming. The method of bonding an alumina sheet to the said single crystal substrate is illustrated, and especially the sputtering method is preferable. It is possible to use one to which heat treatment, plasma treatment, or ion beam irradiation has been added after forming the alumina layer, if necessary. The method of heat treatment is not particularly limited, but heat treatment may be performed in an air atmosphere, vacuum, a reducing atmosphere such as hydrogen, or an inert atmosphere such as nitrogen / Ar, a hot press (HP) furnace, a hot isostatic press (HIP) Heat treatment may be performed under pressure using a furnace or the like.
 また、下地基板としてサファイア基板に上記と同様の熱処理やプラズマ処理、イオンビーム照射を加えたものも用いることができる。 Further, a sapphire substrate to which the same heat treatment, plasma treatment, or ion beam irradiation as described above is added can be used as a base substrate.
 次いで、例えば図1(a)に示すように、上記のように作製したアルミナ層2上または上記のように熱処理やプラズマ処理、イオンビーム照射を加えた単結晶基板1上に種結晶層3を設ける。種結晶層3を構成する材質は、IUPACで規定する13族元素の一種または二種以上の窒化物とする。この13族元素は、好ましくはガリウム、アルミニウム、インジウムである。また、13族元素窒化物結晶は、具体的には、GaN、AlN、InN、GaAl1-xN(1>x>0)、GaIn1-xN(1>x>0)、GaAlInN1―x-y(1>x>0、1>y>0)が好ましい。 Then, for example, as shown in FIG. 1A, the seed crystal layer 3 is formed on the alumina layer 2 prepared as described above or on the single crystal substrate 1 to which the heat treatment, plasma treatment and ion beam irradiation are applied as described above. Set up. The material constituting the seed crystal layer 3 is a nitride of one or two or more kinds of Group 13 elements specified by IUPAC. The group 13 element is preferably gallium, aluminum or indium. Further, specifically, group 13 element nitride crystals are GaN, AlN, InN, Ga x Al 1 -x N (1>x> 0), Ga x In 1-x N (1>x> 0) And Ga x Al y InN 1 -x-y (1>x> 0, 1>y> 0).
 種結晶層3の作製方法は特に限定されないが、MOCVD(有機金属気相成長法)、MBE(分子線エピタキシー法)、HVPE(ハイドライド気相成長法)、スパッタリング等の気相法、Naフラックス法、アモノサーマル法、水熱法、ゾルゲル法等の液相法、粉末の固相成長を利用した粉末法、及びこれらの組み合わせが好ましく例示される。
 例えば、MOCVD法による種結晶層の形成は、450~550℃にて低温成長緩衝GaN層を20~50nm堆積させた後に、1000~1200℃にて厚さ2~4μmのGaN膜を積層させることにより行うのが好ましい。
The method of producing the seed crystal layer 3 is not particularly limited, but MOCVD (organic metal vapor phase growth method), MBE (molecular beam epitaxy method), HVPE (hydride vapor phase growth method), vapor phase method such as sputtering, Na flux method Liquid phase methods such as ammonothermal method, hydrothermal method, sol-gel method, powder method utilizing solid phase growth of powder, and combinations thereof are preferably exemplified.
For example, a seed crystal layer is formed by depositing a low-temperature growth buffer GaN layer at 450 to 550 ° C. for 20 to 50 nm and then laminating a GaN film having a thickness of 2 to 4 μm at 1000 to 1200 ° C. Preferably by
 窒化ガリウム基板13は、種結晶層3の結晶方位に概ね倣った結晶方位を有するように形成する。窒化ガリウム基板の形成方法は、種結晶膜の結晶方位に概ね倣った結晶方位を有する限り特に限定がなく、MOCVD、HVPE等の気相法、Naフラックス法、アモノサーマル法、水熱法、ゾルゲル法等の液相法、粉末の固相成長を利用した粉末法、及びこれらの組み合わせが好ましく例示されるが、Naフラックス法により行われるのが特に好ましい。 The gallium nitride substrate 13 is formed to have a crystal orientation substantially following the crystal orientation of the seed crystal layer 3. The method for forming the gallium nitride substrate is not particularly limited as long as it has a crystal orientation substantially following the crystal orientation of the seed crystal film, and a vapor phase method such as MOCVD or HVPE, Na flux method, ammonothermal method, hydrothermal method, A liquid phase method such as a sol-gel method, a powder method utilizing solid phase growth of powder, and a combination thereof are preferably exemplified, but the Na flux method is particularly preferable.
 Naフラックス法によって窒化ガリウム基板を形成する際には、融液を強く攪拌し、融液を充分に均一に混ぜることが好ましい。こうした攪拌方法として、揺動や回転、振動方式が挙げられるが、方法は限定されない。 When forming a gallium nitride substrate by the Na flux method, it is preferable to strongly stir the melt and mix the melt sufficiently uniformly. As such a stirring method, a swing, rotation, vibration method may be mentioned, but the method is not limited.
 Naフラックス法による窒化ガリウム基板の形成は、種結晶基板を設置した坩堝に13族金属、金属Na及び所望によりドーパント(例えばゲルマニウム(Ge)、シリコン(Si)、酸素(O)等のn型ドーパント、又はベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、亜鉛(Zn)、カドミウム(Cd)等のp型ドーパント)を含む融液組成物を充填し、窒素雰囲気中で830~910℃、3.5~4.5MPaまで昇温加圧した後、温度及び圧力を保持しつつ回転することにより行うのが好ましい。保持時間は目的の膜厚によって異なるが、10~100時間程度としてもよい。 Formation of a gallium nitride substrate by the Na flux method is carried out by using a group 13 metal, metal Na and optionally a dopant (eg, germanium (Ge), silicon (Si), oxygen (O), etc.) n-type Or a melt composition containing p-type dopants such as beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), zinc (Zn), cadmium (Cd), etc., in a nitrogen atmosphere Preferably, the temperature is raised to 830 ° C. to 910 ° C. and 3.5 to 4.5 MPa, followed by rotation while maintaining the temperature and pressure. The holding time varies depending on the target film thickness, but may be about 10 to 100 hours.
 ここで、本発明の観点からは、窒素雰囲気中での圧力上昇速度を0.01MPa/min以上、0.1MPa/min以下とすることが好ましく、0.02MPa/min以上、0.05MPa/min以下とすることが更に好ましい。また、窒素雰囲気中での温度上昇速度を5℃/min以上、20℃/min以下とすることが好ましく、7℃/min以上、12℃/min以下とすることが更に好ましい。 Here, from the viewpoint of the present invention, the pressure increase rate in a nitrogen atmosphere is preferably 0.01 MPa / min or more and 0.1 MPa / min or less, and is 0.02 MPa / min or more and 0.05 MPa / min or less Is more preferred. Further, it is preferable to set the temperature increase rate in a nitrogen atmosphere to 5 ° C./min or more and 20 ° C./min or less, and more preferably 7 ° C./min or more and 12 ° C./min or less.
 また、こうしてNaフラックス法により得られた窒化ガリウム結晶を砥石で研削して板面を平坦にした後、ダイヤモンド砥粒を用いたラップ加工により板面を平滑化するのが好ましい。 Further, it is preferable to flatten the plate surface by grinding the gallium nitride crystal thus obtained by the Na flux method with a grindstone, and then to smooth the plate surface by lapping using diamond abrasive grains.
(窒化ガリウム基板の分離方法)
 次いで、窒化ガリウム基板を単結晶基板から分離することによって、窒化ガリウム基板を含む自立基板を得ることができる。
(Separation method of gallium nitride substrate)
Then, the gallium nitride substrate is separated from the single crystal substrate to obtain a freestanding substrate including the gallium nitride substrate.
 ここで、窒化ガリウム基板を単結晶基板から分離する方法は限定されない。好適な実施形態においては、窒化ガリウム基板を育成した後の降温工程において窒化ガリウム基板を単結晶基板から自然剥離させる。 Here, the method of separating the gallium nitride substrate from the single crystal substrate is not limited. In a preferred embodiment, the gallium nitride substrate is naturally peeled from the single crystal substrate in the temperature lowering step after growing the gallium nitride substrate.
 あるいは、窒化ガリウム基板を単結晶基板からケミカルエッチングによって分離することができる。
 ケミカルエッチングを行う際のエッチャントとしては、硫酸、塩酸等の強酸や硫酸とリン酸の混合液、もしくは水酸化ナトリウム水溶液、水酸化カリウム水溶液等の強アルカリが好ましい。また、ケミカルエッチングを行う際の温度は、70℃以上が好ましい。
Alternatively, the gallium nitride substrate can be separated from the single crystal substrate by chemical etching.
As an etchant at the time of chemical etching, a strong acid such as sulfuric acid or hydrochloric acid, a mixed solution of sulfuric acid and phosphoric acid, or a strong alkali such as sodium hydroxide aqueous solution or potassium hydroxide aqueous solution is preferable. Moreover, as for the temperature at the time of performing chemical etching, 70 degreeC or more is preferable.
 あるいは、窒化ガリウム基板を単結晶基板からレーザーリフトオフ法によって剥離することができる。
 あるいは、窒化ガリウム基板を単結晶基板から研削によって剥離することができる。
 あるいは、窒化ガリウム基板を単結晶基板からワイヤーソーで剥離することができる。
Alternatively, the gallium nitride substrate can be peeled off from the single crystal substrate by a laser lift-off method.
Alternatively, the gallium nitride substrate can be peeled off from the single crystal substrate by grinding.
Alternatively, the gallium nitride substrate can be peeled off from the single crystal substrate with a wire saw.
(自立基板)
 窒化ガリウム基板を単結晶基板から分離することで、自立基板を得ることができる。本発明において「自立基板」とは、取り扱う際に自重で変形又は破損せず、固形物として取り扱うことのできる基板を意味する。本発明の自立基板は発光素子等の各種半導体デバイスの基板として使用可能であるが、それ以外にも、電極(p型電極又はn型電極でありうる)、p型層、n型層等の基材以外の部材又は層として使用可能なものである。この自立基板には、一層以上の他の層が更に設けられていても良い。
(Self-standing substrate)
A freestanding substrate can be obtained by separating a gallium nitride substrate from a single crystal substrate. In the present invention, the term "self-supporting substrate" means a substrate which can be handled as a solid without deformation or breakage under its own weight. The self-supporting substrate of the present invention can be used as a substrate for various semiconductor devices such as light emitting elements, but in addition to that, it can be an electrode (may be a p-type electrode or an n-type electrode), a p-type layer, an n-type layer, etc. It can be used as a member or layer other than the base material. This freestanding substrate may further be provided with one or more other layers.
 窒化ガリウム基板が自立基板を構成する場合には、自立基板の厚さは基板に自立性を付与できる必要があり、20μm以上が好ましく、より好ましくは100μm以上であり、さらに好ましくは300μm以上である。自立基板の厚さに上限は規定されるべきではないが、製造コストの観点では3000μm以下が現実的である。 When the gallium nitride substrate constitutes a self-supporting substrate, the thickness of the self-supporting substrate needs to be capable of giving self-supporting properties to the substrate, preferably 20 μm or more, more preferably 100 μm or more, and still more preferably 300 μm or more . The upper limit of the thickness of the free-standing substrate should not be defined, but 3000 μm or less is realistic in terms of manufacturing cost.
(複合基板)
 単結晶基板上に窒化ガリウム基板を設けた状態で、窒化ガリウム基板を分離することなく、他の機能層を形成するためのテンプレート基板として用いることができる。この場合、窒化ガリウム基板の厚さは、20μm以上が好ましく、より好ましくは100μm以上であり、さらに好ましくは300μm以上である。窒化ガリウム基板の厚さに上限は規定されるべきではないが、製造コストの観点では3000μm以下が現実的である。
(Composite substrate)
The gallium nitride substrate can be used as a template substrate for forming another functional layer without separating the gallium nitride substrate in a state where the gallium nitride substrate is provided over a single crystal substrate. In this case, the thickness of the gallium nitride substrate is preferably 20 μm or more, more preferably 100 μm or more, and still more preferably 300 μm or more. The upper limit of the thickness of the gallium nitride substrate should not be defined, but 3000 μm or less is realistic in terms of manufacturing cost.
(機能素子)
 本発明の窒化ガリウム基板上に設けられた機能素子構造は特に限定されないが、発光機能、整流機能または電力制御機能を例示できる。
(Functional element)
The functional element structure provided on the gallium nitride substrate of the present invention is not particularly limited, but can exemplify a light emitting function, a rectifying function or a power control function.
 本発明の窒化ガリウム基板を用いた発光素子の構造やその作製方法は特に限定されるものではない。典型的には、発光素子は、窒化ガリウム基板上に発光機能層を設けることにより作製される。もっとも、窒化ガリウム基板を電極(p型電極又はn型電極でありうる)、p型層、n型層等の基材以外の部材又は層として利用して発光素子を作製してもよい。 The structure of the light emitting device using the gallium nitride substrate of the present invention and the method of manufacturing the same are not particularly limited. Typically, a light emitting device is manufactured by providing a light emitting functional layer on a gallium nitride substrate. However, the light emitting element may be manufactured using a gallium nitride substrate as a member or layer other than a substrate such as an electrode (which may be a p-type electrode or an n-type electrode), a p-type layer, or an n-type layer.
 図8に、本発明の一態様による発光素子の層構成を模式的に示す。図8に示される発光素子21は、自立基板13と、この基板上に形成される発光機能層18とを備えてなる。この発光機能層18は、電極等を適宜設けて電圧を印加することによりLED等の発光素子の原理に基づき発光をもたらすものである。 FIG. 8 schematically shows a layer configuration of a light emitting element according to one embodiment of the present invention. A light emitting element 21 shown in FIG. 8 includes a self-supporting substrate 13 and a light emitting functional layer 18 formed on the substrate. The light emitting functional layer 18 provides light emission based on the principle of a light emitting element such as an LED by appropriately providing an electrode or the like and applying a voltage.
 発光機能層18が基板13上に形成される。発光機能層18は、基板13上の全面又は一部に設けられてもよいし、後述するバッファ層が基板13上に形成される場合にはバッファ層上の全面又は一部に設けられてもよい。発光機能層18は、電極及び/又は蛍光体を適宜設けて電圧を印加することによりLEDに代表される発光素子の原理に基づき発光をもたらす公知の様々な層構成を採りうる。したがって、発光機能層18は青色、赤色等の可視光を放出するものであってもよいし、可視光を伴わずに又は可視光と共に紫外光を発光するものであってもよい。発光機能層18は、p-n接合を利用した発光素子の少なくとも一部を構成するのが好ましく、このp-n接合は、図8に示されるように、p型層18aとn型層18cの間に活性層18bを含んでいてもよい。このとき、活性層としてp型層及び/又はn型層よりもバンドギャップが小さい層を用いたダブルへテロ接合又はシングルへテロ接合(以下、ヘテロ接合と総称する)としてもよい。また、p型層-活性層-n型層の一形態として、活性層の厚みを薄くした量子井戸構造を採りうる。量子井戸を得るためには活性層のバンドギャップがp型層及びn型層よりも小さくしたダブルへテロ接合が採用されるべきことは言うまでもない。また、これらの量子井戸構造を多数積層した多重量子井戸構造(MQW)としてもよい。これらの構造をとることで、p-n接合と比べて発光効率を高めることができる。このように、発光機能層18は、発光機能を有するp-n接合及び/又はへテロ接合及び/又は量子井戸接合を備えたものであるのが好ましい。なお、20、22は電極の例である。 The light emitting functional layer 18 is formed on the substrate 13. The light emitting functional layer 18 may be provided on the entire surface or a part of the substrate 13, or may be provided on the entire surface or a part of the buffer layer when the buffer layer described later is formed on the substrate 13. Good. The light emitting functional layer 18 can adopt various known layer configurations that provide light emission based on the principle of a light emitting element represented by an LED by appropriately providing an electrode and / or a phosphor and applying a voltage. Therefore, the light emitting functional layer 18 may emit visible light such as blue and red, or may emit ultraviolet light without visible light or together with visible light. The light emitting functional layer 18 preferably constitutes at least a part of a light emitting element utilizing a pn junction, and the pn junction includes a p-type layer 18a and an n-type layer 18c as shown in FIG. The active layer 18 b may be included between At this time, a double hetero junction or a single hetero junction (hereinafter collectively referred to as a hetero junction) using a layer having a smaller band gap than the p-type layer and / or the n-type layer may be used as the active layer. In addition, a quantum well structure in which the thickness of the active layer is reduced can be employed as one mode of the p-type layer-active layer-n-type layer. It goes without saying that in order to obtain a quantum well, a double hetero junction in which the band gap of the active layer is smaller than that of the p-type layer and the n-type layer should be employed. Further, a multiple quantum well structure (MQW) in which a large number of these quantum well structures are stacked may be used. With these structures, the light emission efficiency can be enhanced as compared to a pn junction. Thus, the light emitting functional layer 18 is preferably provided with a pn junction and / or hetero junction and / or quantum well junction having a light emitting function. 20 and 22 are examples of electrodes.
 したがって、発光機能層18を構成する一以上の層は、n型ドーパントがドープされているn型層、p型ドーパントがドープされているp型層、及び活性層からなる群から選択される少なくとも一以上を含むものであることができる。n型層、p型層及び(存在する場合には)活性層は、主成分が同じ材料で構成されてもよいし、互いに主成分が異なる材料で構成されてもよい。 Therefore, at least one layer constituting the light emitting functional layer 18 is at least selected from the group consisting of an n-type layer doped with an n-type dopant, a p-type layer doped with a p-type dopant, and an active layer. It can be one or more. The n-type layer, the p-type layer and the active layer (if present) may be composed of the same material as the main component or may be composed of materials different from each other in the main component.
 発光機能層18を構成する各層の材質は、窒化ガリウム基板を構成する結晶の結晶方位に概ね倣って成長し且つ発光機能を有するものであれば特に限定されないが、窒化ガリウム(GaN)系材料、酸化亜鉛(ZnO)系材料及び窒化アルミニウム(AlN)系材料から選択される少なくとも1種以上を主成分とする材料で構成されるのが好ましく、p型ないしn型に制御するためのドーパントを適宜含むものであってよい。特に好ましい材料は、窒化ガリウム(GaN)系材料である。また、発光機能層18を構成する材料は、そのバンドギャップを制御するため、例えばGaNにAlN、InN等を固溶させた混晶としてもよい。また、直前の段落で述べたとおり、発光機能層18は複数種の材料系からなるヘテロ接合としてもよい。例えば、p型層に窒化ガリウム(GaN)系材料、n型層に酸化亜鉛(ZnO)系材料を用いてもよい。また、p型層に酸化亜鉛(ZnO)系材料、活性層とn型層に窒化ガリウム(GaN)系材料を用いてもよく、材料の組み合わせに特に限定はない。 The material of each layer constituting the light emitting functional layer 18 is not particularly limited as long as it is grown substantially in accordance with the crystal orientation of the crystal constituting the gallium nitride substrate and has a light emitting function, but a gallium nitride (GaN) based material It is preferable to be composed of a material mainly composed of at least one or more selected from zinc oxide (ZnO) based materials and aluminum nitride (AlN) based materials, and a dopant for controlling p type to n type is suitably selected It may be included. Particularly preferred materials are gallium nitride (GaN) based materials. Further, the material constituting the light emitting functional layer 18 may be, for example, a mixed crystal in which AlN, InN or the like is solid-solved in GaN in order to control the band gap. In addition, as described in the immediately preceding paragraph, the light emitting functional layer 18 may be a heterojunction made of a plurality of material systems. For example, a gallium nitride (GaN) based material may be used for the p-type layer, and a zinc oxide (ZnO) based material may be used for the n-type layer. Further, a zinc oxide (ZnO) based material may be used for the p-type layer, and a gallium nitride (GaN) based material may be used for the active layer and the n-type layer, and the combination of materials is not particularly limited.
 発光機能層18及びバッファ層の成膜方法は、13族元素窒化物結晶層の結晶方位に概ね倣って成長する方法であれば特に限定されないが、MOCVD、MBE、HVPE、スパッタリング等の気相法、Naフラックス法、アモノサーマル法、水熱法、ゾルゲル法等の液相法、粉末の固相成長を利用した粉末法、及びこれらの組み合わせが好ましく例示される。 The film formation method of the light emitting functional layer 18 and the buffer layer is not particularly limited as long as it is a method of growing substantially in accordance with the crystal orientation of the Group 13 element nitride crystal layer, but a vapor phase method such as MOCVD, MBE, HVPE, sputtering, etc. Preferred examples thereof include liquid phase methods such as Na flux method, ammonothermal method, hydrothermal method and sol-gel method, powder method utilizing solid phase growth of powder, and combinations thereof.
(実施例1)
(窒化ガリウム自立基板の作製)
 径φ6インチのサファイア基板1上に、0.3μmのアルミナ膜2をスパッタリング法で成膜した後、MOCVD法で厚さ2μmの窒化ガリウムからなる種結晶膜3を成膜し、種結晶基板を得た。
Example 1
(Preparation of a gallium nitride free-standing substrate)
An alumina film 2 of 0.3 μm in thickness is formed on a sapphire substrate 1 with a diameter of 6 inches by sputtering, and then a seed crystal film 3 of 2 μm in thickness made of gallium nitride is formed by MOCVD. Obtained.
 この種結晶基板を、窒素雰囲気のグローブボックス内でアルミナ坩堝の中に配置した。次に、Ga/Ga+Na(mol%)=15mol%となるように金属ガリウムと金属ナトリウムを、ドーパントとして金属ゲルマニウムをGaに対して3mol%を坩堝内に充填し、アルミナ板で蓋をした。その坩堝をステンレス製内容器に入れ、さらにそれを収納できるステンレス製外容器に入れて、蓋をした。この外容器を、予め真空ベークしてある結晶製造装置内の加熱部に設置されている回転台の上に配置し、耐圧容器に蓋をして密閉した。 The seed crystal substrate was placed in an alumina crucible in a nitrogen atmosphere glove box. Next, metallic gallium and metallic sodium were filled in a crucible so that Ga / Ga + Na (mol%) = 15 mol%, metallic germanium as a dopant was filled with 3 mol% of Ga with respect to Ga, and a lid was covered with an alumina plate. The crucible was placed in a stainless steel inner container and further put in a stainless steel outer container capable of containing it, and the lid was covered. The outer container was placed on a rotary table installed in a heating unit in a crystal manufacturing apparatus which has been vacuum baked in advance, and the pressure resistant container was covered and sealed.
 次いで、耐圧容器内を真空ポンプにて0.1Pa以下まで真空引きした。続いて、上段ヒータ、中段ヒータ及び下段ヒータを調節して加熱空間の温度を875℃になるように加熱しながら、4.0MPaまで窒素ガスボンベから窒素ガスを導入した。この際、窒素雰囲気中での圧力上昇速度を0.02MPa/minとし、窒素雰囲気中での温度上昇速度を8℃/minとした。外容器を中心軸周りに20rpmの速度で一定周期の時計回りと反時計回りで回転させた。加速時間=12秒、保持時間=600秒、減速時間=12秒、停止時間=0.5秒とした。そして、この状態で40時間保持した。その後、室温まで自然冷却して大気圧にまで減圧した後、耐圧容器の蓋を開けて中から坩堝を取り出した。坩堝の中の固化した金属ナトリウムを除去し、種結晶基板から剥離したクラックのない窒化ガリウム自立基板を回収した。 Subsequently, the inside of the pressure resistant container was evacuated to 0.1 Pa or less by a vacuum pump. Subsequently, nitrogen gas was introduced from a nitrogen gas cylinder to 4.0 MPa while heating the temperature of the heating space to 875 ° C. by adjusting the upper heater, middle heater and lower heater. At this time, the pressure increase rate in the nitrogen atmosphere was 0.02 MPa / min, and the temperature increase rate in the nitrogen atmosphere was 8 ° C./min. The outer container was rotated clockwise and counterclockwise at a constant speed of 20 rpm around the central axis. The acceleration time was 12 seconds, the holding time was 600 seconds, the deceleration time was 12 seconds, and the stop time was 0.5 seconds. And it hold | maintained in this state for 40 hours. Thereafter, the vessel was naturally cooled to room temperature and depressurized to the atmospheric pressure, and then the lid of the pressure container was opened and the bale was taken out from the inside. The solidified metallic sodium in the crucible was removed, and the crack-free gallium nitride free-standing substrate peeled off from the seed crystal substrate was recovered.
(評価)
 得られた窒化ガリウム基板について、弾性定数C11、密度、上面の転位密度、波長400~1500nmの光に対する吸収係数、および比抵抗率を測定した。測定結果を表1に示す。
(Evaluation)
With respect to the obtained gallium nitride substrate, the elastic constant C11, the density, the dislocation density on the upper surface, the absorption coefficient for light with a wavelength of 400 to 1500 nm, and the specific resistivity were measured. The measurement results are shown in Table 1.
 更に、窒化ガリウム自立基板の上面を研磨加工して、CL検出器付きの操作型電子顕微鏡(SEM)でCL観察した。その結果、図3に示すように、CL写真では窒化ガリウム結晶意内部に、白く発光する高輝度発光部が確認された。しかし、同時に、図9に示すように、同一視野をSEM観察したところ、ボイド等が確認されず、均質な窒化ガリウム結晶が成長していることが確認された。 Furthermore, the upper surface of the gallium nitride free-standing substrate was polished and CL was observed with a scanning electron microscope (SEM) equipped with a CL detector. As a result, as shown in FIG. 3, a high luminance light emitting portion emitting white light was confirmed inside the gallium nitride crystal in the CL photograph. However, at the same time, as shown in FIG. 9, when the same field of view was observed by SEM, no void etc. were confirmed, and it was confirmed that a homogeneous gallium nitride crystal was grown.
 また、窒化ガリウム自立基板を、その上面に対して垂直な断面に切断し、切断面を研磨加工してCL検出器付きの走査電子顕微鏡(SEM)でCL観察した。その結果、図6に示すように、CL像では窒化ガリウム結晶内部に、白く発光する高輝度発光部が確認された。しかし、同時に、図7に示すように、同一視野をSEM観察したところ、ボイド等が確認されず、均質な窒化ガリウム結晶が成長していることが確認された。すなわち、13族元素窒化物結晶層の断面においても、上面と同様に、CL観察では高輝度発光部が存在しているが、SEMでは同じ視野にCL写真で見られる高輝度発光部と同一形状、もしくはそれに類する微構造が存在していなかった。 In addition, the gallium nitride free-standing substrate was cut into a cross section perpendicular to the upper surface, and the cut surface was polished and subjected to CL observation with a scanning electron microscope (SEM) equipped with a CL detector. As a result, as shown in FIG. 6, in the CL image, a high brightness light emitting portion emitting white light was confirmed inside the gallium nitride crystal. However, at the same time, as shown in FIG. 7, when the same field of view was observed by SEM, no void etc. were confirmed, and it was confirmed that a homogeneous gallium nitride crystal was grown. That is, even in the cross section of the group 13 element nitride crystal layer, the high brightness light emitting portion exists in CL observation as in the upper surface, but the same shape as the high brightness light emitting portion seen in the same field of view in the SEM There was no microstructure similar to it or that.
(表面チルト角の測定)
 窒化ガリウム結晶層の上面におけるX線ロッキングカーブの(0002)面反射の半値幅を測定した結果、73秒であった。
(Measurement of surface tilt angle)
It was 73 seconds as a result of measuring the half value width of (0002) plane reflection of the X ray rocking curve in the upper surface of a gallium nitride crystal layer.
(表面ツイスト角の測定)
 窒化ガリウム結晶層の上面におけるX線ロッキングカーブの(1000)面反射の半値幅を測定したところ、85秒であった。
(Measurement of surface twist angle)
It was 85 seconds when the half value width of (1000) plane reflection of the X-ray rocking curve in the upper surface of the gallium nitride crystal layer was measured.
(MOCVD法による発光機能層の成膜)
 MOCVD法を用いて、窒化ガリウム自立基板の上面にn型層として1050℃でSi原子濃度が5×1018/cmになるようにドーピングしたn-GaN層を1μm堆積した。次に発光層として750℃で多重量子井戸層を堆積した。具体的にはInGaNによる2.5nmの井戸層を5層、GaNによる10nmの障壁層を6層にて交互に積層した。次にp型層として950℃でMg原子濃度が1×1019/cmになるようにドーピングしたp-GaNを200nm堆積した。その後、MOCVD装置から取り出し、p型層のMgイオンの活性化処理として、窒素雰囲気中で800℃の熱処理を10分間行った。
(Deposition of light emitting functional layer by MOCVD method)
Using an MOCVD method, an n-type n-type layer was deposited 1 μm as an n-type layer at 1050 ° C. to have a Si atomic concentration of 5 × 10 18 / cm 3 as the n-type layer. Next, a multiple quantum well layer was deposited at 750 ° C. as a light emitting layer. Specifically, five layers of 2.5 nm well layers of InGaN and six layers of 10 nm of barrier layers of GaN were alternately stacked. Next, as a p-type layer, 200 nm of p-GaN doped at a temperature of 950 ° C. so that the Mg atom concentration is 1 × 10 19 / cm 3 was deposited. Thereafter, it was taken out of the MOCVD apparatus, and heat treatment at 800 ° C. in a nitrogen atmosphere was performed for 10 minutes as activation treatment of Mg ions in the p-type layer.
(発光素子の作製)
 フォトリソグラフィープロセスと真空蒸着法とを用いて、窒化ガリウム自立基板のn-GaN層及びp-GaN層とは反対側の面にカソード電極としてのTi/Al/Ni/Au膜をそれぞれ15nm、70nm、12nm、60nmの厚みでパターニングした。その後、オーム性接触特性を良好なものとするために、窒素雰囲気中での700℃の熱処理を30秒間行った。さらに、フォトリソグラフィープロセスと真空蒸着法とを用いて、p型層に透光性アノード電極としてNi/Au膜をそれぞれ6nm、12nmの厚みにパターニングした。その後、オーム性接触特性を良好なものとするために窒素雰囲気中で500℃の熱処理を30秒間行った。さらに、フォトリソグラフィープロセスと真空蒸着法とを用いて、透光性アノード電極としてのNi/Au膜の上面の一部領域に、アノード電極パッドとなるNi/Au膜をそれぞれ5nm、60nmの厚みにパターニングした。こうして得られた基板を切断してチップ化し、さらにリードフレームに実装して、縦型構造の発光素子を得た。
(Fabrication of light emitting element)
15 nm and 70 nm Ti / Al / Ni / Au film as cathode electrode on the opposite side of n-GaN layer and p-GaN layer of gallium nitride freestanding substrate by photolithography process and vacuum evaporation method It patterned in thickness of 12 nm and 60 nm. Thereafter, heat treatment at 700 ° C. in a nitrogen atmosphere was performed for 30 seconds in order to improve ohmic contact characteristics. Further, a Ni / Au film was patterned to a thickness of 6 nm and 12 nm as a light transmitting anode electrode in the p-type layer using a photolithography process and a vacuum evaporation method. Thereafter, a heat treatment at 500 ° C. was performed for 30 seconds in a nitrogen atmosphere in order to improve ohmic contact characteristics. Furthermore, using a photolithography process and a vacuum evaporation method, the Ni / Au film to be the anode electrode pad has a thickness of 5 nm and 60 nm, respectively, on a partial region of the upper surface of the Ni / Au film as the translucent anode electrode. Patterned. The substrate thus obtained was cut into chips, and then mounted on lead frames to obtain light emitting elements of a vertical structure.
(発光素子の評価)
 作製した素子から任意に選んだ100個の個体について、カソード電極とアノード電極間に通電し、I-V測定を行ったところ、90個について整流性が確認された。また、順方向の電流を流したところ、波長460nmの発光が確認された。
(Evaluation of light emitting element)
When current was applied between the cathode electrode and the anode electrode, and IV measurement was carried out for 100 individuals arbitrarily selected from the manufactured elements, rectification was confirmed for 90 pieces. In addition, when forward current flowed, emission of wavelength 460 nm was confirmed.
 次いで、作製した素子について、350mA駆動時の内部量子効率を測定し、測定結果を表1に示した。 Subsequently, the internal quantum efficiency at the time of 350 mA drive was measured about the produced element, and the measurement result was shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
(実施例2)
 実施例1と同様にして窒化ガリウム基板および発光素子を作製し、実施例1と同様にして各種特性を測定した。
 ただし、実施例1とは異なり、成長温度を870℃とし、窒素雰囲気中での圧力上昇速度を0.04MPa/minとし、窒素雰囲気中での温度上昇速度を10℃/minとした。得られた結果を表1に示す。
(Example 2)
A gallium nitride substrate and a light emitting device were produced in the same manner as in Example 1, and various characteristics were measured in the same manner as in Example 1.
However, unlike Example 1, the growth temperature was 870 ° C., the pressure increase rate in a nitrogen atmosphere was 0.04 MPa / min, and the temperature increase rate in a nitrogen atmosphere was 10 ° C./min. The obtained results are shown in Table 1.
(実施例3)
 実施例1と同様にして窒化ガリウム基板および発光素子を作製し、実施例1と同様にして各種特性を測定した。
 ただし、実施例1とは異なり、坩堝内に金属ゲルマニウムを充填せず、成長温度を865℃とし、窒素雰囲気中での圧力上昇速度を0.02MPa/minとし、窒素雰囲気中での温度上昇速度を12℃/minとした。得られた結果を表1に示す。
(Example 3)
A gallium nitride substrate and a light emitting device were produced in the same manner as in Example 1, and various characteristics were measured in the same manner as in Example 1.
However, unlike Example 1, the crucible is not filled with metallic germanium, the growth temperature is set to 865 ° C., the pressure increase rate in a nitrogen atmosphere is 0.02 MPa / min, and the temperature increase rate in a nitrogen atmosphere is determined. The temperature was 12 ° C./min. The obtained results are shown in Table 1.
(実施例4)
 実施例1と同様にして窒化ガリウム基板および発光素子を作製し、実施例1と同様にして各種特性を測定した。
 ただし、実施例1とは異なり、成長温度を860℃とし、窒素雰囲気中での圧力上昇速度を0.02MPa/minとし、窒素雰囲気中での温度上昇速度を8℃/minとした。得られた結果を表1に示す。
(Example 4)
A gallium nitride substrate and a light emitting device were produced in the same manner as in Example 1, and various characteristics were measured in the same manner as in Example 1.
However, unlike Example 1, the growth temperature was 860 ° C., the pressure increase rate in the nitrogen atmosphere was 0.02 MPa / min, and the temperature increase rate in the nitrogen atmosphere was 8 ° C./min. The obtained results are shown in Table 1.
(比較例1)
 以下のようにしてハイドライドVPE法によって窒化ガリウム基板を作製した。
 具体的には、III族原料として塩化ガリウム(GaCl)を用い、V族原料にアンモニア(NH)ガスを用い、ハイドライドVPE法によって窒化ガリウム結晶を育成した。種結晶基板をハイドライドVPEの成長装置にセットし、アンモニア雰囲気で成長温度1150℃に昇温した。成長温度が安定してから、HCl流量を40cc/毎分で供給し、NH流量1000cc/毎分、およびシラン、(SiH)流量0.01cc/毎分でn型のGaN結晶を成長させた。
(Comparative example 1)
A gallium nitride substrate was produced by the hydride VPE method as follows.
Specifically, gallium nitride crystal was grown by a hydride VPE method using gallium chloride (GaCl) as a group III raw material and using ammonia (NH 3 ) gas as a group V raw material. The seed crystal substrate was set in a hydride VPE growth apparatus, and heated to a growth temperature of 1150 ° C. in an ammonia atmosphere. After the growth temperature is stabilized, supply the HCl flow rate at 40 cc / min, grow the n-type GaN crystal with NH 3 flow rate 1000 cc / min, and silane, (SiH 4 ) flow rate 0.01 cc / min. The
 この状態で4時間保持して、アンモニアガス雰囲気で常温まで冷却し、成長装置より取り出したところ、窒化ガリウム結晶は約300ミクロン成長していた。 When held in this state for 4 hours, cooled to normal temperature in an ammonia gas atmosphere and taken out from the growth apparatus, gallium nitride crystals were grown to about 300 microns.
 得られた窒化ガリウム結晶を、実施例1と同様にして種結晶基板から分離し、窒化ガリウム基板を得た。得られた窒化ガリウム基板について、弾性定数C11、密度、上面の転位密度、波長400~1500nmの光に対する吸収係数、各原子の含有量、および比抵抗率を測定した。測定結果を表1に示す。また、実施例1と同様にして発光素子を作製し、発光効率の測定結果を表1に示す。 The obtained gallium nitride crystal was separated from the seed crystal substrate in the same manner as in Example 1 to obtain a gallium nitride substrate. The elastic constant C11, the density, the dislocation density on the upper surface, the absorption coefficient for light with a wavelength of 400 to 1500 nm, the content of each atom, and the specific resistivity were measured for the obtained gallium nitride substrate. The measurement results are shown in Table 1. Further, a light emitting element was produced in the same manner as in Example 1, and the measurement result of luminous efficiency is shown in Table 1.
(比較例2)
比較例1と同様にして窒化ガリウム基板および発光素子を作製し、各種特性を測定した。
 ただし、比較例1とは異なり、成長温度を1130℃とした。得られた結果を表1に示す。
(Comparative example 2)
A gallium nitride substrate and a light emitting device were produced in the same manner as in Comparative Example 1, and various characteristics were measured.
However, unlike the comparative example 1, the growth temperature was set to 1130 ° C. The obtained results are shown in Table 1.

Claims (17)

  1.  上面及び底面を有する窒化ガリウム基板であって、
     前記上面をカソードルミネッセンスによって観測したときに、線状の高輝度発光部と、前記高輝度発光部に隣接する低輝度発光領域とを有しており、弾性定数C11が200GPa以上、290GPa以下であることを特徴とする、窒化ガリウム基板。
    A gallium nitride substrate having a top surface and a bottom surface,
    When the upper surface is observed by cathode luminescence, it has a linear high luminance light emitting portion and a low luminance light emitting region adjacent to the high luminance light emitting portion, and the elastic constant C11 is 200 GPa or more and 290 GPa or less A gallium nitride substrate characterized by
  2.  密度が6.0g/cm3以上、6.2g/cm3以下であることを特徴とする、請求項1記載の窒化ガリウム基板。 The gallium nitride substrate according to claim 1, wherein the density is 6.0 g / cm 3 or more and 6.2 g / cm 3 or less.
  3.  転位密度が1×106cm-2以下であることを特徴とする、請求項1または2記載の窒化ガリウム基板。 3. The gallium nitride substrate according to claim 1, wherein the dislocation density is 1 × 10 6 cm −2 or less.
  4.  波長400~1500nmの光に対する吸収係数が4cm-1以下であることを特徴とする、請求項1~3のいずれか一つの請求項に記載の窒化ガリウム基板。 The gallium nitride substrate according to any one of claims 1 to 3, which has an absorption coefficient of 4 cm -1 or less for light having a wavelength of 400 to 1,500 nm.
  5.  比抵抗率が102Ωcm以下であることを特徴とする、請求項1~4のいずれか一つの請求項に記載の窒化ガリウム基板。 The gallium nitride substrate according to any one of claims 1 to 4, which has a resistivity of 10 2 Ωcm or less.
  6.  前記高輝度発光部が前記窒化ガリウム基板を構成する窒化ガリウム結晶のm面に沿って延びている部分を含むことを特徴とする、請求項1~5のいずれか一つの請求項に記載の窒化ガリウム基板。 The nitride according to any one of claims 1 to 5, wherein the high-intensity light emitting portion includes a portion extending along an m-plane of a gallium nitride crystal constituting the gallium nitride substrate. Gallium substrate.
  7.  前記高輝度発光部が概ね前記窒化ガリウム結晶の前記m面に沿って延びていることを特徴とする、請求項6記載の窒化ガリウム基板。 The gallium nitride substrate according to claim 6, wherein the high brightness light emitting portion extends substantially along the m plane of the gallium nitride crystal.
  8.  前記上面におけるX線ロッキングカーブの(0002)面反射の半値幅が3000秒以下、20秒以上であることを特徴とする、請求項1~7のいずれか一つの請求項に記載の窒化ガリウム基板。 The gallium nitride substrate according to any one of claims 1 to 7, wherein the half width of (0002) plane reflection of the X-ray rocking curve on the upper surface is 3000 seconds or less and 20 seconds or more. .
  9.  前記窒化ガリウム基板の前記上面に略垂直な断面においてボイドが観測されないことを特徴とする、請求項1~8のいずれか一つの請求項に記載の窒化ガリウム基板。 The gallium nitride substrate according to any one of claims 1 to 8, wherein no void is observed in a cross section substantially perpendicular to the upper surface of the gallium nitride substrate.
  10.  前記高輝度発光部が連続相を形成しており、前記低輝度発光領域が前記高輝度発光部によって区画された不連続相を形成していることを特徴とする、請求項1~9のいずれか一つの請求項に記載の窒化ガリウム基板。 10. The high-intensity light emitting portion forms a continuous phase, and the low-intensity light emitting region forms a discontinuous phase partitioned by the high-intensity light emitting portion. A gallium nitride substrate according to any one of the claims.
  11. 前記上面におけるX線ロッキングカーブの(1000)面反射の半値幅が10000秒以下、20秒以上であることを特徴とする、請求項1~10のいずれか一つの請求項に記載の窒化ガリウム基板。 The gallium nitride substrate according to any one of claims 1 to 10, wherein the half value width of (1000) plane reflection of the X-ray rocking curve on the upper surface is 10000 seconds or less and 20 seconds or more. .
  12.  請求項1~11のいずれか一つの請求項に記載の窒化ガリウム基板からなることを特徴とする、自立基板。 A freestanding substrate comprising the gallium nitride substrate according to any one of claims 1 to 11.
  13.  請求項12記載の自立基板および
     前記窒化ガリウム基板の前記上面上に設けられた機能層を有することを特徴とする、機能素子。
    A functional device comprising: the self-supporting substrate according to claim 12; and a functional layer provided on the upper surface of the gallium nitride substrate.
  14.  前記機能層の機能が、発光機能、整流機能または電力制御機能であることを特徴とする、請求項13記載の機能素子。 The functional device according to claim 13, wherein the function of the functional layer is a light emitting function, a rectifying function or a power control function.
  15.  支持基板、および
     前記支持基板上に設けられた請求項1~11のいずれか一つの請求項に記載の窒化ガリウム基板
    を備えていることを特徴とする、複合基板。
    A composite substrate, comprising: a support substrate; and the gallium nitride substrate according to any one of claims 1 to 11 provided on the support substrate.
  16.  請求項15記載の複合基板、および
     前記窒化ガリウム基板の前記上面上に設けられた機能層を有することを特徴とする、機能素子。
    A functional element comprising: the composite substrate according to claim 15; and a functional layer provided on the upper surface of the gallium nitride substrate.
  17.  前記機能層の機能が、発光機能、整流機能または電力制御機能であることを特徴とする、請求項16記載の機能素子。 The functional device according to claim 16, wherein the function of the functional layer is a light emitting function, a rectifying function or a power control function.
PCT/JP2018/030222 2017-08-24 2018-08-13 Gallium nitride substrate, self-supporting substrate, and functional element WO2019039342A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019537568A JP7160815B2 (en) 2017-08-24 2018-08-13 Gallium nitride substrates, free-standing substrates and functional devices

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
PCT/JP2017/030373 WO2019038892A1 (en) 2017-08-24 2017-08-24 Group 13 element nitride layer, freestanding substrate and functional element
JPPCT/JP2017/030373 2017-08-24
JPPCT/JP2017/034035 2017-09-21
PCT/JP2017/034035 WO2019038933A1 (en) 2017-08-24 2017-09-21 Group 13 element nitride layer, freestanding substrate and functional element
JP2018-061011 2018-03-28
JP2018061011 2018-03-28

Publications (1)

Publication Number Publication Date
WO2019039342A1 true WO2019039342A1 (en) 2019-02-28

Family

ID=65438853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030222 WO2019039342A1 (en) 2017-08-24 2018-08-13 Gallium nitride substrate, self-supporting substrate, and functional element

Country Status (2)

Country Link
JP (1) JP7160815B2 (en)
WO (1) WO2019039342A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012126641A (en) * 2012-03-19 2012-07-05 Sumitomo Electric Ind Ltd GaN SINGLE CRYSTAL AND METHOD FOR PRODUCING THE SAME
WO2015137266A1 (en) * 2014-03-10 2015-09-17 日本碍子株式会社 Method for producing nitride crystal
JP2016001650A (en) * 2014-06-11 2016-01-07 日本碍子株式会社 Group 13 element nitride crystal layer and function element
WO2016093033A1 (en) * 2014-12-11 2016-06-16 日本碍子株式会社 Group 13 element nitride crystal layer and function element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012126641A (en) * 2012-03-19 2012-07-05 Sumitomo Electric Ind Ltd GaN SINGLE CRYSTAL AND METHOD FOR PRODUCING THE SAME
WO2015137266A1 (en) * 2014-03-10 2015-09-17 日本碍子株式会社 Method for producing nitride crystal
JP2016001650A (en) * 2014-06-11 2016-01-07 日本碍子株式会社 Group 13 element nitride crystal layer and function element
WO2016093033A1 (en) * 2014-12-11 2016-06-16 日本碍子株式会社 Group 13 element nitride crystal layer and function element

Also Published As

Publication number Publication date
JPWO2019039342A1 (en) 2020-09-17
JP7160815B2 (en) 2022-10-25

Similar Documents

Publication Publication Date Title
US11088299B2 (en) Group 13 element nitride layer, free-standing substrate and functional element
US11611017B2 (en) Group 13 element nitride layer, free-standing substrate and functional element
US11555257B2 (en) Group 13 element nitride layer, free-standing substrate and functional element
US20200203573A1 (en) Group 13 element nitride layer, free-standing substrate and functional element
WO2021049170A1 (en) Method for producing group 13 element nitride crystal layer, and seed crystal substrate
JP6764035B2 (en) Group 13 element nitride layer, self-supporting substrate and functional element
JP7160815B2 (en) Gallium nitride substrates, free-standing substrates and functional devices
JP2019172488A (en) Gallium nitride substrate, free-standing substrate and functional element
JP6851485B2 (en) Group 13 element nitride layer, self-supporting substrate and functional element
JP6851486B2 (en) Group 13 element nitride layer, self-supporting substrate and functional element
JP6854902B2 (en) Group 13 element nitride layer, self-supporting substrate and functional element
JP2020073438A (en) Group 13 element nitride crystal layer, free-standing substrate, and function element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18848063

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019537568

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18848063

Country of ref document: EP

Kind code of ref document: A1