WO2019039146A1 - Torque detector - Google Patents

Torque detector Download PDF

Info

Publication number
WO2019039146A1
WO2019039146A1 PCT/JP2018/027075 JP2018027075W WO2019039146A1 WO 2019039146 A1 WO2019039146 A1 WO 2019039146A1 JP 2018027075 W JP2018027075 W JP 2018027075W WO 2019039146 A1 WO2019039146 A1 WO 2019039146A1
Authority
WO
WIPO (PCT)
Prior art keywords
strain
base plate
strain sensor
torque detector
torque
Prior art date
Application number
PCT/JP2018/027075
Other languages
French (fr)
Japanese (ja)
Inventor
祐希 瀬戸
石倉 義之
里奈 小笠原
Original Assignee
アズビル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アズビル株式会社 filed Critical アズビル株式会社
Priority to KR1020207002935A priority Critical patent/KR102332884B1/en
Priority to CN201880051952.2A priority patent/CN111033199A/en
Publication of WO2019039146A1 publication Critical patent/WO2019039146A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/108Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving resistance strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating

Definitions

  • the present invention relates to a torque detector that detects torque applied to a rotating shaft.
  • a metal strain gauge is attached to the peripheral surface of the rotating shaft as one of the methods to detect the torque applied to the rotating shaft, and the magnitude of shear stress generated on the peripheral surface of the rotating shaft by torque
  • the sensitivity is improved by reducing the shaft diameter of the strain generating portion in the rotating shaft to lower the torsional rigidity (for example, a patent). Reference 1).
  • the present invention has been made to solve the problems as described above, and it is an object of the present invention to provide a torque detector that improves the detection accuracy of torque.
  • the torque detector according to the present invention includes two flanges and a rotary shaft provided between the two flanges and having a strained portion having a smaller shaft diameter than the two flanges.
  • a base plate fixed across two flanges, a strain sensor mounted at a position opposite to the strained portion of the base plate, and both sides facing the strained portion of the base plate, the width of the strain sensor And a recessed portion narrower than the recessed portion.
  • FIGS. 1A and 1B are diagrams showing a configuration example of a torque detector according to Embodiment 1 of the present invention (a diagram showing a state in which a strain sensor is attached to a rotary shaft via a base plate), 1A is a side view and FIG. 1B is a perspective view seen from above.
  • FIGS. 2A to 2C are diagrams showing a configuration example of the strain sensor according to the first embodiment of the present invention, FIG. 2A is a top view, FIG. 2B is a side view, and FIG. FIG. FIG. FIG. 3A is a top view showing an arrangement example of the resistance gauges according to the first embodiment of the present invention, and FIG.
  • FIG. 3B is a view showing a construction example of a full bridge circuit composed of the resistance gauges shown in FIG. 3A. It is a flowchart which shows an example of the manufacturing method of the distortion sensor in Embodiment 1 of this invention. It is a top view (figure which shows the state in which the distortion sensor was mounted) which shows the structural example of the base board in Embodiment 1 of this invention.
  • 6A and 6B are diagrams for explaining the basic operation principle of the torque detector, FIG. 6A is a side view showing a torque applied to the rotating shaft, and FIG. 6B is a strain sensor based on the torque shown in FIG. It is a figure which shows an example of the stress distribution which generate
  • FIG. 7A and 7B are diagrams showing the effect of the torque detector according to the first embodiment of the present invention
  • FIG. 7A is a diagram showing the width (necking width) between the recesses of the base plate
  • FIG. It is a figure which shows an example of the relationship between a constriction width and the sensitivity of a torque detector.
  • It is sectional drawing (figure which shows the state in which the strain sensor was attached to the rotating shaft via the base board) which shows another structural example of the rotating shaft in Embodiment 1 of this invention.
  • 9A to 9C are top views showing another example of arrangement of the resistance gauges according to the first embodiment of the present invention.
  • FIG. 10A is a top view showing another arrangement example of the resistance gauge in accordance with the first embodiment of the present invention, and FIG.
  • 10B is a view showing a construction example of a half bridge circuit constituted by the resistance gauge shown in FIG. 10A.
  • 11A to 11C are back views showing another configuration example of the silicon layer in the first embodiment of the present invention.
  • 12A and 12B are top views (figures showing a state in which a strain sensor is mounted) showing another configuration example of the base plate in the first embodiment of the present invention.
  • FIG. 1 is a view showing a configuration example of a torque detector according to Embodiment 1 of the present invention.
  • FIG. 1 shows a state in which the strain sensor 1 is attached to the rotating shaft 5 via the base plate 2.
  • a drive system 6 such as a motor is connected to one end in the axial direction, and a load system such as a robot hand is connected to the other end.
  • the rotary shaft 5 has a flange portion 51, a flange portion 52, and a strain generating portion 53.
  • the shaft of the drive system 6 is joined to one end in the axial direction.
  • the shaft of the load system is joined to one end in the axial direction.
  • the strain generating portion 53 is provided between the flange portion 51 and the flange portion 52, and has a smaller shaft diameter than the flange portion 51 and the flange portion 52.
  • the shaft diameter of the strain generating portion 53 is set to the minimum diameter capable of maintaining the rigidity necessary for the rotating shaft 5.
  • One end of the strain generating portion 53 in the axial direction is connected to the other end of the flange portion 51, and the other end is connected to the other end of the flange portion 52.
  • the rotary shaft 5 is configured as an H-type straining member having the strained portion 53 having a smaller shaft diameter than the flange portion 51 and the flange portion 52 between the flange portion 51 and the flange portion 52. .
  • the torque detector detects the torque applied to the rotating shaft 5.
  • the torque detector comprises a strain sensor 1 and a base plate 2 as shown in FIG. Below, the case where a semiconductor strain gauge is used as the strain sensor 1 is shown.
  • the strain sensor 1 is a semiconductor strain gauge attached to the rotating shaft 5 via the base plate 2 and outputting a voltage according to external shear stress (tensile stress and compressive stress).
  • the strain sensor 1 is realized by MEMS (Micro Electro Mechanical Systems).
  • the strain sensor 1 is mounted at a position facing the strain generating portion 53 of the base plate 2.
  • the strain sensor 1 has a silicon layer (substrate layer) 11 and an insulating layer 12 as shown in FIGS.
  • the silicon layer 11 is a single crystal silicon in which strain is generated in response to an external force, and is a sensor layer having a Wheatstone bridge circuit composed of a plurality of resistance gauges (diffusion resistances) 13.
  • a groove 111 is formed in the center of the back surface (one surface) of the silicon layer 11.
  • the thin portion 112 is formed in the silicon layer 11 by the groove portion 111.
  • the resistance gauge 13 is formed on the thin portion 112.
  • the thickness of the thin portion 112 is appropriately designed in accordance with the rigidity and the like of the silicon layer 11. For example, when the rigidity of the silicon layer 11 is low, the thin portion 112 is thick, and when the rigidity of the silicon layer 11 is high, the thin portion 112 is thin.
  • the resistance gauge 13 is formed, for example, in the ⁇ 110> direction of the silicon layer 11 whose crystal orientation on the surface is (100).
  • four resistance gauges 13 (R1 to R4) constituting a full bridge circuit (Wheatstone bridge circuit) are formed in a diagonal direction (45 degrees direction) with respect to the side direction of the silicon layer 11. Shows the case of detecting shear stress in two directions.
  • the above-mentioned oblique direction is not limited to 45 degrees direction, but the characteristic of distortion sensor 1 46 degrees direction etc) is acceptable.
  • the insulating layer 12 is a pedestal whose upper surface is joined to the back surface of the silicon layer 11 and whose back surface is joined to the rotary shaft 5.
  • glass or sapphire can be used as the insulating layer 12.
  • step ST1 a plurality of resistance gauges 13 are formed on the silicon layer 11 by ion implantation (step ST1). Then, a plurality of resistance gauges 13 form a Wheatstone bridge circuit. Next, the groove portion 111 is formed on the back surface of the silicon layer 11 by etching (step ST2). Thereby, the portion of the silicon layer 11 where the resistance gauge 13 is formed is made to be the thin portion 112. Next, the back surface of the silicon layer 11 and the top surface of the insulating layer 12 are bonded by, for example, anodic bonding (step ST3).
  • the base plate 2 is a plate member on which the strain sensor 1 is mounted and directly fixed to the flange portion 51 and the flange portion 52.
  • a metal member such as Kovar can be used.
  • FIG. 1 shows the case where the base plate 2 is fixed across the peripheral surfaces of the flange portion 51 and the flange portion 52.
  • a recess 21 is formed at the center of both side surfaces facing the strain generating portion 53.
  • the recess 21 is narrower than the width of the strain sensor 1.
  • the recess 21 is configured to be narrower than the space between the flange portion 51 and the flange portion 52 (the interval in the axial direction).
  • the strain sensor 1 manufactured as described above is attached to the base plate 2
  • the back surface of the insulating layer 12 and the base plate 2 are joined by, for example, solder bonding.
  • solder bonding is performed after the back surface of the insulating layer 12 and the bonding portion of the base plate 2 are metallized.
  • the base plate 2 is attached to the rotary shaft 5, it is joined by, for example, solder bonding in the same manner as described above.
  • the strain sensor 1 is disposed such that the resistance gauge 13 is directed obliquely (45 degrees) with respect to the axial direction of the rotating shaft 5. That is, the resistance gauge 13 is disposed so as to face the generation direction of the shear stress generated when the torque is applied to the rotating shaft 5.
  • the above-mentioned oblique direction is not limited to 45 degrees direction, but the characteristic of distortion sensor 1 46 degrees direction etc) is acceptable.
  • FIG. 6A the drive system 6 is connected to one end of the rotary shaft 5 to which the strain sensor 1 is attached, and a state where torque is applied to the rotary shaft 5 by the drive system 6 is shown.
  • FIG. 6 the case where the strain sensor 1 is directly attached to the rotating shaft 5 using the cylindrical rotating shaft 5 is shown.
  • FIG. 6A by applying torque to the rotating shaft 5, the strain sensor 1 attached to the rotating shaft 5 is distorted, and shear stress as shown in FIG. 6B is generated on the surface of the strain sensor 1. .
  • FIG. 6 shows that the deeper the color, the stronger the tensile stress, and the lighter the color, the stronger the compressive stress.
  • And resistance gauge 13 which turned to a diagonal direction (45 degrees direction) to the axial direction of axis of rotation 5 changes resistance value according to this shear stress, and strain sensor 1 changes according to change of resistance value. Output voltage.
  • the torque detector detects the torque applied to the rotating shaft 5 from the voltage output by the strain sensor 1.
  • the strain sensor 1 is disposed radially outward of the strain generating portion 53 via the base plate 2 with respect to the rotary shaft 5, which is an H-type strain generating body. .
  • the allowable torque can be secured, and the strain sensor 1 can be effectively distorted. That is, the magnitude of distortion generated when torque is applied to the rotating shaft 5 increases in the radially outward direction from the axial center. Therefore, by disposing the strain sensor 1 at a position away from the axial center, the detection sensitivity to the torque applied to the rotating shaft 5 is improved.
  • the base plate 2 is disposed radially outward of the strain generating portion 53, whereby the mounting of the base plate 2 is facilitated.
  • the recess 21 is formed on both side surfaces of the base plate 2 facing the strained portion 53, and the recess 21 is narrower than the width of the strain sensor 1.
  • the transmission efficiency when the deformation of the rotary shaft 5 is transmitted to the strain sensor 1 decreases.
  • the base plate 2 is easily distorted in the rotational direction, and by causing deformation in a region narrower than the width (chip length) of the strain sensor 1, the rotary shaft 5 Sensitivity to torque applied to the Further, the recess 21 is configured to be narrower than the space between the flange portion 51 and the flange portion 52 (the interval in the axial direction). As a result, the deformation of the base plate 2 can be locally concentrated, the amount of strain is increased, and the detection sensitivity to the torque applied to the rotating shaft 5 is improved.
  • FIG. 7 shows the effect of the torque detector according to the first embodiment.
  • variety between the recessed parts 21 of the base board 2 be constriction width w.
  • the relationship between the constriction width w and the sensitivity of the torque detector is, for example, as shown in FIG. 7B.
  • FIG. 7B shows the relationship between the constriction width ratio and the sensitivity ratio, where the constriction width ratio is 1 when there is no constriction in the base plate 2 (there is no recess 21), and the sensitivity ratio at that time is 1. .
  • FIG. 7B it can be seen that by providing the recess 21 in the base plate 2, the sensitivity ratio of the torque detector is improved.
  • the strain sensor 1 is easy to handle, and there are few restrictions on the process device.
  • the thin portion 112 is formed by forming the groove portion 111 in the center of the back surface of the silicon layer 11, and the resistance gauge 13 is formed in the thin portion 112. Thereby, the stress can be concentrated on the thin portion 112 in which the resistance gauge 13 is formed, and the detection sensitivity to the torque applied to the rotating shaft 5 is improved.
  • the present invention is not limited to this, as long as the strain sensor 1 is disposed so as to be opposed to the radially outer side than the strain generating portion 53. Therefore, for example, as shown in FIG. 8, the storage groove 54 may be formed on the peripheral surface of the rotating shaft 5 (flanges 51 and 52), and the base plate 2 may be stored in the storage groove 54.
  • the arrangement of the four resistance gauges 13 is not limited to the arrangement shown in FIG. 3, but may be an arrangement as shown in FIG. 9, for example.
  • a full bridge circuit composed of four resistance gauges 13 (R1 to R4) is used as the Wheatstone bridge circuit is shown.
  • the present invention is not limited to this, and as shown in FIG. 10, a half bridge circuit composed of two resistance gauges 13 (R1 and R2) may be used as a Wheatstone bridge circuit.
  • R in FIG. 10B is a fixed resistance.
  • a communication groove portion 113 may be formed on the back surface of the silicon layer 11 so as to communicate the groove portion 111 with the side surface of the silicon layer 11.
  • a temperature of about 400 ° C. is applied by anodic bonding. Therefore, when the communication groove portion 113 is not present, the air present in the groove portion 111 between the silicon layer 11 and the insulating layer 12 is sealed in a high temperature state at the time of anodic bonding, and when the temperature drops to normal temperature As a result, the thin-walled portion 112 may be deformed and the zero point of the strain sensor 1 may be displaced.
  • the communication groove portion 113 air present in the groove portion 111 can be released to the outside at the time of anodic bonding, and deformation of the thin portion 112 can be avoided.
  • the silicon layer 11 needs to be configured so as to be partially thinned by the groove portion 111 and the communication groove portion 113 so as not to be entirely thinned.
  • the silicon layer 11 was used as a board
  • substrate layer was shown in the above, it does not restrict to this, and should just be a member which distortion produces according to external force.
  • an insulator such as glass
  • the resistance gauge 13 is formed by depositing a film on the insulator by sputtering or the like.
  • the resistance gauge 13 is formed by sputtering the metal via an insulating film.
  • the silicon layer 11 may be used as a substrate layer, and the resistance gauge 13 may be formed on the silicon layer 11 by sputtering or the like.
  • the gauge factor is higher than that of a general metal strain gauge. Further, when the resistance gauge 13 is formed by film formation, the gauge ratio does not change depending on the crystal orientation as opposed to the case where the resistance gauge 13 is formed in the silicon layer 11 by ion implantation, that is, the direction needs to be limited. There is no On the other hand, the gauge factor is 4 to 10 times higher in the case where the resistance gauge 13 is formed by ion implantation in the silicon layer 11 than when the resistance gauge 13 is formed by film formation.
  • the recess 21 may be configured to have a semicircular shape as shown in FIG. 12A or a shape having R at the corners as shown in FIG. 12B.
  • the base plate 2 when the base plate 2 is deformed, stress concentrates on the corners of the recess 21. Therefore, stress dispersion and stress relaxation can be achieved when the base plate 2 is deformed by forming the recess 21 in a semicircular shape or in a shape having R at the corner.
  • the present invention is not limited to this, and semiconductor strain cages of other shapes may be used.
  • another strain gauge for example, a metal strain gauge
  • the base plate 2 also plays a role of adjusting the rigidity of the strain sensor 1.
  • the torque detector according to the present invention is suitable for use in a torque detector that detects a torque applied to a rotating shaft, because the detection accuracy of the torque is improved.

Abstract

The present invention is provided with: a base plate (2) fixed across two flange parts (51, 52) to a rotary shaft body (5) which has the two flange parts (51, 52) and a strain generating part (53) provided between the two flange parts (51, 52) and having a smaller diameter than the two flange parts (51, 52); a strain sensor (1) mounted at a position, facing the strain generating part (53), on the base plate (2); and a recess part (21) formed on both strain generating part-facing surfaces of the base plate (2) and having a smaller width than the strain sensor (1).

Description

トルク検出器Torque detector
 この発明は、回転軸体に加わるトルクを検出するトルク検出器に関する。 The present invention relates to a torque detector that detects torque applied to a rotating shaft.
 回転軸体に加わるトルクを検出する方式の一つとして、回転軸体の周面に金属歪ゲージを取付け、トルクにより回転軸体の周面に生じるせん断応力の大きさを、金属歪ゲージにおける抵抗値変化により検出する方式がある。
 この方式において、微小なトルク変化を精度よく検出する場合には、回転軸体における起歪部の軸径を小さくしてねじれ剛性を低くすることで、感度を向上させる手法が取られる(例えば特許文献1参照)。
A metal strain gauge is attached to the peripheral surface of the rotating shaft as one of the methods to detect the torque applied to the rotating shaft, and the magnitude of shear stress generated on the peripheral surface of the rotating shaft by torque There is a method of detecting by value change.
In this method, in order to detect a minute torque change with high accuracy, the sensitivity is improved by reducing the shaft diameter of the strain generating portion in the rotating shaft to lower the torsional rigidity (for example, a patent). Reference 1).
特開2002-139391号公報Japanese Patent Laid-Open No. 2002-139391
 しかしながら、回転軸体の起歪部の軸径を小さくして剛性が下がると、応力増大によるヒステリシスの問題(感度とヒステリシスとのトレードオフの問題)が発生し、精度の向上は望めない。
 また、駆動系及び負荷系との接続の都合上必要な回転軸体の外形サイズに対し、起歪部の軸径を小さくした場合、狭く奥まった箇所に金属歪ゲージを取付けることになる。よって、金属歪ゲージを位置精度よく均一に取付けることが難しいという課題がある。
However, if the shaft diameter of the strain generating portion of the rotating shaft is reduced to lower the rigidity, a problem of hysteresis due to stress increase (a problem of trade-off between sensitivity and hysteresis) occurs, and improvement in accuracy can not be expected.
In addition, when the shaft diameter of the strain generating portion is reduced with respect to the external size of the rotary shaft necessary for the connection with the drive system and the load system, a metal strain gauge is attached to the narrow and recessed portion. Therefore, there is a problem that it is difficult to uniformly attach the metal strain gauges with high positional accuracy.
 この発明は、上記のような課題を解決するためになされたもので、トルクの検出精度が向上するトルク検出器を提供することを目的としている。 The present invention has been made to solve the problems as described above, and it is an object of the present invention to provide a torque detector that improves the detection accuracy of torque.
 この発明に係るトルク検出器は、2つのフランジ部、及び、当該2つのフランジ部の間に設けられ、当該2つのフランジ部より軸径が小さい起歪部を有する回転軸体に対し、当該2つのフランジ部に跨って固定されたベース板と、ベース板の起歪部に対向する位置に搭載された歪センサと、ベース板の起歪部に対向する両側面に形成され、歪センサの幅よりも狭い凹部とを備えたことを特徴とする。 The torque detector according to the present invention includes two flanges and a rotary shaft provided between the two flanges and having a strained portion having a smaller shaft diameter than the two flanges. A base plate fixed across two flanges, a strain sensor mounted at a position opposite to the strained portion of the base plate, and both sides facing the strained portion of the base plate, the width of the strain sensor And a recessed portion narrower than the recessed portion.
 この発明によれば、上記のように構成したので、トルクの検出精度が向上する。 According to this invention, since it comprised as mentioned above, detection accuracy of a torque improves.
図1A,図1Bは、この発明の実施の形態1に係るトルク検出器の構成例を示す図(歪センサがベース板を介して回転軸体に取付けられた状態を示す図)であり、図1Aは側面図であり、図1Bは上方から見た斜視図である。FIGS. 1A and 1B are diagrams showing a configuration example of a torque detector according to Embodiment 1 of the present invention (a diagram showing a state in which a strain sensor is attached to a rotary shaft via a base plate), 1A is a side view and FIG. 1B is a perspective view seen from above. 図2A~図2Cは、この発明の実施の形態1における歪センサの構成例を示す図であり、図2Aは上面図であり、図2Bは側面図であり、図2CはA-A’線断面図である。FIGS. 2A to 2C are diagrams showing a configuration example of the strain sensor according to the first embodiment of the present invention, FIG. 2A is a top view, FIG. 2B is a side view, and FIG. FIG. 図3Aはこの発明の実施の形態1における抵抗ゲージの配置例を示す上面図であり、図3Bは図3Aに示す抵抗ゲージにより構成されるフルブリッジ回路の構成例を示す図である。FIG. 3A is a top view showing an arrangement example of the resistance gauges according to the first embodiment of the present invention, and FIG. 3B is a view showing a construction example of a full bridge circuit composed of the resistance gauges shown in FIG. 3A. この発明の実施の形態1における歪センサの製造方法の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing method of the distortion sensor in Embodiment 1 of this invention. この発明の実施の形態1におけるベース板の構成例を示す上面図(歪センサが搭載された状態を示す図)である。It is a top view (figure which shows the state in which the distortion sensor was mounted) which shows the structural example of the base board in Embodiment 1 of this invention. 図6A、図6Bは、トルク検出器の基本動作原理を説明する図であり、図6Aは回転軸体に加えられたトルクを示す側面図であり、図6Bは図6Aに示すトルクにより歪センサに発生した応力分布の一例を示す図である。6A and 6B are diagrams for explaining the basic operation principle of the torque detector, FIG. 6A is a side view showing a torque applied to the rotating shaft, and FIG. 6B is a strain sensor based on the torque shown in FIG. It is a figure which shows an example of the stress distribution which generate | occur | produced in. 図7A、図7Bは、この発明の実施の形態1に係るトルク検出器の効果を示す図であり、図7Aはベース板の凹部間の幅(くびれ幅)を示す図であり、図7Bはくびれ幅とトルク検出器の感度との関係の一例を示す図である。FIGS. 7A and 7B are diagrams showing the effect of the torque detector according to the first embodiment of the present invention, FIG. 7A is a diagram showing the width (necking width) between the recesses of the base plate, and FIG. It is a figure which shows an example of the relationship between a constriction width and the sensitivity of a torque detector. この発明の実施の形態1における回転軸体の別の構成例を示す断面図(歪センサがベース板を介して回転軸体に取付けられた状態を示す図)である。It is sectional drawing (figure which shows the state in which the strain sensor was attached to the rotating shaft via the base board) which shows another structural example of the rotating shaft in Embodiment 1 of this invention. 図9A~図9Cは、この発明の実施の形態1における抵抗ゲージの別の配置例を示す上面図である。9A to 9C are top views showing another example of arrangement of the resistance gauges according to the first embodiment of the present invention. 図10Aはこの発明の実施の形態1における抵抗ゲージの別の配置例を示す上面図であり、図10Bは図10Aに示す抵抗ゲージにより構成されるハーフブリッジ回路の構成例を示す図である。FIG. 10A is a top view showing another arrangement example of the resistance gauge in accordance with the first embodiment of the present invention, and FIG. 10B is a view showing a construction example of a half bridge circuit constituted by the resistance gauge shown in FIG. 10A. 図11A~図11Cは、この発明の実施の形態1におけるシリコン層の別の構成例を示す裏面図である。11A to 11C are back views showing another configuration example of the silicon layer in the first embodiment of the present invention. 図12A、図12Bは、この発明の実施の形態1におけるベース板の別の構成例を示す上面図(歪センサが搭載された状態を示す図)である。12A and 12B are top views (figures showing a state in which a strain sensor is mounted) showing another configuration example of the base plate in the first embodiment of the present invention.
 以下、この発明の実施の形態について図面を参照しながら詳細に説明する。
実施の形態1.
 図1はこの発明の実施の形態1に係るトルク検出器の構成例を示す図である。図1では、歪センサ1がベース板2を介して回転軸体5に取付けられた状態を示している。
 回転軸体5は、軸方向における一端にモータ等の駆動系6が接続され、他端にロボットハンド等の負荷系が接続される。この回転軸体5は、図1に示すように、フランジ部51、フランジ部52及び起歪部53を有している。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Embodiment 1
FIG. 1 is a view showing a configuration example of a torque detector according to Embodiment 1 of the present invention. FIG. 1 shows a state in which the strain sensor 1 is attached to the rotating shaft 5 via the base plate 2.
In the rotating shaft 5, a drive system 6 such as a motor is connected to one end in the axial direction, and a load system such as a robot hand is connected to the other end. As shown in FIG. 1, the rotary shaft 5 has a flange portion 51, a flange portion 52, and a strain generating portion 53.
 フランジ部51は、軸方向における一端に駆動系6のシャフトが接合される。
 フランジ部52は、軸方向における一端に負荷系のシャフトが接合される。
 起歪部53は、フランジ部51とフランジ部52との間に設けられ、フランジ部51及びフランジ部52より小さな軸径に構成されている。例えば、起歪部53の軸径は、回転軸体5として必要な剛性を維持可能な最小直径に設定される。この起歪部53は、軸方向における一端がフランジ部51の他端に接続され、他端がフランジ部52の他端に接続される。
In the flange portion 51, the shaft of the drive system 6 is joined to one end in the axial direction.
In the flange portion 52, the shaft of the load system is joined to one end in the axial direction.
The strain generating portion 53 is provided between the flange portion 51 and the flange portion 52, and has a smaller shaft diameter than the flange portion 51 and the flange portion 52. For example, the shaft diameter of the strain generating portion 53 is set to the minimum diameter capable of maintaining the rigidity necessary for the rotating shaft 5. One end of the strain generating portion 53 in the axial direction is connected to the other end of the flange portion 51, and the other end is connected to the other end of the flange portion 52.
 このように、回転軸体5は、フランジ部51とフランジ部52との間に、フランジ部51及びフランジ部52より軸径が小さい起歪部53を有するH型起歪体に構成されている。 As described above, the rotary shaft 5 is configured as an H-type straining member having the strained portion 53 having a smaller shaft diameter than the flange portion 51 and the flange portion 52 between the flange portion 51 and the flange portion 52. .
 一方、トルク検出器は、回転軸体5に加わるトルクを検出する。トルク検出器は、図1に示すように、歪センサ1及びベース板2を備えている。以下では、歪センサ1として半導体歪ゲージを用いた場合を示す。 On the other hand, the torque detector detects the torque applied to the rotating shaft 5. The torque detector comprises a strain sensor 1 and a base plate 2 as shown in FIG. Below, the case where a semiconductor strain gauge is used as the strain sensor 1 is shown.
 歪センサ1は、ベース板2を介して回転軸体5に取付けられ、外部からのせん断応力(引張応力及び圧縮応力)に応じた電圧を出力する半導体歪ゲージである。歪センサ1は、MEMS(Micro Electro Mechanical Systems)により実現される。この歪センサ1は、ベース板2の起歪部53に対向する位置に搭載される。歪センサ1は、図2,3に示すように、シリコン層(基板層)11及び絶縁層12を有する。 The strain sensor 1 is a semiconductor strain gauge attached to the rotating shaft 5 via the base plate 2 and outputting a voltage according to external shear stress (tensile stress and compressive stress). The strain sensor 1 is realized by MEMS (Micro Electro Mechanical Systems). The strain sensor 1 is mounted at a position facing the strain generating portion 53 of the base plate 2. The strain sensor 1 has a silicon layer (substrate layer) 11 and an insulating layer 12 as shown in FIGS.
 シリコン層11は、外力に応じて歪みが生じる単結晶シリコンであり、複数の抵抗ゲージ(拡散抵抗)13から成るホイートストンブリッジ回路を有するセンサ層である。シリコン層11には、裏面(一面)の中央に、溝部111が形成されている。溝部111により、シリコン層11には薄肉部112が構成される。抵抗ゲージ13は、この薄肉部112に形成される。 The silicon layer 11 is a single crystal silicon in which strain is generated in response to an external force, and is a sensor layer having a Wheatstone bridge circuit composed of a plurality of resistance gauges (diffusion resistances) 13. A groove 111 is formed in the center of the back surface (one surface) of the silicon layer 11. The thin portion 112 is formed in the silicon layer 11 by the groove portion 111. The resistance gauge 13 is formed on the thin portion 112.
 なお、薄肉部112の厚さは、シリコン層11の剛性等に応じて適宜設計される。例えば、シリコン層11の剛性が低い場合には薄肉部112は厚くされ、シリコン層11の剛性が高い場合には薄肉部112は薄くされる。 The thickness of the thin portion 112 is appropriately designed in accordance with the rigidity and the like of the silicon layer 11. For example, when the rigidity of the silicon layer 11 is low, the thin portion 112 is thick, and when the rigidity of the silicon layer 11 is high, the thin portion 112 is thin.
 また、単結晶シリコンは、結晶異方性を有し、p型シリコン(100)面において、<110>方向のときに最もピエゾ抵抗係数が大きくなる。そのため、抵抗ゲージ13は、例えば表面の結晶方位が(100)であるシリコン層11の<110>方向に形成される。
 図3では、フルブリッジ回路(ホイートストンブリッジ回路)を構成する4つの抵抗ゲージ13(R1~R4)が、シリコン層11の辺方向に対して斜め方向(45度方向)に形成され、歪センサ1が2方向のせん断応力を検知する場合を示している。なおここでは、上記斜め方向の具体例として45度方向とした場合を示したが、上記斜め方向は45度方向に限定されず、歪センサ1の特性上、ある程度のずれ(例えば44度方向又は46度方向等)は許容される。
In addition, single crystal silicon has crystal anisotropy, and in the p-type silicon (100) plane, the piezoresistance coefficient is largest in the <110> direction. Therefore, the resistance gauge 13 is formed, for example, in the <110> direction of the silicon layer 11 whose crystal orientation on the surface is (100).
In FIG. 3, four resistance gauges 13 (R1 to R4) constituting a full bridge circuit (Wheatstone bridge circuit) are formed in a diagonal direction (45 degrees direction) with respect to the side direction of the silicon layer 11. Shows the case of detecting shear stress in two directions. Here, although the case where it is 45 degrees direction was shown as a specific example of the above-mentioned oblique direction, the above-mentioned oblique direction is not limited to 45 degrees direction, but the characteristic of distortion sensor 1 46 degrees direction etc) is acceptable.
 絶縁層12は、上面がシリコン層11の裏面に接合され、裏面が回転軸体5に接合される台座である。この絶縁層12としては、例えばガラス又はサファイア等を用いることができる。 The insulating layer 12 is a pedestal whose upper surface is joined to the back surface of the silicon layer 11 and whose back surface is joined to the rotary shaft 5. For example, glass or sapphire can be used as the insulating layer 12.
 次に、歪センサ1の製造方法の一例について、図4を参照しながら説明する。
 歪センサ1の製造方法では、図4に示すように、まず、シリコン層11に、イオン注入により複数の抵抗ゲージ13を形成する(ステップST1)。そして、複数の抵抗ゲージ13によりホイートストンブリッジ回路を形成する。
 次いで、シリコン層11の裏面に、エッチングにより溝部111を形成する(ステップST2)。これにより、シリコン層11の抵抗ゲージ13が形成された箇所を薄肉部112とさせる。
 次いで、シリコン層11の裏面と絶縁層12の上面とを、例えば陽極接合により接合する(ステップST3)。
Next, an example of a method of manufacturing the strain sensor 1 will be described with reference to FIG.
In the method of manufacturing the strain sensor 1, as shown in FIG. 4, first, a plurality of resistance gauges 13 are formed on the silicon layer 11 by ion implantation (step ST1). Then, a plurality of resistance gauges 13 form a Wheatstone bridge circuit.
Next, the groove portion 111 is formed on the back surface of the silicon layer 11 by etching (step ST2). Thereby, the portion of the silicon layer 11 where the resistance gauge 13 is formed is made to be the thin portion 112.
Next, the back surface of the silicon layer 11 and the top surface of the insulating layer 12 are bonded by, for example, anodic bonding (step ST3).
 ベース板2は、歪センサ1が搭載され、フランジ部51及びフランジ部52に直接跨って固定される板部材である。このベース板2としては、例えばコバール等の金属部材を用いることができる。図1では、ベース板2が、フランジ部51及びフランジ部52の周面に跨って固定された場合を示している。また図5に示すように、ベース板2には、起歪部53に対向する両側面の中央に、凹部21が形成されている。この凹部21は歪センサ1の幅よりも狭く構成されている。また、凹部21は、フランジ部51とフランジ部52との間(軸方向における間隔)よりも狭く構成されている。 The base plate 2 is a plate member on which the strain sensor 1 is mounted and directly fixed to the flange portion 51 and the flange portion 52. As the base plate 2, for example, a metal member such as Kovar can be used. FIG. 1 shows the case where the base plate 2 is fixed across the peripheral surfaces of the flange portion 51 and the flange portion 52. Further, as shown in FIG. 5, in the base plate 2, a recess 21 is formed at the center of both side surfaces facing the strain generating portion 53. The recess 21 is narrower than the width of the strain sensor 1. Further, the recess 21 is configured to be narrower than the space between the flange portion 51 and the flange portion 52 (the interval in the axial direction).
 また上記のようにして製造された歪センサ1をベース板2に取付ける場合には、絶縁層12の裏面とベース板2とを例えばはんだ接合により接合する。この際、絶縁層12の裏面及びベース板2の接合部位をメタライズした上で、はんだ接合を行う。また、ベース板2を回転軸体5に取付ける場合にも上記と同様に例えばはんだ接合により接合する。 When the strain sensor 1 manufactured as described above is attached to the base plate 2, the back surface of the insulating layer 12 and the base plate 2 are joined by, for example, solder bonding. At this time, solder bonding is performed after the back surface of the insulating layer 12 and the bonding portion of the base plate 2 are metallized. Further, when the base plate 2 is attached to the rotary shaft 5, it is joined by, for example, solder bonding in the same manner as described above.
 また、歪センサ1は、抵抗ゲージ13が回転軸体5の軸方向に対して斜め方向(45度方向)を向くように配置される。すなわち、抵抗ゲージ13は、回転軸体5にトルクが加わった際に発生するせん断応力の発生方向を向くように配置される。なおここでは、上記斜め方向の具体例として45度方向とした場合を示したが、上記斜め方向は45度方向に限定されず、歪センサ1の特性上、ある程度のずれ(例えば44度方向又は46度方向等)は許容される。 Further, the strain sensor 1 is disposed such that the resistance gauge 13 is directed obliquely (45 degrees) with respect to the axial direction of the rotating shaft 5. That is, the resistance gauge 13 is disposed so as to face the generation direction of the shear stress generated when the torque is applied to the rotating shaft 5. Here, although the case where it is 45 degrees direction was shown as a specific example of the above-mentioned oblique direction, the above-mentioned oblique direction is not limited to 45 degrees direction, but the characteristic of distortion sensor 1 46 degrees direction etc) is acceptable.
 次に、トルク検出器の基本動作原理について、図6を参照しながら説明する。図6Aでは、歪センサ1が取付けられた回転軸体5の一端に駆動系6が接続され、この駆動系6により回転軸体5にトルクが加えられた状態を示している。また図6では、円柱状の回転軸体5を用い、歪センサ1が回転軸体5に直接取付けられた場合を示している。
 図6Aに示すように、回転軸体5にトルクが加えられることで、回転軸体5に取付けられた歪センサ1が歪み、歪センサ1の表面に図6Bに示すようなせん断応力が発生する。図6では、色が濃い点ほど引張応力が強い状態であり、色が薄い点ほど圧縮応力が強い状態であることを示している。そして、回転軸体5の軸方向に対して斜め方向(45度方向)を向いた抵抗ゲージ13は、このせん断応力に応じて抵抗値が変化し、歪センサ1は、抵抗値の変化に応じた電圧を出力する。そして、トルク検出器は、この歪センサ1により出力された電圧から回転軸体5に加えられたトルクを検出する。
Next, the basic operation principle of the torque detector will be described with reference to FIG. In FIG. 6A, the drive system 6 is connected to one end of the rotary shaft 5 to which the strain sensor 1 is attached, and a state where torque is applied to the rotary shaft 5 by the drive system 6 is shown. Moreover, in FIG. 6, the case where the strain sensor 1 is directly attached to the rotating shaft 5 using the cylindrical rotating shaft 5 is shown.
As shown in FIG. 6A, by applying torque to the rotating shaft 5, the strain sensor 1 attached to the rotating shaft 5 is distorted, and shear stress as shown in FIG. 6B is generated on the surface of the strain sensor 1. . FIG. 6 shows that the deeper the color, the stronger the tensile stress, and the lighter the color, the stronger the compressive stress. And resistance gauge 13 which turned to a diagonal direction (45 degrees direction) to the axial direction of axis of rotation 5 changes resistance value according to this shear stress, and strain sensor 1 changes according to change of resistance value. Output voltage. The torque detector detects the torque applied to the rotating shaft 5 from the voltage output by the strain sensor 1.
 実施の形態1に係るトルク検出器では、H型起歪体である回転軸体5に対し、ベース板2を介して、歪センサ1が起歪部53よりも径方向外側に配置されている。
 これにより、許容トルクを確保し、且つ、歪センサ1を有効に歪ませることができる。すなわち、回転軸体5にトルクが加わった際に生じる歪みの大きさは軸心から径方向外側になるほど増加する。よって、軸心から外側に離れた位置に歪センサ1が配置されることで、回転軸体5に加わるトルクに対する検出感度が向上する。また、起歪部53より径方向外側にベース板2が配置されることで、ベース板2の取付けが容易となる。
In the torque detector according to the first embodiment, the strain sensor 1 is disposed radially outward of the strain generating portion 53 via the base plate 2 with respect to the rotary shaft 5, which is an H-type strain generating body. .
Thereby, the allowable torque can be secured, and the strain sensor 1 can be effectively distorted. That is, the magnitude of distortion generated when torque is applied to the rotating shaft 5 increases in the radially outward direction from the axial center. Therefore, by disposing the strain sensor 1 at a position away from the axial center, the detection sensitivity to the torque applied to the rotating shaft 5 is improved. In addition, the base plate 2 is disposed radially outward of the strain generating portion 53, whereby the mounting of the base plate 2 is facilitated.
 更に、実施の形態1に係るトルク検出器では、ベース板2の起歪部53に対向する両側面に凹部21が形成され、凹部21は歪センサ1の幅よりも狭く構成されている。
 ここで、歪センサ1がベース板2を介して回転軸体5に取付けられると、回転軸体5の変形が歪センサ1に伝達される際の伝達効率が下がる。そこで、ベース板2に凹部21を設けることで、ベース板2が回転方向に歪み易くされ、且つ、歪センサ1の幅(チップ長)より狭い領域で変形を起こさせることで、回転軸体5に加わるトルクに対する検出感度が向上する。
 また、凹部21は、フランジ部51とフランジ部52との間(軸方向における間隔)よりも狭く構成されている。これにより、ベース板2の変形を局所的に集中させることができ、歪み量が増大し、回転軸体5に加わるトルクに対する検出感度が向上する。
Furthermore, in the torque detector according to the first embodiment, the recess 21 is formed on both side surfaces of the base plate 2 facing the strained portion 53, and the recess 21 is narrower than the width of the strain sensor 1.
Here, when the strain sensor 1 is attached to the rotary shaft 5 via the base plate 2, the transmission efficiency when the deformation of the rotary shaft 5 is transmitted to the strain sensor 1 decreases. Therefore, by providing the recess 21 in the base plate 2, the base plate 2 is easily distorted in the rotational direction, and by causing deformation in a region narrower than the width (chip length) of the strain sensor 1, the rotary shaft 5 Sensitivity to torque applied to the
Further, the recess 21 is configured to be narrower than the space between the flange portion 51 and the flange portion 52 (the interval in the axial direction). As a result, the deformation of the base plate 2 can be locally concentrated, the amount of strain is increased, and the detection sensitivity to the torque applied to the rotating shaft 5 is improved.
 図7に実施の形態1に係るトルク検出器の効果を示す。
 図7Aに示すように、ベース板2の凹部21間の幅をくびれ幅wとする。この場合、このくびれ幅wとトルク検出器の感度との関係は、例えば図7Bに示すようになる。なお図7Bでは、ベース板2にくびれが無い(凹部21が無い)場合でのくびれ幅比を1とし、その際の感度比を1として、くびれ幅比と感度比との関係を示している。この図7Bに示すように、ベース板2に凹部21を設けることで、トルク検出器の感度比が向上することがわかる。
FIG. 7 shows the effect of the torque detector according to the first embodiment.
As shown to FIG. 7A, let the width | variety between the recessed parts 21 of the base board 2 be constriction width w. In this case, the relationship between the constriction width w and the sensitivity of the torque detector is, for example, as shown in FIG. 7B. FIG. 7B shows the relationship between the constriction width ratio and the sensitivity ratio, where the constriction width ratio is 1 when there is no constriction in the base plate 2 (there is no recess 21), and the sensitivity ratio at that time is 1. . As shown in FIG. 7B, it can be seen that by providing the recess 21 in the base plate 2, the sensitivity ratio of the torque detector is improved.
 また、歪センサ1がベース板2に搭載されることで、歪センサ1の固定及び電気取出し工程をベース板2上で実施できる。よって、歪センサ1が扱い易く、プロセス装置上の制約も少ない。 Further, by mounting the strain sensor 1 on the base plate 2, the process of fixing the strain sensor 1 and extracting the electricity can be performed on the base plate 2. Therefore, the strain sensor 1 is easy to handle, and there are few restrictions on the process device.
 また、歪センサ1とベース板2との接合では、はんだ接合により熱が加えられる。そのため、ベース板2の材料を適切に選択することで、線膨張率の差による温度特性悪化を低減できる。例えば、歪センサ1としてシリコンを用いた場合には、ベース板2としてコバールを用いる。 In addition, in the bonding of the strain sensor 1 and the base plate 2, heat is applied by solder bonding. Therefore, by appropriately selecting the material of the base plate 2, it is possible to reduce the temperature characteristic deterioration due to the difference in linear expansion coefficient. For example, when silicon is used as the strain sensor 1, Kovar is used as the base plate 2.
 なお上記のトルク検出器では、シリコン層11の裏面中央に溝部111が形成されることで薄肉部112が構成され、抵抗ゲージ13がこの薄肉部112に形成されている。これにより、抵抗ゲージ13が形成された薄肉部112に応力を集中させることができ、回転軸体5に加わるトルクに対する検出感度が向上する。 In the torque detector described above, the thin portion 112 is formed by forming the groove portion 111 in the center of the back surface of the silicon layer 11, and the resistance gauge 13 is formed in the thin portion 112. Thereby, the stress can be concentrated on the thin portion 112 in which the resistance gauge 13 is formed, and the detection sensitivity to the torque applied to the rotating shaft 5 is improved.
 また上記では、ベース板2が、フランジ部51及びフランジ部52の周面に跨って固定された場合を示した。しかしながら、これに限らず、歪センサ1が起歪部53より径方向外側に対向配置されていればよい。よって、例えば図8に示すように、回転軸体5(フランジ部51,52)の周面に収納溝54を形成し、ベース板2が当該収納溝54に収納されてもよい。 Moreover, the case where the base board 2 was straddled over the surrounding surface of the flange part 51 and the flange part 52 was shown above. However, the present invention is not limited to this, as long as the strain sensor 1 is disposed so as to be opposed to the radially outer side than the strain generating portion 53. Therefore, for example, as shown in FIG. 8, the storage groove 54 may be formed on the peripheral surface of the rotating shaft 5 (flanges 51 and 52), and the base plate 2 may be stored in the storage groove 54.
 また、4つの抵抗ゲージ13の配置は図3に示す配置に限らず、例えば図9に示すような配置としてもよい。 Further, the arrangement of the four resistance gauges 13 is not limited to the arrangement shown in FIG. 3, but may be an arrangement as shown in FIG. 9, for example.
 また上記では、ホイートストンブリッジ回路として、4つの抵抗ゲージ13(R1~R4)から成るフルブリッジ回路を用いた場合を示した。しかしながら、これに限らず、図10に示すように、ホイートストンブリッジ回路として、2つの抵抗ゲージ13(R1,R2)から成るハーフブリッジ回路を用いてもよい。なお、図10BにおけるRは、固定抵抗である。 Also, in the above description, the case where a full bridge circuit composed of four resistance gauges 13 (R1 to R4) is used as the Wheatstone bridge circuit is shown. However, the present invention is not limited to this, and as shown in FIG. 10, a half bridge circuit composed of two resistance gauges 13 (R1 and R2) may be used as a Wheatstone bridge circuit. R in FIG. 10B is a fixed resistance.
 また図11に示すように、シリコン層11の裏面に、溝部111をシリコン層11の側面に連通する連通溝部113が形成されてもよい。ここで、シリコン層11と絶縁層12との接合では、陽極接合により400度程度の温度が加えられる。そのため、連通溝部113が無い場合には、陽極接合の際に、シリコン層11と絶縁層12との間の溝部111に存在する空気が高温状態で封止されてしまい、常温に下がるとその空気が収縮するため、薄肉部112が変形し、歪センサ1のゼロ点がずれてしまう恐れがある。一方、連通溝部113が設けられることで、陽極接合の際に、溝部111に存在する空気を外部に逃がすことができ、薄肉部112の変形を回避できる。
 なお、シリコン層11は、溝部111及び連通溝部113により、全体が薄くならないように、一部のみが薄くなるように構成される必要がある。
Further, as shown in FIG. 11, a communication groove portion 113 may be formed on the back surface of the silicon layer 11 so as to communicate the groove portion 111 with the side surface of the silicon layer 11. Here, in the bonding of the silicon layer 11 and the insulating layer 12, a temperature of about 400 ° C. is applied by anodic bonding. Therefore, when the communication groove portion 113 is not present, the air present in the groove portion 111 between the silicon layer 11 and the insulating layer 12 is sealed in a high temperature state at the time of anodic bonding, and when the temperature drops to normal temperature As a result, the thin-walled portion 112 may be deformed and the zero point of the strain sensor 1 may be displaced. On the other hand, by providing the communication groove portion 113, air present in the groove portion 111 can be released to the outside at the time of anodic bonding, and deformation of the thin portion 112 can be avoided.
The silicon layer 11 needs to be configured so as to be partially thinned by the groove portion 111 and the communication groove portion 113 so as not to be entirely thinned.
 なお上記では、基板層として、シリコン層11を用いた場合を示したが、これに限らず、外力に応じて歪みが生じる部材であればよい。例えば、基板層として、絶縁体(ガラス等)又は金属を用いることができる。ここで、基板層が絶縁体である場合には、抵抗ゲージ13は、当該絶縁体にスパッタリング等により成膜されることで形成される。また、基板層が金属である場合には、抵抗ゲージ13は、当該金属に絶縁膜を介してスパッタリング等により成膜されることで形成される。また、基板層としてシリコン層11を用い、抵抗ゲージ13が、当該シリコン層11にスパッタリング等により成膜されることで形成されてもよい。
 基板層として上記絶縁体又は金属を用いた場合でも、一般的な金属歪ゲージよりもゲージ率は高くなる。また、成膜によって抵抗ゲージ13を形成した場合には、シリコン層11にイオン注入により抵抗ゲージ13を形成した場合に対し、結晶方位によってゲージ率が変わることはなく、すなわち、方向を限定する必要がなくなる。
 一方、ゲージ率は、成膜によって抵抗ゲージ13を形成した場合に対し、シリコン層11にイオン注入により抵抗ゲージ13を形成した場合の方が、4~10倍以上高くなる。
In addition, although the case where the silicon layer 11 was used as a board | substrate layer was shown in the above, it does not restrict to this, and should just be a member which distortion produces according to external force. For example, as the substrate layer, an insulator (such as glass) or a metal can be used. Here, when the substrate layer is an insulator, the resistance gauge 13 is formed by depositing a film on the insulator by sputtering or the like. When the substrate layer is metal, the resistance gauge 13 is formed by sputtering the metal via an insulating film. Alternatively, the silicon layer 11 may be used as a substrate layer, and the resistance gauge 13 may be formed on the silicon layer 11 by sputtering or the like.
Even when the above-described insulator or metal is used as the substrate layer, the gauge factor is higher than that of a general metal strain gauge. Further, when the resistance gauge 13 is formed by film formation, the gauge ratio does not change depending on the crystal orientation as opposed to the case where the resistance gauge 13 is formed in the silicon layer 11 by ion implantation, that is, the direction needs to be limited. There is no
On the other hand, the gauge factor is 4 to 10 times higher in the case where the resistance gauge 13 is formed by ion implantation in the silicon layer 11 than when the resistance gauge 13 is formed by film formation.
 また上記では、図5に示すように、凹部21が矩形状に構成された場合を示した。しかしながら、これに限らず、凹部21は、例えば、図12Aに示すような半円形状又は図12Bに示すような角にRを有する形状に構成されてもよい。ここで、ベース板2が変形する場合、凹部21の角に応力が集中する。そのため、凹部21を半円形状又は角にRを有する形状とすることで、ベース板2が変形した場合での応力分散及び応力緩和を図ることができる。 Moreover, as shown in FIG. 5, the case where the recessed part 21 was comprised by the rectangular shape was shown above. However, the present invention is not limited to this. For example, the recess 21 may be configured to have a semicircular shape as shown in FIG. 12A or a shape having R at the corners as shown in FIG. 12B. Here, when the base plate 2 is deformed, stress concentrates on the corners of the recess 21. Therefore, stress dispersion and stress relaxation can be achieved when the base plate 2 is deformed by forming the recess 21 in a semicircular shape or in a shape having R at the corner.
 また上記では、歪センサ1として、図2に示すような形状の半導体歪ゲージを用いた場合を示した。しかしながら、これに限らず、その他の形状の半導体歪ケージを用いてもよい。また、歪センサ1として、その他の歪ゲージ(例えば金属歪ゲージ)を用いてもよい。
 また、薄膜歪ゲージのように歪センサ1の剛性が低い場合には、ベース板2は、歪センサ1に対して剛性調整の役割も果たす。
In the above, the case of using a semiconductor strain gauge having a shape as shown in FIG. 2 as the strain sensor 1 is shown. However, the present invention is not limited to this, and semiconductor strain cages of other shapes may be used. In addition, as the strain sensor 1, another strain gauge (for example, a metal strain gauge) may be used.
Further, when the rigidity of the strain sensor 1 is low, as in a thin film strain gauge, the base plate 2 also plays a role of adjusting the rigidity of the strain sensor 1.
 以上のように、この実施の形態1によれば、2つのフランジ部51,52、及び、当該2つのフランジ部51,52の間に設けられ、当該2つのフランジ部51,52より軸径が小さい起歪部53を有する回転軸体5に対し、当該2つのフランジ部51,52に跨って固定されたベース板2と、ベース板2の起歪部53に対向する位置に搭載された歪センサ1と、ベース板2の起歪部53に対向する両側面に形成され、歪センサ1の幅よりも狭い凹部21とを備えたので、トルクの検出精度が向上する。 As mentioned above, according to this Embodiment 1, it is provided between two flange parts 51 and 52, and the two flange parts 51 and 52 concerned, and, from the two flange parts 51 and 52 concerned, shaft diameter is The base plate 2 fixed across the two flanges 51 and 52 with respect to the rotary shaft 5 having the small strain generating portion 53, and the strain mounted at a position facing the strain generating portion 53 of the base plate 2 Since the sensor 1 and the concave portions 21 formed on both side surfaces of the base plate 2 facing the strain generating portion 53 and narrower than the width of the strain sensor 1 are provided, torque detection accuracy is improved.
 なお、本願発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。 In the present invention, within the scope of the invention, modifications of optional components of the embodiment or omission of optional components of the embodiment is possible.
 本発明に係るトルク検出器は、トルクの検出精度が向上するので、回転軸体に加わるトルクを検出するトルク検出器で用いるのに適している。 The torque detector according to the present invention is suitable for use in a torque detector that detects a torque applied to a rotating shaft, because the detection accuracy of the torque is improved.
1 歪センサ
2 ベース板
5 回転軸体
6 駆動系
11 シリコン層(基板層)
12 絶縁層
13 抵抗ゲージ(拡散抵抗)
21 凹部
51,52 フランジ部
53 起歪部
54 収納溝
111 溝部
112 薄肉部
113 連通溝部
Reference Signs List 1 strain sensor 2 base plate 5 rotating shaft 6 driving system 11 silicon layer (substrate layer)
12 insulation layer 13 resistance gauge (diffusion resistance)
Reference Signs List 21 recessed portion 51 52 flange portion 53 strain generation portion 54 storage groove 111 groove portion 112 thin wall portion 113 communication groove portion

Claims (7)

  1.  2つのフランジ部、及び、当該2つのフランジ部の間に設けられ、当該2つのフランジ部より軸径が小さい起歪部を有する回転軸体に対し、当該2つのフランジ部に跨って固定されたベース板と、
     前記ベース板の前記起歪部に対向する位置に搭載された歪センサと、
     前記ベース板の前記起歪部に対向する両側面に形成された凹部と
     を備えたトルク検出器。
    It is fixed across the two flanges with respect to a rotary shaft provided with two flanges and a strain-flexing part provided between the two flanges and having a smaller shaft diameter than the two flanges. Base plate,
    A strain sensor mounted at a position opposite to the strain generating portion of the base plate;
    And a recessed portion formed on both side surfaces of the base plate facing the strained portion.
  2.  前記凹部は、前記歪センサの幅よりも狭い
     ことを特徴とする請求項1記載のトルク検出器。
    The said recessed part is narrower than the width | variety of the said distortion sensor. The torque detector of Claim 1 characterized by the above-mentioned.
  3.  前記凹部は、前記2つのフランジ部の軸方向における間隔よりも狭い
     ことを特徴とする請求項1記載のトルク検出器。
    The said recessed part is narrower than the space | interval in the axial direction of the said two flange parts. The torque detector of Claim 1 characterized by the above-mentioned.
  4.  前記凹部は、半円形状又は角にRを有する形状に構成された
     ことを特徴とする請求項1から請求項3のうちの何れか1項記載のトルク検出器。
    The torque detector according to any one of claims 1 to 3, wherein the concave portion is formed in a semicircular shape or a shape having an R at a corner.
  5.  前記歪センサは、半導体歪ゲージである
     ことを特徴とする請求項1から請求項4のうちの何れか1項記載のトルク検出器。
    The torque sensor according to any one of claims 1 to 4, wherein the strain sensor is a semiconductor strain gauge.
  6.  前記歪センサは、外力に応じて歪みが生じる基板層、及び、当該基板層に成膜されることで形成された抵抗ゲージとを有する
     ことを特徴とする請求項1から請求項4のうちの何れか1項記載のトルク検出器。
    The strain sensor includes a substrate layer in which strain occurs in response to an external force, and a resistance gauge formed by forming a film on the substrate layer. The torque detector according to any one of the preceding claims.
  7.  前記ベース板は、コバールから成る
     ことを特徴とする請求項5記載のトルク検出器。
    The torque detector according to claim 5, wherein the base plate is made of kovar.
PCT/JP2018/027075 2017-08-23 2018-07-19 Torque detector WO2019039146A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020207002935A KR102332884B1 (en) 2017-08-23 2018-07-19 torque detector
CN201880051952.2A CN111033199A (en) 2017-08-23 2018-07-19 Torque detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-160191 2017-08-23
JP2017160191A JP6698595B2 (en) 2017-08-23 2017-08-23 Torque detector

Publications (1)

Publication Number Publication Date
WO2019039146A1 true WO2019039146A1 (en) 2019-02-28

Family

ID=65438800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027075 WO2019039146A1 (en) 2017-08-23 2018-07-19 Torque detector

Country Status (4)

Country Link
JP (1) JP6698595B2 (en)
KR (1) KR102332884B1 (en)
CN (1) CN111033199A (en)
WO (1) WO2019039146A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6820817B2 (en) * 2017-10-03 2021-01-27 アズビル株式会社 Torque detector
CN114526853A (en) * 2022-02-23 2022-05-24 深圳瑞湖科技有限公司 Shaft torque detection device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2566566A (en) * 1945-12-19 1951-09-04 Edgar T Howes Torsion indicating device
JPS54793B2 (en) * 1973-10-01 1979-01-16
US5445036A (en) * 1994-06-15 1995-08-29 The University Of British Columbia Torque sensor
DE102014115615A1 (en) * 2014-10-28 2016-04-28 Werner Stehr Tribologie Torque measuring device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168529A (en) * 1984-09-12 1986-04-08 Aisin Warner Ltd Coaxial type angle torque detector
JPS61223625A (en) * 1985-03-29 1986-10-04 Nec Corp Sensor
JP3571765B2 (en) * 1994-08-04 2004-09-29 三菱電機株式会社 Semiconductor pressure detector
JP2002139391A (en) 2000-11-02 2002-05-17 Exedy Corp Torque-detecting device
US6988412B1 (en) * 2004-11-30 2006-01-24 Endevco Corporation Piezoresistive strain concentrator
JP2015152384A (en) * 2014-02-13 2015-08-24 パナソニックIpマネジメント株式会社 Torque sensor and torque detector using torque sensor
WO2015190330A1 (en) * 2014-06-09 2015-12-17 日立オートモティブシステムズ株式会社 Torque detection device
JP2016109568A (en) * 2014-12-08 2016-06-20 パナソニックIpマネジメント株式会社 Torque sensor
US9739673B2 (en) * 2015-08-05 2017-08-22 Sensata Technologies, Inc. Sensor substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2566566A (en) * 1945-12-19 1951-09-04 Edgar T Howes Torsion indicating device
JPS54793B2 (en) * 1973-10-01 1979-01-16
US5445036A (en) * 1994-06-15 1995-08-29 The University Of British Columbia Torque sensor
DE102014115615A1 (en) * 2014-10-28 2016-04-28 Werner Stehr Tribologie Torque measuring device

Also Published As

Publication number Publication date
JP2019039708A (en) 2019-03-14
KR20200019245A (en) 2020-02-21
JP6698595B2 (en) 2020-05-27
KR102332884B1 (en) 2021-12-01
CN111033199A (en) 2020-04-17

Similar Documents

Publication Publication Date Title
JP5177015B2 (en) Packaged device and packaged device manufacturing method
WO2019039146A1 (en) Torque detector
JP4335545B2 (en) Sensor for detecting both pressure and acceleration and manufacturing method thereof
WO2019069620A1 (en) Torque detection device
WO2015151946A1 (en) Acceleration sensor
JP2020067295A (en) Actuating unit
WO2019069595A1 (en) Torque detection device
WO2019035291A1 (en) Torque detector, and method for producing torque detector
WO2019035290A1 (en) Torque detector
WO2019069683A1 (en) Torque detector
WO2019035289A1 (en) Torque detector, and method for producing torque detector
JP2587646Y2 (en) 3D semiconductor force sensor
CN110668391B (en) Double-end fixed supporting plate type MEMS structure with stress release function
JP2011179850A (en) Vibration pressure sensor
JPH0387622A (en) Force sensor and its manufacture
JP2018063126A (en) Pressure sensor and method for manufacturing the same
WO2015163300A1 (en) Acceleration sensor
JP2018059852A (en) Force sensor manufacturing method and force sensor
JPH0389131A (en) Contact force sensor and manufacture thereof
JP2008185374A (en) Manufacturing method of sensor device
JPH11108950A (en) Acceleration detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18849008

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207002935

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18849008

Country of ref document: EP

Kind code of ref document: A1