WO2019039047A1 - Power conversion device and method for controlling the same - Google Patents

Power conversion device and method for controlling the same Download PDF

Info

Publication number
WO2019039047A1
WO2019039047A1 PCT/JP2018/022153 JP2018022153W WO2019039047A1 WO 2019039047 A1 WO2019039047 A1 WO 2019039047A1 JP 2018022153 W JP2018022153 W JP 2018022153W WO 2019039047 A1 WO2019039047 A1 WO 2019039047A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
switching element
duty ratio
power
conversion device
Prior art date
Application number
PCT/JP2018/022153
Other languages
French (fr)
Japanese (ja)
Inventor
啓次 国井
広之 山井
飛田 慎一郎
航 中村
広行 尾花
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2019039047A1 publication Critical patent/WO2019039047A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a power conversion device applied to a traveling system such as a hybrid vehicle and an electric vehicle and a control method thereof.
  • patent documents 1 and 2 exist as a prior art example regarding this invention.
  • the power conversion device can be discharged rapidly by the discharge resistor of the power conversion device including the switching element and the switching element being turned on during the discharge period of the power conversion device. .
  • the resistance value of the discharge resistor is determined by the capacitance of the smoothing capacitor and the target discharge time, so if the power converter is to be rapidly discharged, the excessive power is discharged. There is a possibility that the inside of the discharge resistor may be disconnected due to the heat generation which is input to the resistor. Therefore, a relatively large discharge resistor that can withstand excessive power has been applied to the power conversion device.
  • the present invention has been made in consideration of the above points, and will propose a power conversion device and its control method for preventing excessive power from being input to the discharge resistor even if the power conversion device is discharged rapidly. It is said that.
  • a capacitor connected in parallel to an inverter circuit for converting DC power to AC power, and a switching element and a discharging resistor connected in parallel to the capacitor are connected in series.
  • the control circuit includes a discharge circuit and a control circuit that controls the switching element to control discharging from the capacitor to the discharging resistor.
  • the control circuit changes the ON / OFF duty ratio of the switching element when discharging from the capacitor. I let it go.
  • control method of the power conversion device is such that discharge from the discharge circuit is performed by controlling the switching element connected to the discharge circuit of the power conversion device by the control circuit.
  • the circuit changes the ON / OFF duty ratio of the switching element at the time of discharge.
  • the present invention it is possible to realize a power conversion device and a control method thereof that prevent excessive power from being input to the discharge resistor even if the power conversion device is rapidly discharged.
  • the power conversion device of the present invention is applied to a vehicle provided with a motor as a motive power source such as a hybrid car or an electric car.
  • a vehicle 15 including the power converter 10 includes a battery 1, a contactor 2, an inverter circuit 3, a motor 4, a capacitor (smoothing capacitor 5), A discharge circuit 6 and a control circuit 7 of the discharge circuit 6 are provided.
  • the battery 1 is a power source of the vehicle 15, and DC power from the battery 1 is converted into AC power by the inverter circuit 3, and the converted AC power drives the motor 4. Then, the motor 4 drives the vehicle 15.
  • the inverter circuit 3 includes six IGBTs (Insulated Gate Bipolar Transistors) 31 and is configured of, for example, elements A to C including two IGBTs 31.
  • the elements A to C correspond to the U phase, the B phase, and the W phase of the three-phase alternating current.
  • the smoothing capacitor 5 is mounted to suppress voltage fluctuation generated when the inverter circuit 3 operates, and requires a relatively large capacitance.
  • the contactor 2 is mounted for the purpose of separating the battery 1 and the power conversion device 10, and is turned on when the ignition switch is turned on and turned off when the ignition switch is turned off. The contactor 2 is also turned OFF when the vehicle detects an impact due to an abnormality of the power conversion device 10 or an accident.
  • the discharge circuit 6 includes a discharge resistor 61 and a MOSFET 62, and is controlled by the control circuit 7 so as to quickly discharge the charge stored in the smoothing capacitor 5 when the contactor 2 is turned off.
  • MOSFET 62 is mentioned here as an example of the switching element, the present invention is not limited to this.
  • the relationship between the voltage Vc of the smoothing capacitor 5 and the elapsed time t can be expressed by the following equation.
  • the elapsed time t is 2 seconds, which is a target time for discharging the voltage Vc of the smoothing capacitor 5 to 50 V or less after the contactor 2 is turned off.
  • the equation (1) can be transformed into the following equation for obtaining the time constant ⁇ .
  • the time constant ⁇ is determined by the product of the resistance value R of the discharge resistor 61 and the capacitance C of the smoothing capacitor 5 as the following equation.
  • the resistance value R is It can be asked like.
  • the discharge resistor 61 if the resistance value R of the discharge resistor 61 is not 1737 ⁇ or less, the discharge can not be performed within the target 2 seconds. For example, in the case where a resistance value of 1600 ⁇ is selected, if discharge is to be performed by the conventional method, rush power Pin such as the following equation is input to discharge resistor 61.
  • the broken line in FIG. 2 shows the waveform in the case of discharge according to the conventional method.
  • the gate signal of the MOSFET 62 remains ON for 2 seconds from the discharge start.
  • the smoothing capacitor voltage decreases to about 41 V after 2 seconds, and the power of the discharge resistor 61 decreases with the attenuation of the smoothing capacitor voltage.
  • the time for detecting a collision is set to 3 seconds, and the voltage is reduced in the remaining 2 seconds of the 5 seconds defined in the US Regulation FMVSS 305.
  • the discharge resistor 61 As the discharge resistor 61, a metal clad type or the like having high inrush power tolerance is used, but the limit is still about 10 times the rated power. Therefore, conventionally, since the rush power Pin is about 160 W, a resistor having a rated power of about 16 W is required.
  • the control circuit 7 sets the ON / OFF duty ratio (hereinafter referred to as the duty ratio) to 50%, with the first mode 0.5 second to the second mode 0.5 second from the discharge start as the second mode. , 100%, the MOSFET 62 is driven by PWM.
  • the value of the rated power of the discharge resistor 61 can be made lower than before. Note that the rush power Pin does not increase so much even if the duty ratio is increased after discharging to a certain extent.
  • the resistance value of the discharge resistor 61 is such that the discharge period is shortened by the idle period during PWM driving, and even if the value is smaller than the conventional one, the same target time as the conventional one can be achieved. For this reason, in the present embodiment, the resistance value of the discharge resistor 61 is 1500 ⁇ , and the rush power Pin in the first mode and the second mode averaged by the PWM drive is expressed by the equations (6) and (7), respectively. The rush power Pin is approximately half the power compared to the equation (5).
  • the duty ratio at the start of discharge is set lower than that after that.
  • the inrush power Pin is suppressed by lowering the duty ratio, and after the battery is discharged to some extent, the duty ratio is increased without prolonging the time until the discharge is completed. Inrush power can be suppressed, and excessive power can be prevented from being input to discharge resistor 61 even if power converter 10 is rapidly discharged.
  • the power converter 10 for example, if the control pattern for the first mode and the second mode is created with a logic IC, the power converter 10 can be miniaturized because the modulation circuit is not necessary.
  • the control circuit 7 sets the first mode for 0.5 seconds from the discharge start, the second mode for 0.5 seconds to 0.9 seconds, and the third mode for 0.9 seconds to 2 seconds.
  • the MOSFET 62 is driven by PWM with the respective duty ratios being 30%, 50% and 100%.
  • the rush power in each mode is 62.5 W, 63.0 W, 64.9 W, which is about 1/3 of the conventional rush power, and the discharge resistor 61 with lower allowable power compared to the above embodiment. It becomes possible to employ for the power converter 10.
  • the present invention is not limited to this and the mode may be switched according to the smoothing capacitor voltage.
  • the value of the smoothing capacitor voltage for switching this mode is set so that the rush power by the duty ratio in each mode becomes approximately the same.
  • the present invention is not limited to this. May be changed gradually and continuously. In this case, it is possible to adopt the discharge resistor 61 having a lower allowable power to the power conversion device 10 as compared with the above-described embodiment.

Abstract

Provided are a power conversion device which keeps excessive power from being input to a discharging resistor even in the case of rapid electric discharge from the power conversion device, and a method for controlling the power conversion device. The power conversion device is provided with: a capacitor connected in parallel with an inverter circuit which converts DC power into AC power; a discharge circuit in which a discharging resistor and a switching element connected in parallel with the capacitor are connected in series; and a control circuit which controls electric discharge from the capacitor to the discharging resistor by controlling the switching element. The control circuit changes an ON/OFF duty ratio of the switching element at the time of electric discharge from the capacitor.

Description

電力変換装置及びその制御方法Power converter and control method thereof
 本発明は、ハイブリッド自動車、電気自動車等の走行システムに適用される電力変換装置及びその制御方法に関する。 The present invention relates to a power conversion device applied to a traveling system such as a hybrid vehicle and an electric vehicle and a control method thereof.
 ハイブリッド自動車、電気自動車のように高電圧バッテリによってモータを駆動するシステムでは、バッテリから電力変換装置を速やかに切り離したり、電力変換装置に残留した電荷を急速に放電したりすることが必要な場合がある。例えば、米国法規FMVSS305(電気自動車の電解液の流出および感電防止)においては、車両が衝突などで停車してから5秒以内に、電力変換装置の出力電圧が所定の値になるまで放電をする必要がある。 In a system where a motor is driven by a high voltage battery such as a hybrid car or an electric car, it may be necessary to quickly separate the power converter from the battery or to rapidly discharge the residual charge in the power converter. is there. For example, under US regulation FMVSS 305 (electrolytic solution outflow and electric shock prevention for electric vehicles), discharge is performed until the output voltage of the power conversion device reaches a predetermined value within 5 seconds after the vehicle stops due to a collision or the like. There is a need.
 本発明に関する従来例として例えば特許文献1,2がある。これらの従来例には、電力変換装置の放電用抵抗器がスイッチング素子を備え、電力変換装置の放電期間中スイッチング素子がオンされることによって、電力変換装置が急速に放電できることが開示されている。 For example, patent documents 1 and 2 exist as a prior art example regarding this invention. In these conventional examples, it is disclosed that the power conversion device can be discharged rapidly by the discharge resistor of the power conversion device including the switching element and the switching element being turned on during the discharge period of the power conversion device. .
特開2013-31329号公報JP, 2013-31329, A 特開2011-41363号公報JP, 2011-41363, A
 従来の電力変換装置において、放電用抵抗器の抵抗値は平滑コンデンサの静電容量と、目標とする放電時間とにより決まるため、電力変換装置から急速に放電させようとすると、過大な電力が放電用抵抗器に入力され、発熱によって放電用抵抗器の内部が断線するおそれがある。そこで、過大な電力に耐えうる比較的大型の放電用抵抗器が電力変換装置に適用されていた。 In the conventional power converter, the resistance value of the discharge resistor is determined by the capacitance of the smoothing capacitor and the target discharge time, so if the power converter is to be rapidly discharged, the excessive power is discharged. There is a possibility that the inside of the discharge resistor may be disconnected due to the heat generation which is input to the resistor. Therefore, a relatively large discharge resistor that can withstand excessive power has been applied to the power conversion device.
 本発明は以上の点を考慮してなされたもので、電力変換装置から急速に放電させても、過大な電力が放電用抵抗器に入力されないようにする電力変換装置及びその制御方法を提案しようとするものである。 The present invention has been made in consideration of the above points, and will propose a power conversion device and its control method for preventing excessive power from being input to the discharge resistor even if the power conversion device is discharged rapidly. It is said that.
 かかる課題を解決するため本発明においては、電力変換装置において、直流電力を交流電力に変換するインバータ回路に並列接続するコンデンサと、コンデンサに並列接続したスイッチング素子及び放電用抵抗器を直列に接続した放電回路と、スイッチング素子を制御して、コンデンサから放電用抵抗器への放電を制御する制御回路とを備え、制御回路は、コンデンサからの放電の際、スイッチング素子のON/OFFデューティ比を変化させるようにした。 In order to solve such problems, in the present invention, in the power converter, a capacitor connected in parallel to an inverter circuit for converting DC power to AC power, and a switching element and a discharging resistor connected in parallel to the capacitor are connected in series. The control circuit includes a discharge circuit and a control circuit that controls the switching element to control discharging from the capacitor to the discharging resistor. The control circuit changes the ON / OFF duty ratio of the switching element when discharging from the capacitor. I let it go.
 また本発明においては、電力変換装置の放電回路に接続されたスイッチング素子が制御回路によって制御されることにより、放電回路からの放電が実行されるようにした、電力変換装置の制御方法において、制御回路が、放電の際、スイッチング素子のON/OFFデューティ比を変化させるようにした。 Further, in the present invention, the control method of the power conversion device is such that discharge from the discharge circuit is performed by controlling the switching element connected to the discharge circuit of the power conversion device by the control circuit. The circuit changes the ON / OFF duty ratio of the switching element at the time of discharge.
 本発明によれば、電力変換装置から急速に放電させても、過大な電力が放電用抵抗器に入力されないようにする電力変換装置及びその制御方法を実現できる。 According to the present invention, it is possible to realize a power conversion device and a control method thereof that prevent excessive power from being input to the discharge resistor even if the power conversion device is rapidly discharged.
本実施形態による電力変換装置を採用した電動車両の回路構成図である。It is a circuit block diagram of the electric vehicle which employ | adopted the power converter device by this embodiment. 本実施形態による放電を実施したときの波形図である。It is a wave form diagram when the electric discharge by this embodiment is implemented. 他の実施形態による放電を実施したときの波形図である。It is a wave form diagram when the electric discharge by other embodiment is implemented.
 以下、本発明の電力変換装置をハイブリッド自動車や電気自動車等の動力源としてモータを備える車両に適用した例を用いて、本発明の実施形態を説明する。 Hereinafter, an embodiment of the present invention will be described using an example in which the power conversion device of the present invention is applied to a vehicle provided with a motor as a motive power source such as a hybrid car or an electric car.
(1)本実施形態による電力変換装置の構成
 図1に示すように、本電力変換装置10を含む車両15は、バッテリ1、コンタクタ2、インバータ回路3、モータ4、コンデンサ(平滑コンデンサ5)、放電回路6及び放電回路6の制御回路7を備えている。
(1) Configuration of Power Converter According to the Present Embodiment As shown in FIG. 1, a vehicle 15 including the power converter 10 includes a battery 1, a contactor 2, an inverter circuit 3, a motor 4, a capacitor (smoothing capacitor 5), A discharge circuit 6 and a control circuit 7 of the discharge circuit 6 are provided.
 バッテリ1は車両15の電力源であって、バッテリ1からの直流電力はインバータ回路3によって交流電力に変換され、変換された交流電力がモータ4を駆動させる。そしてモータ4が車両15を駆動させる。 The battery 1 is a power source of the vehicle 15, and DC power from the battery 1 is converted into AC power by the inverter circuit 3, and the converted AC power drives the motor 4. Then, the motor 4 drives the vehicle 15.
 インバータ回路3は、6つのIGBT(Insulated Gate Bipolar Transistor)31を備え、例えば、2つのIGBT31からなる素子A~Cから構成される。この素子A~Cは3相交流のU相、B相及びW相に相当する。平滑コンデンサ5は、このインバータ回路3が動作するときに発生する電圧変動を抑制するために搭載されており、比較的大きな静電容量を必要とする。 The inverter circuit 3 includes six IGBTs (Insulated Gate Bipolar Transistors) 31 and is configured of, for example, elements A to C including two IGBTs 31. The elements A to C correspond to the U phase, the B phase, and the W phase of the three-phase alternating current. The smoothing capacitor 5 is mounted to suppress voltage fluctuation generated when the inverter circuit 3 operates, and requires a relatively large capacitance.
 コンタクタ2は、バッテリ1と電力変換装置10とを切り離す目的で搭載されており、イグニッションスイッチON時にON、イグニッションスイッチOFF時にOFFとなる。またコンタクタ2は、電力変換装置10の異常時や事故等により車両が衝撃を検出したときもOFFとなる。 The contactor 2 is mounted for the purpose of separating the battery 1 and the power conversion device 10, and is turned on when the ignition switch is turned on and turned off when the ignition switch is turned off. The contactor 2 is also turned OFF when the vehicle detects an impact due to an abnormality of the power conversion device 10 or an accident.
 放電回路6は、放電用抵抗器61及びMOSFET62から構成され、コンタクタ2がOFFとなると、平滑コンデンサ5に充電された電荷を速やかに放電するように制御回路7によって制御される。なおここでは、スイッチング素子の一例としてMOSFET62を挙げているが本発明はこれに限られない。 The discharge circuit 6 includes a discharge resistor 61 and a MOSFET 62, and is controlled by the control circuit 7 so as to quickly discharge the charge stored in the smoothing capacitor 5 when the contactor 2 is turned off. Although the MOSFET 62 is mentioned here as an example of the switching element, the present invention is not limited to this.
 以下、本発明の特徴の説明を容易にするため、数値例を用いて説明する。 Hereinafter, in order to facilitate the description of the features of the present invention, it will be described using numerical examples.
 バッテリ1の電圧Vbatを500V、平滑コンデンサ5の静電容量Cを500μF、時定数をτとすると、平滑コンデンサ5の電圧Vcと経過時間tとの関係は次式で表すことができる。ここで経過時間tは、コンタクタ2がOFFとなってから平滑コンデンサ5の電圧Vcが50V以下まで放電する時間の目標である2秒とする。
Figure JPOXMLDOC01-appb-M000001
Assuming that the voltage Vbat of the battery 1 is 500 V, the capacitance C of the smoothing capacitor 5 is 500 μF, and the time constant is τ, the relationship between the voltage Vc of the smoothing capacitor 5 and the elapsed time t can be expressed by the following equation. Here, it is assumed that the elapsed time t is 2 seconds, which is a target time for discharging the voltage Vc of the smoothing capacitor 5 to 50 V or less after the contactor 2 is turned off.
Figure JPOXMLDOC01-appb-M000001
 (1)式は時定数τを求める次式に変形することができる。
Figure JPOXMLDOC01-appb-M000002
The equation (1) can be transformed into the following equation for obtaining the time constant τ.
Figure JPOXMLDOC01-appb-M000002
 時定数τは次式のように、放電用抵抗器61の抵抗値R及び平滑コンデンサ5の静電容量Cの積で決まる。
Figure JPOXMLDOC01-appb-M000003
The time constant τ is determined by the product of the resistance value R of the discharge resistor 61 and the capacitance C of the smoothing capacitor 5 as the following equation.
Figure JPOXMLDOC01-appb-M000003
 また(2)式及び(3)式から抵抗値Rは次式
Figure JPOXMLDOC01-appb-M000004
のように求めることができる。
Also, from the equations (2) and (3), the resistance value R is
Figure JPOXMLDOC01-appb-M000004
It can be asked like.
 つまり、放電用抵抗器61の抵抗値Rは1737Ω以下にしなければ、目標である2秒以内に放電できない。例えば1600Ωの抵抗値を選定した場合、従来の方法で放電しようとすると、放電用抵抗器61には次式のような突入電力Pinが入力される。
Figure JPOXMLDOC01-appb-M000005
That is, if the resistance value R of the discharge resistor 61 is not 1737 Ω or less, the discharge can not be performed within the target 2 seconds. For example, in the case where a resistance value of 1600 Ω is selected, if discharge is to be performed by the conventional method, rush power Pin such as the following equation is input to discharge resistor 61.
Figure JPOXMLDOC01-appb-M000005
 図2に破線で従来の方法で放電した場合の波形を示す。MOSFET62のゲート信号は放電開始から2秒間はONのままとなっている。平滑コンデンサ電圧は2秒後には約41Vまで低下し、放電用抵抗器61の電力は、平滑コンデンサ電圧の減衰に伴って下がっている。なお本発明においては、衝突の検出のための時間を3秒とし、米国法規FMVSS305において定められている5秒のうちの残り2秒で電圧を低減させるようにすることを想定している。 The broken line in FIG. 2 shows the waveform in the case of discharge according to the conventional method. The gate signal of the MOSFET 62 remains ON for 2 seconds from the discharge start. The smoothing capacitor voltage decreases to about 41 V after 2 seconds, and the power of the discharge resistor 61 decreases with the attenuation of the smoothing capacitor voltage. In the present invention, it is assumed that the time for detecting a collision is set to 3 seconds, and the voltage is reduced in the remaining 2 seconds of the 5 seconds defined in the US Regulation FMVSS 305.
 放電用抵抗器61にはメタルクラッド型等の突入電力耐量の大きなものが使用されるが、それでも定格電力の10倍程度が限度である。このため、従来においては、突入電力Pinが160W程度であるため16W程度の定格電力を持つ抵抗が必要となる。 As the discharge resistor 61, a metal clad type or the like having high inrush power tolerance is used, but the limit is still about 10 times the rated power. Therefore, conventionally, since the rush power Pin is about 160 W, a resistor having a rated power of about 16 W is required.
 本発明を適用した場合の波形を図2において実線で示す。制御回路7は、放電開始から0.5秒を第1モード、0.5秒から2秒を第2モードとして、それぞれのON/OFFデューティ比(以下、これをデューティ比と呼ぶ)を50%,100%として、MOSFET62をPWMで駆動している。 A waveform when the present invention is applied is shown by a solid line in FIG. The control circuit 7 sets the ON / OFF duty ratio (hereinafter referred to as the duty ratio) to 50%, with the first mode 0.5 second to the second mode 0.5 second from the discharge start as the second mode. , 100%, the MOSFET 62 is driven by PWM.
 なお言うまでもないが、デューティ比が高い程、平滑コンデンサ5の放電を完了させるまでの時間は短くて済むため、デューティ比を高くしたいが放電開始時にデューティ比を高くすると従来のように放電用抵抗器61の持つ定格電力の値を高くしなければならない。 Although it is needless to say that the higher the duty ratio, the shorter the time until the discharge of the smoothing capacitor 5 is completed can be shortened. Therefore, it is desirable to increase the duty ratio. The power rating of 61 must be increased.
 これに対して、放電開始時のデューティ比を低くし、突入電力Pinが低くなる本発明においては放電用抵抗器61の持つ定格電力の値を従来に比べて低くすることができる。なおある程度放電をした後であれば、デューティ比を高くしても、突入電力Pinはそれほど高くなることはない。 On the other hand, in the present invention in which the duty ratio at the start of discharge is lowered and the inrush power Pin is lowered, the value of the rated power of the discharge resistor 61 can be made lower than before. Note that the rush power Pin does not increase so much even if the duty ratio is increased after discharging to a certain extent.
 放電用抵抗器61の抵抗値は、PWM駆動中の休止期間の分だけ放電期間が短くなり、従来と比較して小さい値でも従来と同じ目標時間とすることができる。このため、本実施形態では放電用抵抗器61の抵抗値を1500Ωとしており、PWM駆動により平均化された第1モード、及び第2モードの突入電力Pinはそれぞれ(6)式及び(7)式のようになり、突入電力Pinは(5)式と比較して、約半分の電力となる。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
The resistance value of the discharge resistor 61 is such that the discharge period is shortened by the idle period during PWM driving, and even if the value is smaller than the conventional one, the same target time as the conventional one can be achieved. For this reason, in the present embodiment, the resistance value of the discharge resistor 61 is 1500Ω, and the rush power Pin in the first mode and the second mode averaged by the PWM drive is expressed by the equations (6) and (7), respectively. The rush power Pin is approximately half the power compared to the equation (5).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
(2)本実施形態の効果
 以上のように本実施形態の電力変換装置10では、放電開始時のデューティ比をそれ以降に対して低く設定する。
(2) Effects of the Present Embodiment As described above, in the power conversion device 10 of the present embodiment, the duty ratio at the start of discharge is set lower than that after that.
 従って、本電力変換装置10によれば、放電開始時には、デューティ比を低くすることで突入電力Pinを抑え、ある程度放電された後にデューティ比を高くすることで放電完了までの時間を長くすることなく突入電力を抑えることができ、電力変換装置10から急速に放電させても、過大な電力が放電用抵抗器61に入力されないようにすることができる。 Therefore, according to the power conversion device 10, at the start of discharge, the inrush power Pin is suppressed by lowering the duty ratio, and after the battery is discharged to some extent, the duty ratio is increased without prolonging the time until the discharge is completed. Inrush power can be suppressed, and excessive power can be prevented from being input to discharge resistor 61 even if power converter 10 is rapidly discharged.
 なお本電力変換装置10においては、例えばロジックICで第1のモード及び第2のモードのための制御パータンを作成すればよく変調回路を要しないため電力変換装置10の小型化も可能である。 In the power converter 10, for example, if the control pattern for the first mode and the second mode is created with a logic IC, the power converter 10 can be miniaturized because the modulation circuit is not necessary.
(3)他の実施形態
 なお上述の実施形態においては、デューティ比の異なる2つのモードを利用した場合について述べたが、本発明はこれに限らず、デューティ比の異なる3つ以上のモードを利用するようにしても良い。
(3) Other Embodiments Although the above embodiment has described the case where two modes having different duty ratios are used, the present invention is not limited to this and three or more modes having different duty ratios are used. You may do it.
 例えば図3に示すように制御回路7は、放電開始から0.5秒を第1モード、0.5秒から0.9秒を第2モード、0.9秒から2秒を第3モードとして、それぞれのデューティ比を30%,50%,100%として、MOSFET62をPWMで駆動する。それぞれのモードでの突入電力は、62.5W,63.0W,64.9Wと従来の突入電力の1/3程度となり、上述の実施形態と比較し更に許容電力の低い放電用抵抗器61を電力変換装置10に採用することが可能となる。 For example, as shown in FIG. 3, the control circuit 7 sets the first mode for 0.5 seconds from the discharge start, the second mode for 0.5 seconds to 0.9 seconds, and the third mode for 0.9 seconds to 2 seconds. The MOSFET 62 is driven by PWM with the respective duty ratios being 30%, 50% and 100%. The rush power in each mode is 62.5 W, 63.0 W, 64.9 W, which is about 1/3 of the conventional rush power, and the discharge resistor 61 with lower allowable power compared to the above embodiment. It becomes possible to employ for the power converter 10.
 また上述の実施形態においては、放電開始からの経過時間により制御回路7がモードを切り替る場合について述べたが、本発明はこれに限らず、平滑コンデンサ電圧によってモードを切り替えるようにしても良い。なおこのモードを切り替えるための平滑コンデンサ電圧の値は、それぞれのモードでのデューティ比による突入電力が同程度となるようにする。 In the above embodiment, although the case where the control circuit 7 switches the mode according to the elapsed time from the discharge start has been described, the present invention is not limited to this and the mode may be switched according to the smoothing capacitor voltage. The value of the smoothing capacitor voltage for switching this mode is set so that the rush power by the duty ratio in each mode becomes approximately the same.
 さらに上述の実施形態においては、制御回路7がデューティ比の異なる2つのモードを利用しデューティ比を段階的に変化させる場合について述べたが、本発明はこれに限らず、制御回路7がデューティ比を連続的に徐々に変化させるようにしても良い。この場合上述の実施形態と比較し更に許容電力の低い放電用抵抗器61を電力変換装置10に採用することが可能となる。 Furthermore, in the above-mentioned embodiment, although the case where the control circuit 7 changes the duty ratio stepwise using two modes with different duty ratios has been described, the present invention is not limited to this. May be changed gradually and continuously. In this case, it is possible to adopt the discharge resistor 61 having a lower allowable power to the power conversion device 10 as compared with the above-described embodiment.
 1……バッテリ、2……コンタクタ、3……インバータ回路、4……モータ、5……平滑コンデンサ、6……放電回路、7……制御回路、10……電力変換装置、61……放電用抵抗器、62……MOSFET。
 
DESCRIPTION OF SYMBOLS 1 ...... Battery 2, 2 ...... Contactor, 3 ...... Inverter circuit, 4 ...... Motor, 5 ...... Smoothing capacitor, 6 ...... Discharge circuit, 7 ...... Control circuit, 10 ...... Power conversion device, 61 ...... Discharge Resistor, 62 ... MOSFET.

Claims (8)

  1.  直流電力を交流電力に変換するインバータ回路に並列接続するコンデンサと、
     前記コンデンサに並列接続したスイッチング素子及び放電用抵抗器を直列に接続した放電回路と、
     前記スイッチング素子を制御して、前記コンデンサから前記放電用抵抗器への放電を制御する制御回路と
     を備え、
     前記制御回路は、前記コンデンサからの放電の際、前記スイッチング素子のON/OFFデューティ比を変化させる
     電力変換装置。
    A capacitor connected in parallel to an inverter circuit that converts DC power into AC power;
    A discharge circuit in which a switching element connected in parallel to the capacitor and a discharge resistor are connected in series;
    A control circuit that controls the switching element to control discharge from the capacitor to the discharge resistor;
    The said control circuit changes the ON / OFF duty ratio of the said switching element, when the said capacitor | condenser discharges. Power converter.
  2.  前記制御回路は、放電を開始してから所定時間が経過した以降において、前記スイッチング素子のON/OFFデューティ比を増加させる
     請求項1記載の電力変換装置。
    The power conversion device according to claim 1, wherein the control circuit increases the ON / OFF duty ratio of the switching element after a predetermined time has elapsed since the start of the discharge.
  3.  前記制御回路は、前記所定時間が経過するまでの第1モードと、所定時間経過した以降の第2モードと、に応じて、前記スイッチング素子のON/OFFデューティ比を変化させ、
     前記第1モードに於ける前記スイッチング素子のON/OFFデューティ比より、前記第2モードにおける前記スイッチング素子のON/OFFデューティ比を増加させる
     請求項2記載の電力変換装置。
    The control circuit changes the ON / OFF duty ratio of the switching element according to a first mode until the predetermined time passes and a second mode after the predetermined time passes.
    The power converter according to claim 2, wherein the ON / OFF duty ratio of the switching element in the second mode is increased from the ON / OFF duty ratio of the switching element in the first mode.
  4.  前記制御回路は、放電を開始してから、前記コンデンサの電圧が所定の値まで下降した以降、前記スイッチング素子のON/OFFデューティ比を増加させる
     請求項1記載の電力変換装置。
    The power conversion device according to claim 1, wherein the control circuit increases the ON / OFF duty ratio of the switching element after the voltage of the capacitor falls to a predetermined value after the discharge is started.
  5.  前記制御回路は、放電を開始してから、前記コンデンサの前記電圧が所定の値に下降するまでの第1モードと、前記コンデンサの前記電圧が所定の値に下降した以降の第2モードと、に応じて、前記スイッチング素子のON/OFFデューティ比を変化させ、
     前記第1モードでの前記スイッチング素子のON/OFFデューティ比より前記第2モードでの前記スイッチング素子のON/OFFデューティ比を増加させる
     請求項4記載の電力変換装置。
    The control circuit is in a first mode until the voltage of the capacitor falls to a predetermined value after the discharge is started, and a second mode after the voltage of the capacitor falls to a predetermined value, Changing the ON / OFF duty ratio of the switching element according to
    The power converter according to claim 4, wherein the ON / OFF duty ratio of the switching element in the second mode is increased from the ON / OFF duty ratio of the switching element in the first mode.
  6.  前記制御回路は、放電を開始した以降に存在する複数のモードのそれぞれにおいて、前記スイッチング素子のON/OFFデューティ比を変化させる
     請求項1記載の電力変換装置。
    The power conversion device according to claim 1, wherein the control circuit changes an ON / OFF duty ratio of the switching element in each of a plurality of modes existing after the start of the discharge.
  7.  前記制御回路が、前記スイッチング素子のON/OFFデューティ比を増加する際、当該デューティ比を連続的に変化させる
     請求項1記載の電力変換装置。
    The power conversion device according to claim 1, wherein the control circuit continuously changes the duty ratio when increasing the ON / OFF duty ratio of the switching element.
  8.  電力変換装置の放電回路に接続されたスイッチング素子が制御回路によって制御されることにより、前記放電回路からの放電が実行されるようにした、電力変換装置の制御方法であって、
     前記制御回路は、
     放電の際、前記スイッチング素子のON/OFFデューティ比を変化させる
     電力変換装置の制御方法。
     
    A control method of a power conversion device, wherein discharge from the discharge circuit is performed by controlling a switching element connected to a discharge circuit of the power conversion device by a control circuit,
    The control circuit
    The control method of the power converter device which changes ON / OFF duty ratio of the said switching element at the time of discharge.
PCT/JP2018/022153 2017-08-21 2018-06-11 Power conversion device and method for controlling the same WO2019039047A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017158393A JP2020202600A (en) 2017-08-21 2017-08-21 Power conversion equipment and method of controlling the same
JP2017-158393 2017-08-21

Publications (1)

Publication Number Publication Date
WO2019039047A1 true WO2019039047A1 (en) 2019-02-28

Family

ID=65440015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022153 WO2019039047A1 (en) 2017-08-21 2018-06-11 Power conversion device and method for controlling the same

Country Status (2)

Country Link
JP (1) JP2020202600A (en)
WO (1) WO2019039047A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020105161A1 (en) 2020-02-27 2021-09-02 Audi Aktiengesellschaft Method for operating an intermediate circuit for a motor vehicle and a corresponding intermediate circuit
DE112020003460T5 (en) 2019-08-30 2022-04-07 Hitachi Astemo, Ltd. DISCHARGE CONTROL CIRCUIT AND POWER CONVERSION DEVICE
US11780334B2 (en) 2020-09-24 2023-10-10 Audi Ag Control of the active discharge of a high-voltage intermediate circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013188092A (en) * 2012-03-09 2013-09-19 Aisin Aw Co Ltd Inverter device for electric vehicle
JP2015116097A (en) * 2013-12-13 2015-06-22 本田技研工業株式会社 Discharge circuit failure detection device and discharge circuit failure detection method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013188092A (en) * 2012-03-09 2013-09-19 Aisin Aw Co Ltd Inverter device for electric vehicle
JP2015116097A (en) * 2013-12-13 2015-06-22 本田技研工業株式会社 Discharge circuit failure detection device and discharge circuit failure detection method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112020003460T5 (en) 2019-08-30 2022-04-07 Hitachi Astemo, Ltd. DISCHARGE CONTROL CIRCUIT AND POWER CONVERSION DEVICE
DE102020105161A1 (en) 2020-02-27 2021-09-02 Audi Aktiengesellschaft Method for operating an intermediate circuit for a motor vehicle and a corresponding intermediate circuit
DE102020105161B4 (en) 2020-02-27 2023-08-24 Audi Aktiengesellschaft Method for operating an intermediate circuit for a motor vehicle and corresponding intermediate circuit
US11780334B2 (en) 2020-09-24 2023-10-10 Audi Ag Control of the active discharge of a high-voltage intermediate circuit

Also Published As

Publication number Publication date
JP2020202600A (en) 2020-12-17

Similar Documents

Publication Publication Date Title
JP4835743B2 (en) Control device for power conversion circuit
JP6503636B2 (en) Motor controller
KR20090119761A (en) Generator motor driving device and method for discharging capacitor of generator motor driving device
WO2019039047A1 (en) Power conversion device and method for controlling the same
CN111656666B (en) power conversion device
JP2019205319A (en) Power supply system for vehicle
JP2010178421A (en) Power supplying device
JP5349698B2 (en) Auxiliary power supply for vehicle
JP4591741B2 (en) Rotating electric machine drive device for vehicle
EP3101792A1 (en) Method for controlling inverter
EP2940846B1 (en) A method of initiating a regenerative converter and a regenerative converter
US11196356B2 (en) Power conversion device
JP5741183B2 (en) Power system
JP2015216825A (en) Power switching device with smoothing circuit
JP5369047B2 (en) Power converter
JP2017189053A (en) Motor device
JP6825279B2 (en) Vehicle power supply
JP2018133907A (en) Charge control device
US10038224B2 (en) Power supply device
US11855555B2 (en) Control device for an inverter, inverter for a vehicle, vehicle and method of operating an inverter
WO2023112220A1 (en) Power conversion device
JP2013251965A (en) Power-supply circuit
WO2021039276A1 (en) Discharge control device and discharge control method
JP6497547B2 (en) electric circuit
JP2017017825A (en) Ac load drive device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18848313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18848313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP