WO2019039023A1 - Microetching agent for copper and method for producing wiring board - Google Patents

Microetching agent for copper and method for producing wiring board Download PDF

Info

Publication number
WO2019039023A1
WO2019039023A1 PCT/JP2018/020419 JP2018020419W WO2019039023A1 WO 2019039023 A1 WO2019039023 A1 WO 2019039023A1 JP 2018020419 W JP2018020419 W JP 2018020419W WO 2019039023 A1 WO2019039023 A1 WO 2019039023A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
polymer
micro
etching
concentration
Prior art date
Application number
PCT/JP2018/020419
Other languages
French (fr)
Japanese (ja)
Inventor
知志 斉藤
優 福井
Original Assignee
メック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by メック株式会社 filed Critical メック株式会社
Priority to CN201880054465.1A priority Critical patent/CN111051571A/en
Priority to KR1020207004781A priority patent/KR20200043993A/en
Publication of WO2019039023A1 publication Critical patent/WO2019039023A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/18Acidic compositions for etching copper or alloys thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/383Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by microetching

Definitions

  • the present invention relates to a copper microetching agent and a method of manufacturing a wiring substrate.
  • the copper surface is roughened with a microetching agent (roughening agent).
  • a micro-etching agent of copper or copper alloy an organic acid-based micro-etching agent (for example, Patent Document 1) and an inorganic acid-based micro-etching agent (for example, Patent Document 2) are known.
  • These micro-etching agents contain an acid and an oxidizing agent, and further, halogen, polymer, ammonium salt, amines, surfactant and the like are added for the purpose of adjusting roughened shape, etching rate and the like.
  • the roughening progresses as the etching amount increases, so the adhesion to a resin or the like tends to be improved.
  • the copper wiring is roughened with a micro-etching agent, wire thinning may occur as the etching progresses, and problems such as high resistance and disconnection may occur. Since the influence of line thinning of the wiring becomes remarkable along with the narrowing of the wiring (fine wiring), a micro-etching agent capable of realizing high adhesion with a low etching amount is required.
  • the organic acid micro-etching agent of Patent Document 1 can form a roughened shape excellent in adhesion to a solder resist or the like on a copper surface even when the etching amount is 1 ⁇ m or less.
  • the organic acid-based micro-etching agent contains an organic acid, ammonium salt or the like at a high concentration, a dedicated drainage / waste solution treatment facility is required, and it can not be said that the versatility is high.
  • Patent Document 2 it is described that a roughened shape excellent in adhesion to a solder resist or the like can be formed on a copper surface with an etching amount of about 1.5 ⁇ m by a hydrochloric acid-based microetching agent containing polyethyleneimine.
  • Inorganic acid-based etchants have the advantage of easier drainage and waste liquid treatment compared to organic acid-based etchants.
  • an object of the present invention to provide an inorganic acid micro-etching agent capable of forming a roughened shape excellent in adhesion to a resin or the like on a copper surface even with a low etching amount.
  • the present invention relates to a copper microetching agent used for surface roughening of copper.
  • “copper” includes copper and copper alloys.
  • the “copper layer” also includes a copper wiring pattern layer.
  • the microetching agent of the present invention is an inorganic acid-based microetching agent containing an inorganic acid, cupric ion, halide ion, and a cationic polymer.
  • the cationic polymer is a water-soluble polymer having a weight average molecular weight of 1000 or more containing a quaternary ammonium group in a side chain.
  • the molar concentration of halide ions in the microetchant is 5 to 100 times the molar concentration of cupric ions.
  • the pH of the microetching agent is preferably 2 or less.
  • the weight concentration of cupric ion is preferably 50 to 2000 times the weight concentration of the polymer.
  • the present invention relates to a method of manufacturing a wiring substrate for manufacturing a wiring substrate including a copper layer.
  • the method of manufacturing the wiring substrate includes the step of bringing the above-described micro-etching agent into contact with the copper surface to roughen it (roughening treatment step).
  • a replenishing solution may be added to the microetching agent in order to keep the composition of the microetching agent in a predetermined range.
  • the etching amount in the roughening treatment is, for example, 1 ⁇ m or less.
  • the “etching amount” refers to the average etching amount (dissolution amount) in the depth direction, and is a value calculated from the weight, specific gravity and front projection area of the copper surface dissolved by the microetching agent. The same applies to the following “etching amount”.
  • a roughened shape excellent in adhesion to a resin or the like can be formed on the copper surface.
  • FIG. 16 is a scanning electron micrograph of a copper surface treated with a solution of Formulation 10.
  • FIG. 16 is a scanning electron micrograph of a copper surface treated with a solution of Formulation 11.
  • Figure 14 is a scanning electron micrograph of a copper surface treated with the solution of formulation 13.
  • FIG. 18 is a scanning electron micrograph of a copper surface treated with a solution of Formulation 18.
  • FIG. 18 is a scanning electron micrograph of a copper surface treated with a solution of Formulation 19.
  • FIG. 16 is a scanning electron micrograph of a copper surface treated with a solution of formulation 20.
  • FIG. 21 is a scanning electron micrograph of a copper surface treated with a solution of formulation 21.
  • FIG. Fig. 24 is a scanning electron micrograph of a copper surface treated with a solution of formulation 22.
  • Fig. 24 is a scanning electron micrograph of a copper surface treated with a solution of formulation 23.
  • Fig. 24 is a scanning electron micrograph of a copper surface treated with a solution of formulation 24. Scanning electron micrograph of copper surface treated with solution of formulation 25.
  • FIG 24 is a scanning electron micrograph of a copper surface treated with a solution of Formulation 26.
  • FIG. Scanning electron micrograph of a copper surface treated with the solution of formulation 27.
  • the microetching agent of the present invention is used for surface roughening of copper.
  • the microetching agent is an acidic aqueous solution containing inorganic acid, cupric ion, halide ion and polymer.
  • each component contained in the micro-etching agent of this invention is demonstrated.
  • cupric ion acts as an oxidizing agent to oxidize copper.
  • Sources of cupric ions to be added to the microetching agent include copper halides such as cupric chloride and cupric bromide; inorganic acid salts such as cupric sulfate and cupric nitrate; cupric formate, Organic acid salts such as cupric acetate; cupric hydroxide; cupric oxide and the like. Since cupric halide produces cupric ion and halide ion in aqueous solution, it can be used as having both the function of a halide ion source and a cupric ion source.
  • cupric ion source copper halide, cupric oxide or an inorganic acid salt is preferable.
  • the composition in the case of coexistence of cupric oxide with a hydrohalic acid such as hydrochloric acid is equivalent to that in the case of dissolving copper halide. It is preferable that cupric oxide be readily dissolved in an acid rapidly and easily, and it is preferable that easily soluble cupric oxide used in "copper plating solution using insoluble anode" or the like be used.
  • the etching rate is in an appropriate range, so that the control of the etching amount becomes easy.
  • the acid has a function of dissolving copper oxidized by cupric ion in an aqueous solution, and also has a function of pH adjustment.
  • the pH of the microetching agent is preferably 2 or less, more preferably 1.5 or less, and still more preferably 1 or less. Even when the concentration of cupric ions in the solution increases with the progress of etching, precipitation of copper hydroxide or the like can be suppressed as long as the pH is in the above range. Therefore, the stability of a solution is high and it can form the roughening shape which is excellent in adhesiveness with resin etc. on a copper surface.
  • an inorganic acid is used as the acid.
  • Inorganic acids are less likely to be coordinated to cupric ions in aqueous solution than organic acids. Therefore, by using the inorganic acid, the action of the cupric ion in the microetching agent as an oxidizing agent can be properly maintained.
  • a strong acid such as a hydrohalic acid such as hydrochloric acid or hydrobromic acid, a sulfuric acid or nitric acid is preferable.
  • the hydrohalic acid can be used as having both the function of a halide ion source and an acid. Therefore, the microetching agent of the present invention preferably contains a hydrohalic acid as the inorganic acid.
  • hydrochloric acid aqueous hydrogen chloride solution
  • the acid may be used in combination of two or more, and a small amount of organic acid may be used in addition to the inorganic acid.
  • the acid concentration of the microetching agent is preferably adjusted so that the pH is in the above range.
  • the halide ion assists copper dissolution and has a function of forming a copper layer surface with excellent adhesion.
  • a halide ion a chloride ion, a bromide ion etc. can be illustrated. Among them, chloride ion is preferable from the viewpoint of uniformly forming a roughened shape excellent in adhesion.
  • the microetching agent may contain two or more halide ions.
  • hydrohalic acid such as hydrochloric acid or hydrobromic acid
  • the halide ion source may be used in combination of two or more.
  • the hydrohalic acid has the action of both a halide ion source and an acid
  • the copper halide has the actions of both a halide ion source and a cupric ion source.
  • the concentration of halide ion in the microetching agent is preferably 0.005 to 10 mol / L, and more preferably 0.05 to 5 mol / L. 0.1 to 3 mol / L is more preferable.
  • the halide ion concentration in the above range, the dissolution of the cuprous ion generated by the oxidation of copper in the solution is promoted, and the formation of smut on the surface of the copper layer tends to be suppressed.
  • the micro-etching agent contains an excess of halide ions relative to cupric ions. Therefore, the appropriate range of the halide ion concentration is set according to the cupric ion concentration.
  • the micro-etching agent of the present invention contains a water-soluble polymer having a quaternary ammonium group in a side chain and having a weight average molecular weight of 1000 or more.
  • the polymer, together with the halide ion, has the function of forming a roughened shape with excellent adhesion.
  • the coexistence of the cupric ion and the halide ion with the polymer having a quaternary ammonium group in the side chain in the microetching agent makes it possible to uniformly form fine irregularities on the surface of copper.
  • the weight average molecular weight of the polymer is preferably 2000 or more, and more preferably 3000 or more.
  • the weight average molecular weight of the polymer is preferably 5,000,000 or less, more preferably 2,000,000 or less.
  • the weight average molecular weight is a value obtained by gel permeation chromatography (GPC) analysis in terms of polyethylene glycol.
  • the polymer which has a quaternary ammonium group in a side chain As a polymer which has a quaternary ammonium group in a side chain, the polymer which has a repeating unit represented, for example by following formula (I) is mentioned.
  • R 1 to R 3 each independently represent a chain-like or cyclic hydrocarbon group which may have a substituent, and two or more of R 1 to R 3 are bonded to each other It may form a ring structure.
  • R 4 is a hydrogen atom or a methyl group
  • X 1 is a single bond or a divalent linking group
  • Z ⁇ is a counter anion.
  • polymer having a repeating unit represented by the formula (I) examples include quaternary ammonium salt type styrene polymers, quaternary ammonium salt type aminoalkyl (meth) acrylate polymers and the like.
  • the polymer having a quaternary ammonium group in the side chain is, as represented by the following formula (II), a repeating unit in which a carbon atom of the main chain and a quaternary ammonium group of the side chain form a cyclic structure You may have.
  • R 5 and R 6 are a chain or cyclic hydrocarbon group which may have a substituent, and R 5 and R 6 are bonded to each other to form a cyclic structure. It is also good.
  • m is an integer of 0 to 2;
  • Each of X 2 and X 3 independently represents a single bond or a divalent linking group.
  • polymerization of the diallyl dialkyl ammonium salt represented by Formula (IIa) is mentioned.
  • R 7 and R 8 each independently represent a hydrogen atom or a chain or cyclic hydrocarbon group which may have a substituent, and is preferably a hydrogen atom.
  • the side chain quaternary ammonium group may have a double bond between the nitrogen atom and the carbon atom.
  • Counter anion Z quaternary ammonium salt - The, Cl -, Br -, I -, ClO 4 -, BF 4 -, CH 3 COO -, PF 6 -, HSO 4 -, C 2 H 5 SO 4 - Can be mentioned.
  • X 1 to X 7 are divalent linking groups, specific examples thereof include a methylene group, an alkylene group having 2 to 10 carbon atoms, an arylene group, a -CONH-R- group, and a -COO-R- group
  • R is a single bond, a methylene group, an alkylene group having 2 to 10 carbon atoms, or an ether group (alkyloxyalkyl group) having 2 to 10 carbon atoms, and the like.
  • the polymer containing a quaternary ammonium group in the side chain may be a copolymer.
  • the copolymer may contain a repeating unit containing a quaternary ammonium group and a repeating unit not containing a quaternary ammonium group.
  • the arrangement of repeating units in the copolymer is not particularly limited, and may be any of alternating copolymer, block copolymer and random copolymer.
  • the ratio of the repeating unit containing a quaternary ammonium group to the monomer unit of the whole polymer is preferably 20 mol% or more, more preferably 30 mol% or more. And 40 mol% or more is more preferable.
  • a repeating unit containing no quaternary ammonium group a structure derived from (meth) acrylic acid, alkyl (meth) acrylate, aminoalkyl (meth) acrylate, (meth) acrylamide, styrene derivative, sulfur dioxide, etc. It can be mentioned.
  • low molecular weight polyethyleneimine is used as a polymer of the inorganic acid-based micro-etching agent, but even if low molecular weight polyethyleneimine having a molecular weight of less than 1000 is used, a coarse difference is produced at a low etching amount. It is not possible to form In the above-mentioned patent documents 1, the example using high molecular weight polyethylene imine as a polymer of organic acid system micro etching agent is indicated.
  • the micro-etching agent of the present invention has a low pH because it mainly uses an inorganic acid as the acid.
  • Polyethyleneimine having a cationic group in the main chain is unstable under strong acidity, and formation of a finely roughened shape is difficult.
  • a cationic polymer containing a quaternary ammonium group in the side chain is stable even under strong acidity of pH 1 or less and contributes to the formation of a finely roughened shape.
  • the concentration of the polymer in the micro-etching agent is preferably 0.0002 to 0.2 g / L, more preferably 0.001 to 0.04 g / L, from the viewpoint of forming a copper layer surface excellent in adhesion. .004 to 0.02 g / L is more preferable. As described later, the appropriate range of the polymer concentration in the microetching agent is set according to the cupric ion concentration.
  • the micro-etching agent of the present invention is characterized in that it contains an excess of halide ion to cupric ion.
  • the halide ion concentration (molar concentration) of the microetching agent is preferably 5 times or more of the cupric ion concentration, more preferably 7 times or more, and still more preferably 10 times or more.
  • the micro-etching agent contains an excessive amount of halide ion with respect to the cupric ion, a roughened shape excellent in adhesion to a resin or the like can be formed on the copper surface even with a low etching amount.
  • the halide ion concentration is preferably 100 times or less of the cupric ion concentration, more preferably 70 times or less, and still more preferably 50 times or less.
  • cuprous halide ion and cupric ion as an oxidizing agent
  • metallic copper is oxidized and cupric ion is reduced to form cuprous ion.
  • cuprous halide such as copper (I) chloride
  • the cuprous halide has low solubility, insoluble smut precipitates on the copper surface.
  • the cuprous halide rapidly dissolves again when the halogen is present in excess. That is, when the halogen is present in excess, the deposition of smut on the copper surface is suppressed, so that each component constituting the micro-etching agent becomes an environment in which the metal copper surface easily contacts. In such an environment, it is considered that the action of the above-mentioned cationic polymer is easily expressed, and even with a low etching amount, fine irregularities excellent in adhesion to the resin are easily formed.
  • the weight concentration of cupric ion in the etching agent is preferably 50 to 2,000 times, more preferably 100 to 1,500 times, the weight concentration of the cationic polymer. 1000 times is more preferable.
  • the micro-etching agent of the present invention can be prepared by dissolving the above-mentioned components in ion-exchanged water and the like.
  • the microetching agent may contain components other than the above.
  • a nonionic surfactant may be added for the purpose of homogenizing the roughening.
  • Nonionic surfactants also act as antifoam agents.
  • various additives may be added as needed. When these additives are used, the concentration of the additive in the microetching agent is preferably about 0.0001 to 20% by weight.
  • micro etching agent can be widely used to roughen the copper layer surface. Fine irregularities are uniformly formed on the treated copper surface, and adhesion to a resin such as a prepreg, a plating resist, an etching resist, a solder resist, an electrodeposition resist, and a cover lay is good. Moreover, since it is also excellent in roughened copper surface solderability, it is especially useful for manufacture of various wiring boards including for pin grid array (PGA) and ball grid array (BGA). Furthermore, it is useful also for the surface treatment of a lead frame.
  • PGA pin grid array
  • BGA ball grid array
  • the micro-etching agent of the present invention can form a surface excellent in adhesion with a low etching amount, a printed wiring board requiring fine copper wiring, fan-out wafer level package (FOWLP), LSI It is useful for adhesion improvement processing of rewiring copper layer etc., and contributes to suppression of high resistance of copper wiring and disconnection.
  • the copper surface is roughened by bringing the above-described micro-etching agent into contact with the copper surface.
  • the copper surface is roughened by bringing the above-described micro-etching agent into contact with the copper surface.
  • the method for bringing the copper surface into contact with the micro-etching agent is not particularly limited.
  • the method for spraying the micro-etching agent on the copper layer surface to be treated or immersing the copper layer to be treated in the micro-etching agent And the like it is preferable that the temperature of the microetching agent be 10 to 40 ° C., and the etching be performed under the conditions of a spray pressure of 0.03 to 0.3 MPa for 5 to 120 seconds.
  • immersion it is preferable to set the temperature of the microetching agent to 10 to 40 ° C. and perform etching under the conditions of 5 to 120 seconds.
  • micro-etching agent of the present invention can be easily treated with waste liquid after use, and can be treated by a simple method using, for example, neutralization with an alkali, a polymer flocculant or the like.
  • L * value of the copper surface after the roughening process by a micro etching agent 65 or less is more preferable.
  • the L * value is the lightness L * in the L * a * b * color space (JIS Z 8781-4), and is measured by the method described in the examples described later.
  • the untreated copper foil has a metallic luster, and L * is about 80 to 90. In a copper foil whose surface is roughened, incident light is irregularly reflected in multiple directions, and reflection is repeatedly attenuated. Therefore, when the roughening of the copper foil progresses and a fine uneven shape is formed, the L * value tends to be small.
  • the L * value of the copper surface can be controlled within the above range by adjusting the compounding ratio of the micro-etching agent and the etching amount.
  • the compounding ratio of the microetching agent and the etching amount (etching time) can be adjusted so that the L * value of the copper layer surface is in the above range. For example, after roughening the surface of the copper layer with a micro-etching agent, monitor the L * value of the surface of the copper layer after the roughening treatment and control the addition amount of the replenishing solution described later and the timing of the addition of the replenishing solution. It can also be done.
  • the etching amount in the roughening treatment is not particularly limited. From the viewpoint of improving adhesion to the resin, the etching amount is preferably 0.05 ⁇ m or more, and more preferably 0.1 ⁇ m or more. In the pretreatment of the solder resist coating process of a printed wiring board that requires fine wiring, etc., if the amount of etching is too large, disconnection due to complete etching of the copper layer, increase in resistance due to reduction in wiring cross section, etc. Problems may occur. Therefore, the etching amount is preferably 1 ⁇ m or less, more preferably 0.7 ⁇ m or less, and still more preferably 0.5 ⁇ m or less.
  • the roughening treatment may be performed while adding the replenishing solution.
  • the concentration of each component in the microetching agent during treatment can be properly maintained.
  • the replenishing solution an aqueous solution containing components (acid, halide ion, and the aforementioned polymer) which decrease with the progress of etching is preferable.
  • the replenisher may include a cupric ion source such as copper oxide.
  • the addition amount of the replenishment liquid and the timing of the addition of the replenishment liquid can be appropriately set according to the concentration management range of each component and the like.
  • the components in the replenishing solution are the same as the components contained in the above-mentioned micro-etching agent.
  • the concentration of each component in the replenishing solution is appropriately adjusted in accordance with the initial concentration of the micro-etching agent used for the treatment.
  • the composition of the replenishing solution may be the same as the preparation bath (microetching solution before use).
  • the roughened surface may be washed with an acidic aqueous solution.
  • an acidic aqueous solution used for washing hydrochloric acid, sulfuric acid aqueous solution, nitric acid aqueous solution or the like can be used. Hydrochloric acid is preferred because it has less influence on the roughening shape and high washability.
  • the acid concentration of the acidic aqueous solution is preferably 0.3 to 35% by weight, and more preferably 1 to 10% by weight.
  • the cleaning method is not particularly limited, and examples thereof include a method of spraying an acidic aqueous solution on the surface of the roughened copper layer, and a method of immersing the roughened copper layer in the acidic aqueous solution.
  • the solution may be treated with an aqueous solution or alcohol solution of an azole to further improve the adhesion to the resin.
  • an oxidation treatment such as a brown oxide treatment or a black oxide treatment may be performed.
  • micro-etching agent Solutions (micro-etching agents) were prepared according to the formulations shown in Tables 1-1 to 1-2. The details of the polymers A to I are as follows. These polymers were used such that the concentration in the solution was as shown in the table.
  • Polymer A vinyl pyrrolidone / N, N-dimethylaminoethyl methacrylamide diethyl sulfate random copolymer having the following structure (weight average molecular weight about 800,000)
  • Polymer B Diallyldimethylammonium hydrochloride-sulfur dioxide alternating copolymer having the following repeating units (weight average molecular weight about 5000)
  • Polymer C Acrylamide dimethylaminoethyl acrylate methyl chloride quaternary salt copolymer (weight average molecular weight about 2 million)
  • Polymer D Dimethylaminoethyl methacrylate sulfuric acid dimethyl quaternary salt polymer (weight average molecular weight about 300,000)
  • Polymer E Polymer of diallyldimethylammonium chloride (weight average molecular weight about 300,000)
  • Polymer F Poly (oxyethylene oxypropylene (5E.O., 5P.O.)) glycol monoether (number average molecular weight about 510)
  • Polymer G polyethyleneimine (weight average molecular weight about 70,000)
  • Polymer H polyethylene imine (weight average molecular weight about 300)
  • Polymer I polyoxyethylene-polyoxypropylene block polymer adduct of ethylenediamine represented by the following formula
  • the balance of the blending components in the table is ion exchanged water.
  • each micro etching agent (30 ° C.) shown in Tables 1-1 to 1-5 is sprayed on the surface of the copper plating layer of the above test substrate under the condition of spray pressure of 0.10 MPa, and the etching amount of 0.5 ⁇ m
  • the etching time was adjusted so as to be
  • the etched surface was immersed in hydrochloric acid (hydrogen chloride concentration: 3.5% by weight) at a temperature of 30 ° C. for 10 seconds, washed with water, and dried.
  • SEM scanning electron microscope
  • a glass cloth epoxy resin impregnated prepreg (manufactured by Hitachi Chemical Co., Ltd., product name: GEA-67N, thickness 0.1 mm) is laminated on the etched surface of the test substrate after the above drying (press pressure: 30 MPa, temperature: 170 ° C.) , Time: 60 minutes). Next, the periphery of the laminated substrate was cut off to prepare a test piece. The test piece was left in an environment of 120 ° C. (relative humidity: 100%) for 2 hours, and then immersed in a molten solder bath of 230 ° C. for 30 seconds.
  • test pieces after immersion were visually observed, and those which did not show any blistering were A (see FIG. 20) and those whose blistering occurred within 10% of the surface were B (see FIG. 21). And X) (see FIG. 22) where swelling occurred in a region of 10% or more of the surface.
  • Tables 1-1 and 1-2 If the adhesion between the copper foil and the resin is good, no blistering is observed.
  • the L * value of the copper surface after roughening was all 55 or less, and a roughened shape excellent in adhesion to the resin was formed (see FIGS. 1 to 3). ).
  • the concentration of each component is largely different, but the molar concentration ratio of halogen to cupric ion and the weight concentration ratio of cupric ion to polymer are within the predetermined ranges, so the same roughening is achieved. It is considered that the shape is formed.
  • the L * value of the copper surface after roughening was 65 or less.
  • the L * value of the copper surface after roughening was larger than in the formulations 1 to 11, and the formation of the roughened shape was insufficient.
  • the L * value of the copper surface after roughening was 65 or less as in the formulations 1 to 7.
  • formulation 12 in which the polymer is not blended and formulations 20 and 21 (see FIGS. 12 and 13) in which polymer G (high molecular weight polyethyleneimine) is included, although the surface is roughened, formulation 1
  • the L * value of the copper surface after the roughening was larger than that of the sample No. 11 and the formation of the roughened shape was insufficient.
  • Formulations 18, 19 (see FIGS. 10 and 11) containing polymer F (nonionic surfactant containing no quaternary ammonium salt), and formulations 22 and 23 (polymer 14 containing low molecular weight polyethyleneimine) (FIG. 14) In 15, 15), the surface was hardly roughened at any polymer concentration, and showed a larger L * value than the formulation 12 containing no polymer.
  • the copper surface was not roughened at all at any polymer concentration.
  • the L * value of the copper surface after roughening is lower than that of the combination 1-11.
  • the formation of a large, roughened shape was inadequate.
  • One reason for the insufficient formation of the roughened shape is considered to be that the pH is high and the solubility of copper ions generated by etching is low.
  • the organic acid is easily coordinated to cupric ion, in the solutions of Formulation Examples 26 and 27, the effective concentration of cupric ion was lowered, and the balance between the cupric ion and the halide ion was broken. It is also considered that the roughening shape is insufficient.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • ing And Chemical Polishing (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

This microetching agent contains an inorganic acid, cupric ions, halide ions, and a water-soluble cationic polymer which contains a quaternary ammonium group in a side chain, while having a weight average molecular weight of 1,000 or more. The molar concentration of the halide ions is 5 to 100 times the molar concentration of the cupric ions in this microetching agent. It is preferable that the pH of this microetching agent is 2 or less. By using this microetching agent, a copper surface is able to be provided with a roughened shape that exhibits excellent adhesion to a resin and the like even if the amount of etching is low.

Description

銅のマイクロエッチング剤および配線基板の製造方法Method of manufacturing copper micro-etching agent and wiring board
 本発明は、銅のマイクロエッチング剤および配線基板の製造方法に関する。 The present invention relates to a copper microetching agent and a method of manufacturing a wiring substrate.
 プリント配線基板の製造において、銅表面とソルダーレジスト等の樹脂材料との密着性を向上させるために、マイクロエッチング剤(粗化剤)により銅表面を粗化することが行われている。銅または銅合金のマイクロエッチング剤としては、有機酸系マイクロエッチング剤(例えば特許文献1)、および無機酸系マイクロエッチング剤(例えば特許文献2)が知られている。これらのマイクロエッチング剤は酸および酸化剤を含み、さらに、粗化形状やエッチング速度の調整等を目的として、ハロゲン、ポリマー、アンモニウム塩、アミン類、界面活性剤等が添加されている。 In the manufacture of printed wiring boards, in order to improve the adhesion between a copper surface and a resin material such as a solder resist, the copper surface is roughened with a microetching agent (roughening agent). As a micro-etching agent of copper or copper alloy, an organic acid-based micro-etching agent (for example, Patent Document 1) and an inorganic acid-based micro-etching agent (for example, Patent Document 2) are known. These micro-etching agents contain an acid and an oxidizing agent, and further, halogen, polymer, ammonium salt, amines, surfactant and the like are added for the purpose of adjusting roughened shape, etching rate and the like.
WO2014/017115号パンフレットWO 2014/017115 brochure WO2007/024312号パンフレットWO 2007/024312 brochure
 マイクロエッチング剤による粗化では、エッチング量が大きくなるほど粗化が進行するため、樹脂等との密着性が向上する傾向がある。一方、銅配線をマイクロエッチング剤により粗化すると、エッチングの進行に伴って線細りが生じ、高抵抗化や断線等の不具合を生じる場合がある。配線の狭ピッチ化(微細配線化)に伴って、配線の線細りの影響が顕著となるため、低エッチング量で高い密着性を実現可能なマイクロエッチング剤が要求されるようになっている。 In the roughening by the micro-etching agent, the roughening progresses as the etching amount increases, so the adhesion to a resin or the like tends to be improved. On the other hand, when the copper wiring is roughened with a micro-etching agent, wire thinning may occur as the etching progresses, and problems such as high resistance and disconnection may occur. Since the influence of line thinning of the wiring becomes remarkable along with the narrowing of the wiring (fine wiring), a micro-etching agent capable of realizing high adhesion with a low etching amount is required.
 特許文献1の有機酸系マイクロエッチング剤は、エッチング量が1μm以下でも、銅表面にソルダーレジスト等との密着性に優れた粗化形状を形成できる。しかし、有機酸系のマイクロエッチング剤は、有機酸やアンモニウム塩等を高濃度で含有するため、専用の排水・廃液処理設備が必要となり、汎用性が高いとは言い難い。 The organic acid micro-etching agent of Patent Document 1 can form a roughened shape excellent in adhesion to a solder resist or the like on a copper surface even when the etching amount is 1 μm or less. However, since the organic acid-based micro-etching agent contains an organic acid, ammonium salt or the like at a high concentration, a dedicated drainage / waste solution treatment facility is required, and it can not be said that the versatility is high.
 特許文献2では、ポリエチレンイミンを含む塩酸系マイクロエッチング剤により、1.5μm程度のエッチング量でソルダーレジスト等との密着性に優れる粗化形状を銅表面に形成できることが記載されている。無機酸系のエッチング剤は、有機酸系エッチング剤に比べて排水および廃液処理が容易であるとの利点を有する。しかし、無機酸系のエッチング剤を用いて樹脂との密着性を確保するためには、有機酸系エッチング剤を用いる場合に比べてエッチング量を大きくする必要がある。 In Patent Document 2, it is described that a roughened shape excellent in adhesion to a solder resist or the like can be formed on a copper surface with an etching amount of about 1.5 μm by a hydrochloric acid-based microetching agent containing polyethyleneimine. Inorganic acid-based etchants have the advantage of easier drainage and waste liquid treatment compared to organic acid-based etchants. However, in order to ensure the adhesion to the resin using an inorganic acid-based etching agent, it is necessary to increase the etching amount as compared with the case of using an organic acid-based etching agent.
 上記に鑑み、本発明は、低エッチング量でも、銅表面に樹脂等との密着性に優れた粗化形状を形成可能な無機酸系のマイクロエッチング剤の提供を目的とする。 In view of the above, it is an object of the present invention to provide an inorganic acid micro-etching agent capable of forming a roughened shape excellent in adhesion to a resin or the like on a copper surface even with a low etching amount.
 本発明は、銅の表面粗化に用いられる、銅のマイクロエッチング剤に関する。なお、本明細書における「銅」は、銅および銅合金を含む。また、「銅層」は、銅配線パターン層も含む。本発明のマイクロエッチング剤は、無機酸、第二銅イオン、ハロゲン化物イオン、およびカチオン性ポリマーを含む無機酸系のマイクロエッチング剤である。カチオン性ポリマーは、側鎖に第四級アンモニウム基を含む重量平均分子量が1000以上の水溶性ポリマーである。マイクロエッチング剤におけるハロゲン化物イオンのモル濃度は、第二銅イオンのモル濃度の5~100倍である。マイクロエッチング剤のpHは2以下が好ましい。第二銅イオンの重量濃度は、ポリマーの重量濃度の50~2000倍が好ましい。 The present invention relates to a copper microetching agent used for surface roughening of copper. In the present specification, "copper" includes copper and copper alloys. The "copper layer" also includes a copper wiring pattern layer. The microetching agent of the present invention is an inorganic acid-based microetching agent containing an inorganic acid, cupric ion, halide ion, and a cationic polymer. The cationic polymer is a water-soluble polymer having a weight average molecular weight of 1000 or more containing a quaternary ammonium group in a side chain. The molar concentration of halide ions in the microetchant is 5 to 100 times the molar concentration of cupric ions. The pH of the microetching agent is preferably 2 or less. The weight concentration of cupric ion is preferably 50 to 2000 times the weight concentration of the polymer.
 さらに、本発明は、銅層を含む配線基板を製造する配線基板の製造方法に関する。配線基板の製造方法は、銅表面に上記マイクロエッチング剤を接触させて粗化する工程(粗化処理工程)を有する。粗化処理工程においては、マイクロエッチング剤の組成を所定範囲に保つために、マイクロエッチング剤に補給液を添加してもよい。粗化処理におけるエッチング量は、例えば1μm以下である。なお、「エッチング量」とは、深さ方向の平均エッチング量(溶解量)を指し、マイクロエッチング剤により溶解した銅の重量、比重および銅表面の前面投影面積から算出される値である。以下の「エッチング量」についても同様である。 Furthermore, the present invention relates to a method of manufacturing a wiring substrate for manufacturing a wiring substrate including a copper layer. The method of manufacturing the wiring substrate includes the step of bringing the above-described micro-etching agent into contact with the copper surface to roughen it (roughening treatment step). In the roughening treatment step, a replenishing solution may be added to the microetching agent in order to keep the composition of the microetching agent in a predetermined range. The etching amount in the roughening treatment is, for example, 1 μm or less. The “etching amount” refers to the average etching amount (dissolution amount) in the depth direction, and is a value calculated from the weight, specific gravity and front projection area of the copper surface dissolved by the microetching agent. The same applies to the following “etching amount”.
 本発明によれば、低エッチング量でも、樹脂等との密着性に優れる粗化形状を銅表面に形成できる。 According to the present invention, even with a low etching amount, a roughened shape excellent in adhesion to a resin or the like can be formed on the copper surface.
配合1の溶液により処理された銅表面の走査型電子顕微鏡写真。Scanning electron micrograph of a copper surface treated with solution of formulation 1. 配合2の溶液により処理された銅表面の走査型電子顕微鏡写真。Scanning electron micrograph of a copper surface treated with solution of formulation 2. 配合3の溶液により処理された銅表面の走査型電子顕微鏡写真。Scanning electron micrograph of copper surface treated with solution of formulation 3. 配合8の溶液により処理された銅表面の走査型電子顕微鏡写真。Scanning electron micrograph of a copper surface treated with the solution of formulation 8. 配合9の溶液により処理された銅表面の走査型電子顕微鏡写真。Scanning electron micrograph of copper surface treated with solution of formulation 9. 配合10の溶液により処理された銅表面の走査型電子顕微鏡写真。FIG. 16 is a scanning electron micrograph of a copper surface treated with a solution of Formulation 10. 配合11の溶液により処理された銅表面の走査型電子顕微鏡写真。FIG. 16 is a scanning electron micrograph of a copper surface treated with a solution of Formulation 11. 配合12の溶液により処理された銅表面の走査型電子顕微鏡写真。Scanning electron micrograph of a copper surface treated with a solution of formulation 12. 配合13の溶液により処理された銅表面の走査型電子顕微鏡写真。Figure 14 is a scanning electron micrograph of a copper surface treated with the solution of formulation 13. 配合18の溶液により処理された銅表面の走査型電子顕微鏡写真。FIG. 18 is a scanning electron micrograph of a copper surface treated with a solution of Formulation 18. 配合19の溶液により処理された銅表面の走査型電子顕微鏡写真。FIG. 18 is a scanning electron micrograph of a copper surface treated with a solution of Formulation 19. 配合20の溶液により処理された銅表面の走査型電子顕微鏡写真。FIG. 16 is a scanning electron micrograph of a copper surface treated with a solution of formulation 20. FIG. 配合21の溶液により処理された銅表面の走査型電子顕微鏡写真。FIG. 21 is a scanning electron micrograph of a copper surface treated with a solution of formulation 21. FIG. 配合22の溶液により処理された銅表面の走査型電子顕微鏡写真。Fig. 24 is a scanning electron micrograph of a copper surface treated with a solution of formulation 22. 配合23の溶液により処理された銅表面の走査型電子顕微鏡写真。Fig. 24 is a scanning electron micrograph of a copper surface treated with a solution of formulation 23. 配合24の溶液により処理された銅表面の走査型電子顕微鏡写真。Fig. 24 is a scanning electron micrograph of a copper surface treated with a solution of formulation 24. 配合25の溶液により処理された銅表面の走査型電子顕微鏡写真。Scanning electron micrograph of copper surface treated with solution of formulation 25. 配合26の溶液により処理された銅表面の走査型電子顕微鏡写真。FIG. 24 is a scanning electron micrograph of a copper surface treated with a solution of Formulation 26. FIG. 配合27の溶液により処理された銅表面の走査型電子顕微鏡写真。Scanning electron micrograph of a copper surface treated with the solution of formulation 27. はんだ耐熱性試験において、評価結果Aのテストピースの表面写真。The surface photograph of the test piece of evaluation result A in a solder heat resistance test. はんだ耐熱性試験において、評価結果Bのテストピースの表面写真。The surface photograph of the test piece of evaluation result B in a solder heat resistance test. はんだ耐熱性試験において、評価結果Xのテストピースの表面写真。The surface photograph of the test piece of evaluation result X in a solder heat resistance test.
[マイクロエッチング剤の組成]
 本発明のマイクロエッチング剤は、銅の表面粗化に用いられる。マイクロエッチング剤は、無機酸、第二銅イオン、ハロゲン化物イオンおよびポリマーを含む酸性水溶液である。以下、本発明のマイクロエッチング剤に含まれる各成分について説明する。
[Composition of micro-etching agent]
The microetching agent of the present invention is used for surface roughening of copper. The microetching agent is an acidic aqueous solution containing inorganic acid, cupric ion, halide ion and polymer. Hereinafter, each component contained in the micro-etching agent of this invention is demonstrated.
<第二銅イオン>
 第二銅イオンは、銅を酸化するための酸化剤として作用する。マイクロエッチング剤に配合する第二銅イオン源としては、塩化第二銅、臭化第二銅等のハロゲン化銅;硫酸第二銅、硝酸第二銅等の無機酸塩;ギ酸第二銅、酢酸第二銅等の有機酸塩;水酸化第二銅;酸化第二銅等が挙げられる。ハロゲン化第二銅は水溶液中で第二銅イオンとハロゲン化物イオンを生成するため、ハロゲン化物イオン源と第二銅イオン源の両方の作用を有するものとして使用できる。第二銅イオン源としては、ハロゲン化銅、酸化第二銅または無機酸塩が好ましい。なお、酸化第二銅を塩酸等のハロゲン化水素酸と共存させた場合の組成は、ハロゲン化銅を溶解した場合と同等となる。酸化第二銅は、酸に速やかに容易に溶解するものが好ましく、「不溶性陽極を用いた銅めっき液」等に使用されている易溶性酸化第二銅が望ましい。
<Copper ion>
The cupric ion acts as an oxidizing agent to oxidize copper. Sources of cupric ions to be added to the microetching agent include copper halides such as cupric chloride and cupric bromide; inorganic acid salts such as cupric sulfate and cupric nitrate; cupric formate, Organic acid salts such as cupric acetate; cupric hydroxide; cupric oxide and the like. Since cupric halide produces cupric ion and halide ion in aqueous solution, it can be used as having both the function of a halide ion source and a cupric ion source. As a cupric ion source, copper halide, cupric oxide or an inorganic acid salt is preferable. The composition in the case of coexistence of cupric oxide with a hydrohalic acid such as hydrochloric acid is equivalent to that in the case of dissolving copper halide. It is preferable that cupric oxide be readily dissolved in an acid rapidly and easily, and it is preferable that easily soluble cupric oxide used in "copper plating solution using insoluble anode" or the like be used.
 マイクロエッチング剤の第二銅イオン濃度は、0.0005~0.5モル/Lが好ましく、0.001~0.3モル/Lがより好ましく、0.005~0.2モル/L以下がさらに好ましい。第二銅イオン濃度を調整することにより、エッチング速度が適切な範囲となるため、エッチング量の制御が容易となる。 0.0005 to 0.5 mol / L is preferable, 0.001 to 0.3 mol / L is more preferable, and the cupric ion concentration of the micro-etching agent is 0.005 to 0.2 mol / L or less. More preferable. By adjusting the concentration of the second copper ion, the etching rate is in an appropriate range, so that the control of the etching amount becomes easy.
<無機酸>
 酸は、第二銅イオンによって酸化された銅を水溶液中に溶解させる機能を有すると共に、pH調整の機能も有する。マイクロエッチング剤のpHは、2以下が好ましく、1.5以下がより好ましく、1以下がさらに好ましい。エッチングの進行に伴って溶液中の第二銅イオン濃度が上昇した場合でも、pHが上記範囲であれば、水酸化銅等の析出を抑制できる。そのため、溶液の安定性が高く、銅表面に樹脂等との密着性に優れる粗化形状を形成できる。
<Inorganic acid>
The acid has a function of dissolving copper oxidized by cupric ion in an aqueous solution, and also has a function of pH adjustment. The pH of the microetching agent is preferably 2 or less, more preferably 1.5 or less, and still more preferably 1 or less. Even when the concentration of cupric ions in the solution increases with the progress of etching, precipitation of copper hydroxide or the like can be suppressed as long as the pH is in the above range. Therefore, the stability of a solution is high and it can form the roughening shape which is excellent in adhesiveness with resin etc. on a copper surface.
 マイクロエッチング剤のpHを低く保つ観点から、酸として無機酸が用いられる。無機酸は、有機酸に比べて、水溶液中で第二銅イオンに配位し難い。そのため、無機酸を用いることにより、マイクロエッチング剤における第二銅イオンの酸化剤としての作用を適正に保持できる。無機酸としては、塩酸、臭化水素酸等のハロゲン化水素酸、硫酸、硝酸等の強酸が好ましい。ハロゲン化水素酸は、ハロゲン化物イオン源と酸の両方の作用を有するものとして使用できる。そのため、本発明のマイクロエッチング剤は、無機酸としてハロゲン化水素酸を含むことが好ましい。ハロゲン化水素酸の中でも、塩酸(塩化水素水溶液)が好ましい。酸は、2種以上を併用してもよく、無機酸に加えて少量の有機酸を用いてもよい。マイクロエッチング剤の酸濃度は、pHが上記範囲となるように調整することが好ましい。 In order to keep the pH of the microetching agent low, an inorganic acid is used as the acid. Inorganic acids are less likely to be coordinated to cupric ions in aqueous solution than organic acids. Therefore, by using the inorganic acid, the action of the cupric ion in the microetching agent as an oxidizing agent can be properly maintained. As the inorganic acid, a strong acid such as a hydrohalic acid such as hydrochloric acid or hydrobromic acid, a sulfuric acid or nitric acid is preferable. The hydrohalic acid can be used as having both the function of a halide ion source and an acid. Therefore, the microetching agent of the present invention preferably contains a hydrohalic acid as the inorganic acid. Among the hydrohalic acids, hydrochloric acid (aqueous hydrogen chloride solution) is preferred. The acid may be used in combination of two or more, and a small amount of organic acid may be used in addition to the inorganic acid. The acid concentration of the microetching agent is preferably adjusted so that the pH is in the above range.
<ハロゲン化物イオン>
 ハロゲン化物イオンは、銅の溶解を補助し、密着性に優れた銅層表面を形成する機能を有する。ハロゲン化物イオンとしては、塩化物イオン、臭化物イオン等を例示できる。中でも、密着性に優れた粗化形状を均一に形成する観点から、塩化物イオンが好ましい。マイクロエッチング剤には2種以上のハロゲン化物イオンが含まれていてもよい。
<Halide ion>
The halide ion assists copper dissolution and has a function of forming a copper layer surface with excellent adhesion. As a halide ion, a chloride ion, a bromide ion etc. can be illustrated. Among them, chloride ion is preferable from the viewpoint of uniformly forming a roughened shape excellent in adhesion. The microetching agent may contain two or more halide ions.
 マイクロエッチング剤に配合するハロゲン化物イオン源としては、塩酸、臭化水素酸等のハロゲン化水素酸;塩化ナトリウム、塩化カルシウム、塩化カリウム、塩化アンモニウム、臭化カリウム、臭化ナトリウム、塩化銅、臭化銅、塩化亜鉛、塩化鉄、臭化錫等の金属塩等が挙げられる。ハロゲン化物イオン源は2種以上を併用してもよい。前述のように、ハロゲン化水素酸はハロゲン化物イオン源と酸の両方の作用を有し、ハロゲン化銅はハロゲン化物イオン源と第二銅イオン源の両方の作用を有する。 As a halide ion source to be added to the micro-etching agent, hydrohalic acid such as hydrochloric acid or hydrobromic acid; sodium chloride, calcium chloride, potassium chloride, ammonium chloride, potassium chloride, potassium bromide, sodium bromide, copper chloride, odor And metal salts such as copper chloride, zinc chloride, iron chloride and tin bromide. The halide ion source may be used in combination of two or more. As mentioned above, the hydrohalic acid has the action of both a halide ion source and an acid, and the copper halide has the actions of both a halide ion source and a cupric ion source.
 銅表面への粗化形状の形成を促進する観点から、マイクロエッチング剤中のハロゲン化物イオンの濃度は、0.005~10モル/Lが好ましく、0.05~5モル/Lがより好ましく、0.1~3モル/Lがさらに好ましい。ハロゲン化物イオン濃度を上記範囲とすることにより、銅の酸化により生成した第一銅イオンの溶液中への溶解が促進され、銅層表面へのスマットの生成が抑制される傾向がある。なお、後述するように、マイクロエッチング剤は、第二銅イオンに対して過剰のハロゲン化物イオンを含む。そのため、ハロゲン化物イオン濃度の適正範囲は、第二銅イオン濃度に応じて設定される。 From the viewpoint of promoting formation of a roughened shape on the copper surface, the concentration of halide ion in the microetching agent is preferably 0.005 to 10 mol / L, and more preferably 0.05 to 5 mol / L. 0.1 to 3 mol / L is more preferable. By setting the halide ion concentration in the above range, the dissolution of the cuprous ion generated by the oxidation of copper in the solution is promoted, and the formation of smut on the surface of the copper layer tends to be suppressed. As described later, the micro-etching agent contains an excess of halide ions relative to cupric ions. Therefore, the appropriate range of the halide ion concentration is set according to the cupric ion concentration.
<ポリマー>
 本発明のマイクロエッチング剤は、側鎖に第四級アンモニウム基を有する重量平均分子量が1000以上の水溶性ポリマーを含有する。ポリマーは、ハロゲン化物イオンと共に、密着性に優れた粗化形状を形成する作用を有する。マイクロエッチング剤中に、第二銅イオンおよびハロゲン化物イオンと側鎖に第四級アンモニウム基を有するポリマーとが共存することにより、銅の表面に、細かい凹凸を均一に形成できる。均一な粗化形状を形成する観点から、ポリマーの重量平均分子量は2000以上が好ましく、3000以上がより好ましい。水溶性の観点から、ポリマーの重量平均分子量は、500万以下が好ましく、200万以下がより好ましい。重量平均分子量は、ゲル浸透クロマトグラフ(GPC)分析によりポリエチレングリコール換算で得られる値である。
<Polymer>
The micro-etching agent of the present invention contains a water-soluble polymer having a quaternary ammonium group in a side chain and having a weight average molecular weight of 1000 or more. The polymer, together with the halide ion, has the function of forming a roughened shape with excellent adhesion. The coexistence of the cupric ion and the halide ion with the polymer having a quaternary ammonium group in the side chain in the microetching agent makes it possible to uniformly form fine irregularities on the surface of copper. From the viewpoint of forming a uniform roughened shape, the weight average molecular weight of the polymer is preferably 2000 or more, and more preferably 3000 or more. From the viewpoint of water solubility, the weight average molecular weight of the polymer is preferably 5,000,000 or less, more preferably 2,000,000 or less. The weight average molecular weight is a value obtained by gel permeation chromatography (GPC) analysis in terms of polyethylene glycol.
 側鎖に第四級アンモニウム基を有するポリマーとしては、例えば下記式(I)で表される繰り返し単位を有するポリマーが挙げられる。 As a polymer which has a quaternary ammonium group in a side chain, the polymer which has a repeating unit represented, for example by following formula (I) is mentioned.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(I)において、R~Rは、それぞれ独立に、置換基を有していてもよい鎖状または環状の炭化水素基であり、R~Rのうち2つ以上が互いに結合して環状構造を形成していてもよい。Rは水素原子またはメチル基であり、Xは単結合または2価の連結基であり、Zは対アニオンである。 In formula (I), R 1 to R 3 each independently represent a chain-like or cyclic hydrocarbon group which may have a substituent, and two or more of R 1 to R 3 are bonded to each other It may form a ring structure. R 4 is a hydrogen atom or a methyl group, X 1 is a single bond or a divalent linking group, and Z is a counter anion.
 式(I)で表される繰り返し単位を有するポリマーの具体例としては、第四級アンモニウム塩型スチレン重合体、第四級アンモニウム塩型アミノアルキル(メタ)アクリレート重合体等が挙げられる。 Specific examples of the polymer having a repeating unit represented by the formula (I) include quaternary ammonium salt type styrene polymers, quaternary ammonium salt type aminoalkyl (meth) acrylate polymers and the like.
 側鎖に第四級アンモニウム基を有するポリマーは、下記式(II)で表されるように、主鎖の炭素原子と側鎖の第四級アンモニウム基が環状構造を形成している繰り返し単位を有するものでもよい。 The polymer having a quaternary ammonium group in the side chain is, as represented by the following formula (II), a repeating unit in which a carbon atom of the main chain and a quaternary ammonium group of the side chain form a cyclic structure You may have.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記式(II)において、RおよびRは置換基を有していてもよい鎖状または環状の炭化水素基であり、RとRが互いに結合して環状構造を形成していてもよい。mは0~2の整数である。XおよびXは、それぞれ独立に、単結合または2価の連結基である。式(II)の繰り返し単位を有するポリマーの具体例としては、式(IIa)で表されるジアリルジアルキルアンモニウム塩の重合により得られる第四級アンモニウム塩型ジアリルアミン重合体が挙げられる。 In the above formula (II), R 5 and R 6 are a chain or cyclic hydrocarbon group which may have a substituent, and R 5 and R 6 are bonded to each other to form a cyclic structure. It is also good. m is an integer of 0 to 2; Each of X 2 and X 3 independently represents a single bond or a divalent linking group. As a specific example of a polymer which has a repeating unit of Formula (II), the quaternary ammonium salt type | mold diallylamine polymer obtained by superposition | polymerization of the diallyl dialkyl ammonium salt represented by Formula (IIa) is mentioned.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記式(IIa)において、RおよびRは、それぞれ独立に、水素原子または置換基を有していてもよい鎖状もしくは環状の炭化水素基であり、水素原子であることが好ましい。 In the above formula (IIa), R 7 and R 8 each independently represent a hydrogen atom or a chain or cyclic hydrocarbon group which may have a substituent, and is preferably a hydrogen atom.
 側鎖の第四級アンモニウム基は、窒素原子と炭素原子の間に二重結合を有していてもよい。第四級アンモニウム塩の対アニオンZとしては、Cl、Br、I、ClO 、BF 、CHCOO、PF 、HSO 、CSO が挙げられる。X~Xが二価の連結基である場合、その具体例としては、メチレン基、炭素数2~10のアルキレン基、アリーレン基、-CONH-R-基、-COO-R-基(ただし、Rは単結合、メチレン基、炭素数2~10のアルキレン基、または炭素数2~10のエーテル基(アルキルオキシアルキル基)である)等が挙げられる。 The side chain quaternary ammonium group may have a double bond between the nitrogen atom and the carbon atom. Counter anion Z quaternary ammonium salt - The, Cl -, Br -, I -, ClO 4 -, BF 4 -, CH 3 COO -, PF 6 -, HSO 4 -, C 2 H 5 SO 4 - Can be mentioned. When X 1 to X 7 are divalent linking groups, specific examples thereof include a methylene group, an alkylene group having 2 to 10 carbon atoms, an arylene group, a -CONH-R- group, and a -COO-R- group However, R is a single bond, a methylene group, an alkylene group having 2 to 10 carbon atoms, or an ether group (alkyloxyalkyl group) having 2 to 10 carbon atoms, and the like.
 側鎖に第四級アンモニウム基を含むポリマーは、共重合体でもよい。ポリマーが共重合体である場合、共重合体は、第四級アンモニウム基を含む繰り返し単位と第四級アンモニウム基を含まない繰り返し単位を含んでいてもよい。共重合体における繰り返し単位の並びは特に限定されず、交互共重合体、ブロック共重合体、ランダム共重合体のいずれでもよい。共重合体がブロック共重合体またはランダム共重合体である場合、ポリマー全体のモノマー単位に対する第四級アンモニウム基を含む繰り返し単位の割合は、20モル%以上が好ましく、30モル%以上がより好ましく、40モル%以上がさらに好ましい。第四級アンモニウム基を含まない繰り返し単位としては、(メタ)アクリル酸、(メタ)アクリル酸アルキル、(メタ)アクリル酸アミノアルキル、(メタ)アクリルアミド、スチレン誘導体、二酸化硫黄等に由来する構造が挙げられる。 The polymer containing a quaternary ammonium group in the side chain may be a copolymer. When the polymer is a copolymer, the copolymer may contain a repeating unit containing a quaternary ammonium group and a repeating unit not containing a quaternary ammonium group. The arrangement of repeating units in the copolymer is not particularly limited, and may be any of alternating copolymer, block copolymer and random copolymer. When the copolymer is a block copolymer or a random copolymer, the ratio of the repeating unit containing a quaternary ammonium group to the monomer unit of the whole polymer is preferably 20 mol% or more, more preferably 30 mol% or more. And 40 mol% or more is more preferable. As a repeating unit containing no quaternary ammonium group, a structure derived from (meth) acrylic acid, alkyl (meth) acrylate, aminoalkyl (meth) acrylate, (meth) acrylamide, styrene derivative, sulfur dioxide, etc. It can be mentioned.
 上記の特許文献2では、無機酸系のマイクロエッチング剤のポリマーとして低分子量のポリエチレンイミンが用いられているが、分子量1000未満の低分子量ポリエチレンイミンを用いても、低エッチング量で微差な粗化形状を形成することはできない。上述の特許文献1では、有機酸系マイクロエッチング剤のポリマーとして高分子量のポリエチレンイミンを用いた例が記載されている。本発明のマイクロエッチング剤は、酸として主に無機酸を用いているためpHが低い。主鎖にカチオン性基を有するポリエチレンイミンは強酸性下では不安定であり、微細な粗化形状の形成が困難である。これに対して、側鎖に第四級アンモニウム基を含むカチオン性ポリマーは、pH1以下の強酸性下でも安定であり、微細な粗化形状の形成に寄与する。 In the above-mentioned Patent Document 2, low molecular weight polyethyleneimine is used as a polymer of the inorganic acid-based micro-etching agent, but even if low molecular weight polyethyleneimine having a molecular weight of less than 1000 is used, a coarse difference is produced at a low etching amount. It is not possible to form In the above-mentioned patent documents 1, the example using high molecular weight polyethylene imine as a polymer of organic acid system micro etching agent is indicated. The micro-etching agent of the present invention has a low pH because it mainly uses an inorganic acid as the acid. Polyethyleneimine having a cationic group in the main chain is unstable under strong acidity, and formation of a finely roughened shape is difficult. On the other hand, a cationic polymer containing a quaternary ammonium group in the side chain is stable even under strong acidity of pH 1 or less and contributes to the formation of a finely roughened shape.
 マイクロエッチング剤中のポリマーの濃度は、密着性に優れた銅層表面を形成する観点から、0.0002~0.2g/Lが好ましく、0.001~0.04g/Lがより好ましく、0.004~0.02g/Lがさらに好ましい。なお、後述するように、マイクロエッチング剤におけるポリマー濃度の適正範囲は、第二銅イオン濃度に応じて設定される。 The concentration of the polymer in the micro-etching agent is preferably 0.0002 to 0.2 g / L, more preferably 0.001 to 0.04 g / L, from the viewpoint of forming a copper layer surface excellent in adhesion. .004 to 0.02 g / L is more preferable. As described later, the appropriate range of the polymer concentration in the microetching agent is set according to the cupric ion concentration.
<各成分の比率>
 本発明のマイクロエッチング剤は、第二銅イオンに対して過剰量のハロゲン化物イオンを含有することを1つの特徴としている。マイクロエッチング剤のハロゲン化物イオン濃度(モル濃度)は、第二銅イオン濃度の5倍以上が好ましく、7倍以上がより好ましく、10倍以上がさらに好ましい。マイクロエッチング剤が、第二銅イオンに対して過剰量のハロゲン化物イオンを含有することにより、低エッチング量でも樹脂等との密着性に優れる粗化形状を銅表面に形成できる。均一な粗化形状を形成する観点から、ハロゲン化物イオン濃度は第二銅イオン濃度の100倍以下が好ましく、70倍以下がより好ましく、50倍以下がさらに好ましい。
<Proportion of each component>
The micro-etching agent of the present invention is characterized in that it contains an excess of halide ion to cupric ion. The halide ion concentration (molar concentration) of the microetching agent is preferably 5 times or more of the cupric ion concentration, more preferably 7 times or more, and still more preferably 10 times or more. When the micro-etching agent contains an excessive amount of halide ion with respect to the cupric ion, a roughened shape excellent in adhesion to a resin or the like can be formed on the copper surface even with a low etching amount. From the viewpoint of forming a uniform roughened shape, the halide ion concentration is preferably 100 times or less of the cupric ion concentration, more preferably 70 times or less, and still more preferably 50 times or less.
 ハロゲン化物イオンおよび酸化剤としての第二銅イオンを含むエッチング剤では、金属銅が酸化され、第二銅イオンが還元されることにより、第一銅イオンが生成する。塩化銅(I)等のハロゲン化第一銅は溶解度が小さいため、銅表面に不溶性のスマットが析出する。一方、1つの第一銅イオンは、4つのハロゲン化物イオンと可溶性の錯体を形成するため、ハロゲンが過剰に存在するとハロゲン化第一銅は速やかに再溶解する。すなわち、ハロゲンが過剰に存在する場合は、銅表面へのスマットの堆積が抑制されるため、マイクロエッチング剤を構成する各成分が、金属銅表面に接触しやすい環境となる。このような環境下では、上記のカチオン性ポリマーの作用が発現しやすく、低エッチング量でも、樹脂との密着性に優れた微細な凹凸が形成されやすいと考えられる。 In an etchant containing a halide ion and cupric ion as an oxidizing agent, metallic copper is oxidized and cupric ion is reduced to form cuprous ion. Since the cuprous halide such as copper (I) chloride has low solubility, insoluble smut precipitates on the copper surface. On the other hand, since one cuprous ion forms a soluble complex with the four halide ions, the cuprous halide rapidly dissolves again when the halogen is present in excess. That is, when the halogen is present in excess, the deposition of smut on the copper surface is suppressed, so that each component constituting the micro-etching agent becomes an environment in which the metal copper surface easily contacts. In such an environment, it is considered that the action of the above-mentioned cationic polymer is easily expressed, and even with a low etching amount, fine irregularities excellent in adhesion to the resin are easily formed.
 カチオン性ポリマーによる表面形状形成作用を高める観点から、エッチング剤中の第二銅イオンの重量濃度は、カチオン性ポリマーの重量濃度の50~2000倍が好ましく、100~1500倍がより好ましく、200~1000倍がさらに好ましい。 From the viewpoint of enhancing the surface shape forming action by the cationic polymer, the weight concentration of cupric ion in the etching agent is preferably 50 to 2,000 times, more preferably 100 to 1,500 times, the weight concentration of the cationic polymer. 1000 times is more preferable.
<他の添加剤>
 本発明のマイクロエッチング剤は、上記の各成分をイオン交換水等に溶解させることにより調製できる。マイクロエッチング剤には、上記以外の成分が含まれていてもよい。例えば、粗化の均一化を目的としてノニオン性界面活性剤を添加してもよい。ノニオン性界面活性剤は、消泡剤としても作用する。その他、必要に応じて種々の添加剤を添加してもよい。これらの添加剤を使用する場合、マイクロエッチング剤中の添加剤の濃度は、0.0001~20重量%程度が好ましい。
<Other additives>
The micro-etching agent of the present invention can be prepared by dissolving the above-mentioned components in ion-exchanged water and the like. The microetching agent may contain components other than the above. For example, a nonionic surfactant may be added for the purpose of homogenizing the roughening. Nonionic surfactants also act as antifoam agents. In addition, various additives may be added as needed. When these additives are used, the concentration of the additive in the microetching agent is preferably about 0.0001 to 20% by weight.
[マイクロエッチング剤の用途]
 上記のマイクロエッチング剤は銅層表面の粗化に広く使用することができる。処理された銅表面には微細な凹凸が均一に形成されており、プリプレグ、めっきレジスト、エッチングレジスト、ソルダーレジスト、電着レジスト、カバーレイ等の樹脂との密着性が良好である。また、粗化された銅表面はんだ付け性にも優れているため、ピングリッドアレイ(PGA)用やボールグリッドアレイ(BGA)用を含む種々の配線基板の製造に特に有用である。さらにリードフレームの表面処理にも有用である。
[Application of micro etching agent]
The above-mentioned micro-etching agent can be widely used to roughen the copper layer surface. Fine irregularities are uniformly formed on the treated copper surface, and adhesion to a resin such as a prepreg, a plating resist, an etching resist, a solder resist, an electrodeposition resist, and a cover lay is good. Moreover, since it is also excellent in roughened copper surface solderability, it is especially useful for manufacture of various wiring boards including for pin grid array (PGA) and ball grid array (BGA). Furthermore, it is useful also for the surface treatment of a lead frame.
 特に、本発明のマイクロエッチング剤は、低エッチング量で密着性に優れた表面を形成可能であるため、微細な銅配線が必要とされるプリント配線基板、ファンアウトウェハレベルパッケージ(FOWLP)、LSIの再配線銅層等の密着向上処理に有用であり、銅配線の高抵抗化や断線の抑制に寄与する。 In particular, since the micro-etching agent of the present invention can form a surface excellent in adhesion with a low etching amount, a printed wiring board requiring fine copper wiring, fan-out wafer level package (FOWLP), LSI It is useful for adhesion improvement processing of rewiring copper layer etc., and contributes to suppression of high resistance of copper wiring and disconnection.
[配線基板の製造方法]
 配線基板の製造においては、銅表面に、上述のマイクロエッチング剤を接触させることにより、銅の表面が粗化される。銅層を複数層含む配線基板を製造する場合は、複数の銅層のうち一層だけを上記のマイクロエッチング剤で処理してもよく、二層以上の銅層を上記のマイクロエッチング剤で処理してもよい。
[Method of manufacturing wiring board]
In the manufacture of the wiring substrate, the copper surface is roughened by bringing the above-described micro-etching agent into contact with the copper surface. When manufacturing a wiring substrate including a plurality of copper layers, only one of the plurality of copper layers may be treated with the above-described microetching agent, and two or more copper layers may be treated with the above-described microetching agent. May be
 粗化処理において、銅表面にマイクロエッチング剤を接触させる方法は特に限定されないが、例えば処理対象の銅層表面にマイクロエッチング剤をスプレーする方法や、処理対象の銅層をマイクロエッチング剤中に浸漬する方法等があげられる。スプレーする場合は、マイクロエッチング剤の温度を10~40℃とし、スプレー圧0.03~0.3MPaで5~120秒間の条件でエッチングすることが好ましい。浸漬する場合は、マイクロエッチング剤の温度を10~40℃とし、5~120秒間の条件でエッチングすることが好ましい。なお、浸漬する場合には、銅のエッチングによってマイクロエッチング剤中に生成した第一銅イオンを第二銅イオンに酸化するために、バブリング等によりマイクロエッチング剤中に空気の吹き込みを行うことが好ましい。本発明のマイクロエッチング剤は、使用後の廃液処理が容易であり、例えばアルカリによる中和、高分子凝集剤等を利用する簡便な方法で処理できる。 In the roughening treatment, the method for bringing the copper surface into contact with the micro-etching agent is not particularly limited. For example, the method for spraying the micro-etching agent on the copper layer surface to be treated or immersing the copper layer to be treated in the micro-etching agent And the like. In the case of spraying, it is preferable that the temperature of the microetching agent be 10 to 40 ° C., and the etching be performed under the conditions of a spray pressure of 0.03 to 0.3 MPa for 5 to 120 seconds. In the case of immersion, it is preferable to set the temperature of the microetching agent to 10 to 40 ° C. and perform etching under the conditions of 5 to 120 seconds. In addition, in the case of immersion, it is preferable to blow air into the micro-etching agent by bubbling or the like in order to oxidize cuprous ions generated in the micro-etching agent by etching of copper to cupric ions . The micro-etching agent of the present invention can be easily treated with waste liquid after use, and can be treated by a simple method using, for example, neutralization with an alkali, a polymer flocculant or the like.
 マイクロエッチング剤による粗化処理後の銅表面のL*値は、70以下が好ましく、65以下がより好ましい。L*値は、L***色空間(JIS Z 8781-4)における明度L*であり、後述する実施例に記載の方法で測定される。未処理の銅箔は金属光沢を有しており、L*は80~90程度である。表面が粗化された銅箔では、入射光が多方向に乱反射し、反射を繰り返して減衰する。そのため、銅箔の粗化が進行し、微細な凹凸形状が形成されると、L*値が小さくなる傾向がある。 70 or less is preferable and, as for L * value of the copper surface after the roughening process by a micro etching agent, 65 or less is more preferable. The L * value is the lightness L * in the L * a * b * color space (JIS Z 8781-4), and is measured by the method described in the examples described later. The untreated copper foil has a metallic luster, and L * is about 80 to 90. In a copper foil whose surface is roughened, incident light is irregularly reflected in multiple directions, and reflection is repeatedly attenuated. Therefore, when the roughening of the copper foil progresses and a fine uneven shape is formed, the L * value tends to be small.
 銅表面のL*値は、マイクロエッチング剤の配合比率やエッチング量の調整により、上記範囲内に制御することができる。本発明の一実施形態では、銅層表面のL*値が上記範囲となるように、マイクロエッチング剤の配合比やエッチング量(エッチング時間)を調整することができる。例えば、マイクロエッチング剤により銅層表面を粗化処理した後、粗化処理後の銅層表面のL*値をモニターしながら、後述する補給液の添加量や補給液の添加のタイミングを制御することもできる。 The L * value of the copper surface can be controlled within the above range by adjusting the compounding ratio of the micro-etching agent and the etching amount. In one embodiment of the present invention, the compounding ratio of the microetching agent and the etching amount (etching time) can be adjusted so that the L * value of the copper layer surface is in the above range. For example, after roughening the surface of the copper layer with a micro-etching agent, monitor the L * value of the surface of the copper layer after the roughening treatment and control the addition amount of the replenishing solution described later and the timing of the addition of the replenishing solution. It can also be done.
 粗化処理におけるエッチング量は特に限定されない。樹脂との密着性を向上させる観点から、エッチング量は0.05μm以上が好ましく、0.1μm以上がより好ましい。微細配線が必要なプリント配線基板のソルダーレジスト被覆工程の前処理等では、エッチング量が過度に大きいと、銅層が完全にエッチングされることによる断線や、配線断面積の低下による抵抗の増大等の不具合が生じる場合がある。そのため、エッチング量は1μm以下が好ましく、0.7μm以下がより好ましく、0.5μm以下がさらに好ましい。 The etching amount in the roughening treatment is not particularly limited. From the viewpoint of improving adhesion to the resin, the etching amount is preferably 0.05 μm or more, and more preferably 0.1 μm or more. In the pretreatment of the solder resist coating process of a printed wiring board that requires fine wiring, etc., if the amount of etching is too large, disconnection due to complete etching of the copper layer, increase in resistance due to reduction in wiring cross section, etc. Problems may occur. Therefore, the etching amount is preferably 1 μm or less, more preferably 0.7 μm or less, and still more preferably 0.5 μm or less.
 マイクロエッチング剤を連続使用する場合は、補給液を添加しながら粗化処理を実施してもよい。補給液を添加しながら粗化処理を行うことにより、処理中のマイクロエッチング剤中の各成分の濃度を適正に維持できる。補給液としては、エッチングの進行に伴って減少する成分(酸、ハロゲン化物イオン、および前述のポリマー)を含む水溶液が好ましい。補給液には酸化銅等の第二銅イオン源が含まれていてもよい。補給液の添加量や補給液の添加のタイミングは、各成分の濃度管理幅等に応じて適宜設定できる。補給液中の各成分は、上述のマイクロエッチング剤に含まれる成分と同様である。補給液中の各成分の濃度は、処理に用いるマイクロエッチング剤の初期濃度等に応じて適宜調整される。補給液の組成は、建浴液(使用前のマイクロエッチング液)と同一でもよい。 When the microetching agent is used continuously, the roughening treatment may be performed while adding the replenishing solution. By performing the roughening treatment while adding the replenishing solution, the concentration of each component in the microetching agent during treatment can be properly maintained. As the replenishing solution, an aqueous solution containing components (acid, halide ion, and the aforementioned polymer) which decrease with the progress of etching is preferable. The replenisher may include a cupric ion source such as copper oxide. The addition amount of the replenishment liquid and the timing of the addition of the replenishment liquid can be appropriately set according to the concentration management range of each component and the like. The components in the replenishing solution are the same as the components contained in the above-mentioned micro-etching agent. The concentration of each component in the replenishing solution is appropriately adjusted in accordance with the initial concentration of the micro-etching agent used for the treatment. The composition of the replenishing solution may be the same as the preparation bath (microetching solution before use).
 粗化処理工程後には、粗化表面を酸性水溶液で洗浄してもよい。洗浄に使用する酸性水溶液としては、塩酸、硫酸水溶液、硝酸水溶液等が使用できる。粗化形状への影響が少なく、洗浄性が高いことから塩酸が好ましい。酸性水溶液の酸濃度は、0.3~35重量%が好ましく、1~10重量%がより好ましい。洗浄方法は特に限定されず、粗化した銅層表面に酸性水溶液をスプレーする方法や、粗化した銅層を酸性水溶液中に浸漬する方法等が挙げられる。 After the roughening treatment step, the roughened surface may be washed with an acidic aqueous solution. As the acidic aqueous solution used for washing, hydrochloric acid, sulfuric acid aqueous solution, nitric acid aqueous solution or the like can be used. Hydrochloric acid is preferred because it has less influence on the roughening shape and high washability. The acid concentration of the acidic aqueous solution is preferably 0.3 to 35% by weight, and more preferably 1 to 10% by weight. The cleaning method is not particularly limited, and examples thereof include a method of spraying an acidic aqueous solution on the surface of the roughened copper layer, and a method of immersing the roughened copper layer in the acidic aqueous solution.
 マイクロエッチング剤による処理の後、樹脂との密着性をさらに向上させるために、アゾール類の水溶液やアルコール溶液で処理してもよい。また、マイクロエッチング剤による処理の後、ブラウンオキサイド処理やブラックオキサイド処理等の酸化処理を行ってもよい。 After the treatment with the micro-etching agent, the solution may be treated with an aqueous solution or alcohol solution of an azole to further improve the adhesion to the resin. In addition, after the treatment with the microetching agent, an oxidation treatment such as a brown oxide treatment or a black oxide treatment may be performed.
 次に、本発明の実施例について説明する。なお、本発明は下記の実施例に限定して解釈されるものではない。 Next, examples of the present invention will be described. The present invention is not construed as being limited to the following examples.
[マイクロエッチング剤の調製]
 表1-1~表1-2に示す配合で溶液(マイクロエッチング剤)を調製した。ポリマーA~Iの詳細は下記の通りである。これらのポリマーは、溶液中の濃度が表に示す配合量となるように用いた。
[Preparation of micro-etching agent]
Solutions (micro-etching agents) were prepared according to the formulations shown in Tables 1-1 to 1-2. The details of the polymers A to I are as follows. These polymers were used such that the concentration in the solution was as shown in the table.
 ポリマーA:以下の構造を有するビニルピロリドン・N,N-ジメチルアミノエチルメタクリルアミドジエチル硫酸塩ランダム共重合体(重量平均分子量約80万) Polymer A: vinyl pyrrolidone / N, N-dimethylaminoethyl methacrylamide diethyl sulfate random copolymer having the following structure (weight average molecular weight about 800,000)
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 ポリマーB:以下の繰り返し単位を有するジアリルジメチルアンモニウム塩酸塩・二酸化硫黄交互共重合体(重量平均分子量約5000) Polymer B: Diallyldimethylammonium hydrochloride-sulfur dioxide alternating copolymer having the following repeating units (weight average molecular weight about 5000)
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 ポリマーC:アクリルアミド・ジメチルアミノエチルアクリレートメチルクロライド四級塩共重合体(重量平均分子量約200万)
 ポリマーD:ジメチルアミノエチルメタクリレート硫酸ジメチル四級塩ポリマー(重量平均分子量約30万)
 ポリマーE:ジアリルジメチルアンモニウムクロライドのポリマー(重量平均分子量約約30万)
Polymer C: Acrylamide dimethylaminoethyl acrylate methyl chloride quaternary salt copolymer (weight average molecular weight about 2 million)
Polymer D: Dimethylaminoethyl methacrylate sulfuric acid dimethyl quaternary salt polymer (weight average molecular weight about 300,000)
Polymer E: Polymer of diallyldimethylammonium chloride (weight average molecular weight about 300,000)
 ポリマーF:ポリ(オキシエチレンオキシプロピレン(5E.O.、5P.O.))グリコールモノエーテル(数平均分子量約510)
 ポリマーG:ポリエチレンイミン(重量平均分子量約7万)
 ポリマーH:ポリエチレンイミン(重量平均分子量約300)
 ポリマーI:下記式で表されるエチレンジアミンのポリオキシエチレン‐ポリオキシプロピレンブロックポリマー付加物
Polymer F: Poly (oxyethylene oxypropylene (5E.O., 5P.O.)) glycol monoether (number average molecular weight about 510)
Polymer G: polyethyleneimine (weight average molecular weight about 70,000)
Polymer H: polyethylene imine (weight average molecular weight about 300)
Polymer I: polyoxyethylene-polyoxypropylene block polymer adduct of ethylenediamine represented by the following formula
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 表中の配合成分の残部はイオン交換水である。配合26では、配合2に有機酸としてギ酸(pKa=3.75)を加え、イオン交換水で1Lにメスアップした後、48%水酸化ナトリウム水溶液を滴下して、pH3.75(有機酸のpKaと同じpH)に調整した。配合27では、配合2に有機酸として酢酸(pKa=4.76)を加え、イオン交換水で1Lにメスアップした後、48%水酸化ナトリウム水溶液を滴下して、pH4.76に調整した。これらの溶液は無機酸としての塩酸を含んでいるが、有機酸塩が緩衝能を示すpH領域に調整されているため、実質的に有機酸系エッチング剤と同様の組成を有している。なお、無機酸のみを用いた配合1~25の溶液のpHはいずれも1.0以下であった。 The balance of the blending components in the table is ion exchanged water. In formulation 26, formic acid (pKa = 3.75) as an organic acid is added to formulation 2, and after measuring to 1 L with ion-exchanged water, a 48% aqueous sodium hydroxide solution is added dropwise to adjust pH 3.75 (organic acid The pH was adjusted to the same as pKa). In Formulation 27, acetic acid (pKa = 4.76) as an organic acid was added to Formulation 2 and the pH was adjusted to 1 L with ion exchanged water, and then a 48% aqueous sodium hydroxide solution was added dropwise to adjust to pH 4.76. Although these solutions contain hydrochloric acid as an inorganic acid, since the organic acid salt is adjusted to a pH range in which buffer capacity is exhibited, it has substantially the same composition as the organic acid-based etching agent. The pH of each of the solutions of Formulations 1 to 25 using only the inorganic acid was 1.0 or less.
[マイクロエッチング剤による銅の処理]
 厚み35μmの銅箔を絶縁基材の両面に張り合わせたガラス布エポキシ樹脂含浸銅張積層板(日立化成社製、製品名:MCL-E-67、10cm×10cm、厚み0.2mm)に、18μmの銅めっきを行ったものを試験基板として用意した。次に、表1-1~表1-5に示す各マイクロエッチング剤(30℃)を、スプレー圧0.10MPaの条件で上記試験基板の銅めっき層表面にスプレーし、0.5μmのエッチング量となるようにエッチング時間を調整してエッチングした。次いで、水洗を行い、温度30℃の塩酸(塩化水素濃度:3.5重量%)にエッチング処理面を10秒間浸漬した後、水洗を行い、乾燥させた。
[Treatment of copper by micro etching agent]
A glass cloth epoxy resin impregnated copper clad laminate (made by Hitachi Chemical Co., Ltd., product name: MCL-E-67, 10 cm × 10 cm, thickness 0.2 mm) in which a 35 μm thick copper foil is laminated on both sides of an insulating substrate The thing which performed copper plating of was prepared as a test substrate. Next, each micro etching agent (30 ° C.) shown in Tables 1-1 to 1-5 is sprayed on the surface of the copper plating layer of the above test substrate under the condition of spray pressure of 0.10 MPa, and the etching amount of 0.5 μm The etching time was adjusted so as to be Next, the etched surface was immersed in hydrochloric acid (hydrogen chloride concentration: 3.5% by weight) at a temperature of 30 ° C. for 10 seconds, washed with water, and dried.
 処理後の試験基板の銅層の表面を、走査型電子顕微鏡(SEM)(型式JSM-7000F、日本電子社製)で観察した。SEM観察像を図1~19に示す。各溶液の配合とSEM観察像の対応を表1-1および表1-2に示す。 The surface of the copper layer of the test substrate after treatment was observed with a scanning electron microscope (SEM) (Model JSM-7000F, manufactured by Nippon Denshi Co., Ltd.). SEM observation images are shown in FIGS. The composition of each solution and the correspondence between SEM observation images are shown in Table 1-1 and Table 1-2.
<はんだ耐熱性試験による密着性評価>
 上記乾燥後の試験基板のエッチング処理面に、ガラス布エポキシ樹脂含浸プリプレグ(日立化成社製、製品名:GEA-67N、厚さ0.1mm)を積層プレス(プレス圧:30MPa、温度:170℃、時間:60分)により張り合わせた。次いで、積層した基板の周辺部を切り取ってテストピースを作製した。このテストピースを120℃(相対湿度:100%)の環境に2時間放置した後、230℃の溶融はんだ浴中に30秒間浸漬した。浸漬後の各テストピースを目視にて観察して、膨れが全く見られなかったものをA(図20参照)、表面の10%以内の領域で膨れが生じていたものをB(図21参照)、表面の10%以上の領域で膨れが生じていたものをX(図22参照)として評価した。結果を表1-1および表1-2に示す。なお、銅箔と樹脂の密着性が良好であれば膨れは見られない。
<Adhesive evaluation by solder heat resistance test>
A glass cloth epoxy resin impregnated prepreg (manufactured by Hitachi Chemical Co., Ltd., product name: GEA-67N, thickness 0.1 mm) is laminated on the etched surface of the test substrate after the above drying (press pressure: 30 MPa, temperature: 170 ° C.) , Time: 60 minutes). Next, the periphery of the laminated substrate was cut off to prepare a test piece. The test piece was left in an environment of 120 ° C. (relative humidity: 100%) for 2 hours, and then immersed in a molten solder bath of 230 ° C. for 30 seconds. The test pieces after immersion were visually observed, and those which did not show any blistering were A (see FIG. 20) and those whose blistering occurred within 10% of the surface were B (see FIG. 21). And X) (see FIG. 22) where swelling occurred in a region of 10% or more of the surface. The results are shown in Tables 1-1 and 1-2. If the adhesion between the copper foil and the resin is good, no blistering is observed.
<L*値による粗化面評価>
 上記乾燥後の試験基板のエッチング処理面について、任意に3箇所選択し、コニカミノルタ社製色彩色差計(型式:CR-10)によりL*値を測定して、その平均値を算出した。結果を表1-1および表1-2に示す。
<Evaluation of roughened surface by L * value>
About the etching process side of the test substrate after the said drying, three places were selected arbitrarily, L * value was measured with a color-color-difference meter (model: CR-10) made by Konica Minolta, and the average value was computed. The results are shown in Tables 1-1 and 1-2.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表1-1および表1-2の結果から、粗化後の銅表面のL*値とはんだ耐熱性試験結果に相関がみられ、L*値が小さいほどはんだ耐熱性が良好であり、銅表面と樹脂との密着性が良好であることが分かる。 From the results in Tables 1-1 and 1-2, the L * value of the copper surface after roughening is correlated with the solder heat resistance test results, and the smaller the L * value, the better the solder heat resistance, and copper It can be seen that the adhesion between the surface and the resin is good.
 ポリマーAを用いた配合1~3では、いずれも粗化後の銅表面のL*値が55以下であり、樹脂との密着性に優れる粗化形状が形成されていた(図1~3参照)。配合1~3では、各成分の濃度は大きく異なっているが、ハロゲンと第二銅イオンのモル濃度比、および第二銅イオンとポリマーの重量濃度比が所定範囲であるため、同等の粗化形状が形成されていると考えられる。 In formulations 1 to 3 using polymer A, the L * value of the copper surface after roughening was all 55 or less, and a roughened shape excellent in adhesion to the resin was formed (see FIGS. 1 to 3). ). In the formulations 1 to 3, the concentration of each component is largely different, but the molar concentration ratio of halogen to cupric ion and the weight concentration ratio of cupric ion to polymer are within the predetermined ranges, so the same roughening is achieved. It is considered that the shape is formed.
 配合4~7では、粗化後の銅表面のL*値が65以下であった。一方、配合13~17(図9参照)では、配合1~11に比べて粗化後の銅表面のL*値が大きく、粗化形状の形成が不十分であった。 In the formulations 4 to 7, the L * value of the copper surface after roughening was 65 or less. On the other hand, in the formulations 13 to 17 (see FIG. 9), the L * value of the copper surface after roughening was larger than in the formulations 1 to 11, and the formation of the roughened shape was insufficient.
 これらの結果から、ハロゲン化物イオン、第二銅イオンおよびポリマーの配合比を調整することにより、0.5μm程度の低エッチング量でも樹脂との密着性に優れる粗化形状を形成できることが分かる。 From these results, it is understood that by adjusting the compounding ratio of the halide ion, the cupric ion and the polymer, a roughened shape excellent in adhesion to the resin can be formed even with a low etching amount of about 0.5 μm.
 ポリマーAに代えてポリマーB~Eを含む配合8~11(図4~7参照)においても、配合1~7と同様に、粗化後の銅表面のL*値が65以下であった。一方、ポリマーを配合しない配合12(図8参照)、およびポリマーG(高分子量のポリエチレンイミン)を含む配合20,21(図12,13参照)では、表面が粗化されていたものの、配合1~11に比べて粗化後の銅表面のL*値が大きく、粗化形状の形成が不十分であった。 Also in the formulations 8 to 11 (see FIGS. 4 to 7) containing the polymers B to E instead of the polymer A, the L * value of the copper surface after roughening was 65 or less as in the formulations 1 to 7. On the other hand, in formulation 12 (see FIG. 8) in which the polymer is not blended and formulations 20 and 21 (see FIGS. 12 and 13) in which polymer G (high molecular weight polyethyleneimine) is included, although the surface is roughened, formulation 1 The L * value of the copper surface after the roughening was larger than that of the sample No. 11 and the formation of the roughened shape was insufficient.
 ポリマーF(第四級アンモニウム塩を含まないノニオン性界面活性剤)を含む配合18,19(図10,11参照)、およびポリマーH(低分子量のポリエチレンイミン)を含む配合22,23(図14,15)では、いずれのポリマー濃度においても、表面がほとんど粗化されておらず、ポリマーを含まない配合12よりも大きなL*値を示した。ポリマーI(エチレンジアミンの誘導体ポリマー)を用いた配合24,25では、いずれのポリマー濃度においても銅表面が全く粗化されていなかった。 Formulations 18, 19 (see FIGS. 10 and 11) containing polymer F (nonionic surfactant containing no quaternary ammonium salt), and formulations 22 and 23 (polymer 14 containing low molecular weight polyethyleneimine) (FIG. 14) In 15, 15), the surface was hardly roughened at any polymer concentration, and showed a larger L * value than the formulation 12 containing no polymer. In the formulations 24, 25 using Polymer I (derivative polymer of ethylene diamine), the copper surface was not roughened at all at any polymer concentration.
 これらの結果から、側鎖に第四級アンモニウム基を有するポリマーを用い、かつ、第二銅イオン、ハロゲン化物イオン、およびポリマーの配合比が所定範囲の無機酸系溶液を用いた場合に、特異的に、銅表面に密着性に優れた微細な凹凸形状を形成できることがわかる。 From these results, when using a polymer having a quaternary ammonium group in the side chain and using an inorganic acid solution in which the compounding ratio of cupric ion, halide ion, and polymer is within a predetermined range It turns out that the fine uneven | corrugated shape excellent in adhesiveness can be formed in a copper surface.
 有機酸を添加して緩衝pH(有機酸のpKaと同じpH)に調整した配合26,27の有機酸系の溶液では、配合1~11に比べて粗化後の銅表面のL*値が大きく、粗化形状の形成が不十分であった。粗化形状の形成が不十分となった一因として、pHが高くエッチングにより生成した銅イオンの溶解性が低いことが考えられる。また、有機酸は第二銅イオンに配位しやすいため、配合例26,27の溶液では第二銅イオンの実効濃度が低下し、第二銅イオンとハロゲン化物イオン濃度のバランスが崩れたことも、粗化形状が不十分であったことに関与していると考えられる。 In the solution of the organic acid system of the combination 26, 27 adjusted to the buffer pH (the same pH as the pKa of the organic acid) by adding the organic acid, the L * value of the copper surface after roughening is lower than that of the combination 1-11. The formation of a large, roughened shape was inadequate. One reason for the insufficient formation of the roughened shape is considered to be that the pH is high and the solubility of copper ions generated by etching is low. In addition, since the organic acid is easily coordinated to cupric ion, in the solutions of Formulation Examples 26 and 27, the effective concentration of cupric ion was lowered, and the balance between the cupric ion and the halide ion was broken. It is also considered that the roughening shape is insufficient.

Claims (8)

  1.  銅の表面粗化に用いられる、銅のマイクロエッチング剤であって、
     無機酸、第二銅イオン、ハロゲン化物イオン、およびカチオン性ポリマーを含み、
     前記カチオン性ポリマーは、側鎖に第四級アンモニウム基を含む重量平均分子量が1000以上の水溶性ポリマーであり、
     ハロゲン化物イオンのモル濃度が、第二銅イオンのモル濃度の5~100倍であり、
     pHが2以下である、マイクロエッチング剤。
    A copper micro-etching agent used for surface roughening of copper,
    Inorganic acids, cupric ions, halide ions, and cationic polymers,
    The cationic polymer is a water-soluble polymer having a weight average molecular weight of 1000 or more and containing a quaternary ammonium group in a side chain,
    The molar concentration of the halide ion is 5 to 100 times the molar concentration of the cupric ion,
    Micro-etching agent whose pH is 2 or less.
  2.  第二銅イオンのモル濃度が0.001~0.5モル/Lである、請求項1に記載のマイクロエッチング剤。 The microetching agent according to claim 1, wherein the molar concentration of cupric ion is 0.001 to 0.5 mol / L.
  3.  ハロゲン化物イオンのモル濃度が0.01~10モル/Lである、請求項1または2に記載のマイクロエッチング剤。 The microetching agent according to claim 1 or 2, wherein the molar concentration of the halide ion is 0.01 to 10 mol / L.
  4.  前記ポリマーの重量濃度が、0.0005~0.5g/Lである、請求項1~3のいずれか1項に記載のマイクロエッチング剤。 The micro-etching agent according to any one of claims 1 to 3, wherein the concentration by weight of the polymer is 0.0005 to 0.5 g / L.
  5.  第二銅イオンの重量濃度が、前記ポリマーの重量濃度の50~2000倍である、請求項1~4のいずれか1項に記載のマイクロエッチング剤。 The micro-etching agent according to any one of claims 1 to 4, wherein the concentration by weight of cupric ions is 50 to 2000 times the concentration by weight of the polymer.
  6.  銅層を含む配線基板の製造方法であって、
     銅表面に請求項1~5のいずれか1項に記載のマイクロエッチング剤を接触させて銅表面を粗化する粗化処理工程を有する、配線基板の製造方法。
    A method of manufacturing a wiring substrate including a copper layer,
    A method of manufacturing a wiring substrate, comprising a roughening treatment step of bringing a copper surface into contact with the microetching agent according to any one of claims 1 to 5 to roughen the copper surface.
  7.  前記銅表面を粗化する際の深さ方向の平均エッチング量が1μm以下である、請求項6に記載の配線基板の製造方法。 The manufacturing method of the wiring board of Claim 6 whose average etching amount of the depth direction at the time of roughening the said copper surface is 1 micrometer or less.
  8.  前記粗化処理工程において、無機酸、ハロゲン化物イオン、およびポリマーを含む酸性水溶液からなる補給液が、前記マイクロエッチング剤に添加され、
     前記補給液中の前記ポリマーは、側鎖に第四級アンモニウム基を含む重量平均分子量が1000以上の水溶性ポリマーである、請求項6または7に記載の配線基板の製造方法。
    In the roughening treatment step, a replenisher comprising an acidic aqueous solution containing an inorganic acid, a halide ion, and a polymer is added to the micro-etching agent,
    The method for producing a wiring board according to claim 6, wherein the polymer in the replenishing solution is a water-soluble polymer having a weight-average molecular weight of 1000 or more containing a quaternary ammonium group in a side chain.
PCT/JP2018/020419 2017-08-23 2018-05-28 Microetching agent for copper and method for producing wiring board WO2019039023A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880054465.1A CN111051571A (en) 2017-08-23 2018-05-28 Copper microetching agent and method for producing wiring board
KR1020207004781A KR20200043993A (en) 2017-08-23 2018-05-28 Manufacturing method of copper micro etchant and wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017160151A JP6333455B1 (en) 2017-08-23 2017-08-23 Copper microetching agent and method of manufacturing wiring board
JP2017-160151 2017-08-23

Publications (1)

Publication Number Publication Date
WO2019039023A1 true WO2019039023A1 (en) 2019-02-28

Family

ID=62236415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020419 WO2019039023A1 (en) 2017-08-23 2018-05-28 Microetching agent for copper and method for producing wiring board

Country Status (5)

Country Link
JP (1) JP6333455B1 (en)
KR (1) KR20200043993A (en)
CN (1) CN111051571A (en)
TW (1) TW201912839A (en)
WO (1) WO2019039023A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI732727B (en) * 2020-06-02 2021-07-01 日商Mec股份有限公司 Micro-etching agent and manufacturing method of wiring board

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102404620B1 (en) * 2020-06-02 2022-06-15 멕크 가부시키가이샤 Method for manufacturing micro etchant and wiring board
KR20230043911A (en) 2020-08-24 2023-03-31 후지필름 가부시키가이샤 Treatment liquid and substrate treatment method
CN112725799A (en) * 2020-12-10 2021-04-30 昆山市板明电子科技有限公司 Environment-friendly copper surface roughening liquid and preparation method thereof
CN112708423B (en) * 2020-12-15 2022-08-05 河北中瓷电子科技股份有限公司 Acidic microetching reagent and method for treating metal lead
KR20220126436A (en) * 2021-03-09 2022-09-16 주식회사 이엔에프테크놀로지 Etchant composition for display substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0941162A (en) * 1995-08-01 1997-02-10 Mec Kk Microetching agent for copper and copper alloy
JP2009506211A (en) * 2005-08-23 2009-02-12 マクダーミッド インコーポレーテッド Improved micro etchant
JP2010525175A (en) * 2007-04-27 2010-07-22 マクダーミッド インコーポレーテッド Metal surface treatment composition
JP2014025088A (en) * 2012-07-24 2014-02-06 Mec Co Ltd Microetching agent for copper, replenishment liquid therefor and method for producing printed circuit board
JP2014099473A (en) * 2012-11-13 2014-05-29 Mec Co Ltd Method for manufacturing printed-wiring board and surface treatment device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3432629B2 (en) * 1995-02-23 2003-08-04 日立化成工業株式会社 Surface treatment liquid for copper foil and method for producing multilayer printed wiring board using the treatment liquid
CN1195895C (en) * 1997-01-29 2005-04-06 美克株式会社 Micro etching agent of copper and copper alloy
ATE482303T1 (en) * 2005-10-25 2010-10-15 Atotech Deutschland Gmbh COMPOSITION AND METHOD FOR IMPROVING ADHESION OF POLYMERIC MATERIALS ON COPPER OR COPPER ALLOY SURFACES
US7875558B2 (en) * 2005-12-21 2011-01-25 Kesheng Feng Microetching composition and method of using the same
US7456114B2 (en) * 2005-12-21 2008-11-25 Kesheng Feng Microetching composition and method of using the same
JP4917872B2 (en) * 2006-12-08 2012-04-18 三新化学工業株式会社 Chemical solution for copper and / or copper alloy
JP4967800B2 (en) * 2007-05-17 2012-07-04 凸版印刷株式会社 Copper solution and method for etching copper or copper alloy using the same
JP5443863B2 (en) * 2009-07-09 2014-03-19 株式会社Adeka Etching composition for copper-containing material and method for etching copper-containing material
JP2011233769A (en) * 2010-04-28 2011-11-17 Mec Co Ltd Method for forming copper wiring pattern
JP6135999B2 (en) * 2012-04-10 2017-05-31 三菱瓦斯化学株式会社 Liquid composition used for etching multilayer film containing copper and molybdenum, and etching method using the same
SG11201408660QA (en) * 2012-09-28 2015-01-29 Mec Co Ltd Microetching agent for copper, supplementary liquid for same, and manufacturing method for circuit board
JP5618340B1 (en) * 2013-04-15 2014-11-05 メック株式会社 Etching solution, replenisher, and method for forming copper wiring
JP6218000B2 (en) * 2016-02-19 2017-10-25 メック株式会社 Copper microetching agent and method of manufacturing wiring board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0941162A (en) * 1995-08-01 1997-02-10 Mec Kk Microetching agent for copper and copper alloy
JP2009506211A (en) * 2005-08-23 2009-02-12 マクダーミッド インコーポレーテッド Improved micro etchant
JP2010525175A (en) * 2007-04-27 2010-07-22 マクダーミッド インコーポレーテッド Metal surface treatment composition
JP2014025088A (en) * 2012-07-24 2014-02-06 Mec Co Ltd Microetching agent for copper, replenishment liquid therefor and method for producing printed circuit board
JP2014099473A (en) * 2012-11-13 2014-05-29 Mec Co Ltd Method for manufacturing printed-wiring board and surface treatment device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI732727B (en) * 2020-06-02 2021-07-01 日商Mec股份有限公司 Micro-etching agent and manufacturing method of wiring board

Also Published As

Publication number Publication date
CN111051571A (en) 2020-04-21
JP2019039027A (en) 2019-03-14
JP6333455B1 (en) 2018-05-30
TW201912839A (en) 2019-04-01
KR20200043993A (en) 2020-04-28

Similar Documents

Publication Publication Date Title
WO2019039023A1 (en) Microetching agent for copper and method for producing wiring board
JP6218000B2 (en) Copper microetching agent and method of manufacturing wiring board
JP5219008B1 (en) Copper microetching agent, replenisher thereof, and method for manufacturing wiring board
US6426020B1 (en) Etchant for copper or copper alloys
TWI630176B (en) Pretreatment agent for electroless plating, pretreatment method using electroplating substrate using the above pretreatment method for electroless plating, and manufacturing method thereof
TWI704254B (en) Copper microetching agent, method for roughening copper surface, and method for manufacturing wiring board
KR101485873B1 (en) Microetching agent for copper, supplementary liquid for same, and manufacturing method for circuit board
JP6982383B2 (en) A pretreatment liquid for electroless plating used at the same time as the reduction treatment, and a method for manufacturing a printed wiring board.
WO2017141799A1 (en) Microetchant for copper and method for producing wiring board
TWI732727B (en) Micro-etching agent and manufacturing method of wiring board
KR102404620B1 (en) Method for manufacturing micro etchant and wiring board
JP6598917B2 (en) Copper micro-etchant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18847412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18847412

Country of ref document: EP

Kind code of ref document: A1