WO2019038974A1 - Substrate processing device, reaction tube, substrate processing method, and semiconductor device production method - Google Patents

Substrate processing device, reaction tube, substrate processing method, and semiconductor device production method Download PDF

Info

Publication number
WO2019038974A1
WO2019038974A1 PCT/JP2018/011730 JP2018011730W WO2019038974A1 WO 2019038974 A1 WO2019038974 A1 WO 2019038974A1 JP 2018011730 W JP2018011730 W JP 2018011730W WO 2019038974 A1 WO2019038974 A1 WO 2019038974A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
exhaust port
width
inner pipe
width portion
Prior art date
Application number
PCT/JP2018/011730
Other languages
French (fr)
Japanese (ja)
Inventor
優作 岡嶋
隆史 佐々木
吉田 秀成
英俊 三村
石坂 光範
周平 西堂
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to JP2019537906A priority Critical patent/JP6867496B2/en
Publication of WO2019038974A1 publication Critical patent/WO2019038974A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45578Elongated nozzles, tubes with holes

Definitions

  • the present disclosure relates to a substrate processing apparatus, and more particularly to a substrate processing apparatus having a vertical reaction tube.
  • a semiconductor manufacturing apparatus is known as an example of a substrate processing apparatus
  • a vertical type apparatus is known as an example of a semiconductor manufacturing apparatus.
  • a substrate processing apparatus of this type a boat serving as a substrate holding member for holding substrates (wafers) in multiple stages is provided in a reaction tube, and a substrate is processed in a processing chamber in the reaction tube while holding a plurality of substrates. There is something to do.
  • Patent documents 1 to 4 have been proposed as techniques for making the velocity distribution of processing gas between wafers uniform.
  • the inventors of the present invention have made the shape of the exhaust hole provided in the inner tube of the double reaction tube, and the exhaust outlet provided in the outer tube of the double reaction tube as a technique for making the velocity distribution of processing gas between wafers uniform. Further study was conducted on the relationship between As a result, in order to suppress the inclination of the flow of the processing gas concentrated to the exhaust outlet side, when the shape of the exhaust hole is narrowed toward the exhaust outlet side (substantially inverse triangle shape), the constant distance away from the exhaust outlet side The flow of the processing gas in the range of is substantially uniform. However, it has been found that there is a flow of processing gas flowing into the space other than the wafer processing space of the inner pipe in the inner pipe at a location near the exhaust outlet.
  • An object of the present disclosure is to provide a technology capable of making the velocity distribution of processing gas between wafers uniform.
  • the substrate processing apparatus includes a reaction tube having a cylindrical inner tube and an outer tube whose upper ends are closed.
  • the inner pipe has a first gas outlet provided parallel to the central axis of the inner pipe, and the outer pipe has an exhaust outlet.
  • the first gas exhaust port is provided at a first width portion provided at a position relatively far from the exhaust outlet, and at a position closer to the exhaust outlet than the first width portion, and substantially Between the first width and the second width formed between the first width and the second width, and on the second width side, A first width portion and a third width portion having a smaller width than the second width portion.
  • the first width portion and the second width portion are disposed between the first width portion and the second width portion, and the first width portion and the second width portion are provided. Since the third width portion has a width smaller than the second width portion, it is possible to prevent the flow of the processing gas into the area other than the wafer processing space of the inner pipe. Thus, the velocity distribution of the processing gas between the wafers can be made uniform, so that the film thickness difference between the wafers can be made uniform.
  • FIG. 18 is a conceptual diagram illustrating the flow of gas in the reaction tube at the first gas exhaust port 236P2 according to Comparative Example 2. It is a schematic diagram which compares and demonstrates the flow of the process gas to the exhaust port 230. FIG. It is a figure for demonstrating the relationship of the opening position of the 1st gas exhaust port 236 which concerns on embodiment, and the wafer 200. FIG. It is a figure which shows the shape of 1st gas exhaust port 236A which concerns on the modification 1. FIG. It is a figure which shows the shape of 1st gas exhaust port 236B which concerns on the modification 2. FIG.
  • FIG. 16 is a view showing the shape of a first gas exhaust port 236D according to a modification 4; It is a figure which shows the shape of the 1st gas exhaust port 236E which concerns on the modification 5.
  • FIG. It is a figure which shows the shape of 1st gas exhaust port 236F which concerns on the modification 6.
  • FIG. 18 is a view showing the shape of a first gas exhaust port 236G according to Modification 7; It is the horizontal sectional view which looked at the reaction tube which concerns on the modification 8 from upper side. It is a bottom view of the reaction tube concerning modification 8.
  • FIG. It is the vertical sectional view which looked at the reaction tube concerning modification 8 from the right side. It is the vertical sectional view which looked at the reaction tube concerning modification 8 from the back. .
  • the substrate processing apparatus 1 in the present invention is configured as an example of a semiconductor manufacturing apparatus used for manufacturing a semiconductor device.
  • the vertical processing furnace 202 includes a reaction tube 203 forming a processing chamber 201 for processing the substrate 200, and a heater 207 is provided so as to surround the reaction tube 203.
  • the heater 207 has a cylindrical shape and is vertically installed by being supported by a heater base (not shown) as a holding plate.
  • the heater 207 is a heating unit (heating mechanism) of the processing chamber 201, and also functions as an activation mechanism (excitation unit) that activates (excites) the processing gas with heat.
  • the reaction tube 203 is coaxially disposed inside the heater 207, and constitutes a reaction container (processing container) of a pressure resistant structure.
  • the reaction tube 203 is formed in a cylindrical shape, and the lower end is opened and provided with a flange, and the upper end is closed by a relatively thick flat ceiling member.
  • the reaction tube 203 and the cylindrical portion 209 are made of, for example, a heat resistant material such as quartz (SiO 2) or silicon carbide (SiC).
  • the reaction tube 203 and the tube portion 209 constitute a double reaction tube, the reaction tube 203 is an outer tube, and the tube portion 209 is an inner tube (liner tube).
  • the first gas exhaust port 236 may be referred to as an exhaust hole or a slit.
  • the second gas exhaust port 237 may be referred to as a lower opening.
  • the reaction tube 203 and the cylindrical portion 209 are integrally or separately configured, and when they are integrally formed, the lower end flange of the reaction tube 203 is also formed inward to be coupled to the cylindrical portion 209.
  • the processing chamber 201 is formed inside the cylindrical portion 209 of the reaction tube 203, and is configured to be able to process the wafer 200 as a substrate.
  • a plurality of twenty-five or more wafers 200 can be held by the boat 217, which will be described later, in a horizontal posture in the vertical direction at a constant interval (pitch) p.
  • the boat 217 is made of, for example, a heat resistant material such as quartz or SiC.
  • the boat 217 has a bottom plate (not shown) and a top plate disposed above the bottom plate, and has a configuration in which a plurality of columns are bridged between the bottom plate and the top plate.
  • the plurality of wafers 200 are held in a multistage manner in the axial direction of the reaction tube 203 in a state in which the horizontal attitude is maintained with the gap p provided and the centers are aligned with each other by the grooves provided in the support.
  • the gap between the cylindrical portion 209 and the boat 217 is designed to be small as far as it can be operated safely, for example, 10 mm or a substrate, in order to suppress the flow of the processing gas which bypasses the substrate and to enhance the gas displaceability of the processing chamber. Less than the pitch of
  • the lower end of the reaction tube 203 is supported by a cylindrical manifold 226.
  • the manifold 226 is made of, for example, a metal such as nickel alloy or stainless steel, or is made of a heat resistant material such as quartz or SiC.
  • a flange is formed at the upper end of the manifold 226, and the lower end of the reaction tube 203 is installed and supported on the flange.
  • An airtight member 220 such as an O-ring is interposed between the flange and the lower end portion of the reaction tube 203 to make the inside of the reaction tube 203 airtight.
  • a seal cap 219 is airtightly attached to the opening at the lower end of the manifold 226 via an airtight member 220 such as an O-ring, and the opening at the lower end of the reaction tube 203, that is, the opening of the manifold 226 is airtight. It is supposed to be closed.
  • the seal cap 219 is made of, for example, a metal such as a nickel alloy or stainless steel, and is formed in a disk shape.
  • the seal cap 219 may be configured to cover the outside with a heat resistant material such as quartz (SiO 2) or silicon carbide (SiC).
  • a boat support (insulation cylinder) 218 for supporting the boat 217 is provided on the seal cap 219.
  • the boat support 218 is made of, for example, a heat resistant material such as quartz or SiC, and functions as a heat insulating part and serves as a support for supporting the boat.
  • the boat 217 is fixed on a boat support 218.
  • a boat rotation mechanism 267 for rotating the boat is provided on the opposite side of the seal cap 219 to the processing chamber 201.
  • the rotation shaft 265 of the boat rotation mechanism 267 is connected to the boat support 218 through the seal cap, and the wafer rotation mechanism 267 rotates the wafer 200 by rotating the boat 217 via the boat support 218.
  • the boat 217 and the boat support 218 can be positioned by pins or the like so that the symmetry axes of the boat 217 and the boat support 218 exactly coincide with the rotation axis of the boat rotation mechanism 267.
  • the seal cap 219 is vertically moved up and down by a boat elevator 115 as an elevating mechanism provided outside the reaction tube 203, whereby the boat 217 can be carried into and out of the processing chamber 201.
  • nozzle support portions 350a to 350d for supporting the nozzles 340a to 340d as gas nozzles for supplying the processing gas into the processing chamber 201 are installed so as to penetrate the manifold 226.
  • four nozzle support portions 350a to 350d are provided.
  • the nozzle support portions 350a to 350d are made of, for example, a material such as a nickel alloy or stainless steel.
  • Gas supply pipes 310a to 310c for supplying a gas into the processing chamber 201 are connected to one end of the nozzle support portions 350a to 350c on the reaction pipe 203 side.
  • a gas supply pipe 311d for supplying a gas to the gap S formed between the reaction tube 203 and the cylindrical portion 209 is connected to one end of the nozzle support portion 350d on the reaction tube 203 side.
  • the nozzles 340a to 340d are connected to the other ends of the nozzle support portions 350a to 350d, respectively.
  • the nozzles 340a to 340d are made of, for example, a heat resistant material such as quartz or SiC.
  • a first process gas supply source 360a for supplying a first process gas a mass flow controller (MFC) 320a which is a flow rate controller (flow rate control unit) and a valve 330a which is an on-off valve.
  • MFC mass flow controller
  • a second processing gas supply source 360b, an MFC 320b, and a valve 330b for supplying the second processing gas are provided in this order from the upstream direction.
  • a third processing gas supply source 360c, an MFC 320c, and a valve 330c for supplying the third processing gas are provided in this order from the upstream direction.
  • the gas supply pipe 311d is provided with an inert gas supply source 361d, an MFC 321d and a valve 331d for supplying an inert gas sequentially from the upstream direction.
  • Gas supply pipes 311a and 311b for supplying an inert gas are connected to the gas supply pipes 310a and 310b on the downstream side of the valves 330a and 330b, respectively.
  • MFCs 321a and 321b and valves 331a and 331b are provided in this order from the upstream direction.
  • a first processing gas supply system mainly includes the gas supply pipe 310a, the MFC 320a, and the valve 330a.
  • the first process gas supply source 360a, the nozzle support portion 350a, and the nozzle 340a may be included in the first process gas supply system.
  • a second processing gas supply system is mainly configured by the gas supply pipe 310 b, the MFC 320 b, and the valve 330 b.
  • the second process gas supply system 360 may include the second process gas supply source 360b, the nozzle support 350b, and the nozzle 340b.
  • a third processing gas supply system is mainly configured by the gas supply pipe 310c, the MFC 320c, and the valve 330c.
  • the third process gas supply source 360c, the nozzle support portion 350c, and the nozzle 340c may be included in the third process gas supply system.
  • an inert gas supply system is mainly configured by the gas supply pipe 311d, the MFC 321d, and the valve 331d.
  • the inert gas supply source 361 d, the nozzle support portion 350 d, and the nozzle 340 d may be included in the inert gas supply system.
  • processing gas when only the first processing gas is included, when only the second processing gas is included, when only the third processing gas is included, only the inert gas is included. Or all of them may be included.
  • process gas supply system when only the first process gas supply system is included, when only the second process gas supply system is included, when only the third process gas supply system is included, inert gas It may include only the feed system or it may include all of them.
  • An exhaust outlet (exhaust port) 230 is formed in the reaction tube 203.
  • the exhaust outlet 230 is formed below the second gas exhaust port 237, and fluidly connects the inside of the reaction tube 203 (the gap S) to the exhaust tube 231.
  • a vacuum is provided in the exhaust pipe 231 via a pressure sensor 245 as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 201 and an APC (Auto Pressure Controller) valve 244 as a pressure regulator (pressure adjustment unit).
  • a vacuum pump 246 as an exhaust device is connected, and is configured to be able to evacuate so that the pressure in the processing chamber 201 becomes a predetermined pressure (degree of vacuum).
  • the downstream side of the vacuum pump 246 can be connected to a waste gas processing device (not shown) or the like.
  • the APC valve 244 opens and closes the valve to evacuate and stop the evacuation in the processing chamber 201. Further, the valve opening degree is adjusted to adjust the conductance so that the pressure in the processing chamber 201 can be adjusted. It is an on-off valve.
  • An exhaust system that functions as an exhaust unit is mainly configured by the exhaust pipe 231, the APC valve 244, and the pressure sensor 245.
  • the vacuum pump 246 may be included in the exhaust system.
  • a temperature sensor such as a thermocouple is installed as a temperature detector, and by adjusting the power supplied to the heater 207 based on the temperature information detected by the temperature sensor,
  • the temperature in the processing chamber 201 is configured to have a desired temperature distribution.
  • a purge gas supply device 268 for supplying a gas for purging a space in the vicinity of the boat support 218 from the seal cap 219, which is referred to as a throat portion, is connected to the boat rotation mechanism 267.
  • the purge gas supply device 268 includes the same configuration as the inert gas supply source 361 d, the MFC 321 d and the valve 331 d, and in this example, injects N 2 gas near the shaft seal of the boat rotation mechanism 267.
  • the boat 217 is inserted into the processing chamber 201 while being supported by the boat support base 218 in a state where the plurality of wafers 200 to be batch processed are stacked on the boat 217 in multiple stages, and the heater 207 is processed.
  • the wafer 200 inserted into the chamber 201 is heated to a predetermined temperature.
  • the cylindrical portion 209 is disposed coaxially with the reaction tube 203.
  • a gap S is formed between the cylindrical portion 209 and the reaction tube 203.
  • the gap S has an annular shape so as to surround the cylindrical portion 209 in a cross sectional view.
  • two partition plates 221 forming the nozzle disposition chamber 222 are provided parallel to the axis of the cylindrical portion 209 from the upper end to the lower end of the cylindrical portion 209 Be
  • the nozzle disposition chamber 222 is formed to be divided between the wall of the cylindrical portion 209 and the wall of the reaction tube 203.
  • the outer wall of the nozzle disposition chamber 222 doubles as the outer wall of the reaction tube 203, and is formed concentrically and with the same radius as the reaction tube 203. Further, the inner wall of the nozzle disposition chamber 222 doubles as the wall of the cylindrical portion 209 and is formed concentrically with the cylindrical portion 209 at the same radius.
  • the lower end portion of the nozzle placement chamber 222 is opened, and a part (or all) of the upper end is closed by a flat wall (see FIG. 5).
  • the upper end of the ceiling of the nozzle placement chamber 222 is at the same height as, or slightly lower than, the upper end of the ceiling of the cylindrical portion 209.
  • a partition plate 248 is formed inside the nozzle arrangement chamber to divide the nozzle arrangement indoor space into a plurality of spaces.
  • two partition plates 248 are provided to divide the nozzle disposition chamber 222 from the vicinity of the lower end to the upper end side, and form three spaces separated from each other.
  • Nozzles 340a to 340c are respectively installed in the respective spaces.
  • the partition plates 221 and 248 are integrally formed of the same material as the cylindrical portion 209, but are not necessarily integrated (welded) with the reaction tube 203, and the harm due to gas leakage between the spaces is fatal It is sufficient if the space can be separated to such an extent that
  • a plurality of gas supply slits 235 for supplying the processing gas into the processing chamber 201 is formed at a position corresponding to the nozzle disposition chamber 222 of the cylindrical portion 209.
  • three gas supply slits 235 are arranged in the circumferential direction so as to communicate each space of the nozzle disposition chamber 222 with the processing chamber 201, and correspond to each surface (upper surface) of the wafer 200, for example.
  • the individual openings are formed in the same number as the wafers 200 in the axial direction. That is, the gas supply slits 235 may be formed in a matrix of plural stages and plural rows in the vertical and horizontal directions.
  • the gas supply slit 235 is formed with a plurality of horizontally long slits in the vertical direction.
  • the gas supply slit 235 is a slit elongated in the circumferential direction, and preferably the circumferential length is the same as the circumferential length of each space in the nozzle disposition chamber 222, because gas supply efficiency is improved. .
  • the gas supply slit 235 may be formed in a plurality of horizontally long stages except for the connecting portion between the partition plate 248 and the wall of the cylindrical portion 209 because the gas supply efficiency is improved.
  • the gas supply slits 235 can be formed smoothly so that the edge portions as the four corners have a curved surface.
  • Such a configuration can increase the proportion of gas flowing into the wafer surface. Further, since the nozzles 340a to 340c are disposed in independent spaces by the partition plate 248, the processing gas supplied from the nozzles 340a to 340c is mixed in the nozzle disposition chamber 222 to form a thin film. And the generation of byproducts can be suppressed.
  • the nozzles 340a to 340c are provided above the lower part in the nozzle disposition chamber 222, and the nozzles 340d are provided above the lower part in the gap S in parallel with the axis (longitudinal direction) of the reaction tube 203.
  • the nozzles 340a to 340d are respectively configured as long nozzles of a straight pipe.
  • Gas supply holes 234a to 234d for supplying gas are respectively provided on side surfaces of the nozzles 340a to 340d.
  • the gas supply holes 234 a to 234 c are opened toward the center of the reaction tube 203, and the gas supply holes 234 d are opened toward the circumferential direction of the reaction tube 203.
  • three nozzles 340 a to 340 c are provided in the nozzle disposition chamber 222, and a plurality of types of gases can be supplied into the processing chamber 201.
  • the nozzle 340 d is configured to be able to supply an inert gas (purge gas) into the gap S.
  • an inert gas purge gas
  • the back side of the cylindrical portion can be efficiently purged, retention of gas on the back side of the cylindrical portion can be suppressed, and the purge time can be shortened.
  • the particles can be reduced by suppressing the retention of the gas on the back side of the cylindrical portion.
  • the pressure increase in the processing chamber 201 during the high pressure process can be assisted.
  • a first gas exhaust port 236 is formed on the other side surface facing the one side surface where the nozzle disposition chamber 222 of the cylindrical portion 209 is formed.
  • the first gas exhaust port 236 is disposed so as to sandwich an area in which the wafer 200 of the processing chamber 201 is accommodated between the first gas exhaust port 236 and the nozzle disposition chamber 222.
  • the first gas exhaust port 236 is formed in a region (wafer region) from the lower end side of the processing chamber 201 where the wafer 200 is accommodated to the upper end side.
  • a second gas exhaust port 237 is formed on the side surface of the cylindrical portion 209 below the first gas exhaust port 236.
  • both the first gas exhaust port 236 and the second gas exhaust port 237 communicate the processing chamber 201 with the gap S, they have different roles. That is, the first gas exhaust port 236 is an opening intended to exhaust the atmosphere in the processing chamber 201 evenly over the plurality of wafers 200, and the gas exhausted from the first gas exhaust port 236 is a gap. After spreading and lowering S, the gas is collected at the exhaust outlet 230 and exhausted from the exhaust pipe 231 to the outside of the reaction pipe 203.
  • the second gas exhaust port 237 is formed to exhaust the atmosphere (mainly purge gas) under the wafer 200 processing chamber 201, particularly around the boat support 218.
  • the difference (pressure loss) between the pressure of the exhaust unit and the pressure of the wafer area can be reduced.
  • the pressure in the wafer area can be lowered, the flow velocity in the wafer area can be increased, and film formation with limited surface reaction and relaxation of the loading effect can be expected.
  • FIG. 4 is a conceptual view for explaining the shape and the installation position of the first gas exhaust port 236.
  • FIG. 4 is a conceptual front view when the reaction tube (outer tube) 203 and the cylindrical portion (inner tube) 209 are viewed from the direction of the exhaust outlet 230 provided in the reaction tube (outer tube) 203.
  • the center line of the exhaust outlet 230 in the horizontal direction (X direction) coincides with the direction of the central axis CA.
  • the center of the exhaust outlet 230 in the horizontal direction (X direction) and the center of the second gas exhaust port 237 in the horizontal direction (X direction) are aligned with the central axis CA.
  • the first gas exhaust port 236, the second gas exhaust port 237, and the exhaust outlet 230 are provided in the same direction. Further, the second gas exhaust port 237 and the exhaust port 230 are provided at substantially opposite positions.
  • the first gas exhaust port 236 is provided on the side surface of the cylindrical portion 209 substantially in parallel with the central axis CA of the cylindrical portion 209. That is, the longitudinal direction of the first gas exhaust port 236 is provided substantially parallel to the central axis CA of the cylindrical portion 209.
  • the first gas exhaust port 236 is provided on the side surface of the cylindrical portion 209 above the exhaust outlet 230 and the second gas exhaust port 237 along the vertical direction (Y direction, vertical direction) of the cylindrical portion 209.
  • the second gas exhaust port 237 is formed from a position higher than the upper end of the exhaust outlet 230 to a position higher than the lower end of the exhaust outlet 230.
  • 235 a indicated by a substantially rectangular dotted line indicates the outer periphery of the formation region of the plurality of gas supply slits 235 provided in the cylindrical portion (inner pipe) 209.
  • the formation region 235 a of the gas supply slit 235 is provided at a position facing or substantially directly facing the first gas exhaust port 236. Further, the formation region 235 a of the gas supply slit 235 is provided on the wall of the cylindrical portion 209 opposite to the first gas exhaust port 236 when viewed from the central axis CA of the cylindrical portion 209.
  • the first gas exhaust port 236 is constituted by a single opening whose width continuously changes, and substantially the maximum width W1 (the first width W1) and substantially the maximum. It has a portion of a small width W3 (third width portion W3) and a portion of a predetermined width W2 (second width portion W2) substantially wider than the minimum width W3.
  • the line Y1 indicates the position in the Y direction corresponding to the portion of the maximum width W1 of the first gas exhaust port 236.
  • a line Y2 indicates the position in the Y direction corresponding to the portion of the minimum width W3 of the first gas exhaust port 236.
  • a line Y3 indicates the position in the Y direction corresponding to the portion of the predetermined width W2 of the first gas exhaust port 236.
  • Line Y 4 indicates the center position of the opening of the exhaust outlet 230 in the Y direction.
  • the position of the line Y1 indicates the upper end of the first gas outlet 236, and the position of the line Y3 indicates the lower end of the first gas outlet 236.
  • the exhaust outlet 230 provided on the side surface of the reaction pipe (outer pipe) 203 is provided closer to the lower end than the position of the predetermined width W 2 of the first gas exhaust port 236. Therefore, the width of the first gas exhaust port 236 is gradually narrowed or narrowed from the maximum width W1 to the minimum width W3 between the line Y1 and the line Y2, and then the minimum width between the line Y2 and the line Y3.
  • the substantial width means, for example, the width in the case where the first gas exhaust ports are constituted by a plurality of openings as described later, or a single constant which is equal in conductance per unit height. It means the width when converted to the slit of the width.
  • the width of each portion of the first gas exhaust port will be used in the meaning of this substantial width.
  • the width W1 of the upper end of the first gas exhaust port 236 is the maximum width
  • the width W3 of the middle portion of the first gas exhaust port 236 is the minimum width.
  • the width W2 of the lower end of the first gas exhaust port 236 is narrower than the maximum width W1 and wider than the minimum width W3 (W1> W2> W3). That is, the first gas exhaust port (exhaust hole) 236 has a maximum width (W1) near the upper end (line Y1) of the cylindrical portion (inner pipe) 209 and is below the cylindrical portion (inner pipe) 209.
  • the wide predetermined width (W2) can be the same value as the maximum width (W1), or a value between the maximum width (W1) and the minimum width (W3) (W1WW2> W3). ).
  • the position of the line Y1 is a position relatively far from the line Y4 as compared with the positions of the lines Y2 and Y3. That is, at a distance from the exhaust outlet 230, the portion having the maximum width (W1) of the first gas exhaust port (exhaust hole) 236 has a wide predetermined width (W2) of the first gas exhaust port (exhaust hole) 236 It is provided at a relatively long distance (L1) from the exhaust outlet 230 as compared with the part. Further, at a distance from the exhaust outlet 230, a portion having a wide predetermined width (W2) of the first gas exhaust port (exhaust port) 236 has a maximum width (W1) of the first gas exhaust port (exhaust port) 236.
  • the portion having the minimum width (W3) of the first gas exhaust port (exhaust hole) 236 is provided at a distance L2 (L1> L2> L3) relatively longer than the distance L3 and relatively shorter than the distance L1.
  • L2 L1> L2> L3
  • the configuration of the first gas exhaust port 236 may be configured to be upside down.
  • the inner pipe 209 has the first gas exhaust port 236 provided parallel to the central axis CA of the inner pipe 209, and the outer pipe 203 has the exhaust outlet 230.
  • the first gas exhaust port 236 has a first width W1 provided at a position (L1) relatively far from the exhaust outlet 230 and a position closer to the exhaust outlet 230 than the first width W1 ( A second width portion W2 provided in L3) and formed substantially equal to or less than the width of the first width portion W1, and between the first width portion W1 and the second width portion W2 (L1 and L3 And has a first width W1 and a third width W3 having a smaller width than the second width W2 on the second width W2 side (L2).
  • the effects of the first gas outlet 236 shown in FIG. 4 will be described in detail later.
  • a carbon dioxide gas laser can be used to process the cylindrical portion 209 and the reaction tube 203. That is, the gas supply slit 235, the first gas exhaust port 236, and the second gas exhaust port 237 provided in the cylindrical portion 209 are openings (holes) in the quartz pipe using numerical control carbon dioxide gas laser processing machine Form
  • the cut surface of the opening (hole) of the gas supply slit 235, the first gas exhaust port 236, and the second gas exhaust port 237 is preferably formed by a straight line, a circular arc, or a combination of a straight line and a circular arc.
  • the program input to the numerically controlled carbon dioxide gas laser processing machine is relatively easy as compared with the complicated curve processing, it is possible to reduce the cost of forming the opening to the quartz tube.
  • the gas supply slits 235 are formed so as to be respectively disposed between adjacent wafers 200 placed on a plurality of stages of the boat 217 housed in the processing chamber 201. It is done. In FIG. 5, the boat 217 is omitted.
  • the gas supply slit 235 is preferably provided between the lowermost wafer 200 mountable on the boat 217 and the bottom plate of the boat 217 adjacent to the lower side, the uppermost wafer 200 and the boat adjacent to the upper side thereof. It is preferable that each of the wafers 200 be formed so as to face each other between the wafers 200 and between the wafers 200 and the top plate until it reaches the top plate of 217.
  • the gas supply holes 234a to 234c of the nozzles 340a to 340c may be formed at the central portion of the vertical width of each gas supply slit 235 so as to correspond to each of the gas supply slits 235 one by one.
  • 25 gas supply holes 234a to 234c may be formed. That is, it is preferable that the number of the gas supply slit 235 and the gas supply holes 234a to 234c be formed by one plus the number of the wafers 200 to be mounted. With such a slit configuration, a flow of processing gas parallel to the wafer 200 can be formed on the wafer 200 (see the arrow in FIG. 5).
  • the upper end (ceiling) of the nozzle disposition chamber 222 can be formed to have substantially the same height as the upper end of the cylindrical portion 209.
  • the controller 280 which is a control unit (control means), is configured as a computer including a central processing unit (CPU) 121a, a random access memory (RAM) 121b, a storage device 121c, and an I / O port 121d. It is done.
  • the RAM 121b, the storage device 121c, and the I / O port 121d are configured to be able to exchange data with the CPU 121a via the internal bus 121e.
  • An input / output device 122 configured as, for example, a touch panel or the like is connected to the controller 280.
  • the storage device 121 c is configured by, for example, a flash memory, a hard disk drive (HDD), or the like.
  • a control program for controlling the operation of the substrate processing apparatus, and a process recipe in which a procedure, conditions and the like of the substrate processing described later are stored are readably stored.
  • the process recipe is a combination of processes so as to cause the controller 280 to execute each procedure in the substrate processing process described later and obtain a predetermined result, and functions as a program.
  • the process recipe, the control program and the like are collectively referred to simply as a program.
  • the RAM 121 b is configured as a memory area (work area) in which programs and data read by the CPU 121 a are temporarily stored.
  • the I / O port 121d is connected to the MFCs 320a to 321b, the valves 330a to 331b, the pressure sensor 245, the APC valve 244, the vacuum pump 246, the heater 207, the temperature sensor, the boat rotation mechanism 267, the boat elevator 115, etc. .
  • the CPU 121a is configured to read out and execute a control program from the storage device 121c, and to read out a process recipe from the storage device 121c in response to an input of an operation command from the input / output device 122 or the like.
  • the CPU 121a adjusts the flow rates of various gases by the MFCs 320a to 321b, opens and closes the valves 330a to 331b, opens and closes the APC valve 244, and pressure from the APC valve 244 based on the pressure sensor 245 in accordance with the read process recipe.
  • Adjustment operation, start and stop of vacuum pump 246, temperature adjustment operation of heater 207 based on temperature sensor, rotation and rotation speed adjustment of boat 217 by boat rotation mechanism 267, elevation operation of boat 217 by boat elevator 115, etc. are controlled. Is configured as.
  • the controller 280 is not limited to being configured as a dedicated computer, and may be configured as a general-purpose computer.
  • an external storage device for example, a magnetic disk such as a hard disk, an optical disk such as a CD, an optical magnetic disk such as an MO, a semiconductor memory such as a USB memory
  • the controller 280 of the present embodiment can be configured by installing a program on a general-purpose computer and using the same.
  • the means for supplying the program to the computer is not limited to the case of supplying via the external storage device 123.
  • the program may be supplied using communication means such as the Internet or a dedicated line without using the external storage device 123.
  • the storage device 121 c and the external storage device 123 are configured as computer readable recording media. Hereinafter, these are collectively referred to simply as recording media.
  • recording media when the term “recording medium" is used in the present specification, when only the storage device 121c is included, only the external storage device 123 may be included, or both of them may be included.
  • the boat 217 on which a predetermined number of wafers 200 are placed is inserted into the reaction tube 203, and the reaction tube 203 is airtightly closed by the seal cap 219.
  • the wafer 200 is heated, a process gas is supplied into the reaction tube 203, and the wafer 200 is subjected to heat treatment such as heating.
  • NH 3 gas as the first process gas, HCDS gas as the second process gas, and N 2 gas as the third process gas are alternately supplied (HCDS gas supply ⁇ N 2 purge ⁇ NH 3 gas supply
  • a SiN film is formed on the wafer 200 by repeating this cycle a predetermined number of times with one cycle of N 2 purge.
  • the processing conditions are, for example, as follows: Temperature of wafer 200: 100 to 600 ° C. Processing chamber pressure: 1 to 3000 Pa HCDS gas supply flow rate: 1 to 2000 sccm NH 3 gas supply flow rate: 100 to 10000 sccm N 2 gas supply flow rate: 10 to 10000 sccm Film thickness of SiN film: 0.2 to 10 nm.
  • NH 3 gas is supplied from the gas supply pipe 310 a of the first processing gas supply system into the processing chamber 201 through the gas supply holes 234 a of the nozzle 340 a and the gas supply slit 235. Specifically, by opening the valves 330a and 331a, supply of the NH 3 gas from the gas supply pipe 310a into the processing chamber 201 is started together with the carrier gas. At this time, the opening degree of the APC valve 244 is adjusted to maintain the pressure in the processing chamber 201 at a predetermined pressure. After the predetermined time has elapsed, the valve 330a is closed to stop the supply of the NH 3 gas.
  • the NH 3 gas supplied into the processing chamber 201 is supplied to the wafer 200, flows in parallel on the wafer 200, and then flows from the top to the bottom in the gap S through the first gas exhaust port 236.
  • the gas is exhausted from the exhaust pipe 231 via the gas exhaust port 237 and the exhaust outlet 230.
  • valve 331 b and the valves 330 c and 331 d of the inert gas supply pipe connected to the gas supply pipe 310 b are opened and the inert gas such as N 2 flows while the NH 3 gas is supplied into the processing chamber 201, It is possible to prevent the NH 3 gas from flowing into the gas supply pipes 310b, 310c, and 311d.
  • the HCDS gas is supplied from the gas supply pipe 310 b of the second processing gas supply system into the processing chamber 201 through the gas supply holes 234 b of the nozzle 340 b and the gas supply slit 235.
  • the valves 330 b and 331 b are opened to start supply of the HCDS gas from the gas supply pipe 310 b into the processing chamber 201 together with the carrier gas.
  • the opening degree of the APC valve 244 is adjusted to maintain the pressure in the processing chamber 201 at a predetermined pressure.
  • the valve 330 b is closed to stop the supply of the HCDS gas.
  • the HCDS gas supplied into the processing chamber 201 is supplied to the wafer 200, flows in parallel over the wafer 200, and then flows from the top to the bottom through the gap S through the first gas exhaust port 236, and the second gas
  • the exhaust gas is exhausted from the exhaust pipe 231 via the exhaust port 237 and the exhaust outlet 230.
  • the valve 331a of the inert gas supply pipe connected to the gas supply pipe 310a and the valves 330c and 331d of the gas supply pipes 310c and 311d are opened to make a small amount of N 2 etc.
  • the HCDS gas can be prevented from entering the gas supply pipes 310a, 310c, and 311d by diffusion, and by flowing a larger amount of the inert gas, the wafer inner film thickness uniformity can be obtained. It can also be controlled.
  • the boat 217 is unloaded from the reaction tube 203 in the reverse procedure of the above-described operation.
  • the wafer 200 is transferred from the boat 217 to the pod of the transfer rack by a wafer transfer machine (not shown), and the pod is transferred from the transfer rack to the pod stage by the pod transfer machine, and is transferred by the external transfer device. It is carried out of the body.
  • the present invention is also applied to the case where the first process gas and the second process gas are simultaneously supplied. be able to.
  • the nozzle arrangement chamber 222 is not limited to being divided into three spaces, and may be divided into two or four or more spaces. The number of spaces to be partitioned can be appropriately changed according to the number of nozzles required for the desired heat treatment.
  • the shape of the nozzles may be changed.
  • the gas supply holes 234a provided in the nozzle 340b used for supplying the processing gas having a low decomposition temperature may be formed in an elongated slit which continuously opens over a plurality of wafers, or a cooling gas is provided around the periphery It is good as a double pipe structure which made
  • the first gas exhaust port 236 for exhausting the gas evenly from the wafer placement area is not limited to the film formation on the wafer 200, but may be a gas cleaning or precoating for the surface of the cylindrical portion 209 or the reaction tube 203.
  • the cleaning time is set so that the most difficult to remove or the thickest part of the film to be removed can be removed, the unevenness of the cleaning and precoating can be reduced, so that they can be performed in a short time. Also, the life of the reaction tube 203 can be extended.
  • FIG. 7 is a conceptual diagram for explaining the details of the flow of processing gas in the reaction tube at the first gas exhaust port 236 described with reference to FIG.
  • FIG. 7A shows the shape of the first gas exhaust port 236 described in FIG. 4 when the reaction pipe (outer pipe) 203 and the cylindrical portion (inner pipe) 209 are viewed from the direction of the exhaust outlet 230. It is a front view showing.
  • FIG. 7B is a side view conceptually showing the flow of processing gas when the reaction tube (outer tube) 203 and the cylindrical portion (inner tube) 209 shown in FIG. 7A are viewed from the side. .
  • FIG. 7B shows a boat 217 on which a plurality of wafers 200 are stacked in multiple stages, a boat support base 218 supporting the boat 217, and a nozzle arrangement chamber 222 in which the nozzles 340a to 340d are provided. ing. However, in FIG. 7B, the description of the nozzles 340a to 340d and the plurality of gas supply slits 235 provided on the side surface of the cylindrical portion (inner pipe) 209 is omitted. Further, the first gas exhaust port 236 in FIG. 7 (b) is once narrowed from the maximum width W1 toward the exhaust outlet 230 as the minimum width W3 as the throttle shape, and again, the minimum width W3 at the exhaust outlet 230 side It conceptually shows the shape expanded to a wider predetermined width W2.
  • the first gas exhaust port 236 shown in FIG. 7A has a portion of the maximum width W1, a portion of the minimum width W3, and a portion of the predetermined width W2 wider than the minimum width W3, as described in FIG. And. That is, the width in the horizontal direction of the first gas exhaust port 236 from the maximum width W1 toward the exhaust outlet 230 side is once made as the minimum width W3 as the throttle shape, and again from the minimum width W3 on the exhaust outlet 230 side It is expanded to a wide predetermined width W2. With this configuration, as indicated by arrows in FIG. 7B, the flow of the processing gas supplied from the plurality of gas supply slits 235 can be substantially uniformed among the wafers 200 stacked in multiple stages. .
  • the generation of the flow of the processing gas flowing into the gap other than the wafer processing space 210 is suppressed in the portion near the exhaust outlet 230, and the reduction of the flow rate of the processing gas on the wafer in the portion near the exhaust outlet 230 is prevented. Thereby, the flow of the processing gas between the wafers 200 stacked in multiple stages can be made uniform.
  • the width of the first gas exhaust port 236 is wider than the minimum width W3 and the predetermined width W2 is wider than the minimum width W3.
  • FIG. 8 is a conceptual diagram for explaining the flow of gas in the reaction tube at the first gas exhaust port 236P1 according to Comparative Example 1.
  • FIG. 8A is a front view showing the shape of the first gas exhaust port 236P1 when the reaction pipe (outer pipe) 203 and the cylindrical portion (inner pipe) 209 are viewed from the direction of the exhaust outlet 230.
  • FIG. 8 (b) is a side view conceptually showing the flow of the processing gas when the reaction tube (outer tube) 203 and the cylindrical portion (inner tube) 209 shown in FIG. 8 (a) are viewed from the side. .
  • FIG. 8A is a front view showing the shape of the first gas exhaust port 236P1 when the reaction pipe (outer pipe) 203 and the cylindrical portion (inner pipe) 209 are viewed from the direction of the exhaust outlet 230.
  • FIG. 8 (b) is a side view conceptually showing the flow of the processing gas when the reaction tube (outer tube) 203 and the cylindrical portion (inner tube
  • FIG. 8B shows a boat 217 on which a plurality of wafers 200 are stacked in multiple stages, a boat support base 218 supporting the boat 217, and a nozzle arrangement chamber 222 in which the nozzles 340a to 340d are provided. .
  • the description of the nozzles 340a to 340d and the plurality of gas supply slits 235 provided on the side surface of the cylindrical portion (inner pipe) 209 is omitted.
  • the first gas exhaust port 236P1 in FIG. 8B conceptually shows that the width W1P1 in the horizontal direction of the first gas exhaust port 236P1 is substantially uniform in the vertical direction.
  • the first gas exhaust port 236P1 of Comparative Example 1 has a substantially uniform width in the vertical direction of the cylindrical portion (inner pipe) 209 on the side surface of the cylindrical portion (inner pipe) 209. It is a configuration having W1P1.
  • the exhaust outlet 230 is provided only on the lower side (or upper side) of the vertical reaction tube (outer tube) 203 and the cylindrical portion (inner tube) 209,
  • the flow of the processing gas supplied from the plurality of gas supply slits 235 tends to flow toward the exhaust outlet 230, so the flow among the wafers 200 becomes uneven.
  • FIG. 9 is a conceptual diagram for explaining the flow of gas in the reaction tube at the first gas exhaust port 236P2 according to Comparative Example 2.
  • FIG. 9A is a front view showing the shape of the first gas exhaust port 236P2 when the reaction pipe (outer pipe) 203 and the cylindrical portion (inner pipe) 209 are viewed from the direction of the exhaust outlet 230.
  • FIG. 9B is a side view conceptually showing the flow of gas in the reaction tube when the reaction tube (outer tube) 203 and the cylindrical portion (inner tube) 209 shown in FIG. 9A are viewed from the side.
  • FIG. 9B illustrates a boat 217 on which a plurality of wafers 200 are stacked in multiple stages, a boat support base 218 supporting the boat 217, and a nozzle arrangement chamber 222 in which the nozzles 340a to 340d are provided. .
  • the description of the nozzles 340a to 340d and the plurality of gas supply slits 235 provided on the side surface of the cylindrical portion (inner pipe) 209 is omitted.
  • the first gas exhaust port 236P2 in FIG. 9B conceptually shows that the horizontal width of the first gas exhaust port 236P2 is gradually narrowed in the vertical direction from the maximum width W1P2 to the minimum width W2P2. It shows.
  • the side surface of the cylindrical portion (inner pipe) 209 corresponds to the vertical direction of the cylindrical portion (inner pipe) 209 (from the top to the bottom) ),
  • the maximum width W1P2 is gradually narrowed to the minimum width W2P2.
  • the first gas exhaust port 236P2 of the second comparative example is directed to the first gas exhaust port 236P2 toward the exhaust port 230 in order to suppress the inclination of the flow concentrated to the exhaust port 230 as described in FIG. 8B.
  • the width in the horizontal direction of the lens is a stop shape. In this case, as indicated by an arrow in FIG.
  • FIG. 10 is a schematic view for explaining the flow of the processing gas to the exhaust outlet 230 in comparison.
  • Fig.10 (a) is the figure which looked at the reaction tube 203 which concerns on embodiment, and
  • FIG.10 (b) the reaction tube which concerns on a comparative example from upper direction.
  • the shape of the first gas exhaust port 236 of the reaction pipe of FIG. 10B is the same as that of the reaction pipe 203 according to the embodiment, but the positional relationship between the first gas exhaust port 236 and the exhaust outlet 230 is different.
  • the reaction tube of the comparative example is disposed at a position where the exhaust outlet 230 provided in the reaction tube (outer tube) 203 and the first gas exhaust port 236 provided in the cylindrical portion (inner tube) 209 face each other. It is placed at an offset position by an angle of 90 degrees. For this reason, the conductance between the first gas exhaust port 236 and the exhaust outlet 230 is reduced. Further, as indicated by arrows in FIG. 10B, the flow of the processing gas on the surface of the wafer 200 is uneven, and the flow velocity unevenness of the processing gas in the surface of the wafer 200 is easily generated.
  • the positional relationship between the first gas exhaust port 236 and the exhaust outlet 230 is viewed from the central axis CA of the cylindrical portion 209. In the same direction.
  • the formation region 235a of the gas supply slit 235, the first gas exhaust port 236, and the exhaust outlet 230 It is arranged substantially in a row or straight.
  • the formation region 235 a of the gas supply slit 235 is provided at a position facing or substantially directly facing the first gas exhaust port 236.
  • the formation region 235 a of the gas supply slit 235 is provided on the wall of the cylindrical portion 209 opposite to the first gas exhaust port 236 when viewed from the central axis CA of the cylindrical portion 209.
  • the flow of the processing gas on the wafer 200 can be made substantially uniform, and the occurrence of the flow velocity unevenness of the processing gas in the surface of the wafer 200 is suppressed.
  • FIG. 11 is a view for explaining the relationship between the opening position of the first gas exhaust port 236 and the wafer 200 according to the embodiment.
  • Fig.11 (a) is a side view at the time of seeing reaction tube (outer tube) 203 and cylinder part (inner tube) 209 which are shown by Fig.7 (a) from the side surface similarly to FIG.7 (b).
  • . 11 (b) is an enlarged view of a portion XII (a) of FIG. 11 (a)
  • FIG. 11 (c) is an enlarged view of a portion XII (b) of FIG. 11 (a).
  • the shape of the first gas exhaust port 236 is the same as the shape of the first gas exhaust port 236 shown in FIGS. 4 and 7 (a).
  • the first gas exhaust port 236 in FIGS. 11A, 11B, and 11C schematically shows its shape, as in FIG. 7B.
  • FIG. 11A a boat 217 on which a plurality of wafers 200 are stacked in multiple stages, a boat support base 218 supporting the boat 217, and a nozzle disposition chamber 222 provided with nozzles 340a to 340d are depicted ing.
  • FIG. 11A the description of the nozzles 340a to 340d and the plurality of gas supply slits 235 provided on the side surface of the cylindrical portion (inner pipe) 209 is omitted.
  • a square dotted line XII (b) is a portion surrounding the four wafers 200 in the upper part of the boat 217 and the upper part of the first gas exhaust port 236, and FIG.
  • FIG. 11A A diagram is shown. Further, in FIG. 11A, a square dotted line XII (c) is a portion surrounding the lower part of the four wafers 200 in the boat 217 and the lower portion of the first gas exhaust port 236, as shown in FIG. The enlarged view is shown.
  • the distance X is longer than half (p / 2) of the pitch p of the wafers 200 on the basis of the pitch p between the wafers 200 and twice the pitch p of the wafers 200 (the distance X is a distance X with the upper end 236U of It is preferable to set the value shorter than 2p) (p / 2 ⁇ X ⁇ 2p). Therefore, the upper end 236U of the first gas exhaust port 236 is set at a position higher by p / 2 to 2p than the position of the wafer 200 placed on the top.
  • the first gas exhaust in the lowermost wafer 200 and the cylindrical portion (inner pipe) 209 Assuming that the distance between the lower end 236L of the opening 236 and the lower end 236L is a distance Y, the distance Y is longer than half (p / 2) of the pitch p of the wafers 200 based on the inter-wafer pitch p. It is preferable to set a value (p / 2 ⁇ Y ⁇ 2p) shorter than double (2p). Therefore, the lower end 236L of the first gas exhaust port 236 is set at a position p / 2 to 2p lower than the position of the wafer 200 placed at the lowermost part.
  • the interval (pitch) p of loading of the wafers 200 is, for example, 10 mm (millimeter)
  • the distance X or the distance Y is about 5 to 20 mm.
  • the upper end 235U and the lower end 235L of the first gas exhaust port 236 are offset by about 5 to 20 mm from the positions of the top wafer and the bottom wafer of the loaded wafers 200,
  • the first gas exhaust port 236 is opened in the pipe 209.
  • the opening of the first gas exhaust port 236 to the cylindrical portion (inner pipe) 209 may be performed by a numerically controlled carbon dioxide gas laser processing machine.
  • the uppermost wafer to the lowermost wafer of the loaded wafers 200 are arranged in the range from the upper end 235U to the lower end 235L of the first gas exhaust port 236, so that the entire upper and lower areas of the loaded wafers 200 are obtained.
  • the first gas exhaust port 236 enables the process gas to be efficiently exhausted.
  • FIG. 12 is a view showing the shape of the first gas exhaust port 236A according to the first modification.
  • the configuration other than the shape of the first gas exhaust port 236A is the same as the configuration shown in FIG. 4, and the description thereof will be omitted.
  • the first gas exhaust port 236A is provided along the vertical direction (Y direction) between the line Y1 and the line Y5, and is configured by a single opening whose width changes continuously.
  • the first gas exhaust port 236A has a substantially inverted triangular shape between the line Y1 and the line Y2, and has a circular or arc-shaped opening 236A1 between the line Y2 and the line Y5.
  • the contour of the first gas exhaust port 236A is configured by a combination of one or more straight lines and a circular arc.
  • the first gas exhaust port 236A has the maximum width W1 in the line Y1, and the width is gradually narrowed from the maximum width W1 between the line Y1 and the line Y2b to be the minimum width W3.
  • the width W3 of the first gas exhaust port 236A is substantially constant between the line Y2b and the line Y2, and the first gas exhaust port 236A is widened from the minimum width W3 to the predetermined width W2 between the line Y2 and the line Y3.
  • the first gas exhaust port 236A is gradually narrowed from the predetermined width W2 between the line Y3 and the line Y5.
  • the first gas exhaust port 236A has the maximum width W1 in the line Y1, and has the minimum width W3 between the line Y2b and the line Y2.
  • the width of the first gas exhaust port 236A is gradually widened from the minimum width W3 to a predetermined width W2 wider than the minimum width (W3) between the line Y2 and the line Y3.
  • the width of the first gas exhaust port 236A is gradually narrowed from the predetermined width W2 from the line Y3 to the line Y5.
  • first gas exhaust port 236A of such a shape it is possible to obtain the same effect as the first gas exhaust port 236 shown in FIG. 4.
  • FIG. 13 is a view showing the shape of the first gas exhaust port 236B according to the second modification.
  • the configuration other than the shape of the first gas exhaust port 236B is the same as the configuration shown in FIG. 4, and the description thereof will be omitted.
  • the first gas exhaust port 236B has a first slit 236B1 having a substantially inverted triangle shape provided from the line Y1 to the line Y3 and a width W4 provided on the left and right of the first slit 236B1 in the line Y2 to the line Y3. And a third slit 256B3 having a rectangular shape with a width W4.
  • the contour of the first gas exhaust port 236B is configured by a combination of one or more straight lines.
  • the first slit 236B1 has the maximum width W1 in the line Y1, and the width is gradually narrowed from the maximum width W1 in the line Y1 to the line Y2b to be the minimum width W3.
  • the width W3 of the first slit 236B1 is substantially constant between the line Y2b and the line Y3.
  • the predetermined width W2 is configured by forming a plurality of openings (openings of a width W4 of the first slit 236B1, openings of the second and third slits 236B2 and 236B3) along the circumferential direction of the inner pipe 209. There is.
  • the first gas exhaust port 236B shown in FIG. 13 has the maximum width W1 in the line Y1, and has the minimum width W3 between the line Y2b and the line Y2.
  • the width of the first gas exhaust port 236B is widened from the minimum width W3 to a predetermined width W2 (W3 + 2W4) wider than the minimum width (W3) from the line Y2 to the line Y3.
  • first gas exhaust port 236B of such a shape it is possible to obtain the same effect as the first gas exhaust port 236 shown in FIG. 4.
  • FIG. 14 is a view showing the shape of the first gas exhaust port 236C according to the third modification.
  • the configuration other than the shape of the first gas exhaust port 236C is the same as the configuration shown in FIG. 4, and the description thereof will be omitted.
  • the first gas exhaust port 236C is provided from the line Y1 to the line Y5, and has a width (diameter) W5 provided to the left and right of the first slit 236C1 at the substantially inverted triangle shaped first slit 236C1 and the line Y2 to the line Y5. And a circular second slit 256C3 having a width (diameter) W5.
  • the contour of the first gas exhaust port 236C is configured by a combination of one or more straight lines and a circular arc.
  • the first slit 236C1 has a maximum width W1 at the line Y1, and the width is gradually narrowed from the line Y1 to the line Y5.
  • the first gas exhaust port 236C has a minimum width W3 at the line Y2.
  • the width of the first gas exhaust port 236C is gradually widened from the minimum width W3 from the line Y2 to the line Y3 by the second and third slits 236C2 and 236C2, and the line Y3 has a predetermined width W2 wider than the minimum width W3 and Become.
  • the predetermined width W2 is configured by forming a plurality of openings (openings of width W6 of the first slit 236C1, openings of the second and third slits 236C2, 236C3) along the circumferential direction of the inner pipe 209 There is.
  • the first gas exhaust port 236C shown in FIG. 14 has the maximum width W1 in the line Y1 and the minimum width W3 in the line Y2.
  • first gas exhaust port 236C of such a shape it is possible to obtain the same effect as the first gas exhaust port 236 shown in FIG. 4.
  • FIG. 15 is a view showing the shape of the first gas exhaust port 236D according to the fourth modification.
  • the configuration other than the shape of the first gas exhaust port 236D is the same as the configuration shown in FIG. 4, and the description thereof will be omitted.
  • the first gas exhaust port 236D is configured by combining a plurality of slits SL1 having a width W7.
  • the plurality of slits SL1 are formed in the wall of the inner tube 209 by being divided into a plurality of slits SL1 so as to be opened corresponding to a plurality of positions where the wafer 200 is placed in the inner tube 209 in the central axis CA direction.
  • the outline of each of the slits SL1 is formed in a rectangular shape that is long in the circumferential direction of the inner pipe 209.
  • the first gas exhaust port 236D has three slits SL1 of width W7 arranged along the horizontal direction (X direction) between the line Y1 and the line Y2b in a plurality of stages (in the Y direction). In the example, five stages are provided.
  • the first gas exhaust port 236D has a configuration in which one slit SL1 having a width W7 is provided in a plurality of stages (10 stages in this example) in the vertical direction between the line Y2b and the line Y2.
  • the first gas exhaust port 236D has a configuration in which three slits SL1 of width W7 are provided in a plurality of stages (two stages in this example) in the vertical direction (Y direction) between the line Y2 and the line Y3. There is.
  • the contour of the first gas exhaust port 236D is configured by a combination of one or more straight lines.
  • the maximum width W1 is configured to form a plurality of openings (openings of the three slits SL1) along the circumferential direction of the inner pipe 209.
  • the predetermined width W2 is formed by forming a plurality of openings (openings of the three slits SL1) along the circumferential direction of the inner pipe 209.
  • first gas exhaust port 236D having such a shape, it is possible to obtain the same effect as the first gas exhaust port 236 shown in FIG.
  • FIG. 16 is a view showing the shape of the first gas exhaust port 236E according to the fifth modification.
  • the configuration other than the shape of the first gas exhaust port 236E is the same as the configuration shown in FIG. 4, and the description thereof will be omitted.
  • the first gas exhaust port 236E has a configuration in which a first slit SL1 of width Wa and a second slit SL2 of width Wb are combined.
  • the heights of the first and second slits SL1 and SL2 are assumed to be the same.
  • the first slit SL1 and the second slit SL2 are divided into a plurality of openings in the direction of the central axis CA corresponding to a plurality of positions at which the wafer 200 is mounted in the inner pipe 209.
  • the outline of each of the first slit SL1 and the second slit SL2 is formed in a rectangular shape that is long in the circumferential direction of the inner pipe 209.
  • the first gas exhaust port 236E is provided between the two first slits SL1 and the two first slits SL1 aligned along the horizontal direction (X direction) between the line Y1 and the line Y2b.
  • a plurality of steps (five steps in this example) are provided in the vertical direction (Y direction) with the second slits SL2.
  • the first gas exhaust port 236E has two first slits SL1 arranged along the horizontal direction (X direction) between the line Y2b and the line Y2 in a plurality of stages (Y direction) in the vertical direction (Y direction). In this example, 10 stages are provided.
  • the second slit SL2 provided between the line Y1 and the line Y2b is removed from between the two first slits S11 between the line Y2b and the line Y2.
  • the first gas exhaust port 236E is provided between two first slits SL1 and two first slits SL1 arranged along the horizontal direction (X direction) between the line Y2 and the line Y3.
  • a plurality of steps are provided in the vertical direction (Y direction) with the second slit SL2.
  • the contour of the first gas exhaust port 236E is configured by a combination of one or more straight lines.
  • the maximum width W1 is configured to form a plurality of openings (an opening of the two first slits SL1 and an opening of one second slit SL2) along the circumferential direction of the inner pipe 209. Further, the predetermined width W2 is configured by forming a plurality of openings (an opening of the two first slits SL1 and an opening of the one second slit SL2) along the circumferential direction of the inner pipe 209.
  • first gas exhaust port 236E having such a shape, it is possible to obtain the same effect as the first gas exhaust port 236 shown in FIG. 4.
  • FIG. 17 is a view showing the shape of the first gas exhaust port 236F according to the sixth modification.
  • the configuration other than the shape of the first gas exhaust port 236F is the same as the configuration shown in FIG. 4, and the description thereof will be omitted.
  • the first gas exhaust port 236E has a rectangular first slit 236F1 of width W8, rectangular second and third slits 236F2 and 236F3 of width W8, and a fourth rectangular slit 236F4 and fifth of width W9. It is the structure which combined slit 236F5.
  • the first slit 236F1 is provided between the line Y1 and the line Y3 along the vertical direction (Y direction).
  • the second slit 236F2 and the third slit 236F3 are provided along the vertical direction so as to sandwich the first slit F1 between the line Y1 and the line Y2a.
  • the fourth slit 236F4 and the fifth slit 236F5 are provided along the vertical direction so as to sandwich the first slit F1 between the line Y2 and the line Y3.
  • the outline of the first gas exhaust port 236F is configured by a combination of one or more straight lines.
  • the maximum width W1 is configured to form a plurality of openings (an opening of the first slit 236F1, an opening of the second slit 236F2, and an opening of the third slit 236F3) along the circumferential direction of the inner tube 209 There is. Further, the predetermined width W2 is configured by forming a plurality of openings (the opening of the first slit 236F1, the opening of the fourth slit 236F4, and the opening of the fifth slit 236F5) along the circumferential direction of the inner pipe 209. .
  • first gas exhaust port 236E having such a shape, it is possible to obtain the same effect as the first gas exhaust port 236 shown in FIG. 4.
  • FIG. 18 is a view showing the shape of the first gas exhaust port 236G according to the seventh modification.
  • the configuration other than the shape of the first gas exhaust port 236G is the same as the configuration shown in FIG. 4, and the description thereof will be omitted.
  • the first gas exhaust port 236G is configured by forming the first gas exhaust port 236 of FIG. 4 with a plurality of slits.
  • the first gas exhaust port 236G is configured by the first to fifth slits SL1 to SL5 having different widths.
  • the heights of the first to fifth slits SL1 to SL5 are assumed to be the same.
  • the first slit SL1 has a width Wc
  • the second slit SL2 has a width Wd
  • the third slit SL3 has a width We
  • the fourth slit SL4 has a width Wf
  • the fifth slit SL5 has a width Wg.
  • the widths (Wc, Wd, We, Wf, Wg) have a relationship of Wc> Wd> We> Wg> Wf.
  • the first to fifth slits SL1 to SL5 are divided into a plurality of openings in the direction of the central axis CA corresponding to a plurality of positions at which the wafer 200 is mounted in the inner pipe 209. Formed on the wall.
  • the contour of each of the first to fifth slits SL1 to SL5 is formed in a rectangular shape that is long in the circumferential direction of the inner pipe 209.
  • the first gas exhaust port 236G is arranged in the vertical direction (Y direction) between the line Y1 and the line Y2a, and in this example, from the first stage slit to the eighteenth stage slit.
  • Each of the first and second stages of slits is composed of two first slits SL1 arranged in the horizontal direction (X direction).
  • Each of the third and fourth slits is constituted by two second slits SL2 arranged in the horizontal direction (X direction).
  • Each of the fifth to eighth slits is constituted by the first slit SL1.
  • Each of the ninth to eleventh slits is formed of the third slit SL3.
  • Each of the slits in the twelfth to sixteenth stages is constituted by the fourth slit SL4.
  • the seventeenth slit is constituted by the fourth slit SL4.
  • the eighteenth slit is constituted by the third slit SL3.
  • the contour of the first gas exhaust port 236G is configured by a combination of one or more straight lines.
  • the width of the first gas exhaust port 236G at the line Y1 is the width 2Wc of the two first slits SL1, and has a maximum width W1.
  • the width of the first gas exhaust port 236G is gradually narrowed from the width 2Wc to the width 2Wd of the two second slits SL2 and the width Wc of the first slit SL1 from the line Y1 to the line Y2a.
  • the width of the first gas exhaust port 236G from the line Y2a to the line Y2 is the width Wf of the fourth slit SL4, and has a minimum width W3.
  • the first gas exhaust port 236G is a third slit having a width from the minimum width W3 (Wf) to the width Wg of the fourth slit SL5 and a predetermined width W2 wider than the minimum width (W3) in the line Y2 to the line Y3 It is gradually widened to the width We of SL3.
  • the maximum width W1 is configured to form a plurality of openings (openings of two first slits SL1) along the circumferential direction of the inner pipe 209.
  • the predetermined width W2 is configured by forming the opening of the third slit SL3 along the circumferential direction of the inner pipe 209.
  • the first gas exhaust port 236G shown in FIG. 18 has the maximum width W1 (2Wc) in the line Y1, and the minimum width W3 (Wf) in the line Y2a to the line Y2.
  • the width of the first gas exhaust port 236F is widened from the minimum width W3 to a predetermined width W2 (We) wider than the minimum width (W3) at the line Y3.
  • first gas exhaust port 236G of such a shape it is possible to obtain the same effect as the first gas exhaust port 236 shown in FIG. 4.
  • FIG. 19 is a horizontal sectional view of the reaction tube viewed from above.
  • An intermediate portion 203 b of the reaction tube (outer tube) 203 is substantially cylindrical, and a gap S is provided between the middle portion 203 b and the cylindrical portion (inner tube) 209.
  • the inside of the cylindrical portion (inner pipe) 209 constitutes a processing chamber 201.
  • the cylindrical portion (inner pipe) 209 is substantially cylindrical, and has, in a region near the exhaust outlet 230, four semicircular projections (bulges) 209a for installing an optional nozzle.
  • a nozzle chamber 222 is provided between the cylindrical portion (inner tube) 209 and the intermediate portion 203 b of the reaction tube (outer tube) 203.
  • the nozzle chamber 222 is divided into three by a partition plate 248, and one nozzle can be arranged in each of the partitions.
  • an arc-shaped hole 203ch1 is provided in the region of the lower portion 203c of the reaction tube (outer tube) 203 corresponding to the nozzle chamber 222.
  • the cylindrical portion (inner pipe) 209 is provided with a gas supply slit 235 for supplying the processing gas supplied from the three nozzles (340a, 340b, 340c) to the processing chamber 201.
  • an arc-shaped hole 203 ch 2 is provided in a region near the exhaust outlet 230 of the lower portion 203 c of the reaction tube (outer tube) 203 in order to improve the gas exhaust performance.
  • FIG. 20 is a bottom view of the reaction tube shown in FIG. 19 as viewed from below.
  • the lower portion of the cylindrical portion (inner tube) 209 has an open substantially circular hole portion 209 h, and a plurality of wafers 200 loaded on the boat 217 can be inserted into the processing chamber 201 from the hole portion 209 h. It has become.
  • An arc-shaped hole 203 ch 1 is provided in the region of the lower portion 203 c of the reaction tube (outer tube) 203 corresponding to the nozzle chamber 222.
  • An arc-shaped hole 203 ch 2 is provided in a region near the exhaust outlet 230 of the lower portion 203 c of the reaction tube (outer tube) 203.
  • the reaction tube 21 is a vertical sectional view of the reaction tube shown in FIG. 19 as viewed from the right side.
  • a cylindrical portion (inner tube) 209 is provided inside the reaction tube (outer tube) 203.
  • the cylindrical portion (inner pipe) 209 includes a side surface portion 209 b and a ceiling portion 209 c.
  • the lower portion 203c of the reaction tube (outer tube) 203 and the lower portion of the side surface portion 209b of the cylindrical portion (inner tube) 209 are mutually coupled and integrated.
  • the ceiling portion 209 c is formed of a substantially circular flat plate.
  • the side surface portion 209 b has a substantially cylindrical shape.
  • a plurality of gas supply slits 235 are provided on the side of the nozzle chamber 222 corresponding to the arrangement region of the plurality of stacked wafers 200.
  • the first gas exhaust port 236 is provided corresponding to the arrangement region of the plurality of stacked wafers 200 which is an upper portion of the exhaust outlet 230. Note that the gas supply slits 235 and the first gas exhaust ports 236 in multiple stages are provided at positions facing or substantially directly facing the side surface portion 209b.
  • the nozzle chamber 222 is divided by a cut 233 at a position slightly below the arrangement region of the plurality of stacked wafers 200.
  • the division position corresponds to the boundary between the heating area (heating area) by the heater 207 of the reaction furnace and the non-heating area (nonuniform area), and division by the cut 233 suppresses tensile stress due to temperature difference ing. Since the width of the cut 233 is sufficiently small, the mixing of the gas thereby can be ignored.
  • a rectangular second gas exhaust port 237 serving as a purge gas exhaust port is provided at the lower portion of the side surface portion 209b.
  • Three second gas exhaust ports 237 are provided in the circumferential direction of the side surface portion 209 b, and are provided for positively flowing the purge gas on the lower side of the processing chamber 201 to the exhaust port 230.
  • the lower end and the upper end of the first gas exhaust port 236 are disposed at substantially the same height in the Y direction as the lower end and the upper end of the gas supply slit 235 of the plurality of stages.
  • FIG. 22 is a vertical cross-sectional view of the reaction tube shown in FIG. 19 as viewed from the rear.
  • a first gas exhaust port 236 is provided on the wall of the side surface portion 209 b of the cylindrical portion (inner pipe) 209 corresponding to the arrangement area of the wafer 200.
  • the first gas outlet 236 is, in this example, the shape of the first gas outlet 236 described in FIG. 4.
  • the first gas exhaust port 236 is formed in the wall of the side surface portion 209b corresponding to the first gas exhaust port forming region 236R shown by a rectangular dotted line.
  • the first gas exhaust port 236 can have the shape of Modifications 1-7 shown in FIGS. 12-18.
  • the second gas exhaust port 237 is provided on the wall of the side surface portion 209b corresponding to the lower side of the formation region 236R of the first gas exhaust port 236. Further, from the opening of the second gas exhaust port 237, one portion of the exhaust outlet 230 provided in the lower portion 203c of the reaction pipe (outer pipe) 203 can be seen.
  • the tube portion (inner tube) 209 has a tube portion (inner tube)
  • a first gas exhaust port (exhaust hole, slit) 236 is provided in parallel to the central axis of the pipe 209.
  • the first gas exhaust port (exhaust hole, slit) 236 has a maximum width W1 near the upper end of the cylindrical portion (inner pipe) 209 and a minimum width W3 near the lower end of the cylindrical portion (inner pipe) 209 And has a predetermined width W2 wider than the minimum width W3 at an end further below the position where the minimum width W3 is reached.
  • the first gas exhaust port (exhaust hole, slit) 236 has a predetermined width W2 wider than the minimum width W3 at the lower end closer to the position where the minimum width> W3 and, therefore, the cylindrical portion (inner pipe) It is possible to prevent the flow of the processing gas into the area other than the wafer processing space 209. Thereby, the velocity distribution of the processing gas between the wafers 200 can be made uniform, so that the film thickness difference between the wafers 200 can be made uniform.
  • a plurality of wafers 200 stacked one on top of the other are cylindrical portions (inner pipe)
  • the positions substantially correspond to the upper end portions of the plurality of wafers 200 and the lower end portions of the plurality of wafers 200 at the time of being placed in the space 209.
  • the processing gas can be efficiently exhausted from the first gas exhaust port at the upper end to the lower end of the plurality of wafers 200 stacked in multiple stages. Therefore, since the velocity distribution of the processing gas among the plurality of wafers 200 stacked in multiple stages can be made uniform, the film thickness difference among the wafers 200 among the plurality of wafers 200 stacked in multiple stages can be made uniform. I can do it.
  • the upper end 236U of the first gas exhaust port (exhaust hole, slit) 236 is from the position of the wafer 200 placed on the top. Are also set high by p / 2 to 2p.
  • the lower end 236L of the first gas exhaust port (exhaust hole, slit) 236 is set at a position lower than p / 2 by 2p than the position of the wafer placed at the lowermost portion.
  • the uppermost wafer to the lowermost wafer of the loaded wafers 200 are positioned within the range from the upper end 235U to the lower end 235L of the first gas exhaust port 236.
  • the first gas exhaust port 236 enables the process gas to be efficiently exhausted.
  • the reaction tube (outer tube) 203 has an exhaust outlet 230 connected to the vacuum pump 246.
  • the exhaust outlet 230 is an end lower than the position where the first gas exhaust port 236 has a predetermined width W3 in the same direction as the first gas exhaust port 236 when viewed from the central axis of the cylindrical portion (inner pipe) 209 It will be installed closer. Thereby, the flow of the processing gas on the wafer 200 can be made substantially uniform, and the occurrence of the flow velocity unevenness of the processing gas in the surface of the wafer 200 can be suppressed.
  • the cylindrical portion (inner pipe) 209 has a second gas exhaust port for exhausting the purge gas at a position substantially facing the exhaust outlet 230.
  • the purge gas on the lower side of the processing chamber 201 of the cylindrical portion (inner pipe) 209 can be positively flowed to the exhaust outlet 230.
  • the pressure drop can be minimized by reducing the difference between the pressure at the exhaust outlet 230 and the pressure in the wafer area of the process chamber 201.
  • reaction tube of this example was made into cylindrical shape, it is good also as cylindrical shape of not only it but a regular polygon.
  • the present invention can be applied to an apparatus for processing a semiconductor substrate or the like under reduced pressure or processing gas atmosphere or high temperature, for example, deposition such as CVD, PVD, ALD, or epitaxial growth, or processing for forming an oxide film or nitride film on the surface It can be applied to etching process and quenching process by gas.
  • Substrate processing apparatus 200 Substrate (wafer) 201: Process chamber 203: Reaction tube (outer tube) 209: Tube part (inner pipe) 230: Exhaust outlet 235: Gas supply slit 236: First gas outlet 237: Second gas outlet

Abstract

This invention makes it possible to equalize speed distribution of processing gas among substrates. This substrate processing device is equipped with a reaction tube having cylindrical outer and inner tubes with a closed upper end. The inner tube has a first gas exhaust port provided parallel to the central axis of the inner tube, and the outer tube has an exhaust outlet. The first gas exhaust port comprises: a first width section provided at the farthest position from the exhaust outlet; a second width section provided at a position closer to the exhaust outlet compared to the first width section and formed so that, substantially, the width thereof is equal to or narrower than the width of the first width section; and a third width section having a narrower width than the first width section and the second width section on the second width section side between the first width section and the second width section.

Description

基板処理装置、反応管、基板処理方法、および、半導体装置の製造方法Substrate processing apparatus, reaction tube, substrate processing method, and method of manufacturing semiconductor device
 本開示は基板処理装置に関し、特に、縦型反応管を有する基板処理装置に関する。 The present disclosure relates to a substrate processing apparatus, and more particularly to a substrate processing apparatus having a vertical reaction tube.
 基板処理装置の一例として、半導体製造装置があり、さらに半導体製造装置の一例として、縦型装置があることが知られている。この種の基板処理装置として、反応管内に、基板(ウエハ)を多段に保持する基板保持部材としてのボートを有し、この複数の基板を保持した状態で反応管内の処理室にて基板を処理するものがある。 A semiconductor manufacturing apparatus is known as an example of a substrate processing apparatus, and a vertical type apparatus is known as an example of a semiconductor manufacturing apparatus. As a substrate processing apparatus of this type, a boat serving as a substrate holding member for holding substrates (wafers) in multiple stages is provided in a reaction tube, and a substrate is processed in a processing chamber in the reaction tube while holding a plurality of substrates. There is something to do.
 この種の反応管の構造では、基板処理領域内で上下方向に、処理ガスの流速差が発生しやすく、ウエハ間の膜厚差の発生の原因となる。ウエハ間の処理ガスの速度分布を均一とする技術として、特許文献1ないし特許文献4が提案されている。 In this type of reaction tube structure, the flow velocity difference of the processing gas is easily generated in the vertical direction in the substrate processing region, which causes the generation of the film thickness difference between the wafers. Patent documents 1 to 4 have been proposed as techniques for making the velocity distribution of processing gas between wafers uniform.
意匠登録第1563524号公報Design registration No. 1563524 gazette 特開平9-330884号公報Unexamined-Japanese-Patent No. 9-330884 特開2005-209668号公報JP 2005-209668 A 特開2010-258265号公報JP, 2010-258265, A
 本発明者らは、ウエハ間の処理ガスの速度分布を均一とする技術として、2重反応管の内管に設けられる排気孔の形状と、2重反応管の外管に設けられる排気出口との関係に関し、さらなる検討を行った。その結果、排気出口側へ集中する処理ガスの流れの傾きを抑制するため、排気孔の形状を排気出口側に向かって絞り形状(略逆三角形形状)にした場合、排気出口側から離れた一定の範囲の処理ガスの流れはほぼ均一となる。しかし、排気出口に近い箇所の内管において、内管のウエハ処理空間以外のすき間に流れ込む処理ガスの流れがあることを見出した。
  このため、排気孔の形状を排気出口側に向かって絞り形状(例えば、略逆三角形形状)にした場合であっても、ウエハ間の処理ガスの速度分布が不均一となり、ウエハ間の膜厚差の発生の原因となる虞があることが分かった。
  本開示は、ウエハ間の処理ガスの速度分布を均一とすることが可能な技術を提供することを目的とする。
  その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
The inventors of the present invention have made the shape of the exhaust hole provided in the inner tube of the double reaction tube, and the exhaust outlet provided in the outer tube of the double reaction tube as a technique for making the velocity distribution of processing gas between wafers uniform. Further study was conducted on the relationship between As a result, in order to suppress the inclination of the flow of the processing gas concentrated to the exhaust outlet side, when the shape of the exhaust hole is narrowed toward the exhaust outlet side (substantially inverse triangle shape), the constant distance away from the exhaust outlet side The flow of the processing gas in the range of is substantially uniform. However, it has been found that there is a flow of processing gas flowing into the space other than the wafer processing space of the inner pipe in the inner pipe at a location near the exhaust outlet.
For this reason, even when the shape of the exhaust hole is narrowed toward the exhaust outlet (for example, a substantially inverted triangular shape), the velocity distribution of the processing gas between the wafers becomes uneven, and the film thickness between the wafers It has been found that there is a risk of causing a difference.
An object of the present disclosure is to provide a technology capable of making the velocity distribution of processing gas between wafers uniform.
Other problems and novel features will be apparent from the description of the present specification and the accompanying drawings.
 本開示の概要を簡単に説明すれば下記の通りである。
  すなわち、基板処理装置は、上端が閉塞された筒状の内管と外管とを有する反応管を備える。前記内管は前記内管の中心軸に平行に設けられた第1ガス排気口を有し、前記外管は排気出口を有する。前記第1ガス排気口は、前記排気出口から相対的に最も遠い位置に設けられた第1の幅部と、前記第1の幅部に比べて前記排気出口に近い位置に設けられ、実質的に前記第1の幅部の幅以下で形成された第2の幅部と、前記第1の幅部と第2の幅部との間であって、前記第2の幅部側に、前記第1の幅部と前記第2の幅部よりも小さい幅を有する第3の幅部と、を有する。
The outline of the present disclosure will be briefly described as follows.
That is, the substrate processing apparatus includes a reaction tube having a cylindrical inner tube and an outer tube whose upper ends are closed. The inner pipe has a first gas outlet provided parallel to the central axis of the inner pipe, and the outer pipe has an exhaust outlet. The first gas exhaust port is provided at a first width portion provided at a position relatively far from the exhaust outlet, and at a position closer to the exhaust outlet than the first width portion, and substantially Between the first width and the second width formed between the first width and the second width, and on the second width side, A first width portion and a third width portion having a smaller width than the second width portion.
 本発明によれば、前記第1ガス排気口において、前記第1の幅部と第2の幅部との間であって、前記第2の幅部側に、前記第1の幅部と前記第2の幅部よりも小さい幅を有する第3の幅部を有する形状としたので、前記内管のウエハ処理空間以外への処理ガスの流れ込みを防止できる。これにより、ウエハ間の処理ガスの速度分布を均一化することが出来るので、ウエハ間の膜厚差を均一化することが出来る。 According to the present invention, in the first gas exhaust port, the first width portion and the second width portion are disposed between the first width portion and the second width portion, and the first width portion and the second width portion are provided. Since the third width portion has a width smaller than the second width portion, it is possible to prevent the flow of the processing gas into the area other than the wafer processing space of the inner pipe. Thus, the velocity distribution of the processing gas between the wafers can be made uniform, so that the film thickness difference between the wafers can be made uniform.
実施形態に係る基板処理装置の縦型処理炉を縦断面図である。It is a longitudinal cross-sectional view of the vertical processing furnace of the substrate processing apparatus which concerns on embodiment. 縦型処理炉の反応管の横断面図である。It is a cross-sectional view of the reaction tube of a vertical processing furnace. 縦型処理炉の反応管の斜視断面図である。It is a perspective sectional view of a reaction tube of a vertical processing furnace. 第1ガス排気口236の形状を説明する、反応管の側面図である。It is a side view of a reaction tube explaining the shape of the first gas exhaust port 236. 反応管の上部を拡大して示す縦断面図である。It is a longitudinal cross-sectional view which expands and shows the upper part of a reaction tube. 基板処理装置のコントローラの概略構成図であり、コントローラの制御系をブロック図で示す図である。It is a schematic block diagram of the controller of a substrate processing apparatus, and is a figure which shows the control system of a controller with a block diagram. 図4で説明された第1ガス排気口236における反応管内のガスの流れを説明する概念図である。It is a conceptual diagram explaining the flow of the gas in the reaction tube in the 1st gas exhaust port 236 demonstrated in FIG. 比較例1に係る第1ガス排気口236P1における反応管内のガスの流れを説明する概念図である。It is a conceptual diagram explaining the flow of the gas in the reaction pipe in the 1st gas exhaust port 236P1 concerning comparative example 1. 比較例2に係る第1ガス排気口236P2における反応管内のガスの流れを説明する概念図である。FIG. 18 is a conceptual diagram illustrating the flow of gas in the reaction tube at the first gas exhaust port 236P2 according to Comparative Example 2. 排気出口230への処理ガスの流れを比較して説明する模式図である。It is a schematic diagram which compares and demonstrates the flow of the process gas to the exhaust port 230. FIG. 実施形態に係る第1ガス排気口236の開口位置とウエハ200との関係を説明するための図である。It is a figure for demonstrating the relationship of the opening position of the 1st gas exhaust port 236 which concerns on embodiment, and the wafer 200. FIG. 変形例1に係る第1ガス排気口236Aの形状を示す図である。It is a figure which shows the shape of 1st gas exhaust port 236A which concerns on the modification 1. FIG. 変形例2に係る第1ガス排気口236Bの形状を示す図である。It is a figure which shows the shape of 1st gas exhaust port 236B which concerns on the modification 2. FIG. 変形例3に係る第1ガス排気口236Cの形状を示す図である。It is a figure which shows the shape of 1st gas exhaust port 236C which concerns on the modification 3. FIG. 変形例4に係る第1ガス排気口236Dの形状を示す図である。FIG. 16 is a view showing the shape of a first gas exhaust port 236D according to a modification 4; 変形例5に係る第1ガス排気口236Eの形状を示す図である。It is a figure which shows the shape of the 1st gas exhaust port 236E which concerns on the modification 5. FIG. 変形例6に係る第1ガス排気口236Fの形状を示す図である。It is a figure which shows the shape of 1st gas exhaust port 236F which concerns on the modification 6. As shown in FIG. 変形例7に係る第1ガス排気口236Gの形状を示す図である。FIG. 18 is a view showing the shape of a first gas exhaust port 236G according to Modification 7; 変形例8に係る反応管を上方側から見た水平断面図である。It is the horizontal sectional view which looked at the reaction tube which concerns on the modification 8 from upper side. 変形例8に係る反応管の底面図である。It is a bottom view of the reaction tube concerning modification 8. FIG. 変形例8に係る反応管を右側方から見た垂直断面図である。It is the vertical sectional view which looked at the reaction tube concerning modification 8 from the right side. 変形例8に係る反応管を後方から見た垂直断面図である。。It is the vertical sectional view which looked at the reaction tube concerning modification 8 from the back. .
 以下、実施形態、比較例および変形例について、図面を用いて説明する。ただし、以下の説明において、同一構成要素には同一符号を付し繰り返しの説明を省略することがある。なお、図面は説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。 Hereinafter, an embodiment, a comparative example, and a modification are described using a drawing. However, in the following description, the same components may be assigned the same reference numerals and repeated descriptions may be omitted. Note that the drawings may be schematically represented as to the width, thickness, shape, etc. of each portion in comparison with the actual embodiment in order to clarify the description, but this is merely an example, and the interpretation of the present invention is not limited. It is not limited.
 <実施形態>
 以下、本発明の実施形態について、図1を用いて説明する。本発明における基板処理装置1は、半導体装置の製造に使用される半導体製造装置の一例として構成されている。
Embodiment
Hereinafter, an embodiment of the present invention will be described with reference to FIG. The substrate processing apparatus 1 in the present invention is configured as an example of a semiconductor manufacturing apparatus used for manufacturing a semiconductor device.
 図1に示すように、縦型処理炉202は、基板200を処理する処理室201を形成する反応管203を備え、反応管203を取り囲むようにヒータ207が設けられる。ヒータ207は円筒形状であり、保持板としてのヒータベース(図示せず)に支持されることにより垂直に据え付けられている。ヒータ207は、処理室201の加熱手段(加熱機構)であり、処理ガスを熱で活性化(励起)させる活性化機構(励起部)としても機能する。 As shown in FIG. 1, the vertical processing furnace 202 includes a reaction tube 203 forming a processing chamber 201 for processing the substrate 200, and a heater 207 is provided so as to surround the reaction tube 203. The heater 207 has a cylindrical shape and is vertically installed by being supported by a heater base (not shown) as a holding plate. The heater 207 is a heating unit (heating mechanism) of the processing chamber 201, and also functions as an activation mechanism (excitation unit) that activates (excites) the processing gas with heat.
 反応管203は、ヒータ207の内側に同軸に配設され、耐圧構造の反応容器(処理容器)を構成する。反応管203は、円筒状に形成されており、その下端部は開口しフランジを設けられ、上端部が比較的厚い平坦状の天井部材で閉塞されている。反応管203の内部には、円筒状に形成された筒部209と、筒部209と反応管203の間に区画されたノズル配置室222と、筒部209に形成されたガス供給口(導入口)としてのガス供給スリット235と、筒部209に形成された第1ガス排気口236と、筒部209に形成され、第1ガス排気口236の下方に形成された第2ガス排気口237を備えている。反応管203及び筒部209は、例えば石英(SiO2)または炭化シリコン(SiC)等の耐熱性材料により構成されている。反応管203と筒部209とは2重反応管を構成しており、反応管203は外管とされ、筒部209は内管(ライナー管)とされる。第1ガス排気口236は、排気孔またはスリットという事もある。また、第2ガス排気口237は、下部開口という事もある。反応管203と筒部209は、一体若しくは別体に構成され、一体に構成される場合は、反応管203の下端フランジが内向きにも形成されることで、筒部209と結合する。 The reaction tube 203 is coaxially disposed inside the heater 207, and constitutes a reaction container (processing container) of a pressure resistant structure. The reaction tube 203 is formed in a cylindrical shape, and the lower end is opened and provided with a flange, and the upper end is closed by a relatively thick flat ceiling member. Inside the reaction tube 203, a cylindrical portion 209 formed in a cylindrical shape, a nozzle disposition chamber 222 partitioned between the cylindrical portion 209 and the reaction tube 203, and a gas supply port formed in the cylindrical portion 209 (introduction A second gas exhaust port 237 formed under the first gas exhaust port 236 and formed in the cylindrical section 209 and a gas supply slit 235 as a port), a first gas exhaust port 236 formed in the cylindrical section 209, and Is equipped. The reaction tube 203 and the cylindrical portion 209 are made of, for example, a heat resistant material such as quartz (SiO 2) or silicon carbide (SiC). The reaction tube 203 and the tube portion 209 constitute a double reaction tube, the reaction tube 203 is an outer tube, and the tube portion 209 is an inner tube (liner tube). The first gas exhaust port 236 may be referred to as an exhaust hole or a slit. Further, the second gas exhaust port 237 may be referred to as a lower opening. The reaction tube 203 and the cylindrical portion 209 are integrally or separately configured, and when they are integrally formed, the lower end flange of the reaction tube 203 is also formed inward to be coupled to the cylindrical portion 209.
 処理室201は、反応管203の筒部209の内部に形成され、基板としてのウエハ200を処理可能に構成されている。処理室201において、25枚以上の複数枚のウエハ200が、後述するボート217によって、水平姿勢で垂直方向に一定の間隔(ピッチ)pで保持されうる。ボート217は例えば石英やSiC等の耐熱性材料で構成されている。ボート217は図示しない底板とその上方に配置された天板とを有しており、底板と天板との間に複数本の支柱が架設された構成を有している。複数枚のウエハ200は、支柱に設けられた溝によって、間隔pをあけながら水平姿勢を保持しかつ互いに中心を揃えた状態で反応管203の管軸方向に多段に保持されている。基板を迂回するような処理ガスの流れを抑制するため、また処理室のガス置換性を高めるため、筒部209とボート217の間隙は、安全に運用できる範囲で小さく設計され、例えば10mm若しくは基板のピッチより小さい。 The processing chamber 201 is formed inside the cylindrical portion 209 of the reaction tube 203, and is configured to be able to process the wafer 200 as a substrate. In the processing chamber 201, a plurality of twenty-five or more wafers 200 can be held by the boat 217, which will be described later, in a horizontal posture in the vertical direction at a constant interval (pitch) p. The boat 217 is made of, for example, a heat resistant material such as quartz or SiC. The boat 217 has a bottom plate (not shown) and a top plate disposed above the bottom plate, and has a configuration in which a plurality of columns are bridged between the bottom plate and the top plate. The plurality of wafers 200 are held in a multistage manner in the axial direction of the reaction tube 203 in a state in which the horizontal attitude is maintained with the gap p provided and the centers are aligned with each other by the grooves provided in the support. The gap between the cylindrical portion 209 and the boat 217 is designed to be small as far as it can be operated safely, for example, 10 mm or a substrate, in order to suppress the flow of the processing gas which bypasses the substrate and to enhance the gas displaceability of the processing chamber. Less than the pitch of
 反応管203の下端は、円筒体状のマニホールド226によって支持されている。マニホールド226は、例えばニッケル合金やステンレス等の金属で構成されるか、若しくは石英またはSiC等の耐熱性材料で構成されている。マニホールド226の上端部にはフランジが形成されており、このフランジ上に反応管203の下端部を設置して支持する。このフランジと反応管203の下端部との間にはOリング等の気密部材220を介在させて反応管203内を気密状態にしている。筒部209が反応管203と別体に構成される場合、筒部209は、その下端に形成されたフランジが、マニホールド226の内側に設けられた固定具と係合することで固定される。 The lower end of the reaction tube 203 is supported by a cylindrical manifold 226. The manifold 226 is made of, for example, a metal such as nickel alloy or stainless steel, or is made of a heat resistant material such as quartz or SiC. A flange is formed at the upper end of the manifold 226, and the lower end of the reaction tube 203 is installed and supported on the flange. An airtight member 220 such as an O-ring is interposed between the flange and the lower end portion of the reaction tube 203 to make the inside of the reaction tube 203 airtight. When the cylindrical portion 209 is configured separately from the reaction tube 203, the cylindrical portion 209 is fixed by the flange formed at the lower end thereof being engaged with the fixing tool provided inside the manifold 226.
 マニホールド226の下端の開口部には、シールキャップ219がOリング等の気密部材220を介して気密に取り付けられており、反応管203の下端の開口部側、すなわちマニホールド226の開口部を気密に塞ぐようになっている。シールキャップ219は、例えばニッケル合金やステンレス等の金属で構成され、円盤状に形成されている。シールキャップ219は、石英(SiO2)または炭化シリコン(SiC)等の耐熱性材料でその外側を覆うように構成されてもよい。 A seal cap 219 is airtightly attached to the opening at the lower end of the manifold 226 via an airtight member 220 such as an O-ring, and the opening at the lower end of the reaction tube 203, that is, the opening of the manifold 226 is airtight. It is supposed to be closed. The seal cap 219 is made of, for example, a metal such as a nickel alloy or stainless steel, and is formed in a disk shape. The seal cap 219 may be configured to cover the outside with a heat resistant material such as quartz (SiO 2) or silicon carbide (SiC).
 シールキャップ219上にはボート217を支持するボート支持台(断熱筒)218が設けられている。ボート支持台218は、例えば石英やSiC等の耐熱性材料で構成され断熱部として機能すると共にボートを支持する支持体となっている。ボート217は、ボート支持台218上に固定されている。 On the seal cap 219, a boat support (insulation cylinder) 218 for supporting the boat 217 is provided. The boat support 218 is made of, for example, a heat resistant material such as quartz or SiC, and functions as a heat insulating part and serves as a support for supporting the boat. The boat 217 is fixed on a boat support 218.
 シールキャップ219の処理室201と反対側にはボートを回転させるボート回転機構267が設けられている。ボート回転機構267の回転軸265はシールキャップを貫通してボート支持台218に接続されており、ボート回転機構267によって、ボート支持台218を介してボート217を回転させることでウエハ200を回転させる。ボート217及びボート支持台218の対称軸が、ボート回転機構267の回転軸に正確に一致するように、ボート217及びボート支持台218はピン等によって位置決めされうる。 A boat rotation mechanism 267 for rotating the boat is provided on the opposite side of the seal cap 219 to the processing chamber 201. The rotation shaft 265 of the boat rotation mechanism 267 is connected to the boat support 218 through the seal cap, and the wafer rotation mechanism 267 rotates the wafer 200 by rotating the boat 217 via the boat support 218. . The boat 217 and the boat support 218 can be positioned by pins or the like so that the symmetry axes of the boat 217 and the boat support 218 exactly coincide with the rotation axis of the boat rotation mechanism 267.
 シールキャップ219は反応管203の外部に設けられた昇降機構としてのボートエレベータ115によって垂直方向に昇降され、これによりボート217を処理室201内に対し搬入搬出することが可能となっている。 The seal cap 219 is vertically moved up and down by a boat elevator 115 as an elevating mechanism provided outside the reaction tube 203, whereby the boat 217 can be carried into and out of the processing chamber 201.
 マニホールド226には、処理室201内に処理ガスを供給するガスノズルとしてのノズル340a~340dを支持するノズル支持部350a~350dが、マニホールド226を貫通するようにして設置されている。ここでは、4本のノズル支持部350a~350dが設置されている。ノズル支持部350a~350dは、例えばニッケル合金やステンレス等の材料により構成されている。ノズル支持部350a~350cの反応管203側の一端には処理室201内へガスを供給するガス供給管310a~310cがそれぞれ接続されている。また、ノズル支持部350dの反応管203側の一端には反応管203と筒部209の間に形成される間隙Sへガスを供給するガス供給管311dが接続されている。また、ノズル支持部350a~350dの他端にはノズル340a~340dがそれぞれ接続されている。ノズル340a~340dは、例えば石英またはSiC等の耐熱性材料により構成されている。 In the manifold 226, nozzle support portions 350a to 350d for supporting the nozzles 340a to 340d as gas nozzles for supplying the processing gas into the processing chamber 201 are installed so as to penetrate the manifold 226. Here, four nozzle support portions 350a to 350d are provided. The nozzle support portions 350a to 350d are made of, for example, a material such as a nickel alloy or stainless steel. Gas supply pipes 310a to 310c for supplying a gas into the processing chamber 201 are connected to one end of the nozzle support portions 350a to 350c on the reaction pipe 203 side. Further, a gas supply pipe 311d for supplying a gas to the gap S formed between the reaction tube 203 and the cylindrical portion 209 is connected to one end of the nozzle support portion 350d on the reaction tube 203 side. The nozzles 340a to 340d are connected to the other ends of the nozzle support portions 350a to 350d, respectively. The nozzles 340a to 340d are made of, for example, a heat resistant material such as quartz or SiC.
 ガス供給管310aには、上流方向から順に、第1処理ガスを供給する第1処理ガス供給源360a、流量制御器(流量制御部)であるマスフローコントローラ(MFC)320aおよび開閉弁であるバルブ330aがそれぞれ設けられている。ガス供給管310bには、上流方向から順に、第2処理ガスを供給する第2処理ガス供給源360b、MFC320bおよびバルブ330bがそれぞれ設けられている。ガス供給管310cには、上流方向から順に、第3処理ガスを供給する第3処理ガス供給源360c、MFC320cおよびバルブ330cがそれぞれ設けられている。ガス供給管311dには、上流方向から順に、不活性ガスを供給する不活性ガス供給源361d、MFC321dおよびバルブ331dがそれぞれ設けられている。ガス供給管310a,310bのバルブ330a,330bよりも下流側には、不活性ガスを供給するガス供給管311a,311bがそれぞれ接続されている。ガス供給管311a,311bには、上流方向から順に、MFC321a,321bおよびバルブ331a,331bがそれぞれ設けられている。 In the gas supply pipe 310a, a first process gas supply source 360a for supplying a first process gas, a mass flow controller (MFC) 320a which is a flow rate controller (flow rate control unit) and a valve 330a which is an on-off valve. Are provided respectively. In the gas supply pipe 310b, a second processing gas supply source 360b, an MFC 320b, and a valve 330b for supplying the second processing gas are provided in this order from the upstream direction. In the gas supply pipe 310c, a third processing gas supply source 360c, an MFC 320c, and a valve 330c for supplying the third processing gas are provided in this order from the upstream direction. The gas supply pipe 311d is provided with an inert gas supply source 361d, an MFC 321d and a valve 331d for supplying an inert gas sequentially from the upstream direction. Gas supply pipes 311a and 311b for supplying an inert gas are connected to the gas supply pipes 310a and 310b on the downstream side of the valves 330a and 330b, respectively. In the gas supply pipes 311a and 311b, MFCs 321a and 321b and valves 331a and 331b are provided in this order from the upstream direction.
 主に、ガス供給管310a、MFC320a、バルブ330aにより第1処理ガス供給系が構成される。第1処理ガス供給源360a、ノズル支持部350a、ノズル340aを第1処理ガス供給系に含めて考えても良い。また、主に、ガス供給管310b、MFC320b、バルブ330bにより第2処理ガス供給系が構成される。第2処理ガス供給源360b、ノズル支持部350b、ノズル340bを第2処理ガス供給系に含めて考えても良い。また、主に、ガス供給管310c、MFC320c、バルブ330cにより第3処理ガス供給系が構成される。第3処理ガス供給源360c、ノズル支持部350c、ノズル340cを第3処理ガス供給系に含めて考えても良い。また、主に、ガス供給管311d、MFC321d、バルブ331dにより不活性ガス供給系が構成される。不活性ガス供給源361d、ノズル支持部350d、ノズル340dを不活性ガス供給系に含めて考えても良い。なお、本明細書において、処理ガスという言葉を用いた場合は、第1処理ガスのみを含む場合、第2処理ガスのみを含む場合、第3処理ガスのみを含む場合、不活性ガスのみを含む場合、もしくはそれら全てを含む場合がある。また、処理ガス供給系という言葉を用いた場合は、第1処理ガス供給系のみを含む場合、第2処理ガス供給系のみを含む場合、第3処理ガス供給系のみを含む場合、不活性ガス供給系のみを含む場合、もしくはそれら全てを含む場合がある。 A first processing gas supply system mainly includes the gas supply pipe 310a, the MFC 320a, and the valve 330a. The first process gas supply source 360a, the nozzle support portion 350a, and the nozzle 340a may be included in the first process gas supply system. In addition, a second processing gas supply system is mainly configured by the gas supply pipe 310 b, the MFC 320 b, and the valve 330 b. The second process gas supply system 360 may include the second process gas supply source 360b, the nozzle support 350b, and the nozzle 340b. In addition, a third processing gas supply system is mainly configured by the gas supply pipe 310c, the MFC 320c, and the valve 330c. The third process gas supply source 360c, the nozzle support portion 350c, and the nozzle 340c may be included in the third process gas supply system. In addition, an inert gas supply system is mainly configured by the gas supply pipe 311d, the MFC 321d, and the valve 331d. The inert gas supply source 361 d, the nozzle support portion 350 d, and the nozzle 340 d may be included in the inert gas supply system. In the present specification, when the term "processing gas" is used, when only the first processing gas is included, when only the second processing gas is included, when only the third processing gas is included, only the inert gas is included. Or all of them may be included. Moreover, when the term "process gas supply system" is used, when only the first process gas supply system is included, when only the second process gas supply system is included, when only the third process gas supply system is included, inert gas It may include only the feed system or it may include all of them.
 反応管203には排気出口(排気ポート)230が形成されている。排気出口230は、第2ガス排気口237よりも下方に形成され、反応管203内(間隙S)を排気管231に流体流通可能に接続する。排気管231には処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245および圧力調整器(圧力調整部)としてのAPC(Auto Pressure Controller)バルブ244を介して真空排気装置としての真空ポンプ246が接続されており、処理室201内の圧力が所定の圧力(真空度)となるよう真空排気し得るように構成されている。真空ポンプ246の下流側は廃ガス処理装置(図示せず)等に接続されうる。なお、APCバルブ244は、弁を開閉して処理室201内の真空排気・真空排気停止ができ、更に弁開度を調節してコンダクタンスを調整して処理室201内の圧力調整をできるようになっている開閉弁である。主に、排気管231、APCバルブ244、圧力センサ245により排気部として機能する排気系が構成される。なお、真空ポンプ246を排気系に含めてもよい。 An exhaust outlet (exhaust port) 230 is formed in the reaction tube 203. The exhaust outlet 230 is formed below the second gas exhaust port 237, and fluidly connects the inside of the reaction tube 203 (the gap S) to the exhaust tube 231. A vacuum is provided in the exhaust pipe 231 via a pressure sensor 245 as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 201 and an APC (Auto Pressure Controller) valve 244 as a pressure regulator (pressure adjustment unit). A vacuum pump 246 as an exhaust device is connected, and is configured to be able to evacuate so that the pressure in the processing chamber 201 becomes a predetermined pressure (degree of vacuum). The downstream side of the vacuum pump 246 can be connected to a waste gas processing device (not shown) or the like. The APC valve 244 opens and closes the valve to evacuate and stop the evacuation in the processing chamber 201. Further, the valve opening degree is adjusted to adjust the conductance so that the pressure in the processing chamber 201 can be adjusted. It is an on-off valve. An exhaust system that functions as an exhaust unit is mainly configured by the exhaust pipe 231, the APC valve 244, and the pressure sensor 245. The vacuum pump 246 may be included in the exhaust system.
 反応管203内には温度検出器として、例えば、熱電対等の温度センサ(不図示)が設置されており、温度センサにより検出された温度情報に基づきヒータ207への供給電力を調整することで、処理室201内の温度が所望の温度分布となるように構成されている。また、炉口部と言われる、シールキャップ219からボート支持台218付近の空間をパージするガスを供給するパージガス供給器268が、ボート回転機構267に接続される。パージガス供給器268は、不活性ガス供給源361d、MFC321dおよびバルブ331dと同様の構成を含み、本例では、ボート回転機構267の軸シール付近へN2ガスを注入する。 In the reaction tube 203, for example, a temperature sensor (not shown) such as a thermocouple is installed as a temperature detector, and by adjusting the power supplied to the heater 207 based on the temperature information detected by the temperature sensor, The temperature in the processing chamber 201 is configured to have a desired temperature distribution. Further, a purge gas supply device 268 for supplying a gas for purging a space in the vicinity of the boat support 218 from the seal cap 219, which is referred to as a throat portion, is connected to the boat rotation mechanism 267. The purge gas supply device 268 includes the same configuration as the inert gas supply source 361 d, the MFC 321 d and the valve 331 d, and in this example, injects N 2 gas near the shaft seal of the boat rotation mechanism 267.
 以上の処理炉202では、バッチ処理される複数枚のウエハ200がボート217に多段に積載された状態において、ボート217がボート支持台218で支持されながら処理室201に挿入され、ヒータ207が処理室201に挿入されたウエハ200を所定の温度に加熱するようになっている。 In the processing furnace 202 described above, the boat 217 is inserted into the processing chamber 201 while being supported by the boat support base 218 in a state where the plurality of wafers 200 to be batch processed are stacked on the boat 217 in multiple stages, and the heater 207 is processed. The wafer 200 inserted into the chamber 201 is heated to a predetermined temperature.
 次に、本実施形態にて好適に用いられる反応管203の構成について、図2~図5を参照して説明する。なお、図3、図4においては、ノズル340、ボート217等の記載を省略している。 Next, the configuration of the reaction tube 203 suitably used in the present embodiment will be described with reference to FIG. 2 to FIG. In addition, in FIG. 3, FIG. 4, description of the nozzle 340, the boat 217 grade | etc., Is abbreviate | omitted.
 図2及び図3に示すように、筒部209は、反応管203と同軸に配設される。筒部209と反応管203の間には、間隙Sが形成されている。間隙Sは、断面視において、筒部209を囲うように環状を呈する。間隙Sの、排気出口230(排気管231)と反対側には、ノズル配置室222を形成する2つの仕切り板221が、筒部209の軸に平行に筒部209の上端から下端付近まで設けられる。ノズル配置室222は、筒部209の壁と反応管203の壁の間に区画して形成されている。ノズル配置室222の外壁は、反応管203の外壁と兼ねており、反応管203と同心かつ同一半径に形成されている。また、ノズル配置室222の内壁は、筒部209の壁と兼ねており、筒部209と同心かつ同一半径に形成されている。なおノズル配置室222は、下端部が開放され、上端の一部(もしくは全部)が平坦状の壁体で閉塞される(図5参照)。ノズル配置室222の天井部の上端は、筒部209の天井部の上端と同じ高さか、或いはわずかに低い。 As shown in FIGS. 2 and 3, the cylindrical portion 209 is disposed coaxially with the reaction tube 203. A gap S is formed between the cylindrical portion 209 and the reaction tube 203. The gap S has an annular shape so as to surround the cylindrical portion 209 in a cross sectional view. On the opposite side of the space S to the exhaust outlet 230 (exhaust pipe 231), two partition plates 221 forming the nozzle disposition chamber 222 are provided parallel to the axis of the cylindrical portion 209 from the upper end to the lower end of the cylindrical portion 209 Be The nozzle disposition chamber 222 is formed to be divided between the wall of the cylindrical portion 209 and the wall of the reaction tube 203. The outer wall of the nozzle disposition chamber 222 doubles as the outer wall of the reaction tube 203, and is formed concentrically and with the same radius as the reaction tube 203. Further, the inner wall of the nozzle disposition chamber 222 doubles as the wall of the cylindrical portion 209 and is formed concentrically with the cylindrical portion 209 at the same radius. The lower end portion of the nozzle placement chamber 222 is opened, and a part (or all) of the upper end is closed by a flat wall (see FIG. 5). The upper end of the ceiling of the nozzle placement chamber 222 is at the same height as, or slightly lower than, the upper end of the ceiling of the cylindrical portion 209.
 ノズル配置室の内部には、ノズル配置室内空間を複数の空間に区画する仕切り板248が形成されている。本例では2つの仕切り板248が設けられ、ノズル配置室222を下端付近から上端側に至るまで区画し、それぞれ隔離した3つの空間を形成する。各空間には、ノズル340a~340cがそれぞれ設置される。仕切り板221及び248は、筒部209と同一材料で一体に形成されるが、必ずしも反応管203と一体化(溶接)される必要は無く、空間の間をガスが漏れることによる害が致命的にならない程度に、空間を分離することができればよい。 A partition plate 248 is formed inside the nozzle arrangement chamber to divide the nozzle arrangement indoor space into a plurality of spaces. In this example, two partition plates 248 are provided to divide the nozzle disposition chamber 222 from the vicinity of the lower end to the upper end side, and form three spaces separated from each other. Nozzles 340a to 340c are respectively installed in the respective spaces. The partition plates 221 and 248 are integrally formed of the same material as the cylindrical portion 209, but are not necessarily integrated (welded) with the reaction tube 203, and the harm due to gas leakage between the spaces is fatal It is sufficient if the space can be separated to such an extent that
 筒部209の、ノズル配置室222に対応する箇所には、処理室201内に処理ガスを供給するためのガス供給スリット235が複数形成されている。ガス供給スリット235は、ノズル配置室222の各空間と処理室201とをそれぞれ連通させるように、例えば、円周方向に3個配列されるとともに、ウェハ200のそれぞれの表面(上面)に対応する個別の開口として、軸方向にウェハ200と同数個配列して形成される。つまり、ガス供給スリット235は、上下左右方向に複数段、複数列のマトリクス状に形成されうる。ガス供給スリット235は、横長のスリットが上下方向に複数形成されている。 A plurality of gas supply slits 235 for supplying the processing gas into the processing chamber 201 is formed at a position corresponding to the nozzle disposition chamber 222 of the cylindrical portion 209. For example, three gas supply slits 235 are arranged in the circumferential direction so as to communicate each space of the nozzle disposition chamber 222 with the processing chamber 201, and correspond to each surface (upper surface) of the wafer 200, for example. The individual openings are formed in the same number as the wafers 200 in the axial direction. That is, the gas supply slits 235 may be formed in a matrix of plural stages and plural rows in the vertical and horizontal directions. The gas supply slit 235 is formed with a plurality of horizontally long slits in the vertical direction.
 ガス供給スリット235は、円周方向に長いスリットであり、好ましくは、円周方向の長さはノズル配置室222内の各空間の周方向の長さと同じにするとガス供給効率が向上するので良い。また好適には、ガス供給スリット235は、仕切り板248と筒部209の壁との連結部分を除いて横長に、縦複数段に形成するとガス供給効率が向上するので良い。ガス供給スリット235は、四隅としてのエッジ部が曲面を描くように滑らかに形成されうる。エッジ部にRがけ等を行い、曲面状にすることにより、応力集中を緩和しひび割れなどを防ぐことができると共に、エッジ部周縁のガスのよどみを抑制することができ、エッジ部への膜の形成およびその膜の剥離を抑制することができる。 The gas supply slit 235 is a slit elongated in the circumferential direction, and preferably the circumferential length is the same as the circumferential length of each space in the nozzle disposition chamber 222, because gas supply efficiency is improved. . In addition, preferably, the gas supply slit 235 may be formed in a plurality of horizontally long stages except for the connecting portion between the partition plate 248 and the wall of the cylindrical portion 209 because the gas supply efficiency is improved. The gas supply slits 235 can be formed smoothly so that the edge portions as the four corners have a curved surface. By performing R-edging or the like on the edge and making it curved, stress concentration can be alleviated and cracking can be prevented, and stagnation of gas around the edge can be suppressed, and the film to the edge can Formation and peeling of the film can be suppressed.
 このような構成により、ウエハ表面に流入するガスの割合を高くすることができる。また、仕切り板248により、各ノズル340a~340cはそれぞれ独立した空間内に設置されるため、各ノズル340a~340cから供給される処理ガスがノズル配置室222内で混ざり合うことで、薄膜が形成されたり、副生成物が生成されたりすることを抑制することができる。 Such a configuration can increase the proportion of gas flowing into the wafer surface. Further, since the nozzles 340a to 340c are disposed in independent spaces by the partition plate 248, the processing gas supplied from the nozzles 340a to 340c is mixed in the nozzle disposition chamber 222 to form a thin film. And the generation of byproducts can be suppressed.
 ノズル340a~340cは、ノズル配置室222内の下部より上部に、ノズル340dは間隙S内の下部より上部に、反応管203の軸(長さ方向)に平行に設けられている。ノズル340a~340dは、直管のロングノズルとしてそれぞれ構成されている。ノズル340a~340dの側面には、ガスを供給するガス供給孔234a~234dがそれぞれ設けられている。ガス供給孔234a~234cは、それぞれ反応管203の中心を向くように開口し、ガス供給孔234dは、反応管203の周方向を向くように開口している。このように、ノズル配置室222には、3本のノズル340a~340cが設けられており、処理室201内へ複数種類のガスを供給することができるように構成されている。 The nozzles 340a to 340c are provided above the lower part in the nozzle disposition chamber 222, and the nozzles 340d are provided above the lower part in the gap S in parallel with the axis (longitudinal direction) of the reaction tube 203. The nozzles 340a to 340d are respectively configured as long nozzles of a straight pipe. Gas supply holes 234a to 234d for supplying gas are respectively provided on side surfaces of the nozzles 340a to 340d. The gas supply holes 234 a to 234 c are opened toward the center of the reaction tube 203, and the gas supply holes 234 d are opened toward the circumferential direction of the reaction tube 203. As described above, three nozzles 340 a to 340 c are provided in the nozzle disposition chamber 222, and a plurality of types of gases can be supplied into the processing chamber 201.
 また、ノズル340dは、間隙S内へ不活性ガス(パージガス)を供給することができるように構成されている。このような構成により、筒部裏側を効率的にパージすることができ、筒部裏側のガスの滞留が抑制され、パージ時間を短縮することができる。さらに、筒部裏側のガスの滞留が抑制されることにより、パーティクルを低減することができる。また、筒部裏側からパージガスを供給することにより、高圧プロセス時の処理室201内の昇圧をアシストすることができる。 Also, the nozzle 340 d is configured to be able to supply an inert gas (purge gas) into the gap S. With such a configuration, the back side of the cylindrical portion can be efficiently purged, retention of gas on the back side of the cylindrical portion can be suppressed, and the purge time can be shortened. Furthermore, the particles can be reduced by suppressing the retention of the gas on the back side of the cylindrical portion. In addition, by supplying the purge gas from the rear side of the cylindrical portion, the pressure increase in the processing chamber 201 during the high pressure process can be assisted.
 筒部209のノズル配置室222が形成された一側面に対向する他側面に、第1ガス排気口236が形成される。第1ガス排気口236は、ノズル配置室222との間に処理室201のウエハ200が収容される領域を挟むように配置されている。また、第1ガス排気口236は、処理室201のウエハ200が収容される下端側から上端側に至るまでの領域(ウエハ領域)に形成されている。また、第1ガス排気口236の下方における筒部209の側面に、第2ガス排気口237が形成されている。すなわち、第1ガス排気口236と第2ガス排気口237は、ともに処理室201と間隙Sとを連通するが、異なる役割を有する。つまり、第1ガス排気口236は、処理室201内の雰囲気を複数のウェハ200に亘って均等に排気することを意図した開口であり、第1ガス排気口236から排気されたガスは、間隙Sを広がって下降した後、排気出口230に集まって排気管231から反応管203外へ排気される。一方、第2ガス排気口237は、ウェハ200処理室201内の下方、特にボート支持台218の周囲の雰囲気(主にパージガス)を排気するよう形成されている。このような構成により、ウエハ通過後のガスを間隙S全体を使って排気することにより、排気部の圧力とウエハ領域の圧力との差(圧力損失)を小さくすることができる。ウエハ領域の圧力を下げることができ、ウエハ領域の流速を上げ、表面反応律速の成膜やローディング効果の緩和が期待できる。 A first gas exhaust port 236 is formed on the other side surface facing the one side surface where the nozzle disposition chamber 222 of the cylindrical portion 209 is formed. The first gas exhaust port 236 is disposed so as to sandwich an area in which the wafer 200 of the processing chamber 201 is accommodated between the first gas exhaust port 236 and the nozzle disposition chamber 222. The first gas exhaust port 236 is formed in a region (wafer region) from the lower end side of the processing chamber 201 where the wafer 200 is accommodated to the upper end side. Further, a second gas exhaust port 237 is formed on the side surface of the cylindrical portion 209 below the first gas exhaust port 236. That is, although both the first gas exhaust port 236 and the second gas exhaust port 237 communicate the processing chamber 201 with the gap S, they have different roles. That is, the first gas exhaust port 236 is an opening intended to exhaust the atmosphere in the processing chamber 201 evenly over the plurality of wafers 200, and the gas exhausted from the first gas exhaust port 236 is a gap. After spreading and lowering S, the gas is collected at the exhaust outlet 230 and exhausted from the exhaust pipe 231 to the outside of the reaction pipe 203. On the other hand, the second gas exhaust port 237 is formed to exhaust the atmosphere (mainly purge gas) under the wafer 200 processing chamber 201, particularly around the boat support 218. With such a configuration, by exhausting the gas after passing through the wafer using the entire gap S, the difference (pressure loss) between the pressure of the exhaust unit and the pressure of the wafer area can be reduced. The pressure in the wafer area can be lowered, the flow velocity in the wafer area can be increased, and film formation with limited surface reaction and relaxation of the loading effect can be expected.
 図4は、第1ガス排気口236の形状および設置位置を説明するための概念図である。図4は、反応管(外管)203に設けられた排気出口230の方向から、反応管(外管)203及び筒部(内管)209を見た場合の概念的な正面図である。筒部209の中心軸CAに対して、排気出口230の水平方向(X方向)の中心線と中心軸CAの方向とは一致している。また、中心軸CAに対して、排気出口230の水平方向(X方向)の中心と第2ガス排気口237の水平方向(X方向)の中心とが一致する様に設けられている。すなわち、筒部209の中心軸CAから見た場合、第1ガス排気口236、第2ガス排気口237、及び、排気出口230は、同一の方向に設けられる。また、第2ガス排気口237と排気出口230とは略正対する位置に設けられる。 FIG. 4 is a conceptual view for explaining the shape and the installation position of the first gas exhaust port 236. As shown in FIG. FIG. 4 is a conceptual front view when the reaction tube (outer tube) 203 and the cylindrical portion (inner tube) 209 are viewed from the direction of the exhaust outlet 230 provided in the reaction tube (outer tube) 203. With respect to the central axis CA of the cylindrical portion 209, the center line of the exhaust outlet 230 in the horizontal direction (X direction) coincides with the direction of the central axis CA. Further, the center of the exhaust outlet 230 in the horizontal direction (X direction) and the center of the second gas exhaust port 237 in the horizontal direction (X direction) are aligned with the central axis CA. That is, when viewed from the central axis CA of the cylindrical portion 209, the first gas exhaust port 236, the second gas exhaust port 237, and the exhaust outlet 230 are provided in the same direction. Further, the second gas exhaust port 237 and the exhaust port 230 are provided at substantially opposite positions.
 第1ガス排気口236は、筒部209の中心軸CAにほぼ平行に、筒部209の側面に設けられる。すなわち、第1ガス排気口236の長手方向は筒部209の中心軸CAにほぼ平行に設けられる。第1ガス排気口236は、排気出口230及び第2ガス排気口237の上方に、筒部209の上下方向(Y方向、垂直方向)に沿って、筒部209の側面に設けられる。第2ガス排気口237は、排気出口230の上端よりも高い位置から排気出口230の下端よりも高い位置まで形成されている。 The first gas exhaust port 236 is provided on the side surface of the cylindrical portion 209 substantially in parallel with the central axis CA of the cylindrical portion 209. That is, the longitudinal direction of the first gas exhaust port 236 is provided substantially parallel to the central axis CA of the cylindrical portion 209. The first gas exhaust port 236 is provided on the side surface of the cylindrical portion 209 above the exhaust outlet 230 and the second gas exhaust port 237 along the vertical direction (Y direction, vertical direction) of the cylindrical portion 209. The second gas exhaust port 237 is formed from a position higher than the upper end of the exhaust outlet 230 to a position higher than the lower end of the exhaust outlet 230.
 図4において、略矩形の点線で示される235aは、筒部(内管)209に設けられた複数のガス供給スリット235の形成領域の外周を示している。ガス供給スリット235の形成領域235aは、第1ガス排気口236と対向ないし略正対する位置に設けられる。また、ガス供給スリット235の形成領域235aは、筒部209の中心軸CAから見た場合、第1ガス排気口236と反対側の筒部209の壁に設けられる。 In FIG. 4, 235 a indicated by a substantially rectangular dotted line indicates the outer periphery of the formation region of the plurality of gas supply slits 235 provided in the cylindrical portion (inner pipe) 209. The formation region 235 a of the gas supply slit 235 is provided at a position facing or substantially directly facing the first gas exhaust port 236. Further, the formation region 235 a of the gas supply slit 235 is provided on the wall of the cylindrical portion 209 opposite to the first gas exhaust port 236 when viewed from the central axis CA of the cylindrical portion 209.
 図4において、第1ガス排気口236は、連続的にその幅が変化する単一の開口により構成され、実質的に最大幅W1(第1の幅部W1)の部分と、実質的に最小幅W3(第3の幅部W3)の部分と、最小幅W3より実質的に広い所定幅W2(第2の幅部W2)の部分と、を有する。線Y1は、第1ガス排気口236の最大幅W1の部分に対応するY方向の位置を示す。線Y2は、第1ガス排気口236の最小幅W3の部分に対応するY方向の位置を示す。線Y3は、第1ガス排気口236の所定幅W2の部分に対応するY方向の位置を示す。また、線Y4は排気出口230の開口部のY方向における中心位置を示している。この例では、線Y1の位置は第1ガス排気口236の上方端の部分を示し、線Y3の位置は第1ガス排気口236の下方端の部分を示す。反応管(外管)203の側面に設けられる排気出口230は、第1ガス排気口236の所定幅W2の位置よりも、さらに、下方の端寄りに設けられる。したがって、第1ガス排気口236の幅は、線Y1から線Y2の間において、最大幅W1から最小幅W3へ徐々に狭幅ないし狭められた後、線Y2から線Y3の間において、最小幅W3から最小幅(W3)より実質的に広い所定幅(W2)へ徐々に拡幅ないし拡げられる。なお、実質的な幅とは、たとえば、後述するように複数の開口によって第1ガス排気口を構成した場合におけるそれらの幅を意味し、或いは単位高さ辺りのコンダクタンスが等しい、単一の一定幅のスリットに換算した場合の幅を意味する。以後、第1ガス排気口の各部の幅はこの実質的な幅の意味で用いる。 In FIG. 4, the first gas exhaust port 236 is constituted by a single opening whose width continuously changes, and substantially the maximum width W1 (the first width W1) and substantially the maximum. It has a portion of a small width W3 (third width portion W3) and a portion of a predetermined width W2 (second width portion W2) substantially wider than the minimum width W3. The line Y1 indicates the position in the Y direction corresponding to the portion of the maximum width W1 of the first gas exhaust port 236. A line Y2 indicates the position in the Y direction corresponding to the portion of the minimum width W3 of the first gas exhaust port 236. A line Y3 indicates the position in the Y direction corresponding to the portion of the predetermined width W2 of the first gas exhaust port 236. Line Y 4 indicates the center position of the opening of the exhaust outlet 230 in the Y direction. In this example, the position of the line Y1 indicates the upper end of the first gas outlet 236, and the position of the line Y3 indicates the lower end of the first gas outlet 236. The exhaust outlet 230 provided on the side surface of the reaction pipe (outer pipe) 203 is provided closer to the lower end than the position of the predetermined width W 2 of the first gas exhaust port 236. Therefore, the width of the first gas exhaust port 236 is gradually narrowed or narrowed from the maximum width W1 to the minimum width W3 between the line Y1 and the line Y2, and then the minimum width between the line Y2 and the line Y3. It is gradually expanded from W3 to a predetermined width (W2) substantially wider than the minimum width (W3). Incidentally, the substantial width means, for example, the width in the case where the first gas exhaust ports are constituted by a plurality of openings as described later, or a single constant which is equal in conductance per unit height. It means the width when converted to the slit of the width. Hereinafter, the width of each portion of the first gas exhaust port will be used in the meaning of this substantial width.
 図4から理解されるように、この例では、第1ガス排気口236の上方端の幅W1は最大幅とされており、第1ガス排気口236の中間部分の幅W3は最小幅とされている。第1ガス排気口236の下方端の幅W2は、最大幅W1より狭く、最小幅W3より広くされている(W1>W2>W3)。すなわち、第1ガス排気口(排気孔)236は、筒部(内管)209の上方の端寄り(線Y1)で最大幅(W1)を有し、筒部(内管)209の下方の端寄り(線Y2)で最小幅(W3)を有し、最小幅(W3)となる位置(線Y2)より更に下方の端寄り(線Y3)において、最小幅(W3)より広い所定幅(W2)を有する。なお、広い所定幅(W2)は、最大幅(W1)と同一の値、または、最大幅(W1)と最小幅(W3)との間の値とすることが出来できる(W1≧W2>W3)。 As understood from FIG. 4, in this example, the width W1 of the upper end of the first gas exhaust port 236 is the maximum width, and the width W3 of the middle portion of the first gas exhaust port 236 is the minimum width. ing. The width W2 of the lower end of the first gas exhaust port 236 is narrower than the maximum width W1 and wider than the minimum width W3 (W1> W2> W3). That is, the first gas exhaust port (exhaust hole) 236 has a maximum width (W1) near the upper end (line Y1) of the cylindrical portion (inner pipe) 209 and is below the cylindrical portion (inner pipe) 209. A predetermined width (W3) having a minimum width (W3) near the end (line Y2) and a predetermined width (W3) wider than the minimum width (W3) at a lower end (line Y3) than the position (line Y2) to be the minimum width (W3) W2). The wide predetermined width (W2) can be the same value as the maximum width (W1), or a value between the maximum width (W1) and the minimum width (W3) (W1WW2> W3). ).
 線Y1の位置は、線Y2及び線Y3の位置と比較して、線Y4から相対的に遠い位置である。すなわち、排気出口230からの距離において、第1ガス排気口(排気孔)236の最大幅(W1)を有する部分は、第1ガス排気口(排気孔)236の広い所定幅(W2)を有する部分と比較して、排気出口230から相対的に遠い距離(L1)に設けられる。また、排気出口230からの距離において、第1ガス排気口(排気孔)236の広い所定幅(W2)を有する部分は、第1ガス排気口(排気孔)236の最大幅(W1)を有する部分と比較して、排気出口230から相対的に近い距離L3(L3<L1)に設けられる。第1ガス排気口(排気孔)236の最小幅(W3)を有する部分は、距離L3より相対的に長く、距離L1より相対的に短い距離L2(L1>L2>L3)に設けられる。なお、ここでは、排気出口230が下側に形成された例について記したが、上側に設けられていても良い。排気出口230が上側に設けられている場合は、第1ガス排気口236の構成を、上下反対にした構成とすれば良い。 The position of the line Y1 is a position relatively far from the line Y4 as compared with the positions of the lines Y2 and Y3. That is, at a distance from the exhaust outlet 230, the portion having the maximum width (W1) of the first gas exhaust port (exhaust hole) 236 has a wide predetermined width (W2) of the first gas exhaust port (exhaust hole) 236 It is provided at a relatively long distance (L1) from the exhaust outlet 230 as compared with the part. Further, at a distance from the exhaust outlet 230, a portion having a wide predetermined width (W2) of the first gas exhaust port (exhaust port) 236 has a maximum width (W1) of the first gas exhaust port (exhaust port) 236. It is provided at a distance L3 (L3 <L1) relatively close to the exhaust outlet 230 as compared with the portion. The portion having the minimum width (W3) of the first gas exhaust port (exhaust hole) 236 is provided at a distance L2 (L1> L2> L3) relatively longer than the distance L3 and relatively shorter than the distance L1. Here, although the example in which the exhaust outlet 230 is formed on the lower side is described, it may be provided on the upper side. When the exhaust outlet 230 is provided on the upper side, the configuration of the first gas exhaust port 236 may be configured to be upside down.
 したがって、内管209は内管209の中心軸CAに平行に設けられた第1ガス排気口236を有し、外管203は排気出口230を有する。第1ガス排気口236は、前記排気出口230から相対的に最も遠い位置(L1)に設けられた第1の幅部W1と、第1の幅部W1に比べて排気出口230に近い位置(L3)に設けられ、実質的に第1の幅部W1の幅以下で形成された第2の幅部W2と、第1の幅部W1と第2の幅部W2との間(L1とL3との間)であって、第2の幅部W2側(L2)に、第1の幅部W1と第2の幅部W2よりも小さい幅を有する第3の幅部W3と、を有する。図4に示される第1ガス排気口236の効果は、後で詳細に説明する。 Therefore, the inner pipe 209 has the first gas exhaust port 236 provided parallel to the central axis CA of the inner pipe 209, and the outer pipe 203 has the exhaust outlet 230. The first gas exhaust port 236 has a first width W1 provided at a position (L1) relatively far from the exhaust outlet 230 and a position closer to the exhaust outlet 230 than the first width W1 ( A second width portion W2 provided in L3) and formed substantially equal to or less than the width of the first width portion W1, and between the first width portion W1 and the second width portion W2 (L1 and L3 And has a first width W1 and a third width W3 having a smaller width than the second width W2 on the second width W2 side (L2). The effects of the first gas outlet 236 shown in FIG. 4 will be described in detail later.
 筒部209や反応管203の加工は、炭酸ガスレーザを利用することが可能である。すなわち、筒部209に設けられるガス供給スリット235、第1ガス排気口236、及び、第2ガス排気口237は、数値制御の炭酸ガスレーザ加工機を利用して、石英管に開口部(穴)を形成する。ガス供給スリット235、第1ガス排気口236、及び、第2ガス排気口237の開口部(穴)の切断面は直線、円弧、または、直線と円弧の組み合わせで構成するのが好ましい。この場合、複雑な曲線の加工に比べ、数値制御の炭酸ガスレーザ加工機へのプログラム入力が比較的容易となるので、石英管への開口部の形成コストを低減することが可能である。 A carbon dioxide gas laser can be used to process the cylindrical portion 209 and the reaction tube 203. That is, the gas supply slit 235, the first gas exhaust port 236, and the second gas exhaust port 237 provided in the cylindrical portion 209 are openings (holes) in the quartz pipe using numerical control carbon dioxide gas laser processing machine Form The cut surface of the opening (hole) of the gas supply slit 235, the first gas exhaust port 236, and the second gas exhaust port 237 is preferably formed by a straight line, a circular arc, or a combination of a straight line and a circular arc. In this case, since the program input to the numerically controlled carbon dioxide gas laser processing machine is relatively easy as compared with the complicated curve processing, it is possible to reduce the cost of forming the opening to the quartz tube.
 図5に示すように、ガス供給スリット235は、処理室201に収容された状態のボート217に複数段載置された、隣り合うウエハ200とウエハ200との間にそれぞれ配置されるように形成されている。図5では、ボート217を省略して説明する。ガス供給スリット235は、好適には、ボート217に載置可能な最下段のウエハ200とその下側に隣り合うボート217の底板との間から、最上段のウエハ200とその上側に隣り合うボート217の天板との間に至るまで、各ウエハ200間、ウエハ200と天板間に対し1段ずつ対向するように形成されると良い。 As shown in FIG. 5, the gas supply slits 235 are formed so as to be respectively disposed between adjacent wafers 200 placed on a plurality of stages of the boat 217 housed in the processing chamber 201. It is done. In FIG. 5, the boat 217 is omitted. The gas supply slit 235 is preferably provided between the lowermost wafer 200 mountable on the boat 217 and the bottom plate of the boat 217 adjacent to the lower side, the uppermost wafer 200 and the boat adjacent to the upper side thereof. It is preferable that each of the wafers 200 be formed so as to face each other between the wafers 200 and between the wafers 200 and the top plate until it reaches the top plate of 217.
 ノズル340a~340cのガス供給孔234a~234cは各ガス供給スリット235に対し1個ずつ対応するように、各ガス供給スリット235の縦幅の中央部分に形成すると良い。例えば、ガス供給スリット235が25個形成されているときは、それぞれ25個のガス供給孔234a~234cが形成されると良い。すなわち、ガス供給スリット235とガス供給孔234a~234cは、載置されるウエハ200の枚数+1個形成されると良い。このようなスリット構成とすることにより、ウエハ200上にウエハ200に平行な処理ガスの流れを形成することができる(図5矢印参照)。 The gas supply holes 234a to 234c of the nozzles 340a to 340c may be formed at the central portion of the vertical width of each gas supply slit 235 so as to correspond to each of the gas supply slits 235 one by one. For example, when 25 gas supply slits 235 are formed, 25 gas supply holes 234a to 234c may be formed. That is, it is preferable that the number of the gas supply slit 235 and the gas supply holes 234a to 234c be formed by one plus the number of the wafers 200 to be mounted. With such a slit configuration, a flow of processing gas parallel to the wafer 200 can be formed on the wafer 200 (see the arrow in FIG. 5).
 また、ノズル配置室222の上端(天井)は、筒部209の上端と略同じ高さに形成することができる。 Further, the upper end (ceiling) of the nozzle disposition chamber 222 can be formed to have substantially the same height as the upper end of the cylindrical portion 209.
 図6に示すように、制御部(制御手段)であるコントローラ280は、CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バス121eを介して、CPU121aとデータ交換可能なように構成されている。コントローラ280には、例えばタッチパネル等として構成された入出力装置122が接続されている。 As shown in FIG. 6, the controller 280, which is a control unit (control means), is configured as a computer including a central processing unit (CPU) 121a, a random access memory (RAM) 121b, a storage device 121c, and an I / O port 121d. It is done. The RAM 121b, the storage device 121c, and the I / O port 121d are configured to be able to exchange data with the CPU 121a via the internal bus 121e. An input / output device 122 configured as, for example, a touch panel or the like is connected to the controller 280.
 記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラムや、後述する基板処理の手順や条件等が記載されたプロセスレシピ等が、読み出し可能に格納されている。プロセスレシピは、後述する基板処理工程における各手順をコントローラ280に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。以下、プロセスレシピや制御プログラム等を総称して、単に、プログラムともいう。本明細書においてプログラムという言葉を用いた場合は、プロセスレシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、それらの両方を含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。 The storage device 121 c is configured by, for example, a flash memory, a hard disk drive (HDD), or the like. In the storage device 121c, a control program for controlling the operation of the substrate processing apparatus, and a process recipe in which a procedure, conditions and the like of the substrate processing described later are stored are readably stored. The process recipe is a combination of processes so as to cause the controller 280 to execute each procedure in the substrate processing process described later and obtain a predetermined result, and functions as a program. Hereinafter, the process recipe, the control program and the like are collectively referred to simply as a program. When the term "program" is used in the present specification, when only a process recipe alone is included, when only a control program alone is included, or both of them may be included. The RAM 121 b is configured as a memory area (work area) in which programs and data read by the CPU 121 a are temporarily stored.
 I/Oポート121dは、上述のMFC320a~321b、バルブ330a~331b、圧力センサ245、APCバルブ244、真空ポンプ246、ヒータ207、温度センサ、ボート回転機構267、ボートエレベータ115等に接続されている。 The I / O port 121d is connected to the MFCs 320a to 321b, the valves 330a to 331b, the pressure sensor 245, the APC valve 244, the vacuum pump 246, the heater 207, the temperature sensor, the boat rotation mechanism 267, the boat elevator 115, etc. .
 CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからプロセスレシピを読み出すように構成されている。CPU121aは、読み出したプロセスレシピの内容に沿うように、MFC320a~321bによる各種ガスの流量調整動作、バルブ330a~331bの開閉動作、APCバルブ244の開閉動作および圧力センサ245に基づくAPCバルブ244による圧力調整動作、真空ポンプ246の起動および停止、温度センサに基づくヒータ207の温度調整動作、ボート回転機構267によるボート217の回転および回転速度調節動作、ボートエレベータ115によるボート217の昇降動作等を制御するように構成されている。 The CPU 121a is configured to read out and execute a control program from the storage device 121c, and to read out a process recipe from the storage device 121c in response to an input of an operation command from the input / output device 122 or the like. The CPU 121a adjusts the flow rates of various gases by the MFCs 320a to 321b, opens and closes the valves 330a to 331b, opens and closes the APC valve 244, and pressure from the APC valve 244 based on the pressure sensor 245 in accordance with the read process recipe. Adjustment operation, start and stop of vacuum pump 246, temperature adjustment operation of heater 207 based on temperature sensor, rotation and rotation speed adjustment of boat 217 by boat rotation mechanism 267, elevation operation of boat 217 by boat elevator 115, etc. are controlled. Is configured as.
 コントローラ280は、専用のコンピュータとして構成されている場合に限らず、汎用のコンピュータとして構成されていてもよい。例えば、上述のプログラムを格納した外部記憶装置(例えば、ハードディスク等の磁気ディスク、CD等の光ディスク、MO等の光磁気ディスク、USBメモリ等の半導体メモリ)123を用意し、この外部記憶装置123を用いて汎用のコンピュータにプログラムをインストールすること等により、本実施形態のコントローラ280を構成することができる。但し、コンピュータにプログラムを供給するための手段は、外部記憶装置123を介して供給する場合に限らない。例えば、インターネットや専用回線等の通信手段を用い、外部記憶装置123を介さずにプログラムを供給するようにしてもよい。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成される。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体という言葉を用いた場合は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、それらの両方を含む場合がある。 The controller 280 is not limited to being configured as a dedicated computer, and may be configured as a general-purpose computer. For example, an external storage device (for example, a magnetic disk such as a hard disk, an optical disk such as a CD, an optical magnetic disk such as an MO, a semiconductor memory such as a USB memory) 123 storing the above-mentioned program is prepared. The controller 280 of the present embodiment can be configured by installing a program on a general-purpose computer and using the same. However, the means for supplying the program to the computer is not limited to the case of supplying via the external storage device 123. For example, the program may be supplied using communication means such as the Internet or a dedicated line without using the external storage device 123. The storage device 121 c and the external storage device 123 are configured as computer readable recording media. Hereinafter, these are collectively referred to simply as recording media. When the term "recording medium" is used in the present specification, when only the storage device 121c is included, only the external storage device 123 may be included, or both of them may be included.
 次に、本実施形態に関わる基板処理装置の動作概要について説明する。ここでは、上述の基板処理装置を用い、半導体装置の製造工程の一工程として、基板としてのウエハ200上にSiN膜を形成するシーケンス例について説明する。なお、基板処理装置を構成する各部の動作は、コントローラ280により制御される。 Next, an outline of the operation of the substrate processing apparatus according to the present embodiment will be described. Here, a sequence example in which a SiN film is formed on a wafer 200 as a substrate will be described as one step of a manufacturing process of a semiconductor device using the above-described substrate processing apparatus. The operation of each part constituting the substrate processing apparatus is controlled by the controller 280.
 所定枚数のウエハ200が載置されたボート217が反応管203内に挿入され、シールキャップ219により、反応管203が気密に閉塞される。気密に閉塞された反応管203内では、ウエハ200が加熱されると共に、処理ガスが反応管203内に供給され、ウエハ200に加熱等の熱処理がなされる。 The boat 217 on which a predetermined number of wafers 200 are placed is inserted into the reaction tube 203, and the reaction tube 203 is airtightly closed by the seal cap 219. In the air-tightly sealed reaction tube 203, the wafer 200 is heated, a process gas is supplied into the reaction tube 203, and the wafer 200 is subjected to heat treatment such as heating.
 熱処理として、例えば、第1処理ガスとしてNH3ガスと、第2処理ガスとしてHCDSガスと、第3処理ガスとしてN2ガスとを交互供給する(HCDSガス供給→N2パージ→NH3ガス供給→N2パージを1サイクルとしてこのサイクルを所定回数繰り返す)ことにより、ウエハ200上にSiN膜を形成する。処理条件は、例えば下記のとおりである:
 ウエハ200の温度:100~600℃
 処理室内圧力:1~3000Pa
 HCDSガス供給流量:1~2000sccm
 NH3ガス供給流量:100~10000sccm
 N2ガス供給流量:10~10000sccm
 SiN膜の膜厚:0.2~10nm。
 まず、第1処理ガス供給系のガス供給管310aよりノズル340aのガス供給孔234a、ガス供給スリット235を介して処理室201内にNH3ガスを供給する。具体的には、バルブ330a、331aを開けることにより、キャリアガスと共に、ガス供給管310aからNH3ガスの処理室201内への供給を開始する。このとき、APCバルブ244の開度を調整して、処理室201内の圧力を所定の圧力に維持する。所定時間が経過したら、バルブ330aを閉じ、NH3ガスの供給を停止する。
As the heat treatment, for example, NH 3 gas as the first process gas, HCDS gas as the second process gas, and N 2 gas as the third process gas are alternately supplied (HCDS gas supply → N 2 purge → NH 3 gas supply A SiN film is formed on the wafer 200 by repeating this cycle a predetermined number of times with one cycle of N 2 purge. The processing conditions are, for example, as follows:
Temperature of wafer 200: 100 to 600 ° C.
Processing chamber pressure: 1 to 3000 Pa
HCDS gas supply flow rate: 1 to 2000 sccm
NH 3 gas supply flow rate: 100 to 10000 sccm
N 2 gas supply flow rate: 10 to 10000 sccm
Film thickness of SiN film: 0.2 to 10 nm.
First, NH 3 gas is supplied from the gas supply pipe 310 a of the first processing gas supply system into the processing chamber 201 through the gas supply holes 234 a of the nozzle 340 a and the gas supply slit 235. Specifically, by opening the valves 330a and 331a, supply of the NH 3 gas from the gas supply pipe 310a into the processing chamber 201 is started together with the carrier gas. At this time, the opening degree of the APC valve 244 is adjusted to maintain the pressure in the processing chamber 201 at a predetermined pressure. After the predetermined time has elapsed, the valve 330a is closed to stop the supply of the NH 3 gas.
 処理室201内に供給されたNH3ガスは、ウエハ200に供給され、ウエハ200上を平行に流れた後、第1ガス排気口236を通って間隙Sを上部から下部へと流れ、第2ガス排気口237、排気出口230を介して排気管231から排気される。 The NH 3 gas supplied into the processing chamber 201 is supplied to the wafer 200, flows in parallel on the wafer 200, and then flows from the top to the bottom in the gap S through the first gas exhaust port 236. The gas is exhausted from the exhaust pipe 231 via the gas exhaust port 237 and the exhaust outlet 230.
 なお、処理室201内にNH3ガスを供給する間、ガス供給管310bに接続される不活性ガス供給管のバルブ331bおよびバルブ330c,331dを開けてN2等の不活性ガスを流すと、ガス供給管310b,310c,311d内にNH3ガスが回り込むのを防ぐことができる。 When the valve 331 b and the valves 330 c and 331 d of the inert gas supply pipe connected to the gas supply pipe 310 b are opened and the inert gas such as N 2 flows while the NH 3 gas is supplied into the processing chamber 201, It is possible to prevent the NH 3 gas from flowing into the gas supply pipes 310b, 310c, and 311d.
 バルブ330aを閉じ、処理室201内へのNH3ガスの供給を停止した後は、処理室201内を排気し、処理室201内に残留しているNH3ガスや反応生成物等を排除する。この時、ガス供給管310a,310b,310c,311dからN2等の不活性ガスをそれぞれ処理室201内及び間隙Sに供給してパージすると、処理室201内及び間隙Sからの残留ガスを排除する効果をさらに高めることができる。 After the valve 330 a is closed and the supply of NH 3 gas into the processing chamber 201 is stopped, the inside of the processing chamber 201 is exhausted to remove the NH 3 gas and reaction products remaining in the processing chamber 201. . At this time, when inert gas such as N 2 is supplied from the gas supply pipes 310a, 310b, 310c, and 311d to the inside of the processing chamber 201 and in the gap S and purged, residual gas in the processing chamber 201 and the gap S is eliminated. Effect can be further enhanced.
 次に、第2処理ガス供給系のガス供給管310bよりノズル340bのガス供給孔234b、ガス供給スリット235を介して処理室201内にHCDSガスを供給する。具体的には、バルブ330b、331bを開けることにより、キャリアガスと共に、ガス供給管310bからHCDSガスの処理室201内への供給を開始する。このとき、APCバルブ244の開度を調整して、処理室201内の圧力を所定の圧力に維持する。所定時間が経過したら、バルブ330bを閉じ、HCDSガスの供給を停止する。 Next, the HCDS gas is supplied from the gas supply pipe 310 b of the second processing gas supply system into the processing chamber 201 through the gas supply holes 234 b of the nozzle 340 b and the gas supply slit 235. Specifically, the valves 330 b and 331 b are opened to start supply of the HCDS gas from the gas supply pipe 310 b into the processing chamber 201 together with the carrier gas. At this time, the opening degree of the APC valve 244 is adjusted to maintain the pressure in the processing chamber 201 at a predetermined pressure. After the predetermined time has elapsed, the valve 330 b is closed to stop the supply of the HCDS gas.
 処理室201内に供給されたHCDSガスは、ウエハ200に供給され、ウエハ200上を平行に流れた後、第1ガス排気口236を通って間隙Sを上部から下部へと流れ、第2ガス排気口237、排気出口230を介して排気管231から排気される。 The HCDS gas supplied into the processing chamber 201 is supplied to the wafer 200, flows in parallel over the wafer 200, and then flows from the top to the bottom through the gap S through the first gas exhaust port 236, and the second gas The exhaust gas is exhausted from the exhaust pipe 231 via the exhaust port 237 and the exhaust outlet 230.
 なお、処理室201内にHCDSガスを供給する間、ガス供給管310aに接続される不活性ガス供給管のバルブ331aおよびガス供給管310c,311dのバルブ330c,331dを開けて少量のN2等の不活性ガスを流すと、ガス供給管310a,310c,311d内にHCDSガスが拡散によって入り込むのを防ぐことができ、より多い量の不活性ガスを流すことで、ウェハ内膜厚均一性を制御することもできる。 While HCDS gas is supplied into the processing chamber 201, the valve 331a of the inert gas supply pipe connected to the gas supply pipe 310a and the valves 330c and 331d of the gas supply pipes 310c and 311d are opened to make a small amount of N 2 etc. When the inert gas flows, the HCDS gas can be prevented from entering the gas supply pipes 310a, 310c, and 311d by diffusion, and by flowing a larger amount of the inert gas, the wafer inner film thickness uniformity can be obtained. It can also be controlled.
 バルブ330bを閉じ、処理室201内へのHCDSガスの供給を停止した後は、処理室201内を排気し、処理室201内に残留しているHCDSガスや反応生成物等を排除する。この時、ガス供給管310a,310b,310c,311dからN2等の不活性ガスをそれぞれ処理室201内及び間隙Sに供給してパージすると、処理室201内及び間隙Sからの残留ガスを排除する効果をさらに高めることができる。 After the valve 330 b is closed and the supply of the HCDS gas into the processing chamber 201 is stopped, the inside of the processing chamber 201 is exhausted to remove the HCDS gas, the reaction product and the like remaining in the processing chamber 201. At this time, when inert gas such as N 2 is supplied from the gas supply pipes 310a, 310b, 310c, and 311d to the inside of the processing chamber 201 and in the gap S and purged, residual gas in the processing chamber 201 and the gap S is eliminated. Effect can be further enhanced.
 ウエハ200の処理が完了すると、上記した動作の逆の手順により、ボート217が反応管203内から搬出される。ウエハ200は、図示しないウエハ移載機により、ボート217から移載棚のポッドに移載され、ポッドは、ポッド搬送機により、移載棚からポッドステージに移載され、外部搬送装置により、筐体の外部に搬出される。 When the processing of the wafer 200 is completed, the boat 217 is unloaded from the reaction tube 203 in the reverse procedure of the above-described operation. The wafer 200 is transferred from the boat 217 to the pod of the transfer rack by a wafer transfer machine (not shown), and the pod is transferred from the transfer rack to the pod stage by the pod transfer machine, and is transferred by the external transfer device. It is carried out of the body.
 上述の実施形態では、第1処理ガスと第2処理ガスとを交互に供給する場合について説明したが、本発明は、第1処理ガスと第2処理ガスとを同時に供給する場合にも適用することができる。ノズル配置室222を3つの空間に区画するものに限らず、2つ、又は4つ以上の空間に区画して実施して良い。所望の加熱処理に必要なノズルの本数に合わせて、区画する空間の数は適宜変更可能である。 In the above embodiment, although the case where the first process gas and the second process gas are alternately supplied has been described, the present invention is also applied to the case where the first process gas and the second process gas are simultaneously supplied. be able to. The nozzle arrangement chamber 222 is not limited to being divided into three spaces, and may be divided into two or four or more spaces. The number of spaces to be partitioned can be appropriately changed according to the number of nozzles required for the desired heat treatment.
 また、ノズルの形状を各々変更しても良い。例えば、分解温度の低い処理ガスの供給に用いられるノズル340bに設けられるガス供給孔234aは、複数のウェハに亘って連続して開口する縦長のスリットに形成してもよく、或いは周囲に冷却ガスを流通させた2重管構造としても良い。 Also, the shape of the nozzles may be changed. For example, the gas supply holes 234a provided in the nozzle 340b used for supplying the processing gas having a low decomposition temperature may be formed in an elongated slit which continuously opens over a plurality of wafers, or a cooling gas is provided around the periphery It is good as a double pipe structure which made
 上述したような、ウェハ配置領域から均等にガスを排気する第1ガス排気口236は、ウェハ200への成膜に限らず、筒部209や反応管203の表面を対象にしたガスクリーニングやプリコートにも好適に作用する。すなわち、クリーニングは除去されるべき膜の最も除去されにくい或いは最も厚い箇所を除去できるようにその時間が設定されるところ、クリーニングやプリコートのムラが減ることで、それらを短時間で行うことができ、また反応管203の寿命を長くすることができる。 As described above, the first gas exhaust port 236 for exhausting the gas evenly from the wafer placement area is not limited to the film formation on the wafer 200, but may be a gas cleaning or precoating for the surface of the cylindrical portion 209 or the reaction tube 203. Works well. That is, while the cleaning time is set so that the most difficult to remove or the thickest part of the film to be removed can be removed, the unevenness of the cleaning and precoating can be reduced, so that they can be performed in a short time. Also, the life of the reaction tube 203 can be extended.
 (第1ガス排気口236の形状と処理ガスの流れとの関係)
 図7は、図4で説明された第1ガス排気口236における反応管内の処理ガスの流れの詳細を説明する概念図である。図7(a)は、反応管(外管)203及び筒部(内管)209を、排気出口230の方向から見た場合の、図4で説明された第1ガス排気口236の形状を示す正面図である。図7(b)は、図7(a)に示される反応管(外管)203及び筒部(内管)209を側面から見た場合の処理ガスの流れを概念的に示す側面図である。なお、図7(b)には、複数枚のウエハ200を多段に積載するボート217と、ボート217を支持するボート支持台218と、ノズル340a~340dが設けられるノズル配置室222とが描かれている。ただし、図7(b)において、ノズル340a~340dや、筒部(内管)209の側面に設けられた複数のガス供給スリット235の記載は、省略されている。また、図7(b)における第1ガス排気口236は、最大幅W1から、排気出口230側へ向かって、一度絞り形状として最小幅W3とされ、再度、排気出口230側において、最小幅W3より広い所定幅W2へ拡張されている形状を概念的に示している。
(Relationship between the shape of the first gas exhaust port 236 and the flow of the processing gas)
FIG. 7 is a conceptual diagram for explaining the details of the flow of processing gas in the reaction tube at the first gas exhaust port 236 described with reference to FIG. FIG. 7A shows the shape of the first gas exhaust port 236 described in FIG. 4 when the reaction pipe (outer pipe) 203 and the cylindrical portion (inner pipe) 209 are viewed from the direction of the exhaust outlet 230. It is a front view showing. FIG. 7B is a side view conceptually showing the flow of processing gas when the reaction tube (outer tube) 203 and the cylindrical portion (inner tube) 209 shown in FIG. 7A are viewed from the side. . 7B shows a boat 217 on which a plurality of wafers 200 are stacked in multiple stages, a boat support base 218 supporting the boat 217, and a nozzle arrangement chamber 222 in which the nozzles 340a to 340d are provided. ing. However, in FIG. 7B, the description of the nozzles 340a to 340d and the plurality of gas supply slits 235 provided on the side surface of the cylindrical portion (inner pipe) 209 is omitted. Further, the first gas exhaust port 236 in FIG. 7 (b) is once narrowed from the maximum width W1 toward the exhaust outlet 230 as the minimum width W3 as the throttle shape, and again, the minimum width W3 at the exhaust outlet 230 side It conceptually shows the shape expanded to a wider predetermined width W2.
 図7(a)に示される第1ガス排気口236は、図4で説明された様に、最大幅W1の部分と、最小幅W3の部分と、最小幅W3より広い所定幅W2の部分と、を有する。すなわち、第1ガス排気口236の水平方向の幅は、最大幅W1から、排気出口230側へ向かって、一度絞り形状として最小幅W3とされ、再度、排気出口230側において、最小幅W3より広い所定幅W2へ拡張されている。この構成により、図7(b)に矢印で示されるように、多段に積載されたウエハ200の間において、複数のガス供給スリット235から供給される処理ガスの流れはほぼ均一化することができる。 The first gas exhaust port 236 shown in FIG. 7A has a portion of the maximum width W1, a portion of the minimum width W3, and a portion of the predetermined width W2 wider than the minimum width W3, as described in FIG. And. That is, the width in the horizontal direction of the first gas exhaust port 236 from the maximum width W1 toward the exhaust outlet 230 side is once made as the minimum width W3 as the throttle shape, and again from the minimum width W3 on the exhaust outlet 230 side It is expanded to a wide predetermined width W2. With this configuration, as indicated by arrows in FIG. 7B, the flow of the processing gas supplied from the plurality of gas supply slits 235 can be substantially uniformed among the wafers 200 stacked in multiple stages. .
 排気出口230に近い箇所においては、ウエハ処理空間210以外のすき間に流れ込む処理ガスの流れの発生を抑止し、排気出口230に近い箇所のウエハ上の処理ガスの流量の低下を防止する。これにより、多段に積載されたウエハ200間の処理ガスの流れが均一化できる。 The generation of the flow of the processing gas flowing into the gap other than the wafer processing space 210 is suppressed in the portion near the exhaust outlet 230, and the reduction of the flow rate of the processing gas on the wafer in the portion near the exhaust outlet 230 is prevented. Thereby, the flow of the processing gas between the wafers 200 stacked in multiple stages can be made uniform.
 すなわち、ウエハ200の外周に回り込んだ処理ガスが収束する第1ガス排気口236の下端部において、第1ガス排気口236の幅を最小幅W3より拡幅し、最小幅W3より広い所定幅W2とすることで、第1ガス排気口236の下端部分に対応するウエハ200部分の処理ガスの流量の低下を抑止することが出来る。これにより、多段に積載されたウエハ200間の処理ガスの流れが均一化できる。 That is, at the lower end portion of the first gas exhaust port 236 where the processing gas that has entered the outer periphery of the wafer 200 converges, the width of the first gas exhaust port 236 is wider than the minimum width W3 and the predetermined width W2 is wider than the minimum width W3. By doing this, it is possible to suppress a decrease in the flow rate of the processing gas of the portion of the wafer 200 corresponding to the lower end portion of the first gas exhaust port 236. Thereby, the flow of the processing gas between the wafers 200 stacked in multiple stages can be made uniform.
 図8は、比較例1に係る第1ガス排気口236P1における反応管内のガスの流れを説明する概念図である。図8(a)は、反応管(外管)203及び筒部(内管)209を、排気出口230の方向から見た場合の、第1ガス排気口236P1の形状を示す正面図である。図8(b)は、図8(a)に示される反応管(外管)203及び筒部(内管)209を側面から見た場合の処理ガスの流れを概念的に示す側面図である。図8(b)には、複数枚のウエハ200を多段に積載するボート217と、ボート217を支持するボート支持台218と、ノズル340a~340dが設けられるノズル配置室222とが描かれている。ただし、図8(b)において、ノズル340a~340dや、筒部(内管)209の側面に設けられた複数のガス供給スリット235の記載は、省略されている。また、図8(b)における第1ガス排気口236P1は、第1ガス排気口236P1の水平方向の幅W1P1が上下方向においてほぼ均一とされていることを概念的に示している。 FIG. 8 is a conceptual diagram for explaining the flow of gas in the reaction tube at the first gas exhaust port 236P1 according to Comparative Example 1. As shown in FIG. FIG. 8A is a front view showing the shape of the first gas exhaust port 236P1 when the reaction pipe (outer pipe) 203 and the cylindrical portion (inner pipe) 209 are viewed from the direction of the exhaust outlet 230. FIG. 8 (b) is a side view conceptually showing the flow of the processing gas when the reaction tube (outer tube) 203 and the cylindrical portion (inner tube) 209 shown in FIG. 8 (a) are viewed from the side. . FIG. 8B shows a boat 217 on which a plurality of wafers 200 are stacked in multiple stages, a boat support base 218 supporting the boat 217, and a nozzle arrangement chamber 222 in which the nozzles 340a to 340d are provided. . However, in FIG. 8B, the description of the nozzles 340a to 340d and the plurality of gas supply slits 235 provided on the side surface of the cylindrical portion (inner pipe) 209 is omitted. The first gas exhaust port 236P1 in FIG. 8B conceptually shows that the width W1P1 in the horizontal direction of the first gas exhaust port 236P1 is substantially uniform in the vertical direction.
 図8(a)に示されるように、比較例1の第1ガス排気口236P1は、筒部(内管)209の側面に、筒部(内管)209の垂直方向に、ほぼ均一な幅W1P1を有する構成である。この場合、図8(b)に矢印で示されるように、縦型の反応管(外管)203及び筒部(内管)209の下側(若しくは上側)のみに排気出口230を設ける場合、多段に積載されたウエハ200の間において、複数のガス供給スリット235から供給される処理ガスの流れは、排気出口230に向かって流れやすくなる為、ウエハ200間の流れが不均一となる。 As shown in FIG. 8A, the first gas exhaust port 236P1 of Comparative Example 1 has a substantially uniform width in the vertical direction of the cylindrical portion (inner pipe) 209 on the side surface of the cylindrical portion (inner pipe) 209. It is a configuration having W1P1. In this case, as shown by an arrow in FIG. 8B, when the exhaust outlet 230 is provided only on the lower side (or upper side) of the vertical reaction tube (outer tube) 203 and the cylindrical portion (inner tube) 209, Between the wafers 200 stacked in multiple stages, the flow of the processing gas supplied from the plurality of gas supply slits 235 tends to flow toward the exhaust outlet 230, so the flow among the wafers 200 becomes uneven.
 図9は、比較例2に係る第1ガス排気口236P2における反応管内のガスの流れを説明する概念図である。図9(a)は、反応管(外管)203及び筒部(内管)209を、排気出口230の方向から見た場合の、第1ガス排気口236P2の形状を示す正面図である。図9(b)は、図9(a)に示される反応管(外管)203及び筒部(内管)209を側面から見た場合の、反応管内のガスの流れを概念的に示す側面図である。図9(b)には、複数枚のウエハ200を多段に積載するボート217と、ボート217を支持するボート支持台218と、ノズル340a~340dが設けられるノズル配置室222とが描かれている。ただし、図9(b)において、ノズル340a~340dや、筒部(内管)209の側面に設けられた複数のガス供給スリット235の記載は、省略されている。また、図9(b)における第1ガス排気口236P2は、第1ガス排気口236P2の水平方向の幅が最大幅W1P2から最小幅W2P2へ上下方向において徐々に狭められていることを概念的に示している。 FIG. 9 is a conceptual diagram for explaining the flow of gas in the reaction tube at the first gas exhaust port 236P2 according to Comparative Example 2. As shown in FIG. FIG. 9A is a front view showing the shape of the first gas exhaust port 236P2 when the reaction pipe (outer pipe) 203 and the cylindrical portion (inner pipe) 209 are viewed from the direction of the exhaust outlet 230. FIG. FIG. 9B is a side view conceptually showing the flow of gas in the reaction tube when the reaction tube (outer tube) 203 and the cylindrical portion (inner tube) 209 shown in FIG. 9A are viewed from the side. FIG. FIG. 9B illustrates a boat 217 on which a plurality of wafers 200 are stacked in multiple stages, a boat support base 218 supporting the boat 217, and a nozzle arrangement chamber 222 in which the nozzles 340a to 340d are provided. . However, in FIG. 9B, the description of the nozzles 340a to 340d and the plurality of gas supply slits 235 provided on the side surface of the cylindrical portion (inner pipe) 209 is omitted. Further, the first gas exhaust port 236P2 in FIG. 9B conceptually shows that the horizontal width of the first gas exhaust port 236P2 is gradually narrowed in the vertical direction from the maximum width W1P2 to the minimum width W2P2. It shows.
 図9(a)に示されるように、比較例2の第1ガス排気口236P2は、筒部(内管)209の側面に、筒部(内管)209の垂直方向(上から下の方向)に沿って、最大幅W1P2から最小幅W2P2へ徐々に狭められている構成である。比較例2の第1ガス排気口236P2は、図8(b)で説明されたような排気出口230へ集中する流れの傾きを抑制するため、排気出口230に向かって、第1ガス排気口236P2の水平方向の幅を絞り形状にしたものである。この場合、図9(b)に矢印で示されるように、排気出口230の側から離れた一定の範囲の流れが均一となる。しかし、排気出口230に近い箇所においては、ウエハ処理空間210以外のすき間に流れ込む処理ガスの流れが発生する(矢印のA0参照)。そのため、排気出口230に近い箇所のウエハ上の処理ガスの流量の低下が発生する。すなわち、ウエハ処理空間210以外への処理ガスの流れ込みが発生することにより、多段に積載されたウエハ間の処理ガスの流れが不均一化となってしまう。 As shown in FIG. 9A, in the first gas exhaust port 236P2 of Comparative Example 2, the side surface of the cylindrical portion (inner pipe) 209 corresponds to the vertical direction of the cylindrical portion (inner pipe) 209 (from the top to the bottom) ), The maximum width W1P2 is gradually narrowed to the minimum width W2P2. The first gas exhaust port 236P2 of the second comparative example is directed to the first gas exhaust port 236P2 toward the exhaust port 230 in order to suppress the inclination of the flow concentrated to the exhaust port 230 as described in FIG. 8B. The width in the horizontal direction of the lens is a stop shape. In this case, as indicated by an arrow in FIG. 9B, the flow in a certain range away from the side of the exhaust outlet 230 becomes uniform. However, at a position near the exhaust outlet 230, a flow of processing gas flowing into a gap other than the wafer processing space 210 is generated (see arrow A0). Therefore, the flow rate of the processing gas on the wafer near the exhaust outlet 230 decreases. That is, when the flow of the processing gas into the area other than the wafer processing space 210 occurs, the flow of the processing gas between the wafers stacked in multiple stages becomes uneven.
 (第1ガス排気口236と排気出口230との位置関係)
 図10は、排気出口230への処理ガスの流れを対比して説明する模式図である。図10(a)は実施形態に係る反応管203、図10(b)は比較例に係る反応管を、上方から見た図である。図10(b)の反応管は、第1ガス排気口236の形状は、実施形態に係る反応管203と同じであるが、第1ガス排気口236と排気出口230との位置関係が異なる。つまり、比較例の反応管は、反応管(外管)203に設けられた排気出口230と、筒部(内管)209に設けられた第1ガス排気口236とは、正対する位置に配置されておらす、90度の角度分、ずれた位置に配置される。このため、第1ガス排気口236と排気出口230との間のコンダクタンスが低下する。また図10(b)に矢印で示されるように、ウエハ200面上の処理ガスの流れが不均一となっており、ウエハ200面内の処理ガスの流速むらが発生しやすくなっている。
(Positional relationship between the first gas exhaust port 236 and the exhaust outlet 230)
FIG. 10 is a schematic view for explaining the flow of the processing gas to the exhaust outlet 230 in comparison. Fig.10 (a) is the figure which looked at the reaction tube 203 which concerns on embodiment, and FIG.10 (b) the reaction tube which concerns on a comparative example from upper direction. The shape of the first gas exhaust port 236 of the reaction pipe of FIG. 10B is the same as that of the reaction pipe 203 according to the embodiment, but the positional relationship between the first gas exhaust port 236 and the exhaust outlet 230 is different. That is, the reaction tube of the comparative example is disposed at a position where the exhaust outlet 230 provided in the reaction tube (outer tube) 203 and the first gas exhaust port 236 provided in the cylindrical portion (inner tube) 209 face each other. It is placed at an offset position by an angle of 90 degrees. For this reason, the conductance between the first gas exhaust port 236 and the exhaust outlet 230 is reduced. Further, as indicated by arrows in FIG. 10B, the flow of the processing gas on the surface of the wafer 200 is uneven, and the flow velocity unevenness of the processing gas in the surface of the wafer 200 is easily generated.
 これに対し、実施形態の反応管203は、図4及び図7に示したように、第1ガス排気口236と排気出口230との位置関係は、筒部209の中心軸CAから見た場合に、同一方向に設けられる。言い換えれば、反応管(外管)203及び筒部(内管)209を上から見た場合において、ガス供給スリット235の形成領域235aと、第1ガス排気口236と、排気出口230とが、ほぼ一列状ないし直線状に配置される。ガス供給スリット235の形成領域235aは、第1ガス排気口236と対向ないし略正対する位置に設けられる。また、ガス供給スリット235の形成領域235aは、筒部209の中心軸CAから見た場合、第1ガス排気口236と反対側の筒部209の壁に設けられる。 On the other hand, in the reaction tube 203 of the embodiment, as shown in FIGS. 4 and 7, the positional relationship between the first gas exhaust port 236 and the exhaust outlet 230 is viewed from the central axis CA of the cylindrical portion 209. In the same direction. In other words, when the reaction tube (outer tube) 203 and the cylindrical portion (inner tube) 209 are viewed from above, the formation region 235a of the gas supply slit 235, the first gas exhaust port 236, and the exhaust outlet 230 It is arranged substantially in a row or straight. The formation region 235 a of the gas supply slit 235 is provided at a position facing or substantially directly facing the first gas exhaust port 236. Further, the formation region 235 a of the gas supply slit 235 is provided on the wall of the cylindrical portion 209 opposite to the first gas exhaust port 236 when viewed from the central axis CA of the cylindrical portion 209.
 これにより、図10(b)に矢印で示されるように、ウエハ200上の処理ガスの流れがほぼ均一化でき、ウエハ200面内の処理ガスの流速むらの発生が抑制されている。 Thereby, as shown by the arrow in FIG. 10B, the flow of the processing gas on the wafer 200 can be made substantially uniform, and the occurrence of the flow velocity unevenness of the processing gas in the surface of the wafer 200 is suppressed.
 (第1ガス排気口236の開口位置とウエハ200との関係)
 図11は、実施形態に係る第1ガス排気口236の開口位置とウエハ200との関係を説明するための図である。図11(a)は、図7(b)と同様に、図7(a)に示される反応管(外管)203及び筒部(内管)209を側面から見た場合の側面図である。図11(b)は、図11(a)のXII(a)部分の拡大図であり、図11(c)は図11(a)のXII(b)部分の拡大図である。なお、図11(a)、(b)および(c)において、第1ガス排気口236の形状は、図4および図7(a)に示される第1ガス排気口236の形状と同一であり、図11(a)、(b)および(c)の第1ガス排気口236は、図7(b)と同様に、その形状を模式的に示している。なお、図11(a)には、複数枚のウエハ200を多段に積載するボート217と、ボート217を支持するボート支持台218と、ノズル340a~340dが設けられるノズル配置室222とが描かれている。ただし、図11(a)において、ノズル340a~340dや、筒部(内管)209の側面に設けられた複数のガス供給スリット235の記載は、省略されている。
(Relationship between the position of the first gas exhaust port 236 and the wafer 200)
FIG. 11 is a view for explaining the relationship between the opening position of the first gas exhaust port 236 and the wafer 200 according to the embodiment. Fig.11 (a) is a side view at the time of seeing reaction tube (outer tube) 203 and cylinder part (inner tube) 209 which are shown by Fig.7 (a) from the side surface similarly to FIG.7 (b). . 11 (b) is an enlarged view of a portion XII (a) of FIG. 11 (a), and FIG. 11 (c) is an enlarged view of a portion XII (b) of FIG. 11 (a). 11 (a), (b) and (c), the shape of the first gas exhaust port 236 is the same as the shape of the first gas exhaust port 236 shown in FIGS. 4 and 7 (a). The first gas exhaust port 236 in FIGS. 11A, 11B, and 11C schematically shows its shape, as in FIG. 7B. In FIG. 11A, a boat 217 on which a plurality of wafers 200 are stacked in multiple stages, a boat support base 218 supporting the boat 217, and a nozzle disposition chamber 222 provided with nozzles 340a to 340d are depicted ing. However, in FIG. 11A, the description of the nozzles 340a to 340d and the plurality of gas supply slits 235 provided on the side surface of the cylindrical portion (inner pipe) 209 is omitted.
 図11(a)に示されるように、ボート217には、複数枚のウエハ200が互いに一定の間隔(p)をあけながら水平姿勢を保持しかつ互いに中心を揃えた状態で反応管203の管軸方向に多段に積載されている。236Uは、筒部(内管)209における第1ガス排気口236の開口の上端を示しており、236Lは、筒部(内管)209における第1ガス排気口236の開口の下端を示している。図11(a)において、四角点線XII(b)は、ボート217の上部の4枚のウエハ200と、第1ガス排気口236の上方部分を囲む部分であり、図11(b)にその拡大図が示される。また、図11(a)において、四角点線XII(c)は、ボート217の下部の4枚のウエハ200と、第1ガス排気口236の下方部分を囲む部分であり、図11(c)にその拡大図が示される。 As shown in FIG. 11A, in the boat 217, the tubes of the reaction tube 203 are held in a horizontal posture while the plurality of wafers 200 are spaced at a constant distance (p) from each other and aligned with each other. It is loaded in multiple stages in the axial direction. 236U indicates the upper end of the opening of the first gas exhaust port 236 in the cylindrical portion (inner pipe) 209, and 236L indicates the lower end of the opening of the first gas exhaust port 236 in the cylindrical portion (inner pipe) 209 There is. In FIG. 11 (a), a square dotted line XII (b) is a portion surrounding the four wafers 200 in the upper part of the boat 217 and the upper part of the first gas exhaust port 236, and FIG. A diagram is shown. Further, in FIG. 11A, a square dotted line XII (c) is a portion surrounding the lower part of the four wafers 200 in the boat 217 and the lower portion of the first gas exhaust port 236, as shown in FIG. The enlarged view is shown.
 図11(b)に示されるように、ボート217に一定の間隔(ピッチ)pで積載されたウエハ200において、一番上のウエハ200と筒部(内管)209における第1ガス排気口236の上端236Uとの間隔を距離Xとした場合、距離Xは、ウエハ間ピッチpを基準にして、ウエハ200のピッチpの半分(p/2)より長く、ウエハ200のピッチpの2倍(2p)より短い値(p/2<X<2p)とするのが良い。したがって、第1ガス排気口236の上端236Uは、最上部に載置されるウエハ200の位置よりも、p/2から2pだけ、高い位置に設定される。 As shown in FIG. 11B, the first gas exhaust port 236 at the uppermost wafer 200 and the cylindrical portion (inner pipe) 209 of the wafers 200 loaded on the boat 217 at a constant interval (pitch) p. The distance X is longer than half (p / 2) of the pitch p of the wafers 200 on the basis of the pitch p between the wafers 200 and twice the pitch p of the wafers 200 (the distance X is a distance X with the upper end 236U of It is preferable to set the value shorter than 2p) (p / 2 <X <2p). Therefore, the upper end 236U of the first gas exhaust port 236 is set at a position higher by p / 2 to 2p than the position of the wafer 200 placed on the top.
 また、図11(c)に示されるように、ボート217に一定の間隔(ピッチ)pで積載されたウエハ200において、一番下のウエハ200と筒部(内管)209における第1ガス排気口236の下端236Lとの間隔を距離Yとした場合、距離Yは、ウエハ間ピッチpを基準にして、ウエハ200のピッチpの半分(p/2)より長く、ウエハ200のピッチpの2倍(2p)より短い値(p/2<Y<2p)とするのが良い。したがって、第1ガス排気口236の下端236Lは、最下部に載置されるウエハ200の位置よりも、p/2から2pだけ、低い位置に設定される。 In addition, as shown in FIG. 11C, in the wafers 200 loaded on the boat 217 at a constant interval (pitch) p, the first gas exhaust in the lowermost wafer 200 and the cylindrical portion (inner pipe) 209 Assuming that the distance between the lower end 236L of the opening 236 and the lower end 236L is a distance Y, the distance Y is longer than half (p / 2) of the pitch p of the wafers 200 based on the inter-wafer pitch p. It is preferable to set a value (p / 2 <Y <2p) shorter than double (2p). Therefore, the lower end 236L of the first gas exhaust port 236 is set at a position p / 2 to 2p lower than the position of the wafer 200 placed at the lowermost part.
 例えば、ウエハ200の積載の間隔(ピッチ)pを、例えば、10mm(ミリメートル)とした場合、距離Xまたは距離Yは、5~20mm程度である。このように、積載されたウエハ200の一番上のウエハおよび一番下のウエハの位置から、第1ガス排気口236の上端235Uおよび下端235Lを、5~20mm程度ずらして、筒部(内管)209に、第1ガス排気口236を、開口させることが好ましい。筒部(内管)209への第1ガス排気口236の開口は、数値制御の炭酸ガスレーザ加工機により行うのが良い。 For example, assuming that the interval (pitch) p of loading of the wafers 200 is, for example, 10 mm (millimeter), the distance X or the distance Y is about 5 to 20 mm. In this manner, the upper end 235U and the lower end 235L of the first gas exhaust port 236 are offset by about 5 to 20 mm from the positions of the top wafer and the bottom wafer of the loaded wafers 200, Preferably, the first gas exhaust port 236 is opened in the pipe 209. The opening of the first gas exhaust port 236 to the cylindrical portion (inner pipe) 209 may be performed by a numerically controlled carbon dioxide gas laser processing machine.
 これにより、積載されたウエハ200の最上部のウエハから最下部のウエハが、第1ガス排気口236の上端235Uから下端235Lの範囲内に配置されるので、積載されたウエハ200の上下の全域から、第1ガス排気口236により、処理ガスを効率的に排気することが可能になる。 Thus, the uppermost wafer to the lowermost wafer of the loaded wafers 200 are arranged in the range from the upper end 235U to the lower end 235L of the first gas exhaust port 236, so that the entire upper and lower areas of the loaded wafers 200 are obtained. Thus, the first gas exhaust port 236 enables the process gas to be efficiently exhausted.
 (第1ガス排気口の変形例)
 以下、図12から図18を用いて、第1ガス排気口236の変形例を説明する。
(Modified example of the first gas exhaust port)
Hereafter, the modification of the 1st gas exhaust port 236 is demonstrated using FIGS. 12-18.
 (変形例1)
 図12は、変形例1に係る第1ガス排気口236Aの形状を示す図である。第1ガス排気口236Aの形状以外の構成は、図4に示される構成と同じであり、その説明は省略する。
(Modification 1)
FIG. 12 is a view showing the shape of the first gas exhaust port 236A according to the first modification. The configuration other than the shape of the first gas exhaust port 236A is the same as the configuration shown in FIG. 4, and the description thereof will be omitted.
 第1ガス排気口236Aは、線Y1から線Y5の間において、垂直方向(Y方向)に沿って設けられており、連続的にその幅が変化する単一の開口により構成される。第1ガス排気口236Aは、線Y1から線Y2の間において、略逆三角形形状の様な構成とされ、Y2から線Y5の間において、丸形状または円弧状の開口部236A1を有する。第1ガス排気口236Aの輪郭は、1つ以上の直線と円弧の組み合わせにより構成される。 The first gas exhaust port 236A is provided along the vertical direction (Y direction) between the line Y1 and the line Y5, and is configured by a single opening whose width changes continuously. The first gas exhaust port 236A has a substantially inverted triangular shape between the line Y1 and the line Y2, and has a circular or arc-shaped opening 236A1 between the line Y2 and the line Y5. The contour of the first gas exhaust port 236A is configured by a combination of one or more straight lines and a circular arc.
 第1ガス排気口236Aは、線Y1において、最大幅W1を有し、線Y1から線Y2bの間において、その幅が最大幅W1から徐々に狭められて、最小幅W3となる。第1ガス排気口236Aは、線Y2bから線Y2の間において、その幅W3はほぼ一定であり、線Y2から線Y3の間において、最小幅W3から所定幅W2へ拡幅される。第1ガス排気口236Aは、線Y3から線Y5の間において、所定幅W2から徐々に狭められる。 The first gas exhaust port 236A has the maximum width W1 in the line Y1, and the width is gradually narrowed from the maximum width W1 between the line Y1 and the line Y2b to be the minimum width W3. The width W3 of the first gas exhaust port 236A is substantially constant between the line Y2b and the line Y2, and the first gas exhaust port 236A is widened from the minimum width W3 to the predetermined width W2 between the line Y2 and the line Y3. The first gas exhaust port 236A is gradually narrowed from the predetermined width W2 between the line Y3 and the line Y5.
 すなわち、第1ガス排気口236Aは、線Y1において、最大幅W1を有し、線Y2bと線Y2との間において、最小幅W3を有する。第1ガス排気口236Aの幅は、線Y2から線Y3の間において、最小幅W3から最小幅(W3)より広い所定幅W2へ徐々に拡幅される。第1ガス排気口236Aの幅は、線Y3から線Y5にかけて、所定幅W2から徐々に狭められる。 That is, the first gas exhaust port 236A has the maximum width W1 in the line Y1, and has the minimum width W3 between the line Y2b and the line Y2. The width of the first gas exhaust port 236A is gradually widened from the minimum width W3 to a predetermined width W2 wider than the minimum width (W3) between the line Y2 and the line Y3. The width of the first gas exhaust port 236A is gradually narrowed from the predetermined width W2 from the line Y3 to the line Y5.
 このような形状の第1ガス排気口236Aにおいても、図4に示された第1ガス排気口236と、同様な効果を得ることが可能である。 Also in the first gas exhaust port 236A of such a shape, it is possible to obtain the same effect as the first gas exhaust port 236 shown in FIG. 4.
 (変形例2)
 図13は、変形例2に係る第1ガス排気口236Bの形状を示す図である。第1ガス排気口236Bの形状以外の構成は、図4に示される構成と同じであり、その説明は省略する。
(Modification 2)
FIG. 13 is a view showing the shape of the first gas exhaust port 236B according to the second modification. The configuration other than the shape of the first gas exhaust port 236B is the same as the configuration shown in FIG. 4, and the description thereof will be omitted.
 第1ガス排気口236Bは、線Y1から線Y3にわたって設けられた略逆三角形形状の様な第1スリット236B1と、線Y2から線Y3において、第1スリット236B1の左右に設けられた、幅W4の四角形形状の第2スリット236B2および幅W4の四角形形状の第3スリット256B3と、を有している。第1ガス排気口236Bの輪郭は、1つ以上の直線の組み合わせにより構成される。 The first gas exhaust port 236B has a first slit 236B1 having a substantially inverted triangle shape provided from the line Y1 to the line Y3 and a width W4 provided on the left and right of the first slit 236B1 in the line Y2 to the line Y3. And a third slit 256B3 having a rectangular shape with a width W4. The contour of the first gas exhaust port 236B is configured by a combination of one or more straight lines.
 第1スリット236B1は、線Y1において、最大幅W1を有し、線Y1から線Y2bにおいて、その幅が最大幅W1から徐々に狭められて、最小幅W3となる。第1スリット236B1は、線Y2bから線Y3の間において、その幅W3はほぼ一定とされている。第1ガス排気口236Bの実質的な所定幅W2は、線Y2から線Y3において、第2及び第3スリット236B2、236B3により、最小幅W3と幅W4の2倍とを加算した値(W2=W3+2W4)とされている。所定幅W2は、内管209の円周方向に沿って、複数の開口(第1スリット236B1の幅W4の開口、第2及び第3スリット236B2、236B3の開口)を形成することで構成されている。 The first slit 236B1 has the maximum width W1 in the line Y1, and the width is gradually narrowed from the maximum width W1 in the line Y1 to the line Y2b to be the minimum width W3. The width W3 of the first slit 236B1 is substantially constant between the line Y2b and the line Y3. The substantial predetermined width W2 of the first gas exhaust port 236B is a value obtained by adding the minimum width W3 and twice the width W4 by the second and third slits 236B2 and 236B3 in the line Y2 to the line Y3 (W2 = W3 + 2 W4). The predetermined width W2 is configured by forming a plurality of openings (openings of a width W4 of the first slit 236B1, openings of the second and third slits 236B2 and 236B3) along the circumferential direction of the inner pipe 209. There is.
 すなわち、図13に示される第1ガス排気口236Bは、線Y1において、最大幅W1を有し、線Y2bから線Y2の間において、最小幅W3を有する。第1ガス排気口236Bの幅は、線Y2から線Y3において、最小幅W3から最小幅(W3)より広い所定幅W2(W3+2W4)へ拡幅される。 That is, the first gas exhaust port 236B shown in FIG. 13 has the maximum width W1 in the line Y1, and has the minimum width W3 between the line Y2b and the line Y2. The width of the first gas exhaust port 236B is widened from the minimum width W3 to a predetermined width W2 (W3 + 2W4) wider than the minimum width (W3) from the line Y2 to the line Y3.
 このような形状の第1ガス排気口236Bにおいても、図4に示された第1ガス排気口236と、同様な効果を得ることが可能である。 Also in the first gas exhaust port 236B of such a shape, it is possible to obtain the same effect as the first gas exhaust port 236 shown in FIG. 4.
 (変形例3)
 図14は、変形例3に係る第1ガス排気口236Cの形状を示す図である。第1ガス排気口236Cの形状以外の構成は、図4に示される構成と同じであり、その説明は省略する。
(Modification 3)
FIG. 14 is a view showing the shape of the first gas exhaust port 236C according to the third modification. The configuration other than the shape of the first gas exhaust port 236C is the same as the configuration shown in FIG. 4, and the description thereof will be omitted.
 第1ガス排気口236Cは、線Y1から線Y5にかけて設けられほぼ逆三角形形状の第1スリット236C1と、線Y2から線Y5において、第1スリット236C1の左右に設けられた、幅(直径)W5の丸形状の第2スリット236C2、および、幅(直径)W5の丸形状の第2スリット256C3を有している。第1ガス排気口236Cの輪郭は、1つ以上の直線と円弧の組み合わせにより構成される。 The first gas exhaust port 236C is provided from the line Y1 to the line Y5, and has a width (diameter) W5 provided to the left and right of the first slit 236C1 at the substantially inverted triangle shaped first slit 236C1 and the line Y2 to the line Y5. And a circular second slit 256C3 having a width (diameter) W5. The contour of the first gas exhaust port 236C is configured by a combination of one or more straight lines and a circular arc.
 第1スリット236C1は、線Y1において、最大幅W1有し、線Y1から線Y5にかけて、その幅は徐々に狭められる。第1ガス排気口236Cは、線Y2において、最小幅W3とされる。第2及び第3スリット236C2,236C2により、線Y2から線Y3において、第1ガス排気口236Cの幅は、最小幅W3から徐々に拡幅され、線Y3において、最小幅W3より広い所定幅W2となる。所定幅W2は、最小幅W3以下の幅W6と幅W5の2倍の値とを加算した値(W2=(W6+2W5)>W3、W6<W3)である。所定幅W2は、内管209の円周方向に沿って、複数の開口(第1スリット236C1の幅W6の開口、第2及び第3スリット236C2、236C3の開口)を形成することで構成されている。 The first slit 236C1 has a maximum width W1 at the line Y1, and the width is gradually narrowed from the line Y1 to the line Y5. The first gas exhaust port 236C has a minimum width W3 at the line Y2. The width of the first gas exhaust port 236C is gradually widened from the minimum width W3 from the line Y2 to the line Y3 by the second and third slits 236C2 and 236C2, and the line Y3 has a predetermined width W2 wider than the minimum width W3 and Become. The predetermined width W2 is a value (W2 = (W6 + 2W5)> W3, W6 <W3) obtained by adding the width W6 equal to or less than the minimum width W3 and a value twice the width W5. The predetermined width W2 is configured by forming a plurality of openings (openings of width W6 of the first slit 236C1, openings of the second and third slits 236C2, 236C3) along the circumferential direction of the inner pipe 209 There is.
 すなわち、図14に示される第1ガス排気口236Cは、線Y1において、最大幅W1を有し、線Y2において、最小幅W3を有する。第1ガス排気口236Cの幅は、線Y3において、最小幅W3から最小幅(W3)より広い所定幅W2(W2=W6+2W4、W6<W3)へ拡幅される。 That is, the first gas exhaust port 236C shown in FIG. 14 has the maximum width W1 in the line Y1 and the minimum width W3 in the line Y2. The width of the first gas exhaust port 236C is widened from the minimum width W3 to the predetermined width W2 (W2 = W6 + 2W4, W6 <W3) wider than the minimum width W3 at the line Y3.
 このような形状の第1ガス排気口236Cにおいても、図4に示された第1ガス排気口236と、同様な効果を得ることが可能である。 Also in the first gas exhaust port 236C of such a shape, it is possible to obtain the same effect as the first gas exhaust port 236 shown in FIG. 4.
 (変形例4)
 図15は、変形例4に係る第1ガス排気口236Dの形状を示す図である。第1ガス排気口236Dの形状以外の構成は、図4に示される構成と同じであり、その説明は省略する。
(Modification 4)
FIG. 15 is a view showing the shape of the first gas exhaust port 236D according to the fourth modification. The configuration other than the shape of the first gas exhaust port 236D is the same as the configuration shown in FIG. 4, and the description thereof will be omitted.
 第1ガス排気口236Dは、幅W7のスリットSL1を複数組み合わせて構成されている。複数のスリットSL1は、中心軸CA方向に、内管209内にウエハ200が載置される複数の位置に対応して開口するように複数に分割して、内管209の壁に形成される。スリットSL1のおのおのの輪郭は、内管209の円周方向に長い長方形に形成される。 The first gas exhaust port 236D is configured by combining a plurality of slits SL1 having a width W7. The plurality of slits SL1 are formed in the wall of the inner tube 209 by being divided into a plurality of slits SL1 so as to be opened corresponding to a plurality of positions where the wafer 200 is placed in the inner tube 209 in the central axis CA direction. . The outline of each of the slits SL1 is formed in a rectangular shape that is long in the circumferential direction of the inner pipe 209.
 第1ガス排気口236Dは、線Y1から線Y2bの間において、水平方向(X方向)に沿って並べられた幅W7の3つのスリットSL1を、垂直方向(Y方向)に、複数段(この例では、5段)設けた構成とされている。第1ガス排気口236Dは、線Y2bから線Y2の間において、幅W7の1つのスリットSL1を垂直方向に、複数段(この例では、10段)設けた構成である。第1ガス排気口236Dは、線Y2から線Y3の間において、幅W7の3つのスリットSL1を、垂直方向(Y方向)に、複数段(この例では、2段)設けた構成とされている。第1ガス排気口236Dの輪郭は、1つ以上の直線の組み合わせにより構成される。 The first gas exhaust port 236D has three slits SL1 of width W7 arranged along the horizontal direction (X direction) between the line Y1 and the line Y2b in a plurality of stages (in the Y direction). In the example, five stages are provided. The first gas exhaust port 236D has a configuration in which one slit SL1 having a width W7 is provided in a plurality of stages (10 stages in this example) in the vertical direction between the line Y2b and the line Y2. The first gas exhaust port 236D has a configuration in which three slits SL1 of width W7 are provided in a plurality of stages (two stages in this example) in the vertical direction (Y direction) between the line Y2 and the line Y3. There is. The contour of the first gas exhaust port 236D is configured by a combination of one or more straight lines.
 すなわち、図15に示される第1ガス排気口236Dは、線Y1と線Y2bの間において、最大幅W1(W1=3W7)を有し、線Y2bから線Y2の間において、最小幅W3(W3=W7)を有する。第1ガス排気口236Dの幅は、線Y2から線Y3の間において、最小幅W3から最小幅(W3)より広い所定幅W2(W2=3W7)へ拡幅される。最大幅W1は、内管209の円周方向に沿って、複数の開口(3つのスリットSL1の開口)を形成すること構成されている。また、所定幅W2は、内管209の円周方向に沿って、複数の開口(3つのスリットSL1の開口)を形成することで構成されている。 That is, the first gas exhaust port 236D shown in FIG. 15 has the maximum width W1 (W1 = 3W7) between the line Y1 and the line Y2b, and the minimum width W3 (W3) between the line Y2b and the line Y2. It has = W7). The width of the first gas exhaust port 236D is widened from the minimum width W3 to a predetermined width W2 (W2 = 3 W7) wider than the minimum width (W3) between the line Y2 and the line Y3. The maximum width W1 is configured to form a plurality of openings (openings of the three slits SL1) along the circumferential direction of the inner pipe 209. The predetermined width W2 is formed by forming a plurality of openings (openings of the three slits SL1) along the circumferential direction of the inner pipe 209.
 このような形状の第1ガス排気口236Dにおいても、図4に示された第1ガス排気口236と、同様な効果を得ることが可能である。 Also in the first gas exhaust port 236D having such a shape, it is possible to obtain the same effect as the first gas exhaust port 236 shown in FIG.
 (変形例5)
 図16は、変形例5に係る第1ガス排気口236Eの形状を示す図である。第1ガス排気口236Eの形状以外の構成は、図4に示される構成と同じであり、その説明は省略する。
(Modification 5)
FIG. 16 is a view showing the shape of the first gas exhaust port 236E according to the fifth modification. The configuration other than the shape of the first gas exhaust port 236E is the same as the configuration shown in FIG. 4, and the description thereof will be omitted.
 第1ガス排気口236Eは、幅Waの第1スリットSL1と幅Wbの第2スリットSL2とを組み合わせた構成である。なお、第1及び第2スリットSL1、SL2の高さは、同一であるものとする。第1スリットSL1と第2スリットSL2とは、中心軸CA方向に、内管209内にウエハ200が載置される複数の位置に対応して開口するように複数に分割して、内管209の壁に形成される。第1スリットSL1と第2スリットSL2のおのおのの輪郭は、内管209の円周方向に長い長方形に形成される。 The first gas exhaust port 236E has a configuration in which a first slit SL1 of width Wa and a second slit SL2 of width Wb are combined. The heights of the first and second slits SL1 and SL2 are assumed to be the same. The first slit SL1 and the second slit SL2 are divided into a plurality of openings in the direction of the central axis CA corresponding to a plurality of positions at which the wafer 200 is mounted in the inner pipe 209. Formed on the wall of The outline of each of the first slit SL1 and the second slit SL2 is formed in a rectangular shape that is long in the circumferential direction of the inner pipe 209.
 第1ガス排気口236Eは、線Y1と線Y2bとの間において、水平方向(X方向)に沿って並べられた、2つの第1スリットSL1と、2つの第1スリットSL1の間に設けられた第2スリットSL2とを、垂直方向(Y方向)に、複数段(この例では、5段)設けた構成とされている。第1ガス排気口236Eは、線Y2bと線Y2との間において、水平方向(X方向)に沿って並べられた、2つの第1スリットSL1を、垂直方向(Y方向)に、複数段(この例では、10段)設けた構成とされている。この例では、線Y1と線Y2bとの間において、設けられていた第2スリットSL2が、線Y2bと線Y2との間において、2つの第1スリットSl1の間から除かれた構成である。第1ガス排気口236Eは、線Y2と線Y3との間において、水平方向(X方向)に沿って並べられた、2つの第1スリットSL1と、2つの第1スリットSL1の間に設けられた第2スリットSL2とを、垂直方向(Y方向)に、複数段(この例では、2段)設けた構成とされている。第1ガス排気口236Eの輪郭は、1つ以上の直線の組み合わせにより構成される。 The first gas exhaust port 236E is provided between the two first slits SL1 and the two first slits SL1 aligned along the horizontal direction (X direction) between the line Y1 and the line Y2b. A plurality of steps (five steps in this example) are provided in the vertical direction (Y direction) with the second slits SL2. The first gas exhaust port 236E has two first slits SL1 arranged along the horizontal direction (X direction) between the line Y2b and the line Y2 in a plurality of stages (Y direction) in the vertical direction (Y direction). In this example, 10 stages are provided. In this example, the second slit SL2 provided between the line Y1 and the line Y2b is removed from between the two first slits S11 between the line Y2b and the line Y2. The first gas exhaust port 236E is provided between two first slits SL1 and two first slits SL1 arranged along the horizontal direction (X direction) between the line Y2 and the line Y3. A plurality of steps (two steps in this example) are provided in the vertical direction (Y direction) with the second slit SL2. The contour of the first gas exhaust port 236E is configured by a combination of one or more straight lines.
 すなわち、図16に示される第1ガス排気口236Eは、線Y1と線Y2bの間において、最大幅W1(W1=2Wa+Wb)を有し、線Y2bから線Y2の間において、最小幅W3(W3=2Wa)を有する。第1ガス排気口236Eの幅は、線Y2から線Y3の間において、最小幅W3(W3=2Wa)から最小幅(W3)より広い所定幅W2(W2=2Wa+Wb)へ拡幅される。最大幅W1は、内管209の円周方向に沿って、複数の開口(2つ第1スリットSL1の開口、1つの第2スリットSL2の開口)を形成すること構成されている。また、所定幅W2は、内管209の円周方向に沿って、複数の開口(2つ第1スリットSL1の開口、1つの第2スリットSL2の開口)を形成することで構成されている。 That is, the first gas exhaust port 236E shown in FIG. 16 has the maximum width W1 (W1 = 2Wa + Wb) between the line Y1 and the line Y2b, and the minimum width W3 (W3) between the line Y2b and the line Y2. It has 2 = 2Wa). The width of the first gas exhaust port 236E is widened from the minimum width W3 (W3 = 2Wa) to a predetermined width W2 (W2 = 2Wa + Wb) wider than the minimum width (W3) between the line Y2 and the line Y3. The maximum width W1 is configured to form a plurality of openings (an opening of the two first slits SL1 and an opening of one second slit SL2) along the circumferential direction of the inner pipe 209. Further, the predetermined width W2 is configured by forming a plurality of openings (an opening of the two first slits SL1 and an opening of the one second slit SL2) along the circumferential direction of the inner pipe 209.
 このような形状の第1ガス排気口236Eにおいても、図4に示された第1ガス排気口236と、同様な効果を得ることが可能である。 Also in the first gas exhaust port 236E having such a shape, it is possible to obtain the same effect as the first gas exhaust port 236 shown in FIG. 4.
 (変形例6)
 図17は、変形例6に係る第1ガス排気口236Fの形状を示す図である。第1ガス排気口236Fの形状以外の構成は、図4に示される構成と同じであり、その説明は省略する。
(Modification 6)
FIG. 17 is a view showing the shape of the first gas exhaust port 236F according to the sixth modification. The configuration other than the shape of the first gas exhaust port 236F is the same as the configuration shown in FIG. 4, and the description thereof will be omitted.
 第1ガス排気口236Eは、幅W8の長方形形状の第1スリット236F1と、幅W8の長方形形状の第2スリット236F2及び第3スリット236F3と、幅W9の矩形形状の第4スリット236F4および第5スリット236F5と、を組み合わせた構成である。 The first gas exhaust port 236E has a rectangular first slit 236F1 of width W8, rectangular second and third slits 236F2 and 236F3 of width W8, and a fourth rectangular slit 236F4 and fifth of width W9. It is the structure which combined slit 236F5.
 第1スリット236F1は、線Y1から線Y3の間に、垂直方向(Y方向)に沿って設けられる。第2スリット236F2及び第3スリット236F3は、線Y1から線Y2aの間において、第1スリットF1を間に挟む様に、垂直方向に沿って設けられる。第4スリット236F4および第5スリット236F5は、線Y2から線Y3の間において、第1スリットF1を間に挟む様に、垂直方向に沿って設けられる。第1ガス排気口236Fの輪郭は、1つ以上の直線の組み合わせにより構成される。 The first slit 236F1 is provided between the line Y1 and the line Y3 along the vertical direction (Y direction). The second slit 236F2 and the third slit 236F3 are provided along the vertical direction so as to sandwich the first slit F1 between the line Y1 and the line Y2a. The fourth slit 236F4 and the fifth slit 236F5 are provided along the vertical direction so as to sandwich the first slit F1 between the line Y2 and the line Y3. The outline of the first gas exhaust port 236F is configured by a combination of one or more straight lines.
 すなわち、図17に示される第1ガス排気口236Fは、線Y1と線Y2bの間において、最大幅W1(W1=3W8)を有し、線Y2bから線Y2の間において、最小幅W3(W3=W8)を有する。第1ガス排気口236Fの幅は、線Y2から線Y3の間において、最小幅W3(W3=W8)から最小幅(W3)より広い所定幅W2(W2=W3+2W9)へ拡幅される。最大幅W1は、内管209の円周方向に沿って、複数の開口(第1スリット236F1の開口、第2スリット236F2の開口、及び、第3スリット236F3の開口)を形成すること構成されている。また、所定幅W2は、内管209の円周方向に沿って、複数の開口(第1スリット236F1の開口、第4スリット236F4および第5スリット236F5の開口)を形成することで構成されている。 That is, the first gas exhaust port 236F shown in FIG. 17 has the maximum width W1 (W1 = 3W8) between the line Y1 and the line Y2b, and the minimum width W3 (W3) between the line Y2b and the line Y2. It has = W8). The width of the first gas exhaust port 236F is widened from the minimum width W3 (W3 = W8) to a predetermined width W2 (W2 = W3 + 2W9) wider than the minimum width (W3) between the line Y2 and the line Y3. The maximum width W1 is configured to form a plurality of openings (an opening of the first slit 236F1, an opening of the second slit 236F2, and an opening of the third slit 236F3) along the circumferential direction of the inner tube 209 There is. Further, the predetermined width W2 is configured by forming a plurality of openings (the opening of the first slit 236F1, the opening of the fourth slit 236F4, and the opening of the fifth slit 236F5) along the circumferential direction of the inner pipe 209. .
 このような形状の第1ガス排気口236Eにおいても、図4に示された第1ガス排気口236と、同様な効果を得ることが可能である。 Also in the first gas exhaust port 236E having such a shape, it is possible to obtain the same effect as the first gas exhaust port 236 shown in FIG. 4.
 (変形例7)
 図18は、変形例7に係る第1ガス排気口236Gの形状を示す図である。第1ガス排気口236Gの形状以外の構成は、図4に示される構成と同じであり、その説明は省略する。
(Modification 7)
FIG. 18 is a view showing the shape of the first gas exhaust port 236G according to the seventh modification. The configuration other than the shape of the first gas exhaust port 236G is the same as the configuration shown in FIG. 4, and the description thereof will be omitted.
 第1ガス排気口236Gは、図4の第1ガス排気口236を、複数のスリットで構成したものである。この例では、異なる幅を有する第1ないし第5スリットSL1―SL5によって、第1ガス排気口236Gが構成される。なお、第1ないし第5スリットSL1―SL5の高さは、同一であるものとする。また、第1スリットSL1は幅Wcとし、第2スリットSL2は幅Wdとし、第3スリットSL3は幅Weとし、第4スリットSL4は幅Wfとし、第5スリットSL5は幅Wgとする。これらの幅(Wc、Wd、We、Wf、Wg)は、Wc>Wd>We>Wg>Wfの関係であるものとする。第1ないし第5スリットSL1―SL5は、中心軸CA方向に、内管209内にウエハ200が載置される複数の位置に対応して開口するように複数に分割して、内管209の壁に形成される。第1ないし第5スリットSL1―SL5のおのおのの輪郭は、内管209の円周方向に長い長方形に形成される。 The first gas exhaust port 236G is configured by forming the first gas exhaust port 236 of FIG. 4 with a plurality of slits. In this example, the first gas exhaust port 236G is configured by the first to fifth slits SL1 to SL5 having different widths. The heights of the first to fifth slits SL1 to SL5 are assumed to be the same. The first slit SL1 has a width Wc, the second slit SL2 has a width Wd, the third slit SL3 has a width We, the fourth slit SL4 has a width Wf, and the fifth slit SL5 has a width Wg. It is assumed that the widths (Wc, Wd, We, Wf, Wg) have a relationship of Wc> Wd> We> Wg> Wf. The first to fifth slits SL1 to SL5 are divided into a plurality of openings in the direction of the central axis CA corresponding to a plurality of positions at which the wafer 200 is mounted in the inner pipe 209. Formed on the wall. The contour of each of the first to fifth slits SL1 to SL5 is formed in a rectangular shape that is long in the circumferential direction of the inner pipe 209.
 第1ガス排気口236Gは、線Y1から線Y2aの間において、垂直方向(Y方向)に、この例では、1段目のスリットから18段目のスリットまでが配置される。 The first gas exhaust port 236G is arranged in the vertical direction (Y direction) between the line Y1 and the line Y2a, and in this example, from the first stage slit to the eighteenth stage slit.
 1段目および2段目のスリットのおのおのは、水平方向(X方向)に並べられた、2つの第1スリットSL1により構成される。3段目および4段目のスリットのおのおのは、水平方向(X方向)に並べられた、2つの第2スリットSL2により構成される。5段目から8段目のスリットのおのおのは、第1スリットSL1により構成される。9段目から11段目のスリットのおのおのは、第3スリットSL3により構成される。12段目から16段目のスリットのおのおのは、第4スリットSL4により構成される。17段目のスリットは、第4スリットSL4により構成される。18段目のスリットは、第3スリットSL3により構成される。第1ガス排気口236Gの輪郭は、1つ以上の直線の組み合わせにより構成される。 Each of the first and second stages of slits is composed of two first slits SL1 arranged in the horizontal direction (X direction). Each of the third and fourth slits is constituted by two second slits SL2 arranged in the horizontal direction (X direction). Each of the fifth to eighth slits is constituted by the first slit SL1. Each of the ninth to eleventh slits is formed of the third slit SL3. Each of the slits in the twelfth to sixteenth stages is constituted by the fourth slit SL4. The seventeenth slit is constituted by the fourth slit SL4. The eighteenth slit is constituted by the third slit SL3. The contour of the first gas exhaust port 236G is configured by a combination of one or more straight lines.
 第1ガス排気口236Gは、線Y1において、その幅は2つの第1スリットSL1の幅2Wcであり、最大幅W1を有する。第1ガス排気口236Gは、線Y1から線Y2aにおいて、その幅が、幅2Wcから、2つの第2スリットSL2の幅2Wd、第1スリットSL1の幅Wcへと、徐々に狭められる。第1ガス排気口236Gは、線Y2aから線Y2において、その幅が、第4スリットSL4の幅Wfであり、最小幅W3を有する。第1ガス排気口236Gは、線Y2から線Y3において、その幅が、最小幅W3(Wf)から、第4スリットSL5の幅Wg、最小幅(W3)より広い所定幅W2である第3スリットSL3の幅Weへと、徐々に拡幅される。最大幅W1は、内管209の円周方向に沿って、複数の開口(2つの第1スリットSL1の開口)を形成すること構成されている。また、所定幅W2は、内管209の円周方向に沿って、第3スリットSL3の開口を形成することで構成されている。 The width of the first gas exhaust port 236G at the line Y1 is the width 2Wc of the two first slits SL1, and has a maximum width W1. The width of the first gas exhaust port 236G is gradually narrowed from the width 2Wc to the width 2Wd of the two second slits SL2 and the width Wc of the first slit SL1 from the line Y1 to the line Y2a. The width of the first gas exhaust port 236G from the line Y2a to the line Y2 is the width Wf of the fourth slit SL4, and has a minimum width W3. The first gas exhaust port 236G is a third slit having a width from the minimum width W3 (Wf) to the width Wg of the fourth slit SL5 and a predetermined width W2 wider than the minimum width (W3) in the line Y2 to the line Y3 It is gradually widened to the width We of SL3. The maximum width W1 is configured to form a plurality of openings (openings of two first slits SL1) along the circumferential direction of the inner pipe 209. The predetermined width W2 is configured by forming the opening of the third slit SL3 along the circumferential direction of the inner pipe 209.
 すなわち、図18に示される第1ガス排気口236Gは、線Y1において、最大幅W1(2Wc)を有し、線Y2aから線Y2において、最小幅W3(Wf)を有する。第1ガス排気口236Fの幅は、線Y3において、最小幅W3から最小幅(W3)より広い所定幅W2(We)へ拡幅される。 That is, the first gas exhaust port 236G shown in FIG. 18 has the maximum width W1 (2Wc) in the line Y1, and the minimum width W3 (Wf) in the line Y2a to the line Y2. The width of the first gas exhaust port 236F is widened from the minimum width W3 to a predetermined width W2 (We) wider than the minimum width (W3) at the line Y3.
 このような形状の第1ガス排気口236Gにおいても、図4に示された第1ガス排気口236と、同様な効果を得ることが可能である。 Also in the first gas exhaust port 236G of such a shape, it is possible to obtain the same effect as the first gas exhaust port 236 shown in FIG. 4.
 (変形例8)
 以下、図19から図22を用いて、反応管203の変形例を説明する。
 図19は、上から見た反応管の水平断面図である。反応管(外管)203の中間部203bは、ほぼ円柱状であり、筒部(内管)209との間に間隙Sが設けられている。筒部(内管)209の内側は、処理室201を構成する。筒部(内管)209は、ほぼ円柱状であるが、排気出口230寄りの領域に、オプションのノズルを設置するための半円形形状の4つの突起部(バルジ)209aを有している。筒部(内管)209と反応管(外管)203の中間部203bとの間には、ノズル室222が設けられる。
(Modification 8)
Hereafter, the modification of the reaction tube 203 is demonstrated using FIGS. 19-22.
FIG. 19 is a horizontal sectional view of the reaction tube viewed from above. An intermediate portion 203 b of the reaction tube (outer tube) 203 is substantially cylindrical, and a gap S is provided between the middle portion 203 b and the cylindrical portion (inner tube) 209. The inside of the cylindrical portion (inner pipe) 209 constitutes a processing chamber 201. The cylindrical portion (inner pipe) 209 is substantially cylindrical, and has, in a region near the exhaust outlet 230, four semicircular projections (bulges) 209a for installing an optional nozzle. A nozzle chamber 222 is provided between the cylindrical portion (inner tube) 209 and the intermediate portion 203 b of the reaction tube (outer tube) 203.
 ノズル室222は、仕切り板248により3つに区画化され、各区画に1本のノズルが配置可能にされている。3本のノズル(340a、340b、340c)を3つの区画へ挿入するため、ノズル室222に対応する反応管(外管)203の下部203cの領域に、円弧型の穴203ch1が設けられる。筒部(内管)209には、3本のノズル(340a、340b、340c)から供給される処理ガスを処理室201へ供給するためのガス供給スリット235が設けられている。また、反応管(外管)203の下部203cの排気出口230の近傍の領域に、ガスの排気性能を向上させるため、円弧型の穴203ch2が設けられる。 The nozzle chamber 222 is divided into three by a partition plate 248, and one nozzle can be arranged in each of the partitions. In order to insert the three nozzles (340a, 340b, 340c) into the three sections, an arc-shaped hole 203ch1 is provided in the region of the lower portion 203c of the reaction tube (outer tube) 203 corresponding to the nozzle chamber 222. The cylindrical portion (inner pipe) 209 is provided with a gas supply slit 235 for supplying the processing gas supplied from the three nozzles (340a, 340b, 340c) to the processing chamber 201. Further, an arc-shaped hole 203 ch 2 is provided in a region near the exhaust outlet 230 of the lower portion 203 c of the reaction tube (outer tube) 203 in order to improve the gas exhaust performance.
 図20は、図19に示される反応管を下方側から見た場合の下面図である。筒部(内管)209の下方は、開放された、ほぼ円形形状の穴部209hを有し、ボート217に積載された複数のウエハ200を、穴部209hから処理室201へ、挿入可能となっている。ノズル室222に対応する反応管(外管)203の下部203cの領域に、円弧型の穴203ch1が設けられる。反応管(外管)203の下部203cの排気出口230の近傍の領域に、円弧型の穴203ch2が設けられる。 FIG. 20 is a bottom view of the reaction tube shown in FIG. 19 as viewed from below. The lower portion of the cylindrical portion (inner tube) 209 has an open substantially circular hole portion 209 h, and a plurality of wafers 200 loaded on the boat 217 can be inserted into the processing chamber 201 from the hole portion 209 h. It has become. An arc-shaped hole 203 ch 1 is provided in the region of the lower portion 203 c of the reaction tube (outer tube) 203 corresponding to the nozzle chamber 222. An arc-shaped hole 203 ch 2 is provided in a region near the exhaust outlet 230 of the lower portion 203 c of the reaction tube (outer tube) 203.
  図21は、図19に示される反応管を右側方からみた垂直断面図である。反応管(外管)203の内部に、筒部(内管)209が設けられている。筒部(内管)209は、側面部209bと、天井部209cとを含む。反応管(外管)203の下部203cと筒部(内管)209の側面部209bの下部とが互いに結合し、一体化されている。天井部209cは、ほぼ円形形状の平板で構成される。側面部209bは、ほぼ円柱状の形状とされている。側面部209bにおいて、ノズル室222側には、積層された複数段のウエハ200の配置領域に対応して、複数段のガス供給スリット235が設けられる。また、側面部209bにおいて、排気出口230の上側部分であり、かつ、積層された複数段のウエハ200の配置領域に対応して、第1ガス排気口236が設けられる。なお、複数段のガス供給スリット235と第1ガス排気口236とは、側面部209bの対向ないし略正対する位置に設けられる。
 
21 is a vertical sectional view of the reaction tube shown in FIG. 19 as viewed from the right side. Inside the reaction tube (outer tube) 203, a cylindrical portion (inner tube) 209 is provided. The cylindrical portion (inner pipe) 209 includes a side surface portion 209 b and a ceiling portion 209 c. The lower portion 203c of the reaction tube (outer tube) 203 and the lower portion of the side surface portion 209b of the cylindrical portion (inner tube) 209 are mutually coupled and integrated. The ceiling portion 209 c is formed of a substantially circular flat plate. The side surface portion 209 b has a substantially cylindrical shape. In the side surface portion 209 b, a plurality of gas supply slits 235 are provided on the side of the nozzle chamber 222 corresponding to the arrangement region of the plurality of stacked wafers 200. Further, in the side surface portion 209 b, the first gas exhaust port 236 is provided corresponding to the arrangement region of the plurality of stacked wafers 200 which is an upper portion of the exhaust outlet 230. Note that the gas supply slits 235 and the first gas exhaust ports 236 in multiple stages are provided at positions facing or substantially directly facing the side surface portion 209b.
  ノズル室222は、積層された複数段のウエハ200の配置領域の少し下あたりにおいて、切れ目233により、分割されている。この分割位置は、反応炉のヒータ207による加熱領域(灼熱領域)と、非加熱領域(不均一領域)との境界に対応し、切れ目233によって分割することにより、温度差による引張応力を抑制している。切れ目233の幅は十分小さいため、それによるガスの混合は無視できる。
 
The nozzle chamber 222 is divided by a cut 233 at a position slightly below the arrangement region of the plurality of stacked wafers 200. The division position corresponds to the boundary between the heating area (heating area) by the heater 207 of the reaction furnace and the non-heating area (nonuniform area), and division by the cut 233 suppresses tensile stress due to temperature difference ing. Since the width of the cut 233 is sufficiently small, the mixing of the gas thereby can be ignored.
  また、側面部209bの下部には、パージガスの排出口とされる長方形形状の第2ガス排気口237が設けられる。第2ガス排気口237は、側面部209bの円周方向に3つ設けられており、処理室201の下側のパージカスを排気出口230へ積極的に流すために設けられる。
 
In addition, a rectangular second gas exhaust port 237 serving as a purge gas exhaust port is provided at the lower portion of the side surface portion 209b. Three second gas exhaust ports 237 are provided in the circumferential direction of the side surface portion 209 b, and are provided for positively flowing the purge gas on the lower side of the processing chamber 201 to the exhaust port 230.
  第1ガス排気口236の下端および上端は、複数段のガス供給スリット235の下端および上端と、Y方向において、ほぼ同一の高さに配置されている。 The lower end and the upper end of the first gas exhaust port 236 are disposed at substantially the same height in the Y direction as the lower end and the upper end of the gas supply slit 235 of the plurality of stages.
 図22は、図19に示される反応管を後方からみた垂直断面図である。筒部(内管)209の側面部209bの壁には、ウエハ200の配置領域に対応して、第1ガス排気口236が設けられる。第1ガス排気口236は、この例では、図4で説明された第1ガス排気口236の形状である。第1ガス排気口236は、矩形の点線で示された第1ガス排気口形成領域236Rに対応する側面部209bの壁に形成される。第1ガス排気口236は、図12―図18に示される変形例1―7の形状とすることが可能である。 FIG. 22 is a vertical cross-sectional view of the reaction tube shown in FIG. 19 as viewed from the rear. A first gas exhaust port 236 is provided on the wall of the side surface portion 209 b of the cylindrical portion (inner pipe) 209 corresponding to the arrangement area of the wafer 200. The first gas outlet 236 is, in this example, the shape of the first gas outlet 236 described in FIG. 4. The first gas exhaust port 236 is formed in the wall of the side surface portion 209b corresponding to the first gas exhaust port forming region 236R shown by a rectangular dotted line. The first gas exhaust port 236 can have the shape of Modifications 1-7 shown in FIGS. 12-18.
 第1ガス排気口236の形成領域236Rの下側に対応する側面部209bの壁に、第2ガス排気口237が設けられる。また、第2ガス排気口237の開口部から、反応管(外管)203の下部203cに設けられた排気出口230の1部分が見えている。 The second gas exhaust port 237 is provided on the wall of the side surface portion 209b corresponding to the lower side of the formation region 236R of the first gas exhaust port 236. Further, from the opening of the second gas exhaust port 237, one portion of the exhaust outlet 230 provided in the lower portion 203c of the reaction pipe (outer pipe) 203 can be seen.
 実施形態によれば、以下に示す1つ又は複数の効果が得られる。 According to embodiments, one or more of the following effects may be obtained.
 (1)上方の端が閉塞された円筒状の筒部(内管)209と反応管(外管)203とを有する2重反応管において、筒部(内管)209に、筒部(内管)209の中心軸に平行に第1ガス排気口(排気孔、スリット)236が設けられる。第1ガス排気口(排気孔、スリット)236は、筒部(内管)209の上方の端寄りで最大幅W1を有し、筒部(内管)209の下方の端寄りで最小幅W3を有し、最小幅W3となる位置より更に下方の端寄りにおいて、最小幅W3より広い所定幅W2を有する。第1ガス排気口(排気孔、スリット)236は、最小幅>W3となる位置より更に下方の端寄りにおいて、最小幅W3より広い所定幅W2を有する形状としたので、筒部(内管)209のウエハ処理空間以外への処理ガスの流れ込みを防止できる。これにより、ウエハ200間の処理ガスの速度分布を均一化することが出来るので、ウエハ200間の膜厚差を均一化することが出来る。 (1) In a double reaction tube having a cylindrical tube portion (inner tube) 209 and a reaction tube (outer tube) 203 whose upper end is closed, the tube portion (inner tube) 209 has a tube portion (inner tube) A first gas exhaust port (exhaust hole, slit) 236 is provided in parallel to the central axis of the pipe 209. The first gas exhaust port (exhaust hole, slit) 236 has a maximum width W1 near the upper end of the cylindrical portion (inner pipe) 209 and a minimum width W3 near the lower end of the cylindrical portion (inner pipe) 209 And has a predetermined width W2 wider than the minimum width W3 at an end further below the position where the minimum width W3 is reached. The first gas exhaust port (exhaust hole, slit) 236 has a predetermined width W2 wider than the minimum width W3 at the lower end closer to the position where the minimum width> W3 and, therefore, the cylindrical portion (inner pipe) It is possible to prevent the flow of the processing gas into the area other than the wafer processing space 209. Thereby, the velocity distribution of the processing gas between the wafers 200 can be made uniform, so that the film thickness difference between the wafers 200 can be made uniform.
 (2)上記(1)において、第1ガス排気口(排気孔、スリット)236の最大幅W1および所定幅W2となる位置は、上下に積層される複数のウエハ200が筒部(内管)209内に載置される際の複数のウエハ200の上端部および複数のウエハ200の下端部の位置に、略対応している。これにより、多段に積載された複数のウエハ200の上端部から下端部において、第1ガス排気口から処理ガスを、効率的に排気できる。そのため、多段に積載された複数のウエハ200間における処理ガスの速度分布を均一化することが出来るので、多段に積載された複数のウエハ200間において、ウエハ200間の膜厚差を均一化することが出来る。 (2) In the above (1), at the positions where the maximum width W1 and the predetermined width W2 of the first gas exhaust port (exhaust hole, slit) 236 are reached, a plurality of wafers 200 stacked one on top of the other are cylindrical portions (inner pipe) The positions substantially correspond to the upper end portions of the plurality of wafers 200 and the lower end portions of the plurality of wafers 200 at the time of being placed in the space 209. Thus, the processing gas can be efficiently exhausted from the first gas exhaust port at the upper end to the lower end of the plurality of wafers 200 stacked in multiple stages. Therefore, since the velocity distribution of the processing gas among the plurality of wafers 200 stacked in multiple stages can be made uniform, the film thickness difference among the wafers 200 among the plurality of wafers 200 stacked in multiple stages can be made uniform. I can do it.
 (3)ボート217に一定の間隔(ピッチ)pで積載されたウエハ200において、第1ガス排気口(排気孔、スリット)236の上端236Uは、最上部に載置されるウエハ200の位置よりも、p/2から2pだけ、高い位置に設定される。また、第1ガス排気口(排気孔、スリット)236の下端236Lは、最下部に載置されるウエハの位置よりも、p/2から2pだけ低い位置に設定される。これにより、積載されたウエハ200の最上部のウエハから最下部のウエハが、第1ガス排気口236の上端235Uから下端235Lの範囲内に位置されるので、積載されたウエハ200の上下の全域から、第1ガス排気口236により、処理ガスを効率的に排気することが可能になる。 (3) In the wafers 200 loaded on the boat 217 at a constant interval (pitch) p, the upper end 236U of the first gas exhaust port (exhaust hole, slit) 236 is from the position of the wafer 200 placed on the top. Are also set high by p / 2 to 2p. In addition, the lower end 236L of the first gas exhaust port (exhaust hole, slit) 236 is set at a position lower than p / 2 by 2p than the position of the wafer placed at the lowermost portion. As a result, the uppermost wafer to the lowermost wafer of the loaded wafers 200 are positioned within the range from the upper end 235U to the lower end 235L of the first gas exhaust port 236. Thus, the first gas exhaust port 236 enables the process gas to be efficiently exhausted.
 (4)反応管(外管)203は、真空ポンプ246に接続される排気出口230を有する。排気出口230は、筒部(内管)209の中心軸からみて、第1ガス排気口236と同じ方向に、第1ガス排気口236が所定幅W3となる位置よりも、更に、下方の端寄りに設けられる。これにより、ウエハ200上の処理ガスの流れがほぼ均一化でき、ウエハ200面内の処理ガスの流速むらの発生が抑制できる。 (4) The reaction tube (outer tube) 203 has an exhaust outlet 230 connected to the vacuum pump 246. The exhaust outlet 230 is an end lower than the position where the first gas exhaust port 236 has a predetermined width W3 in the same direction as the first gas exhaust port 236 when viewed from the central axis of the cylindrical portion (inner pipe) 209 It will be installed closer. Thereby, the flow of the processing gas on the wafer 200 can be made substantially uniform, and the occurrence of the flow velocity unevenness of the processing gas in the surface of the wafer 200 can be suppressed.
 (5)筒部(内管)209は、排気出口230と略正対する位置に、パージガスを排気するための第2ガス排気口を有する。筒部(内管)209の処理室201の下側のパージカスを排気出口230へ積極的に流すことが出来る。排気出口230の部分の圧力と処理室201のウエハ領域の圧力との差を小さくして、圧力損失を最小限とすることができる。 (5) The cylindrical portion (inner pipe) 209 has a second gas exhaust port for exhausting the purge gas at a position substantially facing the exhaust outlet 230. The purge gas on the lower side of the processing chamber 201 of the cylindrical portion (inner pipe) 209 can be positively flowed to the exhaust outlet 230. The pressure drop can be minimized by reducing the difference between the pressure at the exhaust outlet 230 and the pressure in the wafer area of the process chamber 201.
 なお、本例において、各種の排気口や排気出口が略正対すると言ったときは、筒部209の中心軸CAから見て凡そ反対に位置することを意味する。たとえば、一方の開口部の任意の位置と、他方の開口部の任意の位置とを結ぶ直線が、中心軸CAと交差しうる場合を含む。 In the present example, when various exhaust ports and exhaust outlets are substantially directly opposed, it means that they are approximately opposite to each other when viewed from the central axis CA of the cylindrical portion 209. For example, the case where the straight line which ties the arbitrary positions of one opening and the arbitrary positions of the other opening may intersect central axis CA is included.
 また、本例の反応管は円筒形としたが、それに限らず、正多角形の筒状としても良い。 Moreover, although the reaction tube of this example was made into cylindrical shape, it is good also as cylindrical shape of not only it but a regular polygon.
 この出願は、2017年8月25日に出願された日本出願特願2017-162035を基礎として優先権の利益を主張するものであり、その開示の全てを引用によってここに取り込む。 This application claims the benefit of priority based on Japanese Patent Application No. 2017-162035 filed on Aug. 25, 2017, the entire disclosure of which is incorporated herein by reference.
 半導体基板等に対して、減圧下若しくは処理ガス雰囲気下或いは高温下で処理する装置に適用でき、例えば、CVD、PVD、ALD、エピタキシャル成長等の堆積や、表面に酸化膜、窒化膜を形成する処理、エッチング処理、ガスによる急冷処理に適用できる。 The present invention can be applied to an apparatus for processing a semiconductor substrate or the like under reduced pressure or processing gas atmosphere or high temperature, for example, deposition such as CVD, PVD, ALD, or epitaxial growth, or processing for forming an oxide film or nitride film on the surface It can be applied to etching process and quenching process by gas.
 1:基板処理装置
 200:基板(ウエハ)
 201:処理室
 203:反応管(外管)
 209:筒部(内管)
 230:排気出口
 235:ガス供給スリット
 236:第1ガス排気口
 237:第2ガス排気口
1: Substrate processing apparatus 200: Substrate (wafer)
201: Process chamber 203: Reaction tube (outer tube)
209: Tube part (inner pipe)
230: Exhaust outlet 235: Gas supply slit 236: First gas outlet 237: Second gas outlet

Claims (16)

  1.  上端が閉塞された筒状の内管と外管とを有する反応管を備えた基板処理装置であって、
     前記内管は前記内管の中心軸に平行に設けられた第1ガス排気口を有し、
     前記外管は排気出口を有し、
     前記第1ガス排気口は、
      前記排気出口から相対的に最も遠い位置に設けられた第1の幅部と、
      前記第1の幅部に比べて前記排気出口に近い位置に設けられ、実質的に前記第1の幅部の幅以下で形成された第2の幅部と、
      前記第1の幅部と前記第2の幅部との間であって、前記第2の幅部側に、前記第1の幅部と前記第2の幅部よりも小さい幅を有する第3の幅部と、を有する基板処理装置。
    A substrate processing apparatus comprising a reaction tube having a cylindrical inner tube and an outer tube, the upper end of which is closed.
    The inner pipe has a first gas outlet provided parallel to a central axis of the inner pipe,
    The outer pipe has an exhaust outlet,
    The first gas exhaust port is
    A first width portion provided at a position relatively far from the exhaust outlet;
    A second width portion provided at a position closer to the exhaust outlet than the first width portion and substantially formed equal to or smaller than the width of the first width portion;
    A third portion having a smaller width than the first width portion and the second width portion on the second width portion side between the first width portion and the second width portion; And a width portion of the substrate processing apparatus.
  2.  請求項1の基板処理装置において、
     前記最も遠い位置および前記第2の幅部の位置は、複数の基板が前記内管の内部に配置される際の両端の位置に対応する、基板処理装置。
    In the substrate processing apparatus of claim 1,
    The substrate processing apparatus, wherein the farthest position and the position of the second width portion correspond to positions of both ends when a plurality of substrates are disposed inside the inner pipe.
  3.  請求項2の基板処理装置において、
     前記排気出口は、前記内管の中心軸からみて、前記第1ガス排気口と同じ方向に、前記第1ガス排気口の前記第2の幅部よりも下方の、前記反応管の下端寄りに設けられる、基板処理装置。
    In the substrate processing apparatus of claim 2,
    The exhaust outlet is closer to the lower end of the reaction tube below the second width portion of the first gas exhaust port in the same direction as the first gas exhaust port when viewed from the central axis of the inner pipe. A substrate processing apparatus provided.
  4.  請求項2の基板処理装置において、
     更に、前記内管に収容され、前記複数の基板を所定間隔(p)で載置するボートを有し、
     前記第1ガス排気口の上端は、最上部に載置される基板の位置よりも、p/2から2p高い位置に設定され、
     前記第1ガス排気口の下端は、最下部に載置される基板の位置よりも、p/2から2p低い位置に設定される、基板処理装置。
    In the substrate processing apparatus of claim 2,
    Furthermore, it has a boat which is accommodated in the inner pipe and on which the plurality of substrates are placed at a predetermined interval (p),
    The upper end of the first gas exhaust port is set at a position p / 2 to 2p higher than the position of the substrate placed on the top,
    The substrate processing apparatus, wherein the lower end of the first gas exhaust port is set at a position p / 2 to 2p lower than the position of the substrate placed at the lowermost part.
  5.  請求項3の基板処理装置において、
     前記内管は、前記排気出口と対向する位置に、パージガスを排気するための第2ガス排気口を有する、基板処理装置。
    In the substrate processing apparatus of claim 3,
    The substrate processing apparatus, wherein the inner pipe has a second gas exhaust port for evacuating a purge gas at a position facing the exhaust outlet.
  6.  前記内管は、処理ガスが供給されるガス供給スリットを有し、
    前記ガス供給スリットは、前記内管の前記中心軸からみて、前記第1ガス排気口と反対側の前記内管の側壁に設けられる請求項3の基板処理装置。
    The inner pipe has a gas supply slit to which a processing gas is supplied,
    The substrate processing apparatus according to claim 3, wherein the gas supply slit is provided on a side wall of the inner pipe opposite to the first gas exhaust port as viewed from the central axis of the inner pipe.
  7.  前記内管と前記外管とは、それぞれの下方の端において互いに結合し、一体化される請求項3の基板処理装置。 The substrate processing apparatus according to claim 3, wherein the inner pipe and the outer pipe are coupled to and integrated with each other at respective lower ends.
  8.  前記ガス供給スリットが形成された部分を覆うように、前記内管の側部の一部を外側に張り出して形成されたガス供給エリアと、
     前記ガス供給エリア内にそれぞれ隔離された状態で収容される複数のノズルと、を更に備え、
     前記内管の側壁の一部であって、前記ガス供給エリアと前記内管内と間の境界を構成する境界壁を更に備え、
     前記ガス供給スリットは、前記境界壁に、周方向に長い複数の開口として形成され、
     前記ガス供給スリットは、複数のノズルに対応するように円周方向に複数列配列され、前記基板に対応するように複数段配列される請求項6に記載の基板処理装置。
    A gas supply area formed by projecting a part of the side portion of the inner pipe to the outside so as to cover the portion where the gas supply slit is formed;
    And a plurality of nozzles respectively housed in a separated state in the gas supply area,
    It further comprises a boundary wall which is a part of the side wall of the inner pipe, and which forms a boundary between the gas supply area and the inner pipe,
    The gas supply slit is formed as a plurality of circumferentially long openings in the boundary wall,
    The substrate processing apparatus according to claim 6, wherein the gas supply slits are arranged in a plurality of rows in the circumferential direction so as to correspond to a plurality of nozzles, and arranged in a plurality of stages so as to correspond to the substrate.
  9.  前記第1ガス排気口は、1つ以上の直線又は円弧の組合せによって形成された輪郭によって、連続的に幅が変化する単一の開口として形成される請求項6の基板処理装置。 7. The substrate processing apparatus according to claim 6, wherein the first gas exhaust port is formed as a single opening whose width is continuously changed by an outline formed by a combination of one or more straight lines or arcs.
  10.  前記第1ガス排気口の前記第1の幅部は、前記内管の円周方向に、複数の開口を配置することで構成される請求項3の基板処理装置。 4. The substrate processing apparatus according to claim 3, wherein the first width portion of the first gas exhaust port is configured by arranging a plurality of openings in the circumferential direction of the inner pipe.
  11.  前記第1ガス排気口の前記第2の幅部は、前記内管の円周方向に、複数の開口を配置することで構成される請求項3の基板処理装置。 The substrate processing apparatus according to claim 3, wherein the second width portion of the first gas exhaust port is configured by arranging a plurality of openings in the circumferential direction of the inner pipe.
  12.  前記第1ガス排気口は、前記内管の前記中心軸方向に、前記内管内に基板が配置される複数の位置に対応して開口するように、複数に分割されたスリットにより構成される請求項3の基板処理装置。 The first gas exhaust port is constituted by a plurality of slits divided so as to open in the direction of the central axis of the inner pipe in correspondence with a plurality of positions where a substrate is disposed in the inner pipe. The substrate processing apparatus of claim 3.
  13.  前記複数に分割されたスリットにおいて、
    前記分割されたスリットのおのおの輪郭は、前記内管の円周方向に長い長方形に形成される請求項3の基板処理装置。
    In the slit divided into the plurality,
    The substrate processing apparatus according to claim 3, wherein the outline of each of the divided slits is formed in a rectangular shape which is long in the circumferential direction of the inner pipe.
  14.  基板処理装置に用いられる反応管であって、
     前記反応管は、上方の端が閉塞された筒状の内管と外管とを有し、
     前記内管は前記内管の中心軸に平行に設けられた第1ガス排気口を有し、
     前記外管は排気出口を有し、
     前記第1ガス排気口は、
      前記排気出口から相対的に最も遠い位置に設けられた第1の幅部と、
      前記第1の幅部に比べて前記排気出口に近い位置に設けられ、実質的に前記第1の幅部の幅以下で形成された第2の幅部と、
      前記第1の幅部と第2の幅部との間であって、前記第2の幅部側に、前記第1の幅部と前記第2の幅部よりも小さい幅を有する第3の幅部と、を有し、
     前記排気出口は、前記内管の中心軸からみて、前記第1ガス排気口と同じ方向に、前記第1ガス排気口の前記第2の幅部よりも下方の、前記反応管の下端寄りに設けられる、反応管。
    A reaction tube used in a substrate processing apparatus,
    The reaction tube has a cylindrical inner tube and an outer tube, the upper end of which is closed.
    The inner pipe has a first gas outlet provided parallel to a central axis of the inner pipe,
    The outer pipe has an exhaust outlet,
    The first gas exhaust port is
    A first width portion provided at a position relatively far from the exhaust outlet;
    A second width portion provided at a position closer to the exhaust outlet than the first width portion and substantially formed equal to or smaller than the width of the first width portion;
    A third portion having a smaller width than the first width portion and the second width portion, between the first width portion and the second width portion, on the second width portion side Has a width, and
    The exhaust outlet is closer to the lower end of the reaction tube below the second width portion of the first gas exhaust port in the same direction as the first gas exhaust port when viewed from the central axis of the inner pipe. The reaction tube provided.
  15.  請求項1記載の基板処理装置を準備する工程と、
     前記内管内の処理室内に複数枚の基板を保持する基板保持具を挿入する工程と、
     前記外管と前記内管との間隙を区画して設けられたノズル配置室内に配置されたガスノズルから前記ノズル配置室と前記処理室とが連通するように前記内管に形成されるガス供給口を介して前記処理室内に処理ガスを供給する工程と、
     前記間隙と前記処理室とを連通させるように前記内管に形成される前記第1ガス排気口から前記処理室内の雰囲気を前記間隙に排気し、前記間隙に排気された前記雰囲気を前記外管に設けられた排気出口から前記外管外に排気する工程と、を備える半導体装置の製造方法。
    Preparing the substrate processing apparatus according to claim 1;
    Inserting a substrate holder for holding a plurality of substrates in a processing chamber in the inner tube;
    A gas supply port formed in the inner pipe so that the nozzle arrangement chamber and the processing chamber communicate with each other from a gas nozzle arranged in a nozzle arrangement chamber provided to divide the gap between the outer pipe and the inner pipe. Supplying a processing gas into the processing chamber via
    The atmosphere in the processing chamber is exhausted to the gap from the first gas exhaust port formed in the inner pipe so as to connect the gap and the processing chamber, and the atmosphere exhausted to the gap is the outer tube And evacuating the outer pipe from an exhaust outlet provided on the semiconductor device.
  16.  上端が閉塞された内管と外管とを有する反応管に基板を収容する工程と、
     前記内管にガスを供給する工程と、
     前記外管に設けられた排気出口から前記内管と前記外管の雰囲気を排気することによって、前記内管に設けられた、前記排気出口から相対的に最も遠い位置に設けられた第1の幅部と、前記第1の幅部に比べて前記排気出口に近い位置に設けられ、実質的に前記第1の幅部の幅以下で形成された第2の幅部と、前記第1の幅部と前記第2の幅部との間であって、前記第2の幅部側に、前記第1の幅部と前記第2の幅部よりも小さい幅を有する第3の幅部とを有する第1ガス排気出口から前記ガスを排出せしめ、前記基板を処理する工程と、を有する基板処理方法。
    Housing the substrate in a reaction tube having an inner tube and an outer tube closed at the upper end;
    Supplying a gas to the inner pipe;
    By exhausting the atmosphere of the inner pipe and the outer pipe from an exhaust outlet provided in the outer pipe, a first provided in the inner pipe at a position relatively far from the exhaust outlet. A width portion, a second width portion provided at a position closer to the exhaust outlet than the first width portion, and formed substantially equal to or less than the width of the first width portion; A third width portion having a width smaller than the first width portion and the second width portion, between the width portion and the second width portion, on the second width portion side And D. discharging the gas from the first gas exhaust outlet, and processing the substrate.
PCT/JP2018/011730 2017-08-25 2018-03-23 Substrate processing device, reaction tube, substrate processing method, and semiconductor device production method WO2019038974A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019537906A JP6867496B2 (en) 2017-08-25 2018-03-23 Substrate processing equipment, reaction tubes, substrate processing methods, and semiconductor device manufacturing methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017162035 2017-08-25
JP2017-162035 2017-08-25

Publications (1)

Publication Number Publication Date
WO2019038974A1 true WO2019038974A1 (en) 2019-02-28

Family

ID=65438677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011730 WO2019038974A1 (en) 2017-08-25 2018-03-23 Substrate processing device, reaction tube, substrate processing method, and semiconductor device production method

Country Status (2)

Country Link
JP (1) JP6867496B2 (en)
WO (1) WO2019038974A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022151071A (en) * 2021-03-26 2022-10-07 株式会社Kokusai Electric Reaction tube, processing device, and manufacturing method for semiconductor device
JP7371510B2 (en) 2020-01-28 2023-10-31 住友金属鉱山株式会社 Film formation method and substrate manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH021116A (en) * 1988-03-09 1990-01-05 Tel Sagami Ltd Heat treatment apparatus
JP2003017422A (en) * 2002-04-01 2003-01-17 Ftl:Kk Method and equipment for manufacturing semiconductor device
JP2007243201A (en) * 2006-03-01 2007-09-20 Aviza Technology Inc Thermal processing apparatus equipped with transverse flow liner
JP2010050439A (en) * 2008-07-23 2010-03-04 Hitachi Kokusai Electric Inc Substrate processing apparatus
JP2010258265A (en) * 2009-04-27 2010-11-11 Koyo Thermo System Kk Heat treatment apparatus
JP2018046114A (en) * 2016-09-13 2018-03-22 東京エレクトロン株式会社 Substrate processing apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH021116A (en) * 1988-03-09 1990-01-05 Tel Sagami Ltd Heat treatment apparatus
JP2003017422A (en) * 2002-04-01 2003-01-17 Ftl:Kk Method and equipment for manufacturing semiconductor device
JP2007243201A (en) * 2006-03-01 2007-09-20 Aviza Technology Inc Thermal processing apparatus equipped with transverse flow liner
JP2010050439A (en) * 2008-07-23 2010-03-04 Hitachi Kokusai Electric Inc Substrate processing apparatus
JP2010258265A (en) * 2009-04-27 2010-11-11 Koyo Thermo System Kk Heat treatment apparatus
JP2018046114A (en) * 2016-09-13 2018-03-22 東京エレクトロン株式会社 Substrate processing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7371510B2 (en) 2020-01-28 2023-10-31 住友金属鉱山株式会社 Film formation method and substrate manufacturing method
JP2022151071A (en) * 2021-03-26 2022-10-07 株式会社Kokusai Electric Reaction tube, processing device, and manufacturing method for semiconductor device
JP7290684B2 (en) 2021-03-26 2023-06-13 株式会社Kokusai Electric Reaction tube, processing equipment, and method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JP6867496B2 (en) 2021-04-28
JPWO2019038974A1 (en) 2020-03-26

Similar Documents

Publication Publication Date Title
US20210159083A1 (en) Substrate processing device, manufacturing method for semiconductor device, and reaction tube
US10961625B2 (en) Substrate processing apparatus, reaction tube and method of manufacturing semiconductor device
US10453735B2 (en) Substrate processing apparatus, reaction tube, semiconductor device manufacturing method, and recording medium
US11015248B2 (en) Substrate processing apparatus and method of manufacturing semiconductor device
TWI764225B (en) Substrate processing apparatus, manufacturing method of semiconductor device, substrate holder, and program
TW201833370A (en) Processing apparatus and cover member
WO2019038974A1 (en) Substrate processing device, reaction tube, substrate processing method, and semiconductor device production method
US20210292892A1 (en) Substrate processing apparatus
JP7048690B2 (en) Substrate processing equipment, semiconductor device manufacturing methods and substrate holders
JP7290684B2 (en) Reaction tube, processing equipment, and method for manufacturing semiconductor device
JP4553263B2 (en) Heat treatment apparatus and heat treatment method
US20230116953A1 (en) Substrate retainer, substrate processing apparatus and method of manufacturing semiconductor device
US20230253222A1 (en) Gas supplier, processing apparatus, and method of manufacturing semiconductor device
KR20070071502A (en) A wafer transferring boat

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18848999

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019537906

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18848999

Country of ref document: EP

Kind code of ref document: A1