WO2019037334A1 - 用于烹饪器具的无线供电系统和烹饪器具 - Google Patents

用于烹饪器具的无线供电系统和烹饪器具 Download PDF

Info

Publication number
WO2019037334A1
WO2019037334A1 PCT/CN2017/115480 CN2017115480W WO2019037334A1 WO 2019037334 A1 WO2019037334 A1 WO 2019037334A1 CN 2017115480 W CN2017115480 W CN 2017115480W WO 2019037334 A1 WO2019037334 A1 WO 2019037334A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
coil
power
cooking appliance
control chip
Prior art date
Application number
PCT/CN2017/115480
Other languages
English (en)
French (fr)
Inventor
张帆
王云峰
江德勇
雷俊
刘文华
黄庶锋
曾露添
Original Assignee
佛山市顺德区美的电热电器制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201721072978.4U external-priority patent/CN207150585U/zh
Priority claimed from CN201710739808.5A external-priority patent/CN109428621B/zh
Priority claimed from CN201710834242.4A external-priority patent/CN109510320B/zh
Application filed by 佛山市顺德区美的电热电器制造有限公司 filed Critical 佛山市顺德区美的电热电器制造有限公司
Priority to US16/630,699 priority Critical patent/US11478103B2/en
Priority to CA3066024A priority patent/CA3066024C/en
Publication of WO2019037334A1 publication Critical patent/WO2019037334A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J27/00Cooking-vessels
    • A47J27/08Pressure-cookers; Lids or locking devices specially adapted therefor
    • A47J27/086Pressure-cookers; Lids or locking devices specially adapted therefor with built-in heating means
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J27/00Cooking-vessels
    • A47J27/004Cooking-vessels with integral electrical heating means
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J27/00Cooking-vessels
    • A47J27/08Pressure-cookers; Lids or locking devices specially adapted therefor
    • A47J27/0802Control mechanisms for pressure-cookers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/0252Domestic applications
    • H05B1/0258For cooking
    • H05B1/0261For cooking of food
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/12Cooking devices
    • H05B6/1209Cooking devices induction cooking plates or the like and devices to be used in combination with them
    • H05B6/1236Cooking devices induction cooking plates or the like and devices to be used in combination with them adapted to induce current in a coil to supply power to a device and electrical heating devices powered in this way
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/50Charging of capacitors, supercapacitors, ultra-capacitors or double layer capacitors

Definitions

  • the present invention relates to the field of household appliances, and in particular to a wireless power supply system for a cooking appliance and a cooking appliance.
  • wireless communication is usually one-way communication, and one-way refers to transmitting relevant data from the power receiving end to the power transmitting end, and the information interaction between the receiving end and the transmitting end cannot be realized, which is disadvantageous for The intelligent development of cooking utensils.
  • the power control of the wireless power supply system is generally: after the receiving device is wirelessly powered, the main control chip of the receiving device sends the output power data of the receiving device to the transmitting device, and the control chip of the transmitting device receives the output power data, and adjusts the transmission according to the demand.
  • the transmission power of the device but this power control mode needs to pass the cable carrier, and the data transmission speed is slow.
  • the receiving device can feed back the output power to the transmitting device for more than 30 ms, thereby causing the device to perform power adjustment slower, and if receiving The load of the device suddenly becomes large, which may cause the stable power supply voltage supplied to the main control chip to be pulled down, and the main control chip of the receiving device may be powered down, thereby causing the power adjustment to fail normally, which may affect the normal operation of the wireless power supply system.
  • a first object of the present invention is to provide a wireless power supply system for a cooking appliance that can implement wireless communication from a power transmitting end to a power receiving end of the cooking appliance so that the receiving end of the cooking appliance can be The data sent by the transmitting end controls the cooking appliance, further improving the intelligence of the cooking appliance.
  • a second object of the invention is to propose a cooking appliance.
  • a first aspect of the present invention provides a wireless power supply system for a cooking appliance, the wireless power supply system comprising: a receiving device, the receiving device including a receiving coil and being connected to the receiving coil a voltage processing circuit, a first control chip and a first communication demodulation circuit; a transmitting device, the transmitting device comprising a transmitting coil, a coil driving circuit and a second control chip, wherein the transmitting coil is matched with the receiving coil;
  • the second control chip generates an alternating electromagnetic field by controlling the coil driving circuit to drive the transmitting coil, the receiving coil generates an induced voltage signal according to the alternating electromagnetic field, and the voltage processing circuit pairs the induced voltage signal Processing to output a stable power supply to power the first control chip and the first communication demodulation circuit; and the second control chip further controls the coil drive circuit to cause a resonance voltage of the transmission coil to occur Varying, the induced voltage signal generated by the receiving coil changes, the first communication demodulation Passage of the induced voltage signal changes demodulates output
  • the second control chip generates an alternating electromagnetic field by controlling the coil driving circuit to drive the transmitting coil, and the receiving coil generates an induced voltage signal according to the alternating electromagnetic field, and the voltage processing circuit applies the induced voltage.
  • the signal is processed to output a stable power supply to supply power to the first control chip and the first communication demodulation circuit, and the second control chip further controls the coil driving circuit to change the resonant voltage of the transmitting coil, so that the receiving coil generates the sensing
  • the voltage signal changes, so that the first communication demodulation circuit demodulates the changed induced voltage signal to output demodulated data to the first control chip to implement wireless communication between the first control chip and the second control chip.
  • the present invention can realize wireless communication from the power transmitting end to the power receiving end of the cooking appliance, so that the power receiving end of the cooking appliance can control the cooking appliance according to the data sent by the power transmitting end, thereby further improving the intelligence of the cooking appliance.
  • the wireless power supply system for cooking appliances may also have the following additional technical features:
  • the stabilizing power source also supplies power to a load disposed in the lid of the cooking appliance.
  • the coil driving circuit includes a driving unit connected to the second control chip, and a bridge circuit connected to the driving unit, wherein the second control chip outputs the output to The duty cycle or frequency of the control signal of the drive unit adjusts the output power of the bridge circuit to cause a change in the resonant voltage of the transmit coil.
  • the bridge circuit is a half bridge circuit
  • the half bridge circuit includes: a first switch tube, a control end of the first switch tube and a first drive output of the drive unit Connected to the end, the first end of the first switch tube is connected to the preset power source; the second switch tube, the control end of the second switch tube is connected to the second drive output end of the drive unit, the second a first end of the switch tube is connected to the second end of the first switch tube and has a first node, a second end of the second switch tube is grounded, and the first node passes the first capacitor and the transmit coil One end is connected, and the other end of the transmitting coil is grounded.
  • the voltage processing circuit includes a rectifier bridge and a voltage stabilizing unit, and the first input end of the rectifier bridge is connected to one end of the receiving coil through a second capacitor, and the rectifier bridge The two input ends are connected to the other end of the receiving coil, and the positive output end of the rectifier bridge is connected to the voltage stabilizing unit, and the voltage stabilizing unit outputs the regulated power supply to the first control chip.
  • an input end of the first communication demodulation circuit is connected to another end of the receiving coil, and an output end of the first communication demodulation circuit is connected to the first control chip.
  • the power supply end of the first communication demodulation circuit is connected to the output end of the voltage stabilization unit.
  • the transmit coil is sized to be coaxial with the receive coil and coaxially disposed.
  • the distance between the transmitting coil and the receiving coil is 0-50 cm.
  • the receiving device further includes an energy storage circuit, a power feedback circuit, the voltage processing circuit is connected to the energy storage circuit, and the energy storage circuit is connected to the power feedback circuit, a power feedback circuit is coupled to the receive coil by the first communication demodulation circuit, the power feedback circuit is configured to detect an output power of the receiving device;
  • the transmitting device further includes a second communication demodulation circuit, a second control chip is coupled to the second communication demodulation circuit, the second communication demodulation circuit is coupled to the transmit coil; wherein the stable power supply is further configured to charge the energy storage circuit, and When the load suddenly becomes large, causing the stable power source to be powered down, the energy storage circuit supplies power to the power feedback circuit, and the first communication demodulation circuit modulates the output power to modulate the power signal Loading to the receiving coil, the second communication demodulation circuit receiving the power modulation signal through the transmitting coil, and demodulating the power modulation signal The second output power is transmitted to the control chip, the second chip in accordance with said output power
  • the energy storage circuit comprises a storage capacitor or an energy storage battery.
  • the capacity of the storage capacitor is determined according to the power consumption of the power feedback circuit.
  • a diode is further connected between the voltage stabilizing unit and the energy storage circuit in the voltage processing circuit, and an anode of the diode is connected to an output end of the voltage stabilizing unit, the diode The cathode is connected to the energy storage circuit.
  • the cooking appliance comprises a lid and a pot body, wherein the receiving device is disposed on the lid, and the emitting device is disposed on the pot.
  • a second aspect of the present invention provides a cooking appliance comprising the wireless power supply system for a cooking appliance according to the first aspect of the present invention.
  • the cooking appliance of the embodiment of the present invention can realize wireless communication from the power transmitting end to the power receiving end through the wireless power supply system for the cooking appliance, so that the power receiving end can perform corresponding control according to the data pair sent by the power transmitting end. Further improved intelligence.
  • the cooking appliance is one of an electric pressure cooker or a rice cooker.
  • FIG. 1 is a block schematic diagram of a wireless powering system for a cooking appliance in accordance with one embodiment of the present invention
  • FIG. 2 is a schematic view showing the position of a transmitting coil and a receiving coil according to an embodiment of the present invention
  • FIG. 3 is a circuit topology diagram of a wireless powering system for a cooking appliance, in accordance with one embodiment of the present invention.
  • FIG. 4 is a waveform diagram showing communication between a second control chip and a first control chip according to an embodiment of the invention
  • FIG. 5 is a block schematic diagram of a wireless power supply system for a cooking appliance in the related art
  • FIG. 6 is a block schematic diagram of a wireless powering system for a cooking appliance in accordance with another embodiment of the present invention.
  • FIG. 7 is a block schematic diagram of a wireless powering system for a cooking appliance in accordance with yet another embodiment of the present invention.
  • the cooking appliance may include a lid and a pot, and the cooking pot may be an electric pressure cooker or a rice cooker or the like.
  • the wireless power supply system for a cooking appliance includes a receiving device 10 and a transmitting device 20.
  • the receiving device 10 may be disposed on a lid, and the receiving device 10 includes a receiving coil 101, a voltage processing circuit 102 connected to the receiving coil 101, a first control chip 103, and a first communication demodulating circuit 104.
  • the transmitting device 20 may be disposed in a pot body, and the transmitting device 20 includes a transmitting coil 201, a coil driving circuit 202, and a second control chip 203, and the transmitting coil 201 is matched with the receiving coil 101.
  • the second control chip 203 generates an alternating electromagnetic field by driving the transmitting coil 101 by controlling the coil driving circuit 202, and the receiving coil 101 generates an induced voltage signal according to the alternating electromagnetic field, and the voltage processing circuit 102 processes the induced voltage signal to output a stable power source.
  • the first control chip 103 and the first communication demodulation circuit 104 are powered.
  • the second control chip 203 further controls the coil driving circuit 202 to change the resonant voltage of the transmitting coil 201, and the induced voltage signal generated by the receiving coil 101 changes, and the first communication demodulating circuit 104 senses the induced induced voltage signal. Demodulation is performed to output demodulated data to the first control chip 103 to implement wireless communication between the first control chip 103 and the second control chip 203.
  • the transmitting coil 201 is sized to be equal to the receiving coil 101 and coaxially disposed so that the receiving coil 101 can receive the alternating electromagnetic field generated by the transmitting coil 201 well.
  • the distance between the transmitting coil 201 and the receiving coil 101 may be 0-20 cm, and the frequency of the alternating electromagnetic field may be 80 KHz-300 KHz.
  • the transmitting coil 201 is equivalent in size to the receiving coil 101.
  • the size may include the diameter of the transmitting coil 201 and the receiving coil 101, the thickness and shape of the coil, and the like.
  • the receiving coil 101 on the lid 100 and the transmitting coil on the pot body 200 when the user covers the lid 100 can be ensured by mechanical positioning. 201 coaxial.
  • the second control chip 203 controls the coil driving circuit 202 to start operating.
  • the transmitting coil 201 disposed on the pot body 200 is driven to generate an alternating electromagnetic field.
  • the receiving coil 101 disposed on the lid 100 senses the alternating electromagnetic field, an induced voltage signal is generated according to the alternating electromagnetic field, and the voltage processing circuit 102 in the rear lid 100 rectifies and stabilizes the induced voltage signal.
  • the processing is equal to output a stable power supply to supply power to the first control chip 103 and the first communication demodulation circuit 104.
  • the second control chip 203 controls the coil driving circuit 202 to start working, resonance occurs on the transmitting coil 201, and the second control chip 203 adjusts the magnitude of the resonant voltage of the transmitting coil.
  • the induced voltage signal generated by the receiving coil 101 can be changed.
  • the first communication demodulation circuit 104 demodulates the induced induced voltage signal, and outputs corresponding demodulated data to the first control chip 103.
  • the first control chip 103 can perform corresponding control on the cooking appliance according to the demodulated data.
  • the wireless power supply system can realize wireless communication between the power transmitting end and the power receiving end of the cooking appliance, so that the power receiving end of the cooking appliance can control the cooking appliance according to the data sent by the power transmitting end, thereby further improving the intelligence of the cooking appliance. Sex.
  • the stabilized power supply also supplies power to the load disposed in the lid 100.
  • the load may include a pressure detecting sensor, a temperature detecting sensor, a humidity detecting sensor, a display, and the like.
  • the stable power output from the voltage processing circuit 102 in the lid 100 is supplied to the first control chip 103 and the first communication demodulating circuit 104, and is also placed in the pot.
  • the load is supplied from a load such as a pressure detecting sensor, a temperature detecting sensor, a humidity detecting sensor, a display, and a signal processing module in the cover 100.
  • the load is set to start after the load in the lid 100 is powered.
  • the temperature detecting sensor starts to detect the temperature value in the cooking pot in real time, and transmits the detected temperature value to the display in the lid 100 for display through the display. So that the user can know the temperature information of the current cooking pot in real time.
  • the coil driving circuit 202 includes a driving unit 2021 connected to the second control chip 203, and a bridge circuit 2022 connected to the driving unit 2021, wherein the second control The chip 203 adjusts the output power of the bridge circuit 2022 by adjusting the duty ratio or frequency of the control signal output to the driving unit 2021 to change the resonance voltage of the transmitting coil 201.
  • the bridge circuit 2022 may be a half bridge circuit, and the half bridge circuit may include: a first switch tube Q1 and a second switch tube Q2.
  • the control end of the first switch Q1 is connected to the first drive output terminal PWM_H of the drive unit 2021.
  • the first end of the first switch Q1 is connected to the preset power supply VCC.
  • the control end of the second switch Q2 is connected to the second drive output PWM_L of the drive unit 2021.
  • the first end of the second switch Q2 is connected to the second end of the first switch Q1 and has a first node 1 and a second
  • the second end of the switch tube Q2 is grounded, the first node 1 is connected to one end of the transmitting coil 201 through the first capacitor C1, and the other end of the transmitting coil 201 is grounded.
  • the driving unit 2021 may be a PWM (Pulse Width Modulation) driving circuit, and the control signal may be a PWM signal.
  • the first switching transistor Q1 and the second switching transistor Q2 may be an N-channel enhancement type MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor).
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the output power of the bridge circuit 2022 changes, the amplitude of the resonant voltage on the transmitting coil 201 is changed, and the induced voltage signal generated by the receiving coil 101 is changed.
  • the first communication demodulating circuit 104 is changed.
  • the induced induced voltage signal is demodulated to output demodulated data to the first control chip 103 to implement wireless communication between the first control chip 103 and the second control chip 203.
  • the first communication demodulation circuit 104 can be composed of first to eighth resistors R1 - R8, third to seventh capacitors C3 - C6 , diode D5 , first amplifier A1 , and second amplifier A2 .
  • the specific connection mode is shown in Figure 3, and is not described here.
  • the first communication demodulating circuit 104 demodulates the induced voltage signal, and outputs the corresponding The demodulated signal (demodulated data) is transmitted to the first control chip 103, thereby implementing wireless communication between the first control chip 103 and the second control chip 203.
  • the voltage processing circuit 102 may include a rectifier bridge 1021 and a voltage stabilizing unit 1022.
  • the first input end of the rectifier bridge 1021 is connected to one end of the receiving coil 101 through a second capacitor C2, and the second input end of the rectifier bridge 1021 is connected to the other end of the receiving coil 101.
  • the rectifier bridge 1021 may include first to fourth voltage regulators D1-D4, and the connection manner thereof is specifically shown in FIG. 3, and details are not described herein again.
  • the voltage stabilizing unit 1022 can include a 7805 three-terminal integrated voltage regulator, the input terminal Vin of the voltage stabilizing unit 1022 is connected to the positive output end of the rectifier bridge 1021, and the output terminal Vout of the voltage stabilizing unit 1022 is connected to one end of the electrolytic capacitor E1, E1
  • the low frequency interference can be reduced, and the voltage stabilizing unit 1022 can output a stable direct current (regulated power supply) to the load in the first control chip 103 and the lid 100 to supply power to the first control chip 103 and the load.
  • the input end of the first communication demodulation circuit 104 is connected to the other end of the receiving coil 101, and the output end of the first communication demodulation circuit 104 and the first control chip 103 Connected, the power supply terminal of the first communication demodulation circuit 104 is connected to the output terminal Vout of the voltage stabilization unit 1022, and the voltage stabilization unit 1022 provides a stable power supply to the first communication demodulation circuit 104.
  • the second control chip generates an alternating electromagnetic field by driving the coil driving circuit to drive the transmitting coil, and the receiving coil generates an induced voltage signal according to the alternating electromagnetic field, and the voltage
  • the processing circuit processes the induced voltage signal to output a stable power supply to supply power to the first control chip and the first communication demodulation circuit
  • the second control chip further controls the coil driving circuit to change the resonant voltage of the transmitting coil, such that The induced voltage signal generated by the receiving coil changes, so that the first communication demodulation circuit demodulates the changed induced voltage signal to output demodulated data to the first control chip to implement the first control chip and the second control chip.
  • the present invention can realize wireless communication from the power transmitting end to the power receiving end of the cooking appliance, so that the power receiving end of the cooking appliance can control the cooking appliance according to the data sent by the power transmitting end, thereby further improving the intelligence of the cooking appliance.
  • embodiments of the present invention also provide a cooking appliance comprising the wireless powering system for a cooking appliance of any of the above embodiments of the present invention.
  • the cooking appliance may be one of an electric pressure cooker or a rice cooker.
  • the cooking appliance of the embodiment of the present invention can realize wireless communication from the power transmitting end to the power receiving end through the wireless power supply system for the cooking appliance, so that the power receiving end can perform corresponding control according to the data pair sent by the power transmitting end. Further improved intelligence.
  • a wireless power supply system is proposed in the related art, as shown in FIG. 5, which includes: a receiving device 10 and a transmitting device 20, and the receiving device 10 may include: a receiving coil 101, a voltage processing circuit 102, a power feedback circuit 106, and The first communication demodulation circuit 104, the transmitting device 20 may include: a transmitting coil 201, a coil driving circuit 202, a second control chip 203, and a second communication demodulating circuit 204.
  • the specific connection manner is shown in FIG. Narration.
  • the transmitting coil 201 is a power transmitting coil
  • the receiving coil 101 is a power receiving coil
  • the two coils are placed adjacent to each other.
  • the second control chip 203 controls the coil driving circuit 202 to start working, and drives the transmitting coil 201 to generate Alternating electromagnetic field.
  • the receiving coil 101 senses the alternating electromagnetic field
  • an induced voltage signal is generated according to the alternating electromagnetic field
  • the voltage processing circuit 102 processes the induced voltage signal to output a stable power source to supply power to the load and power feedback circuit 106.
  • the power feedback circuit 106 After the power feedback circuit 106 is powered, the power feedback circuit 106 detects the output power of the receiving device 10, and modulates the output power by the first communication demodulation circuit 104 to generate a power modulated signal, and loads the power modulated signal to the receiving coil 101. Then, a mutual inductance is generated on the transmitting coil 201, the second communication demodulating circuit 204 can demodulate the power modulated signal, and the second control chip 203 can obtain the output power of the receiving device 10 according to the demodulated power modulated signal, and according to The output power adjusts the transmit power of the transmitting device 20 to match the transmit power to the output power.
  • the transmitting coil 201 and the receiving coil 101 transmit both power and signals, and the modulation and demodulation of the power signal takes at least about 30 ms to complete, so that the output power feedback time of the receiving device 10 is long. If the load of the receiving device 10 suddenly increases, and the sudden increase of the load power is much larger than the transmitting power of the transmitting device 20, this is highly likely to cause the stable power supply to be directly pulled down to zero, thereby causing the power feedback circuit 106 to be powered off. Therefore, the power signal cannot be normally transmitted, the transmitting device 20 cannot receive the power data, and the power adjustment cannot be completed normally, thereby affecting the normal operation of the entire wireless power supply system.
  • the wireless power supply system includes a receiving device 10 and a transmitting device 20.
  • the receiving device 10 includes a receiving coil 101, a voltage processing circuit 102, a tank circuit 105, a power feedback circuit 106, and a first communication demodulation circuit 104.
  • the voltage processing circuit 102 is connected to the receiving coil 101, and the voltage processing circuit 102 and the energy storage device
  • the circuit 105 is connected, the tank circuit 105 is connected to the power feedback circuit 106, and the power feedback circuit 106 is connected to the receiving coil 101 through the first communication demodulating circuit 104.
  • the power feedback circuit 106 is used to detect the output power of the receiving device 10.
  • the transmitting device 20 includes a transmitting coil 201, a coil driving circuit 202, a second control chip 203, and a second communication demodulating circuit 204.
  • the transmitting coil 201 is matched with the receiving coil 101, and the coil driving circuit 202 is connected to the transmitting coil 201.
  • the second control The chip 203 is connected to the coil driving circuit 202 and the second communication demodulating circuit 204, respectively, and the second communication demodulating circuit 204 is connected to the transmitting coil 201.
  • the second control chip 203 generates an alternating electromagnetic field by controlling the coil driving circuit 202 to drive the transmitting coil 201, and the receiving coil 101 generates an induced voltage signal according to the alternating electromagnetic field, and the voltage processing circuit 102 processes the induced voltage signal to output a stable power source to give
  • the load is powered and the tank circuit 105 is charged.
  • the energy storage circuit 105 supplies power to the power feedback circuit 106, and the first communication demodulation circuit 104 modulates the output power to load the power modulation signal to the receiving coil 101.
  • the second communication demodulation circuit 204 receives the power modulation signal through the transmission coil 203, and demodulates the power modulation signal to transmit the output power to the second control chip 203, and the second control chip 203 adjusts the emission of the transmission device 201 according to the output power. Power to match the transmit power to the output power.
  • the cooking appliance may include a lid 100 and a pan 200, wherein the receiving device 10 may be disposed on the lid 100, and the emitting device 20 may be disposed on the pan 200.
  • the cooking pot can be an electric pressure cooker or a rice cooker.
  • the transmitting coil 201 is sized to be equal to the size of the receiving coil 101, and is coaxially disposed so that the receiving coil 101 can receive the alternating electromagnetic field generated by the transmitting coil 201 well.
  • the distance between the transmitting coil 201 and the receiving coil 101 may be 0-50 mm so that the receiving coil 101 can generate an induced voltage within the electromagnetic field radiation range of the transmitting coil 201.
  • the frequency of the alternating electromagnetic field can be from 80 KHz to 300 KHz.
  • the transmitting coil 201 is equivalent in size to the receiving coil 101.
  • the size includes the diameter of the transmitting coil 201 and the receiving coil 101, the thickness and shape of the coil, and the like.
  • the coil drive circuit 202 in the pan 200 begins to operate and drives the transmitting coil 201 disposed on the pan 200 to generate an alternating electromagnetic field.
  • the receiving coil 101 disposed on the lid 100 senses the alternating electromagnetic field, an induced voltage signal is generated according to the alternating electromagnetic field, and the voltage processing circuit 102 in the rear lid 100 processes the induced voltage signal to output stability.
  • a power source supplies power to the load and power feedback circuit 106 disposed in the lid 100 and charges the tank circuit 105.
  • the load may include a pressure detecting sensor, a temperature detecting sensor, a humidity detecting sensor, a display, and a signal processing module. The load is set to start after the load in the lid 100 is energized.
  • the temperature detecting sensor starts to detect the temperature value in the cooking pot in real time, and can transmit the detected temperature value to the display in the lid 100 to perform through the display.
  • the display enables the user to know the temperature information of the current cooking pot in real time.
  • the power feedback circuit 106 is powered to operate, the power feedback circuit 106 detects the output power of the receiving device 10, and modulates the output power by the first communication demodulation circuit 104 to generate a power modulated signal, and the power modulated signal is loaded to On the receiving coil 101, and then the mutual inductance is generated on the transmitting coil 201, the second communication demodulating circuit 204 receives the power modulated signal through the transmitting coil 201, and demodulates the power modulated signal, and the second control chip 203 can be demodulated.
  • the power modulation signal acquires the output power of the receiving device 10, and adjusts the transmission power of the transmitting device 20 according to the output power, thereby matching the transmission power with the output power.
  • the power feedback circuit 106 can still maintain the power supply for a period of time due to the presence of the energy storage circuit 105, so that the receiving device 10 can continue to feed back the output power back to the transmitting device 20, so that Power adjustment can continue to improve the reliability of the wireless power supply system.
  • the tank circuit 105 may comprise a storage capacitor or an energy storage battery.
  • the capacity of the storage capacitor is determined according to the power consumption of the power feedback circuit 106. It should be noted that when the stable power supply is powered off, the power stored in the storage capacitor or the energy storage battery can maintain the power supply of the power feedback circuit 106 for more than 50 ms.
  • the voltage processing circuit 102 includes a rectifier bridge 1021 and a voltage stabilizing unit 1022.
  • the first input end of the rectifier bridge 1021 is connected to one end of the receiving coil 102, the second input end of the rectifier bridge 1021 is connected to the other end of the receiving coil 101, and the output end of the rectifier bridge 1021 is connected to the voltage stabilizing unit 1022.
  • the voltage stabilizing unit 1022 The regulated power supply is output to the load and tank circuit 103.
  • the voltage stabilizing unit 1022 can include a 7805 three-terminal integrated voltage regulator, the input end of the voltage stabilizing unit 1022 is connected to the output end of the rectifier bridge 1021, and the output end of the voltage stabilizing unit 1022 is connected to the energy storage circuit 103, and the voltage stabilizing unit The 1022 can output a stable direct current (regulated power supply) to the load and tank circuit 103 to power the tank circuit 103 and the load.
  • a stable direct current regulated power supply
  • a diode D is further connected between the voltage stabilizing unit 1022 and the energy storage circuit 103, and an anode of the diode D is connected to an output end of the voltage stabilizing unit 1022, and the diode D
  • the cathode is connected to the tank circuit 103.
  • Diode D prevents current backflow and further improves the reliability of the wireless power supply system.
  • the coil driving circuit 202 can include a driving unit and a bridge circuit connected to the driving unit.
  • the driving unit can be a PWM (Pulse Width Modulation) driving circuit
  • the bridge circuit can be a half bridge circuit or a full bridge circuit. , do not make specific limits.
  • the second communication demodulation circuit 204 and the first communication demodulation circuit 104 may be conventional modulation and demodulation circuits, and are not specifically limited.
  • the second control chip generates an alternating electromagnetic field by driving the coil driving circuit to drive the transmitting coil, and the receiving coil generates an induced voltage signal according to the alternating electromagnetic field, and the voltage
  • the processing circuit processes the induced voltage signal to output a stable power supply to supply power to the load and charge the storage circuit, and the power supply circuit supplies power to the power feedback circuit when the load suddenly becomes large, causing the power supply to be powered down.
  • the demodulation circuit loads the power modulation signal to the receiving coil by modulating the output power
  • the second communication demodulation circuit receives the power modulation signal through the transmitting coil, and demodulates the power modulation signal to transmit the output power to the second control
  • the second control chip adjusts the transmit power of the transmitting device according to the output power to match the transmit power with the output power. Therefore, the system can supply power to the power feedback circuit through the energy storage circuit when the load suddenly becomes large and the stable power supply is powered down, so that the power adjustment can be continued to improve the reliability of the work.
  • the present invention also proposes a cooking appliance.
  • a cooking appliance according to an embodiment of the present invention includes the wireless power supply system for a cooking appliance of any of the above embodiments of the present invention.
  • the cooking appliance can be one of an electric pressure cooker or a rice cooker.
  • the cooking appliance of the embodiment of the present invention can supply power to the power feedback circuit through the energy storage circuit when the load suddenly becomes large and the stable power source is powered down, so that the power adjustment can be continued and the work is reliable. Sex.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or integrated; can be mechanical or electrical connection; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements, unless otherwise specified Limited.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Abstract

本发明公开了一种用于烹饪器具的无线供电系统和烹饪器具,所述系统包括:接收装置,包括接收线圈、与接收线圈相连的电压处理电路、第一控制芯片和第一通信解调电路;发射装置,包括发射线圈、线圈驱动电路和第二控制芯片,发射线圈与接收线圈相匹配;第二控制芯片通过控制线圈驱动电路以使发射线圈的谐振电压发生变化,接收线圈生成的感应电压信号发生变化,第一通信解调电路对发生变化的感应电压信号进行解调以输出解调数据至第一控制芯片,以实现第一控制芯片与第二控制芯片之间的无线通信。该无线供电系统可以实现烹饪器具上发射端到接收端的无线通信,使接收端可以根据发射端发送的数据对烹饪器具进行控制,提高了烹饪器具的智能性。

Description

用于烹饪器具的无线供电系统和烹饪器具 技术领域
本发明涉及家用电器技术领域,具体涉及一种用于烹饪器具的无线供电系统和一种烹饪器具。
背景技术
目前,应用于烹饪器具的无线供电系统中,无线通信通常为单向通信,且单向均是指从供电接收端发送相关数据到供电发射端,无法实现接收端和发射端的信息交互,不利于烹饪器具的智能化发展。
并且,无线供电系统的功率控制,一般是接收装置通过无线供电后,接收装置的主控芯片发送接收装置的输出功率数据到发射装置,发射装置的控制芯片接收输出功率数据,并根据需求调节发射装置的发射功率,但是这种功率控制方式需要通过线盘载波,数据发送速度较慢,通常接收装置超过30ms才能反馈一次输出功率至发射装置,从而导致发生装置进行功率调节较慢,而如果接收装置的负载突然变大,可能导致提供给主控芯片的稳定电源电压被拉低,出现接收装置的主控芯片掉电情况,进而导致功率调节无法正常进行,影响无线供电系统的正常工作。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的第一个目的在于提出一种用于烹饪器具的无线供电系统,该无线供电系统可以实现烹饪器具上供电发射端到供电接收端的无线通信,使烹饪器具的接收端可以根据发射端发送的数据对烹饪器具进行控制,进一步提高了烹饪器具的智能性。
本发明的第二个目的在于提出一种烹饪器具。
为实现上述目的,本发明第一方面实施例提出了一种用于烹饪器具的无线供电系统,所述无线供电系统包括:接收装置,所述接收装置包括接收线圈、与所述接收线圈相连的电压处理电路、第一控制芯片和第一通信解调电路;发射装置,所述发射装置包括发射线圈、线圈驱动电路和第二控制芯片,所述发射线圈与所述接收线圈相匹配;其中,所述第二控制芯片通过控制所述线圈驱动电路以驱动所述发射线圈产生交变电磁场,所述接收线圈根据所述交变电磁场生成感应电压信号,所述电压处理电路对所述感应电压信号进行处理以输出稳定电源,以给所述第一控制芯片和第一通信解调电路供电;并且,所述第二控制芯片还通过控制所述线圈驱动电路以使所述发射线圈的谐振电压发生变化,所述接收线圈生成的感应电压信号发生变化,所述第一通信解调电路对发生变化的感应电压信号进行 解调以输出解调数据至所述第一控制芯片,以实现所述第一控制芯片与所述第二控制芯片之间的无线通信。
根据本发明实施例的用于烹饪器具的无线供电系统,第二控制芯片通过控制线圈驱动电路以驱动发射线圈产生交变电磁场,接收线圈根据交变电磁场生成感应电压信号,电压处理电路对感应电压信号进行处理以输出稳定电源,以给第一控制芯片和第一通信解调电路供电,并且第二控制芯片还通过控制线圈驱动电路以使发射线圈的谐振电压发生变化,这样接收线圈生成的感应电压信号发生变化,从而第一通信解调电路对发生变化的感应电压信号进行解调以输出解调数据至第一控制芯片,以实现第一控制芯片与第二控制芯片之间的无线通信。由此,本发明可以实现烹饪器具上供电发射端到供电接收端的无线通信,使烹饪器具的供电接收端可以根据供电发射端发送的数据对烹饪器具进行控制,进一步提高了烹饪器具的智能性。
另外,根据本发明上述的用于烹饪器具的无线供电系统还可以具有如下附加的技术特征:
在本发明的一个实施例中,所述稳定电源还给设置在所述烹饪器具的锅盖中的负载供电。
在本发明的一个实施例中,所述线圈驱动电路包括与所述第二控制芯片相连的驱动单元、与所述驱动单元相连的桥式电路,其中,所述第二控制芯片通过调节输出至所述驱动单元的控制信号的占空比或频率以调节所述桥式电路的输出功率,以使所述发射线圈的谐振电压发生变化。
在本发明的一个实施例中,所述桥式电路为半桥电路,所述半桥电路包括:第一开关管,所述第一开关管的控制端与所述驱动单元的第一驱动输出端相连,所述第一开关管的第一端与预设电源相连;第二开关管,所述第二开关管的控制端与所述驱动单元的第二驱动输出端相连,所述第二开关管的第一端与所述第一开关管的第二端相连且具有第一节点,所述第二开关管的第二端接地,所述第一节点通过第一电容与所述发射线圈的一端相连,所述发射线圈的另一端接地。
在本发明的一个实施例中,所述电压处理电路包括整流桥和稳压单元,所述整流桥的第一输入端通过第二电容与所述接收线圈的一端相连,所述整流桥的第二输入端与所述接收线圈的另一端相连,所述整流桥的正输出端与所述稳压单元相连,所述稳压单元输出所述稳压电源至所述第一控制芯片。
在本发明的一个实施例中,所述第一通信解调电路的输入端与所述接收线圈的另一端相连,所述第一通信解调电路的输出端与所述第一控制芯片相连,所述第一通信解调电路的供电端与所述稳压单元的输出端相连。
在本发明的一个实施例中,所述发射线圈与所述接收线圈的尺寸相当,且同轴设置。
在本发明的一个实施例中,所述发射线圈与所述接收线圈之间的距离为0-50cm。
根据本发明的一个实施例,所述接收装置还包括储能电路、功率反馈电路,所述电压处理电路与所述储能电路相连,所述储能电路与所述功率反馈电路相连,所述功率反馈电路通过所述第一通信解调电路连接到所述接收线圈,所述功率反馈电路用于检测所述接收装置的输出功率;所述发射装置还包括第二通信解调电路,所述第二控制芯片与所述第二通信解调电路相连,所述第二通信解调电路与所述发射线圈相连;其中,所述稳定电源还用于给所述储能电路充电,并且,在所述负载突然变大导致所述稳定电源发生掉电时,所述储能电路给所述功率反馈电路供电,所述第一通信解调电路通过对所述输出功率进行调制以将功率调制信号加载至所述接收线圈,所述第二通信解调电路通过所述发射线圈接收所述功率调制信号,并对所述功率调制信号进行解调以将所述输出功率发送至所述第二控制芯片,所述第二控制芯片根据所述输出功率调节所述发射装置的发射功率,以使所述发射功率与所述输出功率进行匹配。
根据本发明的一个实施例,所述储能电路包括储能电容或储能电池。
根据本发明的一个实施例,当所述储能电路包括储能电容时,所述储能电容的容量根据所述功率反馈电路的耗电量确定。
根据本发明的一个实施例,所述电压处理电路中的稳压单元与所述储能电路之间还连接有二极管,所述二极管的阳极与所述稳压单元的输出端相连,所述二极管的阴极与所述储能电路相连。
根据本发明的一个实施例,所述烹饪器具包括锅盖和锅体,其中,所述接收装置设置在所述锅盖上,所述发射装置设置在所述锅体上。
为实现上述目的,本发明第二方面实施例提出了一种烹饪器具,其包括本发明第一方面实施例所述的用于烹饪器具的无线供电系统。
本发明实施例的烹饪器具,通过上述的用于烹饪器具的无线供电系统,可以实现供电发射端到供电接收端的无线通信,使供电接收端可以根据供电发射端发送的数据对进行相应的控制,进一步提高了智能性。
根据本发明的一个实施例,所述烹饪器具为电压力锅或电饭煲之一。
本发明附加的方面的优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
图1是根据本发明一个实施例的用于烹饪器具的无线供电系统的方框示意图;
图2是根据本发明一个实施例的发射线圈与接收线圈的位置示意图;
图3是根据本发明一个实施例的用于烹饪器具的无线供电系统的电路拓扑示意图;
图4是根据本发明一个实施例的第二控制芯片与第一控制芯片通信的波形示意图;
图5是相关技术中一种用于烹饪器具的无线供电系统的方框示意图;
图6是根据本发明另一个实施例的用于烹饪器具的无线供电系统的方框示意图;
图7是根据本发明还一个实施例的用于烹饪器具的无线供电系统的方框示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参照附图来描述根据本发明实施例提出的用于烹饪器具的无线供电系统和具有其的烹饪器具。
图1是根据本发明一个实施例的用于烹饪器具的无线供电系统的方框示意图。在本发明的实施例中,烹饪器具可包括锅盖和锅体,烹饪锅具可以为电压力锅或电饭煲等。
如图1所示,该用于烹饪器具的无线供电系统包括:接收装置10、发射装置20。接收装置10可设置在锅盖上,接收装置10包括接收线圈101、与接收线圈101相连的电压处理电路102、第一控制芯片103和第一通信解调电路104。发射装置20可设置在锅体,发射装置20包括发射线圈201、线圈驱动电路202和第二控制芯片203,发射线圈201与接收线圈101相匹配。
其中,第二控制芯片203通过控制线圈驱动电路202以驱动发射线圈101产生交变电磁场,接收线圈101根据交变电磁场生成感应电压信号,电压处理电路102对感应电压信号进行处理以输出稳定电源,以给第一控制芯片103和第一通信解调电路104供电。并且,第二控制芯片203还通过控制线圈驱动电路202以使发射线圈201的谐振电压发生变化,接收线圈101生成的感应电压信号发生变化,第一通信解调电路104对发生变化的感应电压信号进行解调以输出解调数据至第一控制芯片103,以实现第一控制芯片103与第二控制芯片203之间的无线通信。
在本发明的实施例中,发射线圈201与接收线圈101的尺寸相当,且同轴设置,以使接收线圈101能够很好的接收发射线圈201产生的交变电磁场。发射线圈201与接收线圈101之间的距离可为0-20cm,交变电磁场的频率可为80KHz-300KHz。
需要说明的是,当发射线圈201与接收线圈101的大小以及线圈的缠绕数目基本相同时,则发射线圈201与接收线圈101的尺寸相当。其中,大小可以包括发射线圈201和接 收线圈101的直径大小、线圈厚度大小和形状大小等。
具体地,如图2所示,在本发明的一个实施例中,可通过机械定位方式来确保用户在盖上锅盖100时,锅盖100上的接收线圈101和锅体200上的发射线圈201同轴。
在用户给烹饪器具的锅体200上电之后,第二控制芯片203控制线圈驱动电路202开始工作,线圈驱动电路202开始工作后,驱动设置在锅体200上的发射线圈201产生交变电磁场。当设置在锅盖100上的接收线圈101感应到该交变电磁场时,则根据该交变电磁场生成感应电压信号,而后锅盖100中的电压处理电路102对该感应电压信号进行整流、稳压等处理以输出稳定电源,以给第一控制芯片103和第一通信解调电路104供电。并且,在用户给烹饪器具的锅体200上电之后,第二控制芯片203控制线圈驱动电路202开始工作,发射线圈201上会产生谐振,第二控制芯片203通过调节发射线圈的谐振电压的大小,可以使接收线圈101生成的感应电压信号发生变化。第一通信解调电路104对发生变化的感应电压信号进行解调后,输出相应解调数据至第一控制芯片103,第一控制芯片103可以根据解调数据对烹饪器具进行相应的控制。由此,该无线供电系统可以实现烹饪器具上供电发射端到供电接收端的无线通信,使烹饪器具的供电接收端可以根据供电发射端发送的数据对烹饪器具进行控制,进一步提高了烹饪器具的智能性。
根据本发明的一个实施例,如图1所示,稳定电源还给设置在锅盖100中的负载供电。
具体地,负载可以包括压力检测传感器、温度检测传感器、湿度检测传感器和显示器等。当在用户给烹饪器具的锅体200上电之后,锅盖100中的电压处理电路102输出的稳定电源除给第一控制芯片103和第一通信解调电路104供电外,还给置在锅盖100中的压力检测传感器、温度检测传感器、湿度检测传感器、显示器和信号处理模块等负载供电。设置在锅盖100中的负载得电后开始工作,例如,温度检测传感器开始实时检测烹饪锅具内的温度值,并将检测的温度值传输至锅盖100中的显示器,以通过显示器进行显示,使得用户能够实时了解到当前烹饪锅具的温度信息。
进一步地,根据本发明的一个实施例,如图3所示,线圈驱动电路202包括与第二控制芯片203相连的驱动单元2021、与驱动单元2021相连的桥式电路2022,其中,第二控制芯片203通过调节输出至驱动单元2021的控制信号的占空比或频率以调节桥式电路2022的输出功率,以使发射线圈201的谐振电压发生变化。
更进一步地,如图3所示,桥式电路2022可以为半桥电路,半桥电路可以包括:第一开关管Q1和第二开关管Q2。其中,第一开关管Q1的控制端与驱动单元2021的第一驱动输出端PWM_H相连,第一开关管Q1的第一端与预设电源VCC相连。第二开关管Q2的控制端与驱动单元2021的第二驱动输出端PWM_L相连,第二开关管Q2的第一端与第一开关管Q1的第二端相连且具有第一节点1,第二开关管Q2的第二端接地,第一节点1通 过第一电容C1与发射线圈201的一端相连,发射线圈201的另一端接地。
具体地,如图3所示,驱动单元2021可以为PWM(Pulse Width Modulation,脉冲宽度调制)驱动电路,控制信号可以为PWM信号。第一开关管Q1和第二开关管Q2可以为N沟道增强型MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor,金属-氧化物半导体场效应晶体管)。在烹饪器具的锅体200上电之后,发射线圈201会进行LC谐振,根据半桥电路的工作原理可知,当第二控制芯片203调节输出至驱动单元2021的PWM信号的占空比或频率时,可调节桥式电路2022的输出功率。如图4所示,桥式电路2022的输出功率发生变化,会使发射线圈201上的谐振电压的振幅发生变化,进而使接收线圈101生成的感应电压信号发生变化,第一通信解调电路104对发生变化的感应电压信号进行解调以输出解调数据至第一控制芯片103,以实现第一控制芯片103与第二控制芯片203之间的无线通信。
其中,如图3所示,第一通信解调电路104可以由第一至第八电阻R1-R8、第三至第七电容C3-C6、二极管D5、第一放大器A1以及第二放大器A2组成,具体连接方式如图3所示,此处不再赘述。如图4所示,当发射线圈201上的谐振电压的振幅发生变化时,接收线圈101上的感应电压信号也会发生变化,第一通信解调电路104对感应电压信号进行解调,输出相应的解调后信号(解调数据)至第一控制芯片103,从而实现第一控制芯片103与第二控制芯片203之间的无线通信。
根据本发明的一个实施例,如图3所示,电压处理电路102可以包括整流桥1021和稳压单元1022。整流桥1021的第一输入端通过第二电容C2与接收线圈101的一端相连,整流桥1021的第二输入端与接收线圈101的另一端相连,整流桥1021的正输出端与稳压单元1022相连,稳压单元1022输出稳压电源至第一控制芯片103。
具体地,如图3所示,整流桥1021可以包括第一至第四稳压管D1-D4,其连接方式具体如图3所示,此处不再赘述。稳压单元1022可以包括7805三端集成稳压器,稳压单元1022的的输入端Vin与整流桥1021的正输出端相连,稳压单元1022的输出端Vout与电解电容E1的一端相连,E1可以减小低频干扰,稳压单元1022可以输出稳定的直流电(稳压电源)至第一控制芯片103和锅盖100中的负载,以给第一控制芯片103和负载供电。
在本发明的一个实施例中,如图3所示,第一通信解调电路104的输入端与接收线圈101的另一端相连,第一通信解调电路104的输出端与第一控制芯片103相连,第一通信解调电路104的供电端与稳压单元1022的输出端Vout相连,稳压单元1022提供稳定电源给第一通信解调电路104。
综上所述,根据本发明实施例的用于烹饪器具的无线供电系统,第二控制芯片通过控制线圈驱动电路以驱动发射线圈产生交变电磁场,接收线圈根据交变电磁场生成感应电压 信号,电压处理电路对感应电压信号进行处理以输出稳定电源,以给第一控制芯片和第一通信解调电路供电,并且第二控制芯片还通过控制线圈驱动电路以使发射线圈的谐振电压发生变化,这样接收线圈生成的感应电压信号发生变化,从而第一通信解调电路对发生变化的感应电压信号进行解调以输出解调数据至第一控制芯片,以实现第一控制芯片与第二控制芯片之间的无线通信。由此,本发明可以实现烹饪器具上供电发射端到供电接收端的无线通信,使烹饪器具的供电接收端可以根据供电发射端发送的数据对烹饪器具进行控制,进一步提高了烹饪器具的智能性。
此外,本发明实施例还提出一种烹饪器具,其包括本发明上述任一实施例的用于烹饪器具的无线供电系统。
在本发明的实施例中,烹饪器具可以为电压力锅或电饭煲之一。
本发明实施例的烹饪器具,通过上述的用于烹饪器具的无线供电系统,可以实现供电发射端到供电接收端的无线通信,使供电接收端可以根据供电发射端发送的数据对进行相应的控制,进一步提高了智能性。
此外,相关技术中提出了一种无线供电系统,如图5所示,其包括:接收装置10和发射装置20,接收装置10可以包括:接收线圈101、电压处理电路102、功率反馈电路106和第一通信解调电路104,发射装置20可以包括:发射线圈201、线圈驱动电路202、第二控制芯片203和第二通信解调电路204,具体连接方式如图5所示,此处不再赘述。
发射线圈201为功率发射线圈,接收线圈101为功率接收线圈,两线圈相邻放置,在用户给烹饪器具上电之后,第二控制芯片203控制线圈驱动电路202开始工作,并驱动发射线圈201产生交变电磁场。接收线圈101感应到该交变电磁场时,根据该交变电磁场生成感应电压信号,而后电压处理电路102对该感应电压信号进行处理以输出稳定电源,以给负载和功率反馈电路106进行供电。功率反馈电路106得电后,功率反馈电路106检测接收装置10的输出功率,并通过第一通信解调电路104对输出功率进行调制以生成功率调制信号,并将功率调制信号加载到接收线圈101上,继而发射线圈201上产生互感,第二通信解调电路204可将功率调制信号解调出来,第二控制芯片203可以根据解调后的功率调制信号获取接收装置10的输出功率,并根据输出功率调整发射装置20的发射功率,从而使发射功率与输出功率进行匹配。
然而,发射线圈201和接收线圈101既传递功率也传递信号,功率信号的调制和解调最少需要30ms左右才能完成,因此接收装置10的输出功率反馈时间较长。如果接收装置10的负载突然增大,且突然增大的负载功率远大于发射装置20的发射功率,这极有可能导致稳定电源直接被拉低到零的情况,进而导致功率反馈电路106断电,使功率信号无法正常传递,发射装置20无法接收到功率数据,功率调整无法正常完成,从而影响整个无线 供电系统的正常工作。
根据本发明的另一个实施例,如图6所示,该无线供电系统包括:接收装置10和发射装置20。
其中,接收装置10包括接收线圈101、电压处理电路102、储能电路105、功率反馈电路106和第一通信解调电路104,电压处理电路102与接收线圈101相连,电压处理电路102与储能电路105相连,储能电路105与功率反馈电路106相连,功率反馈电路106通过第一通信解调电路104连接到接收线圈101,功率反馈电路106用于检测接收装置10的输出功率。发射装置20包括发射线圈201、线圈驱动电路202、第二控制芯片203和第二通信解调电路204,发射线圈201与接收线圈101相匹配,线圈驱动电路202与发射线圈201相连,第二控制芯片203分别与线圈驱动电路202和第二通信解调电路204相连,第二通信解调电路204与发射线圈201相连。
第二控制芯片203通过控制线圈驱动电路202以驱动发射线圈201产生交变电磁场,接收线圈101根据交变电磁场生成感应电压信号,电压处理电路102对感应电压信号进行处理以输出稳定电源,以给负载供电和给储能电路105充电。并且,在负载突然变大导致稳定电源发生掉电时,储能电路105给功率反馈电路106供电,第一通信解调电路104通过对输出功率进行调制以将功率调制信号加载至接收线圈101,第二通信解调电路204通过发射线圈203接收功率调制信号,并对功率调制信号进行解调以将输出功率发送至第二控制芯片203,第二控制芯片203根据输出功率调节发射装置201的发射功率,以使发射功率与输出功率进行匹配。
在本发明的实施例中,如图3所示,烹饪器具可以包括锅盖100和锅体200,其中,接收装置10可以设置在锅盖100上,发射装置20可以设置在锅体200上。烹饪锅具可以为电压力锅或电饭煲等。并且,发射线圈201与接收线圈101的尺寸相当,且同轴设置,以使接收线圈101能够很好的接收发射线圈201产生的交变电磁场。发射线圈201与接收线圈101之间的距离可为0-50mm,以使接收线圈101在发射线圈201的电磁场辐射范围内,能产生感应电压。交变电磁场的频率可为80KHz-300KHz。
需要说明的是,当发射线圈201与接收线圈101的大小以及线圈的缠绕数目基本相同时,则发射线圈201与接收线圈101的尺寸相当。其中,大小包括发射线圈201和接收线圈101的直径大小、线圈厚度大小和形状大小等。
具体地,如图3所示,可通过机械定位方式来确保用户在盖上锅盖100时,锅盖100上的接收线圈101和锅体200上的发射线圈201同轴。
用户给烹饪器具的锅体200上电之后,锅体200中的线圈驱动电路202开始工作,并驱动设置在锅体200上的发射线圈201产生交变电磁场。当设置在锅盖100上的接收线圈 101感应到该交变电磁场时,则根据该交变电磁场生成感应电压信号,而后锅盖100中的电压处理电路102对该感应电压信号进行处理以输出稳定电源,以给设置在锅盖100中的负载和功率反馈电路106进行供电,并给储能电路105充电。其中,负载可以包括压力检测传感器、温度检测传感器、湿度检测传感器、显示器和信号处理模块等。设置在锅盖100中的负载得电后开始工作,例如,温度检测传感器开始实时检测烹饪锅具内的温度值,并可以将检测的温度值传输至锅盖100中的显示器,以通过显示器进行显示,使得用户能够实时了解到当前烹饪锅具的温度信息。同时,功率反馈电路106得电后进行工作,功率反馈电路106检测接收装置10的输出功率,并通过第一通信解调电路104对输出功率进行调制以生成功率调制信号,并功率调制信号加载到接收线圈101上,继而发射线圈201上产生互感,第二通信解调电路204通过发射线圈201接收功率调制信号,并可将功率调制信号解调出来,第二控制芯片203可以根据解调后的功率调制信号获取接收装置10的输出功率,并根据输出功率调整发射装置20的发射功率,从而使发射功率与输出功率进行匹配。
而当负载突然变大导致稳定电源发生掉电时,由于储能电路105的存在,功率反馈电路106仍然可以维持供电一段时间,以使接收装置10可以继续将输出功率反馈回发射装置20,使得功率调整可以继续进行,提高无线供电系统工作的可靠性。
在本发明的实施例中,储能电路105可以包括储能电容或储能电池。当储能电路105包括储能电容时,储能电容的容量根据功率反馈电路106的耗电量确定。需要说明的是,当稳定电源发生掉电时,储能电容或储能电池中存储的电量可使功率反馈电路106的供电维持50ms以上。
根据本发明的一个实施例,如图7所示,电压处理电路102包括整流桥1021和稳压单元1022。整流桥1021的第一输入端与接收线圈102的一端相连,整流桥1021的第二输入端与接收线圈101的另一端相连,整流桥1021的输出端与稳压单元1022相连,稳压单元1022输出稳压电源至负载和储能电路103。
具体地,稳压单元1022可以包括7805三端集成稳压器,稳压单元1022的输入端与整流桥1021的输出端相连,稳压单元1022的输出端与储能电路103相连,稳压单元1022可以输出稳定的直流电(稳压电源)至负载和储能电路103,以给储能电路103和负载供电。
进一步地,根据本发明的一个实施例,如图7所示,稳压单元1022与储能电路103之间还连接有二极管D,二极管D的阳极与稳压单元1022的输出端相连,二极管D的阴极与储能电路103相连。二极管D可以防止电流倒灌,进一步提高无线供电系统工作的可靠性。
可以理解,线圈驱动电路202可以包括驱动单元、与驱动单元相连的桥式电路,驱动单元可以为PWM(Pulse Width Modulation,脉冲宽度调制)驱动电路,桥式电路可以为半 桥电路或者全桥电路,不做具体限定。第二通信解调电路204和第一通信解调电路104可以为常规的调制及解调电路,不做具体限定。
综上所述,根据本发明实施例的用于烹饪器具的无线供电系统,第二控制芯片通过控制线圈驱动电路以驱动发射线圈产生交变电磁场,接收线圈根据交变电磁场生成感应电压信号,电压处理电路对感应电压信号进行处理以输出稳定电源,以给负载供电和给储能电路充电,并且,在负载突然变大导致稳定电源发生掉电,储能电路给功率反馈电路供电,第一通信解调电路通过对输出功率进行调制以将功率调制信号加载至接收线圈,第二通信解调电路通过发射线圈接收功率调制信号,并对功率调制信号进行解调以将输出功率发送至第二控制芯片,第二控制芯片根据输出功率调节发射装置的发射功率,以使发射功率与输出功率进行匹配。由此,该系统可以在负载突然变大导致稳定电源发生掉电时,通过储能电路给功率反馈电路供电,使得功率调整可以继续进行,提高工作的可靠性。
为了实现上述实施例,本发明还提出一种烹饪器具。
本发明实施例的烹饪器具包括本发明上述任一实施例的用于烹饪器具的无线供电系统。其中,烹饪器具可以为电压力锅或电饭煲之一。
本发明实施例的烹饪器具,通过上述的无线供电系统,可以在负载突然变大导致稳定电源发生掉电时,通过储能电路给功率反馈电路供电,使得功率调整可以继续进行,提高工作的可靠性。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是 第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (15)

  1. 一种用于烹饪器具的无线供电系统,其特征在于,包括:
    接收装置,所述接收装置包括接收线圈、与所述接收线圈相连的电压处理电路、第一控制芯片和第一通信解调电路;
    发射装置,所述发射装置包括发射线圈、线圈驱动电路和第二控制芯片,所述发射线圈与所述接收线圈相匹配;
    其中,所述第二控制芯片通过控制所述线圈驱动电路以驱动所述发射线圈产生交变电磁场,所述接收线圈根据所述交变电磁场生成感应电压信号,所述电压处理电路对所述感应电压信号进行处理以输出稳定电源,以给所述第一控制芯片和第一通信解调电路供电;
    并且,所述第二控制芯片还通过控制所述线圈驱动电路以使所述发射线圈的谐振电压发生变化,所述接收线圈生成的感应电压信号发生变化,所述第一通信解调电路对发生变化的感应电压信号进行解调以输出解调数据至所述第一控制芯片,以实现所述第一控制芯片与所述第二控制芯片之间的无线通信。
  2. 如权利要求1所述的用于烹饪器具的无线供电系统,其特征在于,所述稳定电源还给设置在所述烹饪器具的锅盖中的负载供电。
  3. 如权利要求1所述的用于烹饪器具的无线供电系统,其特征在于,所述线圈驱动电路包括与所述第二控制芯片相连的驱动单元、与所述驱动单元相连的桥式电路,其中,所述第二控制芯片通过调节输出至所述驱动单元的控制信号的占空比或频率以调节所述桥式电路的输出功率,以使所述发射线圈的谐振电压发生变化。
  4. 如权利要求3所述的用于烹饪器具的无线供电系统,其特征在于,所述桥式电路为半桥电路,所述半桥电路包括:
    第一开关管,所述第一开关管的控制端与所述驱动单元的第一驱动输出端相连,所述第一开关管的第一端与预设电源相连;
    第二开关管,所述第二开关管的控制端与所述驱动单元的第二驱动输出端相连,所述第二开关管的第一端与所述第一开关管的第二端相连且具有第一节点,所述第二开关管的第二端接地,所述第一节点通过第一电容与所述发射线圈的一端相连,所述发射线圈的另一端接地。
  5. 如权利要求1所述的用于烹饪器具的无线供电系统,其特征在于,所述电压处理电路包括整流桥和稳压单元,所述整流桥的第一输入端通过第二电容与所述接收线圈的一端相连,所述整流桥的第二输入端与所述接收线圈的另一端相连,所述整流桥的正输出端与所述稳压单元相连,所述稳压单元输出所述稳压电源至所述第一控制芯片。
  6. 如权利要求5所述的用于烹饪器具的无线供电系统,其特征在于,所述第一通信解 调电路的输入端与所述接收线圈的另一端相连,所述第一通信解调电路的输出端与所述第一控制芯片相连,所述第一通信解调电路的供电端与所述稳压单元的输出端相连。
  7. 如权利要求1-6中任一项所述的用于烹饪器具的无线供电系统,其特征在于,所述发射线圈与所述接收线圈的尺寸相当,且同轴设置。
  8. 如权利要求7所述的用于烹饪器具的无线供电系统,其特征在于,所述发射线圈与所述接收线圈之间的距离为0-50cm。
  9. 如权利要求2所述的用于烹饪器具的无线供电系统,其特征在于,所述接收装置还包括储能电路、功率反馈电路,所述电压处理电路与所述储能电路相连,所述储能电路与所述功率反馈电路相连,所述功率反馈电路通过所述第一通信解调电路连接到所述接收线圈,所述功率反馈电路用于检测所述接收装置的输出功率;所述发射装置还包括第二通信解调电路,所述第二控制芯片与所述第二通信解调电路相连,所述第二通信解调电路与所述发射线圈相连;
    其中,所述稳定电源还用于给所述储能电路充电,并且,在所述负载突然变大导致所述稳定电源发生掉电时,所述储能电路给所述功率反馈电路供电,所述第一通信解调电路通过对所述输出功率进行调制以将功率调制信号加载至所述接收线圈,所述第二通信解调电路通过所述发射线圈接收所述功率调制信号,并对所述功率调制信号进行解调以将所述输出功率发送至所述第二控制芯片,所述第二控制芯片根据所述输出功率调节所述发射装置的发射功率,以使所述发射功率与所述输出功率进行匹配。
  10. 如权利要求9所述的用于烹饪器具的无线供电系统,其特征在于,所述储能电路包括储能电容或储能电池。
  11. 如权利要求10所述的用于烹饪器具的无线供电系统,其特征在于,当所述储能电路包括储能电容时,所述储能电容的容量根据所述功率反馈电路的耗电量确定。
  12. 如权利要求9所述的用于烹饪器具的无线供电系统,其特征在于,所述电压处理电路中的稳压单元与所述储能电路之间还连接有二极管,所述二极管的阳极与所述稳压单元的输出端相连,所述二极管的阴极与所述储能电路相连。
  13. 如权利要求1所述的用于烹饪器具的无线供电系统,其特征在于,所述烹饪器具包括锅盖和锅体,其中,所述接收装置设置在所述锅盖上,所述发射装置设置在所述锅体上。
  14. 一种烹饪器具,其特征在于,包括如权利要求1-13中任一项所述的用于烹饪器具的无线供电系统。
  15. 如权利要求14所述的烹饪器具,其特征在于,所述烹饪器具为电压力锅或电饭煲之一。
PCT/CN2017/115480 2017-08-25 2017-12-11 用于烹饪器具的无线供电系统和烹饪器具 WO2019037334A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/630,699 US11478103B2 (en) 2017-08-25 2017-12-11 Wireless power supply system for cooking appliance and cooking appliance
CA3066024A CA3066024C (en) 2017-08-25 2017-12-11 Wireless power supply system for cooking appliance and cooking appliance

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201721072978.4U CN207150585U (zh) 2017-08-25 2017-08-25 用于烹饪器具的无线通信系统和烹饪器具
CN201710739808.5 2017-08-25
CN201710739808.5A CN109428621B (zh) 2017-08-25 2017-08-25 用于烹饪器具的无线通信系统和烹饪器具
CN201721072978.4 2017-08-25
CN201710834242.4A CN109510320B (zh) 2017-09-15 2017-09-15 用于烹饪器具的无线供电系统和烹饪器具
CN201710834242.4 2017-09-15

Publications (1)

Publication Number Publication Date
WO2019037334A1 true WO2019037334A1 (zh) 2019-02-28

Family

ID=65438397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115480 WO2019037334A1 (zh) 2017-08-25 2017-12-11 用于烹饪器具的无线供电系统和烹饪器具

Country Status (3)

Country Link
US (1) US11478103B2 (zh)
CA (1) CA3066024C (zh)
WO (1) WO2019037334A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109924928A (zh) * 2019-04-18 2019-06-25 东莞福兆通电子有限公司 一种扫地机无线充电系统及充电方法
CN112704378A (zh) * 2019-10-25 2021-04-27 佛山市顺德区美的电热电器制造有限公司 烹饪器具及烹饪器具的测温方法、装置
US11478103B2 (en) 2017-08-25 2022-10-25 Foshan Shunde Midea Electrical Heating Appliances Manufacturing Co., Ltd. Wireless power supply system for cooking appliance and cooking appliance

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102206796B1 (ko) * 2019-10-10 2021-01-22 고려대학교 산학협력단 저전력 양방향 무선 데이터 텔레메트리 장치 및 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202069424U (zh) * 2011-04-20 2011-12-14 九阳股份有限公司 一种顶部保温的分体式电热锅
CN104882971A (zh) * 2014-02-28 2015-09-02 广东美的生活电器制造有限公司 能量传输平台、无线电能传输系统及具有其的烹饪系统
US20160036241A1 (en) * 2014-08-04 2016-02-04 Jabil Circuit, Inc. Wireless power apparatus, system and method
CN206062877U (zh) * 2016-07-01 2017-04-05 佛山市顺德区美的电热电器制造有限公司 一种内锅供电通信电路、内锅和烹饪器具

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2858165B2 (ja) 1990-07-05 1999-02-17 松下電器産業株式会社 電磁調理器
CN2870670Y (zh) 2005-08-11 2007-02-21 陈炯 多用节能电磁锅
US9955529B2 (en) 2009-01-06 2018-04-24 Access Business Group International Llc Smart cookware
CN201612491U (zh) 2009-12-28 2010-10-27 浙江苏泊尔家电制造有限公司 一种可实现无线控制的烹饪锅具
US9030051B2 (en) 2011-12-13 2015-05-12 Texas Instruments Incorporated Wireless power transmission with improved modulation ripple
CN202981538U (zh) 2012-10-16 2013-06-12 广东新功电器有限公司 一种无线感应供电智能感知锅具
CN104367170B (zh) 2014-04-30 2017-11-07 九阳股份有限公司 一种电热锅
CN206197741U (zh) 2016-07-19 2017-05-31 佛山市顺德区美的电热电器制造有限公司 烹饪器具及其无线控制系统
CN106602744A (zh) 2017-01-13 2017-04-26 山西潞安环保能源开发股份有限公司王庄煤矿 小功率中距离磁耦合无线电能传输装置及其调谐方法
US11271436B2 (en) * 2017-06-28 2022-03-08 Lg Electronics Inc. Multi-coil based wireless power transmission device and method
US11478103B2 (en) 2017-08-25 2022-10-25 Foshan Shunde Midea Electrical Heating Appliances Manufacturing Co., Ltd. Wireless power supply system for cooking appliance and cooking appliance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202069424U (zh) * 2011-04-20 2011-12-14 九阳股份有限公司 一种顶部保温的分体式电热锅
CN104882971A (zh) * 2014-02-28 2015-09-02 广东美的生活电器制造有限公司 能量传输平台、无线电能传输系统及具有其的烹饪系统
US20160036241A1 (en) * 2014-08-04 2016-02-04 Jabil Circuit, Inc. Wireless power apparatus, system and method
CN206062877U (zh) * 2016-07-01 2017-04-05 佛山市顺德区美的电热电器制造有限公司 一种内锅供电通信电路、内锅和烹饪器具

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11478103B2 (en) 2017-08-25 2022-10-25 Foshan Shunde Midea Electrical Heating Appliances Manufacturing Co., Ltd. Wireless power supply system for cooking appliance and cooking appliance
CN109924928A (zh) * 2019-04-18 2019-06-25 东莞福兆通电子有限公司 一种扫地机无线充电系统及充电方法
CN112704378A (zh) * 2019-10-25 2021-04-27 佛山市顺德区美的电热电器制造有限公司 烹饪器具及烹饪器具的测温方法、装置

Also Published As

Publication number Publication date
US20210085119A1 (en) 2021-03-25
US11478103B2 (en) 2022-10-25
CA3066024A1 (en) 2019-02-28
CA3066024C (en) 2021-10-26

Similar Documents

Publication Publication Date Title
US11478103B2 (en) Wireless power supply system for cooking appliance and cooking appliance
TWI492478B (zh) 用於電能傳輸之系統及方法
KR101951063B1 (ko) 송전 장치 및 시스템
RU2440635C1 (ru) Бесконтактная система электропитания
TWI502843B (zh) 用於無線耦接電氣能源的電路以及用於控制電氣無線電力傳輸的方法
JP6285441B2 (ja) 双方向無線電力伝送用のシステム及び方法
JP5573439B2 (ja) ワイヤレス給電装置、光源カートリッジおよびワイヤレス照明システム
US20200373791A1 (en) System and method for providing inductive power at multiple power levels
WO2011062097A1 (ja) 非接触給電装置
JP5599875B2 (ja) 誘導エネルギー伝達のための回路装置及び方法
JP6865894B2 (ja) 電磁誘導式無線給電システム及びその負荷急変保護回路
KR20150054802A (ko) 무선 전력 제어
KR20100130985A (ko) 복수 코일 프라이머리를 갖는 유도 전력 공급 시스템
CA3121885C (en) Electronic device, wireless power transmission receiver circuit, communication method, and wireless power transmission system
US20170302086A1 (en) Inductive power transfer system
JP2008236968A (ja) 非接触電力伝送装置
WO2019080212A1 (zh) 过流过压保护电路、电磁感应式无线供电系统及烹饪器具
CN108736580B (zh) 一种基于无线充电的智能温控容器
CN109428621B (zh) 用于烹饪器具的无线通信系统和烹饪器具
CN109510320B (zh) 用于烹饪器具的无线供电系统和烹饪器具
CN111227636B (zh) 烹饪器具及超声波振子的驱动控制方法、装置
US10601250B1 (en) Asymmetric duty control of a half bridge power converter
KR102071833B1 (ko) 송전 장치 및 시스템
CN111227635A (zh) 烹饪器具及超声波振子的驱动控制方法、装置
JP2018078746A (ja) 無線給電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17922864

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3066024

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17922864

Country of ref document: EP

Kind code of ref document: A1