WO2019035218A1 - Air conditioning system and air conditioning method - Google Patents

Air conditioning system and air conditioning method Download PDF

Info

Publication number
WO2019035218A1
WO2019035218A1 PCT/JP2017/036589 JP2017036589W WO2019035218A1 WO 2019035218 A1 WO2019035218 A1 WO 2019035218A1 JP 2017036589 W JP2017036589 W JP 2017036589W WO 2019035218 A1 WO2019035218 A1 WO 2019035218A1
Authority
WO
WIPO (PCT)
Prior art keywords
window
air conditioning
load
temperature
room temperature
Prior art date
Application number
PCT/JP2017/036589
Other languages
French (fr)
Japanese (ja)
Inventor
アンナ 成
隆也 山本
恵美 竹田
淳一 岡崎
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019536410A priority Critical patent/JP6727446B2/en
Priority to CN201780092795.5A priority patent/CN110914605B/en
Publication of WO2019035218A1 publication Critical patent/WO2019035218A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • F24F2130/20Sunlight

Definitions

  • the present invention relates to an air conditioning system and an air conditioning method for controlling an air conditioner.
  • the air conditioning system realizes energy saving while maintaining a comfortable indoor environment for a house, an office building and the like. For this reason, it is required to reduce useless energy due to overcooling and overheating of the room.
  • the heat load in the room to be air conditioned was estimated in real time using data from the air conditioner, other devices, etc. It is necessary to properly adjust the air conditioning control amount according to the heat load.
  • Patent Document 1 In particular, in a room with a large window of a house and in the vicinity of a window of an office building (perimeter zone), the solar radiation invaded from the window greatly affects the air conditioning load. For this reason, there has been proposed a method of selecting an appropriate window glass for a window of a building (for example, Patent Document 1) and a system for estimating the heat load in a room (for example, Patent Document 2). , Patent Document 3).
  • Patent Document 1 calculates the solar radiation heat load (window surface heat receiving solar radiation amount) by the difference between the construction area, season, time, orientation of the window, and window glass configuration.
  • Patent Document 2 measures the temperature distribution and the amount of solar radiation of the outer wall surface including the window glass using a thermo camera and a solar radiation sensor, and estimates the heat load near the window (perimeter zone) according to the measurement result. is there.
  • Patent Document 3 estimates the heat load in the vicinity of the window (perimeter zone) based on the output characteristics of the light-transmissive organic thin film solar cell installed on the window surface.
  • Patent document 1 JP 2008-107910 JP, 2011-202877, A Japanese Patent Application Publication No. 2015-218991
  • Patent Document 1 it is necessary to input the construction area, the season, the time, the orientation of the opening, and the configuration (performance) of the window glass. Based on these input data, the stored weather data is selected to calculate the solar heat load. For this reason, it is not possible to estimate the solar radiation heat load intruding from the window glass in real time in a real environment.
  • thermo camera which detects the temperature distribution of an outer wall surface
  • solar radiation sensor which is an exclusive device which detects the amount of solar radiation
  • the present invention learns the performance of window glass without providing a dedicated detecting device for detecting the amount of solar radiation, such as a solar radiation amount sensor, and a light transmitting organic thin film solar cell, and according to changes in the environment, the building in real time It is an object of the present invention to provide an air conditioning system and an air conditioning method capable of estimating the amount of solar radiation intruding from a window glass and estimating solar heat load in a room with high accuracy.
  • the air conditioning system comprises a room temperature detection unit that detects a room temperature in a building, an outside air temperature detection unit that detects an outside air temperature, and a surface temperature detection unit that detects a surface temperature inside a building of a window glass
  • a window thermal performance learning unit that learns the window thermal performance of the window glass based on the room temperature, the outside air temperature, and the surface temperature, and an air conditioning capability estimation unit that estimates the air conditioning capability based on the heat quantity generated from the air conditioner
  • Window load factor learning unit that learns window load factor of window glass based on room temperature, ambient temperature, surface temperature, window thermal performance and air conditioning ability, room temperature, ambient temperature, surface temperature, window thermal performance and window load factor
  • a control unit for controlling an air conditioner based on the solar heat load, and a solar heat load estimation unit for estimating a solar heat load due to solar radiation incident from the window glass on the basis of the control unit.
  • the air conditioning system comprises a room temperature detection unit that detects a room temperature in a building, an outside air temperature detection unit that detects an outside air temperature, and a surface temperature detection unit that detects a surface temperature inside a building of a window glass
  • the air conditioning ability estimation unit estimates the air conditioning ability based on the heat generated from the air conditioner, and learns the window load factor and the external air load factor of the window glass based on the room temperature, the outside air temperature, the surface temperature, and the air conditioning ability Load factor learning section, an air conditioning load estimation section for estimating the air conditioning load of the building based on the room temperature, the outside air temperature, the surface temperature, the window load factor and the outside air loading factor, and the air conditioner based on the air conditioning load And a control unit that controls the air conditioning system.
  • the air conditioning system comprises a room temperature detection unit that detects a room temperature in a building, an outside air temperature detection unit that detects an outside air temperature, and a surface temperature detection unit that detects a surface temperature inside a building of a window glass
  • Window thermal performance learning unit to learn window thermal performance of window glass based on room temperature, outside air temperature and surface temperature, window optical performance relational expression by unit solar radiation and window glass configuration, room temperature, outside air temperature and surface temperature Window optical performance learning section to learn window optical performance of window glass based on window thermal performance, and from window glass based on window glass area, room temperature, ambient temperature, surface temperature, window thermal performance and window optical performance
  • It is an air conditioning system provided with a solar radiation heat load estimating part which presumes solar radiation heat load by incidence solar radiation, and a control part which controls an air harmony machine based on solar radiation heat load.
  • An air conditioning method comprises: a room temperature detection step of detecting a room temperature in a building; an outside air temperature detection step of detecting an outside air temperature; and a surface temperature detection step of detecting a surface temperature inside a building of a window glass; A window thermal performance learning step of learning window thermal performance of the window glass based on the room temperature, the outside air temperature and the surface temperature, and an air conditioning ability estimation step of estimating the air conditioning ability based on the heat quantity generated from the air conditioner; Window load factor learning step to learn window load factor of window glass based on room temperature, ambient temperature, surface temperature, window thermal performance and air conditioning ability, room temperature, ambient temperature, surface temperature, window thermal performance and window load factor Air conditioning method comprising a solar heat load estimation step of estimating a solar heat load due to solar radiation incident from a window glass based on the above and a control step of controlling an air conditioner based on the solar heat load It is.
  • An air conditioning method comprises: a room temperature detection step of detecting a room temperature in a building; an outside air temperature detection step of detecting an outside air temperature; and a surface temperature detection step of detecting a surface temperature inside a building of a window glass;
  • the air conditioning ability estimation step of estimating the air conditioning ability based on the heat quantity generated from the air conditioner, and learning the window load factor and the outdoor air load factor of the window glass based on the room temperature, the outside air temperature, the surface temperature and the air conditioning ability Load factor learning step, an air conditioning load estimation step for estimating the air conditioning load of the building based on the room temperature, the outside air temperature, the surface temperature, the window load factor and the outside air loading factor, an air conditioner based on the air conditioning load And a control step of controlling the air conditioning method.
  • An air conditioning method comprises: a room temperature detection step of detecting a room temperature in a building; an outside air temperature detection step of detecting an outside air temperature; and a surface temperature detection step of detecting a surface temperature inside a building of a window glass; Window thermal performance learning step of learning window thermal performance of window glass based on room temperature, ambient temperature and surface temperature, window optical performance relational expression by unit solar radiation amount and configuration of window glass, room temperature, ambient temperature and surface temperature Window optical performance learning step to learn window optical performance of window glass based on window thermal performance and from window glass based on window glass area, room temperature, ambient temperature, surface temperature, window thermal performance and window optical performance It is an air conditioning method provided with the control step of controlling the air conditioner based on the solar radiation heat load estimation step which estimates the solar radiation heat load by the incident solar radiation, and the solar radiation heat load.
  • the air which controls the indoor solar heat load or the air conditioning load and controls the air conditioner without providing a dedicated detecting device for detecting the amount of solar radiation or the light transmitting organic thin film solar cell Harmonized systems and air conditioning methods can be obtained.
  • Embodiment 1 of this invention It is an example of the figure which shows the relationship between the solar radiation absorptivity a of the window glass and the solar radiation heat acquisition rate eta by Embodiment 1 of this invention.
  • Embodiment 2 of this invention It is an example of the block diagram of the air conditioning system by Embodiment 2 of this invention. It is an example of the external view of the air conditioner by Embodiment 2 of this invention. It is an example of the processing flow of the air conditioning system by Embodiment 2 of this invention. It is an example of the block diagram of the air conditioning system by Embodiment 3 of this invention. It is an example of the processing flow of the air conditioning system by Embodiment 3 of this invention. It is an example of the block diagram of the air conditioning system by Embodiment 4 of this invention. It is an example of the processing flow of the air conditioning system by Embodiment 4 of this invention.
  • FIG. 1 is a perspective view for explaining an example of the interior of a building 2 to which an air conditioning system according to a first embodiment of the present invention is applied.
  • the building 2 shows a house, and the air conditioner 11 provided on the wall 3 is a wall-mounted air conditioner 11. Solar radiation from the sun passes through the windows 4 of the building 2 and reaches the floor 5 and the wall 3.
  • the building 2 is not limited to a house, and the air conditioning system of the present embodiment can be installed in an office building or the like.
  • the air conditioner 11 is not limited to a wall hanging type, The apparatus which adjusts indoor air, such as a ceiling cassette type and a duct connection type, can be used as the air conditioner 11.
  • FIG. 2 is an example of the block diagram of the air conditioning system by Embodiment 1 of this invention.
  • the air conditioning system 1 detects an air conditioner 11, an input device 12 to which information from the outside is input, a room temperature detection device 13 for detecting a room temperature Tz of the building 2, and an outside air temperature Ta outside the building 2.
  • An external air temperature detection device 14 a surface temperature detection device 15 for detecting the surface temperature Tg of the window glass, an arithmetic device 16 for performing various calculations, a memory for storing information of the various detection devices and calculation results of the arithmetic device 16
  • It comprises an apparatus 17, an input device 12 to which information from the outside is input, a control device 19 for controlling the air conditioner 11, and a communication path 18 for exchanging information between various devices.
  • the surface temperature detection device 15 is a thermal image sensor (infrared temperature sensor) installed in the room, a thermo camera or the like, and installed so as to detect the surface temperature Tg of the window glass inside the building 2 to be air conditioned. Do.
  • the term “surface temperature” refers to the surface temperature Tg of the window glass inside the building 2 unless otherwise specified.
  • the arithmetic unit 16 includes a window thermal performance learning unit 161, a window optical performance learning unit 162, and a solar radiation heat load estimation unit 163, and specifically, is a CPU.
  • the storage unit 17 is composed of regional unit solar radiation amount 171, window optical performance relational expression 172, window area 173, window thermal performance 174, window optical performance 175, etc. Specifically, it is a storage medium such as a hard disk or RAM. .
  • the communication path 18 is for communication that connects the air conditioner 11, the input device 12, the room temperature detection device 13, the outside air temperature detection device 14, the surface temperature detection device 15, the arithmetic device 16, the storage device 17, and the control device 19. It is a network of The type of cable, the communication protocol, and the like of the communication path 18 are not particularly limited. Further, the control device 19 determines a control command for the air conditioner 11 based on the solar radiation heat load estimated value via the communication path 18.
  • FIG. 3 is an example of a process flow of the air conditioning system according to Embodiment 1 of the present invention. Each step will be described below.
  • S11 solar radiation presence / absence judgment
  • S11 it is determined whether or not there is solar radiation. Thereafter, when there is solar radiation, the process proceeds to S13, and when there is no solar radiation, the process proceeds to S12.
  • the example of the judgment method of the presence or absence of solar radiation is shown below.
  • FIG. 4 is an example of a temperature gradient diagram with and without solar radiation according to Embodiment 1 of the present invention. More specifically, it is a figure showing the temperature gradient of the outside temperature Ta, the surface temperature Tg of the window glass, and the room temperature Tz depending on the presence or absence of solar radiation in summer and winter.
  • Ta indicates the outside air temperature Ta
  • Tz the room temperature
  • Tg the surface temperature Tg on the indoor side of the window 4
  • the upper side indicates that the temperature is high
  • the lower side indicates that the temperature is low.
  • the window absorption solar radiation is indicated by a thick arrow.
  • the surface temperature Tg of the window glass is room temperature It is determined that there is solar radiation when the surface temperature Tg of the window glass is higher than Tz and the surface temperature Tg of the window glass is higher than the outside temperature Ta (the upper stage of the formula 1 group). Moreover, when the time in operation of the air conditioning system 1 is known, the data at night can be used as the data of the no solar radiation condition.
  • FIG. 5 is an example of a thermal image and a photograph of the room according to the first embodiment of the present invention.
  • the thermal image of the state of the lower photograph is in the upper row.
  • Fig. 5 shows the experimental installation brought into a real house, and a plurality of columns are installed.
  • the right side of FIG. 5 is a curtain, and the left back is a radiation panel.
  • the position of the window 4 can be detected even when using a race curtain, a blind or the like.
  • the surface temperature of the lace curtain, the blind or the like at the position of the window 4 as the surface temperature Tg of the window glass, it is possible to determine the presence or absence of solar radiation.
  • the window thermal performance learning unit 161 learns the window thermal performance of the window glass based on the room temperature Tz, the outside air temperature Ta, and the surface temperature Tg of the window glass (S12). Specifically, in the window thermal performance learning unit 161, the heat penetration resistance R of the window glass is calculated using the data when it is determined that there is no solar radiation in S11.
  • the window thermal performance is not limited to the heat penetration resistance R, but may include performance based on the thermal resistance.
  • the heat penetration resistance R of the window glass is calculated based on Equation 2 using the room temperature Tz, the outside temperature Ta, and the surface temperature Tg of the window glass.
  • Ri represents the inner surface heat transfer resistance of the window glass, and 0.116 [m 2 K / W] is used in accordance with JIS R3107. Also, the calculated heat penetration resistance R of the window glass is stored in the window thermal performance 174 of the storage device 17.
  • the solar heat load estimation unit 163 uses the data when it is determined that there is solar radiation in S11 to estimate the solar radiation amount I ⁇ absorbed by the window glass according to Equation 3 (S13).
  • the window optical performance learning unit 162 calculates the solar radiation absorptivity ⁇ of the window glass and the solar radiation heat acquisition rate ⁇ .
  • the window optical performance is not limited to the solar radiation absorptivity ⁇ and the solar radiation heat acquisition rate ⁇ , but may include other performances related to solar radiation.
  • the regional unit solar radiation amount 171 indicates a theoretical value calculated from the longitude, latitude, and date of the region. The date can be input from the input device, and in the case where the storage device 17 has a timer function, the date of the timer is used.
  • the solar radiation absorptivity ⁇ of the window glass is calculated from the equation 4 using the absorbed solar radiation amount calculated using the equation 3 group and the unit solar radiation amount Ir in order to obtain the solar radiation absorptance ⁇ .
  • the unit solar radiation Ir is the region input from the input device 12, the region-specific unit solar radiation 171 stored in the storage device 17, the room temperature Tz, the outside air temperature Ta, and the surface temperature of the window glass It is determined based on the date of detection of Tg.
  • the regional unit solar radiation amount 171 indicates a theoretical value calculated from the longitude, latitude, and date of the region. For example, the date can be input from the input device 12, and if the storage device 17 has a timer function, the date of the timer can also be used.
  • the solar radiation absorptivity ⁇ of the window glass calculated by the equation 4 is stored in the window optical performance 175 of the storage device 17.
  • the solar radiation absorptivity ⁇ of the window glass initially takes the maximum value of the estimated value, and is updated with the learning result and stored in the window optical performance 175 (S14).
  • FIG. 6 is an example of a diagram showing the relationship between the solar radiation absorptance rate ⁇ and the solar radiation heat gain rate ⁇ ⁇ ⁇ according to Embodiment 1 of the present invention. More specifically, the solar radiation absorptance ⁇ is taken on the horizontal axis, and the solar radiation heat acquisition rate ⁇ is taken on the vertical axis, and the relationship between the two is approximated by a linear first-order equation. In addition, the relationship between the solar radiation absorptivity a and the solar radiation heat acquisition rate ⁇ is not limited to the approximation method by the linear first-order equation, and the approximate equation shown in FIG. 6 is merely an example.
  • the window glass shown in FIG. 6 uses window glass of many types and thicknesses as follows.
  • the window glass is different in the heat transmission resistance R, the solar radiation absorptivity ⁇ and the solar radiation heat acquisition rate ⁇ depending on the type, and the window optical performance 175 is different.
  • Single sheet glass transparent sheet glass, heat ray absorbing sheet glass, heat ray reflective glass, laminated glass: glass to which two pieces of single sheet glass are adhered by an adhesive (transparent sheet glass + transparent sheet glass, heat ray absorbing sheet glass + transparent sheet glass, heat ray reflective glass + transparent Flat glass)
  • -Double-layered glass Glass composed of two single sheet glass having a hollow layer (transparent sheet glass + hollow layer + transparent sheet glass, heat absorbing glass sheet + hollow layer + transparent sheet glass, heat reflecting glass + hollow layer + transparent sheet glass) 9 types of glass, and the thickness of one sheet of glass contains glass from 3 mm to 8 mm.
  • the solar heat absorptivity ⁇ ⁇ ⁇ ⁇ is calculated by applying the solar absorptivity a calculated by the equation 4 to the relational expression with the solar heat acquistion rate ⁇ shown in FIG.
  • the relational expression of the solar radiation absorptivity a and the solar radiation heat acquisition rate eta can be changed by the change and addition of a structure of a window glass.
  • an equation stored in the window optical performance relational expression 172 of the storage device 17 may be used before learning the window optical performance 175.
  • the window optical performance learning unit 162 is based on the unit solar radiation amount and the window optical performance relation equation 172 by the configuration of the window glass, the room temperature Tz, the outside temperature Ta, the surface temperature Tg, and the window thermal performance.
  • the optical performance is learned (S14).
  • the solar radiation heat load estimation unit 163 is incident from the window glass based on the window area 173, the room temperature Tz, the outside temperature Ta, the surface temperature Tg, the window thermal performance 174, and the window optical performance 175. It is to estimate the solar radiation heat load due to the solar radiation.
  • the control device 19 determines a control command of the air conditioning capability Qhvac of the air conditioner 11 based on the solar heat load Qs estimated in S15 (S16). Then, it returns to S11.
  • control command is not limited to the air conditioning capability Qhvac, and a command value of the air outlet temperature of the air conditioner, the direction of the air outlet, etc. can also be controlled as a control command value.
  • the room temperature detection unit for detecting the room temperature in the building the outside air temperature detection unit for detecting the outside air temperature
  • the surface temperature detection unit for detecting the surface temperature inside the building of the window glass
  • the room temperature and the outside air temperature Window thermal performance learning unit that learns window thermal performance of window glass based on temperature and surface temperature, window optical performance relational expression by unit solar radiation amount and configuration of window glass, room temperature, outside air temperature, surface temperature and window thermal performance
  • the window optical performance learning unit to learn the window optical performance of the window glass based on the area of the window glass, room temperature, ambient temperature, surface temperature, window thermal performance and window optical performance, and by solar radiation incident from the window glass
  • It is an air conditioning system provided with a solar radiation heat load estimation part which presumes solar radiation heat load, and a control part which controls an air conditioner based on solar radiation heat load.
  • a room temperature detection step for detecting the room temperature in the building
  • an outside air temperature detection step for detecting the outside air temperature
  • a surface temperature detection step for detecting the surface temperature inside the building of the window glass, room temperature, outside air temperature and surface temperature
  • the window thermal performance learning step of learning the window thermal performance of the window glass, the window optical performance relational expression by the unit solar radiation amount and the configuration of the window glass, and based on the room temperature, the outside air temperature, the surface temperature and the window thermal performance.
  • an air conditioning system and an air conditioning method for controlling an air conditioner by estimating the indoor solar heat load without providing a dedicated detecting device for detecting the amount of solar radiation and a light transmitting organic thin film solar cell You can get it.
  • the window thermal performance is a performance based on the heat flow resistance R
  • the window optical performance is a performance based on the solar radiation absorptivity ⁇ and the solar heat gain coefficient ⁇ . For this reason, the air conditioning system can estimate the solar radiation heat load of the building to be air conditioned with high accuracy.
  • FIG. 7 is an example of the block diagram of the air conditioning system by Embodiment 2 of this invention.
  • the differences from Embodiment 1 are as follows.
  • the functions of the air conditioner 11 are finely divided.
  • the indoor unit 111 of the air conditioner 11 is provided with a room temperature detection device 1111 for detecting the room temperature Tz of the building 2 and a surface temperature detection device 1112 for detecting the surface temperature Tg inside the building of the window glass.
  • the outdoor unit 112 is provided with an outside air temperature detection device 1121 that detects the outside air temperature Ta outside the building 2.
  • the room temperature detection device 1111 replaces the room temperature detection device 13 of the first embodiment.
  • the surface temperature detection device 1112 is an alternative to the surface temperature detection device 15 of the first embodiment.
  • the outside air temperature detection device 1121 replaces the outside air temperature detection device 14 of the first embodiment. It does not matter whether it is provided as a function of the air conditioner 11 or separately provided as long as it has the same function. The same is true for the other embodiments.
  • Embodiment 1 the difference from Embodiment 1 is that the indoor heat generation load estimation unit 160, the air conditioning ability estimation unit 164, the total heat loss coefficient learning unit 165, and the air conditioning load estimation unit 166 The difference is that the storage device 17 is additionally provided with a total heat loss coefficient 176 that stores the total heat loss coefficient KA.
  • FIG. 8 is an example of the external view of the air conditioner 11 according to Embodiment 2 of the present invention.
  • the air conditioner 11 is an example of the wall-mounted indoor unit 111, and the indoor unit 111 including the room temperature detection device 1111 and the surface temperature detection device 1112 and the outdoor unit 112 including the outside air temperature detection device 1121 Connect and air-condition the room.
  • the air conditioner 11 includes a remote controller, the remote controller can be used as the input device 12.
  • an arithmetic device 16 for performing various calculations a storage device 17 for storing information of various detection devices and calculation results of the arithmetic device 16, an input device 12 to which information from the outside is input, and an air conditioner 11 And a communication path 18 for exchanging information between various devices.
  • FIG. 9 is an example of a process flow of the air conditioning system according to Embodiment 2 of the present invention. It is an example of the processing flow implemented while the air conditioning system 1 is in operation.
  • the process relating to the operation of estimating the solar heat load is the same as that of the first embodiment.
  • S31 corresponds to S11, S32 to S12, S34 to S13, S35 to S14, S36 to S15, and S38 to S16 (the tenth step in the first embodiment)
  • the second embodiment is the step of No. 30), and is the same processing, so detailed description will be omitted.
  • the indoor heat generation load estimation unit 160 estimates the room heat generation load Qin, for example, when there is a person in the building 2 (living room), or when a heat generator such as a light or a television is turned on.
  • the indoor heat generation load Qin is a total of one due to human body heat generation (human body heat load), one due to illumination heat generation (lighting load), and one due to tool heat generation (device heat load).
  • the indoor heat generation load Qin increases the load at the time of cooling and reduces the load at the time of heating.
  • the indoor heat generation load Qin can be estimated by the total of each heat generation amount from the number of people in the room (human body heat load) measured by the surface temperature detection device 1112 and the ON state of the heat generating device (illumination load, appliance heat generation load) it can.
  • the indoor heat generation load Qin can be estimated from the total of each heat generation amount using the person's heat generation amount 98 [W / person] and the heat generation amount 90 [W] of the light described in the Air Conditioning and Sanitary Engineering Handbook.
  • the indoor heat generation load Qin is not limited to estimation using the sum of the respective heat generation amounts, and the indoor heat generation load Qin is treated as a coefficient, and the total heat loss coefficient KA and the indoor heat generation load Qin are And can also be determined using regression analysis.
  • the method of determining the indoor heat generation load Qin is not limited to a specific method. If there is no person corresponding to indoor heat generation in the building 2 (living room) or if the device that generates heat such as lighting is off, etc., and the indoor heat generation is 0, then the indoor heat generation load Qin is 0. Do.
  • the window thermal performance learning unit 161 learns the window thermal performance 174 of the window glass based on the room temperature Tz, the outside air temperature Ta, and the surface temperature Tg of the window glass. Then, it progresses to S33.
  • the solar heat load estimation unit 163 estimates the amount I ⁇ of solar radiation absorbed by the window glass, using the data when it is determined that there is solar radiation in S31. Thereafter, the window optical performance learning unit 162 determines the window optical performance of the window glass based on the unit solar radiation Ir and the window optical performance relational expression by the configuration of the window glass, the room temperature Tz, the outside temperature Ta, the surface temperature Tg, and the window thermal performance 174. Is learned (S35).
  • the solar heat load estimation unit 163 the solar radiation incident from the window glass based on the window area Ag, the room temperature Tz, the outside temperature Ta, the surface temperature Tg, the window thermal performance (S32) and the window optical performance (S35)
  • the solar heat load Qs is estimated (S36), and the process proceeds to S37 and S38, and returns to S30.
  • the total heat loss coefficient learning unit 165 detects the room temperature Tz detected by the room temperature detection device 1111 of the indoor unit 111 of the air conditioner 11 when it is determined that there is no solar radiation in S31 Using the outside air temperature Ta detected by the outside air temperature detection device 1121 of the air conditioner 112 and the indoor heat generation load Qin estimated by the indoor heat generation load estimation unit 160 with the air conditioning ability Qhvac and S30, the total heat loss coefficient KA is Learn (S33). However, at the time of cooling, the indoor heat generation load Qin is positive by using the upper stage of the equation group 6, and at the time of heating, the indoor heat generation load Qin is negative by using the lower stage of the equation group 6.
  • the step of estimating the indoor heat generation load Qin in the indoor heat generation load estimation unit 160 in S30 is omitted, and the total heat loss coefficient KA and the indoor heat generation are calculated from The load Qin can also be learned by regression analysis.
  • the learning of the window thermal performance 174 in S32 and the learning of the total heat loss coefficient KA in S33 may be performed in any order.
  • the air conditioner 11 can also be controlled without considering the indoor heat generation load Qin.
  • the influence of the indoor heat generation load Qin on solar radiation is considered to be small.
  • the term of the indoor heat generation load Qin may be treated as zero in an expression such as expression 6 group. The same applies to the third and fourth embodiments described later.
  • the total heat loss coefficient learning unit 165 learns the total heat loss coefficient KA of the building 2 based on the room temperature Tz, the outside air temperature Ta, the air conditioning capability Qhvac, and the indoor heat generation load Qin.
  • the total heat loss coefficient KA is a flow that flows into the living room from the wall 3 or the window 4 or flows out from the living room to the wall 3 or the window 4 when the temperature difference between the inside and outside of the building 2 (living room) targeted for air conditioning is one degree.
  • the sum of heat transfer by heat and ventilation, and the unit is [W / K].
  • the air conditioning capacity Qhvac is a value obtained by estimating the amount of heat supplied from the air conditioner 11 at the time of heating by the air conditioning capacity estimation unit 164 and the amount of heat removed by the air conditioner 11 at the time of cooling.
  • the air conditioning capacity Qhvac indicates the amount of heat supplied during heating and indicates the amount of heat removed during cooling.
  • the air conditioning capability Qhvac can be estimated from the difference in enthalpy between the high pressure side and the low pressure side of the refrigerant of the air conditioner 11.
  • the estimation equation of the air conditioning capacity Qhvac is not limited to the calculation based on the enthalpy difference of the refrigerant, and a method of obtaining from the difference of the air enthalpy between suction and blow can also be used.
  • the way of obtaining is not limited.
  • the calculated total heat loss coefficient KA is stored in the total heat loss coefficient 176 of the storage device 17.
  • the stability of the room temperature Tz can be determined from the inclination of the room temperature Tz at predetermined time intervals (for example, selected from 30 minutes, 60 minutes, etc.), the variation of the room temperature Tz, and the like.
  • the set temperature Tset of the air conditioner 11 instead of the room temperature Tz to estimate and use the amount of heat necessary for air conditioning with respect to each set temperature from the equation group 7.
  • the solar heat load Qs and the indoor heat generation load Qin are positive using the upper stage of the equation group 7, and the solar heat load Qs and the indoor heat load Qin are negative using the lower stage of the equation group 7 during heating. .
  • the control device 19 determines a control command of the air conditioning capability Qhvac of the air conditioner 11 based on the air conditioning load Q estimated in S37 (S38). Then, it returns to S30.
  • the control command is not limited to the air conditioning capability Qhvac, and a command value of the blowout temperature of the air conditioner 11, a direction of the blowout, or the like may be controlled as a control command value.
  • the room temperature detection unit for detecting the room temperature in the building the outside air temperature detection unit for detecting the outside air temperature
  • the surface temperature detection unit for detecting the surface temperature inside the building of the window glass
  • the room temperature and the outside air temperature Window thermal performance learning unit that learns window thermal performance of window glass based on temperature and surface temperature, window optical performance relational expression by unit solar radiation amount and configuration of window glass, room temperature, outside air temperature, surface temperature and window thermal performance
  • the window optical performance learning unit to learn the window optical performance of the window glass based on the area of the window glass, room temperature, ambient temperature, surface temperature, window thermal performance and window optical performance, and by solar radiation incident from the window glass
  • It is an air conditioning system provided with a solar radiation heat load estimation part which presumes solar radiation heat load, and a control part which controls an air conditioner based on solar radiation heat load.
  • a room temperature detection step for detecting the room temperature in the building
  • an outside air temperature detection step for detecting the outside air temperature
  • a surface temperature detection step for detecting the surface temperature inside the building of the window glass, room temperature, outside air temperature and surface temperature
  • the window thermal performance learning step of learning the window thermal performance of the window glass, the window optical performance relational expression by the unit solar radiation amount and the configuration of the window glass, and based on the room temperature, the outside air temperature, the surface temperature and the window thermal performance.
  • an air conditioning system and an air conditioning method for controlling an air conditioner by estimating the indoor solar heat load without providing a dedicated detecting device for detecting the amount of solar radiation and a light transmitting organic thin film solar cell You can get it.
  • the window thermal performance is a performance based on the heat flow resistance R
  • the window optical performance is a performance based on the solar radiation absorptivity ⁇ and the solar heat gain coefficient ⁇ . For this reason, the air conditioning system can estimate the solar radiation heat load of the building to be air conditioned with high accuracy.
  • the surface temperature detection unit is provided in the air conditioner, it is possible to estimate the solar heat load of the building to be subjected to the air conditioning with high accuracy.
  • an air conditioning ability estimation unit that estimates the air conditioning ability based on the amount of heat generated from the air conditioner, and a total heat loss coefficient that learns the total heat loss coefficient of the building based on the room temperature, the outside air temperature, and the air conditioning ability.
  • the learning unit includes an air conditioning load estimating unit that estimates the air conditioning load of the building based on the room temperature, the outside air temperature, the total heat loss coefficient, and the solar heat load, and the control unit performs the air conditioning based on the air conditioning load. Since the aircraft is controlled, the solar radiation heat load of the building to be air-conditioned can be estimated with high accuracy.
  • FIG. 10 is an example of the block diagram of the air conditioning system by Embodiment 3 of this invention.
  • a major difference between the second embodiment and the second embodiment is that the window thermal performance and the window optical performance are not learned separately to estimate the solar heat load Qs, but the window glass surface temperature Tg and the solar heat load Qs are different.
  • the correlation coefficient is learned, and the solar radiation heat load Qs is estimated from the surface temperature Tg of the window glass.
  • the window load coefficient Hg is a coefficient including the window thermal performance, the window optical performance, and the window area Ag.
  • the indoor heat generation load estimation unit 160, the window heat performance learning unit 161, the solar radiation heat load estimation unit 163, the air conditioning capability estimation unit 164, and the total heat loss in the arithmetic device 16 are the same as in the second embodiment.
  • a window load coefficient learning unit 167 is provided in addition to the coefficient learning unit 165, the air conditioning load estimation unit 166, and the like.
  • the storage device 17 is provided with a window load coefficient 177.
  • the air conditioning system 1 includes a room temperature detection device 1111 for detecting the room temperature Tz of the building 2, a surface temperature detection device 1112 for detecting the surface temperature Tg of the window glass, and an outside air temperature detection for detecting the outside air temperature Ta outside the building 2.
  • a device 1121 an input device 12 to which external information is input, an arithmetic device 16 for performing various calculations, a storage device 17 for storing information of various detection devices and calculation results of the arithmetic device 16, air conditioning It comprises a control device 19 for controlling the machine 11 and a communication path 18 for exchanging information between various devices.
  • room temperature Tz is stable (for example, fluctuation of room temperature Tz is 0 degree) at predetermined time intervals (for example, selected from 30 minutes, 60 minutes, etc.).
  • predetermined time intervals for example, selected from 30 minutes, 60 minutes, etc.
  • the heat balance equation of equation 8 holds.
  • the heat balance equation of equation 8 it is possible to obtain the air conditioning ability Qhvac based on the total heat loss coefficient KA, the room temperature Tz, the outside temperature Ta, the solar heat load Qs, and the indoor heat generation load Qin.
  • equation 8 positive is selected by the solar heat load Qs and the indoor heat generation load Qin during cooling, and negative is selected by the solar heat load Qs and the indoor heat generation load Qin during heating.
  • the room temperature Tz is ideally stable if the fluctuation of the room temperature Tz is 0 degree ideally, but for example, if the fluctuation is ⁇ 0.5 degree, ⁇ 1 degree, the error also increases, but as an allowable range
  • the room temperature Tz can also be treated as stable.
  • Equations 3 and 5 can lead to equation 9, and the solar heat load Qs can be estimated using equation 9.
  • the solar heat load Qs includes the window load coefficient Hg, the heat penetration resistance R of the window glass, the heat transfer resistance Ri of the inner surface of the window glass, the room temperature Tz, the outside temperature Ta, and the surface temperature Tg of the window glass. It can be expressed using.
  • the right side of the upper equation 9 corresponds to the window load coefficient Hg.
  • the window load coefficient Hg can be expressed by the heat transmission resistance R, the inner surface heat transfer resistance Ri, the solar radiation heat acquisition rate ⁇ , the solar radiation absorptivity ⁇ , and the window area Ag.
  • the surface temperature Tg of the window glass is affected by the room temperature Tz, the outside temperature Ta, and the amount of solar radiation I ⁇
  • the surface temperature Tg of the window glass can be calculated from Expression 10.
  • the influence by the solar radiation becomes the value of the third term
  • the first and second terms are the influence of the room temperature Tz and the outside air temperature Ta.
  • the heat transmission resistance R becomes large, and the influence of the second term can be ignored.
  • the absorbed solar radiation amount can be estimated by using the equation 11 in which the second term is omitted, and the solar heat load Qs can be calculated by the equation 12.
  • FIG. 11 is an example of the process flow of the air conditioning system according to Embodiment 3 of the present invention. It is a processing flow implemented while the air conditioning system 1 is in operation.
  • the process S50 related to the operation of estimating the indoor heat generation load Qin is S30
  • the process related to the operation of learning the total heat loss coefficient KA is S51
  • Step S53 is a step corresponding to step S33, and is the same processing as that of step S33.
  • the process S52 for learning the window thermal performance is a step corresponding to S32
  • the process S56 for estimating the air conditioning load Q is a process corresponding to S37
  • the process for determining an air conditioning control command S57 is a step corresponding to S38. Therefore, the detailed description is omitted (the second embodiment is the step of No. 30 and the third embodiment is the step of No. 50).
  • the indoor heat generation load Qin is estimated in S50, and the process proceeds to S51. If there is no solar radiation in S51, the process proceeds to S52, and the window thermal performance learning unit 161 learns the window thermal performance of the window glass based on the room temperature Tz, the outside temperature Ta, and the surface temperature Tg of the window glass. Thereafter, the process proceeds to S53, and the total heat loss coefficient learning unit 165 learns the total heat loss coefficient KA of the building 2 based on the room temperature Tz, the outside air temperature Ta, the air conditioning capability Qhvac, and the indoor heat generation load Qin.
  • the air conditioning ability estimation unit 164 can estimate the air conditioning ability Qhvac based on the heat quantity (heat quantity to be removed) generated from the air conditioner 11.
  • the window load coefficient learning unit 167 In the window load coefficient learning unit 167, the room temperature Tz detected by the room temperature detection device 1111 of the indoor unit 111 of the air conditioner 11 when it is determined that there is solar radiation in S51, and the surface temperature detection of the indoor unit 111 of the air conditioner 11.
  • the surface temperature Tg of the window glass detected by the device 1112, the outside air temperature Ta detected by the outside air temperature detection device 1121 of the outdoor unit 112 of the air conditioner 11, and the indoor heat generation load Qin estimated by the indoor heat generation load estimation unit 160 Using the air conditioning ability Qhvac estimated by the air conditioning ability estimation unit 164 and the total heat loss coefficient KA stored in the total heat loss coefficient 176 of the storage device 17, the window load coefficient Hg is calculated from the equation 13 group Do.
  • the equation group 13 can be derived from the equations 8 and 9. In the equation group 13, the upper stage is used during cooling, and the lower stage is used during heating.
  • the total heat loss coefficient KA and the window load coefficient Hg may be set as unknowns to calculate simultaneous equations, or regression analysis may be used.
  • the window load coefficient Hg can be learned even if the step of learning the total heat loss coefficient in S53 is omitted.
  • the window load coefficient Hg can be calculated from the equation 14 group, and the window load coefficient Hg can be calculated even if the step of learning the window thermal performance in S52 is omitted.
  • the equation group 14 uses the upper stage at the time of cooling and the lower stage at the time of heating.
  • the window load coefficient Hg is the solar heat acquisition from the window glass to the room when the difference between the surface temperature Tg of the window glass of the building 2 to be air conditioned and the room temperature Tz is 1 degree, and the unit is It is [W / K].
  • the window load coefficient learning unit 167 learns the window load coefficient Hg of the window glass based on the air conditioning ability Qhvac, the room temperature Tz, the outside temperature Ta, and the surface temperature Tg.
  • the calculated window load factor Hg is stored in the window load factor 177 of the storage unit 17.
  • the room temperature Tz needs to be stabilized at a predetermined time interval (for example, selected from 30 minutes, 60 minutes, etc.) as a precondition for the equations 13 and 14 to hold, and the slope of the room temperature Tz and the room temperature Tz Whether or not the room temperature Tz is stable can be determined from the variation or the like.
  • the solar heat load estimation unit 163 the window load factor Hg stored in the window load factor 177 of the storage device 17 calculated in S54, the heat penetration resistance R of the window glass, and the inner surface heat transfer resistance Ri of the window glass Based on the room temperature Tz, the outside air temperature Ta, and the surface temperature Tg of the window glass, the solar heat load Qs is calculated using the equation 9 (S55). Also, the solar heat load Qs can be estimated using the set temperature Tset of the air conditioner 11 instead of the room temperature Tz.
  • the indoor heat generation load Qin estimated in S50, the solar radiation heat load Qs estimated in S55, and the air conditioning target stored in the total heat loss coefficient 176 of the storage device 17 The air conditioning load Q is estimated according to the equation 7 group based on the total heat loss coefficient KA of the building 2, the room temperature Tz, and the outside air temperature Ta (S56).
  • control device 19 determines a control command of the air conditioning ability Qhvac of the air conditioner 11 based on the air conditioning load Q estimated in S56 (S57). Then, it returns to S50.
  • the control command is not limited to the air conditioning capability Qhvac, and a command value of the blowout temperature of the air conditioner 11, a direction of the blowout, or the like may be controlled as a control command value. Therefore, it is possible to estimate in real time the solar radiation heat load due to the solar radiation entering the room in the building 2 from the window glass with high accuracy according to the change of the environment.
  • the room temperature detection unit for detecting the room temperature in the building the outside air temperature detection unit for detecting the outside air temperature
  • the surface temperature detection unit for detecting the surface temperature inside the building of the window glass the room temperature and the outside air temperature
  • Window thermal performance learning unit that learns the window thermal performance of the window glass based on the surface temperature and the air conditioning capability estimation unit that estimates the air conditioning capability based on the amount of heat generated from the air conditioner
  • a window load factor learning unit that learns the window load factor of window glass based on surface temperature, window thermal performance and air conditioning ability, and based on room temperature, ambient temperature, surface temperature, window thermal performance and window load factor
  • It is an air conditioning system provided with a solar radiation heat load estimating part which presumes solar radiation heat load by solar radiation which enters from a window glass, and a control part which controls an air harmony machine based on solar radiation heat load.
  • a room temperature detection step for detecting the room temperature in the building, an outside air temperature detection step for detecting the outside air temperature, a surface temperature detection step for detecting the surface temperature inside the building of the window glass, room temperature, outside air temperature and surface temperature
  • Window thermal performance learning step of learning the window thermal performance of the window glass based on the air conditioning capability estimation step of estimating the air conditioning capability based on the heat quantity generated from the air conditioner, room temperature, outside air temperature and surface temperature
  • window load factor learning step to learn window load factor of window glass based on window thermal performance and air conditioning ability, and from window glass based on room temperature, ambient temperature, surface temperature, window thermal performance and window load factor
  • the surface temperature detection unit is provided in the air conditioner, it is possible to estimate the solar heat load of the building to be subjected to the air conditioning with high accuracy.
  • a total heat loss coefficient learning unit that learns the total heat loss coefficient of the building based on the room temperature, the outside air temperature, and the air conditioning ability, the room temperature, the outside air temperature, the surface temperature, the window thermal performance, the window load coefficient, and the total heat loss
  • the air conditioning load estimation unit estimates a building air conditioning load based on the coefficients, and the air conditioning system controls an air conditioner based on the air conditioning load. By this, the solar radiation heat load of the building which is the object of air conditioning can be estimated with high accuracy.
  • FIG. 12 is an example of the block diagram of the air conditioning system by Embodiment 4 of this invention. Unlike the third embodiment, the fourth embodiment does not judge the presence or absence of solar radiation. Further, in the third embodiment, in order to estimate the solar heat load Qs, the total heat loss coefficient KA, the window thermal performance, and the window load coefficient Hg are learned in separate steps, but the fourth embodiment is the outside air. The main difference is that the air conditioning load Q is estimated by learning the load factor Ha and the window load factor Hg.
  • the window load coefficient Hg is a coefficient including the window thermal performance, the window optical performance, and the window area Ag, and the outside air load coefficient Ha is a coefficient including the total heat loss coefficient KA and the window load coefficient Hg.
  • the load coefficient learning unit 168 Is equipped.
  • the storage device 17 is provided with an outside air load factor 178.
  • the air conditioning system 1 includes a room temperature detection device 1111 for detecting the room temperature Tz of the building 2, a surface temperature detection device 1112 for detecting the surface temperature Tg of the window glass, and an outside air temperature detection for detecting the outside air temperature Ta outside the building 2.
  • a device 1121 an input device 12 to which external information is input, an arithmetic device 16 for performing various calculations, a storage device 17 for storing information of various detection devices and calculation results of the arithmetic device 16, air conditioning It comprises a control device 19 for controlling the machine 11 and a communication path 18 for exchanging information between various devices.
  • the heat balance equation of the equation 15 group when the room temperature Tz is stable (for example, the fluctuation of the room temperature Tz is 0 °) at predetermined time intervals (for example, selected from 30 minutes, 60 minutes, etc.) Is the heat balance equation of the equation 15 group.
  • the equation group 15 can be derived from the equations 8 and 9.
  • the heat balance equation of equation 15 holds, air is obtained based on the room temperature Tz, the outside air temperature Ta, the surface temperature Tg of the window glass, the outside air load coefficient Ha, the window load coefficient Hg, and the indoor heat load Qin.
  • the harmonization ability Qhvac can be determined (Equation 15 group).
  • the upper stage is for cooling, and the lower stage is for heating.
  • the room temperature Tz is ideally stable if the fluctuation of the room temperature Tz is 0 degree ideally, but for example, if the fluctuation is ⁇ 0.5 degree, ⁇ 1 degree, the error also increases, but as an allowable range
  • the room temperature Tz can also be treated as stable.
  • FIG. 13 is an example of the process flow of the air conditioning system according to Embodiment 4 of the present invention. It is a processing flow implemented while the air conditioning system 1 is in operation. As compared with the processing flow of the third embodiment (FIG. 11), the processing S60 related to the operation of estimating the indoor heat generation load Qin corresponds to S50, and the processing S63 for determining the air conditioning control command corresponds to S57.
  • the third embodiment is the 50th step
  • the fourth embodiment is the 60th step
  • the process is the same as that of the fourth embodiment.
  • the indoor heat generation load estimation unit 160 estimates the indoor heat generation load Qin, and the process proceeds to S61.
  • control device 19 controls the air conditioner 11 based on the air conditioning control command estimated in S63. Then, it returns to S60.
  • the outside air temperature detection unit that detects the outside air temperature
  • the surface temperature detection unit that detects the surface temperature inside the building of the window glass
  • the air conditioner An air conditioning ability estimation unit that estimates the air conditioning ability based on the generated heat amount, and a load factor learning that learns the window load factor and the outdoor air load factor of the window glass based on room temperature, ambient temperature, surface temperature, and air conditioning ability Control unit for controlling the air conditioner based on the air conditioning load, the air conditioning load estimating unit for estimating the air conditioning load of the building based on the room temperature, the outside air temperature, the surface temperature, the window load factor and the outside air loading factor
  • An air conditioning system comprising:
  • a room temperature detection step for detecting the room temperature in the building, an outside air temperature detection step for detecting the outside air temperature, a surface temperature detection step for detecting the surface temperature of the window glass inside the building, and heat quantity generated from the air conditioner
  • Air conditioning load estimation step of estimating the air conditioning load of the building based on the room temperature, the outside air temperature, the surface temperature, the window load coefficient and the outside air loading coefficient, and a control step of controlling the air conditioner based on the air conditioning load. It is an air conditioning method provided.
  • the present invention is not limited to the embodiments described above, and can be variously modified within the scope of the present invention. That is, the configuration of the embodiment described so far may be appropriately improved, and at least a part may be replaced with another configuration. Furthermore, the configuration requirements without particular limitation on the arrangement are not limited to the arrangement disclosed in the embodiment, and can be arranged at a position where the function can be achieved. In addition, the invention may be formed by appropriately combining a plurality of components disclosed in the embodiments described above. Furthermore, the present invention is not the scope of the embodiments described above, is shown by the claims, and includes all modifications within the meaning and scope equivalent to the claims.
  • SYMBOLS 1 air conditioning system 2 buildings, 3 walls, 4 windows, 5 floors, 11 air conditioners, 12 input devices, 13 room temperature detection devices, 14 outside air temperature detection devices, 15 surface temperature detection devices, 16 arithmetic devices, 17 storage devices , 18 communication path, 19 control device, 111 indoor unit, 112 outdoor unit, 160 indoor heat generation load estimation unit, 161 window heat performance learning unit, 162 window optical performance learning unit, 163 solar heat load estimation unit, 164 air conditioning ability estimation Part, 165 total heat loss coefficient learning part, 166 air conditioning load estimation part, 167 window load factor learning part, 168 load factor learning part, 171 unit solar radiation amount by area, 172 window optical performance relational expression, 173 window area, 174 window Thermal performance, 175 window optical performance, 176 total heat loss coefficient, 177 window load coefficient, 178 outside air load coefficient, 111 Room temperature detector, 1112 a surface temperature detecting device 1121 outside air temperature detection device.

Abstract

An air conditioning system (1) comprising: a room temperature detection unit (13) that detects room temperature inside a building (2); an outside air temperature detection unit (14) that detects outside air temperature; a surface temperature detection unit (15) that detects surface temperature of window glass, on the inside of the building (2); an air conditioning capacity estimation unit (164) that estimates air conditioning capacity on the basis of the amount of heat generated from an air conditioner (11); a load coefficient learning unit (168) that learns a window load coefficient for the window glass and an outside air load coefficient, on the basis of the room temperature, the outside air temperature, the surface temperature, and the air conditioning capacity; an air conditioning load estimation unit (166) that estimates the air conditioning load for the building (2) on the basis of the room temperature, the outside air temperature, the surface temperature, the window load coefficient, and the outside air load coefficient; and a control unit that controls the air conditioner (11) on the basis of the air conditioning load.

Description

空気調和システム及び空気調和方法Air conditioning system and air conditioning method
 この発明は、空気調和機を制御する空気調和システム及び空気調和方法に関するものである。 The present invention relates to an air conditioning system and an air conditioning method for controlling an air conditioner.
 空気調和システムは、住宅、オフィスビルなどに対して快適な室内環境を保ちながら省エネルギー化を実現するものである。このため、室内を冷やし過ぎ、暖め過ぎなどによる無駄なエネルギーを低減することが要求される。空気調和システムからの供給熱量の過不足がなく制御を行うためには、空気調和機、他の機器などのデータを用いてリアルタイムに空気調和の対象となる室内の熱負荷を推定し、推定した熱負荷に応じて空気調和制御量を適切に調整する必要がある。 The air conditioning system realizes energy saving while maintaining a comfortable indoor environment for a house, an office building and the like. For this reason, it is required to reduce useless energy due to overcooling and overheating of the room. In order to perform control without excess or deficiency of the amount of heat supplied from the air conditioning system, the heat load in the room to be air conditioned was estimated in real time using data from the air conditioner, other devices, etc. It is necessary to properly adjust the air conditioning control amount according to the heat load.
 特に、住宅の窓が大きい部屋、オフィスビルの窓付近(ぺリメータゾーン)においては、窓から侵入される日射が空気調和負荷に大きく影響を与えている。このため、日射による熱負荷を考慮し、建物の窓に適切な窓ガラスを選択する方法(例えば、特許文献1)、室内の熱負荷を推定するシステムが提案されている(例えば、特許文献2、特許文献3)。 In particular, in a room with a large window of a house and in the vicinity of a window of an office building (perimeter zone), the solar radiation invaded from the window greatly affects the air conditioning load. For this reason, there has been proposed a method of selecting an appropriate window glass for a window of a building (for example, Patent Document 1) and a system for estimating the heat load in a room (for example, Patent Document 2). , Patent Document 3).
 特許文献1は、建設地域、季節、時間、窓の方位、窓ガラス構成の違いにより、日射熱負荷(窓面受熱日射量)を算出するものである。 Patent Document 1 calculates the solar radiation heat load (window surface heat receiving solar radiation amount) by the difference between the construction area, season, time, orientation of the window, and window glass configuration.
 特許文献2は、サーモカメラと日射センサとを用いて、窓ガラスを含む外壁面の温度分布及び日射量を計測し、計測結果に応じて窓付近(ペリメータゾーン)の熱負荷を推定するものである。 Patent Document 2 measures the temperature distribution and the amount of solar radiation of the outer wall surface including the window glass using a thermo camera and a solar radiation sensor, and estimates the heat load near the window (perimeter zone) according to the measurement result. is there.
 特許文献3は、窓面に設置された光透過性の有機薄膜太陽電池の出力特性に基づいて、窓付近(ペリメータゾーン)の熱負荷を推定するものである。 Patent Document 3 estimates the heat load in the vicinity of the window (perimeter zone) based on the output characteristics of the light-transmissive organic thin film solar cell installed on the window surface.
特開2008-107910Patent document 1: JP 2008-107910 特開2011-202877JP, 2011-202877, A 特開2015-218991Japanese Patent Application Publication No. 2015-218991
 特許文献1の手法によれば、建設地域、季節、時間、開口部の方位、窓ガラスの構成(性能)を入力する必要がある。これら入力データによって、格納している気象データを選択して日射熱負荷を算出している。このため、実環境においてリアルタイムに窓ガラスから侵入する日射熱負荷を推定することはできない。 According to the method of Patent Document 1, it is necessary to input the construction area, the season, the time, the orientation of the opening, and the configuration (performance) of the window glass. Based on these input data, the stored weather data is selected to calculate the solar heat load. For this reason, it is not possible to estimate the solar radiation heat load intruding from the window glass in real time in a real environment.
 また、特許文献2の手法によれば、熱負荷を推定するためには外壁面の温度分布を検出するサーモカメラと、日射量を検出する専用機器である日射センサとを建物の外に設置する必要があり、設備のメンテナンス及びコストの増大することになる。 Moreover, according to the method of patent document 2, in order to estimate a thermal load, the thermo camera which detects the temperature distribution of an outer wall surface, and the solar radiation sensor which is an exclusive device which detects the amount of solar radiation are installed out of a building. Need, which will increase equipment maintenance and costs.
 さらに、特許文献3の手法によれば、各窓面に光透過性の有機薄膜太陽電池を設置する必要がある。光透過性の有機薄膜太陽電池は、現在、研究開発の段階であり、窓に設置するための光透過性の有機薄膜太陽電池は、まだ普及されておらず実用的でない。 Furthermore, according to the method of Patent Document 3, it is necessary to install a light transmitting organic thin film solar cell on each window surface. The light transmitting organic thin film solar cells are currently in the research and development stage, and the light transmitting organic thin film solar cells for being installed in the windows are not widely used yet and are not practical.
 この発明は、日射量センサなどの日射量を検出する専用の検出機器、光透過性の有機薄膜太陽電池を設けることなく、窓ガラスの性能を学習し、環境の変化に応じてリアルタイムに建物の窓ガラスから侵入する日射量を推定し、室内の日射熱負荷を高精度に推定できる空気調和システム及び空気調和方法を提供することを目的とする。 The present invention learns the performance of window glass without providing a dedicated detecting device for detecting the amount of solar radiation, such as a solar radiation amount sensor, and a light transmitting organic thin film solar cell, and according to changes in the environment, the building in real time It is an object of the present invention to provide an air conditioning system and an air conditioning method capable of estimating the amount of solar radiation intruding from a window glass and estimating solar heat load in a room with high accuracy.
 この発明に係る空気調和システムは、建物内の室温を検出する室温検出部と、外気温を検出する外気温検出部と、窓ガラスの建物の内側の表面温度を検出する表面温度検出部と、室温と外気温と表面温度とに基づいて窓ガラスの窓熱性能を学習する窓熱性能学習部と、空気調和機から発生する熱量に基づいて空気調和能力を推定する空気調和能力推定部と、室温と外気温と表面温度と窓熱性能と空気調和能力とに基づいて窓ガラスの窓負荷係数を学習する窓負荷係数学習部と、室温と外気温と表面温度と窓熱性能と窓負荷係数とに基づいて窓ガラスから入射する日射による日射熱負荷を推定する日射熱負荷推定部と、日射熱負荷に基づいて空気調和機を制御する制御部とを備える空気調和システムである。 The air conditioning system according to the present invention comprises a room temperature detection unit that detects a room temperature in a building, an outside air temperature detection unit that detects an outside air temperature, and a surface temperature detection unit that detects a surface temperature inside a building of a window glass A window thermal performance learning unit that learns the window thermal performance of the window glass based on the room temperature, the outside air temperature, and the surface temperature, and an air conditioning capability estimation unit that estimates the air conditioning capability based on the heat quantity generated from the air conditioner; Window load factor learning unit that learns window load factor of window glass based on room temperature, ambient temperature, surface temperature, window thermal performance and air conditioning ability, room temperature, ambient temperature, surface temperature, window thermal performance and window load factor And a control unit for controlling an air conditioner based on the solar heat load, and a solar heat load estimation unit for estimating a solar heat load due to solar radiation incident from the window glass on the basis of the control unit.
 この発明に係る空気調和システムは、建物内の室温を検出する室温検出部と、外気温を検出する外気温検出部と、窓ガラスの建物の内側の表面温度を検出する表面温度検出部と、空気調和機から発生する熱量に基づいて空気調和能力を推定する空気調和能力推定部と、室温と外気温と表面温度と空気調和能力とに基づいて窓ガラスの窓負荷係数及び外気負荷係数を学習する負荷係数学習部と、室温と外気温と表面温度と窓負荷係数と外気負荷係数とに基づいて建物の空気調和負荷を推定する空気調和負荷推定部と、空気調和負荷に基づいて空気調和機を制御する制御部とを備える空気調和システムである。 The air conditioning system according to the present invention comprises a room temperature detection unit that detects a room temperature in a building, an outside air temperature detection unit that detects an outside air temperature, and a surface temperature detection unit that detects a surface temperature inside a building of a window glass The air conditioning ability estimation unit estimates the air conditioning ability based on the heat generated from the air conditioner, and learns the window load factor and the external air load factor of the window glass based on the room temperature, the outside air temperature, the surface temperature, and the air conditioning ability Load factor learning section, an air conditioning load estimation section for estimating the air conditioning load of the building based on the room temperature, the outside air temperature, the surface temperature, the window load factor and the outside air loading factor, and the air conditioner based on the air conditioning load And a control unit that controls the air conditioning system.
 この発明に係る空気調和システムは、建物内の室温を検出する室温検出部と、外気温を検出する外気温検出部と、窓ガラスの建物の内側の表面温度を検出する表面温度検出部と、室温と外気温と表面温度とに基づいて窓ガラスの窓熱性能を学習する窓熱性能学習部と、単位日射量及び窓ガラスの構成による窓光学性能関係式と室温と外気温と表面温度と窓熱性能とに基づいて窓ガラスの窓光学性能を学習する窓光学性能学習部と、窓ガラスの面積と室温と外気温と表面温度と窓熱性能と窓光学性能とに基づいて窓ガラスから入射する日射による日射熱負荷を推定する日射熱負荷推定部と、日射熱負荷に基づいて空気調和機を制御する制御部とを備える空気調和システムである。 The air conditioning system according to the present invention comprises a room temperature detection unit that detects a room temperature in a building, an outside air temperature detection unit that detects an outside air temperature, and a surface temperature detection unit that detects a surface temperature inside a building of a window glass Window thermal performance learning unit to learn window thermal performance of window glass based on room temperature, outside air temperature and surface temperature, window optical performance relational expression by unit solar radiation and window glass configuration, room temperature, outside air temperature and surface temperature Window optical performance learning section to learn window optical performance of window glass based on window thermal performance, and from window glass based on window glass area, room temperature, ambient temperature, surface temperature, window thermal performance and window optical performance It is an air conditioning system provided with a solar radiation heat load estimating part which presumes solar radiation heat load by incidence solar radiation, and a control part which controls an air harmony machine based on solar radiation heat load.
 この発明に係る空気調和方法は、建物内の室温を検出する室温検出ステップと、外気温を検出する外気温検出ステップと、窓ガラスの建物の内側の表面温度を検出する表面温度検出ステップと、室温と外気温と表面温度とに基づいて窓ガラスの窓熱性能を学習する窓熱性能学習ステップと、空気調和機から発生する熱量に基づいて空気調和能力を推定する空気調和能力推定ステップと、室温と外気温と表面温度と窓熱性能と空気調和能力とに基づいて窓ガラスの窓負荷係数を学習する窓負荷係数学習ステップと、室温と外気温と表面温度と窓熱性能と窓負荷係数とに基づいて窓ガラスから入射する日射による日射熱負荷を推定する日射熱負荷推定ステップと、日射熱負荷に基づいて空気調和機を制御する制御ステップとを備える空気調和方法である。 An air conditioning method according to the present invention comprises: a room temperature detection step of detecting a room temperature in a building; an outside air temperature detection step of detecting an outside air temperature; and a surface temperature detection step of detecting a surface temperature inside a building of a window glass; A window thermal performance learning step of learning window thermal performance of the window glass based on the room temperature, the outside air temperature and the surface temperature, and an air conditioning ability estimation step of estimating the air conditioning ability based on the heat quantity generated from the air conditioner; Window load factor learning step to learn window load factor of window glass based on room temperature, ambient temperature, surface temperature, window thermal performance and air conditioning ability, room temperature, ambient temperature, surface temperature, window thermal performance and window load factor Air conditioning method comprising a solar heat load estimation step of estimating a solar heat load due to solar radiation incident from a window glass based on the above and a control step of controlling an air conditioner based on the solar heat load It is.
 この発明に係る空気調和方法は、建物内の室温を検出する室温検出ステップと、外気温を検出する外気温検出ステップと、窓ガラスの建物の内側の表面温度を検出する表面温度検出ステップと、空気調和機から発生する熱量に基づいて空気調和能力を推定する空気調和能力推定ステップと、室温と外気温と表面温度と空気調和能力とに基づいて窓ガラスの窓負荷係数及び外気負荷係数を学習する負荷係数学習ステップと、室温と外気温と表面温度と窓負荷係数と外気負荷係数とに基づいて建物の空気調和負荷を推定する空気調和負荷推定ステップと、空気調和負荷に基づいて空気調和機を制御する制御ステップとを備える空気調和方法である。 An air conditioning method according to the present invention comprises: a room temperature detection step of detecting a room temperature in a building; an outside air temperature detection step of detecting an outside air temperature; and a surface temperature detection step of detecting a surface temperature inside a building of a window glass; The air conditioning ability estimation step of estimating the air conditioning ability based on the heat quantity generated from the air conditioner, and learning the window load factor and the outdoor air load factor of the window glass based on the room temperature, the outside air temperature, the surface temperature and the air conditioning ability Load factor learning step, an air conditioning load estimation step for estimating the air conditioning load of the building based on the room temperature, the outside air temperature, the surface temperature, the window load factor and the outside air loading factor, an air conditioner based on the air conditioning load And a control step of controlling the air conditioning method.
 この発明に係る空気調和方法は、建物内の室温を検出する室温検出ステップと、外気温を検出する外気温検出ステップと、窓ガラスの建物の内側の表面温度を検出する表面温度検出ステップと、室温と外気温と表面温度とに基づいて窓ガラスの窓熱性能を学習する窓熱性能学習ステップと、単位日射量及び窓ガラスの構成による窓光学性能関係式と室温と外気温と表面温度と窓熱性能とに基づいて窓ガラスの窓光学性能を学習する窓光学性能学習ステップと、窓ガラスの面積と室温と外気温と表面温度と窓熱性能と窓光学性能とに基づいて窓ガラスから入射する日射による日射熱負荷を推定する日射熱負荷推定ステップと、日射熱負荷に基づいて空気調和機を制御する制御ステップとを備える空気調和方法である。 An air conditioning method according to the present invention comprises: a room temperature detection step of detecting a room temperature in a building; an outside air temperature detection step of detecting an outside air temperature; and a surface temperature detection step of detecting a surface temperature inside a building of a window glass; Window thermal performance learning step of learning window thermal performance of window glass based on room temperature, ambient temperature and surface temperature, window optical performance relational expression by unit solar radiation amount and configuration of window glass, room temperature, ambient temperature and surface temperature Window optical performance learning step to learn window optical performance of window glass based on window thermal performance and from window glass based on window glass area, room temperature, ambient temperature, surface temperature, window thermal performance and window optical performance It is an air conditioning method provided with the control step of controlling the air conditioner based on the solar radiation heat load estimation step which estimates the solar radiation heat load by the incident solar radiation, and the solar radiation heat load.
 この発明によれば、日射量を検出する専用の検出機器や、光透過性の有機薄膜太陽電池を設けることなく、室内の日射熱負荷又は空気調和負荷を推定して空気調和機を制御する空気調和システム及び空気調和方法を得ることができる。 According to this invention, the air which controls the indoor solar heat load or the air conditioning load and controls the air conditioner without providing a dedicated detecting device for detecting the amount of solar radiation or the light transmitting organic thin film solar cell Harmonized systems and air conditioning methods can be obtained.
本発明の実施の形態1による空気調和システムが適用される建物の内部例を説明するための斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a perspective view for demonstrating the inside example of the building where the air conditioning system by Embodiment 1 of this invention is applied. 本発明の実施の形態1による空気調和システムの構成図の例である。It is an example of the block diagram of the air conditioning system by Embodiment 1 of this invention. 本発明の実施の形態1による空気調和システムの処理フローの例である。It is an example of the processing flow of the air conditioning system by Embodiment 1 of this invention. 本発明の実施の形態1による日射の有無による温度勾配図の例である。It is an example of the temperature gradient chart by the presence or absence of the solar radiation by Embodiment 1 of this invention. 本発明の実施の形態1による室内の熱画像と写真の例である。It is an example of the thermal image and the photograph of the room by Embodiment 1 of the present invention. 本発明の実施の形態1による窓ガラスの日射吸収率αと日射熱取得率ηとの関係を示す図の例である。It is an example of the figure which shows the relationship between the solar radiation absorptivity a of the window glass and the solar radiation heat acquisition rate eta by Embodiment 1 of this invention. 本発明の実施の形態2による空気調和システムの構成図の例である。It is an example of the block diagram of the air conditioning system by Embodiment 2 of this invention. 本発明の実施の形態2による空気調和機の外観図の例である。It is an example of the external view of the air conditioner by Embodiment 2 of this invention. 本発明の実施の形態2による空気調和システムの処理フローの例である。It is an example of the processing flow of the air conditioning system by Embodiment 2 of this invention. 本発明の実施の形態3による空気調和システムの構成図の例である。It is an example of the block diagram of the air conditioning system by Embodiment 3 of this invention. 本発明の実施の形態3による空気調和システムの処理フローの例である。It is an example of the processing flow of the air conditioning system by Embodiment 3 of this invention. 本発明の実施の形態4による空気調和システムの構成図の例である。It is an example of the block diagram of the air conditioning system by Embodiment 4 of this invention. 本発明の実施の形態4による空気調和システムの処理フローの例である。It is an example of the processing flow of the air conditioning system by Embodiment 4 of this invention.
実施の形態1.
 図1は、本発明の実施の形態1による空気調和システムが適用される建物2の内部例を説明するための斜視図である。建物2は住宅を示し、壁3に備えられた空気調和機11は壁掛型の空気調和機11である。太陽からの日射が建物2の窓4を通過し、床5や壁3に到達している。建物2は住宅に限定されず、オフィスビルなどにも本実施の形態の空気調和システムを設置することができる。なお、空気調和機11は壁掛型に限定されず、天井カセット型、ダクト接続型など、室内空気を調和する機器を空気調和機11として使用することができる。
Embodiment 1
FIG. 1 is a perspective view for explaining an example of the interior of a building 2 to which an air conditioning system according to a first embodiment of the present invention is applied. The building 2 shows a house, and the air conditioner 11 provided on the wall 3 is a wall-mounted air conditioner 11. Solar radiation from the sun passes through the windows 4 of the building 2 and reaches the floor 5 and the wall 3. The building 2 is not limited to a house, and the air conditioning system of the present embodiment can be installed in an office building or the like. In addition, the air conditioner 11 is not limited to a wall hanging type, The apparatus which adjusts indoor air, such as a ceiling cassette type and a duct connection type, can be used as the air conditioner 11.
 図2は、本発明の実施の形態1による空気調和システムの構成図の例である。空気調和システム1は、空気調和機11と、外部からの情報が入力される入力装置12と、建物2の室温Tzを検出する室温検出装置13と、建物2の外の外気温Taを検出する外気温検出装置14と、窓ガラスの表面温度Tgを検出する表面温度検出装置15と、各種の演算を行う演算装置16と、各種の検出装置の情報及び演算装置16の演算結果を記憶する記憶装置17と、外部からの情報が入力される入力装置12と、空気調和機11を制御する制御装置19と、各種の装置間で情報をやりとりする通信経路18とから構成される。 FIG. 2 is an example of the block diagram of the air conditioning system by Embodiment 1 of this invention. The air conditioning system 1 detects an air conditioner 11, an input device 12 to which information from the outside is input, a room temperature detection device 13 for detecting a room temperature Tz of the building 2, and an outside air temperature Ta outside the building 2. An external air temperature detection device 14, a surface temperature detection device 15 for detecting the surface temperature Tg of the window glass, an arithmetic device 16 for performing various calculations, a memory for storing information of the various detection devices and calculation results of the arithmetic device 16 It comprises an apparatus 17, an input device 12 to which information from the outside is input, a control device 19 for controlling the air conditioner 11, and a communication path 18 for exchanging information between various devices.
 表面温度検出装置15は、室内に設置された熱画像センサ(赤外線温度センサ)、サーモカメラ等であり、空気調和の対象となる建物2の内側の窓ガラスの表面温度Tgを検出できるように設置する。以下の記載では、別のものを明記していない限り表面温度といった場合、建物2の内側の窓ガラスの表面温度Tgのことである。また、演算装置16は、窓熱性能学習部161と窓光学性能学習部162と日射熱負荷推定部163とから構成され、具体的にはCPUである。 The surface temperature detection device 15 is a thermal image sensor (infrared temperature sensor) installed in the room, a thermo camera or the like, and installed so as to detect the surface temperature Tg of the window glass inside the building 2 to be air conditioned. Do. In the following description, the term “surface temperature” refers to the surface temperature Tg of the window glass inside the building 2 unless otherwise specified. In addition, the arithmetic unit 16 includes a window thermal performance learning unit 161, a window optical performance learning unit 162, and a solar radiation heat load estimation unit 163, and specifically, is a CPU.
 記憶装置17は、地域別単位日射量171と窓光学性能関係式172と窓面積173と窓熱性能174と窓光学性能175等から構成され、具体的にはハードディスク、RAM等の記憶媒体である。また、通信経路18は、空気調和機11と入力装置12と室温検出装置13と外気温検出装置14と表面温度検出装置15と演算装置16と記憶装置17と制御装置19とを接続する通信用のネットワークである。通信経路18はケーブルの種類、通信プロトコル等は特に限定しない。さらに、制御装置19は、通信経路18を介した日射熱負荷推定値に基づき、空気調和機11に対する制御指令を決定する。 The storage unit 17 is composed of regional unit solar radiation amount 171, window optical performance relational expression 172, window area 173, window thermal performance 174, window optical performance 175, etc. Specifically, it is a storage medium such as a hard disk or RAM. . The communication path 18 is for communication that connects the air conditioner 11, the input device 12, the room temperature detection device 13, the outside air temperature detection device 14, the surface temperature detection device 15, the arithmetic device 16, the storage device 17, and the control device 19. It is a network of The type of cable, the communication protocol, and the like of the communication path 18 are not particularly limited. Further, the control device 19 determines a control command for the air conditioner 11 based on the solar radiation heat load estimated value via the communication path 18.
 図3は、本発明の実施の形態1による空気調和システムの処理フローの例である。以下、ステップ毎に説明する。 FIG. 3 is an example of a process flow of the air conditioning system according to Embodiment 1 of the present invention. Each step will be described below.
[S11:日射あり・なし判断]
 S11では、日射の有無を判断する。その後、日射がある場合はS13へ、日射が無い場合はS12へ進む。日射の有無の判断方法の例を以下に示す。
[S11: solar radiation presence / absence judgment]
In S11, it is determined whether or not there is solar radiation. Thereafter, when there is solar radiation, the process proceeds to S13, and when there is no solar radiation, the process proceeds to S12. The example of the judgment method of the presence or absence of solar radiation is shown below.
 窓熱性能174を学習するには日射の影響がないときのデータを用いる必要がある。窓ガラス表面に直接日射が当たると、熱が窓ガラスに吸収されて窓ガラスの表面温度Tgが上昇する。 In order to learn the window thermal performance 174, it is necessary to use data when there is no influence of solar radiation. When the surface of the window glass is exposed to direct sunlight, heat is absorbed by the window glass and the surface temperature Tg of the window glass rises.
 図4は、本発明の実施の形態1による日射の有無による温度勾配図の例である。より具体的には、夏と冬において日射の有無で、外気温Ta、窓ガラスの表面温度Tg、室温Tzの温度勾配を表した図である。上段が日射なしの場合、下段が日射ありの場合、左側が夏場に冷房運転を行う場合、右側が冬場に暖房運転を行う場合を示している。また、Taは外気温Ta、Tzは室温、Tgは窓4の室内側の表面温度Tgであり、上方は温度が高く、下方は温度が低いことを示している。さらに、下段の日射ありの場合、太い矢印で窓吸収日射を示している。 FIG. 4 is an example of a temperature gradient diagram with and without solar radiation according to Embodiment 1 of the present invention. More specifically, it is a figure showing the temperature gradient of the outside temperature Ta, the surface temperature Tg of the window glass, and the room temperature Tz depending on the presence or absence of solar radiation in summer and winter. When the upper stage is without solar radiation, when the lower stage is with solar radiation, the left side shows the case where the cooling operation is performed in summer, and the right side shows the case where the heating operation is performed in winter. Further, Ta indicates the outside air temperature Ta, Tz the room temperature, Tg the surface temperature Tg on the indoor side of the window 4, the upper side indicates that the temperature is high, and the lower side indicates that the temperature is low. Furthermore, when there is solar radiation at the bottom, the window absorption solar radiation is indicated by a thick arrow.
 室温検出装置13で検出した室温Tzと、外気温検出装置14で検出した外気温Taと、表面温度検出装置15で検出した窓ガラスの表面温度Tgを用いて、窓ガラスの表面温度Tgが室温Tzより高く、かつ、窓ガラスの表面温度Tgが外気温Taより高いときに日射があると判断する(式1群の上段)。また、空気調和システム1の稼働中の時刻が分かる場合は、夜間のデータを日射なし条件のデータとして用いることができる。日射が無い場合は、夏場の冷房時は、室温Tz、窓ガラスの表面温度Tg、外気温Taの順番で温度が高くなる(式1群の中段)。一方、日射が無い場合は、冬場の暖房時は、外気温Ta、窓ガラスの表面温度Tg、室温Tzの順番で温度が高くなる(式1群の下段)。 Using the room temperature Tz detected by the room temperature detection device 13, the outside air temperature Ta detected by the outside air temperature detection device 14, and the surface temperature Tg of the window glass detected by the surface temperature detection device 15, the surface temperature Tg of the window glass is room temperature It is determined that there is solar radiation when the surface temperature Tg of the window glass is higher than Tz and the surface temperature Tg of the window glass is higher than the outside temperature Ta (the upper stage of the formula 1 group). Moreover, when the time in operation of the air conditioning system 1 is known, the data at night can be used as the data of the no solar radiation condition. When there is no solar radiation, the temperature rises in the order of the room temperature Tz, the surface temperature Tg of the window glass, and the outside air temperature Ta at the time of cooling in summer (the middle row of the formula 1 group). On the other hand, when there is no solar radiation, the temperature rises in the order of the outside temperature Ta, the surface temperature Tg of the window glass, and the room temperature Tz at the time of heating in winter (the lower part of Formula 1 group).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 図5は本発明の実施の形態1による室内の熱画像と写真の例である。下段の写真の状態の熱画像が上段になっている。図5は実際の住居に実験設備を持ち込んだものであり複数の支柱が設置されている。また、図5の右側はカーテンであり、左奥は輻射パネルである。ここで、レースカーテン、ブラインド等を使っているときでも窓4の位置が検出できることが分かる。このように、窓4の位置にあるレースカーテン、ブラインド等の表面温度を窓ガラスの表面温度Tgとみなすことで、日射の有無の判断ができる。 FIG. 5 is an example of a thermal image and a photograph of the room according to the first embodiment of the present invention. The thermal image of the state of the lower photograph is in the upper row. Fig. 5 shows the experimental installation brought into a real house, and a plurality of columns are installed. Moreover, the right side of FIG. 5 is a curtain, and the left back is a radiation panel. Here, it can be seen that the position of the window 4 can be detected even when using a race curtain, a blind or the like. Thus, by regarding the surface temperature of the lace curtain, the blind or the like at the position of the window 4 as the surface temperature Tg of the window glass, it is possible to determine the presence or absence of solar radiation.
[S12:窓熱性能学習]
 窓熱性能学習部161は、室温Tzと外気温Taと窓ガラスの表面温度Tgとに基づいて窓ガラスの窓熱性能を学習する(S12)。具体的には、窓熱性能学習部161において、S11で日射がないと判断したときのデータを用いて窓ガラスの熱貫流抵抗Rを計算する。なお、窓熱性能は熱貫流抵抗Rに限定されず、熱抵抗に基づく性能を含んでもよい。
[S12: window thermal performance learning]
The window thermal performance learning unit 161 learns the window thermal performance of the window glass based on the room temperature Tz, the outside air temperature Ta, and the surface temperature Tg of the window glass (S12). Specifically, in the window thermal performance learning unit 161, the heat penetration resistance R of the window glass is calculated using the data when it is determined that there is no solar radiation in S11. The window thermal performance is not limited to the heat penetration resistance R, but may include performance based on the thermal resistance.
 窓ガラスの熱貫流抵抗Rは、室温Tzと外気温Taと窓ガラスの表面温度Tgを用いて式2に基づいて計算する。なお、式2において、Riは窓ガラスの内表面熱伝達抵抗を表し、JIS R3107に準拠して、0.116[m2K/W]を用いる。また、計算した窓ガラスの熱貫流抵抗Rは記憶装置17の窓熱性能174に格納する。 The heat penetration resistance R of the window glass is calculated based on Equation 2 using the room temperature Tz, the outside temperature Ta, and the surface temperature Tg of the window glass. In Equation 2, Ri represents the inner surface heat transfer resistance of the window glass, and 0.116 [m 2 K / W] is used in accordance with JIS R3107. Also, the calculated heat penetration resistance R of the window glass is stored in the window thermal performance 174 of the storage device 17.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
[S13:吸収日射量推定]
 日射熱負荷推定部163において、S11で日射ありと判断したときのデータを用いて窓ガラスに吸収される日射量Iαを式3によって推定する(S13)。
[S13: absorbed solar radiation amount estimation]
The solar heat load estimation unit 163 uses the data when it is determined that there is solar radiation in S11 to estimate the solar radiation amount Iα absorbed by the window glass according to Equation 3 (S13).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
[S14:窓光学性能学習]
 窓光学性能学習部162は窓ガラスの日射吸収率αと日射熱取得率ηを計算する。なお、窓光学性能は日射吸収率αと日射熱取得率ηとに限定されず、日射に関連する他の性能を含んでもよい。地域別単位日射量171は地域の経度と緯度と日付とから計算する理論値を示す。日付は入力装置から入力することが可能であり、記憶装置17にタイマー機能があるものにおいてはタイマーの日付を用いる。
[S14: Window optical performance learning]
The window optical performance learning unit 162 calculates the solar radiation absorptivity α of the window glass and the solar radiation heat acquisition rate η. The window optical performance is not limited to the solar radiation absorptivity α and the solar radiation heat acquisition rate η, but may include other performances related to solar radiation. The regional unit solar radiation amount 171 indicates a theoretical value calculated from the longitude, latitude, and date of the region. The date can be input from the input device, and in the case where the storage device 17 has a timer function, the date of the timer is used.
 まず、日射吸収率αを求めるために式3群を用いて計算した吸収日射量と、単位日射量Irを用いて式4から、窓ガラスの日射吸収率αの計算を行う。なお、式4において、単位日射量Irは、入力装置12から入力された地域と、記憶装置17に格納されている地域別単位日射量171と、室温Tzと外気温Taと窓ガラスの表面温度Tgとを検出した日付に基づき決まる。地域別単位日射量171は地域の経度と緯度と日付とから計算する理論値を示す。例えば、日付は入力装置12から入力することができ、記憶装置17にタイマー機能があれば、そのタイマーの日付を用いることもできる。 First, the solar radiation absorptivity α of the window glass is calculated from the equation 4 using the absorbed solar radiation amount calculated using the equation 3 group and the unit solar radiation amount Ir in order to obtain the solar radiation absorptance α. In Equation 4, the unit solar radiation Ir is the region input from the input device 12, the region-specific unit solar radiation 171 stored in the storage device 17, the room temperature Tz, the outside air temperature Ta, and the surface temperature of the window glass It is determined based on the date of detection of Tg. The regional unit solar radiation amount 171 indicates a theoretical value calculated from the longitude, latitude, and date of the region. For example, the date can be input from the input device 12, and if the storage device 17 has a timer function, the date of the timer can also be used.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式4により計算した窓ガラスの日射吸収率αは記憶装置17の窓光学性能175に格納される。例えば、窓ガラスの日射吸収率αは、最初は推定した値の最大値をとり、学習した結果で更新して、窓光学性能175に格納する(S14)。 The solar radiation absorptivity α of the window glass calculated by the equation 4 is stored in the window optical performance 175 of the storage device 17. For example, the solar radiation absorptivity α of the window glass initially takes the maximum value of the estimated value, and is updated with the learning result and stored in the window optical performance 175 (S14).
 図6は、本発明の実施の形態1による窓ガラスの日射吸収率αと日射熱取得率ηとの関係を示す図の例である。より具体的には、日射吸収率αを横軸に、日射熱取得率ηを縦軸にとり、両者の関係を線型一次式で近似して求めている。なお、日射吸収率αと日射熱取得率ηとの関係は、線型一次式による近似方法に限られるものではなく、図6に示した近似式は例示に過ぎない。 FIG. 6 is an example of a diagram showing the relationship between the solar radiation absorptance rate α and the solar radiation heat gain rate に よ る according to Embodiment 1 of the present invention. More specifically, the solar radiation absorptance α is taken on the horizontal axis, and the solar radiation heat acquisition rate η is taken on the vertical axis, and the relationship between the two is approximated by a linear first-order equation. In addition, the relationship between the solar radiation absorptivity a and the solar radiation heat acquisition rate η is not limited to the approximation method by the linear first-order equation, and the approximate equation shown in FIG. 6 is merely an example.
 図6に示した窓ガラスは、以下のように多くの種類、厚みの窓ガラスを用いている。窓ガラスは種類によって、熱貫流抵抗R、日射吸収率α、日射熱取得率ηが異なっており、窓光学性能175が異なってくるからである。
・単板ガラス:透明板ガラス、熱線吸収板ガラス、熱線反射ガラス
・合わせガラス:接着剤によって2枚の単板ガラスが接着されたガラス
 (透明板ガラス+透明板ガラス、熱線吸収板ガラス+透明板ガラス、熱線反射ガラス+透明板ガラス)
・複層ガラス:中空層を有する2枚の単板ガラスによって構成されたガラス
 (透明板ガラス+中空層+透明板ガラス、熱線吸収板ガラス+中空層+透明板ガラス、熱線反射ガラス+中空層+透明板ガラス)
の9種類であり、1枚のガラスの厚みが3mmから8mmまでのガラスを含んでいる。
The window glass shown in FIG. 6 uses window glass of many types and thicknesses as follows. The window glass is different in the heat transmission resistance R, the solar radiation absorptivity α and the solar radiation heat acquisition rate η depending on the type, and the window optical performance 175 is different.
Single sheet glass: transparent sheet glass, heat ray absorbing sheet glass, heat ray reflective glass, laminated glass: glass to which two pieces of single sheet glass are adhered by an adhesive (transparent sheet glass + transparent sheet glass, heat ray absorbing sheet glass + transparent sheet glass, heat ray reflective glass + transparent Flat glass)
-Double-layered glass: Glass composed of two single sheet glass having a hollow layer (transparent sheet glass + hollow layer + transparent sheet glass, heat absorbing glass sheet + hollow layer + transparent sheet glass, heat reflecting glass + hollow layer + transparent sheet glass)
9 types of glass, and the thickness of one sheet of glass contains glass from 3 mm to 8 mm.
 式4によって求めた日射吸収率αを図6に示した日射熱取得率ηとの関係式に当てはめ、日射熱取得率ηを算出する。なお、日射吸収率αと日射熱取得率ηとの関係式は、窓ガラスの構成の変更及び追加によって変更することができる。また、窓光学性能175を学習する前は、記憶装置17の窓光学性能関係式172に格納した式を用いればよい。 The solar heat absorptivity 当 て は め is calculated by applying the solar absorptivity a calculated by the equation 4 to the relational expression with the solar heat acquistion rate η shown in FIG. In addition, the relational expression of the solar radiation absorptivity a and the solar radiation heat acquisition rate eta can be changed by the change and addition of a structure of a window glass. In addition, before learning the window optical performance 175, an equation stored in the window optical performance relational expression 172 of the storage device 17 may be used.
 以上のように、窓光学性能学習部162は、単位日射量及び窓ガラスの構成による窓光学性能関係式172、室温Tz、外気温Ta、表面温度Tg、窓熱性能に基づいて窓ガラスの窓光学性能を学習する(S14)。 As described above, the window optical performance learning unit 162 is based on the unit solar radiation amount and the window optical performance relation equation 172 by the configuration of the window glass, the room temperature Tz, the outside temperature Ta, the surface temperature Tg, and the window thermal performance. The optical performance is learned (S14).
[S15:日射熱負荷推定]
 日射熱負荷推定部163において、S13で推定した窓ガラスの吸収日射量Iαと、記憶装置17の窓光学性能175に格納された窓ガラスの日射吸収率αと、日射熱取得率ηとに基づいて、式5を用いて、日射熱負荷Qsを推定する(S15)。なお、式5において、Agは窓ガラスの面積を表す。窓面積Agは、例えば、入力装置から入力した窓面積値、表面温度検出装置から推定した窓面積値等を用いればよい。より具体的には、記憶装置17の窓面積173に格納されている窓面積Agの値を用いる。
[S15: solar radiation heat load estimation]
In the solar heat load estimation unit 163, based on the absorbed solar radiation amount Iα of the window glass estimated in S13, the solar radiation absorptivity α of the window glass stored in the window optical performance 175 of the storage device 17, and the solar radiation heat acquisition rate η. The solar heat load Qs is estimated using Equation 5 (S15). In addition, in Formula 5, Ag represents the area of a window glass. As the window area Ag, for example, a window area value input from an input device, a window area value estimated from a surface temperature detection apparatus, or the like may be used. More specifically, the value of the window area Ag stored in the window area 173 of the storage device 17 is used.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 日射熱負荷推定部163は、別の形で入力条件を表現すると、窓面積173、室温Tz、外気温Ta、表面温度Tg、窓熱性能174、窓光学性能175に基づいて、窓ガラスから入射する日射による日射熱負荷を推定することになる。 When representing the input conditions in another form, the solar radiation heat load estimation unit 163 is incident from the window glass based on the window area 173, the room temperature Tz, the outside temperature Ta, the surface temperature Tg, the window thermal performance 174, and the window optical performance 175. It is to estimate the solar radiation heat load due to the solar radiation.
[S16:空気調和制御指令決定]
 制御装置19は、S15で推定した日射熱負荷Qsに基づき、空気調和機11の空気調和能力Qhvacの制御指令を決定する(S16)。その後、S11に戻る。
[S16: Air conditioning control command decision]
The control device 19 determines a control command of the air conditioning capability Qhvac of the air conditioner 11 based on the solar heat load Qs estimated in S15 (S16). Then, it returns to S11.
 なお、制御指令は空気調和能力Qhvacに限定されず、空気調和機の吹き出し温度の指令値、吹き出しの方向等を制御指令値として制御することもできる。 Note that the control command is not limited to the air conditioning capability Qhvac, and a command value of the air outlet temperature of the air conditioner, the direction of the air outlet, etc. can also be controlled as a control command value.
 以上のように、建物内の室温を検出する室温検出部と、外気温を検出する外気温検出部と、窓ガラスの建物の内側の表面温度を検出する表面温度検出部と、室温と外気温と表面温度とに基づいて窓ガラスの窓熱性能を学習する窓熱性能学習部と、単位日射量及び窓ガラスの構成による窓光学性能関係式と室温と外気温と表面温度と窓熱性能とに基づいて窓ガラスの窓光学性能を学習する窓光学性能学習部と、窓ガラスの面積と室温と外気温と表面温度と窓熱性能と窓光学性能とに基づいて窓ガラスから入射する日射による日射熱負荷を推定する日射熱負荷推定部と、日射熱負荷に基づいて空気調和機を制御する制御部とを備える空気調和システムである。 As described above, the room temperature detection unit for detecting the room temperature in the building, the outside air temperature detection unit for detecting the outside air temperature, the surface temperature detection unit for detecting the surface temperature inside the building of the window glass, the room temperature and the outside air temperature Window thermal performance learning unit that learns window thermal performance of window glass based on temperature and surface temperature, window optical performance relational expression by unit solar radiation amount and configuration of window glass, room temperature, outside air temperature, surface temperature and window thermal performance By the window optical performance learning unit to learn the window optical performance of the window glass based on the area of the window glass, room temperature, ambient temperature, surface temperature, window thermal performance and window optical performance, and by solar radiation incident from the window glass It is an air conditioning system provided with a solar radiation heat load estimation part which presumes solar radiation heat load, and a control part which controls an air conditioner based on solar radiation heat load.
 また、建物内の室温を検出する室温検出ステップと、外気温を検出する外気温検出ステップと、窓ガラスの建物の内側の表面温度を検出する表面温度検出ステップと、室温と外気温と表面温度とに基づいて窓ガラスの窓熱性能を学習する窓熱性能学習ステップと、単位日射量及び窓ガラスの構成による窓光学性能関係式と室温と外気温と表面温度と窓熱性能とに基づいて窓ガラスの窓光学性能を学習する窓光学性能学習ステップと、窓ガラスの面積と室温と外気温と表面温度と窓熱性能と窓光学性能とに基づいて窓ガラスから入射する日射による日射熱負荷を推定する日射熱負荷推定ステップと、日射熱負荷に基づいて空気調和機を制御する制御ステップとを備える空気調和方法である。 In addition, a room temperature detection step for detecting the room temperature in the building, an outside air temperature detection step for detecting the outside air temperature, a surface temperature detection step for detecting the surface temperature inside the building of the window glass, room temperature, outside air temperature and surface temperature And the window thermal performance learning step of learning the window thermal performance of the window glass, the window optical performance relational expression by the unit solar radiation amount and the configuration of the window glass, and based on the room temperature, the outside air temperature, the surface temperature and the window thermal performance. Solar thermal load due to solar radiation incident from the window glass based on the window optical performance learning step of learning the window optical performance of the window glass, the area of the window glass, room temperature, ambient temperature, surface temperature, window thermal performance and window optical performance And a control step of controlling the air conditioner based on the solar heat load.
 このため、日射量を検出する専用の検出機器や、光透過性の有機薄膜太陽電池を設けることなく、室内の日射熱負荷を推定して空気調和機を制御する空気調和システム及び空気調和方法を得ることができる。 For this reason, an air conditioning system and an air conditioning method for controlling an air conditioner by estimating the indoor solar heat load without providing a dedicated detecting device for detecting the amount of solar radiation and a light transmitting organic thin film solar cell You can get it.
 さらに、窓熱性能は熱貫流抵抗Rに基づく性能であり、窓光学性能は日射吸収率αと日射熱取得率ηとに基づく性能である。このため、空気調和システムは、空気調和対象となる建物の日射熱負荷を高精度に推定できる。 Furthermore, the window thermal performance is a performance based on the heat flow resistance R, and the window optical performance is a performance based on the solar radiation absorptivity α and the solar heat gain coefficient 取得. For this reason, the air conditioning system can estimate the solar radiation heat load of the building to be air conditioned with high accuracy.
実施の形態2.
 図7は、本発明の実施の形態2による空気調和システムの構成図の例である。実施の形態1との違いは、以下の通りである。
Second Embodiment
FIG. 7 is an example of the block diagram of the air conditioning system by Embodiment 2 of this invention. The differences from Embodiment 1 are as follows.
 まず、空気調和機11が備える機能を細かく分けている。具体的には、空気調和機11の室内機111は、建物2の室温Tzを検出する室温検出装置1111と、窓ガラスの建物の内側の表面温度Tgを検出する表面温度検出装置1112とを備え、また、室外機112は建物2の外の外気温Taを検出する外気温検出装置1121を備えている。 First, the functions of the air conditioner 11 are finely divided. Specifically, the indoor unit 111 of the air conditioner 11 is provided with a room temperature detection device 1111 for detecting the room temperature Tz of the building 2 and a surface temperature detection device 1112 for detecting the surface temperature Tg inside the building of the window glass. Also, the outdoor unit 112 is provided with an outside air temperature detection device 1121 that detects the outside air temperature Ta outside the building 2.
 室温検出装置1111は実施の形態1の室温検出装置13に代わるものである。また、表面温度検出装置1112は実施の形態1の表面温度検出装置15に代わるものである。さらに、外気温検出装置1121は実施の形態1の外気温検出装置14に代わるものである。同等の機能を備えるものであれば、空気調和機11の機能として備えているか、別に設けるかは関係ない。このことは、他の実施の形態においても同じである。 The room temperature detection device 1111 replaces the room temperature detection device 13 of the first embodiment. The surface temperature detection device 1112 is an alternative to the surface temperature detection device 15 of the first embodiment. Furthermore, the outside air temperature detection device 1121 replaces the outside air temperature detection device 14 of the first embodiment. It does not matter whether it is provided as a function of the air conditioner 11 or separately provided as long as it has the same function. The same is true for the other embodiments.
 次に、実施の形態1との違いは、演算装置16には室内発熱負荷推定部160と、空気調和能力推定部164と、総熱損失係数学習部165と、空気調和負荷推定部166とが追加され、記憶装置17には総熱損失係数KAを格納する総熱損失係数176が追加されている点が異なっている。 Next, the difference from Embodiment 1 is that the indoor heat generation load estimation unit 160, the air conditioning ability estimation unit 164, the total heat loss coefficient learning unit 165, and the air conditioning load estimation unit 166 The difference is that the storage device 17 is additionally provided with a total heat loss coefficient 176 that stores the total heat loss coefficient KA.
 なお、図において、同一の符号を付したものは、同一またはこれに相当するものであり、このことは明細書の全文、図面の全図において共通することである。さらに、明細書全文に表れている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。 In the drawings, the same reference numerals are assigned to the same or corresponding parts, which is common to the whole text of the specification and all the drawings. Furthermore, the form of the component which appears in the whole specification is only an illustration and is not limited to these descriptions.
 図8は、本発明の実施の形態2による空気調和機11の外観図の例である。空気調和機11は壁掛型の室内機111の例であり、室温検出装置1111と表面温度検出装置1112とを備える室内機111と、外気温検出装置1121を備える室外機112とが接続配管113により繋がり、室内を空気調和する。なお、空気調和機11にリモートコントローラが含まれる場合には、入力装置12としてリモートコントローラを用いることができる。 FIG. 8 is an example of the external view of the air conditioner 11 according to Embodiment 2 of the present invention. The air conditioner 11 is an example of the wall-mounted indoor unit 111, and the indoor unit 111 including the room temperature detection device 1111 and the surface temperature detection device 1112 and the outdoor unit 112 including the outside air temperature detection device 1121 Connect and air-condition the room. When the air conditioner 11 includes a remote controller, the remote controller can be used as the input device 12.
 また、各種の演算を行う演算装置16と、各種の検出装置の情報及び演算装置16の演算結果を記憶する記憶装置17と、外部からの情報が入力される入力装置12と、空気調和機11を制御する制御装置19と、各種の装置間で情報をやりとりする通信経路18とから構成される。 Further, an arithmetic device 16 for performing various calculations, a storage device 17 for storing information of various detection devices and calculation results of the arithmetic device 16, an input device 12 to which information from the outside is input, and an air conditioner 11 And a communication path 18 for exchanging information between various devices.
(処理フロー)
 図9は、本発明の実施の形態2による空気調和システムの処理フローの例である。空気調和システム1の稼働中に実施する処理フローの例である。なお、日射熱負荷を推定する動作に関わる処理は、実施の形態1と同一である。具体的には、S31はS11に、S32はS12に、S34はS13に、S35はS14に、S36はS15に、S38はS16に、それぞれ相当するステップ(実施の形態1は10番代のステップ、実施の形態2は30番代のステップ)であり、同様の処理であるため詳細な説明は省略する。
(Processing flow)
FIG. 9 is an example of a process flow of the air conditioning system according to Embodiment 2 of the present invention. It is an example of the processing flow implemented while the air conditioning system 1 is in operation. The process relating to the operation of estimating the solar heat load is the same as that of the first embodiment. Specifically, S31 corresponds to S11, S32 to S12, S34 to S13, S35 to S14, S36 to S15, and S38 to S16 (the tenth step in the first embodiment) The second embodiment is the step of No. 30), and is the same processing, so detailed description will be omitted.
[S30:室内発熱負荷推定]
 S30では、室内発熱負荷推定部160において、建物2(居室)に人が存在する場合、照明やテレビなど発熱器具がONになっている場合などで、室内発熱負荷Qinを推定する。室内発熱負荷Qinは、人体発熱によるもの(人体熱負荷)、照明発熱によるもの(照明負荷)、器具発熱によるもの(器具発熱負荷)の合計である。なお、室内発熱負荷Qinは冷房時では負荷を増加するものであり、暖房時では負荷を減らすものである。
[S30: Indoor heat load estimation]
In S30, the indoor heat generation load estimation unit 160 estimates the room heat generation load Qin, for example, when there is a person in the building 2 (living room), or when a heat generator such as a light or a television is turned on. The indoor heat generation load Qin is a total of one due to human body heat generation (human body heat load), one due to illumination heat generation (lighting load), and one due to tool heat generation (device heat load). The indoor heat generation load Qin increases the load at the time of cooling and reduces the load at the time of heating.
 室内発熱負荷Qinは表面温度検出装置1112が計測した在室人数(人体熱負荷)と、発熱する機器のONの状態(照明負荷、器具発熱負荷)から、各発熱量の合計で推定することができる。例えば、空気調和・衛生工学便覧に記載されている人の発熱量98[W/人]と照明の発熱量90[W]とを用いて各発熱量の合計から室内発熱負荷Qinを推定できる。 The indoor heat generation load Qin can be estimated by the total of each heat generation amount from the number of people in the room (human body heat load) measured by the surface temperature detection device 1112 and the ON state of the heat generating device (illumination load, appliance heat generation load) it can. For example, the indoor heat generation load Qin can be estimated from the total of each heat generation amount using the person's heat generation amount 98 [W / person] and the heat generation amount 90 [W] of the light described in the Air Conditioning and Sanitary Engineering Handbook.
 また、室内発熱負荷Qinは各発熱量の合計を用いて推定することに限定されず、室内発熱負荷Qinを係数として扱い、後述の式6群を用いて総熱損失係数KAと室内発熱負荷Qinとを回帰分析を用いて求めることもできる。このように室内発熱負荷Qinの求め方は特定の方法に限定されるものではない。なお、建物2(居室)に室内発熱に該当する人が存在しない場合や、照明など発熱する機器がOFFになっている状態などで、室内発熱が0の場合は、室内発熱負荷Qinは0とする。 Further, the indoor heat generation load Qin is not limited to estimation using the sum of the respective heat generation amounts, and the indoor heat generation load Qin is treated as a coefficient, and the total heat loss coefficient KA and the indoor heat generation load Qin are And can also be determined using regression analysis. Thus, the method of determining the indoor heat generation load Qin is not limited to a specific method. If there is no person corresponding to indoor heat generation in the building 2 (living room) or if the device that generates heat such as lighting is off, etc., and the indoor heat generation is 0, then the indoor heat generation load Qin is 0. Do.
 S31では、日射の有無を判断する。その後、日射が無い場合はS32へ、日射がある場合はS34へと進む。S32では、窓熱性能学習部161は、室温Tzと外気温Taと窓ガラスの表面温度Tgとに基づいて窓ガラスの窓熱性能174を学習する。その後、S33へと進む。 At S31, it is determined whether or not there is solar radiation. Thereafter, when there is no solar radiation, the process proceeds to S32, and when there is solar radiation, the process proceeds to S34. In S32, the window thermal performance learning unit 161 learns the window thermal performance 174 of the window glass based on the room temperature Tz, the outside air temperature Ta, and the surface temperature Tg of the window glass. Then, it progresses to S33.
 一方、S34では、日射熱負荷推定部163において、S31で日射ありと判断したときのデータを用いて窓ガラスに吸収される日射量Iαを推定する。その後、窓光学性能学習部162で単位日射量Ir及び窓ガラスの構成による窓光学性能関係式と室温Tzと外気温Taと表面温度Tgと窓熱性能174とに基づいて窓ガラスの窓光学性能を学習する(S35)。その後、日射熱負荷推定部163において、窓面積Agと室温Tzと外気温Taと表面温度Tgと窓熱性能(S32)と窓光学性能(S35)とに基づいて、窓ガラスから入射する日射による日射熱負荷Qsを推定し(S36)、S37、S38へと進み、S30に戻る。 On the other hand, in S34, the solar heat load estimation unit 163 estimates the amount Iα of solar radiation absorbed by the window glass, using the data when it is determined that there is solar radiation in S31. Thereafter, the window optical performance learning unit 162 determines the window optical performance of the window glass based on the unit solar radiation Ir and the window optical performance relational expression by the configuration of the window glass, the room temperature Tz, the outside temperature Ta, the surface temperature Tg, and the window thermal performance 174. Is learned (S35). Thereafter, in the solar heat load estimation unit 163, the solar radiation incident from the window glass based on the window area Ag, the room temperature Tz, the outside temperature Ta, the surface temperature Tg, the window thermal performance (S32) and the window optical performance (S35) The solar heat load Qs is estimated (S36), and the process proceeds to S37 and S38, and returns to S30.
[S33:総熱損失係数学習]
 日射が無い場合、総熱損失係数学習部165において、S31で日射がないと判断したときの空気調和機11の室内機111の室温検出装置1111が検出した室温Tzと、空気調和機11の室外機112の外気温検出装置1121が検出した外気温Taと、空気調和能力QhvacとS30で室内発熱負荷推定部160において推定した室内発熱負荷Qinとを用いて式6群から総熱損失係数KAを学習する(S33)。ただし、冷房時は式6群の上段を用いて室内発熱負荷Qinがプラスに、暖房時は式6群の下段を用いて室内発熱負荷Qinがマイナスになる。
[S33: Total heat loss coefficient learning]
When there is no solar radiation, the total heat loss coefficient learning unit 165 detects the room temperature Tz detected by the room temperature detection device 1111 of the indoor unit 111 of the air conditioner 11 when it is determined that there is no solar radiation in S31 Using the outside air temperature Ta detected by the outside air temperature detection device 1121 of the air conditioner 112 and the indoor heat generation load Qin estimated by the indoor heat generation load estimation unit 160 with the air conditioning ability Qhvac and S30, the total heat loss coefficient KA is Learn (S33). However, at the time of cooling, the indoor heat generation load Qin is positive by using the upper stage of the equation group 6, and at the time of heating, the indoor heat generation load Qin is negative by using the lower stage of the equation group 6.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 なお、室内発熱負荷Qinを所定の係数として扱う場合は、S30で室内発熱負荷推定部160において室内発熱負荷Qinを推定するステップを省略し、S33で式6群から総熱損失係数KAと室内発熱負荷Qinとを回帰分析で学習することもできる。なお、S32の窓熱性能174の学習と、S33の総熱損失係数KAの学習とは、順番を問わない。 When the indoor heat generation load Qin is treated as a predetermined coefficient, the step of estimating the indoor heat generation load Qin in the indoor heat generation load estimation unit 160 in S30 is omitted, and the total heat loss coefficient KA and the indoor heat generation are calculated from The load Qin can also be learned by regression analysis. The learning of the window thermal performance 174 in S32 and the learning of the total heat loss coefficient KA in S33 may be performed in any order.
 ここでは、室内発熱負荷Qinを推定する方法を示したが、室内発熱負荷Qinを考慮せずに空気調和機11を制御することもできる。例えば、日射に対して室内発熱負荷Qinの影響が小さいと考えられる場合である。この場合、式6群等の式で室内発熱負荷Qinの項をゼロとして扱えばよい。このことは、後述する実施の形態3及び実施の形態4でも同様である。 Here, although the method of estimating the indoor heat generation load Qin is shown, the air conditioner 11 can also be controlled without considering the indoor heat generation load Qin. For example, it may be considered that the influence of the indoor heat generation load Qin on solar radiation is considered to be small. In this case, the term of the indoor heat generation load Qin may be treated as zero in an expression such as expression 6 group. The same applies to the third and fourth embodiments described later.
 総熱損失係数学習部165において、室温Tzと外気温Taと空気調和能力Qhvacと室内発熱負荷Qinとに基づいて建物2の総熱損失係数KAを学習することになる。総熱損失係数KAは、空気調和の対象となる建物2(居室)の内外温度差が1度のときに壁3若しくは窓4から居室へ流入、又は居室から壁3若しくは窓4へ流出する貫流熱及び換気による熱移動の和であり、単位は[W/K]である。 The total heat loss coefficient learning unit 165 learns the total heat loss coefficient KA of the building 2 based on the room temperature Tz, the outside air temperature Ta, the air conditioning capability Qhvac, and the indoor heat generation load Qin. The total heat loss coefficient KA is a flow that flows into the living room from the wall 3 or the window 4 or flows out from the living room to the wall 3 or the window 4 when the temperature difference between the inside and outside of the building 2 (living room) targeted for air conditioning is one degree. The sum of heat transfer by heat and ventilation, and the unit is [W / K].
 なお、空気調和能力Qhvacは、空気調和能力推定部164で暖房時の空気調和機11から供給する供給熱量、冷房時の空気調和機11が除去する除去熱量を推定した値である。以下の説明では、空気調和能力Qhvacは、暖房時は供給熱量を示し、冷房時は除去熱量を示す。例えば、空気調和能力Qhvacは、空気調和機11の冷媒の高圧側と低圧側とのエンタルピーの差から推定できる。なお、空気調和能力Qhvacの推定式は、冷媒のエンタルピー差による計算に限定されず、吸い込みと吹き出しとの空気エンタルピーの差から求める方法などを用いることもできる。このように求め方は限定されるものではない。 The air conditioning capacity Qhvac is a value obtained by estimating the amount of heat supplied from the air conditioner 11 at the time of heating by the air conditioning capacity estimation unit 164 and the amount of heat removed by the air conditioner 11 at the time of cooling. In the following description, the air conditioning capacity Qhvac indicates the amount of heat supplied during heating and indicates the amount of heat removed during cooling. For example, the air conditioning capability Qhvac can be estimated from the difference in enthalpy between the high pressure side and the low pressure side of the refrigerant of the air conditioner 11. In addition, the estimation equation of the air conditioning capacity Qhvac is not limited to the calculation based on the enthalpy difference of the refrigerant, and a method of obtaining from the difference of the air enthalpy between suction and blow can also be used. Thus, the way of obtaining is not limited.
 算出された総熱損失係数KAは、記憶装置17の総熱損失係数176に格納する。ただし、式6群を用いて総熱損失係数KAを求めるには、室温Tzが安定しているデータを用いて計算を行う必要がある。なお、室温Tzの安定は所定時間間隔(例えば、30分、60分等から選択される。)での室温Tzの傾き、室温Tzのバラツキ等から判断できる。 The calculated total heat loss coefficient KA is stored in the total heat loss coefficient 176 of the storage device 17. However, in order to obtain the total heat loss coefficient KA using the equation 6 group, it is necessary to perform calculation using data in which the room temperature Tz is stable. The stability of the room temperature Tz can be determined from the inclination of the room temperature Tz at predetermined time intervals (for example, selected from 30 minutes, 60 minutes, etc.), the variation of the room temperature Tz, and the like.
[S37:空気調和負荷推定]
 S36で日射熱負荷Qsを推定し、かつS33で総熱損失係数KAを学習した後に、空気調和負荷推定部166において、S30で推定した室内発熱負荷Qinと、S36で推定した日射熱負荷Qsと、記憶装置17の総熱損失係数176に格納された空気調和の対象となる建物2の総熱損失係数KAと、室温Tzと、外気温Taとに基づいて式7群を用いて、空気調和負荷Qを推定する(S37)。式7群では冷房時が上段に、暖房時が下段になっている。
[S37: Air conditioning load estimation]
After the solar heat load Qs is estimated in S36 and the total heat loss coefficient KA is learned in S33, the indoor heat load Qin estimated in S30 and the solar heat load Qs estimated in S36 are calculated by the air conditioning load estimation unit 166. Air conditioning using the equation 7 group based on the total heat loss coefficient KA of the building 2 to be air conditioned stored in the total heat loss coefficient 176 of the storage device 17, the room temperature Tz, and the outside air temperature Ta The load Q is estimated (S37). In the expression 7 group, the cooling time is on the upper side, and the heating time is on the lower side.
 また、室温Tzの代わりに空気調和機11の設定温度Tsetを用いて式7群から各設定温度に対する空気調和に必要な熱量を推定して用いることもできる。ただし、冷房時は式7群の上段を用いて日射熱負荷Qsと室内発熱負荷Qinがプラスに、暖房時は式7群の下段を用いて日射熱負荷Qsと室内発熱負荷Qinがマイナスになる。 Further, it is also possible to use the set temperature Tset of the air conditioner 11 instead of the room temperature Tz to estimate and use the amount of heat necessary for air conditioning with respect to each set temperature from the equation group 7. However, during cooling, the solar heat load Qs and the indoor heat generation load Qin are positive using the upper stage of the equation group 7, and the solar heat load Qs and the indoor heat load Qin are negative using the lower stage of the equation group 7 during heating. .
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
[S38:空気調和制御指令決定]
 制御装置19は、S37で推定した空気調和負荷Qに基づき、空気調和機11の空気調和能力Qhvacの制御指令を決定する(S38)。その後、S30に戻る。なお、制御指令は空気調和能力Qhvacに限定されず、空気調和機11の吹き出し温度の指令値、吹き出しの方向等を制御指令値として制御することもできる。
[S38: Air conditioning control command determination]
The control device 19 determines a control command of the air conditioning capability Qhvac of the air conditioner 11 based on the air conditioning load Q estimated in S37 (S38). Then, it returns to S30. The control command is not limited to the air conditioning capability Qhvac, and a command value of the blowout temperature of the air conditioner 11, a direction of the blowout, or the like may be controlled as a control command value.
 以上のように、建物内の室温を検出する室温検出部と、外気温を検出する外気温検出部と、窓ガラスの建物の内側の表面温度を検出する表面温度検出部と、室温と外気温と表面温度とに基づいて窓ガラスの窓熱性能を学習する窓熱性能学習部と、単位日射量及び窓ガラスの構成による窓光学性能関係式と室温と外気温と表面温度と窓熱性能とに基づいて窓ガラスの窓光学性能を学習する窓光学性能学習部と、窓ガラスの面積と室温と外気温と表面温度と窓熱性能と窓光学性能とに基づいて窓ガラスから入射する日射による日射熱負荷を推定する日射熱負荷推定部と、日射熱負荷に基づいて空気調和機を制御する制御部とを備える空気調和システムである。 As described above, the room temperature detection unit for detecting the room temperature in the building, the outside air temperature detection unit for detecting the outside air temperature, the surface temperature detection unit for detecting the surface temperature inside the building of the window glass, the room temperature and the outside air temperature Window thermal performance learning unit that learns window thermal performance of window glass based on temperature and surface temperature, window optical performance relational expression by unit solar radiation amount and configuration of window glass, room temperature, outside air temperature, surface temperature and window thermal performance By the window optical performance learning unit to learn the window optical performance of the window glass based on the area of the window glass, room temperature, ambient temperature, surface temperature, window thermal performance and window optical performance, and by solar radiation incident from the window glass It is an air conditioning system provided with a solar radiation heat load estimation part which presumes solar radiation heat load, and a control part which controls an air conditioner based on solar radiation heat load.
 また、建物内の室温を検出する室温検出ステップと、外気温を検出する外気温検出ステップと、窓ガラスの建物の内側の表面温度を検出する表面温度検出ステップと、室温と外気温と表面温度とに基づいて窓ガラスの窓熱性能を学習する窓熱性能学習ステップと、単位日射量及び窓ガラスの構成による窓光学性能関係式と室温と外気温と表面温度と窓熱性能とに基づいて窓ガラスの窓光学性能を学習する窓光学性能学習ステップと、窓ガラスの面積と室温と外気温と表面温度と窓熱性能と窓光学性能とに基づいて窓ガラスから入射する日射による日射熱負荷を推定する日射熱負荷推定ステップと、日射熱負荷に基づいて空気調和機を制御する制御ステップとを備える空気調和方法である。 In addition, a room temperature detection step for detecting the room temperature in the building, an outside air temperature detection step for detecting the outside air temperature, a surface temperature detection step for detecting the surface temperature inside the building of the window glass, room temperature, outside air temperature and surface temperature And the window thermal performance learning step of learning the window thermal performance of the window glass, the window optical performance relational expression by the unit solar radiation amount and the configuration of the window glass, and based on the room temperature, the outside air temperature, the surface temperature and the window thermal performance. Solar thermal load due to solar radiation incident from the window glass based on the window optical performance learning step of learning the window optical performance of the window glass, the area of the window glass, room temperature, ambient temperature, surface temperature, window thermal performance and window optical performance And a control step of controlling the air conditioner based on the solar heat load.
 このため、日射量を検出する専用の検出機器や、光透過性の有機薄膜太陽電池を設けることなく、室内の日射熱負荷を推定して空気調和機を制御する空気調和システム及び空気調和方法を得ることができる。 For this reason, an air conditioning system and an air conditioning method for controlling an air conditioner by estimating the indoor solar heat load without providing a dedicated detecting device for detecting the amount of solar radiation and a light transmitting organic thin film solar cell You can get it.
 さらに、窓熱性能は熱貫流抵抗Rに基づく性能であり、窓光学性能は日射吸収率αと日射熱取得率ηとに基づく性能である。このため、空気調和システムは、空気調和対象となる建物の日射熱負荷を高精度に推定できる。 Furthermore, the window thermal performance is a performance based on the heat flow resistance R, and the window optical performance is a performance based on the solar radiation absorptivity α and the solar heat gain coefficient 取得. For this reason, the air conditioning system can estimate the solar radiation heat load of the building to be air conditioned with high accuracy.
 また、表面温度検出部は、空気調和機に備えられたものであるので、空気調和の対象となる建物の日射熱負荷を高精度に推定できる。 Further, since the surface temperature detection unit is provided in the air conditioner, it is possible to estimate the solar heat load of the building to be subjected to the air conditioning with high accuracy.
 さらに、空気調和機から発生する熱量に基づいて空気調和能力を推定する空気調和能力推定部と、室温と外気温と空気調和能力とに基づいて建物の総熱損失係数を学習する総熱損失係数学習部と、室温と外気温と総熱損失係数と日射熱負荷とに基づいて建物の空気調和負荷を推定する空気調和負荷推定部とを備え、制御部は、空気調和負荷に基づいて空気調和機を制御するので、空気調和の対象となる建物の日射熱負荷を高精度に推定できる。 Furthermore, an air conditioning ability estimation unit that estimates the air conditioning ability based on the amount of heat generated from the air conditioner, and a total heat loss coefficient that learns the total heat loss coefficient of the building based on the room temperature, the outside air temperature, and the air conditioning ability. The learning unit includes an air conditioning load estimating unit that estimates the air conditioning load of the building based on the room temperature, the outside air temperature, the total heat loss coefficient, and the solar heat load, and the control unit performs the air conditioning based on the air conditioning load. Since the aircraft is controlled, the solar radiation heat load of the building to be air-conditioned can be estimated with high accuracy.
実施の形態3.
 図10は、本発明の実施の形態3による空気調和システムの構成図の例である。実施の形態2との大きな相違点は、日射熱負荷Qsを推定するために窓熱性能と窓光学性能とを各々に学習するのではなく、窓ガラスの表面温度Tgと日射熱負荷Qsとの相関係数を学習し、窓ガラスの表面温度Tgから日射熱負荷Qsを推定することである。なお、窓負荷係数Hgは、窓熱性能と窓光学性能と窓面積Agとを含む係数である。
Third Embodiment
FIG. 10 is an example of the block diagram of the air conditioning system by Embodiment 3 of this invention. A major difference between the second embodiment and the second embodiment is that the window thermal performance and the window optical performance are not learned separately to estimate the solar heat load Qs, but the window glass surface temperature Tg and the solar heat load Qs are different. The correlation coefficient is learned, and the solar radiation heat load Qs is estimated from the surface temperature Tg of the window glass. The window load coefficient Hg is a coefficient including the window thermal performance, the window optical performance, and the window area Ag.
 より具体的には、演算装置16には、実施の形態2と同様の室内発熱負荷推定部160、窓熱性能学習部161、日射熱負荷推定部163、空気調和能力推定部164、総熱損失係数学習部165、及び空気調和負荷推定部166等に加えて、窓負荷係数学習部167を備えている。また、記憶装置17には、窓熱性能174、総熱損失係数176等に加えて、窓負荷係数177を備えている。 More specifically, the indoor heat generation load estimation unit 160, the window heat performance learning unit 161, the solar radiation heat load estimation unit 163, the air conditioning capability estimation unit 164, and the total heat loss in the arithmetic device 16 are the same as in the second embodiment. A window load coefficient learning unit 167 is provided in addition to the coefficient learning unit 165, the air conditioning load estimation unit 166, and the like. In addition to the window thermal performance 174, the total heat loss coefficient 176 and the like, the storage device 17 is provided with a window load coefficient 177.
 空気調和システム1は、建物2の室温Tzを検出する室温検出装置1111と、窓ガラスの表面温度Tgを検出する表面温度検出装置1112と、建物2の外の外気温Taを検出する外気温検出装置1121と、外部からの情報が入力される入力装置12と、各種の演算を行う演算装置16と、各種の検出装置の情報及び演算装置16の演算結果を記憶する記憶装置17と、空気調和機11を制御する制御装置19と、各種の装置間で情報をやりとりする通信経路18とから構成される。 The air conditioning system 1 includes a room temperature detection device 1111 for detecting the room temperature Tz of the building 2, a surface temperature detection device 1112 for detecting the surface temperature Tg of the window glass, and an outside air temperature detection for detecting the outside air temperature Ta outside the building 2. A device 1121, an input device 12 to which external information is input, an arithmetic device 16 for performing various calculations, a storage device 17 for storing information of various detection devices and calculation results of the arithmetic device 16, air conditioning It comprises a control device 19 for controlling the machine 11 and a communication path 18 for exchanging information between various devices.
 日射がある日に空気調和を行っている居室において、所定時間間隔(例えば、30分、60分等から選択される。)で室温Tzが安定(例えば、室温Tzの変動が0度である。)しているときは、式8の熱収支式が成り立つ。式8の熱収支式が成り立つときは、総熱損失係数KAと、室温Tzと、外気温Taと、日射熱負荷Qsと、室内発熱負荷Qinとに基づいて、空気調和能力Qhvacを求めることができる(式8)。なお、式8では、冷房時は日射熱負荷Qsと室内発熱負荷Qinとでプラスを、暖房時は日射熱負荷Qsと室内発熱負荷Qinとでマイナスを選択することになる。 In a room where air conditioning is performed on a day when there is solar radiation, room temperature Tz is stable (for example, fluctuation of room temperature Tz is 0 degree) at predetermined time intervals (for example, selected from 30 minutes, 60 minutes, etc.). When this is the case, the heat balance equation of equation 8 holds. When the heat balance equation of equation 8 holds, it is possible to obtain the air conditioning ability Qhvac based on the total heat loss coefficient KA, the room temperature Tz, the outside temperature Ta, the solar heat load Qs, and the indoor heat generation load Qin. (Equation 8). In the equation (8), positive is selected by the solar heat load Qs and the indoor heat generation load Qin during cooling, and negative is selected by the solar heat load Qs and the indoor heat generation load Qin during heating.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 また、室温Tzが安定するとは、理想的には室温Tzの変動が0度の状態であるが、例えば、±0.5度、±1度の変動であれば、誤差も増えるが許容範囲として室温Tzが安定しているとして扱うこともできる。 In addition, the room temperature Tz is ideally stable if the fluctuation of the room temperature Tz is 0 degree ideally, but for example, if the fluctuation is ± 0.5 degree, ± 1 degree, the error also increases, but as an allowable range The room temperature Tz can also be treated as stable.
 式3と式5から式9を導くことができ、日射熱負荷Qsは式9を用いて推定することができる。なお、式9のように日射熱負荷Qsは窓負荷係数Hgと窓ガラスの熱貫流抵抗Rと窓ガラスの内表面熱伝達抵抗Riと室温Tzと外気温Taと窓ガラスの表面温度Tgとを用いて表現できる。なお、上段の式9の右側は窓負荷係数Hgに相当するものである。このように窓負荷係数Hgは、熱貫流抵抗Rと内表面熱伝達抵抗Riと日射熱取得率ηと日射吸収率αと窓面積Agとで表現できるものである。 Equations 3 and 5 can lead to equation 9, and the solar heat load Qs can be estimated using equation 9. As shown in equation 9, the solar heat load Qs includes the window load coefficient Hg, the heat penetration resistance R of the window glass, the heat transfer resistance Ri of the inner surface of the window glass, the room temperature Tz, the outside temperature Ta, and the surface temperature Tg of the window glass. It can be expressed using. The right side of the upper equation 9 corresponds to the window load coefficient Hg. As described above, the window load coefficient Hg can be expressed by the heat transmission resistance R, the inner surface heat transfer resistance Ri, the solar radiation heat acquisition rate η, the solar radiation absorptivity α, and the window area Ag.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 また、窓ガラスの表面温度Tgは、室温Tzと外気温Taと日射量Iαとから影響を受けることから、窓ガラスの表面温度Tgは式10から計算できる。式10において、日射による影響分は第3項の値になり、第1項及び第2項は室温Tzと外気温Taとの影響分である。複数ガラス等の断熱性能が良い窓においては熱貫流抵抗Rが大きくなり、第2項の影響が無視できる。 Further, since the surface temperature Tg of the window glass is affected by the room temperature Tz, the outside temperature Ta, and the amount of solar radiation Iα, the surface temperature Tg of the window glass can be calculated from Expression 10. In the equation (10), the influence by the solar radiation becomes the value of the third term, and the first and second terms are the influence of the room temperature Tz and the outside air temperature Ta. In the case of a window with good thermal insulation performance such as multiple glasses, the heat transmission resistance R becomes large, and the influence of the second term can be ignored.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 第2項の影響が無視できる場合は、第2項を省略した式11を用いて吸収日射量が推定でき、式12で日射熱負荷Qsが計算できる。 When the influence of the second term can be ignored, the absorbed solar radiation amount can be estimated by using the equation 11 in which the second term is omitted, and the solar heat load Qs can be calculated by the equation 12.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
(処理フロー)
 図11は、本発明の実施の形態3による空気調和システムの処理フローの例である。空気調和システム1の稼働中に実施する処理フローである。実施の形態2の処理フロー(図9)と対比すると、室内発熱負荷Qinを推定する動作に関わる処理S50はS30に、総熱損失係数KAを学習する動作に関わる処理は、S51はS31に、S53はS33に、それぞれ相当するステップであり、同様の処理であるため詳細な説明は省略する。さらに、窓熱性能を学習する処理S52はS32に、空気調和負荷Qを推定する処理S56はS37に、空気調和制御指令を決定する処理S57はS38に、それぞれ相当するステップであり、同様の処理であるため詳細な説明は省略する(実施の形態2は30番代のステップ、実施の形態3は50番代のステップ)。
(Processing flow)
FIG. 11 is an example of the process flow of the air conditioning system according to Embodiment 3 of the present invention. It is a processing flow implemented while the air conditioning system 1 is in operation. As compared with the process flow of the second embodiment (FIG. 9), the process S50 related to the operation of estimating the indoor heat generation load Qin is S30, and the process related to the operation of learning the total heat loss coefficient KA is S51 is S31, Step S53 is a step corresponding to step S33, and is the same processing as that of step S33. Further, the process S52 for learning the window thermal performance is a step corresponding to S32, the process S56 for estimating the air conditioning load Q is a process corresponding to S37, and the process for determining an air conditioning control command S57 is a step corresponding to S38. Therefore, the detailed description is omitted (the second embodiment is the step of No. 30 and the third embodiment is the step of No. 50).
 S50で室内発熱負荷Qinを推定し、S51に進む。S51で日射が無い場合は、S52に進み、窓熱性能学習部161において、室温Tzと外気温Taと窓ガラスの表面温度Tgとに基づいて窓ガラスの窓熱性能を学習する。その後、S53に進み、総熱損失係数学習部165において、室温Tzと外気温Taと空気調和能力Qhvacと室内発熱負荷Qinとに基づいて建物2の総熱損失係数KAを学習する。なお、空気調和能力推定部164において、空気調和機11から発生する熱量(除去する熱量)に基づいて空気調和能力Qhvacを推定できる。 The indoor heat generation load Qin is estimated in S50, and the process proceeds to S51. If there is no solar radiation in S51, the process proceeds to S52, and the window thermal performance learning unit 161 learns the window thermal performance of the window glass based on the room temperature Tz, the outside temperature Ta, and the surface temperature Tg of the window glass. Thereafter, the process proceeds to S53, and the total heat loss coefficient learning unit 165 learns the total heat loss coefficient KA of the building 2 based on the room temperature Tz, the outside air temperature Ta, the air conditioning capability Qhvac, and the indoor heat generation load Qin. The air conditioning ability estimation unit 164 can estimate the air conditioning ability Qhvac based on the heat quantity (heat quantity to be removed) generated from the air conditioner 11.
[S54:窓負荷係数学習]
 窓負荷係数学習部167において、S51で日射があると判断したときの空気調和機11の室内機111の室温検出装置1111が検出した室温Tzと、空気調和機11の室内機111の表面温度検出装置1112が検出した窓ガラスの表面温度Tgと、空気調和機11の室外機112の外気温検出装置1121が検出した外気温Taと、室内発熱負荷推定部160で推定した室内発熱負荷Qinと、空気調和能力推定部164で推定した空気調和能力Qhvacと、記憶装置17の総熱損失係数176に格納している総熱損失係数KAと、を用いて、式13群から窓負荷係数Hgを算出する。式13群は、式8と式9から導くことができる。なお、式13群は、冷房時は上段を、暖房時は下段を用いる。
[S54: window load coefficient learning]
In the window load coefficient learning unit 167, the room temperature Tz detected by the room temperature detection device 1111 of the indoor unit 111 of the air conditioner 11 when it is determined that there is solar radiation in S51, and the surface temperature detection of the indoor unit 111 of the air conditioner 11. The surface temperature Tg of the window glass detected by the device 1112, the outside air temperature Ta detected by the outside air temperature detection device 1121 of the outdoor unit 112 of the air conditioner 11, and the indoor heat generation load Qin estimated by the indoor heat generation load estimation unit 160 Using the air conditioning ability Qhvac estimated by the air conditioning ability estimation unit 164 and the total heat loss coefficient KA stored in the total heat loss coefficient 176 of the storage device 17, the window load coefficient Hg is calculated from the equation 13 group Do. The equation group 13 can be derived from the equations 8 and 9. In the equation group 13, the upper stage is used during cooling, and the lower stage is used during heating.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 また、式13群において、総熱損失係数KAと窓負荷係数Hgとを未知数として連立方程式を立てて算出しても良いし、回帰分析を用いても良い。なお、総熱損失係数KAを未知数として扱う場合は、S53で総熱損失係数学を学習するステップを省略しても、窓負荷係数Hgを学習することができる。 In addition, in the equation group 13, the total heat loss coefficient KA and the window load coefficient Hg may be set as unknowns to calculate simultaneous equations, or regression analysis may be used. When the total heat loss coefficient KA is treated as an unknown, the window load coefficient Hg can be learned even if the step of learning the total heat loss coefficient in S53 is omitted.
 さらに、断熱性能が良いガラスにおいては式14群から窓負荷係数Hgが算出でき、S52の窓熱性能を学習するステップを省略しても、窓負荷係数Hgが算出できる。式14群は、冷房時は上段を、暖房時は下段を用いる。なお、窓負荷係数Hgは、空気調和の対象となる建物2の窓ガラスの表面温度Tgと室温Tzとの差が1度であるときの窓ガラスから室内への日射熱取得であり、単位は[W/K]である。 Furthermore, in the case of a glass with good thermal insulation performance, the window load coefficient Hg can be calculated from the equation 14 group, and the window load coefficient Hg can be calculated even if the step of learning the window thermal performance in S52 is omitted. The equation group 14 uses the upper stage at the time of cooling and the lower stage at the time of heating. In addition, the window load coefficient Hg is the solar heat acquisition from the window glass to the room when the difference between the surface temperature Tg of the window glass of the building 2 to be air conditioned and the room temperature Tz is 1 degree, and the unit is It is [W / K].
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 このように、窓負荷係数学習部167は、空気調和能力Qhvacと室温Tzと外気温Taと表面温度Tgとに基づいて窓ガラスの窓負荷係数Hgを学習している。算出した窓負荷係数Hgは記憶装置17の窓負荷係数177に格納する。なお、式13群、14群が成り立つ前提条件として所定時間間隔(例えば、30分、60分等から選択される。)で、室温Tzが安定する必要があり、室温Tzの傾き、室温Tzのバラツキ等から室温Tzの安定の可否を判断できる。 As described above, the window load coefficient learning unit 167 learns the window load coefficient Hg of the window glass based on the air conditioning ability Qhvac, the room temperature Tz, the outside temperature Ta, and the surface temperature Tg. The calculated window load factor Hg is stored in the window load factor 177 of the storage unit 17. The room temperature Tz needs to be stabilized at a predetermined time interval (for example, selected from 30 minutes, 60 minutes, etc.) as a precondition for the equations 13 and 14 to hold, and the slope of the room temperature Tz and the room temperature Tz Whether or not the room temperature Tz is stable can be determined from the variation or the like.
[S55:日射熱負荷推定]
 日射熱負荷推定部163において、S54で計算した、記憶装置17の窓負荷係数177に格納された窓負荷係数Hgと、窓ガラスの熱貫流抵抗Rと、窓ガラスの内表面熱伝達抵抗Riと、室温Tzと、外気温Ta、窓ガラスの表面温度Tgとを基に、式9を用いて日射熱負荷Qsの計算を行う(S55)。また、室温Tzの代わりに空気調和機11の設定温度Tsetを用いて日射熱負荷Qsを推定することもできる。
[S55: solar radiation heat load estimation]
In the solar heat load estimation unit 163, the window load factor Hg stored in the window load factor 177 of the storage device 17 calculated in S54, the heat penetration resistance R of the window glass, and the inner surface heat transfer resistance Ri of the window glass Based on the room temperature Tz, the outside air temperature Ta, and the surface temperature Tg of the window glass, the solar heat load Qs is calculated using the equation 9 (S55). Also, the solar heat load Qs can be estimated using the set temperature Tset of the air conditioner 11 instead of the room temperature Tz.
 次に、空気調和負荷推定部166において、S50で推定した室内発熱負荷Qinと、S55で推定した日射熱負荷Qsと、記憶装置17の総熱損失係数176に格納された空気調和の対象となる建物2の総熱損失係数KAと、室温Tzと、外気温Taとに基づいて、式7群に従い空気調和負荷Qを推定する(S56)。 Next, in the air conditioning load estimation unit 166, the indoor heat generation load Qin estimated in S50, the solar radiation heat load Qs estimated in S55, and the air conditioning target stored in the total heat loss coefficient 176 of the storage device 17 The air conditioning load Q is estimated according to the equation 7 group based on the total heat loss coefficient KA of the building 2, the room temperature Tz, and the outside air temperature Ta (S56).
 最後に、制御装置19は、S56で推定した空気調和負荷Qに基づき、空気調和機11の空気調和能力Qhvacの制御指令を決定する(S57)。その後、S50に戻る。なお、制御指令は空気調和能力Qhvacに限定されず、空気調和機11の吹き出し温度の指令値、吹き出しの方向等を制御指令値として制御することもできる。よって、窓ガラスから建物2の中である居室に侵入する日射による日射熱負荷をリアルタイムで、環境の変化に応じて高精度に推定することできる。 Finally, the control device 19 determines a control command of the air conditioning ability Qhvac of the air conditioner 11 based on the air conditioning load Q estimated in S56 (S57). Then, it returns to S50. The control command is not limited to the air conditioning capability Qhvac, and a command value of the blowout temperature of the air conditioner 11, a direction of the blowout, or the like may be controlled as a control command value. Therefore, it is possible to estimate in real time the solar radiation heat load due to the solar radiation entering the room in the building 2 from the window glass with high accuracy according to the change of the environment.
 以上のように、建物内の室温を検出する室温検出部と、外気温を検出する外気温検出部と、窓ガラスの建物の内側の表面温度を検出する表面温度検出部と、室温と外気温と表面温度とに基づいて窓ガラスの窓熱性能を学習する窓熱性能学習部と、空気調和機から発生する熱量に基づいて空気調和能力を推定する空気調和能力推定部と、室温と外気温と表面温度と窓熱性能と空気調和能力とに基づいて窓ガラスの窓負荷係数を学習する窓負荷係数学習部と、室温と外気温と表面温度と窓熱性能と窓負荷係数とに基づいて窓ガラスから入射する日射による日射熱負荷を推定する日射熱負荷推定部と、日射熱負荷に基づいて空気調和機を制御する制御部とを備える空気調和システムである。これによって、空気調和の対象となる建物の日射熱負荷を高精度に推定できる。 As described above, the room temperature detection unit for detecting the room temperature in the building, the outside air temperature detection unit for detecting the outside air temperature, the surface temperature detection unit for detecting the surface temperature inside the building of the window glass, the room temperature and the outside air temperature Window thermal performance learning unit that learns the window thermal performance of the window glass based on the surface temperature and the air conditioning capability estimation unit that estimates the air conditioning capability based on the amount of heat generated from the air conditioner; And a window load factor learning unit that learns the window load factor of window glass based on surface temperature, window thermal performance and air conditioning ability, and based on room temperature, ambient temperature, surface temperature, window thermal performance and window load factor It is an air conditioning system provided with a solar radiation heat load estimating part which presumes solar radiation heat load by solar radiation which enters from a window glass, and a control part which controls an air harmony machine based on solar radiation heat load. By this, the solar radiation heat load of the building which is the object of air conditioning can be estimated with high accuracy.
 また、建物内の室温を検出する室温検出ステップと、外気温を検出する外気温検出ステップと、窓ガラスの建物の内側の表面温度を検出する表面温度検出ステップと、室温と外気温と表面温度とに基づいて窓ガラスの窓熱性能を学習する窓熱性能学習ステップと、空気調和機から発生する熱量に基づいて空気調和能力を推定する空気調和能力推定ステップと、室温と外気温と表面温度と窓熱性能と空気調和能力とに基づいて窓ガラスの窓負荷係数を学習する窓負荷係数学習ステップと、室温と外気温と表面温度と窓熱性能と窓負荷係数とに基づいて窓ガラスから入射する日射による日射熱負荷を推定する日射熱負荷推定ステップと、日射熱負荷に基づいて空気調和機を制御する制御ステップとを備える空気調和方法である。これによって、空気調和の対象となる建物の日射熱負荷を高精度に推定できる。 In addition, a room temperature detection step for detecting the room temperature in the building, an outside air temperature detection step for detecting the outside air temperature, a surface temperature detection step for detecting the surface temperature inside the building of the window glass, room temperature, outside air temperature and surface temperature Window thermal performance learning step of learning the window thermal performance of the window glass based on the air conditioning capability estimation step of estimating the air conditioning capability based on the heat quantity generated from the air conditioner, room temperature, outside air temperature and surface temperature And window load factor learning step to learn window load factor of window glass based on window thermal performance and air conditioning ability, and from window glass based on room temperature, ambient temperature, surface temperature, window thermal performance and window load factor It is an air conditioning method provided with the control step of controlling the air conditioner based on the solar radiation heat load estimation step which estimates the solar radiation heat load by the incident solar radiation, and the solar radiation heat load. By this, the solar radiation heat load of the building which is the object of air conditioning can be estimated with high accuracy.
 また、表面温度検出部は、空気調和機に備えられたものであるので、空気調和の対象となる建物の日射熱負荷を高精度に推定できる。 Further, since the surface temperature detection unit is provided in the air conditioner, it is possible to estimate the solar heat load of the building to be subjected to the air conditioning with high accuracy.
 さらに、室温と外気温と空気調和能力とに基づいて建物の総熱損失係数を学習する総熱損失係数学習部と、室温と外気温と表面温度と窓熱性能と窓負荷係数と総熱損失係数とに基づいて建物の空気調和負荷を推定する空気調和負荷推定部と、空気調和負荷に基づいて空気調和機を制御する空気調和システムである。これによって、空気調和の対象となる建物の日射熱負荷を高精度に推定できる。 Furthermore, a total heat loss coefficient learning unit that learns the total heat loss coefficient of the building based on the room temperature, the outside air temperature, and the air conditioning ability, the room temperature, the outside air temperature, the surface temperature, the window thermal performance, the window load coefficient, and the total heat loss The air conditioning load estimation unit estimates a building air conditioning load based on the coefficients, and the air conditioning system controls an air conditioner based on the air conditioning load. By this, the solar radiation heat load of the building which is the object of air conditioning can be estimated with high accuracy.
実施の形態4.
 図12は、本発明の実施の形態4による空気調和システムの構成図の例である。実施の形態3とは異なり、実施の形態4では日射の有無の判断を行わない。また、実施の形態3では、日射熱負荷Qsを推定するために、総熱損失係数KAと、窓熱性能と、窓負荷係数Hgとを別々のステップで学習したが、実施の形態4は外気負荷係数Haと窓負荷係数Hgとを学習することで、空気調和負荷Qを推定する点が主要な相違点となる。なお、窓負荷係数Hgは、窓熱性能と窓光学性能と窓面積Agとを含む係数であり、外気負荷係数Haは総熱損失係数KAと窓負荷係数Hgとを含む係数である。
Fourth Embodiment
FIG. 12 is an example of the block diagram of the air conditioning system by Embodiment 4 of this invention. Unlike the third embodiment, the fourth embodiment does not judge the presence or absence of solar radiation. Further, in the third embodiment, in order to estimate the solar heat load Qs, the total heat loss coefficient KA, the window thermal performance, and the window load coefficient Hg are learned in separate steps, but the fourth embodiment is the outside air. The main difference is that the air conditioning load Q is estimated by learning the load factor Ha and the window load factor Hg. The window load coefficient Hg is a coefficient including the window thermal performance, the window optical performance, and the window area Ag, and the outside air load coefficient Ha is a coefficient including the total heat loss coefficient KA and the window load coefficient Hg.
 より具体的には、演算装置16には、実施の形態3と同様の室内発熱負荷推定部160、空気調和能力推定部164、及び空気調和負荷推定部166等に加えて、負荷係数学習部168を備えている。また、記憶装置17には、窓負荷係数177等に加えて、外気負荷係数178を備えている。 More specifically, in addition to the indoor heat generation load estimation unit 160, the air conditioning ability estimation unit 164, the air conditioning load estimation unit 166, etc., which are the same as those of the third embodiment, the load coefficient learning unit 168 Is equipped. In addition to the window load factor 177 and the like, the storage device 17 is provided with an outside air load factor 178.
 空気調和システム1は、建物2の室温Tzを検出する室温検出装置1111と、窓ガラスの表面温度Tgを検出する表面温度検出装置1112と、建物2の外の外気温Taを検出する外気温検出装置1121と、外部からの情報が入力される入力装置12と、各種の演算を行う演算装置16と、各種の検出装置の情報及び演算装置16の演算結果を記憶する記憶装置17と、空気調和機11を制御する制御装置19と、各種の装置間で情報をやりとりする通信経路18とから構成される。 The air conditioning system 1 includes a room temperature detection device 1111 for detecting the room temperature Tz of the building 2, a surface temperature detection device 1112 for detecting the surface temperature Tg of the window glass, and an outside air temperature detection for detecting the outside air temperature Ta outside the building 2. A device 1121, an input device 12 to which external information is input, an arithmetic device 16 for performing various calculations, a storage device 17 for storing information of various detection devices and calculation results of the arithmetic device 16, air conditioning It comprises a control device 19 for controlling the machine 11 and a communication path 18 for exchanging information between various devices.
 空気調和を行っている居室において、所定時間間隔(例えば、30分、60分等から選択される。)で室温Tzが安定(例えば、室温Tzの変動が0度である。)しているときは、式15群の熱収支式が成り立つ。なお、式15群は式8と式9から導くことができる。式15の熱収支式が成り立つときは、室温Tzと、外気温Taと、窓ガラスの表面温度Tgと、外気負荷係数Haと、窓負荷係数Hgと、室内発熱負荷Qinとに基づいて、空気調和能力Qhvacを求めることができる(式15群)。なお、式15群は、上段が冷房時、下段が暖房時になっている。 In a room where air conditioning is performed, when the room temperature Tz is stable (for example, the fluctuation of the room temperature Tz is 0 °) at predetermined time intervals (for example, selected from 30 minutes, 60 minutes, etc.) Is the heat balance equation of the equation 15 group. The equation group 15 can be derived from the equations 8 and 9. When the heat balance equation of equation 15 holds, air is obtained based on the room temperature Tz, the outside air temperature Ta, the surface temperature Tg of the window glass, the outside air load coefficient Ha, the window load coefficient Hg, and the indoor heat load Qin. The harmonization ability Qhvac can be determined (Equation 15 group). In the equation group 15, the upper stage is for cooling, and the lower stage is for heating.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 また、室温Tzが安定するとは、理想的には室温Tzの変動が0度の状態であるが、例えば、±0.5度、±1度の変動であれば、誤差も増えるが許容範囲として室温Tzが安定しているとして扱うこともできる。 In addition, the room temperature Tz is ideally stable if the fluctuation of the room temperature Tz is 0 degree ideally, but for example, if the fluctuation is ± 0.5 degree, ± 1 degree, the error also increases, but as an allowable range The room temperature Tz can also be treated as stable.
(処理フロー)
 図13は、本発明の実施の形態4による空気調和システムの処理フローの例である。空気調和システム1の稼働中に実施する処理フローである。実施の形態3の処理フロー(図11)と対比すると、室内発熱負荷Qinを推定する動作に関わる処理S60はS50に、空気調和制御指令を決定する処理S63はS57に、それぞれ相当するステップ(実施の形態3は50番代のステップ、実施の形態4は60番代のステップ)であり、同様の処理であるため詳細な説明は省略する。
(Processing flow)
FIG. 13 is an example of the process flow of the air conditioning system according to Embodiment 4 of the present invention. It is a processing flow implemented while the air conditioning system 1 is in operation. As compared with the processing flow of the third embodiment (FIG. 11), the processing S60 related to the operation of estimating the indoor heat generation load Qin corresponds to S50, and the processing S63 for determining the air conditioning control command corresponds to S57. The third embodiment is the 50th step, and the fourth embodiment is the 60th step), and the process is the same as that of the fourth embodiment.
 S60で室内発熱負荷推定部160において室内発熱負荷Qinを推定し、S61に進む。 In S60, the indoor heat generation load estimation unit 160 estimates the indoor heat generation load Qin, and the process proceeds to S61.
[S61:負荷係数学習]
 負荷係数学習部168において、空気調和機11の室内機111の室温検出装置1111が検出した室温Tzと、空気調和機11の室内機111の表面温度検出装置1112が検出した窓ガラスの表面温度Tgと、空気調和機11の室外機112の外気温検出装置1121が検出した外気温Taと、空気調和能力推定部164で推定した空気調和能力Qhvacと、室内発熱負荷推定部160で推定した室内発熱負荷Qinを用いて、式16群から外気負荷係数Haと窓負荷係数Hgとを学習する。式16群において外気負荷係数Haと窓負荷係数Hgとを未知数として連立方程式を立てて算出してもよいし、回帰分析を用いてもよい。なお、式16群は、冷房時は上段を、暖房時は下段を用いる。
[S61: Load factor learning]
In the load coefficient learning unit 168, the room temperature Tz detected by the room temperature detection device 1111 of the indoor unit 111 of the air conditioner 11, and the surface temperature Tg of the window glass detected by the surface temperature detection device 1112 of the indoor unit 111 of the air conditioner 11. , The outside air temperature Ta detected by the outside air temperature detection device 1121 of the outdoor unit 112 of the air conditioner 11, the air conditioning ability Qhvac estimated by the air conditioning ability estimation unit 164, and the indoor heat generation estimated by the indoor heat generation load estimation unit 160 The outdoor air load coefficient Ha and the window load coefficient Hg are learned from the equation 16 group using the load Qin. In the equation 16 group, the external air load coefficient Ha and the window load coefficient Hg may be set as unknowns to calculate simultaneous equations, or regression analysis may be used. In the equation group 16, the upper stage is used during cooling, and the lower stage is used during heating.
[S62:空気調和負荷推定]
 空気調和負荷推定部166において、S60で推定した室内発熱負荷Qinと、S61で学習した外気負荷係数Haと窓負荷係数Hgと、空気調和機11の室内機111の室温検出装置1111が検出した室温Tzと、空気調和機11の室内機111の表面温度検出装置1112が検出した窓ガラスの表面温度Tgと、空気調和機11の室外機112の外気温検出装置1121が検出した外気温Taとに基づいて、式16群に従い空気調和負荷Qを推定する(S62)。ただし、冷房時は式16群の上段を、暖房時は式16群の下段を用いる。
[S62: Air conditioning load estimation]
In the air conditioning load estimation unit 166, the room heating load Qin estimated in S60, the outdoor air load coefficient Ha and the window load coefficient Hg learned in S61, and the room temperature detected by the room temperature detection device 1111 of the indoor unit 111 of the air conditioner 11. Tz, the surface temperature Tg of the window glass detected by the surface temperature detection device 1112 of the indoor unit 111 of the air conditioner 11, and the outside temperature Ta detected by the outside air temperature detection device 1121 of the outdoor unit 112 of the air conditioner 11. Based on the equation (16), the air conditioning load Q is estimated (S62). However, at the time of cooling, the upper stage of the equation 16 group is used, and at the time of heating, the lower stage of the equation 16 group is used.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 最後に、制御装置19は、S63で推定した空気調和制御指令に基づき、空気調和機11に制御する。その後、S60に戻る。 Finally, the control device 19 controls the air conditioner 11 based on the air conditioning control command estimated in S63. Then, it returns to S60.
 以上のように、建物内の室温を検出する室温検出部と、外気温を検出する外気温検出部と、窓ガラスの建物の内側の表面温度を検出する表面温度検出部と、空気調和機から発生する熱量に基づいて空気調和能力を推定する空気調和能力推定部と、室温と外気温と表面温度と空気調和能力とに基づいて窓ガラスの窓負荷係数及び外気負荷係数を学習する負荷係数学習部と、室温と外気温と表面温度と窓負荷係数と外気負荷係数とに基づいて建物の空気調和負荷を推定する空気調和負荷推定部と、空気調和負荷に基づいて空気調和機を制御する制御部とを備える空気調和システムである。 As described above, from the room temperature detection unit that detects the room temperature in the building, the outside air temperature detection unit that detects the outside air temperature, the surface temperature detection unit that detects the surface temperature inside the building of the window glass, and the air conditioner An air conditioning ability estimation unit that estimates the air conditioning ability based on the generated heat amount, and a load factor learning that learns the window load factor and the outdoor air load factor of the window glass based on room temperature, ambient temperature, surface temperature, and air conditioning ability Control unit for controlling the air conditioner based on the air conditioning load, the air conditioning load estimating unit for estimating the air conditioning load of the building based on the room temperature, the outside air temperature, the surface temperature, the window load factor and the outside air loading factor An air conditioning system comprising:
 また、建物内の室温を検出する室温検出ステップと、外気温を検出する外気温検出ステップと、窓ガラスの建物の内側の表面温度を検出する表面温度検出ステップと、空気調和機から発生する熱量に基づいて空気調和能力を推定する空気調和能力推定ステップと、室温と外気温と表面温度と空気調和能力とに基づいて窓ガラスの窓負荷係数及び外気負荷係数を学習する負荷係数学習ステップと、室温と外気温と表面温度と窓負荷係数と外気負荷係数とに基づいて建物の空気調和負荷を推定する空気調和負荷推定ステップと、空気調和負荷に基づいて空気調和機を制御する制御ステップとを備える空気調和方法である。 In addition, a room temperature detection step for detecting the room temperature in the building, an outside air temperature detection step for detecting the outside air temperature, a surface temperature detection step for detecting the surface temperature of the window glass inside the building, and heat quantity generated from the air conditioner An air conditioning ability estimating step of estimating the air conditioning ability based on the load factor learning step of learning a window load factor and an outside air load factor of the window glass based on the room temperature, the outside air temperature, the surface temperature and the air conditioning ability; Air conditioning load estimation step of estimating the air conditioning load of the building based on the room temperature, the outside air temperature, the surface temperature, the window load coefficient and the outside air loading coefficient, and a control step of controlling the air conditioner based on the air conditioning load. It is an air conditioning method provided.
 室内の空気調和負荷を推定して空気調和機を制御する空気調和システム及び空気調和方法を得ることができる。 It is possible to obtain an air conditioning system and an air conditioning method for controlling an air conditioner by estimating an air conditioning load in a room.
 最後に、本発明は、これまで述べてきた実施の形態に限定されるものではなく、本発明の範囲内で種々に改変することができる。すなわち、これまで述べてきた実施の形態の構成を適宜改良してもよく、また、少なくとも一部を他の構成に代替させてもよい。さらに、その配置について特に限定のない構成要件は、実施の形態で開示した配置に限らず、その機能を達成できる位置に配置することができる。また、これまで述べてきた実施の形態に開示されている複数の構成要素を適宜組み合わせることにより発明を形成してもよい。さらに、本発明は、これまで述べてきた実施の形態の範囲ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更を含むものである。 Finally, the present invention is not limited to the embodiments described above, and can be variously modified within the scope of the present invention. That is, the configuration of the embodiment described so far may be appropriately improved, and at least a part may be replaced with another configuration. Furthermore, the configuration requirements without particular limitation on the arrangement are not limited to the arrangement disclosed in the embodiment, and can be arranged at a position where the function can be achieved. In addition, the invention may be formed by appropriately combining a plurality of components disclosed in the embodiments described above. Furthermore, the present invention is not the scope of the embodiments described above, is shown by the claims, and includes all modifications within the meaning and scope equivalent to the claims.
1 空気調和システム、2 建物、3 壁、4 窓、5 床、11 空気調和機、12 入力装置、13 室温検出装置、14 外気温検出装置、15 表面温度検出装置、16 演算装置、17 記憶装置、18 通信経路、19 制御装置、111 室内機、112 室外機、160 室内発熱負荷推定部、161 窓熱性能学習部、162 窓光学性能学習部、163 日射熱負荷推定部、164 空気調和能力推定部、165 総熱損失係数学習部、166 空気調和負荷推定部、167 窓負荷係数学習部、168 負荷係数学習部、171 地域別単位日射量、172 窓光学性能関係式、173 窓面積、174 窓熱性能、175 窓光学性能、176 総熱損失係数、177 窓負荷係数、178 外気負荷係数、1111 室温検出装置、1112表面温度検出装置、1121 外気温検出装置。 DESCRIPTION OF SYMBOLS 1 air conditioning system, 2 buildings, 3 walls, 4 windows, 5 floors, 11 air conditioners, 12 input devices, 13 room temperature detection devices, 14 outside air temperature detection devices, 15 surface temperature detection devices, 16 arithmetic devices, 17 storage devices , 18 communication path, 19 control device, 111 indoor unit, 112 outdoor unit, 160 indoor heat generation load estimation unit, 161 window heat performance learning unit, 162 window optical performance learning unit, 163 solar heat load estimation unit, 164 air conditioning ability estimation Part, 165 total heat loss coefficient learning part, 166 air conditioning load estimation part, 167 window load factor learning part, 168 load factor learning part, 171 unit solar radiation amount by area, 172 window optical performance relational expression, 173 window area, 174 window Thermal performance, 175 window optical performance, 176 total heat loss coefficient, 177 window load coefficient, 178 outside air load coefficient, 111 Room temperature detector, 1112 a surface temperature detecting device 1121 outside air temperature detection device.

Claims (11)

  1. 建物内の室温を検出する室温検出部と、
    外気温を検出する外気温検出部と、
    窓ガラスの前記建物の内側の表面温度を検出する表面温度検出部と、
    前記室温と前記外気温と前記表面温度とに基づいて前記窓ガラスの窓熱性能を学習する窓熱性能学習部と、
    空気調和機から発生する熱量に基づいて空気調和能力を推定する空気調和能力推定部と、
    前記室温と前記外気温と前記表面温度と前記窓熱性能と前記空気調和能力とに基づいて前記窓ガラスの窓負荷係数を学習する窓負荷係数学習部と、
    前記室温と前記外気温と前記表面温度と前記窓熱性能と前記窓負荷係数とに基づいて前記窓ガラスから入射する日射による日射熱負荷を推定する日射熱負荷推定部と、
    前記日射熱負荷に基づいて前記空気調和機を制御する制御部とを備えたことを特徴とする空気調和システム。
    A room temperature detection unit for detecting the room temperature in the building;
    An outside temperature detection unit that detects the outside temperature,
    A surface temperature detection unit that detects a surface temperature of the inside of the building of the window glass;
    A window thermal performance learning unit that learns the window thermal performance of the window glass based on the room temperature, the outside air temperature, and the surface temperature;
    An air conditioning capability estimation unit configured to estimate an air conditioning capability based on a heat quantity generated from the air conditioner;
    A window load coefficient learning unit that learns a window load coefficient of the window glass based on the room temperature, the outside air temperature, the surface temperature, the window thermal performance, and the air conditioning ability;
    A solar heat load estimation unit configured to estimate a solar heat load due to solar radiation incident from the window glass based on the room temperature, the outside air temperature, the surface temperature, the window thermal performance, and the window load coefficient;
    And a control unit configured to control the air conditioner based on the solar radiation heat load.
  2. 請求項1に記載の空気調和システムであって、
    前記室温と前記外気温と前記空気調和能力とに基づいて前記建物の総熱損失係数を学習する総熱損失係数学習部と、
    前記室温と前記外気温と前記表面温度と前記窓熱性能と前記窓負荷係数と前記総熱損失係数とに基づいて前記建物の空気調和負荷を推定する空気調和負荷推定部と、
    前記空気調和負荷に基づいて前記空気調和機を制御する制御部とを備えたことを特徴とする空気調和システム。
    An air conditioning system according to claim 1, wherein
    A total heat loss coefficient learning unit that learns a total heat loss coefficient of the building based on the room temperature, the outside air temperature, and the air conditioning ability;
    An air conditioning load estimation unit that estimates an air conditioning load of the building based on the room temperature, the outside air temperature, the surface temperature, the window thermal performance, the window load coefficient, and the total heat loss coefficient;
    And a control unit configured to control the air conditioner based on the air conditioning load.
  3. 建物内の室温を検出する室温検出部と、
    外気温を検出する外気温検出部と、
    窓ガラスの前記建物の内側の表面温度を検出する表面温度検出部と、
    空気調和機から発生する熱量に基づいて空気調和能力を推定する空気調和能力推定部と、
    前記室温と前記外気温と前記表面温度と前記空気調和能力とに基づいて前記窓ガラスの窓負荷係数及び外気負荷係数を学習する負荷係数学習部と、
    前記室温と前記外気温と前記表面温度と前記窓負荷係数と前記外気負荷係数とに基づいて前記建物の空気調和負荷を推定する空気調和負荷推定部と、
    前記空気調和負荷に基づいて前記空気調和機を制御する制御部とを備えたことを特徴とする空気調和システム。
    A room temperature detection unit for detecting the room temperature in the building;
    An outside temperature detection unit that detects the outside temperature,
    A surface temperature detection unit that detects a surface temperature of the inside of the building of the window glass;
    An air conditioning capability estimation unit configured to estimate an air conditioning capability based on a heat quantity generated from the air conditioner;
    A load coefficient learning unit that learns the window load coefficient and the outside air load coefficient of the window glass based on the room temperature, the outside air temperature, the surface temperature, and the air conditioning ability;
    An air conditioning load estimation unit for estimating an air conditioning load of the building based on the room temperature, the outside air temperature, the surface temperature, the window load factor, and the outside air load factor;
    And a control unit configured to control the air conditioner based on the air conditioning load.
  4. 建物内の室温を検出する室温検出部と、
    外気温を検出する外気温検出部と、
    窓ガラスの前記建物の内側の表面温度を検出する表面温度検出部と、
    前記室温と前記外気温と前記表面温度とに基づいて前記窓ガラスの窓熱性能を学習する窓熱性能学習部と、
    単位日射量及び前記窓ガラスの構成による窓光学性能関係式と前記室温と前記外気温と前記表面温度と前記窓熱性能とに基づいて前記窓ガラスの窓光学性能を学習する窓光学性能学習部と、
    前記窓ガラスの面積と前記室温と前記外気温と前記表面温度と前記窓熱性能と前記窓光学性能とに基づいて前記窓ガラスから入射する日射による日射熱負荷を推定する日射熱負荷推定部と、
    前記日射熱負荷に基づいて空気調和機を制御する制御部とを備えたことを特徴とする空気調和システム。
    A room temperature detection unit for detecting the room temperature in the building;
    An outside temperature detection unit that detects the outside temperature,
    A surface temperature detection unit that detects a surface temperature of the inside of the building of the window glass;
    A window thermal performance learning unit that learns the window thermal performance of the window glass based on the room temperature, the outside air temperature, and the surface temperature;
    Window optical performance learning unit which learns the window optical performance of the window glass based on the unit solar radiation amount and the window optical performance relational expression by the configuration of the window glass, the room temperature, the outside air temperature, the surface temperature and the window thermal performance When,
    A solar heat load estimation unit for estimating a solar heat load due to solar radiation incident from the window glass based on the area of the window glass, the room temperature, the ambient temperature, the surface temperature, the window thermal performance, and the window optical performance ,
    And a control unit configured to control the air conditioner based on the solar radiation heat load.
  5. 請求項4に記載の空気調和システムであって、
    前記窓熱性能は、熱貫流抵抗に基づく性能であり、
    前記窓光学性能は、日射吸収率と日射熱取得率とに基づく性能であることを特徴とする空気調和システム。
    An air conditioning system according to claim 4, wherein
    The window thermal performance is a performance based on heat transmission resistance,
    The air conditioning system characterized in that the window optical performance is a performance based on a solar radiation absorptivity and a solar heat gain rate.
  6. 請求項4または請求項5に記載の空気調和システムであって、
    前記空気調和機から発生する熱量に基づいて空気調和能力を推定する空気調和能力推定部と、
    前記室温と前記外気温と前記空気調和能力とに基づいて前記建物の総熱損失係数を学習する総熱損失係数学習部と、
    前記室温と前記外気温と前記総熱損失係数と前記日射熱負荷とに基づいて前記建物の空気調和負荷を推定する空気調和負荷推定部とを備え、
    前記制御部は、前記空気調和負荷に基づいて前記空気調和機を制御することを特徴とする空気調和システム。
    An air conditioning system according to claim 4 or claim 5, wherein
    An air conditioning capability estimation unit configured to estimate an air conditioning capability based on the amount of heat generated from the air conditioner;
    A total heat loss coefficient learning unit that learns a total heat loss coefficient of the building based on the room temperature, the outside air temperature, and the air conditioning ability;
    An air conditioning load estimation unit configured to estimate an air conditioning load of the building based on the room temperature, the outside air temperature, the total heat loss coefficient, and the solar radiation heat load;
    An air conditioning system, wherein the control unit controls the air conditioner based on the air conditioning load.
  7. 請求項2、請求項3及び請求項6のいずれか1項に記載の空気調和システムであって、
    前記空気調和負荷は、室内発熱負荷に基づいて推定されることを特徴とする空気調和システム。
    An air conditioning system according to any one of claims 2, 3 and 6.
    The air conditioning system, wherein the air conditioning load is estimated based on an indoor heat generation load.
  8. 請求項1から請求項7のいずれか1項に記載の空気調和システムであって、
    前記表面温度検出部は、前記空気調和機に備えられたものであることを特徴とする空気調和システム。
    The air conditioning system according to any one of claims 1 to 7, wherein
    An air conditioning system, wherein the surface temperature detection unit is provided in the air conditioner.
  9. 建物内の室温を検出する室温検出ステップと、
    外気温を検出する外気温検出ステップと、
    窓ガラスの前記建物の内側の表面温度を検出する表面温度検出ステップと、
    前記室温と前記外気温と前記表面温度とに基づいて前記窓ガラスの窓熱性能を学習する窓熱性能学習ステップと、
    空気調和機から発生する熱量に基づいて空気調和能力を推定する空気調和能力推定ステップと、
    前記室温と前記外気温と前記表面温度と前記窓熱性能と前記空気調和能力とに基づいて前記窓ガラスの窓負荷係数を学習する窓負荷係数学習ステップと、
    前記室温と前記外気温と前記表面温度と前記窓熱性能と前記窓負荷係数とに基づいて前記窓ガラスから入射する日射による日射熱負荷を推定する日射熱負荷推定ステップと、
    前記日射熱負荷に基づいて前記空気調和機を制御する制御ステップとを備えたことを特徴とする空気調和方法。
    A room temperature detection step of detecting the room temperature in the building;
    Outside temperature detection step to detect outside temperature,
    A surface temperature detection step of detecting the surface temperature of the inside of the building of the window glass;
    A window thermal performance learning step of learning window thermal performance of the window glass based on the room temperature, the outside air temperature, and the surface temperature;
    An air conditioning capability estimation step of estimating the air conditioning capability based on the heat quantity generated from the air conditioner;
    A window load factor learning step of learning a window load factor of the window glass based on the room temperature, the outside air temperature, the surface temperature, the window thermal performance, and the air conditioning ability;
    A solar heat load estimation step of estimating a solar heat load due to solar radiation incident from the window glass based on the room temperature, the outside air temperature, the surface temperature, the window thermal performance, and the window load coefficient;
    A control step of controlling the air conditioner on the basis of the solar heat load.
  10. 建物内の室温を検出する室温検出ステップと、
    外気温を検出する外気温検出ステップと、
    窓ガラスの前記建物の内側の表面温度を検出する表面温度検出ステップと、
    空気調和機から発生する熱量に基づいて空気調和能力を推定する空気調和能力推定ステップと、
    前記室温と前記外気温と前記表面温度と前記空気調和能力とに基づいて前記窓ガラスの窓負荷係数及び外気負荷係数を学習する負荷係数学習ステップと、
    前記室温と前記外気温と前記表面温度と前記窓負荷係数と前記外気負荷係数とに基づいて前記建物の空気調和負荷を推定する空気調和負荷推定ステップと、
    前記空気調和負荷に基づいて前記空気調和機を制御する制御ステップとを備えたことを特徴とする空気調和方法。
    A room temperature detection step of detecting the room temperature in the building;
    Outside temperature detection step to detect outside temperature,
    A surface temperature detection step of detecting the surface temperature of the inside of the building of the window glass;
    An air conditioning capability estimation step of estimating the air conditioning capability based on the heat quantity generated from the air conditioner;
    A load factor learning step of learning a window load factor of the window glass and an external air load factor based on the room temperature, the outside air temperature, the surface temperature, and the air conditioning ability;
    An air conditioning load estimation step of estimating an air conditioning load of the building based on the room temperature, the outside air temperature, the surface temperature, the window load factor, and the outside air load factor;
    A control step of controlling the air conditioner based on the air conditioning load.
  11. 建物内の室温を検出する室温検出ステップと、
    外気温を検出する外気温検出ステップと、
    窓ガラスの前記建物の内側の表面温度を検出する表面温度検出ステップと、
    前記室温と前記外気温と前記表面温度とに基づいて前記窓ガラスの窓熱性能を学習する窓熱性能学習ステップと、
    単位日射量及び前記窓ガラスの構成による窓光学性能関係式と前記室温と前記外気温と前記表面温度と前記窓熱性能とに基づいて前記窓ガラスの窓光学性能を学習する窓光学性能学習ステップと、
    前記窓ガラスの面積と前記室温と前記外気温と前記表面温度と前記窓熱性能と前記窓光学性能とに基づいて前記窓ガラスから入射する日射による日射熱負荷を推定する日射熱負荷推定ステップと、
    前記日射熱負荷に基づいて空気調和機を制御する制御ステップとを備えたことを特徴とする空気調和方法。
    A room temperature detection step of detecting the room temperature in the building;
    Outside temperature detection step to detect outside temperature,
    A surface temperature detection step of detecting the surface temperature of the inside of the building of the window glass;
    A window thermal performance learning step of learning window thermal performance of the window glass based on the room temperature, the outside air temperature, and the surface temperature;
    Window optical performance learning step for learning the window optical performance of the window glass based on the unit solar radiation amount and the window optical performance relational expression by the configuration of the window glass, the room temperature, the outside air temperature, the surface temperature and the window thermal performance When,
    A solar heat load estimation step of estimating a solar heat load due to solar radiation incident from the window glass based on the area of the window glass, the room temperature, the ambient temperature, the surface temperature, the window thermal performance, and the window optical performance; ,
    A control step of controlling an air conditioner based on the solar radiation heat load.
PCT/JP2017/036589 2017-08-17 2017-10-10 Air conditioning system and air conditioning method WO2019035218A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019536410A JP6727446B2 (en) 2017-08-17 2017-10-10 Air conditioning system and air conditioning method
CN201780092795.5A CN110914605B (en) 2017-08-17 2017-10-10 Air conditioning system and air conditioning method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017157470 2017-08-17
JP2017-157470 2017-08-17

Publications (1)

Publication Number Publication Date
WO2019035218A1 true WO2019035218A1 (en) 2019-02-21

Family

ID=65362517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036589 WO2019035218A1 (en) 2017-08-17 2017-10-10 Air conditioning system and air conditioning method

Country Status (3)

Country Link
JP (1) JP6727446B2 (en)
CN (1) CN110914605B (en)
WO (1) WO2019035218A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021050851A (en) * 2019-09-24 2021-04-01 パナソニックIpマネジメント株式会社 Control device for air conditioner, control method for air conditioner, and program
WO2022129786A1 (en) * 2020-12-17 2022-06-23 Saint-Gobain Glass France The present invention relates to a temperature regulation system for a room incorporated in a building, such as a conservatory, equipped with one or more external functional glazings that can be activated by an electric current, distributed in one or more groups comprising: - at least one sensor configured to measure at least one quantity representative of external solar radiation at each glazing group; - at least one sensor for measuring the outside temperature and at least one sensor for measuring the inside temperature; - at least one electrical power supply unit connected to each sensor for supplying electrical power to each glazing individually according to a current and/or voltage that can be varied, - a control unit connected to each power supply unit, such that the control unit receives signals corresponding to the measurements carried out by the one or more sensors connected to each power supply unit, and such that it emits electric control signals to each electrical power supply unit as a function of the quantities measured by the one or more sensors of the corresponding glazing. thermal regulation system for a room and method for same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112728714B (en) * 2021-01-26 2022-03-01 宁夏佳智星科技有限公司 Intelligent air conditioning system and control method thereof
CN113400891B (en) * 2021-07-19 2023-03-24 安徽江淮汽车集团股份有限公司 Control method for double-temperature-zone heat pump air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015148417A (en) * 2014-02-07 2015-08-20 株式会社東芝 Air conditioning system, air conditioning apparatus, air conditioning control method, and program
JP2015230128A (en) * 2014-06-05 2015-12-21 株式会社日立製作所 Energy management system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1237247C (en) * 2001-07-11 2006-01-18 孙运健 Full-elevation daylighting window and intelligent all-weather solar energy building
KR101497698B1 (en) * 2008-05-08 2015-03-02 엘지전자 주식회사 Air conditioning system
JP5452659B2 (en) * 2012-05-16 2014-03-26 三菱電機株式会社 Air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015148417A (en) * 2014-02-07 2015-08-20 株式会社東芝 Air conditioning system, air conditioning apparatus, air conditioning control method, and program
JP2015230128A (en) * 2014-06-05 2015-12-21 株式会社日立製作所 Energy management system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021050851A (en) * 2019-09-24 2021-04-01 パナソニックIpマネジメント株式会社 Control device for air conditioner, control method for air conditioner, and program
WO2022129786A1 (en) * 2020-12-17 2022-06-23 Saint-Gobain Glass France The present invention relates to a temperature regulation system for a room incorporated in a building, such as a conservatory, equipped with one or more external functional glazings that can be activated by an electric current, distributed in one or more groups comprising: - at least one sensor configured to measure at least one quantity representative of external solar radiation at each glazing group; - at least one sensor for measuring the outside temperature and at least one sensor for measuring the inside temperature; - at least one electrical power supply unit connected to each sensor for supplying electrical power to each glazing individually according to a current and/or voltage that can be varied, - a control unit connected to each power supply unit, such that the control unit receives signals corresponding to the measurements carried out by the one or more sensors connected to each power supply unit, and such that it emits electric control signals to each electrical power supply unit as a function of the quantities measured by the one or more sensors of the corresponding glazing. thermal regulation system for a room and method for same
FR3118137A1 (en) * 2020-12-17 2022-06-24 Saint-Gobain Glass France THERMAL REGULATION SYSTEM OF A PREMISES AND ITS PROCESS

Also Published As

Publication number Publication date
CN110914605A (en) 2020-03-24
JPWO2019035218A1 (en) 2019-12-12
CN110914605B (en) 2021-01-26
JP6727446B2 (en) 2020-07-22

Similar Documents

Publication Publication Date Title
JP6727446B2 (en) Air conditioning system and air conditioning method
EP3295262B1 (en) Energy-efficient integrated lighting, daylighting, and hvac with controlled window blinds
CN102252408B (en) Systems and methods for motorized vent covering in environment control system
US20160054018A1 (en) Air-conditioning system control apparatus
CN107592918B (en) Energy-saving integrated lighting, daylighting and heating ventilation air conditioner with electrochromic glass
US20210222491A1 (en) Photosensitive element assembly
KR100722008B1 (en) Building envelope system
US10816941B2 (en) Energy efficiency of a building at the planning stage
Kang et al. Optimized blind control method to minimize heating, cooling and lighting energy
CN111750460A (en) Method for operating a heat pump system, heat pump system and heating, ventilation and air conditioning system
Degu Cooling Load Estimation and Air Conditioning Unit Selection for Hibir Boat
del Ama Gonzalo et al. Thermal Simulation of a Zero Energy Glazed Pavilion in Sofia, Bulgaria. New Strategies for Energy Management by Means of Water Flow Glazing
Thambidurai et al. Free cooling feasibility of a typical commercial building in Pune city, India
Woldekidan Indoor environmental quality (IEQ) and building energy optimization through model predictive control (MPC)
Monstvilas et al. Hourly calculation method of building energy demand for space heating and cooling based on steady-state heat balance equations
Bizoňová et al. Methods of Preliminary Estimation of Total Solar Energy Transmittance (TSET) on a Sun Protected Window with Climatic Chamber and Hot Box Apparatus
JP2024009652A (en) Temperature adjustment system, temperature adjustment method and sensible temperature estimation method
Nemethova et al. Thermal comfort and energy consumption using different radiant heating/cooling systems in a modern office building
KR20220109013A (en) Building energy control system based on direct sunlight separation of total office solar radiation and building energy control method using the same
Zhang et al. Workplane illuminance estimation for robust daylight harvesting lighting control
KR101745923B1 (en) Pair Glass Window system with heating and cooling air curtain function
Kragh et al. Advanced facades and HVAC systems: preliminary results of full-scale monitoring
IT202100005918A1 (en) METHOD AND SYSTEM OF COOLING THROUGH VENTILATION OF A BUILDING
Sahoo Measured temperature reductions and improved thermal comfort from application of cool roof paint on an economical weaker section houses in India
KR100875706B1 (en) Insolation correction system using outside temperature

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019536410

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17921878

Country of ref document: EP

Kind code of ref document: A1