JPWO2019035218A1 - Air conditioning system and air conditioning method - Google Patents

Air conditioning system and air conditioning method Download PDF

Info

Publication number
JPWO2019035218A1
JPWO2019035218A1 JP2019536410A JP2019536410A JPWO2019035218A1 JP WO2019035218 A1 JPWO2019035218 A1 JP WO2019035218A1 JP 2019536410 A JP2019536410 A JP 2019536410A JP 2019536410 A JP2019536410 A JP 2019536410A JP WO2019035218 A1 JPWO2019035218 A1 JP WO2019035218A1
Authority
JP
Japan
Prior art keywords
window
load
temperature
air conditioning
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019536410A
Other languages
Japanese (ja)
Other versions
JP6727446B2 (en
Inventor
アンナ 成
アンナ 成
隆也 山本
隆也 山本
恵美 竹田
恵美 竹田
淳一 岡崎
淳一 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2019035218A1 publication Critical patent/JPWO2019035218A1/en
Application granted granted Critical
Publication of JP6727446B2 publication Critical patent/JP6727446B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • F24F2130/20Sunlight

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

建物(2)内の室温を検出する室温検出部(13)と、外気温を検出する外気温検出部(14)と、窓ガラスの建物(2)の内側の表面温度を検出する表面温度検出部(15)と、空気調和機(11)から発生する熱量に基づいて空気調和能力を推定する空気調和能力推定部(164)と、室温と外気温と表面温度と空気調和能力とに基づいて窓ガラスの窓負荷係数及び外気負荷係数を学習する負荷係数学習部(168)と、室温と外気温と表面温度と窓負荷係数と外気負荷係数とに基づいて建物(2)の空気調和負荷を推定する空気調和負荷推定部(166)と、空気調和負荷に基づいて空気調和機(11)を制御する制御部とを備えた空気調和システム(1)である。A room temperature detecting unit (13) for detecting the room temperature in the building (2), an outside air temperature detecting unit (14) for detecting the outside air temperature, and a surface temperature detecting unit for detecting a surface temperature inside the window glass building (2). Unit (15), an air conditioning capability estimating unit (164) that estimates the air conditioning capability based on the amount of heat generated from the air conditioner (11), and based on the room temperature, the outside air temperature, the surface temperature, and the air conditioning capability. A load coefficient learning unit (168) for learning a window load coefficient and an outside air load coefficient of the window glass; and an air conditioning load of the building (2) based on the room temperature, the outside air temperature, the surface temperature, the window load coefficient, and the outside air load coefficient. An air conditioning system (1) including an air conditioning load estimation unit (166) for estimating and a control unit for controlling the air conditioner (11) based on the air conditioning load.

Description

この発明は、空気調和機を制御する空気調和システム及び空気調和方法に関するものである。   The present invention relates to an air conditioning system and an air conditioning method for controlling an air conditioner.

空気調和システムは、住宅、オフィスビルなどに対して快適な室内環境を保ちながら省エネルギー化を実現するものである。このため、室内を冷やし過ぎ、暖め過ぎなどによる無駄なエネルギーを低減することが要求される。空気調和システムからの供給熱量の過不足がなく制御を行うためには、空気調和機、他の機器などのデータを用いてリアルタイムに空気調和の対象となる室内の熱負荷を推定し、推定した熱負荷に応じて空気調和制御量を適切に調整する必要がある。   The air conditioning system realizes energy saving while maintaining a comfortable indoor environment for houses, office buildings and the like. For this reason, it is requested | required that the room | chamber interior is overcooled and the useless energy by overheating etc. should be reduced. In order to control the amount of heat supplied from the air conditioning system without excess or deficiency, the heat load in the room subject to air conditioning is estimated in real time using data from air conditioners and other equipment. It is necessary to adjust the air conditioning control amount appropriately according to the heat load.

特に、住宅の窓が大きい部屋、オフィスビルの窓付近(ぺリメータゾーン)においては、窓から侵入される日射が空気調和負荷に大きく影響を与えている。このため、日射による熱負荷を考慮し、建物の窓に適切な窓ガラスを選択する方法(例えば、特許文献1)、室内の熱負荷を推定するシステムが提案されている(例えば、特許文献2、特許文献3)。   In particular, in a room with a large house window and in the vicinity of a window (perimeter zone) of an office building, solar radiation entering from the window greatly affects the air conditioning load. For this reason, in consideration of the heat load due to solar radiation, a method of selecting an appropriate window glass for a building window (for example, Patent Document 1) and a system for estimating the indoor heat load have been proposed (for example, Patent Document 2). Patent Document 3).

特許文献1は、建設地域、季節、時間、窓の方位、窓ガラス構成の違いにより、日射熱負荷(窓面受熱日射量)を算出するものである。   Patent document 1 calculates solar heat load (window surface heat-receiving solar radiation amount) by the difference in construction area, season, time, window orientation, and window glass configuration.

特許文献2は、サーモカメラと日射センサとを用いて、窓ガラスを含む外壁面の温度分布及び日射量を計測し、計測結果に応じて窓付近(ペリメータゾーン)の熱負荷を推定するものである。   Patent document 2 uses a thermo camera and a solar radiation sensor to measure the temperature distribution and solar radiation amount of the outer wall surface including the window glass, and estimates the thermal load near the window (perimeter zone) according to the measurement result. is there.

特許文献3は、窓面に設置された光透過性の有機薄膜太陽電池の出力特性に基づいて、窓付近(ペリメータゾーン)の熱負荷を推定するものである。   Patent Document 3 estimates the thermal load in the vicinity of the window (perimeter zone) based on the output characteristics of a light-transmissive organic thin-film solar cell installed on the window surface.

特開2008−107910JP2008-107910 特開2011−202877JP2011-202877 特開2015−218991JP2015-218991A

特許文献1の手法によれば、建設地域、季節、時間、開口部の方位、窓ガラスの構成(性能)を入力する必要がある。これら入力データによって、格納している気象データを選択して日射熱負荷を算出している。このため、実環境においてリアルタイムに窓ガラスから侵入する日射熱負荷を推定することはできない。   According to the method of Patent Document 1, it is necessary to input the construction area, season, time, orientation of the opening, and the configuration (performance) of the window glass. Based on these input data, the stored weather data is selected to calculate the solar heat load. For this reason, the solar heat load which penetrate | invades from a window glass in real time in real environment cannot be estimated.

また、特許文献2の手法によれば、熱負荷を推定するためには外壁面の温度分布を検出するサーモカメラと、日射量を検出する専用機器である日射センサとを建物の外に設置する必要があり、設備のメンテナンス及びコストの増大することになる。   Moreover, according to the method of patent document 2, in order to estimate a heat load, the thermo camera which detects the temperature distribution of an outer wall surface, and the solar radiation sensor which is an exclusive apparatus which detects the amount of solar radiation are installed outside a building. This will increase equipment maintenance and costs.

さらに、特許文献3の手法によれば、各窓面に光透過性の有機薄膜太陽電池を設置する必要がある。光透過性の有機薄膜太陽電池は、現在、研究開発の段階であり、窓に設置するための光透過性の有機薄膜太陽電池は、まだ普及されておらず実用的でない。   Furthermore, according to the technique of Patent Document 3, it is necessary to install a light transmissive organic thin film solar cell on each window surface. Light transmissive organic thin film solar cells are currently in the research and development stage, and light transmissive organic thin film solar cells for installation in windows are not yet widespread and are not practical.

この発明は、日射量センサなどの日射量を検出する専用の検出機器、光透過性の有機薄膜太陽電池を設けることなく、窓ガラスの性能を学習し、環境の変化に応じてリアルタイムに建物の窓ガラスから侵入する日射量を推定し、室内の日射熱負荷を高精度に推定できる空気調和システム及び空気調和方法を提供することを目的とする。   This invention learns the performance of the window glass without providing a dedicated detection device for detecting the amount of solar radiation, such as a solar radiation sensor, and a light-transmitting organic thin-film solar cell, and in real time according to changes in the environment An object of the present invention is to provide an air conditioning system and an air conditioning method capable of estimating the amount of solar radiation entering from a window glass and estimating the indoor solar heat load with high accuracy.

この発明に係る空気調和システムは、建物内の室温を検出する室温検出部と、外気温を検出する外気温検出部と、窓ガラスの建物の内側の表面温度を検出する表面温度検出部と、室温と外気温と表面温度とに基づいて窓ガラスの窓熱性能を学習する窓熱性能学習部と、空気調和機から発生する熱量に基づいて空気調和能力を推定する空気調和能力推定部と、室温と外気温と表面温度と窓熱性能と空気調和能力とに基づいて窓ガラスの窓負荷係数を学習する窓負荷係数学習部と、室温と外気温と表面温度と窓熱性能と窓負荷係数とに基づいて窓ガラスから入射する日射による日射熱負荷を推定する日射熱負荷推定部と、日射熱負荷に基づいて空気調和機を制御する制御部とを備える空気調和システムである。   An air conditioning system according to the present invention includes a room temperature detection unit that detects a room temperature in a building, an outside air temperature detection unit that detects an outside air temperature, a surface temperature detection unit that detects a surface temperature inside the building of the window glass, A window heat performance learning unit that learns the window heat performance of the window glass based on the room temperature, the outside air temperature, and the surface temperature; an air conditioning capability estimation unit that estimates the air conditioning capability based on the amount of heat generated from the air conditioner; A window load coefficient learning unit that learns the window load coefficient of the window glass based on room temperature, outside air temperature, surface temperature, window heat performance, and air conditioning capability, and room temperature, outside air temperature, surface temperature, window heat performance, and window load coefficient It is an air conditioning system provided with the solar heat load estimation part which estimates the solar heat load by the solar radiation which injects from window glass based on these, and the control part which controls an air conditioner based on a solar heat load.

この発明に係る空気調和システムは、建物内の室温を検出する室温検出部と、外気温を検出する外気温検出部と、窓ガラスの建物の内側の表面温度を検出する表面温度検出部と、空気調和機から発生する熱量に基づいて空気調和能力を推定する空気調和能力推定部と、室温と外気温と表面温度と空気調和能力とに基づいて窓ガラスの窓負荷係数及び外気負荷係数を学習する負荷係数学習部と、室温と外気温と表面温度と窓負荷係数と外気負荷係数とに基づいて建物の空気調和負荷を推定する空気調和負荷推定部と、空気調和負荷に基づいて空気調和機を制御する制御部とを備える空気調和システムである。   An air conditioning system according to the present invention includes a room temperature detection unit that detects a room temperature in a building, an outside air temperature detection unit that detects an outside air temperature, a surface temperature detection unit that detects a surface temperature inside the building of the window glass, Air conditioning capability estimator that estimates the air conditioning capability based on the amount of heat generated from the air conditioner, and learns the window load coefficient and the outside air load coefficient of the window glass based on room temperature, outside temperature, surface temperature, and air conditioning capability A load coefficient learning unit that performs an air condition load estimation unit that estimates a building air condition load based on room temperature, outside air temperature, surface temperature, window load coefficient, and outside air load coefficient, and an air conditioner based on the air condition load It is an air conditioning system provided with the control part which controls.

この発明に係る空気調和システムは、建物内の室温を検出する室温検出部と、外気温を検出する外気温検出部と、窓ガラスの建物の内側の表面温度を検出する表面温度検出部と、室温と外気温と表面温度とに基づいて窓ガラスの窓熱性能を学習する窓熱性能学習部と、単位日射量及び窓ガラスの構成による窓光学性能関係式と室温と外気温と表面温度と窓熱性能とに基づいて窓ガラスの窓光学性能を学習する窓光学性能学習部と、窓ガラスの面積と室温と外気温と表面温度と窓熱性能と窓光学性能とに基づいて窓ガラスから入射する日射による日射熱負荷を推定する日射熱負荷推定部と、日射熱負荷に基づいて空気調和機を制御する制御部とを備える空気調和システムである。   An air conditioning system according to the present invention includes a room temperature detection unit that detects a room temperature in a building, an outside air temperature detection unit that detects an outside air temperature, a surface temperature detection unit that detects a surface temperature inside the building of the window glass, A window heat performance learning unit that learns the window heat performance of the window glass based on the room temperature, the outside air temperature, and the surface temperature, the window optical performance relational expression according to the unit solar radiation amount and the window glass structure, the room temperature, the outside air temperature, and the surface temperature. A window optical performance learning unit that learns the window optical performance of the window glass based on the window thermal performance, and from the window glass based on the window glass area, room temperature, outside air temperature, surface temperature, window heat performance, and window optical performance. An air conditioning system including a solar heat load estimating unit that estimates a solar heat load due to incident solar radiation, and a control unit that controls the air conditioner based on the solar heat load.

この発明に係る空気調和方法は、建物内の室温を検出する室温検出ステップと、外気温を検出する外気温検出ステップと、窓ガラスの建物の内側の表面温度を検出する表面温度検出ステップと、室温と外気温と表面温度とに基づいて窓ガラスの窓熱性能を学習する窓熱性能学習ステップと、空気調和機から発生する熱量に基づいて空気調和能力を推定する空気調和能力推定ステップと、室温と外気温と表面温度と窓熱性能と空気調和能力とに基づいて窓ガラスの窓負荷係数を学習する窓負荷係数学習ステップと、室温と外気温と表面温度と窓熱性能と窓負荷係数とに基づいて窓ガラスから入射する日射による日射熱負荷を推定する日射熱負荷推定ステップと、日射熱負荷に基づいて空気調和機を制御する制御ステップとを備える空気調和方法である。   The air conditioning method according to the present invention includes a room temperature detecting step for detecting a room temperature in a building, an outside air temperature detecting step for detecting an outside air temperature, a surface temperature detecting step for detecting a surface temperature inside the building of the window glass, and A window heat performance learning step for learning the window heat performance of the window glass based on the room temperature, the outside air temperature, and the surface temperature; an air conditioning capability estimation step for estimating the air conditioning capability based on the amount of heat generated from the air conditioner; A window load coefficient learning step for learning a window load coefficient of a window glass based on room temperature, outside air temperature, surface temperature, window heat performance, and air conditioning capacity, and room temperature, outside air temperature, surface temperature, window heat performance, and window load coefficient. An air conditioning method comprising: a solar heat load estimating step for estimating a solar heat load due to solar radiation incident from the window glass based on the above; and a control step for controlling the air conditioner based on the solar heat load A.

この発明に係る空気調和方法は、建物内の室温を検出する室温検出ステップと、外気温を検出する外気温検出ステップと、窓ガラスの建物の内側の表面温度を検出する表面温度検出ステップと、空気調和機から発生する熱量に基づいて空気調和能力を推定する空気調和能力推定ステップと、室温と外気温と表面温度と空気調和能力とに基づいて窓ガラスの窓負荷係数及び外気負荷係数を学習する負荷係数学習ステップと、室温と外気温と表面温度と窓負荷係数と外気負荷係数とに基づいて建物の空気調和負荷を推定する空気調和負荷推定ステップと、空気調和負荷に基づいて空気調和機を制御する制御ステップとを備える空気調和方法である。   The air conditioning method according to the present invention includes a room temperature detecting step for detecting a room temperature in a building, an outside air temperature detecting step for detecting an outside air temperature, a surface temperature detecting step for detecting a surface temperature inside the building of the window glass, and Air conditioning capability estimation step that estimates the air conditioning capability based on the amount of heat generated from the air conditioner, and learns the window load coefficient and the outside air load coefficient of the window glass based on the room temperature, outside temperature, surface temperature, and air conditioning capability A load coefficient learning step, an air condition load estimation step for estimating an air condition load of the building based on room temperature, outside air temperature, surface temperature, window load coefficient, and outside air load coefficient, and an air conditioner based on the air condition load It is an air conditioning method provided with the control step which controls.

この発明に係る空気調和方法は、建物内の室温を検出する室温検出ステップと、外気温を検出する外気温検出ステップと、窓ガラスの建物の内側の表面温度を検出する表面温度検出ステップと、室温と外気温と表面温度とに基づいて窓ガラスの窓熱性能を学習する窓熱性能学習ステップと、単位日射量及び窓ガラスの構成による窓光学性能関係式と室温と外気温と表面温度と窓熱性能とに基づいて窓ガラスの窓光学性能を学習する窓光学性能学習ステップと、窓ガラスの面積と室温と外気温と表面温度と窓熱性能と窓光学性能とに基づいて窓ガラスから入射する日射による日射熱負荷を推定する日射熱負荷推定ステップと、日射熱負荷に基づいて空気調和機を制御する制御ステップとを備える空気調和方法である。   The air conditioning method according to the present invention includes a room temperature detecting step for detecting a room temperature in a building, an outside air temperature detecting step for detecting an outside air temperature, a surface temperature detecting step for detecting a surface temperature inside the building of the window glass, and The window thermal performance learning step for learning the window thermal performance of the window glass based on the room temperature, the outside air temperature, and the surface temperature, the window optical performance relational expression by the unit solar radiation amount and the structure of the window glass, the room temperature, the outside air temperature, and the surface temperature. A window optical performance learning step for learning the window optical performance of the window glass based on the window heat performance, and from the window glass based on the window glass area, room temperature, outside air temperature, surface temperature, window heat performance, and window optical performance. An air conditioning method comprising a solar heat load estimating step for estimating a solar heat load due to incident solar radiation, and a control step for controlling the air conditioner based on the solar heat load.

この発明によれば、日射量を検出する専用の検出機器や、光透過性の有機薄膜太陽電池を設けることなく、室内の日射熱負荷又は空気調和負荷を推定して空気調和機を制御する空気調和システム及び空気調和方法を得ることができる。   According to this invention, without providing a dedicated detection device for detecting the amount of solar radiation or a light-transmitting organic thin-film solar cell, air for estimating an indoor solar heat load or air-conditioning load and controlling the air conditioner A conditioning system and an air conditioning method can be obtained.

本発明の実施の形態1による空気調和システムが適用される建物の内部例を説明するための斜視図である。It is a perspective view for demonstrating the internal example of the building to which the air conditioning system by Embodiment 1 of this invention is applied. 本発明の実施の形態1による空気調和システムの構成図の例である。It is an example of the block diagram of the air conditioning system by Embodiment 1 of this invention. 本発明の実施の形態1による空気調和システムの処理フローの例である。It is an example of the processing flow of the air conditioning system by Embodiment 1 of this invention. 本発明の実施の形態1による日射の有無による温度勾配図の例である。It is an example of the temperature gradient figure by the presence or absence of the solar radiation by Embodiment 1 of this invention. 本発明の実施の形態1による室内の熱画像と写真の例である。It is an example of the indoor thermal image and photograph by Embodiment 1 of this invention. 本発明の実施の形態1による窓ガラスの日射吸収率αと日射熱取得率ηとの関係を示す図の例である。It is an example of the figure which shows the relationship between the solar radiation absorptivity (alpha) of the window glass by Embodiment 1 of this invention, and the solar heat acquisition rate (eta). 本発明の実施の形態2による空気調和システムの構成図の例である。It is an example of the block diagram of the air conditioning system by Embodiment 2 of this invention. 本発明の実施の形態2による空気調和機の外観図の例である。It is an example of the external view of the air conditioner by Embodiment 2 of this invention. 本発明の実施の形態2による空気調和システムの処理フローの例である。It is an example of the processing flow of the air conditioning system by Embodiment 2 of this invention. 本発明の実施の形態3による空気調和システムの構成図の例である。It is an example of the block diagram of the air conditioning system by Embodiment 3 of this invention. 本発明の実施の形態3による空気調和システムの処理フローの例である。It is an example of the processing flow of the air conditioning system by Embodiment 3 of this invention. 本発明の実施の形態4による空気調和システムの構成図の例である。It is an example of the block diagram of the air conditioning system by Embodiment 4 of this invention. 本発明の実施の形態4による空気調和システムの処理フローの例である。It is an example of the processing flow of the air conditioning system by Embodiment 4 of this invention.

実施の形態1.
図1は、本発明の実施の形態1による空気調和システムが適用される建物2の内部例を説明するための斜視図である。建物2は住宅を示し、壁3に備えられた空気調和機11は壁掛型の空気調和機11である。太陽からの日射が建物2の窓4を通過し、床5や壁3に到達している。建物2は住宅に限定されず、オフィスビルなどにも本実施の形態の空気調和システムを設置することができる。なお、空気調和機11は壁掛型に限定されず、天井カセット型、ダクト接続型など、室内空気を調和する機器を空気調和機11として使用することができる。
Embodiment 1 FIG.
FIG. 1 is a perspective view for explaining an internal example of a building 2 to which an air conditioning system according to Embodiment 1 of the present invention is applied. The building 2 represents a house, and the air conditioner 11 provided on the wall 3 is a wall-mounted air conditioner 11. Solar radiation from the sun passes through the window 4 of the building 2 and reaches the floor 5 and the wall 3. The building 2 is not limited to a house, and the air conditioning system of the present embodiment can be installed in an office building or the like. The air conditioner 11 is not limited to a wall-hanging type, and a device that harmonizes indoor air, such as a ceiling cassette type or a duct connection type, can be used as the air conditioner 11.

図2は、本発明の実施の形態1による空気調和システムの構成図の例である。空気調和システム1は、空気調和機11と、外部からの情報が入力される入力装置12と、建物2の室温Tzを検出する室温検出装置13と、建物2の外の外気温Taを検出する外気温検出装置14と、窓ガラスの表面温度Tgを検出する表面温度検出装置15と、各種の演算を行う演算装置16と、各種の検出装置の情報及び演算装置16の演算結果を記憶する記憶装置17と、外部からの情報が入力される入力装置12と、空気調和機11を制御する制御装置19と、各種の装置間で情報をやりとりする通信経路18とから構成される。   FIG. 2 is an example of a configuration diagram of the air-conditioning system according to Embodiment 1 of the present invention. The air conditioning system 1 detects an air conditioner 11, an input device 12 to which information from the outside is input, a room temperature detection device 13 that detects a room temperature Tz of the building 2, and an outside air temperature Ta outside the building 2. An outside air temperature detection device 14, a surface temperature detection device 15 that detects the surface temperature Tg of the window glass, a calculation device 16 that performs various calculations, and a memory that stores information on various detection devices and calculation results of the calculation device 16. The apparatus 17 is comprised from the input device 12 into which the information from the outside is input, the control apparatus 19 which controls the air conditioner 11, and the communication path 18 which exchanges information between various apparatuses.

表面温度検出装置15は、室内に設置された熱画像センサ(赤外線温度センサ)、サーモカメラ等であり、空気調和の対象となる建物2の内側の窓ガラスの表面温度Tgを検出できるように設置する。以下の記載では、別のものを明記していない限り表面温度といった場合、建物2の内側の窓ガラスの表面温度Tgのことである。また、演算装置16は、窓熱性能学習部161と窓光学性能学習部162と日射熱負荷推定部163とから構成され、具体的にはCPUである。   The surface temperature detection device 15 is a thermal image sensor (infrared temperature sensor), a thermo camera, or the like installed indoors so as to detect the surface temperature Tg of the window glass inside the building 2 to be air-conditioned. To do. In the following description, unless otherwise specified, the surface temperature is the surface temperature Tg of the window glass inside the building 2. The computing device 16 includes a window heat performance learning unit 161, a window optical performance learning unit 162, and a solar heat load estimation unit 163, and is specifically a CPU.

記憶装置17は、地域別単位日射量171と窓光学性能関係式172と窓面積173と窓熱性能174と窓光学性能175等から構成され、具体的にはハードディスク、RAM等の記憶媒体である。また、通信経路18は、空気調和機11と入力装置12と室温検出装置13と外気温検出装置14と表面温度検出装置15と演算装置16と記憶装置17と制御装置19とを接続する通信用のネットワークである。通信経路18はケーブルの種類、通信プロトコル等は特に限定しない。さらに、制御装置19は、通信経路18を介した日射熱負荷推定値に基づき、空気調和機11に対する制御指令を決定する。   The storage device 17 includes a unit unit solar radiation amount 171, a window optical performance relational expression 172, a window area 173, a window heat performance 174, a window optical performance 175, and the like, and is specifically a storage medium such as a hard disk or a RAM. . The communication path 18 is for communication connecting the air conditioner 11, the input device 12, the room temperature detection device 13, the outside air temperature detection device 14, the surface temperature detection device 15, the arithmetic device 16, the storage device 17, and the control device 19. Network. The communication path 18 is not particularly limited with respect to the type of cable, the communication protocol, and the like. Further, the control device 19 determines a control command for the air conditioner 11 based on the estimated solar heat load value via the communication path 18.

図3は、本発明の実施の形態1による空気調和システムの処理フローの例である。以下、ステップ毎に説明する。   FIG. 3 is an example of a processing flow of the air-conditioning system according to Embodiment 1 of the present invention. Hereinafter, each step will be described.

[S11:日射あり・なし判断]
S11では、日射の有無を判断する。その後、日射がある場合はS13へ、日射が無い場合はS12へ進む。日射の有無の判断方法の例を以下に示す。
[S11: Whether there is solar radiation or not]
In S11, it is determined whether there is solar radiation. Thereafter, if there is solar radiation, the process proceeds to S13, and if there is no solar radiation, the process proceeds to S12. An example of how to determine whether there is solar radiation is shown below.

窓熱性能174を学習するには日射の影響がないときのデータを用いる必要がある。窓ガラス表面に直接日射が当たると、熱が窓ガラスに吸収されて窓ガラスの表面温度Tgが上昇する。   In order to learn the window heat performance 174, it is necessary to use data when there is no influence of solar radiation. When solar radiation directly hits the window glass surface, heat is absorbed by the window glass and the surface temperature Tg of the window glass rises.

図4は、本発明の実施の形態1による日射の有無による温度勾配図の例である。より具体的には、夏と冬において日射の有無で、外気温Ta、窓ガラスの表面温度Tg、室温Tzの温度勾配を表した図である。上段が日射なしの場合、下段が日射ありの場合、左側が夏場に冷房運転を行う場合、右側が冬場に暖房運転を行う場合を示している。また、Taは外気温Ta、Tzは室温、Tgは窓4の室内側の表面温度Tgであり、上方は温度が高く、下方は温度が低いことを示している。さらに、下段の日射ありの場合、太い矢印で窓吸収日射を示している。   FIG. 4 is an example of a temperature gradient diagram according to presence or absence of solar radiation according to Embodiment 1 of the present invention. More specifically, it is a diagram showing the temperature gradient of the outside air temperature Ta, the window glass surface temperature Tg, and the room temperature Tz, with or without solar radiation in summer and winter. In the case where there is no solar radiation in the upper stage, in the case where there is solar radiation in the lower stage, the cooling operation is performed on the left side in the summer, and the heating operation is performed in the winter on the right side. Further, Ta is the outside air temperature Ta, Tz is the room temperature, Tg is the surface temperature Tg on the indoor side of the window 4, and the upper part indicates that the temperature is high and the lower part indicates that the temperature is low. Furthermore, when there is solar radiation at the lower stage, window absorption solar radiation is indicated by a thick arrow.

室温検出装置13で検出した室温Tzと、外気温検出装置14で検出した外気温Taと、表面温度検出装置15で検出した窓ガラスの表面温度Tgを用いて、窓ガラスの表面温度Tgが室温Tzより高く、かつ、窓ガラスの表面温度Tgが外気温Taより高いときに日射があると判断する(式1群の上段)。また、空気調和システム1の稼働中の時刻が分かる場合は、夜間のデータを日射なし条件のデータとして用いることができる。日射が無い場合は、夏場の冷房時は、室温Tz、窓ガラスの表面温度Tg、外気温Taの順番で温度が高くなる(式1群の中段)。一方、日射が無い場合は、冬場の暖房時は、外気温Ta、窓ガラスの表面温度Tg、室温Tzの順番で温度が高くなる(式1群の下段)。   Using the room temperature Tz detected by the room temperature detection device 13, the outside air temperature Ta detected by the outside air temperature detection device 14, and the surface temperature Tg of the window glass detected by the surface temperature detection device 15, the surface temperature Tg of the window glass is room temperature. When it is higher than Tz and the surface temperature Tg of the window glass is higher than the outside air temperature Ta, it is determined that there is solar radiation (the upper part of the formula 1 group). In addition, when the time when the air conditioning system 1 is in operation is known, nighttime data can be used as data for conditions without solar radiation. When there is no solar radiation, the temperature increases in the order of the room temperature Tz, the window glass surface temperature Tg, and the outside air temperature Ta during cooling in the summer (the middle part of Formula 1 group). On the other hand, when there is no solar radiation, the temperature increases in the order of the outside temperature Ta, the surface temperature Tg of the window glass, and the room temperature Tz during heating in winter (lower part of Formula 1 group).

Figure 2019035218
Figure 2019035218

図5は本発明の実施の形態1による室内の熱画像と写真の例である。下段の写真の状態の熱画像が上段になっている。図5は実際の住居に実験設備を持ち込んだものであり複数の支柱が設置されている。また、図5の右側はカーテンであり、左奥は輻射パネルである。ここで、レースカーテン、ブラインド等を使っているときでも窓4の位置が検出できることが分かる。このように、窓4の位置にあるレースカーテン、ブラインド等の表面温度を窓ガラスの表面温度Tgとみなすことで、日射の有無の判断ができる。   FIG. 5 is an example of an indoor thermal image and photograph according to Embodiment 1 of the present invention. The thermal image in the state of the lower photograph is the upper section. FIG. 5 shows experimental equipment brought into an actual house, and a plurality of support columns are installed. Moreover, the right side of FIG. 5 is a curtain, and the back left is a radiation panel. Here, it can be seen that the position of the window 4 can be detected even when a lace curtain, a blind or the like is used. Thus, the presence or absence of solar radiation can be determined by regarding the surface temperature of the lace curtain, blind, etc. at the position of the window 4 as the surface temperature Tg of the window glass.

[S12:窓熱性能学習]
窓熱性能学習部161は、室温Tzと外気温Taと窓ガラスの表面温度Tgとに基づいて窓ガラスの窓熱性能を学習する(S12)。具体的には、窓熱性能学習部161において、S11で日射がないと判断したときのデータを用いて窓ガラスの熱貫流抵抗Rを計算する。なお、窓熱性能は熱貫流抵抗Rに限定されず、熱抵抗に基づく性能を含んでもよい。
[S12: Window thermal performance learning]
The window thermal performance learning unit 161 learns the window thermal performance of the window glass based on the room temperature Tz, the outside air temperature Ta, and the surface temperature Tg of the window glass (S12). Specifically, the window heat performance learning unit 161 calculates the heat flow resistance R of the window glass using data when it is determined that there is no solar radiation in S11. The window thermal performance is not limited to the heat flow resistance R, and may include performance based on the thermal resistance.

窓ガラスの熱貫流抵抗Rは、室温Tzと外気温Taと窓ガラスの表面温度Tgを用いて式2に基づいて計算する。なお、式2において、Riは窓ガラスの内表面熱伝達抵抗を表し、JIS R3107に準拠して、0.116[m2K/W]を用いる。また、計算した窓ガラスの熱貫流抵抗Rは記憶装置17の窓熱性能174に格納する。The heat flow resistance R of the window glass is calculated based on Equation 2 using the room temperature Tz, the outside air temperature Ta, and the window glass surface temperature Tg. In Equation 2, Ri represents the inner surface heat transfer resistance of the window glass, and 0.116 [m 2 K / W] is used according to JIS R3107. Further, the calculated heat flow resistance R of the window glass is stored in the window heat performance 174 of the storage device 17.

Figure 2019035218
Figure 2019035218

[S13:吸収日射量推定]
日射熱負荷推定部163において、S11で日射ありと判断したときのデータを用いて窓ガラスに吸収される日射量Iαを式3によって推定する(S13)。
[S13: Absorption solar radiation amount estimation]
The solar heat load estimation unit 163 estimates the amount of solar radiation Iα absorbed by the window glass using the data when it is determined that there is solar radiation in S11 (S13).

Figure 2019035218
Figure 2019035218

[S14:窓光学性能学習]
窓光学性能学習部162は窓ガラスの日射吸収率αと日射熱取得率ηを計算する。なお、窓光学性能は日射吸収率αと日射熱取得率ηとに限定されず、日射に関連する他の性能を含んでもよい。地域別単位日射量171は地域の経度と緯度と日付とから計算する理論値を示す。日付は入力装置から入力することが可能であり、記憶装置17にタイマー機能があるものにおいてはタイマーの日付を用いる。
[S14: Window optical performance learning]
The window optical performance learning unit 162 calculates the solar radiation absorption rate α and the solar heat acquisition rate η of the window glass. The window optical performance is not limited to the solar radiation absorption rate α and the solar heat acquisition rate η, and may include other performances related to solar radiation. The unit-specific solar radiation amount 171 indicates a theoretical value calculated from the longitude, latitude, and date of the region. The date can be input from the input device. If the storage device 17 has a timer function, the date of the timer is used.

まず、日射吸収率αを求めるために式3群を用いて計算した吸収日射量と、単位日射量Irを用いて式4から、窓ガラスの日射吸収率αの計算を行う。なお、式4において、単位日射量Irは、入力装置12から入力された地域と、記憶装置17に格納されている地域別単位日射量171と、室温Tzと外気温Taと窓ガラスの表面温度Tgとを検出した日付に基づき決まる。地域別単位日射量171は地域の経度と緯度と日付とから計算する理論値を示す。例えば、日付は入力装置12から入力することができ、記憶装置17にタイマー機能があれば、そのタイマーの日付を用いることもできる。   First, the solar radiation absorptance α of the window glass is calculated from the absorbed solar radiation amount calculated using the formula 3 group and the unit solar radiation amount Ir in order to obtain the solar radiation absorptance α from the formula 4. In Equation 4, the unit solar radiation Ir is calculated based on the region input from the input device 12, the region-specific unit solar radiation 171 stored in the storage device 17, the room temperature Tz, the outside air temperature Ta, and the surface temperature of the window glass. It is determined based on the date when Tg is detected. The unit-specific solar radiation amount 171 indicates a theoretical value calculated from the longitude, latitude, and date of the region. For example, the date can be input from the input device 12, and if the storage device 17 has a timer function, the date of the timer can be used.

Figure 2019035218
Figure 2019035218

式4により計算した窓ガラスの日射吸収率αは記憶装置17の窓光学性能175に格納される。例えば、窓ガラスの日射吸収率αは、最初は推定した値の最大値をとり、学習した結果で更新して、窓光学性能175に格納する(S14)。   The solar radiation absorptance α of the window glass calculated by Expression 4 is stored in the window optical performance 175 of the storage device 17. For example, the solar radiation absorption rate α of the window glass initially takes the maximum estimated value, is updated with the learned result, and is stored in the window optical performance 175 (S14).

図6は、本発明の実施の形態1による窓ガラスの日射吸収率αと日射熱取得率ηとの関係を示す図の例である。より具体的には、日射吸収率αを横軸に、日射熱取得率ηを縦軸にとり、両者の関係を線型一次式で近似して求めている。なお、日射吸収率αと日射熱取得率ηとの関係は、線型一次式による近似方法に限られるものではなく、図6に示した近似式は例示に過ぎない。   FIG. 6 is an example of a diagram showing the relationship between the solar radiation absorption rate α and the solar heat acquisition rate η of the window glass according to Embodiment 1 of the present invention. More specifically, the solar absorptance α is plotted on the horizontal axis and the solar heat gain η is plotted on the vertical axis, and the relationship between the two is approximated by a linear linear expression. Note that the relationship between the solar radiation absorption rate α and the solar heat acquisition rate η is not limited to the approximation method based on the linear linear equation, and the approximation equation shown in FIG. 6 is merely an example.

図6に示した窓ガラスは、以下のように多くの種類、厚みの窓ガラスを用いている。窓ガラスは種類によって、熱貫流抵抗R、日射吸収率α、日射熱取得率ηが異なっており、窓光学性能175が異なってくるからである。
・単板ガラス:透明板ガラス、熱線吸収板ガラス、熱線反射ガラス
・合わせガラス:接着剤によって2枚の単板ガラスが接着されたガラス
(透明板ガラス+透明板ガラス、熱線吸収板ガラス+透明板ガラス、熱線反射ガラス+透明板ガラス)
・複層ガラス:中空層を有する2枚の単板ガラスによって構成されたガラス
(透明板ガラス+中空層+透明板ガラス、熱線吸収板ガラス+中空層+透明板ガラス、熱線反射ガラス+中空層+透明板ガラス)
の9種類であり、1枚のガラスの厚みが3mmから8mmまでのガラスを含んでいる。
The window glass shown in FIG. 6 uses window glass of many types and thickness as follows. This is because, depending on the type of window glass, the heat flow resistance R, the solar radiation absorption rate α, and the solar heat acquisition rate η are different, and the window optical performance 175 is different.
・ Single plate glass: Transparent plate glass, heat ray absorbing plate glass, heat ray reflecting glass ・ Laminated glass: Glass in which two single plate glasses are bonded by an adhesive (transparent plate glass + transparent plate glass, heat ray absorbing plate glass + transparent plate glass, heat ray reflecting glass + transparent Flat glass)
-Multi-layer glass: Glass composed of two single-plate glasses having a hollow layer (transparent plate glass + hollow layer + transparent plate glass, heat ray absorbing plate glass + hollow layer + transparent plate glass, heat ray reflective glass + hollow layer + transparent plate glass)
These include nine glasses having a thickness of 3 mm to 8 mm.

式4によって求めた日射吸収率αを図6に示した日射熱取得率ηとの関係式に当てはめ、日射熱取得率ηを算出する。なお、日射吸収率αと日射熱取得率ηとの関係式は、窓ガラスの構成の変更及び追加によって変更することができる。また、窓光学性能175を学習する前は、記憶装置17の窓光学性能関係式172に格納した式を用いればよい。   The solar absorptance α obtained by Equation 4 is applied to the relational expression with the solar heat acquisition rate η shown in FIG. 6 to calculate the solar heat acquisition rate η. In addition, the relational expression of solar radiation absorption rate (alpha) and solar heat acquisition rate (eta) can be changed by the change and addition of the structure of a window glass. Further, before learning the window optical performance 175, the formula stored in the window optical performance relational expression 172 of the storage device 17 may be used.

以上のように、窓光学性能学習部162は、単位日射量及び窓ガラスの構成による窓光学性能関係式172、室温Tz、外気温Ta、表面温度Tg、窓熱性能に基づいて窓ガラスの窓光学性能を学習する(S14)。   As described above, the window optical performance learning unit 162 determines the window glass window based on the unit solar radiation amount and the window optical performance relational expression 172 based on the configuration of the window glass, the room temperature Tz, the outside temperature Ta, the surface temperature Tg, and the window heat performance. The optical performance is learned (S14).

[S15:日射熱負荷推定]
日射熱負荷推定部163において、S13で推定した窓ガラスの吸収日射量Iαと、記憶装置17の窓光学性能175に格納された窓ガラスの日射吸収率αと、日射熱取得率ηとに基づいて、式5を用いて、日射熱負荷Qsを推定する(S15)。なお、式5において、Agは窓ガラスの面積を表す。窓面積Agは、例えば、入力装置から入力した窓面積値、表面温度検出装置から推定した窓面積値等を用いればよい。より具体的には、記憶装置17の窓面積173に格納されている窓面積Agの値を用いる。
[S15: Solar heat load estimation]
In the solar heat load estimation unit 163, based on the absorption solar radiation amount Iα of the window glass estimated in S13, the solar radiation absorption rate α of the window glass stored in the window optical performance 175 of the storage device 17, and the solar heat acquisition rate η. Then, the solar heat load Qs is estimated using Equation 5 (S15). In Equation 5, Ag represents the area of the window glass. As the window area Ag, for example, a window area value input from the input device, a window area value estimated from the surface temperature detection device, or the like may be used. More specifically, the value of the window area Ag stored in the window area 173 of the storage device 17 is used.

Figure 2019035218
Figure 2019035218

日射熱負荷推定部163は、別の形で入力条件を表現すると、窓面積173、室温Tz、外気温Ta、表面温度Tg、窓熱性能174、窓光学性能175に基づいて、窓ガラスから入射する日射による日射熱負荷を推定することになる。   If the input condition is expressed in another form, the solar heat load estimating unit 163 is incident from the window glass based on the window area 173, the room temperature Tz, the outside air temperature Ta, the surface temperature Tg, the window heat performance 174, and the window optical performance 175. The solar heat load due to solar radiation will be estimated.

[S16:空気調和制御指令決定]
制御装置19は、S15で推定した日射熱負荷Qsに基づき、空気調和機11の空気調和能力Qhvacの制御指令を決定する(S16)。その後、S11に戻る。
[S16: Air conditioning control command determination]
The control device 19 determines a control command for the air conditioning capability Qhvac of the air conditioner 11 based on the solar heat load Qs estimated in S15 (S16). Thereafter, the process returns to S11.

なお、制御指令は空気調和能力Qhvacに限定されず、空気調和機の吹き出し温度の指令値、吹き出しの方向等を制御指令値として制御することもできる。   The control command is not limited to the air conditioning capability Qhvac, and the command value of the blowout temperature of the air conditioner, the direction of the blowout, and the like can be controlled as the control command value.

以上のように、建物内の室温を検出する室温検出部と、外気温を検出する外気温検出部と、窓ガラスの建物の内側の表面温度を検出する表面温度検出部と、室温と外気温と表面温度とに基づいて窓ガラスの窓熱性能を学習する窓熱性能学習部と、単位日射量及び窓ガラスの構成による窓光学性能関係式と室温と外気温と表面温度と窓熱性能とに基づいて窓ガラスの窓光学性能を学習する窓光学性能学習部と、窓ガラスの面積と室温と外気温と表面温度と窓熱性能と窓光学性能とに基づいて窓ガラスから入射する日射による日射熱負荷を推定する日射熱負荷推定部と、日射熱負荷に基づいて空気調和機を制御する制御部とを備える空気調和システムである。   As described above, the room temperature detection unit for detecting the room temperature in the building, the outside air temperature detection unit for detecting the outside air temperature, the surface temperature detection unit for detecting the surface temperature inside the building of the window glass, the room temperature and the outside air temperature Window thermal performance learning unit that learns the window thermal performance of the window glass based on the surface temperature and the window optical performance relational expression according to the unit solar radiation amount and the configuration of the window glass, room temperature, outside temperature, surface temperature, and window thermal performance Window optical performance learning unit that learns the window optical performance of the window glass based on the window, and the solar radiation incident from the window glass based on the window glass area, room temperature, outside air temperature, surface temperature, window heat performance, and window optical performance An air conditioning system including a solar heat load estimating unit that estimates a solar heat load and a control unit that controls the air conditioner based on the solar heat load.

また、建物内の室温を検出する室温検出ステップと、外気温を検出する外気温検出ステップと、窓ガラスの建物の内側の表面温度を検出する表面温度検出ステップと、室温と外気温と表面温度とに基づいて窓ガラスの窓熱性能を学習する窓熱性能学習ステップと、単位日射量及び窓ガラスの構成による窓光学性能関係式と室温と外気温と表面温度と窓熱性能とに基づいて窓ガラスの窓光学性能を学習する窓光学性能学習ステップと、窓ガラスの面積と室温と外気温と表面温度と窓熱性能と窓光学性能とに基づいて窓ガラスから入射する日射による日射熱負荷を推定する日射熱負荷推定ステップと、日射熱負荷に基づいて空気調和機を制御する制御ステップとを備える空気調和方法である。   Also, a room temperature detecting step for detecting the room temperature in the building, an outside air temperature detecting step for detecting the outside air temperature, a surface temperature detecting step for detecting the surface temperature inside the building of the window glass, the room temperature, the outside air temperature, and the surface temperature. Based on the window thermal performance learning step to learn the window thermal performance of the window glass based on the above, the window optical performance relational expression by the unit solar radiation amount and the configuration of the window glass, the room temperature, the outside air temperature, the surface temperature, and the window thermal performance A window optical performance learning step for learning the window optical performance of the window glass, and a solar heat load due to solar radiation incident from the window glass based on the window glass area, room temperature, outside air temperature, surface temperature, window heat performance, and window optical performance It is an air conditioning method provided with the solar heat load estimation step which estimates this, and the control step which controls an air conditioner based on a solar heat load.

このため、日射量を検出する専用の検出機器や、光透過性の有機薄膜太陽電池を設けることなく、室内の日射熱負荷を推定して空気調和機を制御する空気調和システム及び空気調和方法を得ることができる。   For this reason, an air conditioning system and an air conditioning method for estimating an indoor solar heat load and controlling an air conditioner without providing a dedicated detection device for detecting the amount of solar radiation and a light-transmissive organic thin film solar cell. Can be obtained.

さらに、窓熱性能は熱貫流抵抗Rに基づく性能であり、窓光学性能は日射吸収率αと日射熱取得率ηとに基づく性能である。このため、空気調和システムは、空気調和対象となる建物の日射熱負荷を高精度に推定できる。   Furthermore, the window thermal performance is a performance based on the heat flow resistance R, and the window optical performance is a performance based on the solar radiation absorption rate α and the solar heat acquisition rate η. For this reason, the air conditioning system can estimate the solar heat load of the building to be air conditioned with high accuracy.

実施の形態2.
図7は、本発明の実施の形態2による空気調和システムの構成図の例である。実施の形態1との違いは、以下の通りである。
Embodiment 2. FIG.
FIG. 7 is an example of a configuration diagram of an air-conditioning system according to Embodiment 2 of the present invention. Differences from the first embodiment are as follows.

まず、空気調和機11が備える機能を細かく分けている。具体的には、空気調和機11の室内機111は、建物2の室温Tzを検出する室温検出装置1111と、窓ガラスの建物の内側の表面温度Tgを検出する表面温度検出装置1112とを備え、また、室外機112は建物2の外の外気温Taを検出する外気温検出装置1121を備えている。   First, the functions of the air conditioner 11 are subdivided. Specifically, the indoor unit 111 of the air conditioner 11 includes a room temperature detection device 1111 that detects the room temperature Tz of the building 2 and a surface temperature detection device 1112 that detects the surface temperature Tg inside the building of the window glass. Moreover, the outdoor unit 112 includes an outside air temperature detection device 1121 that detects an outside air temperature Ta outside the building 2.

室温検出装置1111は実施の形態1の室温検出装置13に代わるものである。また、表面温度検出装置1112は実施の形態1の表面温度検出装置15に代わるものである。さらに、外気温検出装置1121は実施の形態1の外気温検出装置14に代わるものである。同等の機能を備えるものであれば、空気調和機11の機能として備えているか、別に設けるかは関係ない。このことは、他の実施の形態においても同じである。   The room temperature detection device 1111 is an alternative to the room temperature detection device 13 of the first embodiment. Further, the surface temperature detection device 1112 is a substitute for the surface temperature detection device 15 of the first embodiment. Further, the outside air temperature detecting device 1121 is an alternative to the outside air temperature detecting device 14 of the first embodiment. As long as it has an equivalent function, it does not matter whether it is provided as a function of the air conditioner 11 or provided separately. This is the same in other embodiments.

次に、実施の形態1との違いは、演算装置16には室内発熱負荷推定部160と、空気調和能力推定部164と、総熱損失係数学習部165と、空気調和負荷推定部166とが追加され、記憶装置17には総熱損失係数KAを格納する総熱損失係数176が追加されている点が異なっている。   Next, the difference from the first embodiment is that the computing device 16 includes an indoor heat generation load estimation unit 160, an air conditioning capability estimation unit 164, a total heat loss coefficient learning unit 165, and an air conditioning load estimation unit 166. In addition, the storage device 17 is different in that a total heat loss coefficient 176 for storing the total heat loss coefficient KA is added.

なお、図において、同一の符号を付したものは、同一またはこれに相当するものであり、このことは明細書の全文、図面の全図において共通することである。さらに、明細書全文に表れている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。   In the drawings, the same reference numerals denote the same or corresponding parts, and this is common to the entire text of the specification and all the drawings. Furthermore, the form of the constituent elements appearing in the whole specification is merely an example, and is not limited to these descriptions.

図8は、本発明の実施の形態2による空気調和機11の外観図の例である。空気調和機11は壁掛型の室内機111の例であり、室温検出装置1111と表面温度検出装置1112とを備える室内機111と、外気温検出装置1121を備える室外機112とが接続配管113により繋がり、室内を空気調和する。なお、空気調和機11にリモートコントローラが含まれる場合には、入力装置12としてリモートコントローラを用いることができる。   FIG. 8 is an example of an external view of the air conditioner 11 according to the second embodiment of the present invention. The air conditioner 11 is an example of a wall-mounted indoor unit 111. An indoor unit 111 including a room temperature detection device 1111 and a surface temperature detection device 1112 and an outdoor unit 112 including an outside air temperature detection device 1121 are connected by a connection pipe 113. Connect and harmonize the interior of the room. When the air conditioner 11 includes a remote controller, a remote controller can be used as the input device 12.

また、各種の演算を行う演算装置16と、各種の検出装置の情報及び演算装置16の演算結果を記憶する記憶装置17と、外部からの情報が入力される入力装置12と、空気調和機11を制御する制御装置19と、各種の装置間で情報をやりとりする通信経路18とから構成される。   In addition, a calculation device 16 that performs various calculations, a storage device 17 that stores information on various detection devices and calculation results of the calculation device 16, an input device 12 that receives external information, and an air conditioner 11 And a communication path 18 for exchanging information between various devices.

(処理フロー)
図9は、本発明の実施の形態2による空気調和システムの処理フローの例である。空気調和システム1の稼働中に実施する処理フローの例である。なお、日射熱負荷を推定する動作に関わる処理は、実施の形態1と同一である。具体的には、S31はS11に、S32はS12に、S34はS13に、S35はS14に、S36はS15に、S38はS16に、それぞれ相当するステップ(実施の形態1は10番代のステップ、実施の形態2は30番代のステップ)であり、同様の処理であるため詳細な説明は省略する。
(Processing flow)
FIG. 9 is an example of a processing flow of the air-conditioning system according to Embodiment 2 of the present invention. It is an example of the processing flow implemented during operation | movement of the air conditioning system. The processing related to the operation of estimating the solar heat load is the same as that in the first embodiment. Specifically, S31 is S11, S32 is S12, S34 is S13, S35 is S14, S36 is S15, and S38 is S16. (Embodiment 1 is the 10th step) The second embodiment is the 30th generation step), and since it is the same process, detailed description thereof is omitted.

[S30:室内発熱負荷推定]
S30では、室内発熱負荷推定部160において、建物2(居室)に人が存在する場合、照明やテレビなど発熱器具がONになっている場合などで、室内発熱負荷Qinを推定する。室内発熱負荷Qinは、人体発熱によるもの(人体熱負荷)、照明発熱によるもの(照明負荷)、器具発熱によるもの(器具発熱負荷)の合計である。なお、室内発熱負荷Qinは冷房時では負荷を増加するものであり、暖房時では負荷を減らすものである。
[S30: Indoor heat generation load estimation]
In S30, the indoor heat generation load estimation unit 160 estimates the indoor heat generation load Qin when a person is present in the building 2 (living room), or when a heating device such as lighting or a television is turned on. The indoor heat generation load Qin is the total of those due to human body heat generation (human body heat load), those due to illumination heat generation (lighting load), and those due to device heat generation (device heat generation load). The indoor heat generation load Qin increases the load during cooling, and decreases the load during heating.

室内発熱負荷Qinは表面温度検出装置1112が計測した在室人数(人体熱負荷)と、発熱する機器のONの状態(照明負荷、器具発熱負荷)から、各発熱量の合計で推定することができる。例えば、空気調和・衛生工学便覧に記載されている人の発熱量98[W/人]と照明の発熱量90[W]とを用いて各発熱量の合計から室内発熱負荷Qinを推定できる。   The indoor heat generation load Qin can be estimated as the total amount of each heat generation from the number of people in the room (human body heat load) measured by the surface temperature detection device 1112 and the ON state (lighting load, appliance heat generation load) of the device that generates heat. it can. For example, the indoor heat generation load Qin can be estimated from the sum of each heat generation amount using the heat generation amount 98 [W / person] of the person described in the Air Conditioning / Hygiene Engineering Handbook and the heat generation amount 90 [W] of the lighting.

また、室内発熱負荷Qinは各発熱量の合計を用いて推定することに限定されず、室内発熱負荷Qinを係数として扱い、後述の式6群を用いて総熱損失係数KAと室内発熱負荷Qinとを回帰分析を用いて求めることもできる。このように室内発熱負荷Qinの求め方は特定の方法に限定されるものではない。なお、建物2(居室)に室内発熱に該当する人が存在しない場合や、照明など発熱する機器がOFFになっている状態などで、室内発熱が0の場合は、室内発熱負荷Qinは0とする。   Further, the indoor heat generation load Qin is not limited to the estimation using the total amount of each heat generation, but the indoor heat generation load Qin is treated as a coefficient, and the total heat loss coefficient KA and the indoor heat generation load Qin are expressed using the following formula 6 group. Can also be obtained using regression analysis. Thus, how to obtain the indoor heat generation load Qin is not limited to a specific method. When there is no person in the building 2 (living room) corresponding to room heat generation, or when a device that generates heat such as lighting is turned off, etc., the room heat generation load is 0, the room heat generation load Qin is 0. To do.

S31では、日射の有無を判断する。その後、日射が無い場合はS32へ、日射がある場合はS34へと進む。S32では、窓熱性能学習部161は、室温Tzと外気温Taと窓ガラスの表面温度Tgとに基づいて窓ガラスの窓熱性能174を学習する。その後、S33へと進む。   In S31, it is determined whether or not there is solar radiation. Thereafter, if there is no solar radiation, the process proceeds to S32, and if there is solar radiation, the process proceeds to S34. In S32, the window thermal performance learning unit 161 learns the window thermal performance 174 of the window glass based on the room temperature Tz, the outside air temperature Ta, and the surface temperature Tg of the window glass. Thereafter, the process proceeds to S33.

一方、S34では、日射熱負荷推定部163において、S31で日射ありと判断したときのデータを用いて窓ガラスに吸収される日射量Iαを推定する。その後、窓光学性能学習部162で単位日射量Ir及び窓ガラスの構成による窓光学性能関係式と室温Tzと外気温Taと表面温度Tgと窓熱性能174とに基づいて窓ガラスの窓光学性能を学習する(S35)。その後、日射熱負荷推定部163において、窓面積Agと室温Tzと外気温Taと表面温度Tgと窓熱性能(S32)と窓光学性能(S35)とに基づいて、窓ガラスから入射する日射による日射熱負荷Qsを推定し(S36)、S37、S38へと進み、S30に戻る。   On the other hand, in S34, the solar heat load estimation unit 163 estimates the amount of solar radiation Iα absorbed by the window glass using data when it is determined that there is solar radiation in S31. Thereafter, the window optical performance learning unit 162 determines the window optical performance of the window glass based on the unit solar radiation amount Ir, the window optical performance relational expression based on the configuration of the window glass, the room temperature Tz, the outside air temperature Ta, the surface temperature Tg, and the window heat performance 174. Is learned (S35). Then, in the solar heat load estimation part 163, it is based on the solar radiation which injects from a window glass based on window area Ag, room temperature Tz, external temperature Ta, surface temperature Tg, window thermal performance (S32), and window optical performance (S35). The solar heat load Qs is estimated (S36), the process proceeds to S37 and S38, and the process returns to S30.

[S33:総熱損失係数学習]
日射が無い場合、総熱損失係数学習部165において、S31で日射がないと判断したときの空気調和機11の室内機111の室温検出装置1111が検出した室温Tzと、空気調和機11の室外機112の外気温検出装置1121が検出した外気温Taと、空気調和能力QhvacとS30で室内発熱負荷推定部160において推定した室内発熱負荷Qinとを用いて式6群から総熱損失係数KAを学習する(S33)。ただし、冷房時は式6群の上段を用いて室内発熱負荷Qinがプラスに、暖房時は式6群の下段を用いて室内発熱負荷Qinがマイナスになる。
[S33: Total heat loss coefficient learning]
When there is no solar radiation, the total heat loss coefficient learning unit 165 detects the room temperature Tz detected by the room temperature detection device 1111 of the indoor unit 111 of the air conditioner 11 when it is determined in S31 that there is no solar radiation, and the outdoor of the air conditioner 11 Using the outside air temperature Ta detected by the outside air temperature detection device 1121 of the machine 112 and the indoor heat generation load Qin estimated by the indoor heat generation load estimation unit 160 in S30, the total heat loss coefficient KA is calculated from the equation 6 group. Learn (S33). However, the indoor heat generation load Qin is positive using the upper stage of the formula 6 group during cooling, and the indoor heat generation load Qin is negative using the lower stage of the formula 6 group during heating.

Figure 2019035218
Figure 2019035218

なお、室内発熱負荷Qinを所定の係数として扱う場合は、S30で室内発熱負荷推定部160において室内発熱負荷Qinを推定するステップを省略し、S33で式6群から総熱損失係数KAと室内発熱負荷Qinとを回帰分析で学習することもできる。なお、S32の窓熱性能174の学習と、S33の総熱損失係数KAの学習とは、順番を問わない。   When the indoor heat generation load Qin is handled as a predetermined coefficient, the step of estimating the indoor heat generation load Qin in the indoor heat generation load estimation unit 160 is omitted in S30, and the total heat loss coefficient KA and the indoor heat generation are calculated from the group 6 in S33. The load Qin can also be learned by regression analysis. Note that the learning of the window heat performance 174 in S32 and the learning of the total heat loss coefficient KA in S33 do not matter.

ここでは、室内発熱負荷Qinを推定する方法を示したが、室内発熱負荷Qinを考慮せずに空気調和機11を制御することもできる。例えば、日射に対して室内発熱負荷Qinの影響が小さいと考えられる場合である。この場合、式6群等の式で室内発熱負荷Qinの項をゼロとして扱えばよい。このことは、後述する実施の形態3及び実施の形態4でも同様である。   Here, the method of estimating the indoor heat generation load Qin is shown, but the air conditioner 11 can also be controlled without considering the indoor heat generation load Qin. For example, it is a case where the influence of the indoor heat generation load Qin is considered to be small with respect to solar radiation. In this case, the term of the indoor heat generation load Qin may be handled as zero in an equation such as Equation 6 group. This also applies to Embodiment 3 and Embodiment 4 described later.

総熱損失係数学習部165において、室温Tzと外気温Taと空気調和能力Qhvacと室内発熱負荷Qinとに基づいて建物2の総熱損失係数KAを学習することになる。総熱損失係数KAは、空気調和の対象となる建物2(居室)の内外温度差が1度のときに壁3若しくは窓4から居室へ流入、又は居室から壁3若しくは窓4へ流出する貫流熱及び換気による熱移動の和であり、単位は[W/K]である。   The total heat loss coefficient learning unit 165 learns the total heat loss coefficient KA of the building 2 based on the room temperature Tz, the outside air temperature Ta, the air conditioning capability Qhvac, and the indoor heat generation load Qin. The total heat loss coefficient KA is a through flow that flows into the room from the wall 3 or window 4 or flows out from the room to the wall 3 or window 4 when the temperature difference between the inside and outside of the building 2 (living room) subject to air conditioning is 1 degree. It is the sum of heat transfer due to heat and ventilation, and its unit is [W / K].

なお、空気調和能力Qhvacは、空気調和能力推定部164で暖房時の空気調和機11から供給する供給熱量、冷房時の空気調和機11が除去する除去熱量を推定した値である。以下の説明では、空気調和能力Qhvacは、暖房時は供給熱量を示し、冷房時は除去熱量を示す。例えば、空気調和能力Qhvacは、空気調和機11の冷媒の高圧側と低圧側とのエンタルピーの差から推定できる。なお、空気調和能力Qhvacの推定式は、冷媒のエンタルピー差による計算に限定されず、吸い込みと吹き出しとの空気エンタルピーの差から求める方法などを用いることもできる。このように求め方は限定されるものではない。   The air conditioning capability Qhvac is a value obtained by estimating the amount of heat supplied from the air conditioner 11 during heating by the air conditioning capability estimation unit 164 and the amount of heat removed by the air conditioner 11 during cooling. In the following description, the air conditioning capability Qhvac indicates the amount of heat supplied during heating and the amount of heat removed during cooling. For example, the air conditioning capability Qhvac can be estimated from the difference in enthalpy between the high pressure side and the low pressure side of the refrigerant of the air conditioner 11. In addition, the estimation formula of the air conditioning capability Qhvac is not limited to the calculation based on the enthalpy difference of the refrigerant, and a method of obtaining from the difference of the air enthalpy between the suction and the blowout can be used. Thus, how to obtain is not limited.

算出された総熱損失係数KAは、記憶装置17の総熱損失係数176に格納する。ただし、式6群を用いて総熱損失係数KAを求めるには、室温Tzが安定しているデータを用いて計算を行う必要がある。なお、室温Tzの安定は所定時間間隔(例えば、30分、60分等から選択される。)での室温Tzの傾き、室温Tzのバラツキ等から判断できる。   The calculated total heat loss coefficient KA is stored in the total heat loss coefficient 176 of the storage device 17. However, in order to obtain the total heat loss coefficient KA using the formula 6 group, it is necessary to perform calculation using data in which the room temperature Tz is stable. The stability of the room temperature Tz can be determined from the inclination of the room temperature Tz at a predetermined time interval (for example, selected from 30 minutes, 60 minutes, etc.), the variation in the room temperature Tz, and the like.

[S37:空気調和負荷推定]
S36で日射熱負荷Qsを推定し、かつS33で総熱損失係数KAを学習した後に、空気調和負荷推定部166において、S30で推定した室内発熱負荷Qinと、S36で推定した日射熱負荷Qsと、記憶装置17の総熱損失係数176に格納された空気調和の対象となる建物2の総熱損失係数KAと、室温Tzと、外気温Taとに基づいて式7群を用いて、空気調和負荷Qを推定する(S37)。式7群では冷房時が上段に、暖房時が下段になっている。
[S37: Air conditioning load estimation]
After estimating the solar heat load Qs in S36 and learning the total heat loss coefficient KA in S33, the air conditioning load estimation unit 166 uses the indoor heat generation load Qin estimated in S30 and the solar heat load Qs estimated in S36. Based on the total heat loss coefficient KA of the air conditioning target building 2 stored in the total heat loss coefficient 176 of the storage device 17, the room temperature Tz, and the outside temperature Ta, the air conditioner The load Q is estimated (S37). In Formula 7 group, the cooling time is on the upper stage and the heating time is on the lower stage.

また、室温Tzの代わりに空気調和機11の設定温度Tsetを用いて式7群から各設定温度に対する空気調和に必要な熱量を推定して用いることもできる。ただし、冷房時は式7群の上段を用いて日射熱負荷Qsと室内発熱負荷Qinがプラスに、暖房時は式7群の下段を用いて日射熱負荷Qsと室内発熱負荷Qinがマイナスになる。   Moreover, it is also possible to estimate and use the amount of heat necessary for air conditioning for each set temperature from Equation 7 using the set temperature Tset of the air conditioner 11 instead of the room temperature Tz. However, during cooling, the solar heat load Qs and the indoor heat generation load Qin are positive using the upper stage of the formula 7 group, and during the heating, the solar heat load Qs and the indoor heat generation load Qin are negative using the lower stage of the formula 7 group. .

Figure 2019035218
Figure 2019035218

[S38:空気調和制御指令決定]
制御装置19は、S37で推定した空気調和負荷Qに基づき、空気調和機11の空気調和能力Qhvacの制御指令を決定する(S38)。その後、S30に戻る。なお、制御指令は空気調和能力Qhvacに限定されず、空気調和機11の吹き出し温度の指令値、吹き出しの方向等を制御指令値として制御することもできる。
[S38: Determination of air conditioning control command]
The control device 19 determines a control command for the air conditioning capability Qhvac of the air conditioner 11 based on the air conditioning load Q estimated in S37 (S38). Thereafter, the process returns to S30. The control command is not limited to the air conditioning capability Qhvac, and the command value of the blowout temperature of the air conditioner 11, the direction of the blowout, and the like can be controlled as the control command value.

以上のように、建物内の室温を検出する室温検出部と、外気温を検出する外気温検出部と、窓ガラスの建物の内側の表面温度を検出する表面温度検出部と、室温と外気温と表面温度とに基づいて窓ガラスの窓熱性能を学習する窓熱性能学習部と、単位日射量及び窓ガラスの構成による窓光学性能関係式と室温と外気温と表面温度と窓熱性能とに基づいて窓ガラスの窓光学性能を学習する窓光学性能学習部と、窓ガラスの面積と室温と外気温と表面温度と窓熱性能と窓光学性能とに基づいて窓ガラスから入射する日射による日射熱負荷を推定する日射熱負荷推定部と、日射熱負荷に基づいて空気調和機を制御する制御部とを備える空気調和システムである。   As described above, the room temperature detection unit for detecting the room temperature in the building, the outside air temperature detection unit for detecting the outside air temperature, the surface temperature detection unit for detecting the surface temperature inside the building of the window glass, the room temperature and the outside air temperature Window thermal performance learning unit that learns the window thermal performance of the window glass based on the surface temperature and the window optical performance relational expression according to the unit solar radiation amount and the configuration of the window glass, room temperature, outside temperature, surface temperature, and window thermal performance Window optical performance learning unit that learns the window optical performance of the window glass based on the window, and the solar radiation incident from the window glass based on the window glass area, room temperature, outside air temperature, surface temperature, window heat performance, and window optical performance An air conditioning system including a solar heat load estimating unit that estimates a solar heat load and a control unit that controls the air conditioner based on the solar heat load.

また、建物内の室温を検出する室温検出ステップと、外気温を検出する外気温検出ステップと、窓ガラスの建物の内側の表面温度を検出する表面温度検出ステップと、室温と外気温と表面温度とに基づいて窓ガラスの窓熱性能を学習する窓熱性能学習ステップと、単位日射量及び窓ガラスの構成による窓光学性能関係式と室温と外気温と表面温度と窓熱性能とに基づいて窓ガラスの窓光学性能を学習する窓光学性能学習ステップと、窓ガラスの面積と室温と外気温と表面温度と窓熱性能と窓光学性能とに基づいて窓ガラスから入射する日射による日射熱負荷を推定する日射熱負荷推定ステップと、日射熱負荷に基づいて空気調和機を制御する制御ステップとを備える空気調和方法である。   Also, a room temperature detecting step for detecting the room temperature in the building, an outside air temperature detecting step for detecting the outside air temperature, a surface temperature detecting step for detecting the surface temperature inside the building of the window glass, the room temperature, the outside air temperature, and the surface temperature. Based on the window thermal performance learning step to learn the window thermal performance of the window glass based on the above, the window optical performance relational expression by the unit solar radiation amount and the configuration of the window glass, the room temperature, the outside air temperature, the surface temperature, and the window thermal performance A window optical performance learning step for learning the window optical performance of the window glass, and a solar heat load due to solar radiation incident from the window glass based on the window glass area, room temperature, outside air temperature, surface temperature, window heat performance, and window optical performance It is an air conditioning method provided with the solar heat load estimation step which estimates this, and the control step which controls an air conditioner based on a solar heat load.

このため、日射量を検出する専用の検出機器や、光透過性の有機薄膜太陽電池を設けることなく、室内の日射熱負荷を推定して空気調和機を制御する空気調和システム及び空気調和方法を得ることができる。   For this reason, an air conditioning system and an air conditioning method for estimating an indoor solar heat load and controlling an air conditioner without providing a dedicated detection device for detecting the amount of solar radiation and a light-transmissive organic thin film solar cell. Can be obtained.

さらに、窓熱性能は熱貫流抵抗Rに基づく性能であり、窓光学性能は日射吸収率αと日射熱取得率ηとに基づく性能である。このため、空気調和システムは、空気調和対象となる建物の日射熱負荷を高精度に推定できる。   Furthermore, the window thermal performance is a performance based on the heat flow resistance R, and the window optical performance is a performance based on the solar radiation absorption rate α and the solar heat acquisition rate η. For this reason, the air conditioning system can estimate the solar heat load of the building to be air conditioned with high accuracy.

また、表面温度検出部は、空気調和機に備えられたものであるので、空気調和の対象となる建物の日射熱負荷を高精度に推定できる。   Moreover, since the surface temperature detection part is provided in the air conditioner, the solar heat load of the building subject to air conditioning can be estimated with high accuracy.

さらに、空気調和機から発生する熱量に基づいて空気調和能力を推定する空気調和能力推定部と、室温と外気温と空気調和能力とに基づいて建物の総熱損失係数を学習する総熱損失係数学習部と、室温と外気温と総熱損失係数と日射熱負荷とに基づいて建物の空気調和負荷を推定する空気調和負荷推定部とを備え、制御部は、空気調和負荷に基づいて空気調和機を制御するので、空気調和の対象となる建物の日射熱負荷を高精度に推定できる。   In addition, an air conditioning capability estimation unit that estimates the air conditioning capability based on the amount of heat generated from the air conditioner, and a total heat loss coefficient that learns the total heat loss coefficient of the building based on room temperature, outside temperature, and air conditioning capability A learning unit, and an air conditioning load estimation unit that estimates the air conditioning load of the building based on the room temperature, the outside air temperature, the total heat loss coefficient, and the solar heat load, and the control unit performs air conditioning based on the air conditioning load. Since the machine is controlled, it is possible to estimate the solar heat load of the building subject to air conditioning with high accuracy.

実施の形態3.
図10は、本発明の実施の形態3による空気調和システムの構成図の例である。実施の形態2との大きな相違点は、日射熱負荷Qsを推定するために窓熱性能と窓光学性能とを各々に学習するのではなく、窓ガラスの表面温度Tgと日射熱負荷Qsとの相関係数を学習し、窓ガラスの表面温度Tgから日射熱負荷Qsを推定することである。なお、窓負荷係数Hgは、窓熱性能と窓光学性能と窓面積Agとを含む係数である。
Embodiment 3 FIG.
FIG. 10 is an example of a configuration diagram of an air-conditioning system according to Embodiment 3 of the present invention. The major difference from the second embodiment is that the window heat performance and the window optical performance are not individually learned in order to estimate the solar heat load Qs, but the surface temperature Tg of the window glass and the solar heat load Qs. The correlation coefficient is learned, and the solar heat load Qs is estimated from the surface temperature Tg of the window glass. Note that the window load coefficient Hg is a coefficient including window thermal performance, window optical performance, and window area Ag.

より具体的には、演算装置16には、実施の形態2と同様の室内発熱負荷推定部160、窓熱性能学習部161、日射熱負荷推定部163、空気調和能力推定部164、総熱損失係数学習部165、及び空気調和負荷推定部166等に加えて、窓負荷係数学習部167を備えている。また、記憶装置17には、窓熱性能174、総熱損失係数176等に加えて、窓負荷係数177を備えている。   More specifically, the calculation device 16 includes the same indoor heat generation load estimation unit 160, window heat performance learning unit 161, solar heat load estimation unit 163, air conditioning capability estimation unit 164, total heat loss as in the second embodiment. In addition to the coefficient learning unit 165, the air-conditioning load estimation unit 166, and the like, a window load coefficient learning unit 167 is provided. Further, the storage device 17 includes a window load coefficient 177 in addition to the window heat performance 174, the total heat loss coefficient 176, and the like.

空気調和システム1は、建物2の室温Tzを検出する室温検出装置1111と、窓ガラスの表面温度Tgを検出する表面温度検出装置1112と、建物2の外の外気温Taを検出する外気温検出装置1121と、外部からの情報が入力される入力装置12と、各種の演算を行う演算装置16と、各種の検出装置の情報及び演算装置16の演算結果を記憶する記憶装置17と、空気調和機11を制御する制御装置19と、各種の装置間で情報をやりとりする通信経路18とから構成される。   The air conditioning system 1 includes a room temperature detection device 1111 that detects the room temperature Tz of the building 2, a surface temperature detection device 1112 that detects the surface temperature Tg of the window glass, and an outside air temperature detection that detects the outside air temperature Ta outside the building 2. A device 1121, an input device 12 to which information from the outside is input, a calculation device 16 that performs various calculations, a storage device 17 that stores information of various detection devices and calculation results of the calculation device 16, and air conditioning It comprises a control device 19 for controlling the machine 11 and a communication path 18 for exchanging information between various devices.

日射がある日に空気調和を行っている居室において、所定時間間隔(例えば、30分、60分等から選択される。)で室温Tzが安定(例えば、室温Tzの変動が0度である。)しているときは、式8の熱収支式が成り立つ。式8の熱収支式が成り立つときは、総熱損失係数KAと、室温Tzと、外気温Taと、日射熱負荷Qsと、室内発熱負荷Qinとに基づいて、空気調和能力Qhvacを求めることができる(式8)。なお、式8では、冷房時は日射熱負荷Qsと室内発熱負荷Qinとでプラスを、暖房時は日射熱負荷Qsと室内発熱負荷Qinとでマイナスを選択することになる。   In a room where air conditioning is performed on a day with solar radiation, the room temperature Tz is stable (for example, the variation of the room temperature Tz is 0 degree) at a predetermined time interval (for example, selected from 30 minutes, 60 minutes, etc.). ), The heat balance equation of equation 8 holds. When the heat balance equation of Equation 8 holds, the air conditioning capability Qhvac can be obtained based on the total heat loss coefficient KA, the room temperature Tz, the outside air temperature Ta, the solar heat load Qs, and the indoor heat generation load Qin. (Equation 8) In Equation 8, a positive value is selected for the solar heat load Qs and the indoor heat generation load Qin during cooling, and a negative value is selected for the solar heat load Qs and the indoor heat generation load Qin during heating.

Figure 2019035218
Figure 2019035218

また、室温Tzが安定するとは、理想的には室温Tzの変動が0度の状態であるが、例えば、±0.5度、±1度の変動であれば、誤差も増えるが許容範囲として室温Tzが安定しているとして扱うこともできる。   In addition, it is ideal that the room temperature Tz is stable in a state where the variation in the room temperature Tz is 0 degree. For example, if the variation is ± 0.5 degrees and ± 1 degree, the error increases but the allowable range is reached. It can be handled that the room temperature Tz is stable.

式3と式5から式9を導くことができ、日射熱負荷Qsは式9を用いて推定することができる。なお、式9のように日射熱負荷Qsは窓負荷係数Hgと窓ガラスの熱貫流抵抗Rと窓ガラスの内表面熱伝達抵抗Riと室温Tzと外気温Taと窓ガラスの表面温度Tgとを用いて表現できる。なお、上段の式9の右側は窓負荷係数Hgに相当するものである。このように窓負荷係数Hgは、熱貫流抵抗Rと内表面熱伝達抵抗Riと日射熱取得率ηと日射吸収率αと窓面積Agとで表現できるものである。   Equation 9 can be derived from Equation 3 and Equation 5, and the solar heat load Qs can be estimated using Equation 9. As shown in Equation 9, the solar heat load Qs includes a window load coefficient Hg, a window glass thermal resistance R, a window glass inner surface heat transfer resistance Ri, a room temperature Tz, an outside temperature Ta, and a window glass surface temperature Tg. It can be expressed using. Note that the right side of the upper expression 9 corresponds to the window load coefficient Hg. Thus, the window load coefficient Hg can be expressed by the heat flow resistance R, the inner surface heat transfer resistance Ri, the solar heat acquisition rate η, the solar radiation absorption rate α, and the window area Ag.

Figure 2019035218
Figure 2019035218

また、窓ガラスの表面温度Tgは、室温Tzと外気温Taと日射量Iαとから影響を受けることから、窓ガラスの表面温度Tgは式10から計算できる。式10において、日射による影響分は第3項の値になり、第1項及び第2項は室温Tzと外気温Taとの影響分である。複数ガラス等の断熱性能が良い窓においては熱貫流抵抗Rが大きくなり、第2項の影響が無視できる。   Further, since the surface temperature Tg of the window glass is affected by the room temperature Tz, the outside air temperature Ta, and the amount of solar radiation Iα, the surface temperature Tg of the window glass can be calculated from Equation 10. In Equation 10, the influence due to solar radiation is the value of the third term, and the first and second terms are the influence of the room temperature Tz and the outside temperature Ta. In a window having good heat insulation performance such as a plurality of glasses, the heat flow resistance R becomes large, and the influence of the second term can be ignored.

Figure 2019035218
Figure 2019035218

第2項の影響が無視できる場合は、第2項を省略した式11を用いて吸収日射量が推定でき、式12で日射熱負荷Qsが計算できる。   When the influence of the second term can be ignored, the absorbed solar radiation amount can be estimated using Equation 11 in which the second term is omitted, and the solar heat load Qs can be calculated by Equation 12.

Figure 2019035218
Figure 2019035218

Figure 2019035218
Figure 2019035218

(処理フロー)
図11は、本発明の実施の形態3による空気調和システムの処理フローの例である。空気調和システム1の稼働中に実施する処理フローである。実施の形態2の処理フロー(図9)と対比すると、室内発熱負荷Qinを推定する動作に関わる処理S50はS30に、総熱損失係数KAを学習する動作に関わる処理は、S51はS31に、S53はS33に、それぞれ相当するステップであり、同様の処理であるため詳細な説明は省略する。さらに、窓熱性能を学習する処理S52はS32に、空気調和負荷Qを推定する処理S56はS37に、空気調和制御指令を決定する処理S57はS38に、それぞれ相当するステップであり、同様の処理であるため詳細な説明は省略する(実施の形態2は30番代のステップ、実施の形態3は50番代のステップ)。
(Processing flow)
FIG. 11 is an example of a processing flow of the air-conditioning system according to Embodiment 3 of the present invention. It is a processing flow implemented while the air conditioning system 1 is in operation. In contrast to the processing flow of the second embodiment (FIG. 9), the processing S50 related to the operation of estimating the indoor heat generation load Qin is S30, the processing related to the operation of learning the total heat loss coefficient KA is S51 to S31, S53 is a step corresponding to S33, and is a similar process, and thus detailed description thereof is omitted. Further, the process S52 for learning the window heat performance corresponds to S32, the process S56 for estimating the air conditioning load Q to S37, and the process S57 for determining the air conditioning control command to S38. Therefore, detailed description thereof is omitted (the second embodiment is a step in the 30th generation and the third embodiment is a step in the 50th generation).

S50で室内発熱負荷Qinを推定し、S51に進む。S51で日射が無い場合は、S52に進み、窓熱性能学習部161において、室温Tzと外気温Taと窓ガラスの表面温度Tgとに基づいて窓ガラスの窓熱性能を学習する。その後、S53に進み、総熱損失係数学習部165において、室温Tzと外気温Taと空気調和能力Qhvacと室内発熱負荷Qinとに基づいて建物2の総熱損失係数KAを学習する。なお、空気調和能力推定部164において、空気調和機11から発生する熱量(除去する熱量)に基づいて空気調和能力Qhvacを推定できる。   In S50, the indoor heat generation load Qin is estimated, and the process proceeds to S51. When there is no solar radiation in S51, it progresses to S52 and the window thermal performance learning part 161 learns the window thermal performance of a window glass based on the room temperature Tz, the external temperature Ta, and the window glass surface temperature Tg. Thereafter, the process proceeds to S53, where the total heat loss coefficient learning unit 165 learns the total heat loss coefficient KA of the building 2 based on the room temperature Tz, the outside air temperature Ta, the air conditioning capability Qhvac, and the indoor heat generation load Qin. The air conditioning capability estimation unit 164 can estimate the air conditioning capability Qhvac based on the amount of heat generated from the air conditioner 11 (the amount of heat to be removed).

[S54:窓負荷係数学習]
窓負荷係数学習部167において、S51で日射があると判断したときの空気調和機11の室内機111の室温検出装置1111が検出した室温Tzと、空気調和機11の室内機111の表面温度検出装置1112が検出した窓ガラスの表面温度Tgと、空気調和機11の室外機112の外気温検出装置1121が検出した外気温Taと、室内発熱負荷推定部160で推定した室内発熱負荷Qinと、空気調和能力推定部164で推定した空気調和能力Qhvacと、記憶装置17の総熱損失係数176に格納している総熱損失係数KAと、を用いて、式13群から窓負荷係数Hgを算出する。式13群は、式8と式9から導くことができる。なお、式13群は、冷房時は上段を、暖房時は下段を用いる。
[S54: Window load coefficient learning]
The window load coefficient learning unit 167 detects the room temperature Tz detected by the room temperature detection device 1111 of the indoor unit 111 of the air conditioner 11 and the surface temperature detection of the indoor unit 111 of the air conditioner 11 when it is determined that there is solar radiation in S51. The surface temperature Tg of the window glass detected by the device 1112, the outside air temperature Ta detected by the outside air temperature detection device 1121 of the outdoor unit 112 of the air conditioner 11, the indoor heat generation load Qin estimated by the indoor heat generation load estimation unit 160, The window load coefficient Hg is calculated from Equation 13 using the air conditioning capacity Qhvac estimated by the air conditioning capacity estimation unit 164 and the total heat loss coefficient KA stored in the total heat loss coefficient 176 of the storage device 17. To do. Equation 13 group can be derived from Equation 8 and Equation 9. Formula 13 group uses the upper stage during cooling and the lower stage during heating.

Figure 2019035218
Figure 2019035218

また、式13群において、総熱損失係数KAと窓負荷係数Hgとを未知数として連立方程式を立てて算出しても良いし、回帰分析を用いても良い。なお、総熱損失係数KAを未知数として扱う場合は、S53で総熱損失係数学を学習するステップを省略しても、窓負荷係数Hgを学習することができる。   Further, in the formula 13 group, the simultaneous heat equation may be calculated with the total heat loss coefficient KA and the window load coefficient Hg as unknowns, or regression analysis may be used. When the total heat loss coefficient KA is treated as an unknown, the window load coefficient Hg can be learned even if the step of learning the total heat loss coefficient theory in S53 is omitted.

さらに、断熱性能が良いガラスにおいては式14群から窓負荷係数Hgが算出でき、S52の窓熱性能を学習するステップを省略しても、窓負荷係数Hgが算出できる。式14群は、冷房時は上段を、暖房時は下段を用いる。なお、窓負荷係数Hgは、空気調和の対象となる建物2の窓ガラスの表面温度Tgと室温Tzとの差が1度であるときの窓ガラスから室内への日射熱取得であり、単位は[W/K]である。   Furthermore, in the case of glass with good heat insulation performance, the window load coefficient Hg can be calculated from the group of formulas 14, and the window load coefficient Hg can be calculated even if the step of learning the window heat performance in S52 is omitted. Formula 14 group uses the upper stage during cooling and the lower stage during heating. The window load coefficient Hg is solar heat acquisition from the window glass to the room when the difference between the surface temperature Tg and the room temperature Tz of the window glass of the building 2 to be air-conditioned is 1 degree, and the unit is [W / K].

Figure 2019035218
Figure 2019035218

このように、窓負荷係数学習部167は、空気調和能力Qhvacと室温Tzと外気温Taと表面温度Tgとに基づいて窓ガラスの窓負荷係数Hgを学習している。算出した窓負荷係数Hgは記憶装置17の窓負荷係数177に格納する。なお、式13群、14群が成り立つ前提条件として所定時間間隔(例えば、30分、60分等から選択される。)で、室温Tzが安定する必要があり、室温Tzの傾き、室温Tzのバラツキ等から室温Tzの安定の可否を判断できる。   In this way, the window load coefficient learning unit 167 learns the window load coefficient Hg of the window glass based on the air conditioning capability Qhvac, the room temperature Tz, the outside air temperature Ta, and the surface temperature Tg. The calculated window load coefficient Hg is stored in the window load coefficient 177 of the storage device 17. It should be noted that the room temperature Tz needs to be stable at a predetermined time interval (for example, selected from 30 minutes, 60 minutes, etc.) as a precondition for the expressions 13 and 14 to be satisfied, and the slope of the room temperature Tz and the room temperature Tz Whether or not the room temperature Tz is stable can be determined from variations and the like.

[S55:日射熱負荷推定]
日射熱負荷推定部163において、S54で計算した、記憶装置17の窓負荷係数177に格納された窓負荷係数Hgと、窓ガラスの熱貫流抵抗Rと、窓ガラスの内表面熱伝達抵抗Riと、室温Tzと、外気温Ta、窓ガラスの表面温度Tgとを基に、式9を用いて日射熱負荷Qsの計算を行う(S55)。また、室温Tzの代わりに空気調和機11の設定温度Tsetを用いて日射熱負荷Qsを推定することもできる。
[S55: Solar heat load estimation]
In the solar heat load estimation unit 163, the window load coefficient Hg stored in the window load coefficient 177 of the storage device 17 calculated in S54, the heat flow resistance R of the window glass, and the inner surface heat transfer resistance Ri of the window glass Based on the room temperature Tz, the outside air temperature Ta, and the surface temperature Tg of the window glass, the solar heat load Qs is calculated using Equation 9 (S55). The solar heat load Qs can also be estimated using the set temperature Tset of the air conditioner 11 instead of the room temperature Tz.

次に、空気調和負荷推定部166において、S50で推定した室内発熱負荷Qinと、S55で推定した日射熱負荷Qsと、記憶装置17の総熱損失係数176に格納された空気調和の対象となる建物2の総熱損失係数KAと、室温Tzと、外気温Taとに基づいて、式7群に従い空気調和負荷Qを推定する(S56)。   Next, the air-conditioning load estimation unit 166 becomes an air-conditioning target stored in the indoor heat generation load Qin estimated in S50, the solar heat load Qs estimated in S55, and the total heat loss coefficient 176 of the storage device 17. Based on the total heat loss coefficient KA of the building 2, the room temperature Tz, and the outside air temperature Ta, the air-conditioning load Q is estimated according to Formula 7 (S56).

最後に、制御装置19は、S56で推定した空気調和負荷Qに基づき、空気調和機11の空気調和能力Qhvacの制御指令を決定する(S57)。その後、S50に戻る。なお、制御指令は空気調和能力Qhvacに限定されず、空気調和機11の吹き出し温度の指令値、吹き出しの方向等を制御指令値として制御することもできる。よって、窓ガラスから建物2の中である居室に侵入する日射による日射熱負荷をリアルタイムで、環境の変化に応じて高精度に推定することできる。   Finally, the control device 19 determines a control command for the air conditioning capability Qhvac of the air conditioner 11 based on the air conditioning load Q estimated in S56 (S57). Thereafter, the process returns to S50. The control command is not limited to the air conditioning capability Qhvac, and the command value of the blowout temperature of the air conditioner 11, the direction of the blowout, and the like can be controlled as the control command value. Therefore, the solar heat load by the solar radiation which penetrates into the living room in the building 2 from the window glass can be estimated with high accuracy in real time according to the environmental change.

以上のように、建物内の室温を検出する室温検出部と、外気温を検出する外気温検出部と、窓ガラスの建物の内側の表面温度を検出する表面温度検出部と、室温と外気温と表面温度とに基づいて窓ガラスの窓熱性能を学習する窓熱性能学習部と、空気調和機から発生する熱量に基づいて空気調和能力を推定する空気調和能力推定部と、室温と外気温と表面温度と窓熱性能と空気調和能力とに基づいて窓ガラスの窓負荷係数を学習する窓負荷係数学習部と、室温と外気温と表面温度と窓熱性能と窓負荷係数とに基づいて窓ガラスから入射する日射による日射熱負荷を推定する日射熱負荷推定部と、日射熱負荷に基づいて空気調和機を制御する制御部とを備える空気調和システムである。これによって、空気調和の対象となる建物の日射熱負荷を高精度に推定できる。   As described above, the room temperature detection unit for detecting the room temperature in the building, the outside air temperature detection unit for detecting the outside air temperature, the surface temperature detection unit for detecting the surface temperature inside the building of the window glass, the room temperature and the outside air temperature Window heat performance learning unit that learns the window heat performance of the window glass based on the surface temperature and the air conditioning capability estimation unit that estimates the air conditioning capability based on the amount of heat generated from the air conditioner, and the room temperature and the outside air temperature A window load coefficient learning unit that learns the window load coefficient of the window glass based on the surface temperature, the window thermal performance, and the air conditioning capability, and based on the room temperature, the outside air temperature, the surface temperature, the window thermal performance, and the window load coefficient An air conditioning system including a solar heat load estimating unit that estimates a solar heat load due to solar radiation incident from a window glass and a control unit that controls the air conditioner based on the solar heat load. This makes it possible to estimate the solar heat load of the building that is subject to air conditioning with high accuracy.

また、建物内の室温を検出する室温検出ステップと、外気温を検出する外気温検出ステップと、窓ガラスの建物の内側の表面温度を検出する表面温度検出ステップと、室温と外気温と表面温度とに基づいて窓ガラスの窓熱性能を学習する窓熱性能学習ステップと、空気調和機から発生する熱量に基づいて空気調和能力を推定する空気調和能力推定ステップと、室温と外気温と表面温度と窓熱性能と空気調和能力とに基づいて窓ガラスの窓負荷係数を学習する窓負荷係数学習ステップと、室温と外気温と表面温度と窓熱性能と窓負荷係数とに基づいて窓ガラスから入射する日射による日射熱負荷を推定する日射熱負荷推定ステップと、日射熱負荷に基づいて空気調和機を制御する制御ステップとを備える空気調和方法である。これによって、空気調和の対象となる建物の日射熱負荷を高精度に推定できる。   Also, a room temperature detecting step for detecting the room temperature in the building, an outside air temperature detecting step for detecting the outside air temperature, a surface temperature detecting step for detecting the surface temperature inside the building of the window glass, the room temperature, the outside air temperature, and the surface temperature. Window heat performance learning step for learning the window heat performance of the window glass based on the above, an air conditioning capability estimation step for estimating the air conditioning capability based on the amount of heat generated from the air conditioner, the room temperature, the outside temperature, and the surface temperature A window load coefficient learning step for learning the window load coefficient of the window glass based on the window heat performance and the air conditioning capacity; and from the window glass based on the room temperature, the outside air temperature, the surface temperature, the window heat performance, and the window load coefficient. An air conditioning method comprising a solar heat load estimating step for estimating a solar heat load due to incident solar radiation, and a control step for controlling the air conditioner based on the solar heat load. This makes it possible to estimate the solar heat load of the building that is subject to air conditioning with high accuracy.

また、表面温度検出部は、空気調和機に備えられたものであるので、空気調和の対象となる建物の日射熱負荷を高精度に推定できる。   Moreover, since the surface temperature detection part is provided in the air conditioner, the solar heat load of the building subject to air conditioning can be estimated with high accuracy.

さらに、室温と外気温と空気調和能力とに基づいて建物の総熱損失係数を学習する総熱損失係数学習部と、室温と外気温と表面温度と窓熱性能と窓負荷係数と総熱損失係数とに基づいて建物の空気調和負荷を推定する空気調和負荷推定部と、空気調和負荷に基づいて空気調和機を制御する空気調和システムである。これによって、空気調和の対象となる建物の日射熱負荷を高精度に推定できる。   In addition, a total heat loss coefficient learning unit that learns the total heat loss coefficient of the building based on room temperature, outside air temperature, and air conditioning capability, room temperature, outside air temperature, surface temperature, window heat performance, window load coefficient, and total heat loss An air conditioning load estimation unit that estimates an air conditioning load of a building based on a coefficient, and an air conditioning system that controls the air conditioner based on the air conditioning load. This makes it possible to estimate the solar heat load of the building that is subject to air conditioning with high accuracy.

実施の形態4.
図12は、本発明の実施の形態4による空気調和システムの構成図の例である。実施の形態3とは異なり、実施の形態4では日射の有無の判断を行わない。また、実施の形態3では、日射熱負荷Qsを推定するために、総熱損失係数KAと、窓熱性能と、窓負荷係数Hgとを別々のステップで学習したが、実施の形態4は外気負荷係数Haと窓負荷係数Hgとを学習することで、空気調和負荷Qを推定する点が主要な相違点となる。なお、窓負荷係数Hgは、窓熱性能と窓光学性能と窓面積Agとを含む係数であり、外気負荷係数Haは総熱損失係数KAと窓負荷係数Hgとを含む係数である。
Embodiment 4 FIG.
FIG. 12 is an example of a configuration diagram of an air-conditioning system according to Embodiment 4 of the present invention. Unlike Embodiment 3, Embodiment 4 does not determine whether there is solar radiation. In the third embodiment, the total heat loss coefficient KA, the window heat performance, and the window load coefficient Hg are learned in different steps in order to estimate the solar heat load Qs. The main difference is that the air conditioning load Q is estimated by learning the load coefficient Ha and the window load coefficient Hg. The window load coefficient Hg is a coefficient including the window heat performance, the window optical performance, and the window area Ag, and the outside air load coefficient Ha is a coefficient including the total heat loss coefficient KA and the window load coefficient Hg.

より具体的には、演算装置16には、実施の形態3と同様の室内発熱負荷推定部160、空気調和能力推定部164、及び空気調和負荷推定部166等に加えて、負荷係数学習部168を備えている。また、記憶装置17には、窓負荷係数177等に加えて、外気負荷係数178を備えている。   More specifically, the arithmetic unit 16 includes a load coefficient learning unit 168 in addition to the indoor heat generation load estimation unit 160, the air conditioning capability estimation unit 164, the air conditioning load estimation unit 166, and the like similar to those of the third embodiment. It has. Further, the storage device 17 includes an outside air load coefficient 178 in addition to the window load coefficient 177 and the like.

空気調和システム1は、建物2の室温Tzを検出する室温検出装置1111と、窓ガラスの表面温度Tgを検出する表面温度検出装置1112と、建物2の外の外気温Taを検出する外気温検出装置1121と、外部からの情報が入力される入力装置12と、各種の演算を行う演算装置16と、各種の検出装置の情報及び演算装置16の演算結果を記憶する記憶装置17と、空気調和機11を制御する制御装置19と、各種の装置間で情報をやりとりする通信経路18とから構成される。   The air conditioning system 1 includes a room temperature detection device 1111 that detects the room temperature Tz of the building 2, a surface temperature detection device 1112 that detects the surface temperature Tg of the window glass, and an outside air temperature detection that detects the outside air temperature Ta outside the building 2. A device 1121, an input device 12 to which information from the outside is input, a calculation device 16 that performs various calculations, a storage device 17 that stores information of various detection devices and calculation results of the calculation device 16, and air conditioning It comprises a control device 19 for controlling the machine 11 and a communication path 18 for exchanging information between various devices.

空気調和を行っている居室において、所定時間間隔(例えば、30分、60分等から選択される。)で室温Tzが安定(例えば、室温Tzの変動が0度である。)しているときは、式15群の熱収支式が成り立つ。なお、式15群は式8と式9から導くことができる。式15の熱収支式が成り立つときは、室温Tzと、外気温Taと、窓ガラスの表面温度Tgと、外気負荷係数Haと、窓負荷係数Hgと、室内発熱負荷Qinとに基づいて、空気調和能力Qhvacを求めることができる(式15群)。なお、式15群は、上段が冷房時、下段が暖房時になっている。   In a room where air conditioning is performed, when the room temperature Tz is stable (for example, the variation in the room temperature Tz is 0 degree) at a predetermined time interval (for example, selected from 30 minutes, 60 minutes, etc.). Is a heat balance equation of the fifteenth group. In addition, Formula 15 group can be derived from Formula 8 and Formula 9. When the heat balance equation of Equation 15 holds, the air temperature is based on the room temperature Tz, the outside air temperature Ta, the window glass surface temperature Tg, the outside air load coefficient Ha, the window load coefficient Hg, and the indoor heat generation load Qin. The harmony ability Qhvac can be obtained (Formula 15 group). In the formula 15 group, the upper stage is during cooling and the lower stage is during heating.

Figure 2019035218
Figure 2019035218

また、室温Tzが安定するとは、理想的には室温Tzの変動が0度の状態であるが、例えば、±0.5度、±1度の変動であれば、誤差も増えるが許容範囲として室温Tzが安定しているとして扱うこともできる。   In addition, it is ideal that the room temperature Tz is stable in a state where the variation in the room temperature Tz is 0 degree. For example, if the variation is ± 0.5 degrees and ± 1 degree, the error increases but the allowable range is reached. It can be handled that the room temperature Tz is stable.

(処理フロー)
図13は、本発明の実施の形態4による空気調和システムの処理フローの例である。空気調和システム1の稼働中に実施する処理フローである。実施の形態3の処理フロー(図11)と対比すると、室内発熱負荷Qinを推定する動作に関わる処理S60はS50に、空気調和制御指令を決定する処理S63はS57に、それぞれ相当するステップ(実施の形態3は50番代のステップ、実施の形態4は60番代のステップ)であり、同様の処理であるため詳細な説明は省略する。
(Processing flow)
FIG. 13 is an example of a processing flow of the air-conditioning system according to Embodiment 4 of the present invention. It is a processing flow implemented while the air conditioning system 1 is in operation. Comparing with the processing flow of the third embodiment (FIG. 11), the processing S60 related to the operation of estimating the indoor heat generation load Qin corresponds to S50, and the processing S63 for determining the air conditioning control command corresponds to S57. Embodiment 3 is a step of the 50th generation, and Embodiment 4 is a step of the 60th generation), and since it is the same processing, detailed description is omitted.

S60で室内発熱負荷推定部160において室内発熱負荷Qinを推定し、S61に進む。   In S60, the indoor heat generation load estimation unit 160 estimates the indoor heat generation load Qin, and the process proceeds to S61.

[S61:負荷係数学習]
負荷係数学習部168において、空気調和機11の室内機111の室温検出装置1111が検出した室温Tzと、空気調和機11の室内機111の表面温度検出装置1112が検出した窓ガラスの表面温度Tgと、空気調和機11の室外機112の外気温検出装置1121が検出した外気温Taと、空気調和能力推定部164で推定した空気調和能力Qhvacと、室内発熱負荷推定部160で推定した室内発熱負荷Qinを用いて、式16群から外気負荷係数Haと窓負荷係数Hgとを学習する。式16群において外気負荷係数Haと窓負荷係数Hgとを未知数として連立方程式を立てて算出してもよいし、回帰分析を用いてもよい。なお、式16群は、冷房時は上段を、暖房時は下段を用いる。
[S61: Load coefficient learning]
In the load coefficient learning unit 168, the room temperature Tz detected by the room temperature detection device 1111 of the indoor unit 111 of the air conditioner 11, and the surface temperature Tg of the window glass detected by the surface temperature detection device 1112 of the indoor unit 111 of the air conditioner 11 The outside air temperature Ta detected by the outside air temperature detection device 1121 of the outdoor unit 112 of the air conditioner 11, the air conditioning capacity Qhvac estimated by the air conditioning capacity estimation unit 164, and the indoor heat generation estimated by the indoor heat generation load estimation unit 160. Using the load Qin, the outside air load coefficient Ha and the window load coefficient Hg are learned from the equation 16 group. In the equation 16 group, the outdoor air load coefficient Ha and the window load coefficient Hg may be calculated as unknowns and a simultaneous equation may be established, or regression analysis may be used. In Formula 16, the upper stage is used during cooling, and the lower stage is used during heating.

[S62:空気調和負荷推定]
空気調和負荷推定部166において、S60で推定した室内発熱負荷Qinと、S61で学習した外気負荷係数Haと窓負荷係数Hgと、空気調和機11の室内機111の室温検出装置1111が検出した室温Tzと、空気調和機11の室内機111の表面温度検出装置1112が検出した窓ガラスの表面温度Tgと、空気調和機11の室外機112の外気温検出装置1121が検出した外気温Taとに基づいて、式16群に従い空気調和負荷Qを推定する(S62)。ただし、冷房時は式16群の上段を、暖房時は式16群の下段を用いる。
[S62: Air conditioning load estimation]
In the air conditioning load estimation unit 166, the room heat generation load Qin estimated in S60, the outside air load coefficient Ha and the window load coefficient Hg learned in S61, and the room temperature detection device 1111 of the indoor unit 111 of the air conditioner 11 detected. Tz, the surface temperature Tg of the window glass detected by the surface temperature detecting device 1112 of the indoor unit 111 of the air conditioner 11, and the outside temperature Ta detected by the outside air temperature detecting device 1121 of the outdoor unit 112 of the air conditioner 11 Based on the group of formulas 16, the air conditioning load Q is estimated (S62). However, the upper stage of Formula 16 group is used during cooling, and the lower stage of Formula 16 group is used during heating.

Figure 2019035218
Figure 2019035218

最後に、制御装置19は、S63で推定した空気調和制御指令に基づき、空気調和機11に制御する。その後、S60に戻る。   Finally, the control device 19 controls the air conditioner 11 based on the air conditioning control command estimated in S63. Thereafter, the process returns to S60.

以上のように、建物内の室温を検出する室温検出部と、外気温を検出する外気温検出部と、窓ガラスの建物の内側の表面温度を検出する表面温度検出部と、空気調和機から発生する熱量に基づいて空気調和能力を推定する空気調和能力推定部と、室温と外気温と表面温度と空気調和能力とに基づいて窓ガラスの窓負荷係数及び外気負荷係数を学習する負荷係数学習部と、室温と外気温と表面温度と窓負荷係数と外気負荷係数とに基づいて建物の空気調和負荷を推定する空気調和負荷推定部と、空気調和負荷に基づいて空気調和機を制御する制御部とを備える空気調和システムである。   As described above, from the room temperature detection unit that detects the room temperature in the building, the outside air temperature detection unit that detects the outside air temperature, the surface temperature detection unit that detects the surface temperature inside the building of the window glass, and the air conditioner An air conditioning capability estimation unit that estimates the air conditioning capability based on the amount of heat generated, and a load factor learning that learns the window load coefficient and the outside air load coefficient of the window glass based on room temperature, outside air temperature, surface temperature, and air conditioning capability Air conditioning load estimation unit for estimating the air conditioning load of the building based on the room temperature, the outside air temperature, the surface temperature, the window load coefficient, and the outside air load coefficient, and the control for controlling the air conditioner based on the air conditioning load It is an air conditioning system provided with a part.

また、建物内の室温を検出する室温検出ステップと、外気温を検出する外気温検出ステップと、窓ガラスの建物の内側の表面温度を検出する表面温度検出ステップと、空気調和機から発生する熱量に基づいて空気調和能力を推定する空気調和能力推定ステップと、室温と外気温と表面温度と空気調和能力とに基づいて窓ガラスの窓負荷係数及び外気負荷係数を学習する負荷係数学習ステップと、室温と外気温と表面温度と窓負荷係数と外気負荷係数とに基づいて建物の空気調和負荷を推定する空気調和負荷推定ステップと、空気調和負荷に基づいて空気調和機を制御する制御ステップとを備える空気調和方法である。   Also, a room temperature detecting step for detecting the room temperature in the building, an outside air temperature detecting step for detecting the outside air temperature, a surface temperature detecting step for detecting the surface temperature inside the building of the window glass, and the amount of heat generated from the air conditioner An air conditioning capability estimation step for estimating the air conditioning capability based on the following: a load factor learning step for learning the window load coefficient and the outside air load coefficient of the window glass based on the room temperature, the outside air temperature, the surface temperature, and the air conditioning capability; An air conditioning load estimation step for estimating the air conditioning load of the building based on the room temperature, the outside air temperature, the surface temperature, the window load coefficient, and the outside air load coefficient, and a control step for controlling the air conditioner based on the air conditioning load. An air conditioning method provided.

室内の空気調和負荷を推定して空気調和機を制御する空気調和システム及び空気調和方法を得ることができる。   An air conditioning system and an air conditioning method for estimating an indoor air conditioning load and controlling an air conditioner can be obtained.

最後に、本発明は、これまで述べてきた実施の形態に限定されるものではなく、本発明の範囲内で種々に改変することができる。すなわち、これまで述べてきた実施の形態の構成を適宜改良してもよく、また、少なくとも一部を他の構成に代替させてもよい。さらに、その配置について特に限定のない構成要件は、実施の形態で開示した配置に限らず、その機能を達成できる位置に配置することができる。また、これまで述べてきた実施の形態に開示されている複数の構成要素を適宜組み合わせることにより発明を形成してもよい。さらに、本発明は、これまで述べてきた実施の形態の範囲ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更を含むものである。   Finally, the present invention is not limited to the embodiments described so far, and can be variously modified within the scope of the present invention. That is, the configuration of the embodiment described so far may be improved as appropriate, and at least a part of the configuration may be replaced with another configuration. Further, the configuration requirements that are not particularly limited with respect to the arrangement are not limited to the arrangement disclosed in the embodiment, and can be arranged at a position where the function can be achieved. Further, the invention may be formed by appropriately combining a plurality of constituent elements disclosed in the embodiments described so far. Further, the present invention is shown not by the scope of the embodiments described so far but by the scope of the claims, and includes all modifications within the meaning and scope equivalent to the scope of the claims.

1 空気調和システム、2 建物、3 壁、4 窓、5 床、11 空気調和機、12 入力装置、13 室温検出装置、14 外気温検出装置、15 表面温度検出装置、16 演算装置、17 記憶装置、18 通信経路、19 制御装置、111 室内機、112 室外機、160 室内発熱負荷推定部、161 窓熱性能学習部、162 窓光学性能学習部、163 日射熱負荷推定部、164 空気調和能力推定部、165 総熱損失係数学習部、166 空気調和負荷推定部、167 窓負荷係数学習部、168 負荷係数学習部、171 地域別単位日射量、172 窓光学性能関係式、173 窓面積、174 窓熱性能、175 窓光学性能、176 総熱損失係数、177 窓負荷係数、178 外気負荷係数、1111 室温検出装置、1112表面温度検出装置、1121 外気温検出装置。 DESCRIPTION OF SYMBOLS 1 Air conditioning system, 2 buildings, 3 walls, 4 windows, 5 floors, 11 air conditioner, 12 input device, 13 room temperature detection device, 14 outside air temperature detection device, 15 surface temperature detection device, 16 arithmetic device, 17 storage device , 18 communication path, 19 control device, 111 indoor unit, 112 outdoor unit, 160 indoor heat generation load estimation unit, 161 window thermal performance learning unit, 162 window optical performance learning unit, 163 solar heat load estimation unit, 164 air conditioning capability estimation Part, 165 total heat loss coefficient learning part, 166 air conditioning load estimation part, 167 window load coefficient learning part, 168 load coefficient learning part, 171 unit solar radiation amount by region, 172 window optical performance relational expression, 173 window area, 174 windows Thermal performance, 175 window optical performance, 176 total heat loss coefficient, 177 window load coefficient, 178 outside air load coefficient, 1111 room temperature detector, 11 2 surface temperature detector, 1121 outside air temperature detection device.

Claims (11)

建物内の室温を検出する室温検出部と、
外気温を検出する外気温検出部と、
窓ガラスの前記建物の内側の表面温度を検出する表面温度検出部と、
前記室温と前記外気温と前記表面温度とに基づいて前記窓ガラスの窓熱性能を学習する窓熱性能学習部と、
空気調和機から発生する熱量に基づいて空気調和能力を推定する空気調和能力推定部と、
前記室温と前記外気温と前記表面温度と前記窓熱性能と前記空気調和能力とに基づいて前記窓ガラスの窓負荷係数を学習する窓負荷係数学習部と、
前記室温と前記外気温と前記表面温度と前記窓熱性能と前記窓負荷係数とに基づいて前記窓ガラスから入射する日射による日射熱負荷を推定する日射熱負荷推定部と、
前記日射熱負荷に基づいて前記空気調和機を制御する制御部とを備えたことを特徴とする空気調和システム。
A room temperature detector for detecting the room temperature in the building;
An outside air temperature detector for detecting outside air temperature,
A surface temperature detector for detecting the surface temperature of the window glass inside the building;
A window heat performance learning unit that learns the window heat performance of the window glass based on the room temperature, the outside air temperature, and the surface temperature;
An air conditioning capability estimation unit that estimates the air conditioning capability based on the amount of heat generated from the air conditioner;
A window load coefficient learning unit that learns a window load coefficient of the window glass based on the room temperature, the outside air temperature, the surface temperature, the window heat performance, and the air conditioning capability;
A solar heat load estimating unit for estimating a solar heat load due to solar radiation incident from the window glass based on the room temperature, the outside air temperature, the surface temperature, the window heat performance, and the window load coefficient;
An air conditioning system comprising: a control unit that controls the air conditioner based on the solar heat load.
請求項1に記載の空気調和システムであって、
前記室温と前記外気温と前記空気調和能力とに基づいて前記建物の総熱損失係数を学習する総熱損失係数学習部と、
前記室温と前記外気温と前記表面温度と前記窓熱性能と前記窓負荷係数と前記総熱損失係数とに基づいて前記建物の空気調和負荷を推定する空気調和負荷推定部と、
前記空気調和負荷に基づいて前記空気調和機を制御する制御部とを備えたことを特徴とする空気調和システム。
The air conditioning system according to claim 1,
A total heat loss coefficient learning unit that learns a total heat loss coefficient of the building based on the room temperature, the outside air temperature, and the air conditioning capability;
An air conditioning load estimator for estimating an air conditioning load of the building based on the room temperature, the outside air temperature, the surface temperature, the window heat performance, the window load coefficient, and the total heat loss coefficient;
An air conditioning system comprising: a control unit that controls the air conditioner based on the air conditioning load.
建物内の室温を検出する室温検出部と、
外気温を検出する外気温検出部と、
窓ガラスの前記建物の内側の表面温度を検出する表面温度検出部と、
空気調和機から発生する熱量に基づいて空気調和能力を推定する空気調和能力推定部と、
前記室温と前記外気温と前記表面温度と前記空気調和能力とに基づいて前記窓ガラスの窓負荷係数及び外気負荷係数を学習する負荷係数学習部と、
前記室温と前記外気温と前記表面温度と前記窓負荷係数と前記外気負荷係数とに基づいて前記建物の空気調和負荷を推定する空気調和負荷推定部と、
前記空気調和負荷に基づいて前記空気調和機を制御する制御部とを備えたことを特徴とする空気調和システム。
A room temperature detector for detecting the room temperature in the building;
An outside air temperature detector for detecting outside air temperature,
A surface temperature detector for detecting the surface temperature of the window glass inside the building;
An air conditioning capability estimation unit that estimates the air conditioning capability based on the amount of heat generated from the air conditioner;
A load coefficient learning unit that learns a window load coefficient and an outside air load coefficient of the window glass based on the room temperature, the outside air temperature, the surface temperature, and the air conditioning capability;
An air conditioning load estimator for estimating an air conditioning load of the building based on the room temperature, the outside air temperature, the surface temperature, the window load coefficient, and the outside air load coefficient;
An air conditioning system comprising: a control unit that controls the air conditioner based on the air conditioning load.
建物内の室温を検出する室温検出部と、
外気温を検出する外気温検出部と、
窓ガラスの前記建物の内側の表面温度を検出する表面温度検出部と、
前記室温と前記外気温と前記表面温度とに基づいて前記窓ガラスの窓熱性能を学習する窓熱性能学習部と、
単位日射量及び前記窓ガラスの構成による窓光学性能関係式と前記室温と前記外気温と前記表面温度と前記窓熱性能とに基づいて前記窓ガラスの窓光学性能を学習する窓光学性能学習部と、
前記窓ガラスの面積と前記室温と前記外気温と前記表面温度と前記窓熱性能と前記窓光学性能とに基づいて前記窓ガラスから入射する日射による日射熱負荷を推定する日射熱負荷推定部と、
前記日射熱負荷に基づいて空気調和機を制御する制御部とを備えたことを特徴とする空気調和システム。
A room temperature detector for detecting the room temperature in the building;
An outside air temperature detector for detecting outside air temperature,
A surface temperature detector for detecting the surface temperature of the window glass inside the building;
A window heat performance learning unit that learns the window heat performance of the window glass based on the room temperature, the outside air temperature, and the surface temperature;
Window optical performance learning unit that learns the window optical performance of the window glass based on the unit solar radiation amount and the window optical performance relational expression based on the configuration of the window glass, the room temperature, the outside air temperature, the surface temperature, and the window thermal performance When,
A solar heat load estimating unit for estimating a solar heat load due to solar radiation incident from the window glass based on the area of the window glass, the room temperature, the outside air temperature, the surface temperature, the window heat performance, and the window optical performance; ,
An air conditioning system comprising: a control unit that controls the air conditioner based on the solar heat load.
請求項4に記載の空気調和システムであって、
前記窓熱性能は、熱貫流抵抗に基づく性能であり、
前記窓光学性能は、日射吸収率と日射熱取得率とに基づく性能であることを特徴とする空気調和システム。
The air conditioning system according to claim 4,
The window thermal performance is a performance based on heat flow resistance,
The window optical performance is a performance based on a solar radiation absorption rate and a solar heat acquisition rate.
請求項4または請求項5に記載の空気調和システムであって、
前記空気調和機から発生する熱量に基づいて空気調和能力を推定する空気調和能力推定部と、
前記室温と前記外気温と前記空気調和能力とに基づいて前記建物の総熱損失係数を学習する総熱損失係数学習部と、
前記室温と前記外気温と前記総熱損失係数と前記日射熱負荷とに基づいて前記建物の空気調和負荷を推定する空気調和負荷推定部とを備え、
前記制御部は、前記空気調和負荷に基づいて前記空気調和機を制御することを特徴とする空気調和システム。
The air conditioning system according to claim 4 or 5, wherein
An air conditioning capability estimation unit that estimates the air conditioning capability based on the amount of heat generated from the air conditioner;
A total heat loss coefficient learning unit that learns a total heat loss coefficient of the building based on the room temperature, the outside air temperature, and the air conditioning capability;
An air-conditioning load estimation unit that estimates the air-conditioning load of the building based on the room temperature, the outside air temperature, the total heat loss coefficient, and the solar heat load,
The said control part controls the said air conditioner based on the said air conditioning load, The air conditioning system characterized by the above-mentioned.
請求項2、請求項3及び請求項6のいずれか1項に記載の空気調和システムであって、
前記空気調和負荷は、室内発熱負荷に基づいて推定されることを特徴とする空気調和システム。
It is an air conditioning system of any one of Claim 2, Claim 3, and Claim 6, Comprising:
The air conditioning system is characterized in that the air conditioning load is estimated based on an indoor heat generation load.
請求項1から請求項7のいずれか1項に記載の空気調和システムであって、
前記表面温度検出部は、前記空気調和機に備えられたものであることを特徴とする空気調和システム。
The air conditioning system according to any one of claims 1 to 7,
The air temperature system is characterized in that the surface temperature detector is provided in the air conditioner.
建物内の室温を検出する室温検出ステップと、
外気温を検出する外気温検出ステップと、
窓ガラスの前記建物の内側の表面温度を検出する表面温度検出ステップと、
前記室温と前記外気温と前記表面温度とに基づいて前記窓ガラスの窓熱性能を学習する窓熱性能学習ステップと、
空気調和機から発生する熱量に基づいて空気調和能力を推定する空気調和能力推定ステップと、
前記室温と前記外気温と前記表面温度と前記窓熱性能と前記空気調和能力とに基づいて前記窓ガラスの窓負荷係数を学習する窓負荷係数学習ステップと、
前記室温と前記外気温と前記表面温度と前記窓熱性能と前記窓負荷係数とに基づいて前記窓ガラスから入射する日射による日射熱負荷を推定する日射熱負荷推定ステップと、
前記日射熱負荷に基づいて前記空気調和機を制御する制御ステップとを備えたことを特徴とする空気調和方法。
A room temperature detection step for detecting the room temperature in the building;
An outside air temperature detecting step for detecting the outside air temperature;
A surface temperature detecting step for detecting a surface temperature inside the building of the window glass;
A window heat performance learning step of learning the window heat performance of the window glass based on the room temperature, the outside air temperature, and the surface temperature;
An air conditioning capability estimation step for estimating the air conditioning capability based on the amount of heat generated from the air conditioner;
A window load coefficient learning step of learning a window load coefficient of the window glass based on the room temperature, the outside air temperature, the surface temperature, the window thermal performance, and the air conditioning capability;
A solar heat load estimating step for estimating a solar heat load due to solar radiation incident from the window glass based on the room temperature, the outside air temperature, the surface temperature, the window heat performance, and the window load coefficient;
And a control step of controlling the air conditioner based on the solar heat load.
建物内の室温を検出する室温検出ステップと、
外気温を検出する外気温検出ステップと、
窓ガラスの前記建物の内側の表面温度を検出する表面温度検出ステップと、
空気調和機から発生する熱量に基づいて空気調和能力を推定する空気調和能力推定ステップと、
前記室温と前記外気温と前記表面温度と前記空気調和能力とに基づいて前記窓ガラスの窓負荷係数及び外気負荷係数を学習する負荷係数学習ステップと、
前記室温と前記外気温と前記表面温度と前記窓負荷係数と前記外気負荷係数とに基づいて前記建物の空気調和負荷を推定する空気調和負荷推定ステップと、
前記空気調和負荷に基づいて前記空気調和機を制御する制御ステップとを備えたことを特徴とする空気調和方法。
A room temperature detection step for detecting the room temperature in the building;
An outside air temperature detecting step for detecting the outside air temperature;
A surface temperature detecting step for detecting a surface temperature inside the building of the window glass;
An air conditioning capability estimation step for estimating the air conditioning capability based on the amount of heat generated from the air conditioner;
A load coefficient learning step of learning a window load coefficient and an outside air load coefficient of the window glass based on the room temperature, the outside air temperature, the surface temperature, and the air conditioning capability;
An air conditioning load estimation step of estimating an air conditioning load of the building based on the room temperature, the outside air temperature, the surface temperature, the window load coefficient, and the outside air load coefficient;
An air conditioning method comprising: a control step of controlling the air conditioner based on the air conditioning load.
建物内の室温を検出する室温検出ステップと、
外気温を検出する外気温検出ステップと、
窓ガラスの前記建物の内側の表面温度を検出する表面温度検出ステップと、
前記室温と前記外気温と前記表面温度とに基づいて前記窓ガラスの窓熱性能を学習する窓熱性能学習ステップと、
単位日射量及び前記窓ガラスの構成による窓光学性能関係式と前記室温と前記外気温と前記表面温度と前記窓熱性能とに基づいて前記窓ガラスの窓光学性能を学習する窓光学性能学習ステップと、
前記窓ガラスの面積と前記室温と前記外気温と前記表面温度と前記窓熱性能と前記窓光学性能とに基づいて前記窓ガラスから入射する日射による日射熱負荷を推定する日射熱負荷推定ステップと、
前記日射熱負荷に基づいて空気調和機を制御する制御ステップとを備えたことを特徴とする空気調和方法。
A room temperature detection step for detecting the room temperature in the building;
An outside air temperature detecting step for detecting the outside air temperature;
A surface temperature detecting step for detecting a surface temperature inside the building of the window glass;
A window heat performance learning step of learning the window heat performance of the window glass based on the room temperature, the outside air temperature, and the surface temperature;
A window optical performance learning step for learning the window optical performance of the window glass based on the unit solar radiation amount and the window optical performance relational expression based on the configuration of the window glass, the room temperature, the outside air temperature, the surface temperature, and the window heat performance. When,
A solar heat load estimating step for estimating a solar heat load caused by solar radiation incident from the window glass based on the area of the window glass, the room temperature, the outside air temperature, the surface temperature, the window heat performance, and the window optical performance; ,
And a control step of controlling the air conditioner based on the solar heat load.
JP2019536410A 2017-08-17 2017-10-10 Air conditioning system and air conditioning method Active JP6727446B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017157470 2017-08-17
JP2017157470 2017-08-17
PCT/JP2017/036589 WO2019035218A1 (en) 2017-08-17 2017-10-10 Air conditioning system and air conditioning method

Publications (2)

Publication Number Publication Date
JPWO2019035218A1 true JPWO2019035218A1 (en) 2019-12-12
JP6727446B2 JP6727446B2 (en) 2020-07-22

Family

ID=65362517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019536410A Active JP6727446B2 (en) 2017-08-17 2017-10-10 Air conditioning system and air conditioning method

Country Status (3)

Country Link
JP (1) JP6727446B2 (en)
CN (1) CN110914605B (en)
WO (1) WO2019035218A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6979606B2 (en) * 2019-09-24 2021-12-15 パナソニックIpマネジメント株式会社 Air conditioner control device, air conditioner control method, and program
FR3118137B1 (en) * 2020-12-17 2023-03-24 Saint Gobain THERMAL REGULATION SYSTEM OF A ROOM AND ITS PROCESS
CN112728714B (en) * 2021-01-26 2022-03-01 宁夏佳智星科技有限公司 Intelligent air conditioning system and control method thereof
CN113400891B (en) * 2021-07-19 2023-03-24 安徽江淮汽车集团股份有限公司 Control method for double-temperature-zone heat pump air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015148417A (en) * 2014-02-07 2015-08-20 株式会社東芝 Air conditioning system, air conditioning apparatus, air conditioning control method, and program
JP2015230128A (en) * 2014-06-05 2015-12-21 株式会社日立製作所 Energy management system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1237247C (en) * 2001-07-11 2006-01-18 孙运健 Full-elevation daylighting window and intelligent all-weather solar energy building
KR101497698B1 (en) * 2008-05-08 2015-03-02 엘지전자 주식회사 Air conditioning system
JP5452659B2 (en) * 2012-05-16 2014-03-26 三菱電機株式会社 Air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015148417A (en) * 2014-02-07 2015-08-20 株式会社東芝 Air conditioning system, air conditioning apparatus, air conditioning control method, and program
JP2015230128A (en) * 2014-06-05 2015-12-21 株式会社日立製作所 Energy management system

Also Published As

Publication number Publication date
WO2019035218A1 (en) 2019-02-21
CN110914605B (en) 2021-01-26
CN110914605A (en) 2020-03-24
JP6727446B2 (en) 2020-07-22

Similar Documents

Publication Publication Date Title
JP6727446B2 (en) Air conditioning system and air conditioning method
Taylor et al. Evaluating rammed earth walls: a case study
Jia et al. Experimentally-determined characteristics of radiant systems for office buildings
EP3295262B1 (en) Energy-efficient integrated lighting, daylighting, and hvac with controlled window blinds
Pantelic et al. Full scale laboratory experiment on the cooling capacity of a radiant floor system
RU2697034C2 (en) Determination of wall thermal resistance
CN107592918B (en) Energy-saving integrated lighting, daylighting and heating ventilation air conditioner with electrochromic glass
JP2007120089A (en) Solar radiation shading control device
Bliss The performance of an experimental system using solar energy for heating and night radiation for cooling a building
US10816941B2 (en) Energy efficiency of a building at the planning stage
CN109519111A (en) A kind of curtain wall building energy saving automatic control system and method
Fernandes et al. Real time side-by-side experimental validation of energy and comfort performance of a zero net energy retrofit package for small commercial buildings
KR102329293B1 (en) Automated facility management system with algorithm of calculating calories for cooling and heating each room of building
Simmonds et al. Radiant cooled floors-Operation and control dependant upon solar radiation
ArchD Part two: radiant heating and cooling systems
Woldekidan Indoor environmental quality (IEQ) and building energy optimization through model predictive control (MPC)
Monstvilas et al. Hourly calculation method of building energy demand for space heating and cooling based on steady-state heat balance equations
WO2021240604A1 (en) Air conditioning control device, air conditioning system, air conditioning method, and program
Srivastava-Modi Evaluating the Ability of equest Software to Simulate Low-energy Buildings in a Cold Climatic Region
Bizoňová et al. Methods of Preliminary Estimation of Total Solar Energy Transmittance (TSET) on a Sun Protected Window with Climatic Chamber and Hot Box Apparatus
KR102648115B1 (en) System, method, computer program and computer readable recording medium for controlling HVAC of structure
KR102607305B1 (en) Apparatus and method for calculating degree of thermal influence of air conditioners which is definde as degree of evenly changing indoor temperature of each point of target area
EP4379279A1 (en) Hygienic ventilation system and method for controlling such a ventilation system
JP5563325B2 (en) Building solar collector
Shi et al. Radiant systems and solar-driven overheating: a comprehensive literature analysis over a decade

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200630

R150 Certificate of patent or registration of utility model

Ref document number: 6727446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250