WO2019034116A1 - 基于人工介质圆柱透镜高楼覆盖多波束天线 - Google Patents

基于人工介质圆柱透镜高楼覆盖多波束天线 Download PDF

Info

Publication number
WO2019034116A1
WO2019034116A1 PCT/CN2018/100879 CN2018100879W WO2019034116A1 WO 2019034116 A1 WO2019034116 A1 WO 2019034116A1 CN 2018100879 W CN2018100879 W CN 2018100879W WO 2019034116 A1 WO2019034116 A1 WO 2019034116A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
cylindrical lens
frequency
dual
antenna unit
Prior art date
Application number
PCT/CN2018/100879
Other languages
English (en)
French (fr)
Inventor
肖良勇
王建青
任玉文
焦西斌
王亚
Original Assignee
西安肖氏天线科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安肖氏天线科技有限公司 filed Critical 西安肖氏天线科技有限公司
Publication of WO2019034116A1 publication Critical patent/WO2019034116A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/08Refracting or diffracting devices, e.g. lens, prism formed of solid dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • H01Q19/062Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for focusing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/062Two dimensional planar arrays using dipole aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way

Definitions

  • the present invention relates to the field of radio antennas, and more particularly to a multi-beam antenna for a high-rise mobile communication base station having a dual beam profile.
  • antennas As wireless gateways.
  • the antenna In order to meet the requirements of high gain, low side lobes, narrow beam, wide beam coverage, etc., it is necessary to take into account the scanning speed, cost, environment and other needs. The most important of these is that the antenna must be able to carry large information capacity without increasing its number and site.
  • a Longbo lens antenna is a lens antenna that focuses a plane electromagnetic wave to a focus through a dielectric. Simply moving the feed position along the lens surface or placing multiple feeds can simultaneously receive/transmit multiple signals. There is no need to change the position of the lens antenna, which has the potential to carry multiple antennas and multiple beams.
  • the Longbo lens antenna mainly realizes its function through the Longbo ball medium.
  • the Longbo ball is a sphere with different dielectric constant materials.
  • the dielectric constant material of each layer should theoretically change between 2 and 1. This medium does not exist in nature and is generally synthetic. However, it is actually difficult to achieve this ideal state. In addition, the biggest difficulty is that the quality is too heavy.
  • the approximate change state is usually simulated to make a dragon ball.
  • Conventional Lombor lens antennas are mainly produced by perforating a substrate or by foaming. The foaming method can only achieve a dielectric constant of less than 1.4. The manufacturing process of the punching method is complicated, and the dielectric constant is difficult to be close to the ideal curve, resulting in low radiation efficiency and too heavy. For a long time, it can only be used as a passive target detection of Centimeter wave radar, blind drop of airport runway, etc., and it is difficult to enter the civilian field.
  • the Longbo lens antenna used in the prior art is also equipped with a vertical beam electro-optic down-tilt mechanism.
  • Chinese invention patent discloses an antenna with a lens base station, the core of which is a medium cylindrical rod with uniform dielectric constant as a lens, but the dielectric constant of the dielectric body is a uniform value.
  • the radiation effect of the antenna is difficult to compare with the Longbo artificial dielectric multilayer lens.
  • it is excited (irradiated) by a 3-sided 10-cell base station antenna at the 120° periphery of the lens to form a 3-beam 120° coverage.
  • the beam gain of the antenna is only 1 dB, and the antenna can only generate high frequency beams, and low frequency coverage cannot be achieved.
  • the antenna structure is relatively complicated, and a total of 30 unit antennas are used, which has a large structure, complicated installation, and high manufacturing and installation costs.
  • the Chinese invention patent (20041009512.0: High-frequency multi-beam antenna system) discloses a high-frequency multi-beam antenna system comprising a focusing device and a radiating element, the focusing device having a rotating profile which is surrounded by a cross section of the dielectric lens The rotation of the axis is generated.
  • the radiating element illuminates the focusing device to radiate at an azimuth angle of 360°, the coverage of the horizontal plane is large, but the range of the blind zone is large, the signal intensity is weak, the anti-interference ability is poor, and the lobe width on the elevation plane is narrow, and the throughput of the system is There are certain restrictions on the speed of the network, and it is difficult to cover the high-rise buildings.
  • the present invention proposes a highly integrated antenna covering a high-rise building, specifically a multi-beam antenna based on an artificial medium cylindrical lens high-rise covering, including a cylindrical lens, an antenna unit group and a metal. a bottom plate, the cylindrical lens being made of an artificial medium material; the multi-beam antenna comprising two identical antenna unit groups, the antenna unit group comprising a plurality of antenna units; the antenna unit being an independent individual, fixed in the a metal substrate, as a whole; the two antenna element groups are distributed on the same side of the cylindrical lens, and are evenly arranged along the semicircular surface of the cylindrical lens as two rows;
  • a circumferential arc is formed along the circumference of the cylindrical surface of the cylindrical lens at a height of 1/2, and the two antenna element groups are respectively disposed above and below the circumferential arc;
  • the horizontal center line spacing of the two antenna unit groups ranges from 24 to 35 cm;
  • the two antenna element groups each include n independent antenna units, specifically including a plurality of dual-frequency dual-polarized antenna units and a plurality of single-high frequency dual-polarized antenna units.
  • the specific value of n is determined according to the diameter of the cylindrical lens and the specific parameter design of the multi-beam antenna;
  • n 7
  • n 7
  • the value of n is 7, including three dual-frequency dual-polarized antenna units and four separate high-frequency dual-polarized antenna units;
  • the dual-frequency dual-polarized antenna unit and the single-high frequency dual-polarized antenna unit are arranged at intervals in each of the antenna element groups.
  • the dual-frequency dual-polarized antenna unit is specifically a nested dual-frequency dual-polarized antenna unit, which is constructed by nesting a high-frequency antenna unit in a low-frequency antenna unit.
  • each single high frequency dual polarized antenna unit comprises a pair of +/- 45[deg.] dipole antennas
  • the low frequency antenna unit includes a pair of +/- 45° dipole antennas
  • the high frequency antenna unit contains a pair of +/- 45[deg.] dipole antennas.
  • the adjacent antenna unit spacing in each antenna element group is 1-3 cm, and the focal length between the antenna unit and the cylindrical lens ranges from 10-15 cm.
  • each of the antenna elements radiates a maximum direction through a central axis of the cylindrical lens.
  • the cylindrical lens has a height of 40-70 cm;
  • the cylindrical lens has a height of 50-65 cm;
  • the cylindrical lens has a height of 50-60 cm;
  • the cylindrical lens has a diameter of 30-70 cm;
  • the cylindrical lens has a diameter of 50-65 cm;
  • the cylindrical lens has a diameter of 60-65 cm.
  • the cylindrical lens has a cylindrical shape and includes a plurality of concentric layers having different dielectric constants, and the central cylindrical layer is represented as a first layer, and the remaining layers are sequentially arranged around the central cylindrical layer, and the concentric layers are assembled.
  • the dielectric constants of the plurality of concentric layers of the artificial medium multilayer cylindrical lens are reduced from the inside to the outside, and vary from 2.05 to 1.05.
  • the plurality of concentric layers are made of a material having a high dielectric constant and a low specific gravity from a low dielectric constant substrate, and the low dielectric constant substrate is a light foaming dielectric material, specifically a density of 0.02. -0.03 g/cm 3 of material.
  • the light foaming medium material is polystyrene, polyvinyl chloride or polyethylene
  • the high dielectric constant, low specific gravity material comprises one or more of ceramic powder, aluminum silver powder and metal wire.
  • the focal length of the antenna referred to in the present invention is the distance between the inside of the antenna unit and the outer surface of the cylindrical lens.
  • Each antenna unit should have excellent electrical performance, wherein the frequency should meet the low frequency unit of 806-960MHz, the high frequency unit is 1710-2690MHz, the gain is >8dBi, the standing wave ratio is ⁇ 1.4, the isolation is >28dB, and the third order intermodulation is ⁇ -150dBc. .
  • the number of beams of the antenna can be designed according to the application, and the number of beams is the number of antenna elements.
  • the antenna gain can be designed according to the application, and is determined by the gain of the unit, the number of beams, and the size of the cylindrical lens of the artificial medium.
  • the nominal antenna gain of the present invention is the beam gain.
  • the two dual-polarized antenna elements are staggered along the outer side of the cylindrical lens, and the interval should be determined according to the intersection of two adjacent beams at an intermediate frequency of about -10 dB.
  • the maximum antenna gain can be obtained by adjusting the distance between the surface of the antenna element and the cylindrical surface of the medium.
  • the invention provides an artificial medium cylindrical lens high-rise covered multi-beam antenna, and uses an artificial medium multi-layer cylindrical lens as a carrier to arrange a plurality of independent unit antennas (not array antennas) along the outer side of the medium cylinder,
  • the performance is better than that of a traditional multi-beam array antenna, and the implementation is much simpler.
  • the artificial medium cylinder multi-beam antenna challenges the conventional array antenna.
  • the multi-beam antenna provided by the present invention uses an artificial medium multi-layer cylindrical lens as a carrier, and the main advantage of the conventional multi-beam antenna and the existing spherical or hemispherical Lombor lens antenna is the vertical surface lobe width. It is 2-3 times wider than the traditional antenna, and can obtain a wider coverage area without the need for pitch surface scanning, thus eliminating the need for complex electrical adjustment mechanisms, simplifying traditional two-dimensional scanning into one-dimensional scanning, regardless of the mobile communication base station. Antennas, phased array antennas, outdoor WiFi coverage, Mmimo, and 5G all have great potential.
  • the invention provides a high-rise building with a double-beam covering with a pitch surface, which is an excellent solution for solving the signal blind zone of a high-rise building.
  • the multi-beam antenna provided by the present invention is highly integrated, and can integrate a single antenna of 10 counts in a duty volume of less than half a cubic meter, and can generate up to several 10 beams.
  • Various coverage requirements can be realized as needed, and only one site is needed, which can greatly save antenna footprint and save resources.
  • Multi-beam antennas can double the capacity, adapt to the needs of current and future information transmission bursts, and have wider application fields.
  • the multi-beam antenna provided by the present invention uses an artificial medium multilayer cylindrical lens as a carrier, and the total apparent density of the artificial medium cylindrical lens used is 0.08-0.09 g/cm 3 , and the mass is about 11 times lighter than that of the polyvinyl chloride natural medium.
  • the traditional lens is light in weight and small in size, which can greatly expand the application range of the antenna.
  • the multi-beam antenna provided by the present invention is light in weight and small in size, and is characterized in that double coverage can be realized in a vertical plane, so that it is not necessary to install a complicated vertical beam electro-optic down-tilt mechanism, and the antenna structure is simple, which is the largest of the present invention. Highlights.
  • FIG. 1 is a perspective view of a full-frequency 180° sector high-rise covered antenna of a de-energizing down-tilt mechanism 20 provided by the present invention
  • FIG. 2 is a top plan view of a beam-to-electrical down-tilt mechanism 20 full-frequency 180° sector high-rise covered antenna provided by the present invention
  • FIG. 3 is a front view of a beam-to-electrical down-tilt mechanism 20 full-frequency 180° sector high-rise covered antenna provided by the present invention
  • FIG. 4 is a structural diagram of a dual-frequency dual-polarized antenna unit provided by the present invention.
  • FIG. 5 is a structural diagram of a single high frequency dual polarization antenna unit provided by the present invention.
  • FIG. 6 is a schematic diagram of a low frequency 3 beam horizontal antenna of a beam-to-electrical down-tilt mechanism 20 full-frequency 180° sector high-rise covered antenna provided by the present invention
  • FIG. 7 is a measured view of a high-frequency 7-beam horizontal plane antenna of a beam-to-electrical down-tilt mechanism 20 beam full-frequency 180° sector high-rise covered antenna provided by the present invention
  • FIG. 8 is a schematic diagram of a high-frequency vertical plane dual-beam antenna of a beam-to-electrical down-tilt mechanism 20 full-frequency 180° sector high-rise covered antenna provided by the present invention
  • FIG. 9 is a schematic diagram of a low-frequency vertical plane dual-beam antenna of a de-energized down-tilt mechanism 20 beam full-frequency 180° sector high-rise covered antenna provided by the present invention
  • FIG. 10 is a comparison diagram of the measured direction of the high-frequency vertical plane antenna of the full-frequency 180° sector high-rise covered antenna of the de-energizing down-tilt mechanism 20 and the conventional electric adjustable antenna provided by the present invention.
  • 1 cylindrical lens
  • 2 antenna unit group
  • 3 metal base plate
  • 4 dual-frequency dual-polarized antenna unit
  • 5 single-frequency dual-polarized antenna unit
  • 6 high-frequency antenna unit
  • 7 low-frequency antenna unit
  • 8 low frequency antenna unit +45° polarized dipole
  • 9 high frequency antenna unit +45° polarized dipole
  • 10 high frequency antenna unit -45° polarized dipole
  • 11 low frequency antenna unit - 45° polarized dipole
  • 12 single high frequency dual polarized antenna unit +45° polarized dipole
  • 13 single high frequency dual polarized antenna unit -45° polarized dipole
  • 14 conventional electric The measured direction of the high-frequency vertical plane antenna of the antenna is adjusted
  • 15 The measured direction of the high-frequency vertical plane antenna of the antenna of the de-energized down-tilt mechanism 20 full-frequency 180° sector high-rise covered antenna provided by the present invention.
  • the artificial medium cylindrical lens multi-beam antenna utilizes an artificial medium cylindrical lens multi-beam to amplify the radiation signal (the gain of the radiation element can be increased by more than 10 dB), and the artificial medium cylindrical lens is used as a carrier, and n antenna units are used. It is arranged on the focal line of the cylindrical lens to form a multi-beam antenna. After the antenna unit is combined with the dielectric body cylindrical lens 1, the low-frequency antenna gain can reach 14.5dBi, and the high-frequency antenna gain can reach 20dBi, forming a multi-beam high-gain antenna.
  • the invention provides a high-rise covered multi-beam antenna based on an artificial medium cylindrical lens, comprising a cylindrical lens 1, an antenna unit group 2 and a metal base plate 3, the cylindrical lens 1 is made of an artificial medium material; the multi-beam antenna comprises two identical antennas.
  • a unit group 2 the antenna unit group 2 includes a plurality of antenna units; the antenna unit is an independent individual, is fixed on the metal base plate 3, and is integrated; two antenna element groups 2 are distributed in the same shape of the cylindrical lens 1.
  • the semicircular surfaces of the cylindrical lens 1 are evenly arranged in two rows.
  • the cylindrical lens 1 is made of artificial medium material and has a cylindrical shape, and includes a plurality of concentric layers having different dielectric constants.
  • the central cylindrical layer is represented as a first layer, and the remaining layers are sequentially arranged around the central cylindrical layer.
  • the concentric layers are assembled into a multi-layered cylinder.
  • the dielectric constants of the plurality of concentric layers of the artificial medium multilayer cylindrical lens are reduced from the inside to the outside, and vary from 2.05 to 1.05.
  • a plurality of concentric layers are made of a material having a low dielectric constant and a low specific gravity by a low dielectric constant substrate during the preparation process.
  • the low dielectric constant substrate used in the manufacture of cylindrical lenses in the present invention is generally selected from light foaming dielectric materials.
  • the specific material is not particularly limited, but a foam material having a lower density is generally used, and for example, a material having a density of 0.02 to 0.03 g/cm 3 may be used.
  • the substrate from which the cylindrical lens is made may be selected from the group consisting of polystyrene, polyvinyl chloride or polyethylene. More preferably, the substrate used is polystyrene.
  • the cylindrical lens 1 used in the present invention generally uses a material having a higher dielectric constant and a lower specific gravity in order to ensure a lower lens density and lighter weight.
  • this material may be a mixture of one or more materials.
  • the material may be selected from one or more of ceramic powder, aluminum silver powder, and metal wire. The above materials are all known materials and are commercially available.
  • the number, height, and diameter of the cylindrical lens 1 used in the present invention, and the number of antenna elements, the arrangement outside the cylindrical lens, and the like can be selected or produced according to the application scenario and the antenna index, and are not particularly limited.
  • the finished product should be inspected in a microwave darkroom measured by an antenna.
  • the specific function of the invention is achieved by a preferred artificial media lens.
  • the number of layers of the lens used may be all integers greater than one (not included). In general, the more the number of lens layers, the closer the dielectric constant changes to the ideal change trend, and the better the lens performance. However, as the number of layers increases, the more complicated the production is, the larger the amount of voids that may occur between the layers during assembly, and the presence of air causes the performance of the cylindrical lens 1 to be greatly reduced.
  • the height and diameter of the cylindrical lens 1 can be selected according to actual needs, but should not be too large.
  • the lens used in the present invention has a height of 40 to 70 cm, more preferably 50 to 65 cm, further preferably 50 to 60 cm; a diameter of preferably 30 to 70 cm, more preferably 50 to 65 cm, still more preferably 60. -65cm.
  • the diameter of the lens depends on the number of beams.
  • the antenna unit used in the present invention is an independent individual, and is fixed to the metal base plate 3 and arranged on the circumferential surface of the cylindrical lens.
  • the antenna unit used may be selected according to specific needs. For example, one or more of a dual-frequency dual-polarized antenna unit, a single-frequency dual-polarized antenna unit, and a single-frequency single-polarized antenna unit may be selected.
  • the arrangement may also be set according to specific needs, but it should be ensured that the maximum radiation direction of each antenna unit passes through the central axis of the cylinder of the cylindrical lens 1.
  • the antenna elements are equally divided into two groups and disposed on the same side of the circumferential surface of the cylindrical lens 1.
  • the two antenna unit groups 2 are evenly arranged along the circumferential surface of the cylindrical lens 1 in two rows. That is, from the top view, the upper row of antenna elements completely covers the next row of antenna elements.
  • Each of the antenna element groups 2 is arranged in an arc shape along the outer circumference of the cylindrical lens 1, and the angle of the arc is preferably slightly smaller than 180°.
  • the two dual-polarized antenna elements are staggered along the outer side of the cylindrical lens 1, and the interval should be determined according to the intersection of two adjacent beams at an intermediate frequency of -10 dB. .
  • the distance between the inside of each antenna element and the outside of the cylindrical surface of the cylindrical lens 1, that is, the so-called antenna focal length, should be adjusted according to the specific performance of the antenna to obtain the maximum gain.
  • the specific arrangement and spacing of the antenna elements should be determined according to specific needs.
  • the horizontal center lines of the upper and lower antenna element groups 2 should be parallel when the antenna elements are arranged along the circumferential surface of the cylindrical lens, and the horizontal center line spacing of the two rows is preferably
  • the adjacent antenna element gap in each antenna unit group 2 is preferably 1-3 cm, and the antenna focal length is preferably 10-15 cm.
  • the high frequency antenna unit 6 and the low frequency antenna unit 7 constituting the nested dual-frequency dual-polarized antenna unit 4 in the present invention are both dual-polarized antenna units, and the reason for not specifying "dual polarization" is not stated at the time of naming. It is intended to be distinguished from the single high frequency dual polarized antenna unit 5 when expressed in the claims. In essence, however, the high frequency antenna unit 6 for nesting is identical to the single high frequency dual polarized antenna unit 5 acting alone, they also each contain a pair of +/- 45° dipole antennas, both The only difference is that the high frequency antenna unit 6 participates in nesting to form the dual frequency dual polarized antenna unit 4, and is no longer a separate antenna unit.
  • n means the total number of dual-frequency dual-polarized antenna elements 4 and single-high frequency dual-polarized antenna elements 5.
  • the high frequency antenna unit 6 and the low frequency antenna unit 7 are not included.
  • the de-energizing down-tilt mechanism 20 has a full-frequency 180° sector dual-beam high-rise covered antenna perspective view, including a cylindrical lens 1, an antenna unit group 2, and a metal base plate 3.
  • the cylindrical lens 1 is made of an artificial dielectric material
  • the multi-beam antenna in this embodiment includes two identical antenna element groups 2, each of which includes a plurality of antenna elements.
  • the antenna unit is a separate entity that is fixed to the metal base plate 3 and is integrated.
  • the two antenna element groups 2 are distributed on the same side of the cylindrical lens 1, and are evenly arranged in two rows along the semicircular surface of the cylindrical lens 1. .
  • each antenna element group 2 of the multi-beam antenna includes seven Independent antenna unit, specifically three dual-frequency dual-polarized antenna units 4 with reflectors and four single-frequency dual-polarized antenna units 5 with reflectors, wherein each dual-frequency dual-polarized antenna unit 4 passes A high frequency antenna unit 6 is nested within a low frequency antenna unit 7.
  • the smallest antenna elements before each nesting each contain a pair of +/- 45° polarized dipoles. That is, each antenna unit group 2 includes a total of 10 minimum antenna units, including 3 low frequency units and 7 high frequency units, which can form 10 beams. In this embodiment, two identical antenna element groups 2 are included, so that a total of 20 beams are formed.
  • the 20-beam antenna provided by the present invention uses a cylindrical lens 1 made of an artificial medium material, and the cylindrical lens 1 includes a plurality of concentric layers having different dielectric constants, the central cylindrical layer is represented as a first layer, and the other layers surround the central cylindrical layer.
  • the casings are arranged in turn, and the concentric layers are assembled into a multi-layered cylinder whose dielectric constant is gradually decreased from the first layer to the outside, specifically varying between 2.05 and 1.05.
  • the selected cylindrical lens has a diameter of 65 cm and a height of 55 cm.
  • the de-energizing down-tilt mechanism 20 beam full-frequency 180° sector dual-beam high-rise coverage antenna top view shows that the 20-beam antenna includes two antenna element groups 2, each group including three pairs. Frequency dual polarized antenna unit 4 and four single high frequency antenna units 5.
  • the dual-frequency dual-polarized antenna unit 4 is arranged at intervals with the single-high frequency antenna unit 5.
  • the gap of adjacent antenna elements in each antenna unit group 2 is 2 cm on average, and the planes of the antenna elements are adjusted so as to be evenly spaced 13 cm from the outer surface of the cylindrical lens 1 (adjusting the antenna focal length).
  • the de-energizing down-tilt mechanism 20 beam full-frequency 180° sector double-beam high-rise covered antenna main view, marking a circle at the 1/2 height of the cylindrical lens 1 to form a circumferential arc, a group Seven independent antenna elements are arranged at 12.5 cm above the outer circumferential arc of the cylindrical lens 1, and the other antenna element group is arranged at 12.5 cm below the circumferential arc. Finally, the center line spacing of the two antenna element groups 2 is 25 cm. The maximum direction of radiation of each antenna element passes through the central axis of the cylindrical lens 1.
  • the upper and lower rows of antenna unit groups 2 respectively connect the positive and negative polarized dipoles to 20 RF coaxial heads on the base of the radome, and the upper and lower rows have a total of 40 RF coaxial heads.
  • two beams of vertical (pitch) planes will be generated, one of which is tilted by 15° and the other by 15°, forming an ultra-wide beam coverage of the tall building.
  • the two rows of antenna units are fixed integrally with the cylindrical lens 1 and the radome base to form a 20-beam full-frequency 180° sector dual-beam high-rise covered antenna.
  • the frequency of the low-band dual-polarized antenna unit 4 in the present invention is 806-960 MHz
  • the frequency of the high-band dual-polarized antenna unit 4 is 1710-2690 MHz
  • the VSWR of all high and low frequency units is less than 1.4
  • all the high and low frequency unit gains are obtained.
  • More than 8.0dBi the isolation between each unit is greater than 28dB
  • the third-order intermodulation of all high and low frequency units is less than -150dBc.
  • the low-frequency antenna gain can reach 14.5dBi
  • the high-frequency antenna gain can reach 20.0dBi.
  • FIG. 4 is a structural diagram of a dual-frequency dual-polarized antenna unit according to the embodiment. It is constructed by nesting a high frequency antenna unit 6 in the center of a low frequency antenna unit 7. The dual-frequency dual-polarized antenna unit 4 formed after the nesting is mounted on the metal base plate 3 to be integrated.
  • FIG. 5 is a structural diagram of a single high frequency dual polarization antenna unit according to the embodiment.
  • the single high frequency dual polarized antenna unit 5 is mounted on the metal base plate 3, and the two are integrated.
  • 6-10 are actual measurement directions of the antennas of the multi-beam antenna in the horizontal plane and the vertical plane according to the embodiment, and the following is specifically analyzed as follows:
  • FIG. 6 is a diagram showing the measured direction of the low-frequency (850 MHz) 3 beam antenna of the horizontal full-frequency 180° sector dual-beam high-rise covered antenna provided by the de-energizing down-tilt mechanism 20 according to the embodiment. The figure shows that the antenna gain reaches 14.6dBi.
  • FIG. 7 is a schematic diagram showing the measured direction of a high-frequency (1920 MHz) 7-beam antenna of a horizontal full-frequency 180° sector dual-beam high-rise covered antenna provided by the de-energizing down-tilt mechanism 20 according to the present embodiment. The figure shows that the antenna gain reaches 20.32dBi.
  • FIG. 8 is a schematic diagram showing the measured direction of the high-frequency vertical double-beam antenna of the beam-to-electrical down-tilt mechanism 20 beam full-frequency 180° sector dual-beam high-rise covered antenna provided in the embodiment, and the antenna gain can be seen in the figure. 20.32dBi.
  • FIG. 9 is a schematic diagram showing the measured direction of the low-frequency vertical double-beam antenna of the full-frequency 180° sector dual-beam high-rise covered antenna of the de-energizing down-tilt mechanism 20 according to the embodiment.
  • the antenna gain is 14.60. dBi.
  • FIG. 10 is a comparison diagram of the measured direction of the high-frequency vertical plane of the beam-to-electrical down-tilt mechanism 20 beam full-frequency 180° sector dual-beam high-rise covered antenna and the conventional electronically-tuned antenna provided in the embodiment.
  • FIG. It is a measured direction of the high-frequency vertical plane antenna of the conventional electric adjustable antenna, and the line 15 is the measured direction of the high-frequency vertical plane antenna of the beam-removing down-tilt mechanism 20 full-frequency 180° sector high-rise covered antenna provided by the present invention.
  • the vertical plane lobe width of the antenna provided by the present invention is 14.74°, and the lobe width of the electric adjustment antenna is 5.86°, and the antenna flap width provided by the present invention is about 3 times that of the conventional electric adjustment antenna, so the present invention
  • the antenna provided does not require an electrical adjustment mechanism. From Fig. 5, the field strength of most places with a tilt angle of 0°-90° under the base station radiation can be seen.
  • the present invention is about 10-15 dB higher than the electric adjustable antenna, that is, the signal-to-interference ratio is higher than that of the same gain. According to Shannon's theorem, the network speed will be faster and the system capacity will be larger. Especially suitable for dense users and big data traffic business areas.
  • a comprehensive analysis of the measured antenna pattern provided in this embodiment shows that the antenna provided in this embodiment is in the measured direction of the horizontal antenna, and the gain of the beam antenna unit in the high frequency (1290 MHz) region is up to 20.32 dBi.
  • the gain of the 3 beam antenna unit in the low frequency (850MHz) area can reach 14.6dBi; the antenna lobe width in the measured direction of the vertical plane antenna can reach 14.74°, which can not only save the ESC mechanism, but also the lobe width in the vertical plane.
  • the traditional electric adjustable antenna is about 3 times, which has obvious advantages.
  • the antenna provided in this embodiment only has 6 low-frequency, 14 high-frequency dual-polarized antenna units and 40 RF ports (ie, 40 dipole antennas), and generates 20 beams (for example, according to positive and negative couples).
  • the pole calculation is actually 40 beams) and can achieve full 180° coverage in the horizontal plane.
  • Multi-beam antennas can multiply capacity and accommodate the needs of current and future information transmission bursts.
  • the antenna elevation plane pattern provided by the present invention has dual beams, which are respectively upturned and down-tilted, and both have the characteristics of a fan-shaped wide beam, and the other feature is that the vertical plane pattern of each beam is wider than that of the conventional electric adjustment antenna.
  • the field strength is dominant in most areas covered, so there is no need for an ESC mechanism. It can effectively avoid the "black under the tower” phenomenon that is easy to appear in traditional antennas. It also solves the problem that high-rise buildings can not receive mobile signals, and the application field is wider, especially suitable for dense users and big data traffic business areas.

Abstract

本发明提供了一种基于人工介质圆柱透镜的高楼覆盖多波束天线,以人工介质圆柱透镜为载体高度集成多个天线单元构成,其包括圆柱透镜1,天线单元组2和金属底板3,所述圆柱透镜1由人工介质材料制成;所述多波束天线包括两个相同的天线单元组2,所述天线单元组2包括多个天线单元;所述天线单元为独立个体,固定在所述金属底板3上,成为一个整体;所述两个天线单元组2分布于所述圆柱透镜1的同一侧,沿所述圆柱透镜1的半圆周面均匀排列为上下两行。该天线俯仰面方向图具有双波束,分别上翘和下倾,可以省去复杂的电调机构,并解决了高楼高层接收不到移动信号的难题,特别适用于密集用户及大数据流量业务区。

Description

基于人工介质圆柱透镜高楼覆盖多波束天线 技术领域
本发明涉及无线电天线领域,更具体地,本发明涉及一种用于高楼移动通信基站的多波束天线,该天线俯仰面方向图具有双波束。
背景技术
随着移动通信4G、5G、MIMO、卫星通信、雷达、电子战等无线领域市场的需求迅速扩张,对作为无线出入口的天线也提出了新的技术要求。在满足高增益、低副瓣、窄波束、波束覆盖范围广等要求的同时还要兼顾扫描速度、成本、环境等需要。其中最重要的是天线既要能承载超大信息容量,又不能增加其数量和站址。
多波束天线的出现可以解决上述技术问题,传统的多波束天线是用多波束形成网络(BFN)激励辐射单元平面阵列、或用多级巴特勒矩阵等做成。然而,由于存在不对称波束、隔离度、网络损耗导致增益损失、频带窄等问题,使其难以大规模应用。龙伯透镜天线是一种透过电介质将平面电磁波聚焦至焦点的透镜天线,只需沿着透镜表面简单地移动馈源位置,或放置多个馈源,就可以同时接收/发射多个信号而不需改变透镜天线的位置,其具有承载多天线、多波束潜力。龙伯透镜天线主要通过龙伯球介质来实现其功能,龙伯球是一个具有多层介电常数不同材料的球体,各层介电常数材料理论上应在2到1之间渐变。自然界不存在这种介质,一般是人工合成。但实际上很难达到这种理想状态,此外最大的难点是质量太重。通常会模拟近似的变化状态来制成龙伯球。传统的龙伯透镜天线主要通过在基材上打孔或通过发泡方式制作。发泡法只能做到介电常数小于1.4,打孔法制造工艺及其复杂,介电常数很难贴近理想变化曲线,导致透镜的辐射效率低而且太重。长期以来只能作为厘米波雷达无源目标探测、机场跑道盲降等少量应用,难以进入民用领域。
为了减轻龙伯球的重量,研究人员进行了几十年的努力,最近在市场上已见到应用于移动通信领域的多波束龙伯球透镜天线(2017年美国特朗普总就职典的百万群众集会上,见US20110003131A1)。但支撑龙伯球透镜天线的结构过于庞大复杂。且与传统移动通信基站天线一样,也必配有复杂的垂直波束下倾机构,这是由于垂直面波束宽度窄的缘故,这增加了应用的操作难度、复杂性和成本。
传统无线通讯系统中想要实现高增益扇区覆盖多采用半功率波瓣宽度为65°的扇区天线覆盖120°扇区。如果要增大用户容量,一般是增多频点,但受频率资源限制。只有再加装 扇区天线,这又受站点限制。为增大容量,已经采用的技术是所谓“劈裂天线”,它将每个扇区分成两个扇区,即2波束/120°覆盖。更多波束则用传统阵列天线理论及电子波束赋形方法,但非常复杂,能耗、成本、重量等大幅上升,难于大规模应用。特别是对写字楼密集的高楼高层,由于垂直方向图波瓣太窄,即使用垂直方向图电调机构也不可能同时覆盖高楼高层。
航天特种材料及工艺技术研究所申请了一系列龙伯透镜天线相关专利,包括球形和半球形龙伯透镜,结构和制造方法较为类似。以中国实用新型专利(201520112560.6:一种半球龙伯透镜天线)为例,其公开了一种半球龙伯透镜天线,该透镜使用增材制造(通常称3D打印)的方式制作,使用该方法制备透镜虽然不需要模具,各层介电常数可以得到较为精确的控制,但是,使用增材制造方式来制作透镜在材料的选择上有一定限制,无法使用密度非常低的泡沫类材料。制作的透镜重量还是很难有突破性的降低。应用于民用领域中时质量上仍不占优势。虽然该专利中未提到,但现有技术中应用的龙伯透镜天线也要安装垂直波束电调下倾机构。
中国发明专利(201480057832.5:带透镜基站天线)公开了一种带透镜基站的天线,其核心是用一种均匀介电常数的介质圆柱棒作为透镜,但其介质体的介电常数为统一值,该天线的辐射效果很难媲美龙伯人工介质多层透镜。且在该透镜的120°外围由3面10单元基站天线激励(照射),形成3波束120°覆盖。该天线的波束增益只有1dB,且该天线只能产生高频波束,无法实现低频覆盖。另外,该天线结构较为复杂,共使用了30个单元天线,结构庞大,安装复杂,制作和安装成本都较高。
中国发明专利(20041009512.0:高频多波束天线系统)公开了一种高频多波束天线系统,包括聚焦装置和辐射元件,该聚焦装置具有旋转外形,该旋转外形由介质透镜的横截面围绕其面中的轴旋转产生。该辐射元件照射聚焦装置使其以360°方位角辐射,水平面覆盖范围大,但盲区范围较大,信号强度较弱,抗干扰能力差,且在俯仰面上波瓣宽度窄,系统的吞吐量、网速有一定的限制,难以覆盖高楼高层。
发明内容
为解决现行无线网络信号难以覆盖高楼高层的难题,本发明提出了一种覆盖高楼的高度集成天线,具体为一种基于人工介质圆柱透镜高楼覆盖多波束天线,包括圆柱透镜,天线单元组和金属底板,所述圆柱透镜由人工介质材料制成;所述多波束天线包括两个相同的天线 单元组,所述天线单元组包括多个天线单元;所述天线单元为独立个体,固定在所述金属底板上,成为一个整体;所述两个天线单元组分布于所述圆柱透镜的同一侧,沿所述圆柱透镜的半圆周面均匀排列为上下两行;
优选地,沿所述圆柱透镜圆周面1/2高度处标记一周形成一圆周弧线,所述两个天线单元组分别设置于所述圆周弧线上方和下方;
优选地,所述两个天线单元组水平中心线间距取值范围为24-35cm;
其特征在于,所述两个天线单元组每组包括n个独立的天线单元,具体包括若干个双频双极化天线单元和若干个单高频双极化天线单元。
优选地,n的具体数值根据所述圆柱透镜的直径和所述多波束天线的具体参数设计确定;
更优选地,所述n的取值为7,包括3个双频双极化天线单元和4个单独的高频双极化天线单元;
优选地,所述每个天线单元组中双频双极化天线单元与单高频双极化天线单元交叉间隔排列。
优选地,所述双频双极化天线单元具体为嵌套式双频双极化天线单元,通过在一个低频天线单元内嵌套一个高频天线单元构成。
优选地,每个单高频双极化天线单元含有一对+/-45°偶极子天线;
所述低频天线单元含有一对+/-45°偶极子天线;
所述高频天线单元含有一对+/-45°偶极子天线。
优选地,所述每个天线单元组中相邻天线单元间隔为1-3cm,所述天线单元与所述圆柱透镜之间的焦距取值范围为10-15cm。
优选地,所述各天线单元辐射最大方向通过所述圆柱透镜的中轴线。
优选地,所述圆柱透镜高度为40-70cm;
优选地,所述圆柱透镜高度为50-65cm;
优选地,所述圆柱透镜高度为50-60cm;
优选地,所述圆柱透镜直径为30-70cm;
优选地,所述圆柱透镜直径为50-65cm;
优选地,所述圆柱透镜直径为60-65cm。
优选地,所述圆柱透镜外形为圆柱体,包括多个介电常数不同的同心层,中心圆柱层表示为第1层,围绕中心圆柱层依次向外套叠排列其余各层,各同心层被装配成一个多层圆柱体,所述人工介质多层圆柱透镜的多个同心层介电常数由内向外逐层降低,具体在2.05-1.05间变化。
优选地,所述多个同心层由低介电常数的基材添加高介电常数、低比重的材料制成,所述低介电常数的基材为轻型发泡介质材料,具体为密度0.02-0.03g/cm 3的材料。
优选地,所述轻型发泡介质材料为聚苯乙烯、聚氯乙烯或聚乙烯,所述高介电常数、低比重的材料包括陶瓷粉、铝银粉、金属丝中的一种或几种。
本发明中所称天线焦距为天线单元内侧与圆柱透镜外表面的距离。
各天线单元应具备优良电性能,其中频率应满足低频单元为806-960MHz,高频单元为1710-2690MHz,增益>8dBi,驻波比<1.4,隔离度>28dB,三阶互调<-150dBc。
特别地,天线的波束数可以根据应用场合设计,波束数为天线单元数。
特别地,天线增益由可以根据应用场合设计,由单元的增益、波束数和人工介质圆柱透镜的尺寸决定,圆柱体直径越大,波束就越多,增益也越高,各波束的增益值相同。
本发明所标称天线增益为波束增益。
两个双极化天线单元沿圆柱透镜外侧交错排列,其间隔应根据两相邻波束在中间频率相交-10dB左右决定。
可以通过调整天线单元表面与介质圆柱面间距获得最大天线增益。
应注意,本发明所述dBi是相对无方向性天线辐射功率密度高的倍数取对数的值;dB是两种天线增益相对比较的增益,即dB=dBi(1#)-dBi(2#)。
与现有技术相对比,本发明产生的有益效果是:
(1)本发明提供的基于人工介质圆柱透镜高楼覆盖多波束天线,用人工介质多层圆柱透镜作为载体,将多个独立的单元天线(而非阵列天线),沿介质圆柱体外侧排列,就能够达到优于传统多波束阵列天线的性能,实施方式却要简便得多。装配时,无需研究以电磁理论为基础的阵列天线理论,只需要一般工人装配即能生产。可以说人工介质圆柱体多波束天线向传统阵列天线发起了挑战。
(2)本发明提供的多波束天线采用人工介质多层圆柱透镜作为载体,与传统多波束天线以及现有球形或半球形龙伯透镜天线相比,最主要的优点是其垂直面波瓣宽度比传统天线要 宽2-3倍,无需俯仰面扫描即可得到更宽的覆盖面积,因此能省去复杂的电调机构,将传统的二维扫描简化为一维扫描,无论在移动通信基站天线、相控阵天线、室外WiFi覆盖、Mmimo以及5G上都有很大的潜力。本发明提供的用俯仰面双波束覆盖高楼是一个解决高楼信号盲区的优良方案。
(3)本发明提供的多波束天线是高度集成化的,它可将数以10计的单天线集成在一个不足半立方米的占空体积内,能产生多达数以10计的波束,可根据需要实现各种覆盖需求,且只需一个站点,能够大幅度节省天线占地面积,节约资源。多波束天线可成倍地提升容量,可适应当前和未来信息传输大爆发的需求,应用领域更广。
(4)本发明提供的多波束天线采用人工介质多层圆柱透镜作为载体,所用人工介质圆柱透镜总表观密度0.08-0.09g/cm 3,质量比聚氯乙烯天然介质约轻11倍,较传统透镜质量轻,体积小,可大大扩展该天线的应用范围。
(5)本发明提供的多波束天线质量轻,体积小,最大特点在于能够在垂直面实现双覆盖,因此无需安装复杂的垂直波束电调下倾机构,天线结构简单,这是本发明的最大亮点。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
如下附图是本发明提供的一个实施例:一种去电调下倾机构20波束全频180°扇区高楼覆盖天线相关附图,具体附图编号如下:
图1是本发明提供的去电调下倾机构20波束全频180°扇区高楼覆盖天线的立体图;
图2是本发明提供的去电调下倾机构20波束全频180°扇区高楼覆盖天线的俯视图;
图3是本发明提供的去电调下倾机构20波束全频180°扇区高楼覆盖天线的主视图;
图4是本发明提供的双频双极化天线单元结构图;
图5是本发明提供的单高频双极化天线单元结构图;
图6是本发明提供的去电调下倾机构20波束全频180°扇区高楼覆盖天线的低频3波束水平面天线实测方向图;
图7是本发明提供的去电调下倾机构20波束全频180°扇区高楼覆盖天线的高频7波束水平面天线实测方向图;
图8是本发明提供的去电调下倾机构20波束全频180°扇区高楼覆盖天线的高频垂直面双波束天线实测方向图;
图9是本发明提供的去电调下倾机构20波束全频180°扇区高楼覆盖天线的低频垂直面双波束天线实测方向图;
图10是本发明提供的去电调下倾机构20波束全频180°扇区高楼覆盖天线与传统电调天线的高频垂直面天线实测方向比较图。
附图中标记的具体含义如下:
1:圆柱透镜;2:天线单元组;3:金属底板;4:双频双极化天线单元;5:单高频双极化天线单元;6:高频天线单元;7:低频天线单元;8:低频天线单元+45°极化偶极子;9:高频天线单元+45°极化偶极子;10:高频天线单元-45°极化偶极子;11:低频天线单元-45°极化偶极子;12:单高频双极化天线单元+45°极化偶极子;13:单高频双极化天线单元-45°极化偶极子;14:传统电调天线的高频垂直面天线实测方向图;15:本发明提供的去电调下倾机构20波束全频180°扇区高楼覆盖天线的高频垂直面天线实测方向图。
具体实施方式
本发明提供的人工介质圆柱透镜多波束天线,利用人工介质圆柱透镜多波束对辐射信号的放大功能(可将辐射元的增益提高10dB以上),以人工介质圆柱透镜作为载体,将n个天线单元布置在圆柱透镜的焦线上,形成多波束天线。天线单元与介质体圆柱透镜1组合之后,低频天线增益能够达到14.5dBi,高频天线增益能够达到20dBi,构成多波束高增益天线。
关于本发明所用圆柱透镜的详细资料可参考中国发明专利201710713195.8:一种人工介质多层圆柱透镜。
本发明提供一种基于人工介质圆柱透镜的高楼覆盖多波束天线,包括圆柱透镜1,天线单元组2和金属底板3,圆柱透镜1由人工介质材料制成;多波束天线包括两个相同的天线单元组2,所述天线单元组2包括多个天线单元;天线单元为独立个体,固定在所述金属底板3上,成为一个整体;两个天线单元组2分布于所述圆柱透镜1的同一侧,沿圆柱透镜1的半圆周面均匀排列为上下两行。
其中圆柱透镜1由人工介质材料制成,外形为圆柱形,包括多个介电常数不同的同心层,中心圆柱层表示为第1层,围绕中心圆柱层依次向外套叠排列其余各层,各同心层被装配成一个多层圆柱体,所述人工介质多层圆柱透镜的多个同心层介电常数由内向外逐层降低,具体在2.05-1.05间变化。多个同心层在制备过程中,由低介电常数的基材添加高介电常数、低比重的材料制成。
本发明中用以制造圆柱透镜的低介电常数的基材通常选用轻型发泡介质材料。对具体材料没有特别限制,但一般应选用密度较低的发泡材料,例如可以选用密度为0.02-0.03g/cm 3的材料。在一些优选的实施例中,制作圆柱透镜的基材可以选自聚苯乙烯、聚氯乙烯或聚乙烯。更优选的是,所用基材为聚苯乙烯。
本发明所用圆柱透镜1在制备过程中,向基材中添加的材料通常选用介电常数较高,同时比重较低的材料,以保证制备出的透镜密度更低,质量更轻。对于此材料的选择没有特别的限制,可以是一种也可以是多种材料的混合。在一些优选的实施例中,该材料可以选自陶瓷粉、铝银粉、金属丝中的一种或几种。上述材料均为已知材料,可以商业购买得到。
本发明所用圆柱透镜1的层数、高度、直径,以及天线单元的个数,在圆柱透镜外的排列方式等均可以根据应用场景和天线指标选择或制作,没有特别限制。制成的产品需在天线测量的微波暗室检验。本发明的具体作用通过优选的人工介质透镜来实现。
所用透镜的层数可以为大于1(不含)的所有整数。通常情况下,透镜层数越多,其介电常数变化更接近理想的变化趋势,透镜性能越好。但是随着层数的增多制作越复杂,各层之间在装配时可能会出现的空隙量就越大,空气的存在会使得圆柱透镜1的性能大打折扣。
另外,圆柱透镜1的高度和直径可以根据实际需要选择,但不宜过大。考虑到本发明提供的透镜辐射效果更好,质量更轻,所需体积也不需要太大就能实现传统天线复杂机构所能实现的效果。因此,在一些优选的实施例中,本发明所用透镜的高度为40-70cm,更优选50-65cm,进一步优选50-60cm;直径优选为30-70cm,更优选为50-65cm,进一步优选60-65cm。透镜的直径取决于波束数。
本发明中所用天线单元为独立个体,与金属底板3固定在一起,排列于圆柱透镜的圆周面上。所用天线单元可以根据具体需要选择,例如可以选用双频双极化天线单元、单频双极化天线单元、单频单极化天线单元中的一种或几种。其排列方式也可以根据具体需要设置,但应保证各个天线单元的辐射最大方向通过圆柱透镜1的圆柱体中轴线。本发明提供的一个 实施例中,将天线单元等分为两组,设置于圆柱透镜1圆周面同一侧,两个天线单元组2沿圆柱透镜1的圆周面均匀排列为上下两行。即从俯视方向看,上面一行天线单元完全遮盖住下面一行天线单元。每个天线单元组2沿圆柱透镜1外排列为弧形,弧形的角度优选略小于180°。
本发明提供的多波束天线中,天线单元在圆柱透镜1外排列时,两个双极化天线单元沿圆柱透镜1外侧交错排列,其间隔应根据两相邻波束在中间频率相交-10dB左右决定。各天线单元内侧与圆柱透镜1柱面外侧之间的距离,即通常所说的天线焦距,应根据天线具体性能需要调整以获得最大增益。
本发明提供的多波束天线中,天线单元的具体排列方式和间距应根据具体需要确定。在本发明的一个实施例中,圆柱透镜1高度优选50-60cm时,天线单元沿圆柱透镜的圆周面排列时上下两个天线单元组2的水平中心线应平行,两行水平中心线间距优选为24-35cm,每个天线单元组2中相邻天线单元间隙优选为1-3cm,天线焦距优选为10-15cm。
应注意,本发明中构成嵌套式双频双极化天线单元4的高频天线单元6和低频天线单元7都是双极化天线单元,之所以未在命名时写明“双极化”是为了在权利要求中表述时与单高频双极化天线单元5区别开来。但本质上将,用于嵌套的高频天线单元6与单独作用的单高频双极化天线单元5是相同的,他们也都含有一对+/-45°偶极子天线,二者区别仅仅在于高频天线单元6参与嵌套形成双频双极化天线单元4了,不再是一个独立的天线单元。也因此,本发明中所称每个天线单元组2所含有的n个独立的天线单元中,n是指双频双极化天线单元4和单高频双极化天线单元5的总个数,不包括高频天线单元6和低频天线单元7。
实施例一
下面结合附图和具体实施例,对本发明提供的多波束天线的具体实施方式作详细说明。
如附图1所示的去电调下倾机构20波束全频180°扇区双波束高楼覆盖天线立体图,包括圆柱透镜1,天线单元组2和金属底板3。特别地,该圆柱透镜1由人工介质材料制成,本实施例中的多波束天线包括两个相同的天线单元组2,每个天线单元组2包括多个天线单元。该天线单元为独立个体,固定在金属底板3上,成为一个整体。两个天线单元组2分布于圆柱透镜1的同一侧,沿圆柱透镜1的半圆周面均匀排列为上下两行。。
根据天线要求的频率范围,本实施例中每个天线单元组2所包括的n个独立的天线单元中,n的取值为7,即该多波束天线中每个天线单元组2包括七个独立的天线单元,具体为三 个带反射板的双频双极化天线单元4和四个带反射板的单高频双极化天线单元5,其中每个双频双极化天线单元4通过在一个低频天线单元7内嵌套一个高频天线单元6构成。每个嵌套前的最小天线单元各含有一对+/-45°极化偶极子。即每个天线单元组2共包括10个最小天线单元,其中包括3个低频单元,7个高频单元,可以形成10个波束。本实施例中包括两个相同的天线单元组2,因此共形成20个波束。
本发明提供的20波束天线中使用人造介质材料制成的圆柱透镜1,该圆柱透镜1包括多个介电常数不同的同心层,中心圆柱层表示为第一层,其他各层围绕中心圆柱层依次向外套叠排列,各同心层被装配成一个多层圆柱体,其介电常数由第一层向外逐渐降低,具体在2.05-1.05间变化。所选圆柱透镜直径为65cm,高度55cm。
如附图2所示的去电调下倾机构20波束全频180°扇区双波束高楼覆盖天线俯视图可以看出,该20波束天线中包括两个天线单元组2,每组包括三个双频双极化天线单元4和四个单高频天线单元5。所述双频双极化天线单元4与所述单高频天线单元5交叉间隔排列。每个天线单元组2中相邻天线单元间隙平均为2cm,调节各天线单元平面,使其平均距离圆柱透镜1外表面13cm(调节天线焦距)。
如附图3所示的去电调下倾机构20波束全频180°扇区双波束高楼覆盖天线主视图,在圆柱透镜1的1/2高度处标记一周形成一个圆周弧线,将一组7个独立天线单元排列于圆柱透镜1外圆周弧线上方12.5cm处,另一个天线单元组排列于该圆周弧线下方12.5cm处,最终两个天线单元组2中心线间距为25cm。各天线单元辐射最大方向通过圆柱透镜1的中轴线。上下两排天线单元组2分别将正负极化偶极子连接20个射频同轴头安装在天线罩的底座上,上下两排共计40个射频同轴头。采用上述排列方式,将产生垂直(俯仰)面两个波束,其中一个下倾15°,另一个上翘15°,形成对高楼的超宽波束覆盖。两排天线单元与圆柱透镜1及天线罩底座固定成一体,构成20波束全频180°扇区双波束高楼覆盖天线。
根据天线要求,本发明中低频段双极化天线单元4频率为806-960MHz,高频段双极化天线单元4频率为1710-2690MHz,全部高低频单元驻波比小于1.4,全部高低频单元增益大于8.0dBi,各单元之间隔离度大于28dB,全部高低频单元三阶互调小于-150dBc。通过圆柱透镜后,低频天线增益能够达到14.5dBi,高频天线增益能够达到20.0dBi。
附图4所示为本实施例提供的双频双极化天线单元结构图。通过在一个低频天线单元7中央嵌套安装一个高频天线单元6构成。嵌套后形成的双频双极化天线单元4安装于金属底板3上,成为一个整体。
附图5所示为本实施例提供的单高频双极化天线单元结构图。该单高频双极化天线单元5安装于金属底板3上,二者成为一个整体。
附图6-10为本实施例提供的多波束天线在水平面和垂直面上的天线实测方向图,下面结合附图具体分析如下:
附图6所示为本实施例提供的去电调下倾机构20波束全频180°扇区双波束高楼覆盖天线在水平面低频(850MHz)3波束天线实测方向图。图中可以看出天线增益达到14.6dBi。
附图7所示为本实施例提供的去电调下倾机构20波束全频180°扇区双波束高楼覆盖天线在水平面高频(1920MHz)7波束天线实测方向图。图中可以看出天线增益达到20.32dBi。
附图8所示为本实施例提供的去电调下倾机构20波束全频180°扇区双波束高楼覆盖天线的高频垂直面双波束天线实测方向图,图中可以看出天线增益达到20.32dBi。
附图9所示为本实施例提供的去电调下倾机构20波束全频180°扇区双波束高楼覆盖天线的低频垂直面双波束天线实测方向图,图中可以看出天线增益达到14.60dBi。
附图10所示为本实施例提供的去电调下倾机构20波束全频180°扇区双波束高楼覆盖天线与传统电调天线的高频垂直面实测方向比较图,图中,线14为传统电调天线的高频垂直面天线实测方向图,线15为本发明提供的去电调下倾机构20波束全频180°扇区高楼覆盖天线的高频垂直面天线实测方向图。比较可看出,本发明提供的天线垂直面波瓣宽度为14.74°,电调天线的波瓣宽度为5.86°,本发明提供的天线瓣宽是传统电调天线的3倍左右,因此本发明提供的天线无需安装电调机构。由图5仔细对比可见在基站辐射下倾角0°-90°的大部分地点场强,本发明比电调天线平均约高10-15dB,即信干比要高于同增益的电调天线。根据香农定理,网速将更快,系统容量更大。特别适用于密集用户及大数据流量业务区。
综合分析本实施例提供的实测天线方向图(附图6-10)可知:本实施例提供的天线在水平方向天线实测方向图中,高频(1290MHz)区7波束天线单元增益可达20.32dBi,低频(850MHz)区3波束天线单元增益可达14.6dBi;垂直面天线实测方向图中天线波瓣宽度可达14.74°,不仅可以省去电调机构,而且在垂直面上的波瓣宽度是传统电调天线的3倍左右,具有明显优势。
本实施例提供的天线只占一个站点共集成6个低频、14个高频双极化天线单元、40个射频端口(即40个偶极子天线),生成20个波束(如按照正负偶极子计算实际上是40个波束),在水平面内能够实现180°全覆盖。多波束天线可成倍地提升容量,可适应当前和未来信息传输大爆发的需求。另外,本发明提供的天线俯仰面方向图具有双波束,分别上翘和下倾,且均呈现扇形宽波束特点,另一个特点是每个波束的垂直平面方向图较传统电调天线的宽2-3倍,覆盖的大部分区域内场强占优,因此无需电调机构。能够有效避免传统天线易出现的“塔下黑”现象。并解决了高楼高层接收不到移动信号的难题,应用领域更广,特别适用于密集用户及大数据流量业务区。
上文所述的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并不是用以限制本发明的保护范围,在所述技术领域普通技术人员所具备的知识范围内,在不脱离本发明宗旨的前提下作出的各种变化均属于本发明的保护范围。

Claims (10)

  1. 一种基于人工介质圆柱透镜高楼覆盖多波束天线,包括圆柱透镜,天线单元组和金属底板,其特征在于:
    所述圆柱透镜由人工介质材料制成;
    所述多波束天线包括两个相同的天线单元组,所述天线单元组包括多个天线单元;
    所述天线单元为独立个体,固定在所述金属底板上,成为一个整体;
    所述两个天线单元组分布于所述圆柱透镜的同一侧,沿所述圆柱透镜的半圆周面均匀排列为上下两行。
  2. 如权利要求1所述的多波束天线,其特征在于,沿所述圆柱透镜圆周面1/2高度处标记一周形成一圆周弧线,所述两个天线单元组分别设置于所述圆周弧线上方和下方,所述两个天线单元组水平中心线间距取值范围为24-35cm。
  3. 如权利要求1所述的多波束天线,其特征在于,所述两个天线单元组每组包括n个独立的天线单元,具体包括若干个双频双极化天线单元和若干个单高频双极化天线单元。
  4. 如权利要求3所述的多波束天线,其特征在于,n的具体数值根据所述圆柱透镜的直径和所述多波束天线的具体参数设计确定。
  5. 如权利要求3所述的多波束天线,其特征在于,所述每个天线单元组中双频双极化天线单元与单高频双极化天线单元交叉间隔排列。
  6. 如权利要求3所述的多波束天线,其特征在于,所述双频双极化天线单元具体为嵌套式双频双极化天线单元,通过在一个低频天线单元内嵌套一个高频天线单元构成。
  7. 如权利要求5所述的多波束天线,其特征在于,所述每个天线单元组中相邻天线单元间隔为1-3cm,所述天线单元与所述圆柱透镜之间的焦距取值范围为10-15cm。
  8. 如权利要求6所述的多波束天线,其特征在于,所述单高频双极化天线单元含有一对+/-45°偶极子天线,
    所述低频天线单元含有一对+/-45°偶极子天线,
    所述高频天线单元含有一对+/-45°偶极子天线。
  9. 如权利要求1-8中任一项所述的多波束天线,其特征在于,所述各天线单元辐射最大方向通过所述圆柱透镜的中轴线。
  10. 如权利要求1所述的多波束天线,其特征在于,所述圆柱透镜高度为40-70cm,直径为30-70cm。
PCT/CN2018/100879 2017-08-18 2018-08-16 基于人工介质圆柱透镜高楼覆盖多波束天线 WO2019034116A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710714427.1 2017-08-18
CN201710714427 2017-08-18
CN201711016267.X 2017-10-25
CN201711016267.XA CN107968266B (zh) 2017-08-18 2017-10-25 基于人工介质圆柱透镜高楼覆盖多波束天线

Publications (1)

Publication Number Publication Date
WO2019034116A1 true WO2019034116A1 (zh) 2019-02-21

Family

ID=61936517

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2018/100879 WO2019034116A1 (zh) 2017-08-18 2018-08-16 基于人工介质圆柱透镜高楼覆盖多波束天线
PCT/CN2018/100881 WO2019034118A1 (zh) 2017-08-18 2018-08-16 基于人工介质圆柱透镜全向多波束天线
PCT/CN2018/100880 WO2019034117A1 (zh) 2017-08-18 2018-08-16 基于人工介质圆柱透镜扇区多波束天线

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/CN2018/100881 WO2019034118A1 (zh) 2017-08-18 2018-08-16 基于人工介质圆柱透镜全向多波束天线
PCT/CN2018/100880 WO2019034117A1 (zh) 2017-08-18 2018-08-16 基于人工介质圆柱透镜扇区多波束天线

Country Status (2)

Country Link
CN (3) CN107946774B (zh)
WO (3) WO2019034116A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107946774B (zh) * 2017-08-18 2018-11-13 西安肖氏天线科技有限公司 基于人工介质圆柱透镜全向多波束天线
CN107959122B (zh) 2017-08-18 2019-03-12 西安肖氏天线科技有限公司 一种超轻人工介质多层圆柱透镜
US11552390B2 (en) * 2018-09-11 2023-01-10 Rogers Corporation Dielectric resonator antenna system
CN109560392A (zh) * 2018-12-06 2019-04-02 北京神舟博远科技有限公司 一种低成本广角波束覆盖相控阵天线系统
CN109546359B (zh) * 2018-12-06 2023-08-22 北京神舟博远科技有限公司 一种基于3d打印的方向图可重构相控阵天线系统
CN110518353B (zh) * 2019-08-01 2020-06-12 苏州海天新天线科技有限公司 一种小型化介质圆柱透镜多波束天线
CN111585042B (zh) * 2020-05-25 2021-12-24 北京高信达通信科技股份有限公司 一种多波束介质透镜天线及制造方法
CN111541011B (zh) * 2020-06-16 2021-09-07 广东博纬通信科技有限公司 一种透镜小型化天线
CN111710989B (zh) * 2020-06-24 2021-08-13 西安海天天线科技股份有限公司 一种可大规模减少5g基站的新型人工介质透镜天线
CN112234346A (zh) * 2020-10-14 2021-01-15 西安海天天线科技股份有限公司 一种超小型化+/-45°双极化人工介质透镜天线
CN112768950B (zh) * 2020-12-24 2022-05-17 北京理工大学 一种全金属部分麦克斯韦鱼眼透镜宽角覆盖多波束天线
CN112886276A (zh) * 2021-01-14 2021-06-01 广州司南技术有限公司 多波束透镜天线和有源透镜天线系统
CN113471667A (zh) * 2021-06-17 2021-10-01 北京高信达通信科技股份有限公司 一种用于移动通信5g小基站人造介质透镜天线和制造方法
CN113496092B (zh) * 2021-09-08 2022-02-25 广东福顺天际通信有限公司 计算机辅助的电磁波透镜生产方法、电磁波透镜及天线
CN114759367B (zh) * 2022-06-14 2022-10-04 西安海天天线科技股份有限公司 一种多频人工介质多波束透镜天线及使用方法
CN115550253A (zh) * 2022-12-06 2022-12-30 西安海天天线科技股份有限公司 基于介质透镜天线的路由器
CN116505292B (zh) * 2023-06-29 2023-09-08 西安海天天线科技股份有限公司 基于超材料透镜技术的多流全向天线设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4430832A1 (de) * 1994-05-23 1995-11-30 Horn Wolfgang Mehrstrahlantenne, Sende-/Empfangseinrichtung und Betriebsverfahren dazu
CN105470659A (zh) * 2015-12-31 2016-04-06 电子科技大学 一种轻量化介质填充式多波束柱面龙伯透镜天线
CN105659434A (zh) * 2013-09-09 2016-06-08 康普北卡罗来纳州公司 带透镜基站天线
CN107968266A (zh) * 2017-08-18 2018-04-27 西安肖氏天线科技有限公司 基于人工介质圆柱透镜高楼覆盖多波束天线

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19823749C2 (de) * 1998-05-27 2002-07-11 Kathrein Werke Kg Dualpolarisierte Mehrbereichsantenne
CN102217141A (zh) * 2008-11-14 2011-10-12 夏普株式会社 天线装置和基站装置
SG11201804035UA (en) * 2016-01-19 2018-06-28 Commscope Technologies Llc Multi-beam antennas having lenses formed of a lightweight dielectric material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4430832A1 (de) * 1994-05-23 1995-11-30 Horn Wolfgang Mehrstrahlantenne, Sende-/Empfangseinrichtung und Betriebsverfahren dazu
CN105659434A (zh) * 2013-09-09 2016-06-08 康普北卡罗来纳州公司 带透镜基站天线
CN105470659A (zh) * 2015-12-31 2016-04-06 电子科技大学 一种轻量化介质填充式多波束柱面龙伯透镜天线
CN107968266A (zh) * 2017-08-18 2018-04-27 西安肖氏天线科技有限公司 基于人工介质圆柱透镜高楼覆盖多波束天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, JINDONG: "Homogeneous Lens Multibeam Antenna and Single-channel DBF Multibeam Antenna Research", INFORMATION & TECHNOLOGY, CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, 15 June 2013 (2013-06-15), pages 11 - 45 *

Also Published As

Publication number Publication date
CN107959121B (zh) 2019-01-18
CN107968266B (zh) 2018-10-30
CN107946774B (zh) 2018-11-13
CN107946774A (zh) 2018-04-20
WO2019034118A1 (zh) 2019-02-21
CN107959121A (zh) 2018-04-24
CN107968266A (zh) 2018-04-27
WO2019034117A1 (zh) 2019-02-21

Similar Documents

Publication Publication Date Title
WO2019034116A1 (zh) 基于人工介质圆柱透镜高楼覆盖多波束天线
US11145987B2 (en) Ultralight artificial medium multilayer cylindrical lens
US11283186B2 (en) Antennas having lenses formed of lightweight dielectric materials and related dielectric materials
CN107275788B (zh) 一种基于金属微扰结构的毫米波扇形波束柱面龙伯透镜天线
CN102122762B (zh) 毫米波360o全向扫描介质柱透镜天线
WO2018048520A1 (en) Multi-band multi-beam lensed antennas suitable for use in cellular and other communications systems
CN103022699B (zh) 星载反射面稀疏相控阵多波束天线
CN105552572B (zh) 双极化圆锥介质馈源对称介质填充柱透镜天线
CN105098345B (zh) 一种采用双谐振相移单元的宽带反射阵天线
WO2010016799A1 (en) Antenna for omni directional, multi-beam, high gain communication
CN105428821B (zh) 双极化圆锥介质馈源非对称介质填充柱透镜天线
Zhang et al. A phase compensation beam switching antenna based on frequency selective surface
CN207320332U (zh) 一种人造介质圆柱透镜9波束天线
Pack et al. Tightly coupled array of horizontal dipoles over a ground plane
CN207165768U (zh) 一种人工介质圆柱透镜5波束天线
CN207719408U (zh) 一种通信应急车小型化人工介质圆柱透镜6波束天线
CN107017469B (zh) 一种低剖面全向扫描端射天线阵列
CN108767424A (zh) 基于多孔蜂窝板结构的宽带双向辐射天线
CN209516023U (zh) 一种基于3d打印的方向图可重构相控阵天线装置
CN108511922B (zh) 基于超表面的多波束高定向性三面夹角反射面天线
CN107946756B (zh) 一种电磁超表面加载的窄波束wlan ap天线
CN107508046B (zh) 平面馈源收发集成新月透镜天线
CN207719406U (zh) 一种双频WiFi室外型人工介质圆柱透镜20波束天线
Wang et al. A electronically steerable radiator and reflector array antenna based on Three-Dimensional Frequency Selective Structure
Ansari et al. 3D Luneburg Lens Antenna With Layered Structure for High-Gain Communication Systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18845646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01.10.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18845646

Country of ref document: EP

Kind code of ref document: A1