WO2019033723A1 - 一种电磁屏蔽膜 - Google Patents

一种电磁屏蔽膜 Download PDF

Info

Publication number
WO2019033723A1
WO2019033723A1 PCT/CN2018/075983 CN2018075983W WO2019033723A1 WO 2019033723 A1 WO2019033723 A1 WO 2019033723A1 CN 2018075983 W CN2018075983 W CN 2018075983W WO 2019033723 A1 WO2019033723 A1 WO 2019033723A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal layer
electromagnetic shielding
shielding film
composite metal
Prior art date
Application number
PCT/CN2018/075983
Other languages
English (en)
French (fr)
Inventor
闫勇
高小君
Original Assignee
苏州城邦达力材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州城邦达力材料科技有限公司 filed Critical 苏州城邦达力材料科技有限公司
Priority to KR2020187000028U priority Critical patent/KR20190000730U/ko
Publication of WO2019033723A1 publication Critical patent/WO2019033723A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0084Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a single continuous metallic layer on an electrically insulating supporting structure, e.g. metal foil, film, plating coating, electro-deposition, vapour-deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0088Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a plurality of shielding layers; combining different shielding material structure

Definitions

  • the present application relates to the field of shielding films, and in particular to an electromagnetic shielding film.
  • the common shielding film structure is composed of one or more insulating layers, and one or more layers of electromagnetic shielding layers.
  • the main structure of the electromagnetic shielding layer is a conductive adhesive layer and one or more metal layers, one or more metal layers are magnetron sputtering layers, and a plating thickening layer, a magnetic layer or Evaporating the metal layer, and then adding a conductive adhesive layer outside the electromagnetic shielding layer to form an electromagnetic shielding film material, that is, EMI;
  • the electromagnetic shielding layer is mainly composed of one or more layers of magnetron sputtering layer, plus one The layer evaporates the metal layer, which has the problem of poor electromagnetic shielding effect. To improve the electromagnetic shielding effect, it is necessary to increase the content of the metal conducting material in the conductive adhesive layer, which increases the manufacturing cost of the electromagnetic shielding layer.
  • an electromagnetic shielding film provided by an embodiment of the present application includes an electromagnetic shielding layer and an insulating layer covering the surface of the electromagnetic shielding layer;
  • the electromagnetic shielding layer comprises a composite metal layer and a first conductive bonding layer
  • the upper surface of the composite metal layer is bonded to the insulating layer
  • the lower surface of the composite metal layer is bonded to the first conductive bonding layer.
  • the composite metal layer comprises a metal layer and a second conductive bonding layer bonded to the metal layer.
  • the metal layer is bonded to the insulating layer, and the second conductive bonding layer is bonded to the first conductive bonding layer.
  • the metal layer is bonded to the first conductive bonding layer, and the second conductive bonding layer is bonded to the insulating layer.
  • the second conductive bonding layer is disposed as a polymer conductive layer.
  • the insulating layer and the electromagnetic shielding layer are each disposed in one or more layers.
  • the composite metal layer is provided in one or more layers.
  • the composite metal layer is a plurality of layers
  • adjacent metal composite layers are bonded by the metal layer and the second conductive bonding layer.
  • the composite metal layer is a plurality of layers
  • adjacent metal composite layers are bonded by the metal layer and the metal layer, or by the second conductive bonding layer and the second conductive bonding Layer bonding.
  • the metal layer and the second conductive bonding layer are each provided in at least one layer.
  • the insulating layer has a thickness of 5 ⁇ m to 9 ⁇ m.
  • the first conductive bonding layer and the composite metal layer are each set to have a thickness of 4 micrometers to 6 micrometers.
  • an embodiment of the present application provides a production process for producing the electromagnetic shielding film of the first aspect, the production process comprising:
  • S001 coating the insulating layer: uniformly coating one or more layers of the insulating material on the carrier film or directly replacing the insulating layer with an insulating material;
  • the mixed composite metal layer is composited with the insulating layer through a coating process, and then the surface of the composite metal layer is subjected to evaporation copper plating;
  • the surface of the composite metal layer is first subjected to evaporation copper plating, and then the mixed composite metal layer is composited with the insulating layer by a coating process;
  • the production process of the evaporating copper plating is: firstly, a vacuum is required to ensure that the metal copper is coated under vacuum, and the molten material is sent after the metal copper is heated and melted; then the evaporation is induced by the crucible; Finished product winding.
  • the processing speed during the evaporation copper plating process is 50 m / min - 80 m / min;
  • the processing speed at the time of coating the first conductive adhesive layer is 20 m/min to 30 m/min.
  • the electromagnetic shielding film provided by the present application has the following technical advantages:
  • the electromagnetic shielding film provided by the present application comprises an electromagnetic shielding layer and an insulating layer covering the surface of the electromagnetic shielding layer; the electromagnetic shielding layer comprises a composite metal layer and a first conductive bonding layer; and the upper surface of the composite metal layer is bonded to the insulating layer The lower surface of the composite metal layer is bonded to the first conductive bonding layer. Due to the arrangement of the composite metal layer, the electromagnetic shielding film is provided with good electrical conductivity and shielding performance; therefore, the problem of poor conductive shielding performance is effectively solved.
  • the composite metal layer includes a metal layer and a second conductive bonding layer
  • the metal layer can impart lateral conductive properties and shielding properties to the electromagnetic shielding film
  • the second conductive bonding layer can impart good longitudinal electrical conductivity, thereby improving electromagnetic overall Conductive shielding properties of the shielding film.
  • FIG. 1 is a schematic structural view of an electromagnetic shielding film according to an embodiment of the present application.
  • FIG. 2 is a cross-sectional view of an electromagnetic shielding film according to an embodiment of the present application.
  • FIG. 3 is a schematic structural view of a first electromagnetic shielding film according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an electromagnetic shielding film including a two-layer composite metal layer according to an embodiment of the present application
  • FIG. 5 is a schematic structural diagram of another electromagnetic shielding film including two layers of composite metal layers according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a second electromagnetic shielding film according to an embodiment of the present application.
  • Icon 100-insulating layer; 200-electromagnetic shielding layer; 201-composite metal layer; 202-first conductive bonding layer; 2011-metal layer; 2012-second conductive bonding layer.
  • connection In the description of the present application, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or integrally connected; can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • Connected, or integrally connected can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • the specific meanings of the above terms in the present application can be understood in the specific circumstances for those skilled in the art.
  • the electromagnetic shielding film provided by the present application comprises an electromagnetic shielding layer and an insulating layer covering the surface of the electromagnetic shielding layer; the electromagnetic shielding layer comprises a composite metal layer and a first conductive bonding layer; and the upper surface of the composite metal layer The insulating layer is bonded; the lower surface of the composite metal layer is bonded to the first conductive bonding layer. Due to the arrangement of the composite metal layer, it imparts good electrical conductivity and shielding performance; since the composite metal layer includes a metal layer and a second conductive bonding layer, the metal layer can impart lateral electrical conductivity and shielding properties, and the second conductive bonding layer It can impart good longitudinal electrical conductivity, so it can improve the conductive shielding performance of the electromagnetic shielding film as a whole.
  • FIG. 1 is a schematic structural view of an electromagnetic shielding film according to an embodiment of the present application
  • FIG. 2 is a cross-sectional view of an electromagnetic shielding film according to an embodiment of the present application
  • FIG. 3 is a schematic structural view of a first electromagnetic shielding film according to an embodiment of the present application. .
  • the electromagnetic shielding film provided in this embodiment includes an electromagnetic shielding layer 200 and an insulating layer 100 covering the surface of the electromagnetic shielding layer 200.
  • the electromagnetic shielding layer 200 includes a composite metal layer 201 and a first conductive bonding.
  • the layer 202; the upper surface of the composite metal layer 201 is bonded to the insulating layer 100; and the lower surface of the composite metal layer 201 is bonded to the first conductive bonding layer 202.
  • the composite metal layer 201 includes a metal layer 2011 and a second conductive bonding layer 2012 bonded to the metal layer 2011; the second conductive bonding layer is provided because the metal layer 2011 can impart lateral conductive properties and shielding properties to the electromagnetic shielding film.
  • 2012 can impart good longitudinal electrical conductivity to the electromagnetic shielding film, so that the conductive shielding performance of the electromagnetic shielding film can be improved as a whole.
  • the metal layer 2011 is bonded to the insulating layer 100, and the second conductive bonding layer 2012 is bonded to the first conductive bonding layer 202.
  • the second conductive bonding layer 2012 is disposed as a polymer conductive layer, and has the advantages of high conductivity and easy processing and thinning.
  • the material of the polymer conductive layer may be set as graphene, or may be set as other materials, as long as it has high conductivity, is easy to process and thin, and the material is non-metallic material, so here is not an example. Description.
  • the insulating layer 100 and the electromagnetic shielding layer 200 are both disposed in one layer or multiple layers.
  • the composite metal layer 201 may be provided in one or more layers.
  • the metal layer 2011 and the second conductive bonding layer 2012 may each be provided in at least one layer.
  • the composite metal layer 201 in FIG. 4 and FIG. 5 is disposed in two layers.
  • the two composite metal layers 201 are disposed in the same layer structure in the insulating layer 100 and electromagnetic shielding.
  • the metal layer 2011 and the second conductive bonding layer 2012 in each composite metal layer 201 are disposed at the same position, between the adjacent composite metal layers 201, the metal layer 2011 of the composite metal layer 201 and The second conductive bonding layer 2012 of the other composite metal layer 201 is bonded.
  • FIG. 4 the composite metal layer 201 in FIG. 4 and FIG. 5 is disposed in two layers.
  • the two composite metal layers 201 are disposed in the same layer structure in the insulating layer 100 and electromagnetic shielding.
  • the metal layer 2011 and the second conductive bonding layer 2012 in each composite metal layer 201 are disposed at the same position, between the adjacent composite metal layers 201, the metal layer 2011 of the composite metal layer 201 and The second
  • the two composite metal layers 201 are disposed between the insulating layer 100 and the electromagnetic shielding layer 200 in the reverse layer structure order, that is, the metal layer 2011 and the second conductive bonding layer in each composite metal layer 201.
  • the arrangement position of 2012 is reversed, between the adjacent composite metal layers 201, the metal layer 2011 of one composite metal layer 201 is bonded to the metal layer 2011 of another composite metal layer 201, or the second of a composite metal layer 201
  • the conductive bonding layer 2012 is bonded to the second conductive bonding layer 2012 of the other composite metal layer 201. It can be understood that when the number of layers of the composite metal layer 201 is larger than two layers, the positional relationship between the adjacent composite metal layers 201 can be freely set.
  • the first conductive bonding layer 202 may have a thickness of 4 micrometers to 6 micrometers; and a preferred embodiment is 5 micrometers.
  • the composite metal layer 201 has a thickness of from 4 micrometers to 6 micrometers; more preferably, it has a thickness of 5 micrometers.
  • the thickness of the insulating layer 100 is 5 micrometers to 9 micrometers; preferably 7 micrometers.
  • the thickness of the metal layer 2011 is 0.01 micrometers to 0.03 micrometers; and the preferred embodiment is 0.01 micrometers. Since the thickness of the metal layer 2011 is very thin, it is negligible during use.
  • the electromagnetic shielding film provided by the embodiment includes an electromagnetic shielding layer 200 and an insulating layer 100 covering the surface of the electromagnetic shielding layer 200;
  • the electromagnetic shielding layer 200 includes a composite metal layer 201 and the first The conductive bonding layer 202; the upper surface of the composite metal layer 201 is bonded to the insulating layer 100; and the lower surface of the composite metal layer 201 is bonded to the first conductive bonding layer 202.
  • the electromagnetic shielding film is provided with good electrical conductivity and shielding performance; since the composite metal layer 201 includes the metal layer 2011 and the second conductive bonding layer 2012, the metal layer 2011 can impart lateral conductive properties to the electromagnetic shielding film and The shielding property, the second conductive bonding layer 2012 can impart good longitudinal electrical conductivity to the electromagnetic shielding film, so that the conductive shielding performance of the electromagnetic shielding film can be improved as a whole.
  • FIG. 6 is a schematic structural diagram of a second electromagnetic shielding film according to an embodiment of the present application.
  • the electromagnetic shielding film provided in this embodiment includes an electromagnetic shielding layer 200 and an insulating layer 100 covering the surface of the electromagnetic shielding layer 200.
  • the electromagnetic shielding layer 200 includes a composite metal layer 201 and a first conductive bonding layer 202.
  • the upper surface of the composite metal layer 201 is bonded to the insulating layer 100; the lower surface of the composite metal layer 201 is bonded to the first conductive bonding layer 202.
  • the composite metal layer 201 includes a metal layer 2011 and a second conductive bonding layer 2012 bonded to the metal layer 2011; the second conductive bonding layer is provided because the metal layer 2011 can impart lateral conductive properties and shielding properties to the electromagnetic shielding film.
  • 2012 can impart good longitudinal electrical conductivity to the electromagnetic shielding film, so that the conductive shielding performance of the electromagnetic shielding film can be improved as a whole.
  • the metal layer 2011 is bonded to the insulating layer 100, and the second conductive bonding layer 2012 is bonded to the first conductive bonding layer 202.
  • the electromagnetic shielding film provided in this embodiment imparts good electrical conductivity and shielding performance to the electromagnetic shielding film due to the arrangement of the composite metal layer 201; since the composite metal layer 201 includes the metal layer 2011 and The second conductive bonding layer 2012, the metal layer 2011 can impart the lateral conductive performance and shielding performance of the electromagnetic shielding film, and the second conductive bonding layer 2012 can impart good longitudinal electrical conductivity to the electromagnetic shielding film, thereby improving the electrical conductivity of the electromagnetic shielding film as a whole. Shield performance.
  • the embodiment provides a production process of the electromagnetic shielding film.
  • the production process may include the following steps:
  • S001 coating the insulating layer 100: uniformly coating one or more layers of insulating material on the carrier film or directly replacing the insulating layer 100 with an insulating material;
  • the production process may include the following steps:
  • S001 coating the insulating layer 100: uniformly coating one or more layers of insulating material on the carrier film or directly replacing the insulating layer 100 with an insulating material;
  • the production process of the evaporating copper plating is: firstly, vacuuming is required to ensure that the metal copper is coated under vacuum, and the metal copper is heated and melted, and then the curling material is sent; then the evaporation is induced by the crucible; finally, it is made. Finished product winding.
  • the processing speed during the evaporation copper plating process is 50 m/min to 80 m/min; the processing speed when the first conductive adhesive layer is coated is 20 m/min to 30 m/min; and the overall processing efficiency of the production process is improved. Therefore, it has the advantage of high productivity.
  • the processing efficiency is low, and the average speed is between 2-10 m/min depending on the size of the device; and the magnetron control layer and the electroplating layer have a magnetic control speed of 5-10 m. /min, the plating speed is also between 5-10m/min, the average speed of the two is about 8m/min; and the high-volume conductive adhesive layer has high conductive powder content, which is not conducive to processing, and is conductive. The price of powder is high, leading to the high cost of the entire finished product.
  • the present technology uses a coated composite metal layer 201 (ie, a novel conductive material), and then is combined with an evaporation coating to replace the prior art magnetron layer, magnetron layer, and electrolytic plating layer or to replace the high powder amount of the conductive adhesive layer.
  • the speed of the composite metal layer 201 is between 20m/min and 30m/min, and the evaporation speed is between 50m/min and 80m/min, and the overall speed can be increased by more than twice; and the structure is correspondingly used.
  • the proportion of the conductive powder of the conductive adhesive layer can be significantly reduced, the overall cost is reduced, the cost is more advantageous, and the product design requirements are met.
  • the electromagnetic shielding film production process provided by this embodiment adopts the composite metal layer 201 and the evaporation coating layer, and can replace the magnetic control layer, the magnetron layer and the electrolytic plating layer of the prior art or replace the high.
  • the powdered conductive adhesive layer has a large improvement in production efficiency, thereby increasing the productivity. Due to the setting of the composite metal layer 201, the problem of poor conductive shielding performance is effectively solved.
  • the above design of the embodiment of the present application provides a composite metal layer to impart good electrical conductivity and shielding performance to the electromagnetic shielding film; therefore, the problem of poor conductive shielding performance can be effectively solved.

Abstract

电磁屏蔽膜,该电磁屏蔽膜包括电磁屏蔽层(200)和覆于所述电磁屏蔽层(200)表面的绝缘层(100);所述电磁屏蔽层(200)包括复合金属层(201)和第一导电粘结层(202);所述复合金属层(201)上表面与所述绝缘层(100)粘结;所述复合金属层(201)下表面与所述第一导电粘结层(202)粘结。该电磁屏蔽膜解决了现有技术中导电屏蔽性能差的问题。

Description

一种电磁屏蔽膜
本申请要求于2017年08月16日提交中国专利局的申请号为CN201721023177.9名称为“电磁屏蔽膜”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及屏蔽膜技术领域,尤其是涉及一种电磁屏蔽膜。
背景技术
目前常见屏蔽膜结构多由一层或多层绝缘层,再加一层或多层电磁屏蔽层组成。
其中电磁屏蔽层的主要结构为导电胶粘层和一层或多层金属层,一层或多层金属层为磁控溅射层,再加一层电镀增厚层、一层磁控层或蒸发金属层,然后在此类型电磁屏蔽层外再加一层导电胶粘层,形成电磁屏蔽膜材料,即EMI;上述电磁屏蔽层主要结构为一层或多层磁控溅射层,外加一层蒸发金属层,存在电磁屏蔽效果差的问题,改善电磁屏蔽效果需要提高导电胶粘层中的金属电导材料的含量,这会增加电磁屏蔽层的制造成本。
因此需要研发一种具有新型结构的电磁屏蔽膜,用以解决上述问题。
发明内容
本申请第一方面,本申请的实施例提供的电磁屏蔽膜,包括电磁屏蔽层和覆于所述电磁屏蔽层表面的绝缘层;
所述电磁屏蔽层包括复合金属层和第一导电粘结层;
所述复合金属层上表面与所述绝缘层粘结;
所述复合金属层下表面与所述第一导电粘结层粘结。
可选地,所述复合金属层包括金属层和与所述金属层粘结的第二导电粘结层。
可选地,所述金属层与所述绝缘层粘结,所述第二导电粘结层与所述第一导电粘结层粘结。
可选地,所述金属层与所述第一导电粘结层粘结,所述第二导电粘结层与所述绝缘层粘结。
在上述任一技术方案中,可选地,所述第二导电粘结层设置为高分子导电层。
在上述任一技术方案中,可选地,所述绝缘层和所述电磁屏蔽层均设置为一层或多层。
在上述任一技术方案中,可选地,所述复合金属层设置为一层或多层。
可选地,在所述复合金属层为多层时,相邻的复合金属层之间通过所述金属层和第二导电粘结层粘结。
可选地,在所述复合金属层为多层时,相邻的复合金属层之间通过所述金属层和金属层粘结,或通过所述第二导电粘结层和第二导电粘结层粘结。
在上述任一技术方案中,可选地,所述金属层和所述第二导电粘结层均设置为至少一层。
在上述任一技术方案中,可选地,所述绝缘层的厚度设置为5微米-9微米。
在上述任一技术方案中,可选地,所述第一导电粘结层和所述复合金属层的厚度均设置为4微米-6微米。
第二方面,本申请的实施例提供一种用于生产第一方面电磁屏蔽膜的生产工艺,该生产工艺包括:
S001:涂布绝缘层:将一层或多层绝缘材料均匀涂布于载体膜上或直接以绝缘材料取代此绝缘层;
S002:涂布复合金属层:
将混合好的复合金属层经过涂布工艺与绝缘层复合,然后对复合金属层表面做蒸发镀铜处理;
或者,先对复合金属层表面做蒸发镀铜处理,然后将混合好的复合金属层经过涂布工艺与绝缘层复合;
S003:涂布第一导电胶粘层:再将混合好的第一导电胶粘层与蒸发镀铜好的产品,经过涂布工艺复合在一起。
可选地,蒸发镀铜的生产流程为:先需要抽真空,保证金属铜在真空的状态下进行镀膜,在金属铜加热熔融后进行送卷发料;然后通过坩锅感应蒸发;最后将制成的成品收卷。
可选地,蒸发镀铜处理时的加工速度为50m/min-80m/min;
第一导电胶粘层涂布时的加工速度为20m/min-30m/min。
相对于现有技术,本申请提供的电磁屏蔽膜具有如下技术优势:
本申请提供的电磁屏蔽膜,包括电磁屏蔽层和覆于电磁屏蔽层表面的绝缘层;电磁屏蔽层包括复合金属层和第一导电粘结层;复合金属层上表面与所述绝缘层粘结;复合金属层下表面与第一导电粘结层粘结。由于复合金属层的设置,赋予电磁屏蔽膜良好的导电性能及屏蔽性能;所以有效的解决了导电屏蔽性能差的问题。
另外,复合金属层包括金属层和第二导电粘结层,金属层能够赋予电磁屏蔽膜横向导电性能及屏蔽性能,第二导电粘结层能够赋予其良好的纵向导电性能,所以能够整体提高电磁屏蔽膜的导电屏蔽性能。
为使本发明的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的电磁屏蔽膜的结构示意图;
图2为本申请实施例提供的电磁屏蔽膜的剖面图;
图3为本申请实施例提供的第一种电磁屏蔽膜的结构示意图;
图4为本申请实施例提供的一种包括两层复合金属层的电磁屏蔽膜的结构示意图;
图5为本申请实施例提供的另一种包括两层复合金属层的电磁屏蔽膜的结构示意图;
图6为本申请实施例提供的第二种电磁屏蔽膜的结构示意图。
图标:100-绝缘层;200-电磁屏蔽层;201-复合金属层;202-第一导电粘结层;2011-金属层;2012-第二导电粘结层。
具体实施方式
下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为 对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
下面通过具体的实施例子并结合附图对本申请做进一步的详细描述。
本申请提供的电磁屏蔽膜,包括电磁屏蔽层和覆盖于所述电磁屏蔽层表面的绝缘层;所述电磁屏蔽层包括复合金属层和第一导电粘结层;所述复合金属层上表面与所述绝缘层粘结;所述复合金属层下表面与所述第一导电粘结层粘结。由于复合金属层的设置,赋予其良好的导电性能及屏蔽性能;由于复合金属层包括金属层和第二导电粘结层,金属层能够赋予其横向导电性能及屏蔽性能,第二导电粘结层能够赋予其良好的纵向导电性能,所以能够整体提高电磁屏蔽膜的导电屏蔽性能。
实施例一
图1为本申请实施例提供的电磁屏蔽膜的结构示意图;图2为本申请实施例提供的电磁屏蔽膜的剖面图;图3为本申请实施例提供的第一种电磁屏蔽膜的结构示意图。
如图1-3所示,本实施例提供的电磁屏蔽膜,包括电磁屏蔽层200和覆盖于电磁屏蔽层200表面的绝缘层100;电磁屏蔽层200包括复合金属层201和第一导电粘结层202;复合金属层201上表面与绝缘层100粘结;复合金属层201下表面与第一导电粘结层202粘结。
可选地,复合金属层201包括金属层2011和与金属层2011粘结的第二导电粘结层2012;由于金属层2011能够赋予电磁屏蔽膜横向导电性能及屏蔽性能,第二导电粘结层2012能够赋予电磁屏蔽膜良好的纵向导电性能,所以能够整体提高电磁屏蔽膜的导电屏蔽性能。
可选地,金属层2011与绝缘层100粘结,第二导电粘结层2012与第一导电粘结层202粘结。
可选地,第二导电粘结层2012设置为高分子导电层,具有导电率高和易加工变薄的优点。
需要说明的是,高分子导电层的材质可以设置为石墨烯,也可以设置为其他材质,只要具有高导电率,容易加工变薄,并且材质为非金属材料即可,因此这里不在一一举例说明。
本实施例可选方案中,绝缘层100和电磁屏蔽层200均设置为一层或多层。
可选地,复合金属层201可设置为一层或多层。
在本实施例中,金属层2011和第二导电粘结层2012可均设置为至少一层。请参照图4和图5,图4和图5中复合金属层201设置为两层,在图4中,两层复合金属层201之间按照相同的层结构顺序设置在绝缘层100和电磁屏蔽层200之间,即每一复合金属层201中金属层2011和第二导电粘结层2012的设置位置相同,在相邻的复合金属层201之间,一复合金属层201的金属层2011与另一复合金属层201的第二导电粘结层2012粘结。在图5中,两层复合金属层201之间按照相反的层结构顺序设置在绝缘层100和电磁屏蔽层200之间,即每一复合金属层201中金属层2011和第二导电粘结层2012的设置位置相反,在相邻的复合金属层201之间,一复合金属层201的金属层2011与另一复合金属层201的金属层2011粘结,或者,一复合金属层201的第二导电 粘结层2012与另一复合金属层201的第二导电粘结层2012粘结。可以理解的是,在复合金属层201的层数大于两层时,相邻复合金属层201之间位置设置关系可以进行自由设置。
本实施例可选方案中,第一导电粘结层202的厚度可为4微米-6微米;较优方案为5微米。
可选地,复合金属层201的厚度为4微米-6微米;较优方案为5微米。
绝缘层100的厚度为5微米-9微米;较优方案为7微米。
可选地,金属层2011的厚度为0.01微米-0.03微米;较优方案为0.01微米,由于金属层2011的厚度非常薄,所以在使用过程中可忽略不计。
结合以上对本申请的详细描述可以看出,本实施例提供的电磁屏蔽膜,包括电磁屏蔽层200和覆于电磁屏蔽层200表面的绝缘层100;电磁屏蔽层200包括复合金属层201和第一导电粘结层202;复合金属层201上表面与绝缘层100粘结;复合金属层201下表面与第一导电粘结层202粘结。由于复合金属层201的设置,赋予电磁屏蔽膜良好的导电性能及屏蔽性能;由于复合金属层201包括金属层2011和第二导电粘结层2012,金属层2011能够赋予电磁屏蔽膜横向导电性能及屏蔽性能,第二导电粘结层2012能够赋予电磁屏蔽膜良好的纵向导电性能,所以能够整体提高电磁屏蔽膜的导电屏蔽性能。
实施例二
图6为本申请实施例提供的第二种电磁屏蔽膜的结构示意图。
如图6所示,本实施例提供的电磁屏蔽膜,包括电磁屏蔽层200和覆于电磁屏蔽层200表面的绝缘层100;电磁屏蔽层200包括复合金属层201和第一导电粘结层202;复合金属层201上表面与绝缘层100粘结;复合金属层201 下表面与第一导电粘结层202粘结。
可选地,复合金属层201包括金属层2011和与金属层2011粘结的第二导电粘结层2012;由于金属层2011能够赋予电磁屏蔽膜横向导电性能及屏蔽性能,第二导电粘结层2012能够赋予电磁屏蔽膜良好的纵向导电性能,所以能够整体提高电磁屏蔽膜的导电屏蔽性能。
可选地,金属层2011与绝缘层100粘结,第二导电粘结层2012与第一导电粘结层202粘结。
本实施例的其他的结构与实施例一的结构相同,因此这里不再赘述。
结合以上对本申请的详细描述可以看出,本实施例提供的电磁屏蔽膜,由于复合金属层201的设置,赋予电磁屏蔽膜良好的导电性能及屏蔽性能;由于复合金属层201包括金属层2011和第二导电粘结层2012,金属层2011能够赋予电磁屏蔽膜横向导电性能及屏蔽性能,第二导电粘结层2012能够赋予电磁屏蔽膜良好的纵向导电性能,所以能够整体提高电磁屏蔽膜的导电屏蔽性能。
实施例三
本实施例提供一种电磁屏蔽膜的生产工艺,在本实施例的一种实施方式中,该生产工艺可以包括以下步骤:
S001:涂布绝缘层100:将一层或多层绝缘材料均匀涂布于载体膜上或直接以绝缘材料取代此绝缘层100;
S002:涂布复合金属层201:将混合好的复合金属层201经过涂布工艺与绝缘层100复合,然后对复合金属层201表面做蒸发镀铜处理;
S003:涂布第一导电胶粘层:再将混合好的第一导电胶粘层与蒸发镀铜好 的产品,经过涂布工艺复合在一起。
在本实施例的另一种实施方式中,该生产工艺可以包括以下步骤:
S001:涂布绝缘层100:将一层或多层绝缘材料均匀涂布于载体膜上或直接以绝缘材料取代此绝缘层100;
S002:涂布复合金属层201:先对复合金属层201表面做蒸发镀铜处理,然后将混合好的复合金属层201经过涂布工艺与绝缘层100复合;
S003:涂布第一导电胶粘层:再将混合好的第一导电胶粘层与蒸发镀铜好的产品,经过涂布工艺复合在一起。
可选地,蒸发镀铜的生产流程为:先需要抽真空,保证金属铜在真空的状态下进行镀膜,使金属铜加热熔融后进行送卷发料;然后通过坩锅感应蒸发;最后将制成的成品收卷。
可选地,蒸发镀铜处理时的加工速度为50m/min-80m/min;第一导电胶粘层涂布时的加工速度为20m/min-30m/min;提高了生产过程整体的加工效率,从而具有产能高的优点。
由于现有技术中的常规磁控层加工速度周期长,加工效率低,依据设备大小,平均速度在2-10m/min之间;而磁控层和电镀镀层,其磁控速度为5-10m/min,电镀层速度也在5-10m/min之间,两者平均速度在8m/min左右;而高粉量的导电胶粘层,其导电粉含量很高,不利于加工,且因导电粉价格不菲,导至整个成品的成本居高不下。
而本技术采用涂布复合金属层201(即新型导电材料),然后搭配蒸发镀层,来代替现有技术的磁控层、磁控层和电解镀层或代替高粉量的导电胶粘层。其复合金属层201速度位于20m/min-30m/min之间,而采用蒸发镀层,其加工速度位于50m/min-80m/min之间,整体速率可提高两倍以上;且此结构对 应使用的导电胶粘层的导电粉比例可明显下降,达到整体成本的下降,成本更有优势,达到产品设计要求。
结合以上对本申请的详细描述可以看出,本实施例提供的电磁屏蔽膜生产工艺,采用复合金属层201和蒸发镀层,能够替代现有技术的磁控层、磁控层和电解镀层或代替高粉量的导电胶粘层,生产效率有较大提高,进而提高了产能,由于复合金属层201的设置,还有效的解决了导电屏蔽性能差的问题。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。
工业实用性
本申请实施例的上述设计因设置有复合金属层,赋予电磁屏蔽膜良好的导电性能及屏蔽性能;所以能有效的解决了导电屏蔽性能差的问题。

Claims (12)

  1. 一种电磁屏蔽膜,其特征在于,包括:电磁屏蔽层和覆于所述电磁屏蔽层表面的绝缘层;
    所述电磁屏蔽层包括复合金属层和第一导电粘结层;
    所述复合金属层上表面与所述绝缘层粘结;
    所述复合金属层下表面与所述第一导电粘结层粘结。
  2. 根据权利要求1所述的电磁屏蔽膜,其特征在于,所述复合金属层包括金属层和与所述金属层粘结的第二导电粘结层。
  3. 根据权利要求2所述的电磁屏蔽膜,其特征在于,所述金属层与所述绝缘层粘结,所述第二导电粘结层与所述第一导电粘结层粘结。
  4. 根据权利要求2所述的电磁屏蔽膜,其特征在于,所述金属层与所述第一导电粘结层粘结,所述第二导电粘结层与所述绝缘层粘结。
  5. 根据权利要求2所述的电磁屏蔽膜,其特征在于,所述第二导电粘结层设置为高分子导电层。
  6. 根据权利要求1所述的电磁屏蔽膜,其特征在于,所述绝缘层和所述电磁屏蔽层均设置为一层或多层。
  7. 根据权利要求1所述的电磁屏蔽膜,其特征在于,所述复合金属层设置为一层或多层。
  8. 根据权利要求7所述的电磁屏蔽膜,其特征在于,在所述复合金属层为多层时,相邻的复合金属层之间通过所述金属层和第二导电粘结层粘结。
  9. 根据权利要求7所述的电磁屏蔽膜,其特征在于,在所述复合金属 层为多层时,相邻的复合金属层之间通过所述金属层和金属层粘结,或通过所述第二导电粘结层和第二导电粘结层粘结。
  10. 根据权利要求2所述的电磁屏蔽膜,其特征在于,所述金属层和所述第二导电粘结层均设置为至少一层。
  11. 根据权利要求1所述的电磁屏蔽膜,其特征在于,所述绝缘层的厚度设置为5微米-9微米。
  12. 根据权利要求1所述的电磁屏蔽膜,其特征在于,所述第一导电粘结层和所述复合金属层的厚度均设置为4微米-6微米。
PCT/CN2018/075983 2017-08-16 2018-02-09 一种电磁屏蔽膜 WO2019033723A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR2020187000028U KR20190000730U (ko) 2017-08-16 2018-02-09 전자파 차폐막

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201721023177.9U CN207070596U (zh) 2017-08-16 2017-08-16 电磁屏蔽膜
CN201721023177.9 2017-08-16

Publications (1)

Publication Number Publication Date
WO2019033723A1 true WO2019033723A1 (zh) 2019-02-21

Family

ID=61515050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/075983 WO2019033723A1 (zh) 2017-08-16 2018-02-09 一种电磁屏蔽膜

Country Status (3)

Country Link
KR (1) KR20190000730U (zh)
CN (1) CN207070596U (zh)
WO (1) WO2019033723A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107333461A (zh) * 2017-08-16 2017-11-07 苏州城邦达力材料科技有限公司 电磁屏蔽膜及电磁屏蔽膜生产工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11266095A (ja) * 1998-03-17 1999-09-28 Dainippon Printing Co Ltd 電磁波遮蔽板
CN102300399A (zh) * 2011-07-12 2011-12-28 祝琼 一种多功能叠层电子膜及其制作方法
CN102510712A (zh) * 2011-11-14 2012-06-20 广州方邦电子有限公司 一种极高屏蔽效能的极薄屏蔽膜及其制作方法
CN104853576A (zh) * 2015-05-13 2015-08-19 东莞市万丰纳米材料有限公司 超高屏蔽性能的电磁屏蔽膜及其生产工艺
CN104853577A (zh) * 2015-05-13 2015-08-19 东莞市万丰纳米材料有限公司 超薄电磁屏蔽膜及其生产工艺
CN104883865A (zh) * 2015-05-12 2015-09-02 苏州城邦达力材料科技有限公司 一种高效能低成本电磁屏蔽膜及其制造方法
CN107333461A (zh) * 2017-08-16 2017-11-07 苏州城邦达力材料科技有限公司 电磁屏蔽膜及电磁屏蔽膜生产工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11266095A (ja) * 1998-03-17 1999-09-28 Dainippon Printing Co Ltd 電磁波遮蔽板
CN102300399A (zh) * 2011-07-12 2011-12-28 祝琼 一种多功能叠层电子膜及其制作方法
CN102510712A (zh) * 2011-11-14 2012-06-20 广州方邦电子有限公司 一种极高屏蔽效能的极薄屏蔽膜及其制作方法
CN104883865A (zh) * 2015-05-12 2015-09-02 苏州城邦达力材料科技有限公司 一种高效能低成本电磁屏蔽膜及其制造方法
CN104853576A (zh) * 2015-05-13 2015-08-19 东莞市万丰纳米材料有限公司 超高屏蔽性能的电磁屏蔽膜及其生产工艺
CN104853577A (zh) * 2015-05-13 2015-08-19 东莞市万丰纳米材料有限公司 超薄电磁屏蔽膜及其生产工艺
CN107333461A (zh) * 2017-08-16 2017-11-07 苏州城邦达力材料科技有限公司 电磁屏蔽膜及电磁屏蔽膜生产工艺

Also Published As

Publication number Publication date
KR20190000730U (ko) 2019-03-20
CN207070596U (zh) 2018-03-02

Similar Documents

Publication Publication Date Title
CN204659076U (zh) 一种柔性基底镀铜膜结构
CN108832134A (zh) 一种柔性集流体及其制备方法以及在锂离子电池中的应用
CN105774118B (zh) 附镀敷的金属基材
CN103350542B (zh) 一种埋容材料、制备方法及其用途
CN104779402A (zh) 一种新型超薄电池及其制备方法
CN107333461A (zh) 电磁屏蔽膜及电磁屏蔽膜生产工艺
CN102943225B (zh) 一种碳纤维布/铝合金复合材料及其制备方法
WO2019033723A1 (zh) 一种电磁屏蔽膜
WO2019033839A1 (zh) 一种石墨、铜复合导热材料的制备方法
KR102217287B1 (ko) 그래핀 내부전극 적층형 세라믹 콘덴서 및 그 제조방법
CN204939377U (zh) 导电屏蔽胶带
CN203820687U (zh) 一种阻燃耐温屏蔽薄膜
CN206011891U (zh) 一种金属拉丝复合钢板
CN207744310U (zh) 一种散热性反射片
CN108811305A (zh) 一种印刷电路板用含石墨烯柔性电磁屏蔽膜及制备方法
CN201614403U (zh) 一种镀金陶瓷
WO2019033722A1 (zh) 电磁屏蔽膜的导电层、电磁屏蔽膜及其制备方法
CN104010436A (zh) 一种具有电磁屏蔽效果的柔性覆金属基板及制造工艺
CN204585991U (zh) 磁控溅射柔性覆铜基板及制备其的磁控溅射装置
CN204451368U (zh) 一种采用新材料的铝合金表面镀层结构
CN209098564U (zh) 一种新型复合胶带
CN110648844B (zh) 一种金属化薄膜的制备方法
CN205188200U (zh) 一种金属无纺布胶带
CN209544158U (zh) 一种电容器用金属化薄膜
CN103578747A (zh) 一种内置电容及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18846078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18846078

Country of ref document: EP

Kind code of ref document: A1