WO2019033717A1 - 一种交流开关装置 - Google Patents

一种交流开关装置 Download PDF

Info

Publication number
WO2019033717A1
WO2019033717A1 PCT/CN2018/075120 CN2018075120W WO2019033717A1 WO 2019033717 A1 WO2019033717 A1 WO 2019033717A1 CN 2018075120 W CN2018075120 W CN 2018075120W WO 2019033717 A1 WO2019033717 A1 WO 2019033717A1
Authority
WO
WIPO (PCT)
Prior art keywords
thyristor
current
switch
input
power line
Prior art date
Application number
PCT/CN2018/075120
Other languages
English (en)
French (fr)
Inventor
尹向阳
王志燊
陶小丽
Original Assignee
广州金升阳科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州金升阳科技有限公司 filed Critical 广州金升阳科技有限公司
Publication of WO2019033717A1 publication Critical patent/WO2019033717A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/72Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices having more than two PN junctions; having more than three electrodes; having more than one electrode connected to the same conductivity region
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K2017/515Mechanical switches; Electronic switches controlling mechanical switches, e.g. relais
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0009AC switches, i.e. delivering AC power to a load

Definitions

  • the invention relates to a switch device, in particular to an AC switch device, which comprises a mechanical AC circuit breaker, a solid state AC circuit breaker, a hybrid AC circuit breaker and other AC switches.
  • the simplified model of the existing AC power system is shown in Figure 1. It is composed of AC input V, AC switch J, and load L in series.
  • the basic function of switch J is to be able to split the circuit and switch in the required short time.
  • the contact gap will generate a high temperature, emit strong light and be conductive.
  • the approximately cylindrical gas, which is the arc is turned off until the arc is extinguished and the contact gap becomes the insulating medium.
  • Electric orphan is a gas discharge phenomenon. It has two characteristics: First, there are a large number of electrons and ions in the arc, so it is electrically conductive. The electric orphan does not extinguish the circuit and continues to conduct. After the arc is extinguished, the circuit is officially disconnected; Second, the temperature of the arc is very high, and the arc temperature is above 4000-5000 degrees Celsius. The high-temperature arc will burn out the equipment and cause serious accidents. Therefore, measures must be taken to extinguish the arc quickly. Therefore, the arc burning and extinction process is the most important research of switchgear. content.
  • the generation of the arc mainly depends on the collision free.
  • the maintenance of the arc mainly depends on the heat release.
  • the physical process is briefly described as follows: During the disconnection of the switch, the contact surface between the moving and static contacts is continuously reduced due to the movement of the moving contact. The current density is increasing, and the contact resistance is becoming larger as the contact surface is reduced, so that the contact temperature is increased to generate thermal electron emission.
  • the contact is just separated, because the gap between the moving and static contacts is extremely small, the electric field strength is high. Under the action of the electric field, the electrons on the metal surface continuously escape from the metal surface, and the free electrons move between the contacts. This phenomenon is called field emission.
  • the free electrons generated by the thermal electron emission and field emission accelerate to the anode under the action of the electric field force, and continuously collide with the nature point on the way, and the electrons in the medium nature point collide again. This phenomenon is called collision free. Due to the chain reaction of collision free, the free electrons increase exponentially (positive ions also increase), a large number of electrons rush toward the anode, a large number of positive ions move toward the negative pole, and the gap of the switch contacts becomes the channel of the current. The medium between the gaps is broken down to form an arc.
  • thermal liberation Due to the high arc temperature, under the action of high temperature, the medium nature point at high temperature generates strong irregular thermal motion due to high temperature, and when the middle point collides with each other, it will be free to form electrons and ions.
  • the freeness caused by thermal motion is called thermal liberation, which generates a large amount of electrons and ions to maintain the arc between the contact gaps.
  • the load L in the simplified model of the above AC power system is divided into: resistive load, such as incandescent lamp, electric furnace, electric water heater, etc.; inductive load, such as motor, transformer, relay drive, etc.; capacitive load, such as charger, battery, super Capacitors, etc., AC power systems generally consist of a mixture of three loads.
  • FIG. 2 is a waveform diagram of the current AC power system when the voltage and current phase difference is 90° during normal operation
  • Fig. 3 is a waveform diagram of a conventional AC power system with a voltage and current phase difference of 45° during normal operation. It can be seen from Fig. 3 and Fig. 4 that there are four cases of positive and negative voltage V and current I of the AC power system:
  • the Chinese invention patent application with the application number is 99104580.7 and the invention name is "Long-life silver-plated switchgear with arc-transfer contacts", and the arc-shifting circuit is connected in parallel at both ends of the AC switch J, as shown in the arc-extinguishing device shown in FIG.
  • the arc extinguishing principle of the patent is adopted.
  • a arc shifting circuit composed of a bidirectional thyristor SCR is connected in parallel at both ends of the AC switch J.
  • the arc extinguishing principle of the circuit is: the bidirectional thyristor SCR is broken.
  • the arc function because the contacts of the switch J must be separated from the contacts of the triac SCR, when the contacts of the switch J are separated, the contacts of the triac SCR are still in a short state, and the current is bidirectional.
  • a thyristor in the thyristor SCR is turned on and transferred to the arc shifting circuit, so the arc is not generated on the contacts of the switch J, but only on the contacts of the triac SCR, due to The reverse-cut-off effect of the thyristor, the circuit will automatically extinguish due to the current zero-crossing in the 1/2 cycle, and the contact of the two-way thyristor SCR can be separated in time; after the negative half-wave arrives, the two-way can be The silicon-controlled SCR contacts have been separated, two-way thyristor SCR Further a thyristor not conducting, the arc can not be transferred to another circuit of a thyristor formed continues to burn.
  • the advantage of this circuit is that the
  • the response speed is slow. Because the fault cannot occur immediately after the fault occurs in the scheme, the arc can be automatically extinguished only when the current crosses zero to realize the disconnection of the circuit, causing the AC input to be supplied to the load during the arc extinguishing. Energy, if a short-circuit fault occurs, it may cause catastrophic consequences to the load end. As shown in Figure 2, if the fault occurs at time t2, the current in the circuit will rise to t3 and then fall, after half a cycle. In order to fall to zero, the response speed lags behind half a cycle. With the rapid development of China's economy and the gradual modernization of the industrial transportation sector, the requirements for the disconnection response speed of the AC switch are becoming more and more demanding. Where there are strict requirements, it does not apply;
  • the energy recovery function is limited.
  • the solution can only recover the energy when the input voltage and the input current are opposite in direction. If the fault occurs at other times, the energy stored in the inductor will be lost. In the case where the AC switch needs to be turned off frequently, a large waste will be generated.
  • the technical problem to be solved by the present invention is to provide an AC switch device capable of improving the AC switch disconnection response speed under certain conditions or reducing the arc voltage across the AC switch by clamping before the AC switch is turned off. After further improvement, it can achieve arc-free breaking under all conditions, fast response, and energy recovery.
  • the AC switch J1 is connected between the first phase power line input end and the first phase power line output end, and the AC switch J2 is connected between the second phase power line input end and the second phase power line output end;
  • the thyristor SCR1a and the thyristor SCR2a are connected in anti-parallel, one end is connected to the input end of the second phase power line, and the other end is connected to the output end of the first phase power line;
  • the thyristor SCR1b and the thyristor SCR2b are connected in reverse parallel with one end connected to the first phase power line input end and the other end connected to the second phase power line output end;
  • the detection control circuit is used to detect the direction of the input voltage and the input current after the circuit failure, and control the conduction of the thyristor SCR1a, the thyristor SCR2a, the thyristor SCR1b, and the thyristor SCR2b to realize the input voltage and the input current. The opposite direction.
  • thyristor SCR3a thyristor SCR3b, thyristor SCR4a, and thyristor SCR4b;
  • the thyristor SCR3a and the thyristor SCR4a are connected in anti-parallel and in parallel with the AC switch J1;
  • the thyristor SCR3b and the thyristor SCR4b are connected in anti-parallel and in parallel with the AC switch J1.
  • the present invention further provides an AC switch device, characterized in that:
  • AC switch J1 AC switch J2, two-way thyristor SCR1, two-way thyristor SCR2 and detection control circuit;
  • the AC switch J1 is connected between the first phase power line input end and the first phase power line output end, and the AC switch J2 is connected between the second phase power line input end and the second phase power line output end;
  • One end of the two-way thyristor SCR1 is connected to the input end of the second phase power line, and the other end is connected to the output end of the first phase power line;
  • One end of the two-way thyristor SCR2 is connected to the input end of the first phase power line, and the other end is connected to the output end of the second phase power line;
  • the detection control circuit is used to detect the direction of the input voltage and the input current after the circuit failure, and control the conduction of the triac SCR1 and the triac SCR2 to achieve the opposite direction of the input voltage and the input current.
  • the two-way thyristor SCR3 is connected in parallel with the AC switch J1;
  • the triac SCR4 is connected in parallel with the AC switch J1.
  • the present invention proposes a completely new technical concept: a dual AC switch is adopted, and a current transfer circuit composed of two thyristors in anti-parallel connection is formed at both ends of the double AC switch, thereby forming a current transfer circuit.
  • the two-way current transfer circuit can selectively turn on a current transfer circuit by detecting the direction of the input voltage and the input current, so that the direction of the input voltage and the input current is reversed or the two thyristors in the current transfer circuit are passed.
  • the arc voltage at both ends of the AC switch is clamped to the input voltage.
  • the energy recovery can be completely achieved without the limitation of the voltage and current directions at the time of the fault, and when the AC switch is disconnected.
  • the current flows through the current transfer circuit, and does not generate an arc on the contacts of the AC switch.
  • the thyristor is naturally turned off and no arc is generated, so that the AC switch is broken and the response speed is fast.
  • the device can select the optimal current transfer circuit according to the real-time situation, so that when the input voltage and the input current are in the same direction, the input voltage and the input current are opposite in direction, so that the circuit is in the circuit.
  • the current rapidly drops to zero, which improves the breaking response speed of the AC switch.
  • the input current is large and the load inductance is large, the response speed is more advantageous.
  • the current transfer circuit can pass.
  • the two thyristors in the implementation realize that the arc voltage across the AC switch is clamped to the input voltage, so that the voltage stress that the AC switch needs to withstand is smaller than the prior art;
  • the energy recovery is not limited by the direction of voltage and current at the time of failure.
  • the device can select the optimal arc-shifting circuit according to the real-time situation, and realize the opposite direction of input voltage and input current. Energy recovery is not limited. This makes the device more energy efficient, especially when the AC switch is frequently operated.
  • Figure 1 shows a simplified model of the existing AC power system
  • Figure 2 is a waveform diagram of the current AC power system when the voltage and current phase difference is 90° during normal operation;
  • Figure 3 is a waveform diagram of the current AC power system when the voltage and current phase difference is 45° during normal operation;
  • Figure 4 is a schematic diagram of the AC arc extinguishing device in the patent application of 99104580.7;
  • Figure 5 is a schematic diagram of an AC device according to a first embodiment of the present invention.
  • Figure 5 - 1 shows a simulation curve when a fault occurs at the time t2-t3 in the first embodiment of the present invention
  • FIG. 5 is a simulation curve when a fault occurs at the time t3 ⁇ t4 in the first embodiment of the present invention
  • Figure 6 is a schematic diagram of an AC device according to a second embodiment of the present invention.
  • Figure 7 is a schematic diagram of an AC device according to a third embodiment of the present invention.
  • Figure 8 is a schematic diagram of an AC device according to a fourth embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a first embodiment of the present invention.
  • the AC switch device of the embodiment includes an AC switch J1, an AC switch J2, a thyristor SCR1a, a thyristor SCR2a, a thyristor SCR1b, and a thyristor SCR2b. And detection control circuit;
  • the AC switch J1 is connected between the first phase power line input end and the first phase power line output end, and the AC switch J2 is connected between the second phase power line input end and the second phase power line output end;
  • the thyristor SCR1a and the thyristor SCR2a are connected in anti-parallel, one end is connected to the input end of the second phase power line, and the other end is connected to the output end of the first phase power line;
  • the thyristor SCR1b and the thyristor SCR2b are connected in reverse parallel with one end connected to the first phase power line input end and the other end connected to the second phase power line output end;
  • the input of the detection control circuit is connected to the input end of the first phase power line, and the output terminals K1a, K2a, K1b and K2b are respectively connected to the control terminals of the thyristors SCR1a, SCR2a, SCR1b and SCR2b.
  • the AC switch J1 and the AC switch J2 are both closed, and the thyristor SCR1a, the thyristor SCR2a, the thyristor SCR1b, and the thyristor SCR2b are not turned on, and the circuit will form the voltage shown in FIG. Current waveform, depending on the load L, the voltage and current phase difference may be different from those in Figure 2 and Figure 3.
  • This embodiment is controlled according to current, and the control logic is as follows:
  • the detection control circuit will detect that the input voltage is positive at this time, the input current is positive, and the inductor current of the inductor in the load L is positive.
  • the control circuit will output a control signal, so that the thyristor SCR1a and the thyristor SCR1b are turned on, the contacts in the AC switches J1 and J2 are separated, and the current in the inductor L in the load L in the freewheeling circuit cannot be abruptly changed, and a freewheeling will be formed.
  • FIG. 5 is a simulation curve when a fault occurs at the time t2 ⁇ t3 according to the first embodiment of the present invention, and the simulation parameters are as follows:
  • Input voltage 220VAC;
  • the solid line waveform in the current graph is the current waveform in the load L; the solid line waveform in the voltage map is the waveform of the input voltage, and the dotted line waveform is the voltage waveform in the load L.
  • the detection control circuit will detect that the input voltage is negative at this time, the input current is negative, and the inductor current of the inductor in the load L is negative.
  • the control circuit will output a control signal, so that the thyristor SCR2a and the thyristor SCR2b are turned on, the contacts in the AC switches J1 and J2 are separated, and the current in the inductor L in the load L in the freewheeling circuit cannot be abruptly changed, and a freewheeling will be formed.
  • the circuit can be turned off quickly and energy recovery is also possible.
  • the detection control circuit will detect that the input voltage is negative at this time, the input current is positive, and the inductor current of the inductor in the load L is positive.
  • the control circuit will output a pulse control signal, so that the thyristor SCR1a and the thyristor SCR1b are turned on, the contacts in the AC switches J1 and J2 are separated, and the current is transferred to the current transfer circuit formed by the thyristor SCR1a and the thyristor SCR1b.
  • the current flow path is: thyristor SCR1a anode ⁇ thyristor SCR1a cathode ⁇ load L ⁇ thyristor SCR21b anode ⁇ thyristor SCR1b cathode.
  • the inductor voltage changes from negative to positive and the current is positive. Therefore, the inductor current amplitude increases and cannot be turned off quickly. It takes several cycles for the inductor current to return to 0, and then it can be turned off.
  • FIG. 5 is a simulation curve when a fault occurs at the time t3 ⁇ t4 in the first embodiment of the present invention, and the simulation parameters are as follows:
  • Input voltage 220VAC;
  • the solid line waveform in the current graph is the current waveform in the load L; the solid line waveform in the voltage map is the waveform of the input voltage, and the dotted line waveform is the voltage waveform in the load L.
  • the load L for the simulation of the embodiment is a pure inductive load, and the inductive load and/or the capacitive load in the load L of the AC input causes the phase difference between the voltage and the current of the AC input, if the load L For a purely resistive load, the phase difference will not exist, and the case where the turn-off time will be extended in this case will no longer exist.
  • the detection control circuit will detect that the input voltage is positive at this time, the input current is negative, and the inductor current of the inductor in the load L is negative.
  • the control circuit will output a control signal, so that the thyristor SCR2a and the thyristor SCR2b are turned on, the contacts in the AC switches J1 and J2 are separated, and the current is transferred to the current transfer circuit formed by the thyristor SCR2a and the thyristor SCR2b.
  • the current flow path is: thyristor SCR2b anode ⁇ thyristor SCR1a2b cathode ⁇ load L ⁇ thyristor SCR2a anode ⁇ thyristor SCR2a cathode.
  • the inductor voltage changes from positive to negative, and the inductor current is negative. Therefore, the inductor current amplitude increases and cannot be turned off quickly. It is necessary to wait for multiple cycles of inductor current to return to 0, and then turn off, this and t3 ⁇ t4 time.
  • the situation is similar when a fault occurs, and the arc at both ends of the AC switch can be greatly reduced compared with the prior art, and the analysis waveform is not analyzed here.
  • FIG. 6 is a schematic diagram of an AC device according to a second embodiment of the present invention, which differs from FIG. 5 in that the thyristor SCR1a and the thyristor SCR2a are replaced by a triac SCR1, a thyristor SCR1b, and a thyristor.
  • the SCR2b is replaced by a triac SCR2; the detection control circuit has only two outputs: K1 and K2 are connected to the control terminals of the thyristors SCR1 and SCR2, respectively.
  • the bidirectional thyristor has only one control terminal.
  • the control terminal inputs the control signal, only one thyristor in each bidirectional thyristor can be turned on, so the control logic is no matter what the input voltage and the input current are.
  • the control terminals of the triac SCR1 and SCR1b both output pulses.
  • this embodiment is equivalent to the first embodiment, and can realize the same direction of voltage and current, without waiting, quickly realize energy lossless recovery, and the response speed is faster; but when the voltage and current are reversed, it cannot be realized. Quick shut down.
  • This embodiment will improve the first embodiment, in which a current transfer circuit composed of two thyristors in anti-parallel is connected in parallel at both ends of the AC switches J1 and J2, and the load L does not need to be changed after the switches J1 and J2 are disconnected.
  • the voltage direction in the middle ensures that the voltage direction of the load L is opposite to the current direction, so that the current amplitude is lowered.
  • FIG. 7 is a schematic diagram of a third embodiment of the present invention.
  • the AC switch device in the embodiment includes an AC switch J1, an AC switch J2, a thyristor SCR1a, a thyristor SCR2a, a thyristor SCR1b, SCR2b, thyristor SCR3a, thyristor SCR3b, thyristor SCR4a, thyristor SCR4b and detection control circuit;
  • the AC switch J1 is connected between the first phase power line input end and the first phase power line output end, and the AC switch J2 is connected between the second phase power line input end and the second phase power line output end;
  • the thyristor SCR1a and the thyristor SCR2a are connected in anti-parallel, one end is connected to the input end of the second phase power line, and the other end is connected to the output end of the first phase power line;
  • the thyristor SCR1b and the thyristor SCR2b are connected in reverse parallel with one end connected to the first phase power line input end and the other end connected to the second phase power line output end;
  • the thyristor SCR3a and the thyristor SCR4a are connected in anti-parallel and in parallel with the AC switch J1;
  • the thyristor SCR3b and the thyristor SCR4b are connected in anti-parallel with the AC switch J1 in parallel;
  • the input end of the detection control circuit is connected to the input end of the first phase power line, and the output terminals K1a, K2a, K1b, K2b, K3a, K4a, K3b and K4b are respectively associated with the thyristors SCR1a, SCR2a, SCR1b, SCR2b, SCR3a, SCR4a, SCR3b Connected to the control terminal of the SCR4b.
  • the detection control circuit will detect that the input voltage is positive and the input current is negative, and the detection control circuit will output a control signal to make the thyristor
  • the SCR4a and the thyristor SCR4b are turned on, the contacts in the AC switches J1 and J2 are separated, and the current is transferred to the current transfer circuit formed by the thyristor SCR4a and the thyristor SCR4b, and the current flow path is: thyristor SCR4b anode ⁇ SCR4b cathode ⁇ load L ⁇ thyristor SCR4a anode ⁇ thyristor SCR4a cathode.
  • the arc will not be generated on the contacts of the AC switches J1 and J2; when reaching t2, the current crosses zero, the thyristor SCR4a and the thyristor SCR4b are turned off, because the input voltage is positive and the input current is negative. Can achieve energy recovery;
  • the detection control circuit will detect that the input voltage is positive and the input current is positive, and the detection control circuit will output a control signal to make the thyristor
  • the SCR1a and the thyristor SCR1b are turned on, the contacts in the AC switches J1 and J2 are separated, and the current in the inductor L in the load L in the freewheeling circuit cannot be abruptly changed, and a freewheeling circuit will be formed: the thyristor SCR1a anode ⁇ the thyristor SCR1a cathode ⁇ load L ⁇ thyristor SCR1b anode ⁇ thyristor SCR1b cathode. Therefore, the energy stored in the inductor of the load L in the freewheeling circuit is fed back to the AC input terminal, thereby achieving non-destructive recovery of energy;
  • the detection control circuit will detect that the input voltage is negative and the input current is positive, and the detection control circuit will output a pulse control signal to make it controllable.
  • the silicon SCR3a and the thyristor SCR3b are turned on, the contacts in the AC switches J1 and J2 are separated, and the current is transferred to the current transfer circuit formed by the thyristor SCR3a and the thyristor SCR3b, and the current flow path is: the thyristor SCR3a anode ⁇ SCR Sca cathode ⁇ Load L ⁇ SCR Sb anode • SCR 3b cathode.
  • the arc will not be generated on the contacts of the AC switches J1 and J2; when reaching t4, the current crosses zero, the thyristor SCR3a and the thyristor SCR3b are turned off, because the input voltage is positive and the input current is negative. Can achieve energy recovery;
  • the detection control circuit will detect that the input voltage is negative and the input current is negative, and the detection control circuit will output a control signal to make the thyristor
  • the SCR2a and the thyristor SCR2b are turned on, the contacts in the AC switches J1 and J2 are separated, and the current in the inductor L in the load L in the freewheeling circuit cannot be abruptly changed, and a freewheeling circuit will be formed: the thyristor SCR2b anode ⁇ the thyristor SCR2b cathode ⁇ load L ⁇ thyristor SCR2a anode ⁇ thyristor SCR2a cathode. Therefore, the energy stored in the inductor L in the load L in the freewheeling circuit is fed back to the AC input terminal, thereby achieving non-destructive recovery of energy.
  • Input voltage, current direction K1a, K1b K2a, K2b K3a, K3b K4a, K4b The voltage is positive and the current is positive 1 0 0 0 0
  • the voltage is negative and the current is negative 0 1 0 0
  • the voltage is negative and the current is positive 0 0 1 0
  • the voltage is positive and the current is negative 0 0 0 1
  • FIG. 8 is a schematic diagram of an AC device according to a third embodiment of the present invention, which is different from FIG. 7 in that a thyristor SCR1a and a thyristor SCR2a are replaced by a triac SCR1, a thyristor SCR1b, and a thyristor.
  • the detection control circuit has only four outputs: K1, K2, K3 and K4 are connected to the control terminals of the thyristors SCR1, SCR2, SCR3 and SCR4, respectively.
  • the two-way thyristor has only one control terminal.
  • the control terminal inputs the control signal, only one thyristor can be turned on in each of the two-way thyristors, so the control logic needs to merge the control logic of FIG. 5 Table 3 below (where “1" indicates the input pulse of the thyristor control terminal, and "0" indicates that the thyristor control terminal does not input a pulse):

Landscapes

  • Electronic Switches (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Ac-Ac Conversion (AREA)

Abstract

本发明提供了一种交流开关装置,采用双交流开关,双交流开关两端交叉连接有由两只可控硅反向并联组成的电流转移电路,从而形成了2路电流转移电路,通过检测输入电压和输入电流的方向,能选择性地开通某路电流转移电路,使得即刻实现输入电压和输入电流的方向相反或通过电流转移电路中的两只可控硅实现将交流开关两端的电弧电压钳位为输入电压,当在双交流开关上各再增加1路电流转移电路后,能够完全实现能量回收不受故障时刻电压电流方向限制,且在交流开关分断时电流通过电流转移电路流动,不会在交流开关的触头上产生电弧,可控硅又是自然关断,也没有电弧产生,从而使得交流开关断分断响应速度快。

Description

一种交流开关装置 技术领域
本发明涉及开关装置,特别涉及交流开关装置,所述的交流开关包括机械交流断路器、固态交流断路器、混合交流断路器及其它交流开关。
背景技术
现有的交流电力系统简化模型如图1所示,均是由交流输入V、交流开关J,以及负载L串联组成,开关J的基本功能就是能够在所要求的短时间内分合电路,开关在大气中切断通有电流的回路时,只要电源电压大于10‐20V,电流大于80‐100mA,在动静触头分开瞬间,触头间隙就会产生一团温度极高、发出强光且能够导电的近似圆柱形的气体,这就是电弧,一直到电弧熄灭,触头间隙成为绝缘介质后,电流才被开断。
电孤是一种气体放电现象,它有两个特点:一是电弧中有大量的电子、离子,因而是导电的,电孤不熄灭电路继续导通,要电弧熄灭后电路才正式断开;二是电弧的温度很高,弧心温度达4000~5000摄氏度以上,高温电弧会烧坏设备造成严重事故,所以必须采取措施,迅速熄灭电弧,因此电弧燃烧和熄灭过程是开关电器研究最重要的内容。
电弧的产生主要依靠碰撞游离,电弧的维持主要依靠热游离,物理过程简述如下:在开关断开过程中,由于动触头的运动,使动、静触头间的接触面不断减小,电流密度就不断增大,接触电阻随接触面的减小就越来越大,因而触头温度升高,产生热电子发射。当触头刚分离时,由于动、静触头间的间隙极小,出现的电场强度很高,在电场作用下金属表面电子不断从金属表面飞逸出来,成为自由电子在触头间运动,这种现象称为场致发射。热电子发射、场致发射产生的自由电子在电场力作用下加速飞向阳极,途中不断碰撞中性质点,将中性质点中的电子又碰撞出来,这种现象称作碰撞游离。由于碰撞游离的连锁反应,自由电子成倍地增加(正离子亦随之增加),大量的电子奔向阳极,大量的正离子向负极运动,开关触头间隙便成了电流的通道,触头间隙间介质被击穿就形成电弧。由于 电弧温度很高,在高温的作用下,处在高温下的中性质点由于高温而产生强烈不规则的热运动,在中性质点互相碰撞时,又将被游离而形成电子和离子,这种因热运动而引起的游离称为热游离,热游离产生大量电子和离子维持触头间隙间电弧。
上述交流电力系统简化模型中的负载L分为:阻性负载,如白炽灯、电炉、电热水器等;感性负载,如电动机、变压器、继电器驱动等;容性负载,如充电器、电池、超级电容等,交流电力系统一般由三种负载混合组成。
由于交流电力系统总负载存在感性负载和容性负载,系统中的电压和电流会产生相位差,图2为现有的交流电力系统正常工作时电压、电流相位差为90°时的波形图;图3为现有的交流电力系统正常工作时电压、电流相位差为45°时的波形图。从图3和图4可以得知,交流电力系统的电压V和电流I的正负情况存在以下四种情况:
(1)电压V为正、电流I为负;
(2)电压V为正、电流I为正;
(3)电压V为负、电流I为正;
(4)电压V为负、电流I为负。
当交流电力系统发生故障需要断开开关J时,如果此时刚好处于交流电流过零点之后,则需要等待1/2个周波交流电流才能过零,在此1/2周波内,将会在开关J两端产生电弧。对于交流电力系统,感性负载的存在增加了灭弧难度,原因在于开关断开后电流会迅速减小,而感性负载两端的电流不能突变,感性负载线圈储存的能量由于自感效应线圈会产生一个反向的电势阻止电流的变化,这其实是一个能量释放过程,如果线圈开路,其两端产生的反向电势电压将会为几倍的交流输入电压,反向电势电压与交流输入电压叠加后,将会在开关两端产生至少2倍交流输入电压的尖峰电压,即电弧电压。
申请号为99104580.7、发明名称为《有电弧转移触头的长寿命省银开关电器》的中国发明专利申请,在交流开关J两端并联上了移弧电路,如图4所示的灭弧装置采用的就是该专利的灭弧原理,图4在在交流开关J两端并联上了由双向可控硅SCR组成的移弧电路,该电路的灭弧原理为:让双向可控硅SCR产生断弧功能,由于开关J的触头必须先于双向可控硅SCR的触头分开,在开关J的触头分 开之际,双向可控硅SCR的触头短时还处于闭合状态,电流因双向可控硅SCR中的一只可控硅导通而转移到移弧电路中,所以电弧不会在开关J的触头上产生,而只会在双向可控硅SCR的触头上产生,由于该只可控硅的反向截止作用,电路在1/2周波内就会因为电流过零自动熄灭,实现双向可控硅SCR的触头及时分开到位;在负半波到来后,由于双向可控硅SCR的触头已经分开,双向可控硅SCR中的另外一只可控硅无法导通,电弧无法转移到另外一只可控硅形成的电路中继续燃烧。该电路的优点在于电路简单,且如果故障发生在输入电压、电流方向相反的时间段时还能实现能量回收。
但是上述技术方案存在如下缺陷:
(1)响应速度慢,由于该方案故障发生后并不能马上断开电路,只有在电流过零时才能自动熄灭电弧从而实现断开电路,导致故障发生到电弧熄灭期间交流输入还在给负载提供能量,如果发生的是短路故障,可能会给负载端造成灾乱性的后果,如图2如果故障发生在t2时刻,电路中的电流将先上升至t3然后才下降,需要经过半个周波后才能下降为零,此时响应速度滞后了半个周波,随着我国经济迅速发展以及工业交通部门逐步的现代化,对交流开关断开响应速度的要求也越来越苛刻,该方案对于对响应时间有严格要求的场合并不适用;
(2)能量回收功能受到限制,该方案只在输入电压和输入电流方向相反时断开交流开关才能实现能量回收,如果故障发生在其它时间,负载中电感线圈储存的能量将会被损耗,对于需要频繁关断交流开关的场合,将会产生较大的浪费。
发明内容
有鉴如此,本发明要解决的技术问题是提供一种交流开关装置,能在一定的条件下提高交流开关断开响应速度或在交流开关断开前通过钳位降低交流开关两端的电弧电压,并经过进一步改进后能在所有条件下实现无弧分断、响应速度快,同时还能实现能量回收。
本发明要解决上述技术问题的技术方案如下:
一种交流开关装置,其特征在于:
包括:交流开关J1、交流开关J2、可控硅SCR1a、可控硅SCR2a、可控硅SCR1b、可控硅SCR2b和检测控制电路;
交流开关J1连接于第一相电源线输入端和第一相电源线输出端之间,交流开关J2连接于第二相电源线输入端和第二相电源线输出端之间;
可控硅SCR1a和可控硅SCR2a反向并联后一端连接于第二相电源线输入端、另一端连接于第一相电源线输出端;
可控硅SCR1b和可控硅SCR2b反向并联后一端连接于第一相电源线输入端、另一端连接于第二相电源线输出端;
检测控制电路用于检测当电路故障后输入电压和输入电流的方向,并控制可控硅SCR1a、可控硅SCR2a、可控硅SCR1b和可控硅SCR2b的导通,实现输入电压和输入电流的方向相反。
作为上述方案的改进,其特征在于:
还包括:可控硅SCR3a、可控硅SCR3b、可控硅SCR4a和可控硅SCR4b;
可控硅SCR3a和可控硅SCR4a反向并联后与交流开关J1并联;
可控硅SCR3b和可控硅SCR4b反向并联后与交流开关J1并联。
作为上述方案的等同替换,本发明还提供一种交流开关装置,其特征在于:
包括:交流开关J1、交流开关J2、双向可控硅SCR1、双向可控硅SCR2和检测控制电路;
交流开关J1连接于第一相电源线输入端和第一相电源线输出端之间,交流开关J2连接于第二相电源线输入端和第二相电源线输出端之间;
双向可控硅SCR1一端连接于第二相电源线输入端、另一端连接于第一相电源线输出端;
双向可控硅SCR2一端连接于第一相电源线输入端、另一端连接于第二相电源线输出端;
检测控制电路用于检测当电路故障后输入电压和输入电流的方向,并控制双向可控硅SCR1和双向可控硅SCR2的导通,实现输入电压和输入电流的方向相反。
作为上述等同替换方案的改进,其特征在于:
还包括:双向可控硅SCR3和双向可控硅SCR4;
双向可控硅SCR3与交流开关J1并联;
双向可控硅SCR4与交流开关J1并联。
本发明较现有的交流开关装置方案提出了一种全新的技术构思:采用双交流 开关,双交流开关两端交叉连接有由两只可控硅反向并联组成的电流转移电路,从而形成了2路电流转移电路,通过检测输入电压和输入电流的方向,能选择性地开通某路电流转移电路,使得即刻实现输入电压和输入电流的方向相反或通过电流转移电路中的两只可控硅实现将交流开关两端的电弧电压钳位为输入电压,当在双交流开关上各再增加1路电流转移电路后,能够完全实现能量回收不受故障时刻电压电流方向限制,且在交流开关分断时电流通过电流转移电路流动,不会在交流开关的触头上产生电弧,可控硅又是自然关断,也没有电弧产生,从而使得交流开关断分断响应速度快。
本申请相对于现有技术有如下突出的有益效果:
(1)当采用2路电流转移电路时,装置能根据实时情况选择最佳电流转移电路,从而使得当输入电压和输入电流方向相同时,即刻实现输入电压和输入电流的方向相反,使得电路中的电流迅速下降至零,提高了交流开关的分断响应速度,尤其是输入电流大且负载电感量大的情况下响应速度更具优势;当输入电压和输入电流方向相反时,能通过电流转移电路中的两只可控硅实现将交流开关两端的电弧电压钳位为输入电压,使得交流开关需要承受的电压应力较现有技术小;
(2)当采用4路电流转移电路时,将突破响应速度受故障发生时刻的限制,在全周期内都可以实现极快的响应速度;
(3)当采用4路电流转移电路时,将突破无弧关断受故障发生时刻的限制,在全周期内都可以实现交流开关的无弧关断;
(4)当采用4路电流转移电路时,能量回收不受故障时刻电压电流方向限制,装置能根据实时情况选择最佳移弧电路即刻实现输入电压和输入电流的方向相反,能量回收不限时刻,使得装置更加节能,尤其是交流开关频繁动作时节能效果更加明显。
附图说明
图1现有的交流电力系统简化模型;
图2现有的交流电力系统正常工作时电压、电流相位差为90°时的波形图;
图3现有的交流电力系统正常工作时电压、电流相位差为45°时的波形图;
图4 99104580.7发明专利申请中的交流灭弧装置原理图;
图5本发明第一实施例交流装置原理图;
图5‐1本发明第一实施例t2‐t3时刻发生故障时的仿真曲线;
图5‐2本发明第一实施例t3‐t4时刻发生故障时的仿真曲线;
图6本发明第二实施例交流装置原理图;
图7本发明第三实施例交流装置原理图;
图8本发明第四实施例交流装置原理图。
具体实施方式
为了使本发明更加清楚明白,以下结合附图及实施例,对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
第一实施例
图5所示为本发明第一实施例原理图,该实施例中的交流开关装置包括交流开关J1、交流开关J2、可控硅SCR1a、可控硅SCR2a、可控硅SCR1b、可控硅SCR2b和检测控制电路;
交流开关J1连接于第一相电源线输入端和第一相电源线输出端之间,交流开关J2连接于第二相电源线输入端和第二相电源线输出端之间;
可控硅SCR1a和可控硅SCR2a反向并联后一端连接于第二相电源线输入端、另一端连接于第一相电源线输出端;
可控硅SCR1b和可控硅SCR2b反向并联后一端连接于第一相电源线输入端、另一端连接于第二相电源线输出端;
检测控制电路输入端与第一相电源线输入端连接,输出端K1a、K2a、K1b和K2b分别与可控硅SCR1a、SCR2a、SCR1b和SCR2b的控制端连接。
当交流电路正常工作时,交流开关J1和交流开关J2均闭合,可控硅SCR1a、可控硅SCR2a、可控硅SCR1b和可控硅SCR2b均不导通,电路将形成图2所示的电压、电流波形,根据负载L的不同,电压、电流相位差可能与图2、图3均不相同。
当图5所示电路发生故障,假设输入电压、电流波形为图2所示的波形。
本实施例依据电流进行控制,控制逻辑如下:
交流开关J1和J2关断时刻,若负载L中电感线圈的电感电流为正,则给输出端k1a、K1b脉冲;
若负载L中电感线圈的电感电流为负,则给输出端k2a、K2b脉冲。
假设故障发生时为图2所示的t2‐t3时刻,则t2时刻之后检测控制电路将检测到此时的输入电压为正、输入电流为正,负载L中电感线圈的电感电流为正,检测控制电路将输出控制信号,使得可控硅SCR1a和可控硅SCR1b导通,交流开关J1和J2中的触头分开,续流回路中负载L中电感线圈中的电流不能突变,将形成续流回路:可控硅SCR1a阳极→可控硅SCR1a阴极→负载L→可控硅SCR1b阳极→可控硅SCR1b阴极。因此实现了输入电流反向,使得输入电压和输入电流方向相反,续流回路中负载L中电感线圈储存的能量被回馈至了交流输入端,从而实现能量的无损回收。图5‐1为本发明第一实施例t2‐t3时刻发生故障时的仿真曲线,仿真参数如下:
电压电流方向:输入电压上正下负时为正,电感电流从上往下流为正方向;
输入电压:220VAC;
负载L中电感线圈的电感感量:10mH;
初始电感电流:‐100A(初始时刻电路已经进入稳定状态)。
其中电流图中的实线波形为负载L中的电流波形;电压图中的实线波形为输入电压的波形、虚线波形为负载L中的电压波形。
从图5‐1也可以看出,在交流开关J1和J2关断时,输入电压为正,输入电流为正,则交流开关J1和J2可以正常关断,交流开关J1和J2关断后,负载L中电感线圈的电感电压反向,该电感电流下降,从而能实现交流开关J1和J2迅速关断,电路响应速度快。
假设故障发生时为图2所示的t4‐t5时刻,则t4时刻之后检测控制电路将检测到此时的输入电压为负、输入电流为负,负载L中电感线圈的电感电流为负,检测控制电路将输出控制信号,使得可控硅SCR2a和可控硅SCR2b导通,交流开关J1和J2中的触头分开,续流回路中负载L中电感线圈中的电流不能突变,将形成续流回路:可控硅SCR2b阳极→可控硅SCR2b阴极→负载L→可控硅SCR2a阳极→可控硅SCR2a阴极。因此实现了输入电流反向,使得输入电压和输入电流 方向相反,续流回路中负载L中电感线圈储存的能量被回馈至了交流输入端,从而实现能量的无损回收,这和t2‐t3时刻发生故障时的情况类似,也能实现交流开关J1和J2迅速关断,电路响应速度快,此处不再通过仿真波形进行分析。
上述控制逻辑总结如下表1(其中“1”表示该可控硅控制端输入脉冲,“0”表示该可控硅控制端不输入脉冲)
表1
输入电压、电流方向 K1a K2a K1b K2b
电压为正,电流为正 1 0 1 0
电压为负,电流为负 0 1 0 1
以上两种情况,电路均可以快速关断、并且还能实现能量回收。
当输入电压与电流方向相反时,存在以下两种情况:
假设故障发生时为图2所示的t3‐t4时刻,则t3时刻之后检测控制电路将检测到此时的输入电压为负、输入电流为正,负载L中电感线圈的电感电流为正,检测控制电路将输出脉冲控制信号,使得可控硅SCR1a和可控硅SCR1b导通,交流开关J1和J2中的触头分开,电流转移至可控硅SCR1a和可控硅SCR1b形成的电流转移电路中,电流流动路径为:可控硅SCR1a阳极→可控硅SCR1a阴极→负载L→可控硅SCR21b阳极→可控硅SCR1b阴极。电感电压从负变为正,电流为正,因此电感电流幅值增大,无法迅速关断,要等多个周期电感电流才回到0,此时才能关断。图5‐2本发明第一实施例t3‐t4时刻发生故障时的仿真曲线,仿真参数如下:
电压电流方向:输入电压上正下负时为正,电感电流从上往下流为正方向;
输入电压:220VAC;
负载L中电感线圈的电感感量:10mH;
初始电感电流:‐100A(初始时刻电路已经进入稳定状态)。
其中电流图中的实线波形为负载L中的电流波形;电压图中的实线波形为输入电压的波形、虚线波形为负载L中的电压波形。
从图5‐2也可以看出,在交流开关J1和J2关断时,输入电压为负,输入电流为正,则交流开关J1和J2关断后,输出端k1a、K1b控制的可控硅SCR1a和可控硅SCR1b导通,负载L中电感线圈的电感电压从负变为正,与其电感电流方 向相同,使得负载L中电感线圈的电感电流增加,电流增加后会缓慢下降,经过多个周期后电路关断,关断时间会有所延长。
从图5‐2还可以看出,由于电流转移电路中采用了两只双向可控硅SCR1a和SCR1b,交流开关J1和J2的电弧电压会被钳位为输入电压Vin;而现有技术的电流转移电路只有一只交流开关和一只双向可控硅,无法实现钳位,负载L中电感线圈的电感两端产生的反向电势电压将会为几倍的直流输入电压,该反向电势电压与直流输入电压叠加后,将会在交流开关两端产生至少2倍直流输入电压电弧电压,因此本实施例才此种情况下较现有技术可以极大降低交流开关两端的电弧,使得交流开关J1和J2需要承受的电压应力较现有技术小。
需要说明的是,本实施例仿真针对的负载L为纯感性负载,交流输入的负载L中存在感性负载和/或容性负载时才会使得交流输入的电压和电流存在相位差,如果负载L为纯阻性负载,该相位差将不会存在,那么此种情况下关断时间会有所延长的情况便不复存在了。
假设故障发生时为图2所示的t1‐t2时刻,则t1时刻之后检测控制电路将检测到此时的输入电压为正、输入电流为负,负载L中电感线圈的电感电流为负,检测控制电路将输出控制信号,使得可控硅SCR2a和可控硅SCR2b导通,交流开关J1和J2中的触头分开,电流转移至可控硅SCR2a和可控硅SCR2b形成的电流转移电路中,电流流动路径为:可控硅SCR2b阳极→可控硅SCR1a2b阴极→负载L→可控硅SCR2a阳极→可控硅SCR2a阴极。电感电压从正变为负,电感电流为负,因此电感电流幅值增大,无法迅速关断,要等多个周期电感电流才回到0,此时才能关断,这和t3‐t4时刻发生故障时的情况类似,同样较现有技术可以极大降低交流开关两端的电弧,此处不再通过仿真波形进行分析。
需要说明的是,即使输入电压与输入电流的波形并不是如图2所示相位差为90度,由于交流电力系统的电压V和电流I的正负情况只有上述四种情况,上面的控制方法还是适用的。
综上,在现有方案中,要等到电路的电流电压自然反向才能实现能量回收,在本实施例的方案中,从上面的四种情况分析可知,在电压和电流同向时,通过电流转移支路改变电感电压方向,同时改变输入电流的方向,立即使得电压与电流的方向相反,无需等待,快速实现能量无损回收,且响应速度更快;当电压和 电流反向时,交流开关两端的电弧被钳位为输入电压较现有技术有改进,但对于负载L包括感性负载和/或容性负载去情况将无法实现快速关断,因此本发明将对其提出改进,详见第三实施例。
第二实施例
图6为本发明第二实施例交流装置原理图,较图5不同之处在于将可控硅SCR1a和可控硅SCR2a替换为一只双向可控硅SCR1、将可控硅SCR1b和可控硅SCR2b替换为一只双向可控硅SCR2;检测控制电路只有2个输出端:K1和K2分别与可控硅SCR1和SCR2的控制端连接。
由于双向可控硅内含两只反极性并联的可控硅,因此图6与图5是等效的,其输入电压、输入电流方向不同形成的四种情况如何形成电流转移电路并实现能量回收与第一实施例是一样的,在此不再赘述。
并且双向可控硅只有1个控制端,当控制端输入控制信号后每只双向可控硅中只有一只可控硅可以导通,因此其控制逻辑为无论输入电压和输入电流的方向为何种情况,双向可控硅SCR1和SCR1b的控制端均输出脉冲。
事实上本实施例与第一实施例等效,同样能实现电压和电流同向时,无需等待,快速实现能量无损回收,且响应速度更快;但是当电压和电流反向时,则无法实现快速关断。
第三实施例
本实施例将对第一实施例进行改进,在交流开关J1和J2两端各并联由两只可控硅反向并联组成的电流转移电路,在开关J1和J2断开后不需要改变负载L中的电压方向,确保负载L的电压方向和电流方向相反,使得电流幅值降低。改进方案如图7所示,为本发明第三实施例原理图,该实施例中的交流开关装置包括交流开关J1、交流开关J2、可控硅SCR1a、可控硅SCR2a、可控硅SCR1b、可控硅SCR2b、可控硅SCR3a、可控硅SCR3b、可控硅SCR4a、可控硅SCR4b和检测控制电路;
交流开关J1连接于第一相电源线输入端和第一相电源线输出端之间,交流开关J2连接于第二相电源线输入端和第二相电源线输出端之间;
可控硅SCR1a和可控硅SCR2a反向并联后一端连接于第二相电源线输入端、另一端连接于第一相电源线输出端;
可控硅SCR1b和可控硅SCR2b反向并联后一端连接于第一相电源线输入端、另一端连接于第二相电源线输出端;
可控硅SCR3a和可控硅SCR4a反向并联后与交流开关J1并联;
可控硅SCR3b和可控硅SCR4b反向并联后与交流开关J1并联;
检测控制电路输入端与第一相电源线输入端连接,输出端K1a、K2a、K1b、K2b、K3a、K4a、K3b和K4b分别与可控硅SCR1a、SCR2a、SCR1b、SCR2b、SCR3a、SCR4a、SCR3b和SCR4b的控制端连接。
当交流电路正常工作时,交流开关J1和交流开关J2均闭合,可控硅SCR1a、可控硅SCR2a、可控硅SCR1b、可控硅SCR2b、可控硅SCR3a、可控硅SCR3b、可控硅SCR4a和可控硅SCR4b均不导通,电路将形成图2所示的电压、电流波形,根据负载L的不同,电压、电流相位差可能与图2、图3均不相同。
当图5所示电路发生故障,假设输入电压、电流波形为图2所示的波形。
假设故障发生时为图2所示的t1‐t2时刻,则t1时刻之后检测控制电路将检测到此时的输入电压为正、输入电流为负,检测控制电路将输出控制信号,使得可控硅SCR4a和可控硅SCR4b导通,交流开关J1和J2中的触头分开,电流转移至可控硅SCR4a和可控硅SCR4b形成的电流转移电路中,电流流动路径为:可控硅SCR4b阳极→可控硅SCR4b阴极→负载L→可控硅SCR4a阳极→可控硅SCR4a阴极。所以电弧不会在交流开关J1和J2的触头上产生;当到达t2时,电流过零,可控硅SCR4a和可控硅SCR4b关断,由于此时输入电压为正、输入电流为负,能实现能量回收;
假设故障发生时为图2所示的t2‐t3时刻,则t2时刻之后检测控制电路将检测到此时的输入电压为正、输入电流为正,检测控制电路将输出控制信号,使得可控硅SCR1a和可控硅SCR1b导通,交流开关J1和J2中的触头分开,续流回路中负载L中电感线圈中的电流不能突变,将形成续流回路:可控硅SCR1a阳极→可控硅SCR1a阴极→负载L→可控硅SCR1b阳极→可控硅SCR1b阴极。因此续流回路中负载L中电感线圈储存的能量被回馈至了交流输入端,从而实现能量的无损回收;
假设故障发生时为图2所示的t3‐t4时刻,则t3时刻之后检测控制电路将检测到此时的输入电压为负、输入电流为正,检测控制电路将输出脉冲控制信号,使得可控硅SCR3a和可控硅SCR3b导通,交流开关J1和J2中的触头分开,电流转移至可控硅SCR3a和可控硅SCR3b形成的电流转移电路中,电流流动路径为:可控硅SCR3a阳极→可控硅SCR3a阴极→负载L→可控硅SCR3b阳极→可控硅SCR3b阴极。所以电弧不会在交流开关J1和J2的触头上产生;当到达t4时,电流过零,可控硅SCR3a和可控硅SCR3b关断,由于此时输入电压为正、输入电流为负,能实现能量回收;
假设故障发生时为图2所示的t4‐t5时刻,则t4时刻之后检测控制电路将检测到此时的输入电压为负、输入电流为负,检测控制电路将输出控制信号,使得可控硅SCR2a和可控硅SCR2b导通,交流开关J1和J2中的触头分开,续流回路中负载L中电感线圈中的电流不能突变,将形成续流回路:可控硅SCR2b阳极→可控硅SCR2b阴极→负载L→可控硅SCR2a阳极→可控硅SCR2a阴极。因此续流回路中负载L中电感线圈储存的能量被回馈至了交流输入端,从而实现能量的无损回收。
上述控制逻辑总结如下表2(其中“1”表示该可控硅控制端输入脉冲,“0”表示该可控硅控制端不输入脉冲)
表2
输入电压、电流方向 K1a,K1b K2a,K2b K3a,K3b K4a,K4b
电压为正,电流为正 1 0 0 0
电压为负,电流为负 0 1 0 0
电压为负,电流为正 0 0 1 0
电压为正,电流为负 0 0 0 1
在现有方案中,要等到电路的电流电压自然反向才能实现能量回收,在本实施例的方案中,从上面的四种情况可知,在一个完整的周波t1至t5时间段内,无论何时发生故障断开交流开关,电路均能选择合适的电流转移电路,立即使得电压与电流的方相反,无需等待,快速实现能量无损回收,且响应速度更快。
需要说明的是,即使输入电压与输入电流的波形并不是如图2所示相位差为90度,由于交流电力系统的电压V和电流I的正负情况只有上述四种情况,上面 的控制方法还是适用的。
第四实施例
图8为本发明第三实施例交流装置原理图,较图7不同之处在于将可控硅SCR1a和可控硅SCR2a替换为一只双向可控硅SCR1、将可控硅SCR1b和可控硅SCR2b替换为一只双向可控硅SCR2、将可控硅SCR3a和可控硅SCR4a替换为一只双向可控硅SCR3、将可控硅SCR3b和可控硅SCR4b替换为一只可控硅SCR4;检测控制电路只有4个输出端:K1、K2、K3和K4分别与可控硅SCR1、SCR2、SCR3和SCR4的控制端连接。
由于双向可控硅内含两只反极性并联的可控硅,因此图6与图5是等效的,其输入电压、输入电流方向不同形成的四种情况如何形成电流转移电路并实现能量回收与第一实施例是一样的,在此不再赘述。
并且双向可控硅只有1个控制端,当控制端输入控制信号后每只双向可控硅中只有一只可控硅可以导通,因此其控制逻辑需要对图5的控制逻辑进行合并,具体如下表3(其中“1”表示该可控硅控制端输入脉冲,“0”表示该可控硅控制端不输入脉冲):
表3
输入电压、电流方向 K1 K2 K3 K4
输入电压、电流同向 1 1 0 0
输入电压、电流反向 0 0 1 1
采用上述表3所述的控制逻辑,本实施例与第三实施例等效,同样实现第三实施例的发明目的。
以上仅是本发明的优选实施方式,应当指出的是,上述优选实施方式不应视为对本发明的限制,本发明的保护范围应当以权利要求所限定的范围为准。对于本技术领域的普通技术人员来说,在不脱离本发明的精神和范围内,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (4)

  1. 一种交流开关装置,其特征在于:
    包括:交流开关J1、交流开关J2、可控硅SCR1a、可控硅SCR2a、可控硅SCR1b、可控硅SCR2b和检测控制电路;
    交流开关J1连接于第一相电源线输入端和第一相电源线输出端之间,交流开关J2连接于第二相电源线输入端和第二相电源线输出端之间;
    可控硅SCR1a和可控硅SCR2a反向并联后一端连接于第二相电源线输入端、另一端连接于第一相电源线输出端;
    可控硅SCR1b和可控硅SCR2b反向并联后一端连接于第一相电源线输入端、另一端连接于第二相电源线输出端;
    检测控制电路用于检测当电路故障后输入电压和输入电流的方向,并控制可控硅SCR1a、可控硅SCR2a、可控硅SCR1b和可控硅SCR2b的导通,实现输入电压和输入电流的方向相反。
  2. 根据权利要求1所述的交流开关装置,其特征在于:
    还包括:可控硅SCR3a、可控硅SCR3b、可控硅SCR4a和可控硅SCR4b;
    可控硅SCR3a和可控硅SCR4a反向并联后与交流开关J1并联;
    可控硅SCR3b和可控硅SCR4b反向并联后与交流开关J1并联。
  3. 一种交流开关装置,其特征在于:
    包括:交流开关J1、交流开关J2、双向可控硅SCR1、双向可控硅SCR2和检测控制电路;
    交流开关J1连接于第一相电源线输入端和第一相电源线输出端之间,交流开关J2连接于第二相电源线输入端和第二相电源线输出端之间;
    双向可控硅SCR1一端连接于第二相电源线输入端、另一端连接于第一相电源线输出端;
    双向可控硅SCR2一端连接于第一相电源线输入端、另一端连接于第二相电源线输出端;
    检测控制电路用于检测当电路故障后输入电压和输入电流的方向,并控制双向可控硅SCR1和双向可控硅SCR2的导通,实现输入电压和输入电流的方向相反。
  4. 根据权利要求3所述的交流开关装置,其特征在于:
    还包括:双向可控硅SCR3和双向可控硅SCR4;
    双向可控硅SCR3与交流开关J1并联;
    双向可控硅SCR4与交流开关J1并联。
PCT/CN2018/075120 2017-08-15 2018-02-02 一种交流开关装置 WO2019033717A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710697994.0A CN107331558B (zh) 2017-08-15 2017-08-15 一种交流开关装置
CN201710697994.0 2017-08-15

Publications (1)

Publication Number Publication Date
WO2019033717A1 true WO2019033717A1 (zh) 2019-02-21

Family

ID=60201220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/075120 WO2019033717A1 (zh) 2017-08-15 2018-02-02 一种交流开关装置

Country Status (2)

Country Link
CN (1) CN107331558B (zh)
WO (1) WO2019033717A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107331558B (zh) * 2017-08-15 2019-09-10 广州金升阳科技有限公司 一种交流开关装置
CN115967064A (zh) * 2021-10-09 2023-04-14 施耐德电器工业公司 固态断路器及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2285512Y (zh) * 1996-08-19 1998-07-01 陈文� 无弧交流继电接触器
CN201174597Y (zh) * 2008-03-27 2008-12-31 武汉江北开关有限责任公司 10kV无功补偿电容投切开关
CA2720196A1 (en) * 2009-11-09 2011-05-09 Leviton Manufacturing Co., Inc. Parallel ac switching with sequential control
CN106653434A (zh) * 2017-01-12 2017-05-10 中国计量大学 复合开关及其精确过零投切控制方法
CN107331558A (zh) * 2017-08-15 2017-11-07 广州金升阳科技有限公司 一种交流开关装置
CN207068711U (zh) * 2017-08-15 2018-03-02 广州金升阳科技有限公司 一种交流开关装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101807864B (zh) * 2010-03-25 2012-05-30 吉林大学 磁性源电磁法发射电流分段控制电路
CN104979795B (zh) * 2014-04-08 2018-10-09 国家电网公司 一种无源型高压直流断路器及其实现方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2285512Y (zh) * 1996-08-19 1998-07-01 陈文� 无弧交流继电接触器
CN201174597Y (zh) * 2008-03-27 2008-12-31 武汉江北开关有限责任公司 10kV无功补偿电容投切开关
CA2720196A1 (en) * 2009-11-09 2011-05-09 Leviton Manufacturing Co., Inc. Parallel ac switching with sequential control
CN106653434A (zh) * 2017-01-12 2017-05-10 中国计量大学 复合开关及其精确过零投切控制方法
CN107331558A (zh) * 2017-08-15 2017-11-07 广州金升阳科技有限公司 一种交流开关装置
CN207068711U (zh) * 2017-08-15 2018-03-02 广州金升阳科技有限公司 一种交流开关装置

Also Published As

Publication number Publication date
CN107331558A (zh) 2017-11-07
CN107331558B (zh) 2019-09-10

Similar Documents

Publication Publication Date Title
Wen et al. Transient current interruption characteristics of a novel mechanical DC circuit breaker
EP3745440A1 (en) Oscillating dc circuit breaker based on vacuum interupter with magnetic blow intergrated and breaking method thereof
WO2015024509A1 (zh) 一种高压大电流直流断路器及其控制方法
WO2019104793A1 (zh) 一种微损耗组合机械式直流断路器及其控制方法
CN107332222B (zh) 一种适用于大功率的直流开关灭弧装置
WO2021115101A1 (zh) 一种中高压双向全固态直流断路器及其高电位供能装置
WO2019033717A1 (zh) 一种交流开关装置
CN103311903A (zh) 一种开关装置及其发电系统
CN106898480B (zh) 一种晶闸管辅助熄弧混合式有载分接开关
CN103824736A (zh) 一种具有磁吹灭弧装置的直流断路器
CN113257597A (zh) 一种基于复合换流方式的混合式直流断路器及其控制方法
CN205846730U (zh) 无涌流投切装置
Yasuoka et al. A hybrid DC circuit breaker with vacuum contact and SiC-MOSFET for arcless commutation
TW201611518A (zh) 閘流體交流開關之快速截止裝置及其操作方法
CN105070554B (zh) 一种无弧有载分接开关切换器及其方法
CN207069572U (zh) 一种适用于大功率的直流开关灭弧装置
CN105742095A (zh) 一种真空开关管直流陡波双极性大电流冲击老炼设备及工艺
CN207068711U (zh) 一种交流开关装置
CN202949231U (zh) 一种智能过零投切的可控硅复合开关
CN110401174B (zh) 一种中压直流真空断路器主电路拓扑及其分断方法
CN115954829A (zh) 发电机出口断路器
CN103943430A (zh) 一种复合式交直流通用空气断路器及其灭弧方法
CN114156841A (zh) 一种新型大电流强迫换流分断的换流回路拓扑结构
CN110880745B (zh) 基于双电容振荡的主动型阻容式直流限流器及控制方法
CN109995006B (zh) 一种液态金属故障电流限制器及其限流方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18846496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18846496

Country of ref document: EP

Kind code of ref document: A1