WO2019033379A1 - 用于非授权频带通信的方法、设备和计算机可读存储介质 - Google Patents

用于非授权频带通信的方法、设备和计算机可读存储介质 Download PDF

Info

Publication number
WO2019033379A1
WO2019033379A1 PCT/CN2017/097976 CN2017097976W WO2019033379A1 WO 2019033379 A1 WO2019033379 A1 WO 2019033379A1 CN 2017097976 W CN2017097976 W CN 2017097976W WO 2019033379 A1 WO2019033379 A1 WO 2019033379A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
network device
energy detection
indication
detection report
Prior art date
Application number
PCT/CN2017/097976
Other languages
English (en)
French (fr)
Inventor
陶涛
刘建国
骆喆
沈钢
Original Assignee
上海诺基亚贝尔股份有限公司
阿尔卡特朗讯
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海诺基亚贝尔股份有限公司, 阿尔卡特朗讯 filed Critical 上海诺基亚贝尔股份有限公司
Priority to CN201780093616.XA priority Critical patent/CN111096030B/zh
Priority to PCT/CN2017/097976 priority patent/WO2019033379A1/zh
Publication of WO2019033379A1 publication Critical patent/WO2019033379A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Embodiments of the present disclosure generally relate to wireless communication technologies and, more particularly, to methods, devices, and computer readable storage media for communicating over unlicensed frequency bands.
  • Unlicensed band communication is a key technology to improve the spectrum efficiency of wireless networks and increase network capacity.
  • the communication device needs to perform a Listen-Before-Talk (LBT) process.
  • LBT Listen-Before-Talk
  • the communication device performs channel energy measurements prior to accessing the unlicensed band to obtain the energy of the wireless channel on which the communication device is currently located. If the measured wireless channel energy is below a certain threshold energy, the communication device considers the unlicensed frequency band to be in an idle state and access the frequency band for communication. If the measured wireless channel energy is above a certain threshold energy, the communication device considers the unlicensed frequency band to be in an occupied state and not to communicate on the frequency band.
  • LTE-LAA LTE Authorized Access Access
  • downlink transmission adopts a fourth type LBT access rule based on channel energy detection
  • uplink transmission can adopt a fourth type LBT access rule and a second type.
  • LBT access rules The details of these two types of LBT access technologies are defined in the 3GPP 36.213 specification.
  • the terminal device first performs channel measurement for at least 25 us measurement time before uplink transmission. If the channel energy measured by the terminal device is lower than a certain threshold energy, the terminal device performs uplink transmission.
  • the second type LBT access is mainly used for the uplink transmission process within the channel occupation time (COT) acquired by the network device.
  • maximum channel occupancy time (MCOT) can be defined to constrain the total duration of uplink and downlink transmissions.
  • a communication method implemented at a network device includes receiving an energy detection report from a terminal device, the network device communicating with the terminal device on an unlicensed frequency band, the energy detection report indicating channel energy measured by the terminal device for the unlicensed frequency band; based on the received An energy detection report determining whether the terminal device is allowed to perform uplink transmission; and in response to determining that the terminal device is allowed to perform uplink transmission, transmitting a first indication to the terminal device to cause the terminal device to perform uplink transmission.
  • a communication method implemented at a terminal device includes transmitting an energy detection report to a network device, the terminal device communicating with the network device on an unlicensed frequency band, the energy detection report indicating channel energy measured by the terminal device for the unlicensed frequency band, and receiving from the network a first indication of the device; and in response to receiving the first indication, performing an uplink transmission to the network device.
  • a network device in a third aspect of the present disclosure, includes: a processor, and a memory storing instructions that, when executed by the processor, cause the network device to perform an action of receiving an energy detection report from the terminal device, the network device being Communication on an unlicensed band, the energy detection report indicating channel energy measured by the terminal device for the unlicensed band; determining whether to allow the terminal device to perform uplink transmission based on the received energy detection report; and responding to determining permission
  • the terminal device performs uplink transmission, and sends a first indication to the terminal device, so that the terminal device performs uplink transmission.
  • a terminal device in a fourth aspect of the present disclosure, includes: a processor, and a memory, the memory storing instructions that, when executed by the processor, cause the terminal device to perform an action of: transmitting an energy detection report to the network device, the terminal device and the network device being in a non- Communicating on the licensed frequency band, the energy detection report indicating channel energy measured by the terminal device for the unlicensed frequency band; receiving a first indication from the network device; and responding to receiving the first indication to the network device Uplink transmission.
  • an embodiment of the present disclosure provides a computer readable storage medium.
  • the computer readable storage medium includes program code stored thereon that, when executed by a device, causes the device to perform the method according to the first or second aspect.
  • FIG. 1 shows a schematic diagram of an example communication system supporting unlicensed band communication
  • FIG. 2 illustrates an interaction diagram of communications in accordance with some embodiments of the present disclosure
  • FIG. 3 illustrates a flow diagram of an example method implemented at a network device, in accordance with certain embodiments of the present disclosure
  • FIG. 4 illustrates a flow diagram of an example method implemented at a terminal device, in accordance with certain embodiments of the present disclosure
  • FIG. 5 shows a schematic diagram of an example communication process in accordance with some embodiments of the present disclosure
  • FIG. 6 shows a block diagram of an apparatus implemented at a network device in accordance with an embodiment of the present disclosure
  • FIG. 7 illustrates a block diagram of an apparatus implemented at a terminal device in accordance with an embodiment of the present disclosure
  • FIG. 8 shows a block diagram of a communication device in accordance with an embodiment of the present disclosure.
  • network device refers to any suitable entity or device capable of providing a cell or coverage such that a terminal device can access or receive services from or through the network.
  • network devices include, for example, base stations.
  • base station may refer to a Node B (NodeB or NB), an evolved Node B (eNodeB or eNB), a Remote Radio Unit (RRU), a Radio Head (RH), a Remote Radio Head (RRH), a repeater, or a low power node such as a pico base station, a femto base station, or the like.
  • terminal device or "user equipment” (UE) as used herein refers to any entity or device capable of wireless communication with or between network devices.
  • the terminal device may include a mobile terminal (MT), a subscriber station (SS), a portable subscriber station (PSS), a mobile station (MS) or an access terminal (AT), the above-described device onboard, and a machine having a communication function. Or electrical appliances, etc.
  • embodiments of the present disclosure are described herein in the context of wireless communications, such as cellular communications, and employ terminology in Long Term Evolution/Long Term Evolution-Advanced (LTE/LTE-A) or 5G, such as developed by 3GPP. .
  • LTE/LTE-A Long Term Evolution/Long Term Evolution-Advanced
  • 5G Long Term Evolution-Advanced
  • embodiments of the present disclosure are in no way limited to a wireless communication system that complies with the wireless communication protocol established by 3GPP, but can be applied to any communication system having similar problems, such as WLAN, wired. Communication systems, or other communication systems developed in the future.
  • FIG. 1 A schematic diagram of an example communication system 100 supporting unlicensed band communication is shown in FIG.
  • communication system 100 can include network devices 110, 120 and terminal devices 130, 140.
  • Network device 110 is a terminal device that is within its coverage 130 provides a wireless connection.
  • Network device 120 provides a wireless connection for terminal device 140 that is within its coverage. It should be understood that the number of network devices and terminal devices shown in FIG. 1 is for illustrative purposes only and is not intended to be limiting.
  • Communication system 100 can include any suitable number of network devices and terminal devices.
  • Communication in communication system 100 can follow any suitable wireless communication technology and corresponding communication standards.
  • Examples of communication technologies include, but are not limited to, Long Term Evolution (LTE), LTE-Advanced (LTE-A), Wideband Code Division Multiple Access (WCDMA), Code Division Multiple Access (CDMA), Global System for Mobile Communications (GSM) Orthogonal Frequency Division Multiple Access (OFDM), Wireless Local Area Network (WLAN), Worldwide Interoperability for Microwave Access (WiMAX), Bluetooth, Zigbee technology, Machine Type Communication (MTC), D2D, or M2M, to name a few.
  • communications may be performed in accordance with any suitable communication protocol including, but not limited to, Transmission Control Protocol (TCP) / Internet Protocol (IP), Hypertext Transfer Protocol (HTTP), User Datagram Protocol (UDP), Sessions Description Protocol (SDP) and other protocols.
  • TCP Transmission Control Protocol
  • IP Internet Protocol
  • HTTP Hypertext Transfer Protocol
  • UDP User Datagram Protocol
  • SDP Sessions Description Protocol
  • the communication system 100 operates in an unlicensed frequency band, i.e., the network devices 110, 120 share the unlicensed frequency band to communicate with the terminal devices 130, 140.
  • the term "unlicensed band” as used herein refers to a plurality of communication devices that can share the band for data transmission by frequency coexistence techniques. Typical frequency coexistence techniques are based, for example, on the LBT rules described above. As an example, assume that network device 110 is remote from network device 120, and that the downlink transmission signal power from network device 120 (or network device 110) received at network device 110 (or network device 120) is less than a certain threshold. That is, the network devices 110 and 120 cannot sense each other.
  • the terminal device 130 Assuming that the terminal device 130 is in an overlapping portion of the coverage areas of the network devices 110 and 120, the downlink transmission signal power from the network device 110 or 120 is received at the terminal device 130 above a certain threshold. That is, the terminal device 130 can sense both the network device 110 and the network device 120.
  • network device 120 is in downlink communication with terminal device 140. Since the network device 110 is far from the network device 120, the network device 110 determines that the unlicensed band is in an idle state by performing an LBT. Network device 110 transmits an uplink grant to terminal device 130 to instruct terminal device 130 to make an uplink transmission. The terminal device 130 is within the coverage of the network device 120. Receiving the uplink After the path is authorized, the terminal device 130 performs an LBT process for uplink transmission. In this example, the terminal device 130 determines from the result of the LBT that the licensed band is currently in an occupied state, and thus cannot perform uplink transmission. This causes the uplink transmission resources allocated by the network device 110 to the terminal device 130 to be wasted. Therefore, in the above application scenario (which may be referred to as a "hidden node" scenario), the spectrum efficiency of the existing unlicensed band communication system is low.
  • the terminal device 130 determines from the result of the LBT that the licensed band is currently in an occupied state, and thus cannot perform uplink transmission. This causes the uplink transmission
  • embodiments of the present disclosure propose an unlicensed band communication scheme based on channel energy detection reporting.
  • the terminal device measures the wireless channel of the unlicensed band to obtain an energy detection report and transmits the energy detection report to the network device.
  • the network device determines whether the terminal device is allowed to perform uplink transmission based on the energy detection report, and sends a corresponding indication to the terminal device if the terminal device is allowed to perform uplink transmission. In this way, the network device can be effectively prevented from allocating unnecessary uplink transmission resources to the terminal device, thereby improving the spectrum efficiency of the unlicensed band communication network.
  • FIG. 2 illustrates an interaction diagram 200 of communications in accordance with certain embodiments of the present disclosure.
  • description will be made below in conjunction with the network device 110 and the terminal device 130 in FIG.
  • the terminal device 130 measures the unlicensed frequency band according to the relevant measurement configuration to generate a channel energy detection report.
  • network device 110 can transmit 205 configuration information associated with channel measurements to terminal device 130.
  • the terminal device 130 does not have to receive the configuration information from the network device 110.
  • terminal device 130 may also obtain configuration information associated with channel energy detection through pre-configured system information. Based on the received configuration message, the terminal device 130 performs channel energy detection and generates 210 an energy detection report.
  • network device 110 sends 215 an indication to terminal device 130.
  • the indication triggers the terminal device 130 to send an energy detection report to the network device 110.
  • the terminal device may also periodically transmit a channel measurement detection report to the network device 110 according to the pre-configured system broadcast message.
  • the terminal device 130 transmits 220 an energy detection report to the network device 110.
  • network device 110 determines 225 whether terminal device 130 is allowed to make uplink transmissions. If terminal device 130 is allowed to make uplink transmissions, network device 110 sends 230 an indication to terminal device 130. If an indication from network device 110 is received, terminal device 130 performs 235 an uplink transmission.
  • the network device 110 determines whether to allocate uplink transmission resources to the terminal device 130 and transmit an indication to the terminal device 130 based on the channel energy measured by the terminal device 130. That is, the network device 110 may know in advance the channel state (ie, idle or occupied) in which the terminal device 130 to be scheduled is located. Therefore, the unlicensed band communication method involved in the present disclosure can prevent the terminal device 130 scheduled by the network device 110 from determining that the unlicensed band is in an occupied state (ie, a "hidden node" problem) during the execution of the LBT, thereby improving the terminal. The success rate of device 130 uplink transmission.
  • FIG. 3 illustrates a flow diagram of an example method 300 implemented at network device 110, in accordance with certain embodiments of the present disclosure.
  • the method 300 shown in FIG. 3 can be performed, for example, at the network device 110 or other suitable device.
  • the network device 110 and the terminal device 130 communicate on an unlicensed frequency band.
  • network device 110 receives an energy detection report from terminal device 130.
  • the energy detection report indicates the channel energy measured by the terminal device 130 for the unlicensed band.
  • channel energy as used herein may refer to channel energy measured by a terminal device, and may also refer to channel energy information encoded according to a predetermined threshold energy.
  • the energy detection report may include channel energy measured over a predetermined time period and may be implemented in a variety of manners.
  • the energy detection report may include one or more of the following: channel energy, a predetermined time period to detect the channel energy, an average channel power measured during the predetermined time period, a maximum channel power, and/or a minimum Channel power, and so on. It should be understood that the energy detection reports of the above forms are merely exemplary and not limiting. In an embodiment according to the present disclosure, the energy detection report can be implemented to have other suitable according to different system configurations and application scenarios. When in the form, or contain other appropriate information.
  • the network device 110 may receive an energy detection report from the terminal device 130 based on different policies. For example, optionally, in some embodiments, at block 310, network device 110 can send an indication to terminal device 130 to trigger terminal device 130 to send an energy detection report to network device 110.
  • such an indication may be sent by means of an uplink grant (UL grant), such as by adding a new information bit in the uplink grant.
  • UL grant uplink grant
  • the indication may be carried in downlink control information specific to the terminal device 130.
  • network device 110 may use additional information bits to act as the indication in a common physical layer downlink control channel (C-PDCCH).
  • C-PDCCH common physical layer downlink control channel
  • the network device 110 may send an indication by using cell-specific or terminal device group-specific downlink control information, that is, the terminal device that successfully decodes the cell or the group-specific downlink control information sends an energy detection report to the network device 110. .
  • the indication may also be sent to one or more terminal devices via Radio Resource Control (RRC) signaling, a Media Intervention Control (MAC) Control Unit (CE), or a system broadcast message.
  • RRC Radio Resource Control
  • MAC Media Intervention Control
  • CE Media Intervention Control Unit
  • network device 110 does not have to send an indication to triggering energy detection report to terminal device 130.
  • network device 110 can pre-configure terminal device 130 to periodically transmit an energy detection report to network device 110. This pre-configuration can be done, for example, by system broadcast messages or RRC signaling.
  • network device 110 does not need to explicitly send a trigger indication.
  • using the trigger indication to trigger the transmission of the energy detection report can reduce the number of times the channel measurement report is reported by the terminal device, thereby saving the uplink transmission resource of the terminal device and reducing the power consumption of the terminal device.
  • the terminal device 130 may obtain configuration information associated with the energy detection report from the network device 110 based on different manners. For example, the terminal device 130 may acquire a configuration associated with the energy detection report according to pre-configured system information. information. In some embodiments, terminal device 130 may also receive the configuration message from the network device, for example, via RRC signaling. Alternatively, at block 305, network device 110 may send configuration information associated with the energy detection report to terminal device 130. Based on the configuration received, the terminal device 130 performs channel energy detection to generate an energy detection report as described above. For example, the configuration information can indicate the payload of the energy detection report. In some embodiments, the payload of the energy detection report is associated with a magnitude of a set of threshold energies used to encode the measured channel energy. Accordingly, the configuration information associated with the energy detection report may also indicate information associated with the threshold energy set described above.
  • the configuration information can indicate time-frequency resources for energy detection report transmission.
  • the time-frequency resource used for the energy detection report transmission refers to the location of the uplink time-frequency resource used by the terminal device 130 to send the energy detection report to the network device 110, including but not limited to, a predetermined time after the downlink transmission (for example, 16us) ), a predetermined location in the downlink transmission subframe, and a special subframe of the uplink.
  • the terminal device may transmit downlink data along with an uplink ACK/NACK in at least a portion of the downlink transmission subframes such that the network device knows the decoding result for the downlink shared channel as early as possible.
  • the at least a portion of the downlink transmission subframes are referred to as DL self-contained subframes. Therefore, the terminal device 130 can transmit an energy detection report in the downlink self-contained subframe.
  • the terminal device 130 can transmit the energy detection report in the downlink self-contained subframe, so the network device 110 can know the energy detection report from the terminal device 130 earlier, and the network device 110 can determine whether the terminal device 130 is allowed to perform the uplink more quickly. Link transmission.
  • the energy detection report and the uplink ACK/NACK information may be multiplexed in the same time-frequency resource in the self-contained subframe.
  • the energy detection report and the uplink ACK/NACK may be in different time-frequency resources in the self-contained subframe.
  • the energy detection report can be in an earlier time position in the self-contained subframe compared to the uplink ACK/NACK, so that the network device 110 can know the energy detection report from the terminal device 130 as early as possible and determine whether to allow the terminal based thereon.
  • Device 130 performs uplink transmissions.
  • the configuration information can indicate time and/or frequency information associated with energy detection.
  • the time and/or frequency information refers to the terminal device performing channel measurement. Measurement duration, measurement period, and measurement bandwidth.
  • network device 110 may transmit the configuration information to terminal device 130 via RRC signaling, MAC CE, or system broadcast message or the like.
  • the energy detection report can include channel energy measured by the terminal device 130.
  • the channel energy detection report may also include channel energy information encoded according to a predetermined threshold energy set.
  • Table 1 shows an example of a 1-bit energy detection report, that is, channel energy is encoded by 1 bit.
  • the terminal device compares the measured channel energy with a certain threshold (ie, a first threshold energy) to achieve 1-bit encoding of the detected channel energy. Specifically, if the channel energy measured by the terminal device 130 is lower than the first threshold energy, the channel energy is encoded as "0". If the channel energy measured by the terminal device 130 is higher than the first threshold energy, the channel energy is encoded as "1".
  • the measured channel energy is lower than the first threshold energy 1
  • the measured channel energy is higher than the first threshold energy
  • Table 2 below shows an example of a 2-bit energy detection report, that is, channel energy is encoded by 2 bits.
  • the terminal device 130 multi-bit encodes the detected channel energy according to a predetermined threshold energy set (eg, the second, third, and fourth threshold energies described in Table 2) (eg, Corresponding to 2-bit encoding in Table 2). For example, if the measured channel energy is higher than the second threshold energy and lower than the third threshold energy, the terminal device 130 encodes the channel energy as "01."
  • the first, second, third, and fourth threshold energies shown in Tables 1 and 2 may be sent to the terminal device 130 via system broadcast information or RRC signaling.
  • the implementations shown in Tables 1 and 2 are merely examples. Note that, compared with the channel energy coding mode shown in Table 1, the coding complexity of the terminal device 130 can be effectively simplified, thereby reducing the signaling overhead of the transmission energy detection report of the terminal device 130, for example, reducing the effectiveness of the energy detection report. Load. This is advantageous for reducing the power consumption of the terminal device. It is to be understood that variations, modifications, and variations of the embodiments of the present disclosure are also included in the scope of the present disclosure. For example, for different terminal devices and different application scenarios, the network device may configure different configuration information associated with the energy detection report for the terminal device for different types of terminal devices and different service quality requirements.
  • network device 110 determines whether terminal device 130 is allowed to make uplink transmissions.
  • terminal device 130 can transmit the measured channel energy to network device 110.
  • the network device 110 receives an energy detection report containing channel energy and compares the channel energy to a certain threshold energy or a certain threshold energy set to determine whether the terminal device 130 is allowed to perform uplink transmission. For example, in some embodiments, network device 110 can compare channel energy to some predetermined threshold energy. If the channel energy is below the threshold energy, network device 110 determines to allow terminal device 130 to make an uplink transmission. Alternatively, network device 110 may also determine if the channel energy is within a given energy range.
  • the network device 110 determines to allow the terminal device 130 to make an uplink transmission.
  • network device 110 can take a more flexible approach to controlling terminal device 130 that is allowed to make uplink transmissions. That is, the network device 110 may only allow the terminal device 130 whose channel energy is within a certain predetermined energy range to perform uplink transmission.
  • a person skilled in the art may choose to use a single threshold energy or a certain energy range to determine whether to allow the terminal device 130 to perform uplink transmission according to different application scenarios and specific system configurations.
  • the terminal device 130 can also measure the measured channel energy. Encode. The terminal device 130 then transmits the encoded channel energy information to the network device 110 in an energy detection report. In such an embodiment, the network device 110 receives the encoded channel energy information. In some embodiments, if network device 110 receives the predetermined channel energy information, network device 110 determines to allow terminal device 130 to make the uplink transmission. As an example, as shown in Table 1, if the received channel energy information is "0", the network device 110 device determines to allow the terminal device 130 to perform uplink transmission. It should be understood that those skilled in the art can make changes, changes and modifications to the implementations of the present disclosure according to the specific system configuration and application scenarios according to the description, the description or the teaching of the disclosure. It is within the scope of the present disclosure.
  • the network device 110 transmits an indication to the terminal device 130.
  • the indication triggers the terminal device 130 to perform the uplink transmission.
  • the indication sent at block 325 may be referred to as a "first indication”
  • the indication sent at optional block 310 for triggering an energy detection report may be referred to as a "second indication.”
  • network device 110 may send a first indication to terminal device 130 in a trigger message.
  • the trigger message is specific to the cell in which the terminal device 130 is located and is associated with the identity of the terminal device 130.
  • the trigger message may include an identification of the terminal device that is allowed to make an uplink transmission.
  • network device 110 may also send the first indication to terminal device 130 in another trigger message.
  • first trigger message the first trigger message
  • second trigger message the other trigger message
  • the second trigger message may be specific to the terminal device 130.
  • the second trigger message is an uplink grant for the terminal device 130.
  • the second trigger message may include a first indication of 1 bit and is associated with a sequence specific to the terminal device 130. The 1-bit first indicates whether the terminal device is allowed to perform uplink transmission. The terminal device 130 receives the first indication according to its particular sequence.
  • network device 110 may not be as described above
  • the terminal device is allowed to explicitly indicate the uplink transmission, but is implicitly indicated.
  • the second trigger message can be implemented as a sequence specific to the terminal device 130 to implicitly indicate whether the terminal device 130 is allowed to perform uplink transmission.
  • terminal device 130 attempts to receive a second trigger message from network device 110 in accordance with its particular sequence at a predetermined time-frequency resource. In particular, if the terminal device 130 receives success, it means that the network device 110 allows the terminal device 130 to perform uplink transmission. If the terminal device 130 fails to receive, it means that the network device 110 does not allow the terminal device 130 to perform uplink transmission.
  • the network device 110 can save the number of bits required to send the first indication, thereby saving the signaling overhead of the network device 110.
  • the network device 110 can be aware of the energy detection report at the terminal device 130 during the process of scheduling the terminal device 130. Based on the channel energy from the terminal device 130, the network device 110 can determine whether the terminal device 130 is allowed to perform uplink transmission. In this way, the success rate of the LBT performed by the terminal device 130 in the uplink transmission can be improved, thereby avoiding waste of uplink transmission resources allocated to the terminal device 130, and effectively improving the communication efficiency of the unlicensed band.
  • FIG. 4 illustrates a flow diagram of an example method 400 implemented at a terminal device, in accordance with certain embodiments of the present disclosure.
  • the method 400 shown in FIG. 4 can be performed, for example, at the terminal device 130 or other suitable device.
  • the terminal device 130 generates an energy detection report and transmits the energy detection report to the network device 110.
  • the energy detection report indicates the channel energy measured by the terminal device 130 for the unlicensed band.
  • the channel energy may include the channel energy measured by the terminal device 130.
  • the channel energy may also include channel energy information obtained by the terminal device 130 encoding the measured channel energy according to a threshold energy set.
  • the terminal device 130 may transmit an energy detection report to the network device 110 based on different manners. For example, optionally, in some embodiments, at block 410, the terminal device 130 receives a second indication from the network device 110. The second indication trigger The terminal device 130 transmits an energy detection report to the network device 110. As an example, terminal device 130 may receive a second indication in an uplink grant. As still another example, the terminal device 130 may receive the second indication in the downlink control information specific to the terminal device 130. As still another example, the terminal device 130 may also receive the second indication in the common downlink control information. For example, the terminal device 130 may have downlink control information specific to a cell-specific or terminal device group. Alternatively, the second indication may be any one of RRC signaling, MAC CE, and downlink control information. For further details of the second indication, reference may be made to the related description for FIG. 3 above, and details are not described herein again.
  • terminal device 130 does not have to receive a second indication of triggering an energy detection report from network device 110.
  • the terminal device 130 may also obtain a period for transmitting the energy detection report to the network device 110 according to the pre-configured system configuration information. Based on the period, the terminal device 130 can periodically transmit an energy detection report to the network device 110 without triggering the second indication described above.
  • the terminal device 130 may also receive configuration information from the network device 110 associated with the energy detection report.
  • the terminal device 130 performs energy detection based on the received configuration information to generate an energy detection report transmitted to the network device.
  • the terminal device 130 may also acquire configuration information associated with the energy detection report according to related information pre-configured by the system broadcast message.
  • the configuration information may, for example, indicate a payload of the energy detection report and/or a threshold energy set for encoding the channel energy.
  • the configuration information may also indicate time-frequency resources for energy detection report transmission.
  • the configuration information can indicate time and/or frequency information associated with energy detection.
  • the terminal device 130 receives an indication from the network device 110 (referred to as a "first indication").
  • the first indication triggers the terminal device 130 to perform an uplink transmission.
  • terminal device 130 can receive a first indication from network device 110 in a first trigger message.
  • the first trigger message is specific to the cell in which the terminal device 130 is located and is associated with the identity of the terminal device 130.
  • terminal device 130 A first indication from network device 110 can be received in the second trigger message.
  • the second trigger message is specific to the identity or sequence of the terminal device 130.
  • the second trigger message may be an uplink grant for the terminal device.
  • FIG. 5 shows a schematic diagram of an example communication process in accordance with certain embodiments of the present disclosure.
  • the network device 110 communicates with three terminal devices (labeled UE1, UIE2, and UE3 in FIG. 5) in an unlicensed band.
  • UE1, UIE2, and UE3 in FIG. 5 may include any number of terminal devices, and the scope of the present disclosure is not limited in this respect.
  • the unlicensed band communication process can be divided into two communication phases.
  • network device 110 may send an uplink transmission grant 510 to three terminal devices.
  • the network device 110 may allocate one or more terminal devices, that is, multiple terminal devices may multiplex the same time-frequency transmission resources.
  • UE1 is scheduled to a certain time-frequency transmission resource TF1
  • UE2 and UE3 are scheduled to the same time-frequency transmission resource TF2.
  • UE1, UE2, and UE3 are only prepared for data to be uplink transmitted, and determine uplink transmission resources without performing LBT and uplink transmission procedures.
  • the first communication phase can be referred to as a "pre-scheduling phase.”
  • UE1, UE2, and UE3 transmit respective energy detection reports 520 to network device 110 at some predetermined time (eg, 16 us) after the end of the downlink transmission.
  • the network device 110 determines whether to allow UE1, UE2, and UE3 to perform uplink transmission. In particular, for UE2 and UE3, they are scheduled to the same time-frequency transmission resource TF2 during the first communication phase. In the second communication phase, for UE2 and UE3, network device 110 may only determine that one terminal device is allowed, for example, according to the energy detection report sent by UE2 and UE3, the terminal device priority of UE2 and UE3, and the service quality of service requirement. For uplink transmission.
  • the network device 110 may determine to allow one terminal device to perform according to the terminal device priority of UE2 and UE3 and the service quality of service requirement. Uplink transmission. As another example, if network device 110 determines that only UE 2 (or UE 3) is allowed to make uplink transmissions, network device 110 directly determines that UE 2 (or UE 3) is performing uplink transmissions. As shown in FIG. 5, in some embodiments, assuming that the network device 110 selects the UE 3 for uplink transmission, the network device sends a first indication to the UE1 and the UE3.
  • UE1 and UE3 After receiving the first indication, UE1 and UE3 perform uplink transmission using the uplink transmission resources TF1 and TF2 determined in the pre-scheduling phase. Note that the two-phase communication process illustrated in FIG. 5 is merely some example implementations described herein, and the scope of the present disclosure is not limited in this respect.
  • FIG. 6 shows a block diagram of an apparatus 600 implemented at a network device in accordance with an embodiment of the present disclosure.
  • the apparatus 600 can be implemented at, for example, the network devices 110, 120 shown in FIG.
  • the apparatus 600 can include a receiving unit 610 configured to receive an energy detection report from a terminal device, the network device communicating with the terminal device on an unlicensed frequency band, the energy detection report indicating that the terminal device is for the non-authorized Channel energy measured in the licensed band.
  • the apparatus 600 can also include a determining unit 620 configured to determine whether to allow the terminal device to perform an uplink transmission based on the received energy detection report.
  • the apparatus 600 can also include a transmitting unit 630 configured to, in response to determining to allow the terminal device to perform an uplink transmission, transmitting a first indication to the terminal device to cause the terminal device to perform an uplink transmission.
  • FIG. 7 shows a block diagram of an apparatus 700 implemented at a terminal device in accordance with an embodiment of the present disclosure.
  • apparatus 700 can be implemented at, for example, terminal devices 130, 140 shown in FIG.
  • the apparatus 700 includes a transmitting unit 710 configured to transmit an energy detection report to a network device, the terminal device communicating with the network device on an unlicensed frequency band, the energy detection report indicating that the terminal device is for the non-authorized Channel energy measured in the licensed band.
  • the apparatus 700 also includes a receiving unit 720 configured to receive a first indication from the network device.
  • the apparatus 700 also includes an uplink transmission unit 730 configured to uplink to the network device in response to receiving the first indication Road transmission.
  • devices 600 and/or 700 are not shown in Figures 6 and 7 for purposes of clarity. However, it should be understood that the various features described above with respect to FIGS. 1-3 are equally applicable to device 600; similarly, the various features described above with respect to FIGS. 1-2 and 4 are equally applicable to device 700. Moreover, the various modules of apparatus 600 and/or 700 may be hardware modules or software modules. For example, in some embodiments, devices 600 and/or 700 may be implemented in part or in whole using software and/or firmware, such as a computer program product embodied on a computer readable medium.
  • apparatus 600 and/or 700 may be implemented in part or in whole based on hardware, such as implemented as an integrated circuit (IC), an application specific integrated circuit (ASIC), a system on a chip (SOC), a field programmable gate array (FPGA), etc.
  • IC integrated circuit
  • ASIC application specific integrated circuit
  • SOC system on a chip
  • FPGA field programmable gate array
  • FIG. 8 shows a block diagram of a communication device 800 in accordance with an embodiment of the present disclosure.
  • Communication device 800 can be used to implement network devices 110, 120 or terminal devices 130, 140 in embodiments of the present disclosure.
  • communication device 800 includes a processor 810.
  • Processor 810 controls the operation and functionality of device 800.
  • processor 810 can perform various operations with instructions 830 stored in memory 820 coupled thereto.
  • Memory 820 can be of any suitable type suitable for use in a local technology environment and can be implemented using any suitable data storage technology, including but not limited to semiconductor-based memory devices, magnetic memory devices and systems, optical memory devices, and systems. Although only one memory unit is shown in FIG. 8, there may be multiple physically distinct memory units in communication device 800.
  • Processor 810 may be of any suitable type suitable for use in a local technical environment and may include, but is not limited to, general purpose computers, special purpose computers, microcontrollers, digital signal controllers (DSPs), and controller-based multi-core controller architectures. One or more cores.
  • Communication device 800 can also include multiple processors 810.
  • Processor 810 can also be coupled to transceiver 840, which can receive and transmit information by means of one or more antennas 850 and/or other components.
  • the processor 810 and the memory 820 may operate in conjunction. To implement the methods 300 and/or 400 described above with respect to FIGS. 3 and/or 4 .
  • communication device 800 acts as network device 110, 120
  • instruction 830 in memory 820 is executed by processor 810
  • communication device 800 can be caused to perform method 300.
  • the communication device 800 acts as the terminal device 130, 140
  • the instructions 830 in the memory 820 are executed by the processor 810
  • the communication device 800 can be caused to perform the method 400. It will be understood that all of the features described above are applicable to the communication device 800 and will not be described herein.
  • the various example embodiments of the present disclosure can be implemented in hardware or special purpose circuits, software, logic, or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which can be executed by a controller, microprocessor or other computing device.
  • firmware or software which can be executed by a controller, microprocessor or other computing device.
  • embodiments of the present disclosure may also be described in the context of machine-executable instructions, such as in a program module that is executed in a device on a real or virtual processor of a target.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, and the like that perform particular tasks or implement particular abstract data structures.
  • the functionality of the program modules may be combined or divided between the described program modules.
  • Machine-executable instructions for program modules can be executed within a local or distributed device. In a distributed device, program modules can be located in both local and remote storage media.
  • Computer program code for implementing the methods of the present disclosure can be written in one or more programming languages.
  • the computer program code can be provided to a general purpose computer, a special purpose computer or a processor of other programmable data processing apparatus such that the program code, when executed by a computer or other programmable data processing apparatus, causes a flowchart and/or block diagram.
  • the functions/operations specified in are implemented.
  • the program code can execute entirely on the computer, partly on the computer, as a stand-alone software package, partly on the computer and partly on the remote computer or entirely on the remote computer or server.
  • a machine readable medium may be included or stored for use in or Any tangible medium that instructs the execution of a program of a system, apparatus, or device.
  • the machine readable medium can be a machine readable signal medium or a machine readable storage medium.
  • a machine-readable medium can include, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination thereof. More detailed examples of machine readable storage media include electrical connections with one or more wires, portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), erasable programmable read only Memory (EPROM or flash memory), optical storage device, magnetic storage device, or any suitable combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开的实施例涉及用于非授权频带通信的方法、设备和计算机可读存储介质。根据在此描述的实施例,网络设备与终端设备在非授权频带上进行通信。网络设备可以为终端设备配置与信道能量检测相关联的信息。根据该配置的信息,终端设备进行能量检测以生成能量检测报告。基于接收到的能量检测报告,网络设备确定是否允许该终端设备进行上行链路传输。根据在此描述的实施例,网络设备在分配上行链路传输资源时可以知晓与终端设备信道能量相关的信息,从而提高上行链路传输的成功率,并避免上行链路传输资源的浪费。

Description

用于非授权频带通信的方法、设备和计算机可读存储介质 技术领域
本公开的实施例总体上涉及无线通信技术,更具体地,涉及用非授权频带通信的方法、设备和计算机可读存储介质。
背景技术
非授权频带通信是改善无线网络的频谱效率、提升网络容量的关键技术。当前,在基于第三代合作伙伴计划长期演进(3GPP LTE)的非授权频带通信中,通信设备需要执行先听后说(LBT)过程。典型地,通信设备在接入非授权频带前,先进行信道能量测量,以获得该通信设备当前所处的无线信道的能量。如果所测量的无线信道能量低于某阈值能量,则该通信设备认为非授权频带处于空闲状态并且接入该频带以进行通信。如果所测量的无线信道能量高于某阈值能量,则该通信设备认为非授权频带处于被占用状态并且不在频带上进行通信。
在LTE授权辅助接入(LTE-LAA)标准中,下行链路传输采取基于信道能量检测的第四型LBT接入规则,而上行链路传输可以采取第四型LBT接入规则以及第二型LBT接入规则。这两型LBT接入技术的细节定义在3GPP 36.213规范中。特别地,对于第二型LBT接入,终端设备在上行链路传输之前,首先在至少25us测量时间内进行信道测量。如果终端设备所测量到的信道能量低于某阈值能量,则终端设备进行上行链路传输。第二型LBT接入主要用于在网络设备所获取的信道占用时间(COT)内的上行链路传输过程。此外,可以定义最大信道占用时间(MCOT)以约束上行以及下行链路传输的总持续时间。
发明内容
在本公开的第一方面,提供了一种在网络设备处实现的通信方法。该方法包括:接收来自终端设备的能量检测报告,该网络设备与该终端设备在非授权频带上通信,该能量检测报告指示该终端设备针对该非授权频带而测量的信道能量;基于接收到的能量检测报告,确定是否允许该终端设备进行上行链路传输;以及响应于确定允许该终端设备进行上行链路传输,向该终端设备发送第一指示,以使该终端设备进行上行链路传输。
在本公开的第二方面,提供了一种在终端设备处实现的通信方法。该方法包括:向网络设备发送能量检测报告,该终端设备与该网络设备在非授权频带上进行通信,该能量检测报告指示该终端设备针对该非授权频带而测量的信道能量;接收来自该网络设备的第一指示;以及响应于接收到该第一指示,向该网络设备进行上行链路传输。
在本公开的第三方面,提供了一种网络设备。该网络设备包括:处理器,以及存储器,该存储器存储有指令,该指令在被处理器执行时使该网络设备执行以下动作:接收来自终端设备的能量检测报告,该网络设备与该终端设备在非授权频带上通信,该能量检测报告指示该终端设备针对该非授权频带而测量的信道能量;基于接收到的能量检测报告,确定是否允许该终端设备进行上行链路传输;以及响应于确定允许该终端设备进行上行链路传输,向该终端设备发送第一指示,以使该终端设备进行上行链路传输。
本公开的第四方面,提供了一种终端设备。该终端设备包括:处理器,以及存储器,该存储器存储有指令,该指令在被处理器执行时使该终端设备执行以下动作:向网络设备发送能量检测报告,该终端设备与该网络设备在非授权频带上进行通信,该能量检测报告指示该终端设备针对该非授权频带而测量的信道能量;接收来自该网络设备的第一指示;以及响应于接收到该第一指示,向该网络设备进行上行链路传输。
在第五方面,本公开的实施例提供一种计算机可读存储介质。该计算机可读存储介质包括存储于其上的程序代码,该程序代码在被装置执行时,使装置执行根据第一方面或第二方面的方法。
应当理解,发明内容部分中所描述的内容并非旨在限定本公开实施例的关键或重要特征,亦非用于限制本公开的范围。本公开的其它特征将通过以下的描述变得容易理解。
附图说明
从下文的公开内容和权利要求中,本发明的目的、优点和其他特征将变得更加明显。这里仅出于示例的目的,参考附图来给出优选实施例的非限制性描述,在附图中:
图1示出了支持非授权频带通信的示例通信系统的示意图;
图2示出了根据本公开的某些实施例的通信的交互图;
图3示出了根据本公开的某些实施例的在网络设备处实施的示例方法的流程图;
图4示出了根据本公开的某些实施例的在终端设备处实施的示例方法的流程图;
图5示出了根据本公开的某些实施例的示例通信过程的示意图;
图6示出了根据本公开的实施例的在网络设备处实施的装置的框图;
图7示出了根据本公开的实施例的在终端设备处实施的装置的框图;以及
图8示出了根据本公开的实施例的通信设备的框图。
在各个附图中,相同或对应的参考数字表示相同或相似元素。
具体实施方式
下面将参照附图更详细地描述本公开的实施例。虽然附图中显示了本公开的某些实施例,然而应当理解的是,本公开可以通过各种形式来实现,而且不应该被解释为限于这里阐述的实施例,相反提供这 些实施例是为了更加透彻和完整地理解本公开。应当理解的是,本公开的附图及实施例仅用于示例作用,并非用于限制本公开的保护范围。
在此使用的术语“网络设备”是指能够提供小区或覆盖以使得终端设备可以通过其接入网络或者从其接收服务的任意适当实体或者设备。网络设备的示例例如包括基站。在此使用的术语“基站”(BS)可以表示节点B(NodeB或者NB)、演进节点B(eNodeB或者eNB)、远端无线电单元(RRU)、射频头(RH)、远端无线电头端(RRH)、中继器、或者诸如微微基站、毫微微基站等的低功率节点等等。
在此使用的术语“终端设备”或“用户设备”(UE)是指能够与网络设备之间或者彼此之间进行无线通信的任何实体或设备。作为示例,终端设备可以包括移动终端(MT)、订户台(SS)、便携式订户台(PSS)、移动台(MS)或者接入终端(AT)、车载的上述设备、以及具有通信功能的机器或者电器等。
在此使用的术语“包括”及其变形是开放性包括,即“包括但不限于”。术语“基于”是“至少部分地基于”。术语“一个实施例”表示“至少一个实施例”;术语“另一实施例”表示“至少一个另外的实施例”。术语“第一”、“第二”等仅被用来将一个元素与另一个元素区分开来。而实际上第一元素也能够被称为第二元素,反之亦然。其他术语的相关定义将在下文描述中给出。
为了便于解释,本文中以无线通信(例如蜂窝通信)为背景来介绍本公开的一些实施例,并且采用例如3GPP制定的长期演进/长期演进-高级(LTE/LTE-A)或者5G中的术语。然而,如本领域技术人员可以理解的,本公开的实施例绝不限于遵循3GPP制定的无线通信协议的无线通信系统,而是可以被应用于任何存在类似问题的通信系统中,例如WLAN、有线通信系统、或者将来研发的其他通信系统等。
在图1中示出了支持非授权频带通信的示例通信系统100的示意图。在该示例中,通信系统100可以包括网络设备110、120以及终端设备130、140。网络设备110为处在其覆盖范围之内的终端设备 130提供无线连接。网络设备120为处在其覆盖范围之内的终端设备140提供无线连接。应当理解,图1所示的网络设备、终端设备的数目仅仅是出于说明之目的而无意于限制。通信系统100可以包括任意适当数目的网络设备和终端设备。
通信系统100中的通信可以遵循任意适当无线通信技术以及相应的通信标准。通信技术的示例包括但不限于,长期演进(LTE)、LTE-高级(LTE-A)、宽带码分多址接入(WCDMA)、码分多址(CDMA)、全球移动通信系统(GSM)、正交频分多址(OFDM)、无线局域网(WLAN)、全球微波接入互操作性(WiMAX)、蓝牙、Zigbee技术、机器类型通信(MTC)、D2D、或者M2M等等。而且,通信可以根据任意适当通信协议来执行,这些通信协议包括但不限于,传输控制协议(TCP)/互联网协议(IP)、超文本传输协议(HTTP)、用户数据报协议(UDP)、会话描述协议(SDP)等等协议。
通信系统100在非授权频带操作,即网络设备110、120共享该非授权频带来与终端设备130、140进行通信。在此使用的术语“非授权频带”是指多个通信设备可以通过频率共存技术,来共享该频带以进行数据传输。典型的频率共存技术例如是基于上述LBT规则。作为示例,假设网络设备110与网络设备120距离较远,在网络设备110(或网络设备120)处接收到的来自网络设备120(或网络设备110)的下行链路传输信号功率小于某阈值。也即,网络设备110和120之间无法感测到彼此。假设终端设备130处在网络设备110和120覆盖区域的重叠部分,在终端设备130处接收到来自网络设备110或120下行链路传输信号功率均高于某阈值。也即,终端设备130可以感测到网络设备110以及网络设备120这二者。
作为示例,假设网络设备120正在与终端设备140进行下行链路通信。由于网络设备110距离网络设备120较远,网络设备110通过执行LBT确定该非授权频带处于空闲状态。网络设备110向终端设备130发送上行链路授权,以指示终端设备130进行上行链路传输。该终端设备130处在网络设备120的覆盖范围之内。在接收到上行链 路授权后,为了进行上行链路传输,终端设备130执行LBT过程。在该示例中,终端设备130根据LBT的结果而确定出该授权频带目前处于被占用状态,并因此无法进行上行链路传输。这导致网络设备110为终端设备130分配的上行链路传输资源被浪费。因此,在上述应用场景(可称为“隐藏节点”场景)中,现有的非授权频带通信系统的频谱效率较低。
为了至少部分地解决上述以及其他潜在问题,本公开的实施例提出了基于信道能量检测报告的非授权频带通信方案。根据在此描述的实施例,终端设备对非授权频带的无线信道进行测量以获得能量检测报告,并将该能量检测报告发送给网络设备。网络设备基于该能量检测报告,确定是否允许该终端设备进行上行链路传输,并在允许该终端设备进行上行链路传输的情况下,向该终端设备发送相应指示。通过这种方法,可以有效避免网络设备为终端设备分配不必要的上行链路传输资源,由此可以提高非授权频带通信网络的频谱效率。
图2示出了根据本公开的某些实施例的通信的交互图200。为了方便描述,下面结合图1中的网络设备110和终端设备130进行描述。
总体上,根据本公开的实施例,终端设备130根据相关测量配置对非授权频带进行测量,以生成信道能量检测报告。在操作中,网络设备110可以向终端设备130发送205与信道测量相关联的配置信息。注意,终端设备130并非一定要从网络设备110接收该配置信息。例如,在某些实施例中,终端设备130也可以通过预配置的系统信息来获得与信道能量检测相关联的配置信息。根据接收到的配置消息,终端设备130执行信道能量检测并生成210能量检测报告。
在某些实施例中,网络设备110向终端设备130发送215指示。该指示触发终端设备130向网络设备110发送能量检测报告。注意,网络设备110并非一定要向终端设备130发送上述指示来触发终端设备130发送能量检测报告。在某些实施例中,终端设备也可以根据预配置的系统广播消息,周期性地向网络设备110发送信道测量检测报告。根据所接收到的指示或者根据系统广播消息预配置的报告周期, 终端设备130向网络设备110发送220能量检测报告。网络设备110基于接收到的能量检测报告,确定225是否允许终端设备130进行上行链路传输。如果允许终端设备130进行上行链路传输,网络设备110向终端设备130发送230指示。如果接收到来自网络设备110的指示,终端设备130执行235上行链路传输。
注意,根据图2所示的实施例,网络设备110是基于终端设备130所测量的信道能量,来确定是否为终端设备130分配上行链路传输资源并向终端设备130发送指示。也即,网络设备110可以预先知晓要调度的终端设备130所处的信道状态(即,空闲的或被占用的)。因此,本公开中涉及的非授权频带通信方法可以避免网络设备110调度的终端设备130在执行LBT过程中确定非授权频带处于被占用状态的情况(即,“隐藏节点”问题),从而提高终端设备130上行链路传输的成功率。
图3示出了根据本公开的某些实施例的在网络设备110处实施的示例方法300的流程图。图3所示的方法300可以例如在网络设备110或其他适当的设备处执行。根据本公开的实施例,网络设备110与终端设备130在非授权频带上通信。
如图3所示,在框315,网络设备110接收来自终端设备130的能量检测报告。该能量检测报告指示终端设备130针对非授权频带而测量的信道能量。在此使用的术语“信道能量”可以指终端设备所测量的信道能量,也可以指根据预定的阈值能量而编码的信道能量信息。
在根据本公开的实施例中,该能量检测报告可以包括在预定时段内测量到的信道能量,并可以通过多种方式来实现。在一个实施例中,能量检测报告可以包括以下中的一项或多项:信道能量、用以检测该信道能量的预定时段、该预定时段内测量的平均信道功率、最大信道功率和/或最小信道功率,等等。应当理解,上述形式的能量检测报告仅仅是示例的,而不是限制性的。在根据本公开的实施例中,可以根据不同的系统配置和应用场景而将能量检测报告实现为具有其他适 当形式,或者包含其他适当信息。
根据本公开的实施例,网络设备110可以基于不同的策略从终端设备130接收能量检测报告。例如,可选地,在某些实施例中,在框310处,网络设备110可以向终端设备130发送指示,以触发终端设备130向网络设备110发送能量检测报告。
在某些实施例中,这种指示可以借助于上行链路授权(UL grant)来发送该指示,例如通过在上行链路授权中添加新的信息比特来标识该指示。备选地或附加地,可以在特定于终端设备130的下行控制信息中承载该指示。又如,在一个实施例中,网络设备110可以在公共的物理层下行控制信道(C-PDCCH)中使用附加的信息比特充当该指示。备选地,网络设备110可以通过小区特定或者终端设备群组特定的下行控制信息来发送指示,即成功解码该小区或者群组特定下行控制信息的终端设备都要向网络设备110发送能量检测报告。在某些实施例中,还可以通过无线资源控制(RRC)信令、媒体介入控制(MAC)控制单元(CE)或者系统广播消息向一个或者多个终端设备发送指示。应当理解,可以根据本公开的记载和教导,针对不同的系统配置以及应用场景来设计不同的实现方式,本公开的实施例的所有变型和组合都落在本公开的范围内。
特别地,网络设备110并非一定要向终端设备130发送触发能量检测报告的指示。例如,在某些实施例中,网络设备110可以对终端设备130进行预先配置,使其周期性地向网络设备110发送能量检测报告。这种预配置例如可以通过系统广播消息或者RRC信令来完成。在这样的实施例中,网络设备110不需要再显式地发送触发指示。相比于周期性发送能量检测报告,采用触发指示来触发能量检测报告的发送可以减少终端设备的信道测量报告上报次数,从而节省终端设备的上行链路传输资源并减少终端设备的耗电。
根据本公开的实施例,终端设备130可以基于不同方式从网络设备110获得与能量检测报告相关联的配置信息。例如,终端设备130可以根据预先配置的系统信息来获取与能量检测报告相关联的配置 信息。在某些实施例中,终端设备130也可以例如通过RRC信令从网络设备接收该配置消息。可选地,在框305,网络设备110可以向终端设备130发送与能量检测报告相关联的配置信息。终端设备130根据所接收到该配置,执行信道能量检测以生成如上文所述的能量检测报告。例如,该配置信息可以指示能量检测报告的有效载荷。在某些实施例中,能量检测报告的有效载荷与被用于对所测量的信道能量进行编码的阈值能量集合的大小相关联。因此,与能量检测报告相关联的配置信息也可以指示与上述阈值能量集合相关联的信息。
在某些实施例中,该配置信息可以指示用于能量检测报告发送的时频资源。用于能量检测报告发送的时频资源是指终端设备130用于向网络设备110发送能量检测报告的上行时频资源的位置,包括但是不限于,下行链路传输后的预定时间(例如,16us)、下行链路传输子帧中预定位置以及上行链路的特殊子帧。
特别地,在一些实施例中,终端设备可以在至少一部分下行链路传输子帧中,将下行数据连同上行ACK/NACK进行发送,以使得网络设备尽早知晓针对下行共享信道的解码结果。上述至少一部分下行链路传输子帧被称为下行自包含子帧(DL self-contained subframe)。因此,终端设备130可以在下行自包含子帧中发送能量检测报告。终端设备130可以在下行自包含子帧中发送能量检测报告,因此网络设备110可以更早地知晓来自终端设备130的能量检测报告,进而网络设备110可以更快地确定是否允许终端设备130进行上行链路传输。例如,能量检测报告与上行ACK/NACK信息可以复用在自包含子帧中相同的时频资源中。备选地,能量检测报告与上行ACK/NACK可以处在自包含子帧中不同的时频资源中。例如,相比于上行ACK/NACK,能量检测报告可以处在自包含子帧中更早的时间位置,以便网络设备110可以尽早知晓来自终端设备130的能量检测报告并基于此确定是否允许该终端设备130进行上行链路传输。
在某些实施例中,该配置信息可以指示与能量检测相关联的时间和/或频率信息。该时间和/或频率信息是指终端设备进行信道测量的 测量持续时间、测量周期以及测量带宽。在某些实施例中,网络设备110可以通过RRC信令、MAC CE或者系统广播消息等,向终端设备130发送上述配置信息。
返回框315,在某些实施例中,该能量检测报告可以包括终端设备130所测量的信道能量。备选地,该信道能量检测报告也可以包括根据预确定的阈值能量集合而编码的信道能量信息。例如,下面的表1示出了1比特能量检测报告的示例,即信道能量是通过1比特进行编码。如表1所示,终端设备将所测量的信道能量与某个阈值(即,第一阈值能量)进行比较,来实现对所检测的信道能量的1比特编码。具体地,如果终端设备130所测量的信道能量低于该第一阈值能量,则将信道能量编码为“0”。如果终端设备130所测量的信道能量高于该第一阈值能量,则将信道能量编码为“1”。
表1
信道能量信息 信息描述
0 所测量的信道能量低于第一阈值能量
1 所测量的信道能量高于第一阈值能量
例如,下面的表2示出了2比特能量检测报告的示例,即信道能量是通过2比特进行编码。如表2所示,终端设备130根据预定阈值能量集合(例如,在表2中所述的第二、第三以及第四阈值能量),对所检测的信道能量进行多比特编码(例如,在表2中对应2比特编码)。例如,如果所测量的信道能量高于第二阈值能量并低于第三阈值能量,则终端设备130将信道能量编码为“01”。在某些实施例中,表1和2中所示的第一、第二、第三以及第四阈值能量可以是通过系统广播信息或者RRC信令发送给终端设备130。
表2
Figure PCTCN2017097976-appb-000001
Figure PCTCN2017097976-appb-000002
注意,表1和表2所示出的实现方式仅仅是示例的。注意,相对于表2,表1所示的信道能量编码方式,可以有效简化终端设备130的编码复杂度,进而减少终端设备130的发送能量检测报告的信令开销,例如减少能量检测报告的有效载荷。这对于减少终端设备的耗电是有利的。应当理解,根据本公开的记载或教导,对本公开中的实施例所做的变型、改变或者变化也都落在本公开的范围中。例如,对于不同的终端设备以及不同的应用场景,网络设备可以针对不同类型的终端设备以及不同的业务质量要求,为终端设备配置与能量检测报告相关联的不同配置信息。
在框320,基于接收到的该能量检测报告,网络设备110确定是否允许终端设备130进行上行链路传输。在某些实施例中,终端设备130可以将所测量的信道能量发送给网络设备110。网络设备110接收包含信道能量的能量检测报告,并将该信道能量于某阈值能量或者某阈值能量集合进行比较,以确定是否允许终端设备130进行上行链路传输。例如,在某些实施例中,网络设备110可以将信道能量与某个预定的阈值能量进行比较。如果信道能量低于阈值能量,则网络设备110确定允许终端设备130进行上行链路传输。备选地,网络设备110也可以确定信道能量是否处于某个给定的能量范围内。如果该信道能量处在该给定的能量范围内,在网络设备110确定允许终端设备130进行上行链路传输。通过将信道能量与某个给定的能量范围,网络设备110可以采取更灵活的方式来控制允许进行上行链路传输的终端设备130。即,网络设备110可以仅仅允许信道能量处在某个预定能量范围内的终端设备130进行上行链路传输。本领域技术人员可以根据不同应用场景和具体系统配置,选择采用单个阈值能量或某个能量范围来确定是否允许终端设备130进行上行链路传输。
如表1或者表2所示,终端设备130也可以对所测量的信道能量 进行编码。终端设备130然后在能量检测报告中将编码的信道能量信息发送给网络设备110。在这样的实施例中,网络设备110所接收到的是编码后的信道能量信息。在某些实施例中,如果网络设备110接收到预定的信道能量信息,则网络设备110确定允许终端设备130进行该上行链路传输。作为示例,如表1所示,如果接收到信道能量信息为“0”,则网络设备110设备确定允许终端设备130进行上行链路传输。应当理解,根据本公开的描述、记载或教导,本领域技术人员可以根据具体的系统配置和应用场景,对本公开中的实现方式进行变化、改变以及变型,基于此所获得的其他实现方式都落在本公开的范围内。
在框325,如果确定允许终端设备130进行上行链路传输,则网络设备110向终端设备130发送指示。该指示触发终端设备130进行该上行链路传输。为了讨论方便起见,可以将在框325发送的指示称为“第一指示”,而将在可选的框310发送的用于触发能量检测报告的指示称为“第二指示”。
根据本公开的某些实施例,网络设备110可以在一个触发消息中向终端设备130发送第一指示。该触发消息特定于终端设备130所在的小区并且与终端设备130的标识相关联。例如,触发消息可以包括允许进行上行链路传输的终端设备的标识。
替代地或附加地,在一些实施例中,网络设备110还可以在另一触发消息中向终端设备130发送该第一指示。为了讨论方便起见,可以将上述一个触发消息称为“第一触发消息”,而将该另一个触发消息称为“第二触发消息”。
该第二触发消息可以特定于终端设备130。例如,该第二触发消息是针对终端设备130的上行链路授权。在一些实施例中,该第二触发消息可以包括1比特的第一指示并与终端设备130特定的序列相关联。该1比特第一指示是否允许该终端设备进行上行链路传输。终端设备130根据其特定的序列来接收该第一指示。
在一些替代性实施例中,网络设备110可以不按照如上所述那样 对允许终端设备进行上行链路传输进行显式地指示,而是对其进行隐式地指示。例如,可以将该第二触发消息实现为终端设备130特定的序列,以隐含地指示是否允许该终端设备130进行上行链路传输。在这种实现方式中,终端设备130在预定的时频资源根据其特定的序列,来尝试接收来自网络设备110的第二触发消息。特别地,如果终端设备130接收成功,则意味着网络设备110允许终端设备130进行上行链路传输。如果终端设备130接收失败,则意味着网络设备110不允许终端设备130进行上行链路传输。通过采用上述在第二触发消息中隐式地传输第一指示,网络设备110可以节省发送第一指示所需的比特数,从而节省网络设备110的信令开销。
总体上,通过图3所示的方法300,网络设备110可以在调度终端设备130的过程中知晓终端设备130处的能量检测报告。基于来自终端设备130的信道能量,网络设备110可以确定是否允许终端设备130执行上行传输。通过这种方式,可以提高终端设备130在上行链路传输中执行LBT的成功率,从而避免为终端设备130分配的上行链路传输资源的浪费,有效提高非授权频带通信效率。
图4示出了根据本公开的某些实施例的在终端设备处实施的示例方法400的流程图。图4所示的方法400可以例如在终端设备130或其他适当的设备处执行。
在框415,终端设备130生成能量检测报告,并向网络设备110发送该能量检测报告。如上所述,能量检测报告指示终端设备130针对非授权频带而测量的信道能量。作为示例,信道能量可以包括终端设备130所测量的信道能量。作为又一示例,信道能量也可以包括终端设备130按照阈值能量集合对所测量的信道能量进行编码而得到的信道能量信息。关于能量检测报告的具体实现细节,可以参考针对上文图3的相关描述,此处不再赘述。
根据本公开的实施例,终端设备130可以基于不同方式向网络设备110发送能量检测报告。例如,可选地,在某些实施例中,在框410处,终端设备130接收来自网络设备110第二指示。该第二指示触发 终端设备130向网络设备110发送能量检测报告。作为示例,终端设备130可以在上行链路授权中接收第二指示。作为又一示例,终端设备130可以在终端设备130特定的下行控制信息中接收第二指示。作为又一示例,终端设备130还可以在公共下行控制信息中接收第二指示。例如,终端设备130可以在小区特定或者终端设备群组特定的下行控制信息。备选地,第二指示可以是RRC信令、MAC CE以及下行控制信息中的任何一种。关于第二指示的进一步细节,可以参考针对上文图3的相关描述,此处不再赘述。
特别地,终端设备130并非一定要从网络设备110处接收触发能量检测报告的第二指示。例如,终端设备130也可以根据预配置的系统配置信息,获得向网络设备110发送能量检测报告的周期。基于该周期,终端设备130可以周期性地向网络设备110发送能量检测报告,而不需要上述第二指示的触发。
根据某些实施例,可选地,在框405,终端设备130还可以接收来自网络设备110的、与能量检测报告相关联的配置信息。终端设备130基于该接收到的配置信息,执行能量检测以生成向网络设备发送的能量检测报告。备选地,终端设备130也可以根据系统广播消息所预先配置的相关信息,来获取与能量检测报告相关联的配置信息。如上所述,该配置信息可以例如指示能量检测报告的有效载荷和/或用于对信道能量进行编码的阈值能量集合。作为示例,该配置信息还可以指示用于能量检测报告发送的时频资源。作为又一示例,该配置信息可以指示与能量检测相关联的时间和/或频率信息。关于与能量检测报告相关联的配置信息的进一步细节,可以参考针对上文图3的相关描述,此处不再赘述。
在框420,终端设备130接收来自网络设备110的指示(称为“第一指示”)。该第一指示触发终端设备130进行上行链路传输。在某些实施例中,终端设备130可以在第一触发消息中接收来自网络设备110的第一指示。该第一触发消息特定于的终端设备130所在的小区并且与终端设备130的标识相关联。在某些实施例中,终端设备130 可以在第二触发消息中接收来自网络设备110的第一指示。该第二触发消息特定于终端设备130的标识或者序列。备选地,第二触发消息可以是针对终端设备的上行链路授权。
在框425,如果终端设备130接收到来自网络设备110的第一指示,则向网络设备110进行上行链路传输。
图5示出了根据本公开的某些实施例的示例通信过程的示意图。为描述方便,假设网络设备110与三个终端设备(在图5中标记为,UE1、UIE2以及UE3)在非授权频带进行通信。应当理解,图5中所示出的实施例可以包括任意数量的终端设备,本公开的范围在此方面不受限制。
在某些实施例中,非授权频带通信过程可以分为两个通信阶段。在第一通信阶段,网络设备110可以向三个终端设备发送上行链路传输授权510。对于某时频传输资源,网络设备110可以分配一个或多个终端设备,即可能多个终端设备复用相同的时频传输资源。例如,在图5中,UE1被调度到某个时频传输资源TF1,而UE2和UE3被调度到相同的时频传输资源TF2。注意,在第一通信阶段,UE1、UE2和UE3仅仅准备要上行链路传输的数据,以及确定上行链路的传输资源,而不执行LBT和上行传输过程。即,在第一通信阶段,UE1、UE2和UE3仅仅被预调度为上行链路传输,而实际不进行上行链路传输。因此,第一通信阶段可以称为“预调度阶段”。如图5所示,在某些实施例中,在下行链路传输结束后的某个预定时间(比如,16us)处,UE1、UE2和UE3向网络设备110发送各自的能量检测报告520。
在第二通信阶段,基于接收到来自三个终端设备的能量检测报告520,网络设备110确定是否允许UE1、UE2和UE3进行上行链路传输。特别地,对于UE2和UE3,在第一通信阶段它们被调度到相同时频传输资源TF2。在第二通信阶段,对于UE2和UE3,网络设备110可以例如根据UE2和UE3发送的能量检测报告、UE2和UE3的终端设备优先级以及业务服务质量要求,仅仅确定允许一个终端设备 来进行上行链路传输。作为示例,在网络设备110确定允许UE2和UE3这二者进行上行链路传输的情况下,网络设备110可以根据UE2和UE3的终端设备优先级以及业务服务质量要求,确定允许一个终端设备来进行上行链路传输。作为另一示例,如果网络设备110确定仅允许UE2(或UE3)进行上行链路传输,则网络设备110直接确定UE2(或UE3)进行上行链路传输。如图5所示,在某些实施例中,假设网络设备110选择UE3进行上行传输,则网络设备向UE1和UE3发送第一指示。在接收到第一指示后,UE1和UE3利用预调度阶段所确定的上行链路传输资源TF1和TF2,进行上行链路传输。注意,图5所示出的两阶段通信过程仅仅是本文所描述某些示例实施方式,而本公开的范围在此方面不受限制。
图6示出了根据本公开的实施例的在网络设备处实施的装置600的框图。在一些实施例中,该装置600可以实施在例如图1所示的网络设备110、120处。如图所示,装置600可以包括接收单元610,被配置为接收来自终端设备的能量检测报告,该网络设备与该终端设备在非授权频带上通信,该能量检测报告指示该终端设备针对该非授权频带而测量的信道能量。该装置600还可以包括确定单元620,被配置为基于接收到的能量检测报告,确定是否允许该终端设备进行上行链路传输。该装置600还可以包括发送单元630,被配置为响应于确定允许该终端设备进行上行链路传输,向该终端设备发送第一指示,以使该终端设备进行上行链路传输。
图7示出了根据本公开的实施例的在终端设备处实施的装置700的框图。在一些实施例中,装置700可以实施在例如图1所示的终端设备130、140处。如图所示,该装置700包括发送单元710,被配置为向网络设备发送能量检测报告,该终端设备与该网络设备在非授权频带上进行通信,该能量检测报告指示该终端设备针对该非授权频带而测量的信道能量。该装置700还包括接收单元720,被配置为接收来自该网络设备的第一指示。该装置700还包括上行链路传输单元730,被配置为响应于接收到该第一指示,向该网络设备进行上行链 路传输。
出于清楚的目的,在图6和图7中没有示出装置600和/或700的某些可选模块。然而,应当理解,上文参考图1-3所描述的各个特征同样适用于装置600;类似地,上文参考图1-2和图4所描述的各个特征同样适用于装置700。而且,装置600和/或700的各个模块可以是硬件模块,也可以是软件模块。例如,在某些实施例中,装置600和/或700可以部分或者全部利用软件和/或固件来实现,例如被实现为包含在计算机可读介质上的计算机程序产品。备选地或附加地,装置600和/或700可以部分或者全部基于硬件来实现,例如被实现为集成电路(IC)、专用集成电路(ASIC)、片上系统(SOC)、现场可编程门阵列(FPGA)等。本公开的范围在此方面不受限制。
图8示出了根据本公开的实施例的通信设备800的框图。通信设备800可以用来实现本公开的实施例中的网络设备110、120或者终端设备130、140。
如图8中的示例所示,通信设备800包括处理器810。处理器810控制设备800的操作和功能。例如,在某些实施例中,处理器810可以借助于与其耦合的存储器820中所存储的指令830来执行各种操作。存储器820可以是适用于本地技术环境的任何合适的类型,并且可以利用任何合适的数据存储技术来实现,包括但不限于基于半导体的存储器件、磁存储器件和系统、光存储器件和系统。尽管图8中仅仅示出了一个存储器单元,但是在通信设备800中可以有多个物理不同的存储器单元。
处理器810可以是适用于本地技术环境的任何合适的类型,并且可以包括但不限于通用计算机、专用计算机、微控制器、数字信号控制器(DSP)以及基于控制器的多核控制器架构中的一个或多个核。通信设备800也可以包括多个处理器810。处理器810还可以与收发器840耦合,收发器840可以借助于一个或多个天线850和/或其他部件来实现信息的接收和发送。
根据本公开的实施例,处理器810和存储器820可以配合操作, 以实现上文参考图3和/或图4描述的方法300和/或400。具体来说,当通信设备800充当网络设备110、120时,当存储器820中的指令830被处理器810执行时,可使通信设备800执行方法300。当通信设备800充当终端设备130、140时,当存储器820中的指令830被处理器810执行时,可使通信设备800执行方法400。将会理解,上文描述的所有特征均适用于通信设备800,在此不再赘述。
一般而言,本公开的各种示例实施例可以在硬件或专用电路、软件、逻辑,或其任何组合中实施。某些方面可以在硬件中实施,而其他方面可以在可以由控制器、微处理器或其他计算设备执行的固件或软件中实施。当本公开的实施例的各方面被图示或描述为框图、流程图或使用某些其他图形表示时,将理解此处描述的方框、装置、系统、技术或方法可以作为非限制性的示例在硬件、软件、固件、专用电路或逻辑、通用硬件或控制器或其他计算设备,或其某些组合中实施。
作为示例,本公开的实施例也可以在机器可执行指令的上下文中被描述,机器可执行指令诸如包括在目标的真实或者虚拟处理器上的器件中执行的程序模块中。一般而言,程序模块包括例程、程序、库、对象、类、组件、数据结构等,其执行特定的任务或者实现特定的抽象数据结构。在各实施例中,程序模块的功能可以在所描述的程序模块之间合并或者分割。用于程序模块的机器可执行指令可以在本地或者分布式设备内执行。在分布式设备中,程序模块可以位于本地和远程存储介质二者中。
用于实现本公开的方法的计算机程序代码可以用一种或多种编程语言编写。这些计算机程序代码可以提供给通用计算机、专用计算机或其他可编程的数据处理装置的处理器,使得程序代码在被计算机或其他可编程的数据处理装置执行的时候,引起在流程图和/或框图中规定的功能/操作被实施。程序代码可以完全在计算机上、部分在计算机上、作为独立的软件包、部分在计算机上且部分在远程计算机上或完全在远程计算机或服务器上执行。
在本公开的上下文中,机器可读介质可以是包含或存储用于或有 关于指令执行系统、装置或设备的程序的任何有形介质。机器可读介质可以是机器可读信号介质或机器可读存储介质。机器可读介质可以包括但不限于电子的、磁的、光学的、电磁的、红外的或半导体系统、装置或设备,或其任意合适的组合。机器可读存储介质的更详细示例包括带有一根或多根导线的电气连接、便携式计算机磁盘、硬盘、随机存储存取器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或闪存)、光存储设备、磁存储设备,或其任意合适的组合。
另外,尽管操作以特定顺序被描绘,但这并不应该理解为要求此类操作以示出的特定顺序或以相继顺序完成,或者执行所有图示的操作以获取期望结果。在某些情况下,多任务或并行处理会是有益的。同样地,尽管上述讨论包含了某些特定的实施细节,但这并不应解释为限制任何发明或权利要求的范围,而应解释为对可以针对特定发明的特定实施例的描述。本说明书中在分开的实施例的上下文中描述的某些特征也可以整合实施在单个实施例中。反之,在单个实施例的上下文中描述的各种特征也可以分离地在多个实施例或在任意合适的子组合中实施。
尽管已经以特定于结构特征和/或方法动作的语言描述了主题,但是应当理解,所附权利要求中限定的主题并不限于上文描述的特定特征或动作。相反,上文描述的特定特征和动作是作为实现权利要求的示例形式而被公开的。

Claims (34)

  1. 一种在网络设备处实现的方法,包括:
    接收来自终端设备的能量检测报告,所述网络设备与所述终端设备在非授权频带上通信,所述能量检测报告指示所述终端设备针对所述非授权频带而测量的信道能量;
    基于接收到的所述能量检测报告,确定是否允许所述终端设备进行上行链路传输;以及
    响应于确定允许所述终端设备进行上行链路传输,向所述终端设备发送第一指示,以使所述终端设备进行所述上行链路传输。
  2. 根据权利要求1所述的方法,其中确定是否允许所述终端设备进行上行链路传输包括:
    响应于所述能量检测报告所指示的所述信道能量低于阈值能量,确定允许所述终端设备进行所述上行链路传输。
  3. 根据权利要求1所述的方法,其中向所述终端设备发送第一指示包括:
    在第一触发消息中向所述终端设备发送所述第一指示,所述第一触发消息特定于所述终端设备所在的小区并且与所述终端设备的标识相关联。
  4. 根据权利要求1所述的方法,其中向所述终端设备发送第一指示包括:
    在第二触发消息中向所述终端设备发送所述第一指示,所述第二触发消息特定于所述终端设备。
  5. 根据权利要求4所述的方法,其中所述第二触发消息是针对所述终端设备的上行链路授权。
  6. 根据权利要求1所述的方法,还包括:
    向所述终端设备发送第二指示,以使所述终端设备向所述网络设备发送所述能量检测报告。
  7. 根据权利要求6中所述的方法,其中向所述终端设备发送第二 指示包括:在如下之一中发送所述第二指示:
    上行链路授权,
    终端设备特定的下行控制信息,
    公共下行控制信息,以及
    小区特定或者终端设备群组特定的下行控制信息。
  8. 根据权利要求1所述的方法,还包括:
    向所述终端设备发送与所述能量检测报告相关联的配置,所述配置指示以下至少一项:
    所述能量检测报告的有效载荷,
    用于所述能量检测报告发送的时频资源,以及
    与能量检测相关联的时间和/或频率信息。
  9. 一种在终端设备处实现的方法,包括:
    向网络设备发送能量检测报告,所述终端设备与所述网络设备在非授权频带上进行通信,所述能量检测报告指示所述终端设备针对所述非授权频带而测量的信道能量;
    接收来自所述网络设备的第一指示;以及
    响应于接收到所述第一指示,向所述网络设备进行上行链路传输。
  10. 根据权利要求9所述的方法,其中接收来自所述网络设备的第一指示包括:
    在第一触发消息中接收来自所述网络设备的所述第一指示,所述第一触发消息特定于所述的终端设备所在的小区并且与所述终端设备的标识相关联。
  11. 根据权利要求9所述的方法,其中接收来自所述网络设备的第一指示包括:
    在第二触发消息中接收来自所述网络设备的所述第一指示,所述第二触发消息特定于所述终端设备。
  12. 根据权利要求11所述的方法,其中所述第二触发消息是针对所述终端设备的上行链路授权。
  13. 根据权利要求9所述的方法,还包括:
    响应于接收到来自所述网络设备的第二指示,向所述网络设备发送能量检测报告。
  14. 根据权利要求13所述的方法,还包括:在以下至少一项中接收所述第二指示:
    上行链路授权,
    终端设备特定的下行控制信息,
    公共下行控制信息,以及
    小区特定或者终端设备群组特定的下行控制信息。
  15. 根据权利要求9所述的方法,还包括:
    基于预配置的系统信息,向所述网络设备周期性地发送能量检测报告。
  16. 根据权利要求9所述的方法,还包括:
    接收来自所述网络设备的与所述能量检测报告相关联的配置,所述配置指示以下至少一项:
    所述能量检测报告的有效载荷,
    用于所述能量检测报告发送的时频资源,以及
    与能量检测相关联的时间和/或频率信息;以及
    基于所述配置来生成所述能量检测报告。
  17. 一种网络设备,包括:
    处理器;以及
    存储器,所述存储器存储有指令,所述指令在被所述处理器执行时使所述网络设备执行动作,所述动作包括:
    接收来自终端设备的能量检测报告,所述网络设备与所述终端设备在非授权频带上通信,所述能量检测报告指示所述终端设备针对所述非授权频带而测量的信道能量;
    基于接收到的所述能量检测报告,确定是否允许所述终端设备进行上行链路传输;以及
    响应于确定允许所述终端设备进行上行链路传输,向所述终 端设备发送第一指示,以使所述终端设备进行所述上行链路传输。
  18. 根据权利要求17所述的网络设备,其中确定是否允许所述终端设备进行上行链路传输包括:
    响应于所述能量检测报告所指示的所述信道能量低于阈值能量,确定允许所述终端设备进行所述上行链路传输。
  19. 根据权利要求17所述的网络设备,其中向所述终端设备发送第一指示包括:
    在第一触发消息中向所述终端设备发送所述第一指示,所述第一触发消息特定于所述终端设备所在的小区并且与所述终端设备的标识相关联。
  20. 根据权利要求17所述的网络设备,其中向所述终端设备发送第一指示包括:
    在第二触发消息中向所述终端设备发送所述第一指示,所述第二触发消息特定于所述终端设备。
  21. 根据权利要求20所述的网络设备,其中所述第二触发消息是针对所述终端设备的上行链路授权。
  22. 根据权利要求17所述的网络设备,其中所述动作还包括:
    向所述终端设备发送第二指示,以使所述终端向所述网络设备发送能量检测报告。
  23. 根据权利要求22中所述的网络设备,其中向所述终端设备发送第二指示包括:在如下之一中发送所述第二指示:
    上行链路授权,
    终端设备特定的下行控制信息,
    公共下行控制信息,以及
    小区特定或者终端设备群组特定的下行控制信息。
  24. 根据权利要求17所述的网络设备,其中所述动作还包括:
    向所述终端设备发送与所述能量检测报告相关联的配置,所述配置指示以下至少一项:
    所述能量检测报告的有效载荷,
    用于所述能量检测报告发送的时频资源,以及
    与能量检测相关联的时间和/或频率信息。
  25. 一种终端设备,包括:
    处理器;以及
    存储器,所述存储器存储有指令,所述指令在被所述处理器执行时使所述终端设备执行动作,所述动作包括:
    向网络设备发送能量检测报告,所述终端设备与所述网络设备在非授权频带上进行通信,所述能量检测报告指示所述终端设备针对所述非授权频带而测量的信道能量;
    接收来自所述网络设备的第一指示;以及
    响应于接收到所述第一指示,向所述网络设备进行上行链路传输。
  26. 根据权利要求25所述的终端设备,其中接收来自所述网络设备的第一指示包括:
    在第一触发消息中接收来自所述网络设备的所述第一指示,所述第一触发消息特定于所述的终端设备所在的小区并且与所述终端设备的标识相关联。
  27. 根据权利要求25所述的终端设备,其中接收来自所述网络设备的第一指示包括:
    在第二触发消息中接收来自所述网络设备的所述第一指示,所述第二触发消息特定于所述终端设备。
  28. 根据权利要求27所述的终端设备,其中所述第二触发消息是针对所述终端设备的上行链路授权。
  29. 根据权利要求25所述的终端设备,其中所述动作还包括:
    响应于接收到来自所述网络设备的第二指示,向所述网络设备发送能量检测报告。
  30. 根据权利要求29所述的终端设备,其中所述动作还包括:在以下至少一项中接收所述第二指示:
    上行链路授权,
    终端设备特定的下行控制信息,
    公共下行控制信息,以及
    小区特定或者终端设备群组特定的下行控制信息。
  31. 根据权利要求25所述的终端设备,其中所述动作还包括:
    基于预配置的系统信息,向所述网络设备周期性地发送能量检测报告。
  32. 根据权利要求25所述的终端设备,其中所述动作还包括:
    接收来自所述网络设备的与所述能量检测报告相关联的配置,所述配置指示以下至少一项:
    所述能量检测报告的有效载荷,
    用于所述能量检测报告发送的时频资源,以及
    与能量检测相关联的时间和/或频率信息;以及
    基于所述配置来生成所述能量检测报告。
  33. 一种计算机可读存储介质,包括存储于其上的程序代码,所述程序代码在被装置执行时,使所述装置执行根据权利要求1-8中的任一项所述的方法。
  34. 一种计算机可读存储介质,包括存储于其上的程序代码,所述程序代码在被装置执行时,使所述装置执行根据权利要求9-16中的任一项所述的方法。
PCT/CN2017/097976 2017-08-18 2017-08-18 用于非授权频带通信的方法、设备和计算机可读存储介质 WO2019033379A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780093616.XA CN111096030B (zh) 2017-08-18 2017-08-18 用于非授权频带通信的方法、设备和计算机可读存储介质
PCT/CN2017/097976 WO2019033379A1 (zh) 2017-08-18 2017-08-18 用于非授权频带通信的方法、设备和计算机可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/097976 WO2019033379A1 (zh) 2017-08-18 2017-08-18 用于非授权频带通信的方法、设备和计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2019033379A1 true WO2019033379A1 (zh) 2019-02-21

Family

ID=65362150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/097976 WO2019033379A1 (zh) 2017-08-18 2017-08-18 用于非授权频带通信的方法、设备和计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN111096030B (zh)
WO (1) WO2019033379A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116114363A (zh) * 2020-08-14 2023-05-12 上海诺基亚贝尔股份有限公司 未授权频谱中基于网络的定位的同步偏移识别与细化
WO2022052053A1 (en) * 2020-09-11 2022-03-17 Nokia Shanghai Bell Co., Ltd. Positioning measurement reporting in unlicensed spectrum
WO2022061754A1 (en) * 2020-09-25 2022-03-31 Nokia Shanghai Bell Co., Ltd. Channel occupancy time for sidelink communication in unlicensed band
CN114258150B (zh) * 2020-09-25 2023-11-24 维沃移动通信有限公司 信道接入选择方法、装置、通信设备及可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104335661A (zh) * 2012-03-26 2015-02-04 诺基亚公司 用于认知lte系统中的带外感应的方法、设备和计算机程序产品
WO2015062014A1 (zh) * 2013-10-31 2015-05-07 华为技术有限公司 无线通信方法及装置
CN105072690A (zh) * 2015-09-06 2015-11-18 魅族科技(中国)有限公司 基于非授权频谱的数据传输方法及装置
CN105873229A (zh) * 2015-02-06 2016-08-17 宏达国际电子股份有限公司 处理随机接入程序的通信装置及无线通信系统
CN106452705A (zh) * 2015-08-13 2017-02-22 索尼公司 无线通信系统中的电子设备和无线通信方法
US20170230944A1 (en) * 2016-02-04 2017-08-10 Ofinno Technologies, Llc Detection Threshold for a Wireless Network

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104335661A (zh) * 2012-03-26 2015-02-04 诺基亚公司 用于认知lte系统中的带外感应的方法、设备和计算机程序产品
WO2015062014A1 (zh) * 2013-10-31 2015-05-07 华为技术有限公司 无线通信方法及装置
CN105873229A (zh) * 2015-02-06 2016-08-17 宏达国际电子股份有限公司 处理随机接入程序的通信装置及无线通信系统
CN106452705A (zh) * 2015-08-13 2017-02-22 索尼公司 无线通信系统中的电子设备和无线通信方法
CN105072690A (zh) * 2015-09-06 2015-11-18 魅族科技(中国)有限公司 基于非授权频谱的数据传输方法及装置
US20170230944A1 (en) * 2016-02-04 2017-08-10 Ofinno Technologies, Llc Detection Threshold for a Wireless Network

Also Published As

Publication number Publication date
CN111096030A (zh) 2020-05-01
CN111096030B (zh) 2023-10-31

Similar Documents

Publication Publication Date Title
EP3709733B1 (en) Resource configuration method in d2d communication, terminal device, and network device
US9894654B2 (en) Defining sub-subchannels for data communication using separately provided frequency and time resources and related wireless terminals and network nodes
EP3275280B1 (en) Device for quasi-orthogonal multiple access
JP7208324B2 (ja) サービス伝送方法及び装置
TWI608754B (zh) 用於覆蓋增強式低複雜性機器類型通訊的隨機存取回應位置指示
WO2019098019A1 (en) Communication system
US20190159236A1 (en) Resource scheduling method and apparatus
US20190281491A1 (en) Quality of service (qos) congestion control handling
US10314103B2 (en) Exchanging patterns of shared resources between machine-type and human traffic
JP2020129840A (ja) 改善された復号タイムラインのための探索空間およびサウンディング基準信号配置の最適化
US11012845B2 (en) Device-to-device discovery communication
JP7093856B2 (ja) フィードバック情報の伝送方法及び装置
WO2020087531A1 (zh) 边链路信息的发送和接收方法以及装置
US9743426B2 (en) Dynamic determination and signaling of a RAR window size to a coverage enhanced low complexity machine type communication device
CN111096030B (zh) 用于非授权频带通信的方法、设备和计算机可读存储介质
EP4014402A1 (en) Transmission of csi-reports for sidelink communications
WO2020024280A1 (zh) 数据发送和接收方法以及装置
US20190200340A1 (en) Grid Design for Introducing Gaps in Transmission for DL NB-IOT
JP7400964B2 (ja) 電力割り当て方法及び装置
JP7478164B2 (ja) アップリンク伝送方法、アップリンクスケジューリング方法、装置及び通信システム
US20220232619A1 (en) Method processing for split resources and processing device
US20210297197A1 (en) Non-dropping rule for mini-slot based repetition
TW201531133A (zh) 一種用於傳輸上行回應消息的方法和設備
JP7347664B2 (ja) 無線通信方法、装置及びシステム
US20230353292A1 (en) Wireless communication method and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17921622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17921622

Country of ref document: EP

Kind code of ref document: A1