WO2019031791A1 - Bwp 내의 참조 신호를 이용하여 rsrq를 측정하는 방법 및 이를 수행하는 단말 - Google Patents

Bwp 내의 참조 신호를 이용하여 rsrq를 측정하는 방법 및 이를 수행하는 단말 Download PDF

Info

Publication number
WO2019031791A1
WO2019031791A1 PCT/KR2018/008904 KR2018008904W WO2019031791A1 WO 2019031791 A1 WO2019031791 A1 WO 2019031791A1 KR 2018008904 W KR2018008904 W KR 2018008904W WO 2019031791 A1 WO2019031791 A1 WO 2019031791A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
bwp
rssi
ssb
terminal
Prior art date
Application number
PCT/KR2018/008904
Other languages
English (en)
French (fr)
Inventor
황진엽
양윤오
이상욱
임수환
정만영
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/627,995 priority Critical patent/US11483081B2/en
Priority to JP2019572487A priority patent/JP7008088B2/ja
Priority to CN201880044327.5A priority patent/CN110809894B/zh
Priority to EP18845116.5A priority patent/EP3629617B1/en
Priority to KR1020197036556A priority patent/KR102375747B1/ko
Publication of WO2019031791A1 publication Critical patent/WO2019031791A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • H04B17/327Received signal code power [RSCP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/24Monitoring; Testing of receivers with feedback of measurements to the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0094Definition of hand-off measurement parameters

Definitions

  • the present invention relates to next generation mobile communications.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • 5G fifth generation
  • the 5G (5G) mobile communication defined by the International Telecommunication Union (ITU) means a data transmission speed of up to 20 Gbps and a minimum transmission speed of at least 100 Mbps anywhere.
  • the official name is 'IMT-2020' and aims to commercialize it worldwide in 2020.
  • ITU proposes three usage scenarios, for example, enhanced Mobile BroadBand (eMBB) and Massive Machine Type Communication (mMTC) and Ultra Reliable and Low Latency Communications (URLLC).
  • eMBB enhanced Mobile BroadBand
  • mMTC Massive Machine Type Communication
  • URLLC Ultra Reliable and Low Latency Communications
  • URLLC is about usage scenarios that require high reliability and low latency.
  • services such as autonomous navigation, factory automation, augmented reality require high reliability and low latency (e.g., a delay time of less than 1 ms).
  • the delay time of 4G (LTE) is statistically 21-43ms (best 10%) and 33-75ms (median). This is insufficient to support a service requiring a delay time of 1 ms or less. Therefore, to support the URLLC usage scenario, a PER (packet error rate) of 10-5 or less and a delay time of 1ms are required.
  • the delay time is defined as the delay time between the MAC layer of the UE and the MAC layer of the network.
  • a transmission time interval is defined as 1 ms or less to redefine the radio frame structure, adjust the HARQ scheme in the L2 layer, and improve the initial access procedure and scheduling.
  • TTI transmission time interval
  • Multiple reliability, multi-link diversity, multi-link diversity in frequency / space and data redundancy in higher layers are considered as methods for improving reliability.
  • the eMBB usage scenario relates to usage scenarios requiring mobile ultra-wideband.
  • NOMA non-orthogonal multiple access
  • a serving cell can set a bandwidth part (BWP), which is a frequency band used for uplink transmission and downlink reception, to each mobile station.
  • BWP bandwidth part
  • the frequency band of the synchronization signal block (SSB) transmitted by the serving cell may be set independently of the BWP, so that the frequency band of the SSB may not be included in the BWP.
  • the UE can continuously measure the quality of the serving cell and the neighboring cell in order to receive optimal mobility from the network.
  • the terminal may perform measurement based on the SSB. If the frequency band of the SSB is not included in the BWP, the measured RSRQ may not properly reflect the interference and channel characteristics of the BWP in which the actual terminal operates. That is, if the SSB is not included in the BWP, the accuracy of the measurement for the serving cell and the neighboring cell may be lowered. Specifically, an incorrect RSRQ may be reported, resulting in an incorrect handover operation, which may cause problems in the mobility of the terminal.
  • the base station and the terminal perform analog beamforming.
  • the receive antennas of the terminal may be implemented in two types of performing omni-directional or analog beamforming.
  • the signal-power-to-interference-power ratio (SINR) of each cell of the UE may vary according to the type of the Rx antenna, and thus the cell detection performance of the UE may vary.
  • SINR signal-power-to-interference-power ratio
  • the cell detection and the beam detection of the terminal may be changed according to the type of the reception antenna of the terminal have.
  • the capability of the UE considering the type of the Rx antenna has not been defined, and a method of obtaining information on the type of the Rx antenna of the UE has not been proposed.
  • the disclosure of the present specification aims at solving the above-mentioned problems. That is, it is an object of the present disclosure to provide a method for allowing a terminal to accurately perform measurement in a next generation mobile communication system. It is another object of the present disclosure to define a capability of a terminal according to the type of a receive antenna in a next generation mobile communication system and to report a capability of reporting the capability of the terminal according to the type of the receive antenna.
  • the measurement method includes: performing a reference signal received power (RSRP) measurement based on a synchronization signal block (SSB) received from a serving cell; Performing a received signal strength indicator (RSSI) measurement using a reference signal received in the BWP when a frequency band of the SSB is not included in a bandwidth part set for the terminal; And determining a reference symbol received quality (RSRQ) based on the result of the performed RSRP measurement and the result of the performed RSSI measurement.
  • RSRP reference signal received power
  • SSB synchronization signal block
  • RSSI received signal strength indicator
  • the RSRP measurement may be performed using a secondary synchronization signal (SSS) included in the SSB.
  • SSS secondary synchronization signal
  • Receiving the information on the RSSI measurement target band included in the BWP from the serving cell, and the RSSI measurement target band may be a frequency band included in the BWP.
  • the step of performing the RSSI measurement may be a step of performing an RSSI measurement using a reference signal received in the band of the RSSI measurement target.
  • the RSSI measurement using the reference signal received in the BWP may be performed when the SSB and the reference signal in the BWP have a quasi-co-location (QCL) relationship.
  • QCL quasi-co-location
  • the measuring method may further include receiving an indication indicating that the reference signal in the SSB and the BWP is in a quasi-co-location (QCL) relationship.
  • QCL quasi-co-location
  • the RSSI measurement may be performed using the reference signal received in the SSB.
  • the method may further include reporting the determined RSRQ to the serving cell.
  • the method may further include reporting to the serving cell information about capabilities associated with the antenna.
  • the information on the antenna capability may include information on whether the receiving antenna supports analog beamforming.
  • the terminal includes a transmitting / receiving unit; Wherein the processor performs a reference signal received power (RSRP) measurement based on a synchronization signal block (SSB) received from a serving cell through the transceiving unit, and the SSB A received signal strength indicator (RSSI) is measured using a reference signal received in the BWP when a frequency band of the RSRP is not included in a BWP (bandwidth part) set for the UE, And determine a reference symbol received quality (RSRQ) based on the result of the performed RSSI measurement.
  • RSRP reference signal received power
  • SSB synchronization signal block
  • RSSI received signal strength indicator
  • the processor controls the transceiver to receive information on a band to be measured by the RSSI from a serving cell and to perform RSSI measurement using a reference signal received in the band for the RSSI measurement based on the received information
  • the RSSI measurement target band may be a frequency band included in the BWP.
  • the processor may control the transceiver to report information about capabilities associated with the antenna to the serving cell.
  • the information about the capabilities associated with the antenna may include information about whether the receive antenna supports analog beamforming.
  • 1 is a wireless communication system.
  • FIG. 2 shows a structure of a radio frame according to FDD in 3GPP LTE.
  • 3 shows a measurement and measurement reporting procedure in 3GPP LTE.
  • Figure 4 shows an example of a subframe type in NR.
  • FIG. 5 is an exemplary view showing an example of beam sweeping of the synchronization signal SS in NR.
  • FIG. 7 shows an example of a BWP set for a terminal in NR.
  • FIG 8 shows an example in which the UE measures the RSRQ when the SSB is included in the BWP.
  • FIG. 10 shows a second example in which the UE measures the RSRQ when the SSB is not included in the BWP.
  • FIG. 11 is a simplified flowchart of the RSRQ measurement procedure.
  • 12A is a simulation result of the CDF with respect to the number of cells and beams detected by the UE when the receiving antenna is a non-directional antenna at 30 GHz.
  • 12B is a simulation result of the CDF of the number of cells and beams detected by the UE when the receiving antenna is an analog beamforming antenna at 30 GHz.
  • 13A is a simulation result of the CDF with respect to the number of cells and beams detected by the UE when the receiving antenna is a non-directional antenna at 4 GHz.
  • 13B is a simulation result of the CDF for the number of cells and beams detected by the UE when the receiving antenna is an analog beamforming antenna at 4 GHz.
  • FIG. 14 is a simulation result of the number of cells detected by the terminal, the number of beams, and the ratio of the number of cells to the number of beams according to the number of beams transmitted by the base station and the receiving antenna type of the terminal.
  • 15 is a block diagram illustrating a wireless communication system in which the present disclosure is implemented.
  • first, second, etc. used in this specification can be used to describe various elements, but the elements should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • first component may be referred to as a second component, and similarly, the second component may also be referred to as a first component.
  • base station refers to a fixed station that typically communicates with a wireless device and includes an evolved-NodeB (eNodeB), an evolved-NodeB (eNB), a Base Transceiver System (BTS) Access Point), gNB (next Generation Node B), and the like.
  • eNodeB evolved-NodeB
  • eNB evolved-NodeB
  • BTS Base Transceiver System
  • gNB next Generation Node B
  • UE User Equipment
  • MS mobile station
  • UT user terminal
  • SS Subscriber station
  • MT mobile terminal
  • UMTS Abbreviation of Universal Mobile Telecommunication System, which means 3rd generation mobile communication network.
  • UE / MS User Equipment / Mobile Station.
  • EPS Abbreviation of Evolved Packet System, which means a core network supporting LTE (Long Term Evolution) network.
  • UMTS is an evolved form of network
  • PDN Public Data Network
  • PDN connection A connection from a terminal to a PDN, that is, a connection between a terminal represented by an IP address and a PDN represented by an APN,
  • PDN-GW Packet Data Network Gateway
  • Serving GW A network node in an EPS network that performs mobility anchor, packet routing, idle mode packet buffering, and triggering MME to page UE functions.
  • PCRF Policy and Charging Rule Function
  • APN Access Point Name: Provided to the UE as the name of an access point managed in the network. That is, a string that points to or identifies the PDN. In order to access the requested service or network (PDN), it goes through the P-GW.
  • the name (string) defined in advance in the network so that the P-GW can be found eg) internet.mnc012.mcc345.gprs
  • TEID Traffic Endpoint Identifier
  • NodeB It is installed outdoors as a base station of the UMTS network, and the cell coverage scale corresponds to a macro cell.
  • eNodeB It is installed outdoors as base station of EPS (Evolved Packet System), and cell coverage scale corresponds to macro cell.
  • EPS Evolved Packet System
  • NodeB A term referring to a NodeB and an eNodeB.
  • MME Abbreviation of Mobility Management Entity, which controls each entity within the EPS to provide session and mobility for the UE.
  • a session is a path for data transmission, which can be a PDN, a bearer, or an IP flow unit.
  • the difference of each unit can be classified into a whole network unit (APN or PDN unit), a QoS unit (Bearer unit), and a destination IP address unit, as defined in 3GPP.
  • PDN connection A connection from a terminal to a PDN, that is, an association (connection) between a terminal represented by an IP address and a PDN represented by an APN.
  • UE Context Context information composed of UE context information, ie, UE id, mobility (current location, etc.), session attributes (QoS, priority, etc.) used for managing UEs in the network
  • OMA DM Open Mobile Alliance Device Management
  • OAM Operaation Administration and Maintenance
  • OAM is a group of network management functions that provide network fault indication, performance information, and data and diagnostic functions.
  • NAS Configuration Management Object A management object (MO) used to set (set) the parameters associated with the NAS function (Functionality) to the UE.
  • NAS Non-Access-Stratum: Upper stratum of control plane between UE and MME. Support for mobility management, session management and IP address maintenance between UE and network
  • MM (Mobility Management) operation / procedure An operation or procedure for controlling / managing / controlling mobility of UE.
  • the MM operation / procedure can be interpreted to include one or more of the MM operation / procedure in the CS network, the GMM operation / procedure in the GPRS network, and the EMM operation / procedure in the EPS network.
  • the UE and network nodes (MME, SGSN, MSC) send and receive MM messages to perform MM operations / procedures.
  • SM (Session Management) Operation / Procedure An operation or procedure for controlling / managing / processing / handling the UE's user plane and / or bearer context / PDP context.
  • the SM operation / procedure may be interpreted to include one or more of the SM operation / procedure in the GPRS network, the ESM operation / procedure in the EPS network.
  • the UE and network nodes (MME, SGSN) send and receive SM messages to perform SM operations / procedures.
  • Low priority terminal A terminal that is set to the lowest order of NAS signals. For further details, refer to the standard documents 3GPP TS 24.301 and TS 24.008.
  • Normal priority terminal A general terminal that is not set to a low priority
  • Dual priority terminal A terminal set to Dual priority, which is set to the NAS signal low order and can be set to override the set NAS signal low order (i.e., UE which provides dual priority support is set for NAS signaling low priority and also set to override the NAS signaling low priority indicator).
  • UE which provides dual priority support is set for NAS signaling low priority and also set to override the NAS signaling low priority indicator.
  • PLMN Acronym for Public Land Mobile Network, which means the network identification number of the operator.
  • HPLMN Home PLMN
  • VPLMN Visited PLMN
  • 1 is a wireless communication system.
  • the wireless communication system includes at least one base station (BS) 20.
  • Each base station 20 provides a communication service to a specific geographical area (generally called a cell) 20a, 20b, 20c.
  • the cell may again be divided into multiple regions (referred to as sectors).
  • a UE typically belongs to one cell, and the cell to which the UE belongs is called a serving cell.
  • a base station providing a communication service to a serving cell is called a serving BS. Since the wireless communication system is a cellular system, there are other cells adjacent to the serving cell. Another cell adjacent to the serving cell is called a neighbor cell.
  • a base station that provides communication services to neighbor cells is called a neighbor BS. The serving cell and the neighboring cell are relatively determined based on the UE.
  • the downlink refers to the communication from the base station 20 to the UE 10
  • the uplink refers to the communication from the UE 10 to the base station 20.
  • the transmitter may be part of the base station 20 and the receiver may be part of the UE 10.
  • the transmitter may be part of the UE 10 and the receiver may be part of the base station 20.
  • FIG. 2 is a cross- 3GPP In LTE Shows the structure of a radio frame according to the FDD.
  • a radio frame includes 10 subframes, and one subframe includes 2 slots.
  • the slots in the radio frame are slot numbered from 0 to 19.
  • the time taken for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI is a scheduling unit for data transmission.
  • the length of one radio frame is 10 ms
  • the length of one subframe is 1 ms
  • the length of one slot may be 0.5 ms.
  • the structure of the radio frame is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the like can be variously changed.
  • one slot may include a plurality of orthogonal frequency division multiplexing (OFDM) symbols. How many OFDM symbols are included in one slot may vary according to a cyclic prefix (CP).
  • OFDM orthogonal frequency division multiplexing
  • One slot includes N RB resource blocks (RBs) in the frequency domain.
  • N RB resource blocks
  • the number of resource blocks (RBs) in the LTE system, i.e., N RB can be any of 6 to 110.
  • a resource block (RB) is a resource allocation unit, and includes a plurality of subcarriers in one slot. For example, if one slot includes 7 OFDM symbols in the time domain and the resource block includes 12 subcarriers in the frequency domain, one resource block includes 7 ⁇ 12 12 resource elements (REs) .
  • REs resource elements
  • the UE 100 It is essential to support mobility of the UE 100 in the mobile communication system. Accordingly, the UE 100 continuously measures the quality of a serving cell and the quality of a neighboring cell providing a current service. The UE 100 reports the measurement results to the network at an appropriate time, and the network provides optimal mobility to the UE through handover or the like. Often, measurements of this purpose are referred to as radio resource management (RRM).
  • RRM radio resource management
  • the UE 100 monitors the downlink quality of the primary cell (Pcell) based on the CRS. This is called Radio Link Monitoring (RLM).
  • RLM Radio Link Monitoring
  • Figure 3 shows the measurement and measurement reporting procedure.
  • the UE detects a neighboring cell based on a synchronization signal (SS) transmitted from a neighboring cell.
  • the SS may include a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the serving cell 200a and the neighboring cell 200b transmit a cell-specific reference signal (CRS) to the UE 100
  • CRS cell-specific reference signal
  • the UE 100 performs the measurement through the CRS, And transmits the result to the serving cell 200a.
  • the UE 100 compares the power of the received CRS based on information on the received reference signal power.
  • the UE 100 can perform measurement in the following three methods.
  • RSRP reference signal received power
  • RSSI Received Signal Strength Indicator
  • Reference symbol received quality This indicates the CQI and can be determined by RSRP / RSSI according to the measured bandwidth or subband. That is, RSRQ means a signal-to-noise interference ratio (SINR). Since RSRP does not provide sufficient mobility information, RSRQ may be used instead of RSRP in handover or cell reselection.
  • SINR signal-to-noise interference ratio
  • RSRQ RSSI / RSSP.
  • the UE 100 receives a measurement configuration information element (IE) from the serving cell 100a for the measurement.
  • a message containing a measurement setup information element (IE) is referred to as a measurement setup message.
  • the Measurement Configuration Information Element (IE) may be received via an RRC Connection Reset message.
  • the UE reports the measurement result to the base station if the measurement result meets the reporting condition in the measurement setup information.
  • a message containing a measurement result is called a measurement report message.
  • the measurement setting IE may include measurement object information.
  • the measurement object information is information on an object on which the UE performs measurement.
  • the measurement object includes at least one of an intra-frequency measurement object to be measured in a cell, a different inter-frequency measurement object to be measured between cells, and an inter-RAT measurement object to be an inter-RAT measurement object.
  • an intra-frequency measurement object indicates a neighboring cell having the same frequency band as a serving cell
  • a different inter-frequency measurement target indicates a neighboring cell having a different frequency band from the serving cell
  • the inter-RAT measurement object may indicate a neighbor cell of a RAT different from the RAT of the serving cell.
  • the UE 100 also receives a Radio Resource Configuration Information Element (IE) as shown.
  • IE Radio Resource Configuration Information Element
  • the Radio Resource Configuration Dedicated Information Element is used for setting / modifying / canceling a radio bearer, modifying a MAC configuration, and the like.
  • the radio resource setting IE includes subframe pattern information.
  • the subframe pattern information is information on a measurement resource restriction pattern on the time domain for measuring RSRP and RSRQ for a primary cell (i.e., Primary Cell: PCell).
  • next generation mobile communication 5th generation mobile communication
  • the fifth generation mobile communication system aims at higher capacity than current 4G LTE, can increase the density of mobile broadband users, can support D2D (Device to Device), high stability and MTC (machine type communication).
  • 5G research and development also aims at lower latency and lower battery consumption than 4G mobile communication systems to better implement the Internet of things.
  • a new radio access technology (New RAT or NR) may be proposed for such 5G mobile communication.
  • a pair of spectra means that the two carrier spectra are included for downlink and uplink operation.
  • one carrier may include a downlink band and an uplink band that are paired with each other.
  • the transmission time interval (TTI) shown in FIG. 4 may be referred to as a subframe or slot for NR (or new RAT).
  • the subframe (or slot) of FIG. 4 may be used in a TDD system of NR (or new RAT) to minimize the data transmission delay.
  • a subframe (or slot) includes 14 symbols, like the current subframe.
  • the leading symbol of a subframe (or slot) may be used for the DL control channel, and the trailing symbol of the subframe (or slot) may be used for the UL control channel.
  • the remaining symbols may be used for DL data transmission or UL data transmission.
  • downlink transmission and uplink transmission can be sequentially performed in one subframe (or slot). Accordingly, downlink data may be received within a subframe (or slot), and an uplink acknowledgment (ACK / NACK) may be transmitted within the subframe (or slot).
  • the structure of such a subframe (or slot) may be referred to as a self-contained subframe (or slot).
  • a self-contained subframe (or slot) structure Using the structure of such a subframe (or slot) has the advantage that the time taken to retransmit the data that has been erroneously received is reduced and the last data transmission latency can be minimized.
  • a time gap may be required in the transition process from the transmit mode to the receive mode or from the receive mode to the transmit mode.
  • some OFDM symbols when switching from DL to UL in a subframe structure may be set as a guard period (GP).
  • a serving base station transmits a measurement gap to a terminal (not shown) so that the terminal can measure a neighbor cell operating in a different inter-frequency / different inter-radio access technology (RAT) .
  • the UE performs cell detection and RSRP measurement after performing RF retuning in a measurement gap interval set by the serving base station.
  • the measurement gap is not set because the UE can perform measurement without RF readjustment.
  • the SS burst is transmitted every predetermined periodicity.
  • the base station transmits each SS block in the SS burst with beam sweeping according to time. Therefore, the terminal receives the SS block while performing beam sweep, and performs cell detection and measurement.
  • the definitions of the intra-frequency and the inter-frequency in NR are as follows.
  • the SSB of the serving cell and the subcarrier spacing of the SSB of the neighbor cell are equal to each other, they may be referred to as an adjacent frequency relationship.
  • the frequency relationship may be different from each other.
  • the frequency relationship may be different from each other.
  • the bandwidth of the CSI-RS resource set for the measurement on the neighbor cell is within the bandwidth of the CSI-RS resource set for the measurement on the five cells, it can be said to be an adjacent frequency relationship.
  • the CSI-RS of the serving cell and the CSI-RS of the neighboring cell are equal to each other, they may be referred to as adjacent frequency relationships.
  • the bandwidth of the CSI-RS resource set for the measurement on the neighboring cell is not within the bandwidth of the CSI-RS resource set for the measurement on the serving cell, it can be regarded as a different frequency relationship.
  • the frequency relationship may be different from each other.
  • the measurement categories are divided into the following three categories.
  • a physical channel (PBCH) including a MIB and a synchronization signal SS (including PSS and SSS), which are information necessary for the UE to perform initial access are defined as SS blocks.
  • a plurality of SS blocks can be defined as an SS bus, and a plurality of SS bursts can be defined as an SS burst set.
  • Each SS block is assumed to be beamformed in a specific direction, and several SS blocks in the SS burst set are designed to support terminals in different directions.
  • the SS burst is transmitted every predetermined periodicity.
  • the base station transmits each SS block in the SS burst with beam sweeping according to time. Therefore, the terminal receives the SS block while performing beam sweep, and performs cell detection and measurement.
  • the bandwidth and periodicity of the SS are set among the following candidate values.
  • the candidate for the minimum bandwidth of the NR carrier is [5 kHz, 10 kHz, 20 kHz]
  • the candidates for the transmission band for each synchronization signal are [1.08 MHz, 2.16 MHz, 4.32 MHz, 8.64 MHz].
  • the candidate for the minimum bandwidth of the NR carrier is [20 MHz, 40 MHz, 80 MHz]
  • the candidates for the transmission band for each synchronization signal are [8.64 MHz, 17.28 MHz, 34.56 MHz, 69.12 MHz].
  • the period of the SS is [5 ms, 10 ms, 20 ms, 40 ms, 80 ms, 100 ms].
  • the period of the SS is [5 ms, 10 ms, 20 ms, 40 ms, 80 ms, 100 ms].
  • the terminal may receive measurement setup information from the serving cell.
  • the measurement setup information may include information on a first measurement gap, e.g., an intra beam measurement gap.
  • the measurement setup information may include information on a second measurement gap, e.g., an intra RSRP measurement gap.
  • the terminal may receive SS bursts from one or more neighbor cells and perform cell detection.
  • the terminal may then perform measurements based on SS bursts received from one or more neighboring cells during a first measurement gap (e.g., an intra-beam measurement gap) indicated by the information.
  • a first measurement gap e.g., an intra-beam measurement gap
  • the terminal may perform an RSRP measurement based on a reference signal (RS) from the one or more neighboring cells during the second measurement gap.
  • RS reference signal
  • the terminal can perform a measurement report.
  • Figure 7 From NR And is set for the terminal BWP's For example.
  • NR Broadband frequencies up to 400 MHz can be used in NR.
  • BWP a new concept
  • the Node B sets a BWP to be used by the UE based on the information, and transmits information on the BWP set to each UE. Then, downlink and uplink data transmission / reception between each terminal and the base station is performed only through the BWP set for each terminal. That is, the base station sets the BWP to the terminal, and then instructs the terminal not to use the frequency band other than the BWP in performing wireless communication with the base station.
  • the Overall carrier represents the total carrier frequency that the BS can use
  • the BWP represents the BWP set by the BS for the UE.
  • the base station may set the entire frequency band of the carrier frequency up to 400 MHz to the BWP for the UE, or may set only some bands to the BWP for the UE, as shown in FIG.
  • the base station may set a plurality of BWPs to one terminal. When a plurality of BWPs are set in one UE, the frequency bands of the respective BWPs may overlap with each other or not.
  • the UE in the NR can perform measurements such as RSRP, RSRQ, and RS-SINR (reference signal SINR) to provide mobility from the network, as in the LTE terminal.
  • the UE can perform secondary synchronization signal (SSS) based measurement and CSI-based channel state information reference signal (CSI-RS) based measurement.
  • SSS secondary synchronization signal
  • CSI-RS channel state information reference signal
  • SSR Secondary synchronization signal RSRQ: N * (SSB RSRP) / (NR carrier RSSI).
  • N means the number of RBs of the NR carrier included in the RSSI measurement bandwidth, and measurement of numerator and denominator is performed using the same set of RBs.
  • SS block RSRP / (NR carrier RSSI), where N is the number of RBs of the NR carrier, and the RSSI measurement bandwidth. numerator and denominator are made over the same set of resource blocks.
  • CSI-RSRQ N * (CSI-RSRP) / (CSI-RSSI) Where N denotes the number of RBs in the CSI-RSSI measurement bandwidth, and the measurement of the numerator and the denominator is performed using the same set of RBs.
  • NXCSI-RSRP / CSI-RSSI, where N is the number of resource blocks in the CSI-RSSI measurement bandwidth. The measurements in the numerator and denominator are made over the same set of resource blocks.
  • SS received signal strength indicator (SS-RSSI): the total received power measured in the OFDM symbols of the measurement time resource over the N RBs from all sources in the measurement bandwidth (co-channel serving cell, non-serving cell, Channel interference, thermal noise, and the like).
  • the measurement time resources are limited to within the SSB-based measurement timing configuration (SMTC).
  • S in the measurement bandwidth, over N number of resource blocks (SS), and the SS received signal strength indicator (SS-RSSI) Measurement time resource (s) are confined within SMTC (SSB-based measurement timing configuration) window duration (s).
  • CSI-RSSI CSI-received signal strength indicator
  • the UE can perform two RSRP measurements and RSSI measurements based on SSS and CSI-RS.
  • the UE can perform SSS-based measurement and CSI-RS-based measurement according to the above definition.
  • the SSS is transmitted within the SSB, where the frequency band of the SSB and the BWP in which the actual terminal operates may be different. If the frequency band of the SSB differs from the BWP, the terminal may not be provided with optimal mobility due to incorrect measurements.
  • the base station transmits the SSS through the SSB.
  • the terminal In order to measure based on the SSS, the terminal retransmits the RF (radio frequency) to the band in which the SSB exists and monitors the SSB received from the base station have. Since the base station can set a cell-specific SSB, the terminal can perform RSRP measurement, RSSI measurement, and RS-SINR measurement based on the monitored SSB. The terminal may then perform RSRQ measurements based on the RSRP measurements and the RSSI measurements. Since the SSB may not be included in the BWP, the result of the RSRQ measurement may not properly reflect the channel environment characteristic in the BWP in which the UE operates.
  • Figure 8 shows that SSB On BWP If included, RSRQ An example of measurement is shown.
  • a serving cell transmits an SSB in a UE active DL BWP set in the UE.
  • the UE can perform RSRP measurement and RSSI measurement based on the SSB received from the serving cell, and calculate the RSRQ using the result of the RSRP measurement and the result of the RSSI measurement.
  • the terminal since the RSSI measurement is performed on the signal received from the neighboring interference cell in the BWP, which is the band in which the UE operates, the calculated RSRQ reflects the BWP interference and channel characteristics well. Therefore, in the case of FIG. 8, even if the terminal performs the RSRP measurement and the RSSI measurement based on the SSB, the terminal can receive optimal mobility from the network.
  • Figure 9 shows that SSB On BWP Not included If not When the terminal RSRQ Measuring In the first example, .
  • the serving cell transmits SSB in a frequency band not included in the BWP set in the UE.
  • the UE receives the interference data transmitted by the interference cell 1 and the interference cell 2 in the same band as the SSB and can receive the interference data transmitted by the interference cell 3 (I 3 ) in the same band as the BWP.
  • RSSI conventional S (received power from the serving cell) + I 1 (interference due to interference data of interference cell 1 ) + I 2 (interference due to the interference data of the interference cell 2).
  • the UE receives the interference of the interference cell 3 in the BWP set in the UE. If the RSSI is measured in the BWP set in the actual terminal, the result will be S + I 3 .
  • RSSI prior art is because it does not reflect the interference and channel characteristics of the BWP that the mobile station operation, when the terminal reports an RSRQ of the RSSI prior to the serving cell performing a handover operation in a situation that does not require hand-over There is a problem in the mobility of the terminal.
  • a serving cell transmits an SSB in a frequency band not included in the BWP set in the UE.
  • the UE receives the interference data transmitted by the interference cell 3 in the same band as the SSB and receives the interference data transmitted by the interference cell 3 in the same band as the BWP.
  • the UE receives interference of the interference cell 1 and the interference cell 2 in the BWP set in the UE. If the RSSI is measured in the BWP set in the actual terminal, the result will be S + I 1 + I 2 .
  • RSSI prior art is because it does not reflect the interference and channel characteristics of the BWP the UE behavior, the UE when reporting RSRQ of the RSSI prior to the serving cell does not perform the handover in a situation that requires the handover There is a problem in the mobility of the terminal.
  • the present specification provides a method for performing RSSI measurement and RSRQ measurement based on BWP when SSB is not included in the BWP.
  • the terminal and the base station may transmit RSSI and RSRQ different from the conventional RSSI and the conventional RSRQ when the SSB is not included in the BWP Can be used.
  • the name of the RSSI used in this case is called QCLed-RSSI
  • the name of RSRQ is QCLed-RSRQ (Quasi-Co-Located-RSRQ) Quot
  • the QCLed-RSSI is an RSSI that the UE measures using a reference signal received in the BWP.
  • QCLed-RSRQ is the RSRQ determined based on the result of the QCLed-RSSI measurement and the result of the RSRP measurement.
  • these names are only examples for distinguishing from the conventional RSSI and RSRQ, and the scope of one disclosure in this specification is not limited to these names.
  • the terminal can perform RSRP measurements in a conventional manner.
  • the terminal may perform the RSRP measurement based on the SSB received from the serving cell.
  • the UE can perform the RSRP measurement using the SSS included in the SSB.
  • the terminal can use the result of the RSRP measurement to determine the conventional RSRQ or QCLed-RSRQ.
  • the UE can identify the frequency band in which the SSB is received through the initial access to the serving cell.
  • the terminal may receive information about the BWP set for the terminal from the serving cell.
  • the UE can then compare the BWP with the SSB to identify whether the frequency band of the SSB is included in the BWP.
  • the terminal may perform RSSI measurement and RSRQ measurement differently depending on whether the frequency band of the SSB is included in the BWP.
  • the UE can perform the RSSI measurement in the conventional manner.
  • the terminal may perform an RSSI measurement based on the SSB received from the serving cell. Specifically, the UE can perform the RSSI measurement using the SSS included in the SSB.
  • the terminal can determine the RSRQ based on the result of the RSSI measurement and the result of the RSRP measurement. Then, the UE can report the determined RSRQ to the serving cell.
  • the UE can perform the QCLed-RSSI measurement using the reference signal received in the BWP. Specifically, the UE can perform the QCLed-RSSI measurement using a reference signal such as a tracking reference signal (TRS) or a demodulation reference signal (DMRS) received in the BWP.
  • a reference signal such as a tracking reference signal (TRS) or a demodulation reference signal (DMRS) received in the BWP.
  • TRS tracking reference signal
  • DMRS demodulation reference signal
  • the UE can assume that the bandwidth of the RSRP measurement and the bandwidth of the QCLed-RSSI measurement are similar .
  • the terminal can assume that the channel through which the SSS is transmitted and the band for measuring the RSSI are in a QCL (Quasi-Co-Location) relationship. That is, the UE can assume that the two bands have a QCL relationship with respect to spatial, average gain, and Doppler parameters.
  • the SS can determine that the frequency band of the SSB and the BWL are in the QCL relationship.
  • the UE can receive an indication from the serving cell indicating that the SSB and the reference signal in the BWP are in a QCL relationship.
  • the UE receives the indication, it can determine that the SSB and the reference signal in the BWP are in a QCL relationship.
  • the UE can perform the QCLed-RSSI measurement when the reference signal in the SSB and the BWP is related to the QCL.
  • the terminal may perform QCLed-RSSI measurements on some bands of BWP.
  • the UE can receive information on the RSSI measurement target band included in the BWP from the serving cell.
  • the RSSI measurement target band may be a frequency band included in the BWP.
  • the information on the RSSI measurement target band may include the number of RBs for which the UE measures RSSI.
  • the terminal can perform RSSI measurement on the RSSI measurement target band based on the received information. That is, the UE can perform the RSSI measurement using the reference signal received within the RSSI measurement target band.
  • the UE can determine the QCLed-RSRQ based on the result of the QCLed-RSSI measurement and the result of the RSRP measurement.
  • the UE can report the determined QCLed-RSRQ to the serving cell.
  • FIG. 9 an example of the QCLed-RSSI measurement result in each figure is shown as an RSSI proposal .
  • the QCLed-RSSI measurement result is S + I 3
  • the QCLed-RSSI measurement result in FIG. 10 is S + I 1 + I 2 .
  • the result of the QCLed-RSSI measurement may reflect the interference and channel characteristics of the BWP in which the actual terminal operates.
  • the UE reports the QCLed-RSRQ determined based on the result of the QCLed-RSSI measurement to the serving cell, it can receive optimal mobility from the network.
  • FIG. 11 is a simplified flowchart of the RSRQ measurement procedure.
  • the UE can receive the QCLedRSRQ-Meas signal indicating the QCLed-RSRQ measurement from the serving cell gNB have.
  • the UE can receive a signal (Measure-Bandwidth) indicating the number of RBs to be subjected to the RSSI measurement from the serving cell.
  • QCLedRSRQ-Meas and Measure-Bandwidth can be defined as shown in the example shown in Table 1.
  • the terminal may perform RSRP measurements based on the SSB.
  • the UE can perform the RSSI measurement using the reference signal received in the BWP (UE active downlink BWP) set for the UE.
  • the UE generates the QCLed-RSRQ based on the result of the RSRP measurement and the result of the RSSI measurement You can decide. Then, the UE can report the determined QCLed-RSRQ to the serving cell.
  • the base station and the terminal perform analog beamforming.
  • the receive antennas of the terminal may be implemented in two types of performing omni-directional or analog beamforming.
  • the signal-power-to-interference-power ratio (SINR) of each cell of the UE may vary according to the type of the Rx antenna, and thus the cell detection performance of the UE may vary.
  • SINR signal-power-to-interference-power ratio
  • the base station transmits the synchronization signal by performing the analog beamforming in the NR, the cell detection and the beam detection of the terminal can be changed according to the type of the reception antenna of the terminal.
  • the capability of the UE considering the type of the Rx antenna has not been defined, and a method of obtaining information on the type of the Rx antenna of the UE has not been proposed.
  • the present specification defines a capability of a terminal considering a type of a receive antenna through simulation and suggests a method of reporting a capability of a terminal according to a type of a receive antenna of the terminal to the base station.
  • the terminal may report information about capabilities associated with the antenna to the serving cell.
  • the information on the capabilities associated with the antenna may include information on whether the receive antenna supports analog beamforming.
  • the capability of the terminal according to the type of the receive antenna, that is, the measurement capability, as shown in Table 2.
  • the capability of the terminal according to the type of the receive antenna, that is, the measurement capability, as shown in Table 2.
  • Table 2 information on whether analog beamforming of the receiving antenna is supported by ue-RxAnalogBeamFormingSupported may be included.
  • ue-RxAnalogBeamFormingSupported can be included in phyLayerParameters.
  • 12A is a graph showing the relationship between the number of cells and the number of beams detected by the UE when the receiving antenna is an omnidirectional antenna at 30 GHz CDF (Cumulative distribution function). 12B shows that at 30 GHz, Beam forming And CDF for the number of cells and beams detected by the terminal in the case of an antenna.
  • CDF Cumulative distribution function
  • the omnidirectional reception antenna and the beamforming reception antenna each detects a cell and a beam It can be seen that the CDFs are different.
  • FIG. 13A is a graph showing the relationship between the number of cells and the number of beams detected by a terminal when the receiving antenna is an omnidirectional antenna at 4 GHz CDF Simulation results.
  • FIG. 13B shows that at 4 GHz, Beam forming And CDF for the number of cells and beams detected by the terminal in the case of an antenna.
  • FIGS. 13A and 13B were performed in an indoor hotspot environment, and with reference to FIGS. 13A and 13B, at a carrier frequency of 4 GHz, the omnidirectional receive antenna and the beamforming receive antenna, respectively, It can be seen that the CDFs are different.
  • Table 3 summarizes the number of neighbor cells that the UE detects on average based on the carrier frequency range and the type of the receiving antenna based on the simulation results of FIGS. 12A to 13B.
  • scenario Indoor hotspot Carrier frequency range 4 GHz 30 GHz Omnidirectional receiving antenna The number of average detection cells 1.21 4.2 The number of average detection beams 1.67 14.89 Beam-forming receiving antenna The number of average detection cells 3.82 6.15 The number of average detection beams 8.44 36.99
  • the UE detects a larger number of cells and beams at 30 GHz than the sub GHz (frequency range 1) of 4 GHz and above 6 GHz (frequency range 2). This is because NR limits the number of beams transmitted by the base station for each frequency range as shown below.
  • the UE can detect a larger number of cells and beams in the high frequency region according to the following restrictions. -
  • the maximum number of SSBs in the SS burst set (L) is as follows.
  • the terminal detects a larger number of cells and beams when the analog beamforming antenna is used than the non-directional receiving antenna.
  • FIG. 14 is a simulation result of the number of cells detected by the terminal, the number of beams, and the ratio of the number of cells to the number of beams according to the number of beams transmitted by the base station and the receiving antenna type of the terminal.
  • omni Rx denotes an omnidirectional receive antenna
  • beamF Rx denotes an analog beamforming antenna
  • NR does not distinguish between FDD and TDD, and since measurements on inter-radio access technology (inter-RAT) are not necessary, only for inter-frequency different from intra-frequencny You can define the capabilities of the terminal.
  • inter-RAT inter-radio access technology
  • a terminal for non-support directional receiving antenna X intra1 _ omni of the identified intra-frequency cells and per cell Y intra1 _ omni of the identified intra-frequency RSRP measured for, RSRQ measurements and to perform RS-SINR measurement Yes.
  • a terminal for analog beamforming receive antennas X intra1 _ beamf of the identified intra-frequency cells and Y intra1 _ beamf of the identified intra-frequency RSRP measured for, RSRQ measurements and performing RS-SINR measured per cell You can.
  • a terminal for non-support directional receiving antenna X intra2 _ omni of the identified intra-frequency cells and per cell Y intra2 _ omni of the identified intra-frequency RSRP measured for, RSRQ measurements and to perform RS-SINR measurement Yes.
  • a terminal for analog beamforming receive antennas X intra2 _ beamf of the identified intra-frequency cells and Y intra2 _ beamf of the identified intra-frequency RSRP measured for, RSRQ measurements and performing RS-SINR measured per cell You can.
  • a terminal for non-support directional receiving antenna X inter1 _ omni of the identified inter-frequency cell and per cell Y inter1 _ omni of the identified inter-frequency RSRP measured for, RSRQ measurements and to perform RS-SINR measurement Yes.
  • a terminal for analog beamforming receive antennas X inter1 _ beamf of the identified inter-frequency cells and Y inter1 _ beamf of the identified inter-frequency RSRP measured for, RSRQ measurements and performing RS-SINR measured per cell You can.
  • a terminal for non-support directional receiving antenna X inter2 _ omni of the identified inter-frequency cell and per cell Y inter2 _ omni of the identified inter-frequency RSRP measured for, RSRQ measurements and to perform RS-SINR measurement Yes.
  • RSRP measurement RSRP measurement, RSRQ measurement, and RS-SINR measurement are performed on the terminal supporting the analog beamforming reception antenna: X inter2 _ beamf identified inter-frequency cells and Y inter2 _ beamf identified inter-frequency per cell You can.
  • the performance of the terminals 1) and 2) can be set as shown in the following example.
  • 15 is a block diagram illustrating a wireless communication system in which the present disclosure is implemented.
  • the base station 200 includes a processor 201, a memory 202 and an RF unit (radio frequency unit) 203.
  • the memory 202 is connected to the processor 201 and stores various information for driving the processor 201.
  • the RF unit 203 is connected to the processor 201 to transmit and / or receive a radio signal.
  • the processor 201 implements the proposed functions, procedures and / or methods. In the above-described embodiment, the operation of the base station can be implemented by the processor 201. [
  • the UE 100 includes a processor 101, a memory 102, and a transceiver 103.
  • the memory 102 is connected to the processor 101 and stores various information for driving the processor 101.
  • the transceiver 103 is connected to the processor 101 and transmits and / or receives a radio signal.
  • the processor 101 implements the proposed functions, procedures and / or methods.
  • the processor may comprise an application-specific integrated circuit (ASIC), other chipset, logic circuitry and / or a data processing device.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory cards, storage media, and / or other storage devices.
  • the transceiver may include a baseband circuit for processing the radio signal.
  • the above-described techniques may be implemented with modules (processes, functions, and so on) that perform the functions described above.
  • the module is stored in memory and can be executed by the processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by any of a variety of well known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 명세서의 일 개시는 측정 방법을 제시한다. 상기 측정 방법은 서빙셀(serving cell)로부터 수신되는 SSB(synchronization signal block)에 기초하여 RSRP(reference signal received power) 측정을 수행하는 단계; 상기 SSB의 주파수 대역이 상기 단말에 대해 설정된 BWP(bandwidth part)에 포함되지 않는 경우, 상기 BWP 내에서 수신되는 참조 신호를 이용하여 RSSI(received signal strength indicator) 측정을 수행하는 단계; 및 상기 수행된 RSRP 측정의 결과 및 상기 수행된 RSSI 측정의 결과에 기초하여 RSRQ(reference symbol received quality)를 결정하는 단계를 포함할 수 있다.

Description

BWP 내의 참조 신호를 이용하여 RSRQ를 측정하는 방법 및 이를 수행하는 단말
본 발명은 차세대 이동 통신에 관한 것이다.
4세대 이동통신을 위한 LTE(long term evolution)/LTE-Advanced(LTE-A)의 성공에 힘입어, 향후의 이동통신, 즉 5세대(소위 5G) 이동통신에 대한 관심도 높아지고 있고, 연구도 속속 진행되고 있다.
국제전기통신연합(ITU)이 정의하는 5세대(5G) 이동통신은 최대 20Gbps의 데이터 전송 속도와 어디에서든 최소 100Mbps 이상의 체감 전송 속도를 제공하는 것을 말한다. 정식 명칭은 ‘IMT-2020’이며 세계적으로 2020년에 상용화하는 것을 목표로 하고 있다.
ITU에서는 3대 사용 시나리오, 예컨대 eMBB(enhanced Mobile BroadBand) mMTC(massive Machine Type Communication) 및 URLLC(Ultra Reliable and Low Latency Communications)를 제시하고 있다.
먼저, URLLC는 높은 신뢰성과 낮은 지연시간을 요구하는 사용 시나리에 관한 것이다. 예를 들면 자동주행, 공장자동화, 증강현실과 같은 서비스는 높은 신뢰성과 낮은 지연시간(예컨대, 1ms 이하의 지연시간)을 요구한다. 현재 4G (LTE) 의 지연시간은 통계적으로 21-43ms (best 10%), 33-75ms (median) 이다. 이는 1ms 이하의 지연시간을 요구하는 서비스를 지원하기에 부족하다. 그러므로, URLLC 사용 시나리오를 지원하기 위해서는, 10-5 이하의 PER(packet error rate) 와 1ms 의 지연시간을 요구한다. 여기서 지연시간은 UE의 MAC 계층과 네트워크의 MAC 계층 사이의 지연시간으로 정의된다. 현재 3GPP 표준 그룹에서는 URLLC 지원을 위해 지연시간을 줄이는 방향과 신뢰성을 높이는 방향, 두가지 방향으로 표준화를 진행하고 있다. 먼저 지연시간을 줄이는 방법으로는 TTI(transmission time interval) 를 1ms 이하로 정의하여 무선 프레임 구조를 재정의, L2 계층에서 HARQ 기법을 조정, 최초 접속 절차 및 스케줄링을 개선하는 방향으로 검토하고 있다. 신뢰성을 높이는 방법으로는 다중 연결 (multiple connectivity), 주파수/공간 차원에서 멀티-링크 다이버시티(multi-link diversity), 상위계층에서 데이터 중복 기법 등이 고려되고 있다.
다음으로, eMBB 사용 시나리오는 이동 초광대역을 요구하는 사용 시나리오에 관한 것이다.
높은 데이터 전송률을 달성하기 위해, 5G 이동통신 시스템에서는 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO), 전차원 다중입출력(Full Dimensional MIMO: FD-MIMO), 어레이 안테나(array antenna), 아날로그 빔형성(analog beamforming) 및 대규모 안테나 (large scale antenna) 기술들이 논의되고 있다. 또한 많은 수의 단말들의 서비스를 가능하게 하기 위한 비직교 다중접속(Non-orthogonal multiple access: NOMA) 기술에 대한 논의가 이루어지고 있다. 상기 NOMA는 기존의 OFDMA 방식이 사용자별로 시간과 주파수를 분할하여 사용자들에게 직교적으로 자원을 할당하는 개념이었던 반면, 동일한 자원을 다수의 사용자들이 사용할 수 있도록 하여 대역 효율성을 증대하고자 하는 것이다.
차세대 이동통신 시스템에서는 서빙셀이 각각의 단말에게 상향링크 전송 및 하향링크 수신에 사용할 주파수 대역인 BWP(bandwidth part)를 설정할 수 있다. 서빙셀이 전송하는 SSB(synchronization signal block)의 주파수 대역은 BWP와 독립적으로 설정될 수 있으며, 이에 따라 SSB의 주파수 대역은 BWP에 포함되지 않을 수도 있다.
한편, 단말은 네트워크로부터 최적의 이동성(mobility)을 제공받기 위해 서빙셀 및 이웃셀에 대한 품질을 지속적으로 측정할 수 있다. 단말은 SSB에 기초하여 측정을 수행할 수도 있는데, SSB의 주파수 대역은 BWP에 포함되지 않는 경우에 측정된 RSRQ가 실제 단말이 동작하는 BWP의 간섭 및 채널 특성을 제대로 반영하지 못할 수 있다. 즉, SSB가 BWP에 포함되지 않는 경우, 서빙셀 및 이웃셀에 대한 측정의 정확도가 낮아지는 문제가 발생할 수 있다. 구체적으로, 부정확한 RSRQ가 보고됨에 따라, 부정확한 핸드오버(handover) 동작이 발생하는 등 단말의 이동성에 문제가 발생할 수 있다.
다른 한편, 차세대 이동통신 시스템에서는 기지국과 단말이 아날로그 빔포밍(analog beamforming)을 수행하는 것을 고려하고 있다. 특히, 단말의 수신 안테나는 무지향성(omni-direction)이나 아날로그 빔포밍을 수행하는 2가지 타입으로 구현될 수 있다. 수신 안테나의 타입에 따라 단말의 각 셀에 대한 SINR(signal-power-to-interference-power ratio)가 달라질 수 있으며, 이에 따라 단말의 셀 검출(cell detection) 성능도 달라질 수 있다. 또한, 차세대 이동통신 시스템에서는 기지국이 동기 신호(synchronization signal)를 아날로그 빔포밍을 수행하여 전송하기 때문에, 이로 인해서도 단말의 수신 안테나의 타입에 따라 단말의 셀 검출 및 빔(beam) 검출이 달라질 수 있다. 하지만, 현재까지 수신 안테나의 타입을 고려한 단말의 능력이 정의되지 않았으며, 기지국이 단말의 수신 안테나의 타입에 대한 정보를 얻는 방안도 제시되지 않았다.
따라서, 본 명세서의 개시는 전술한 문제점을 해결하는 것을 목적으로 한다. 즉, 본 명세서의 개시는 차세대 이동통신 시스템에서 단말이 측정을 정확히 수행할 수 있도록 하기 위한 방안을 제시하는 것을 목적으로 한다. 또한, 본 명세서의 개시는 차세대 이동통신 시스템에서 수신 안테나의 타입에 따른 단말의 능력을 정의하고, 수신 안테나의 타입에 따른 단말의 능력을 보고하는 방안을 제시하는 것을 목적으로 한다.
전술한 목적을 달성하기 위하여, 본 명세서의 일 개시는 측정 방법을 제시한다. 상기 측정 방법은 서빙셀(serving cell)로부터 수신되는 SSB(synchronization signal block)에 기초하여 RSRP(reference signal received power) 측정을 수행하는 단계; 상기 SSB의 주파수 대역이 상기 단말에 대해 설정된 BWP(bandwidth part)에 포함되지 않는 경우, 상기 BWP 내에서 수신되는 참조 신호를 이용하여 RSSI(received signal strength indicator) 측정을 수행하는 단계; 및 상기 수행된 RSRP 측정의 결과 및 상기 수행된 RSSI 측정의 결과에 기초하여 RSRQ(reference symbol received quality)를 결정하는 단계를 포함할 수 있다.
상기 RSRP 측정은, 상기 SSB에 포함된 SSS(secondary synchronization signal)를 이용하여 수행될 수 있다.
상기 서빙셀로부터 상기 BWP에 포함되는 RSSI 측정 대상 대역에 대한 정보를 수신하는 단계를 더 포함하고, 상기 RSSI 측정 대상 대역은, 상기 BWP에 포함되는 주파수 대역일 수 있다.
상기 RSSI 측정을 수행하는 단계는, 상기 RSSI 측정 대상 대역 내에서 수신되는 참조 신호를 이용하여 RSSI 측정을 수행하는 단계일 수 있다.
상기 BWP 내에서 수신되는 참조 신호를 이용한 RSSI 측정은, 상기 SSB와 상기 BWP 내의 참조 신호가 QCL(quasi-co-location) 관계 일 때 수행될 수 있다.
상기 측정 방법은, 상기 SSB와 상기 BWP 내의 참조 신호가 QCL(quasi-co-location) 관계임을 나타내는 인디케이션을 수신하는 단계를 더 포함할 수 있다.
상기 SSB의 주파수 대역이 상기 BWP에 포함되는 경우, 상기 SSB 내에서 수신되는 참조 신호를 이용하여 RSSI 측정을 수행하는 단계를 더 포함할 수 있다.
상기 측정 방법은, 상기 결정된 RSRQ를 상기 서빙셀에게 보고하는 단계를 더 포함할 수 있다.
상기 측정 방법은, 상기 서빙셀에게 안테나와 관련된 능력(capablility)에 대한 정보를 보고하는 단계를 더 포함할 수 있다.
상기 안테나 능력에 대한 정보는, 수신 안테나가 아날로그 빔포밍을 지원하는지 여부에 대한 정보를 포함할 수 있다.
전술한 목적을 달성하기 위하여, 본 명세서의 일 개시는 측정을 수행하는 단말을 제공한다. 상기 단말은 송수신부; 상기 송수신부를 제어하는 프로세서를 포함하고, 상기 프로세서는, 상기 송수신부를 통해 서빙셀(serving cell)로부터 수신되는 SSB(synchronization signal block)에 기초하여 RSRP(reference signal received power) 측정을 수행하고, 상기 SSB의 주파수 대역이 상기 단말에 대해 설정된 BWP(bandwidth part)에 포함되지 않는 경우, 상기 BWP 내에서 수신되는 참조 신호를 이용하여 RSSI(received signal strength indicator) 측정을 수행하고, 상기 수행된 RSRP 측정의 결과 및 상기 수행된 RSSI 측정의 결과에 기초하여 RSRQ(reference symbol received quality)를 결정할 수 있다.
상기 프로세서는, 상기 송수신부를 제어하여 서빙셀로부터 RSSI 측정 대상 대역에 대한 정보를 수신하고, 상기 수신된 정보에 기초하여 상기 RSSI 측정 대상 대역 내에서 수신되는 참조 신호를 이용하여 RSSI 측정을 수행하고, 상기 RSSI 측정 대상 대역은, 상기 BWP에 포함되는 주파수 대역일 수 있다.
상기 프로세서는, 상기 송수신부를 제어하여, 상기 서빙셀에게 안테나와 관련된 능력(capability)에 대한 정보를 보고할 수 있다.
상기 안테나와 관련된 능력에 대한 정보는, 수신 안테나가 아날로그 빔포밍을 지원하는지 여부에 대한 정보를 포함할 수 있다.
본 명세서의 개시에 따르면 종래 기술의 문제점이 해결될 수 있다.
도 1은 무선 통신 시스템이다.
도 2는 3GPP LTE에서 FDD에 따른 무선 프레임(radio frame)의 구조를 나타낸다.
도 3은 3GPP LTE에서의 측정 및 측정 보고 절차를 나타낸다.
도 4는 NR에서의 서브프레임 유형의 예를 도시한다.
도 5는 NR에서 동기 신호(SS)의 빔 스위핑의 예를 나타낸 예시도이다.
도 6은 SS 버스트를 고려한 측정 및 측정 보고 절차를 나타낸다.
도 7은 NR에서 단말에 대해 설정되는 BWP의 예를 나타낸다.
도 8은 SSB가 BWP에 포함된 경우에 단말이 RSRQ를 측정하는 예를 나타낸다.
도 9는 SSB가 BWP에 포함되지 않은 경우에 단말이 RSRQ를 측정하는 제1예를 나타낸다.
도 10은 SSB가 BWP에 포함되지 않은 경우에 단말이 RSRQ를 측정하는 제2예를 나타낸다.
도 11은 RSRQ 측정 절차를 간략하게 정리하여 나타낸 흐름도이다.
도 12a는 30GHz에서 수신 안테나가 무지향성 안테나인 경우의 단말이 검출하는 셀 및 빔의 수에 대한 CDF를 시뮬레이션한 결과이다.
도 12b는 30GHz에서 수신 안테나가 아날로그 빔포밍 안테나인 경우의 단말이 검출하는 셀 및 빔의 수에 대한 CDF를 시뮬레이션한 결과이다.
도 13a는 4GHz에서 수신 안테나가 무지향성 안테나인 경우의 단말이 검출하는 셀 및 빔의 수에 대한 CDF를 시뮬레이션한 결과이다.
도 13b는 4GHz에서 수신 안테나가 아날로그 빔포밍 안테나인 경우의 단말이 검출하는 셀 및 빔의 수에 대한 CDF를 시뮬레이션한 결과이다.
도 14는 기지국이 전송하는 빔의 수 및 단말의 수신 안테나 타입에 따라 단말이 검출하는 셀의 수, 빔의 수 및 셀의 수와 빔의 수의 비율을 시뮬레이션한 결과이다.
도 15은 본 명세서의 개시가 구현되는 무선통신 시스템을 나타낸 블록도이다.
본 명세서에서 사용되는 기술적 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아님을 유의해야 한다. 또한, 본 명세서에서 사용되는 기술적 용어는 본 명세서에서 특별히 다른 의미로 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 의미로 해석되어야 하며, 과도하게 포괄적인 의미로 해석되거나, 과도하게 축소된 의미로 해석되지 않아야 한다. 또한, 본 명세서에서 사용되는 기술적인 용어가 본 발명의 사상을 정확하게 표현하지 못하는 잘못된 기술적 용어일 때에는, 당업자가 올바르게 이해할 수 있는 기술적 용어로 대체되어 이해되어야 할 것이다. 또한, 본 발명에서 사용되는 일반적인 용어는 사전에 정의되어 있는 바에 따라, 또는 전후 문맥상에 따라 해석되어야 하며, 과도하게 축소된 의미로 해석되지 않아야 한다.
또한, 본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "구성된다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 여러 구성 요소들, 또는 여러 단계들을 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다.
또한, 본 명세서에서 사용되는 제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성 요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성 요소도 제1 구성 요소로 명명될 수 있다.
어떤 구성 요소가 다른 구성 요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성 요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성 요소가 존재할 수도 있다. 반면에, 어떤 구성 요소가 다른 구성 요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성 요소가 존재하지 않는 것으로 이해되어야 할 것이다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 또한, 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 발명의 사상을 쉽게 이해할 수 있도록 하기 위한 것일뿐, 첨부된 도면에 의해 본 발명의 사상이 제한되는 것으로 해석되어서는 아니됨을 유의해야 한다. 본 발명의 사상은 첨부된 도면외에 모든 변경, 균등물 내지 대체물에 까지도 확장되는 것으로 해석되어야 한다.
이하에서 사용되는 용어인 기지국은, 일반적으로 무선기기와 통신하는 고정된 지점(fixed station)을 말하며, eNodeB(evolved-NodeB), eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point), gNB(next Generation Node B) 등 다른 용어로 불릴 수 있다.
그리고 이하, 사용되는 용어인 UE(User Equipment)는, 고정되거나 이동성을 가질 수 있으며, 기기(Device), 무선기기(Wireless Device), 단말(Terminal), MS(mobile station), UT(user terminal), SS(subscriber station), MT(mobile terminal) 등 다른 용어로 불릴 수 있다.
용어의 정의
이하 도면을 참조하여 설명하기 앞서, 본 발명의 이해를 돕고자, 본 명세서에서 사용되는 용어를 간략하게 정의하기로 한다.
UMTS: Universal Mobile Telecommunication System의 약자로서 3세대 이동통신 네트워크를 의미한다.
UE/MS: User Equipment/Mobile Station, 단말 장치를 의미 함.
EPS: Evolved Packet System의 약자로서, LTE(Long Term Evolution) 네트워크를 지원하는 코어 네트워크를 의미한다. UMTS가 진화된 형태의 네트워크
PDN(Public Data Network): 서비스를 제공하는 서버가 위치한 독립적인 망
PDN connection: 단말에서 PDN으로의 연결, 즉, ip 주소로 표현되는 단말과 APN으로 표현되는 PDN과의 연관(연결)
PDN-GW(Packet Data Network Gateway): UE IP address allocation, Packet screening & filtering, Charging data collection 기능을 수행하는 EPS망의 네트워크 노드
Serving GW(Serving Gateway): 이동성 담당(Mobility anchor), 패킷 라우팅(Packet routing), 유휴 모드 패킷 버퍼링(Idle 모드 packet buffering), Triggering MME to page UE 기능을 수행하는 EPS망의 네트워크 노드
PCRF(정책 and Charging Rule Function): 서비스 flow 별로 차별화된 QoS 및 과금 정책을 동적(dynamic)으로 적용하기 위한 정책 결정(정책 decision)을 수행하는 EPS망의 노드
APN(Access Point Name): 네트워크에서 관리하는 접속 포인트의 이름으로서 UE에게 제공된다. 즉, PDN을 지칭하거나 구분하는 문자열. 요청한 서비스나 망(PDN)에 접속하기 위해서는 해당 P-GW를 거치게 되는데, 이 P-GW를 찾을 수 있도록 망 내에서 미리 정의한 이름(문자열)(예) internet.mnc012.mcc345.gprs
TEID(Tunnel Endpoint Identifier): 네트워크 내 노드들 간에 설정된 터널의 End point ID, 각 UE의 bearer 단위로 구간별로 설정된다.
NodeB: UMTS 네트워크의 기지국으로 옥외에 설치되며, 셀 커버리지 규모는 매크로 셀에 해당한다.
eNodeB: EPS(Evolved Packet System) 의 기지국으로 옥외에 설치되며, 셀 커버리지 규모는 매크로 셀에 해당한다.
(e)NodeB: NodeB와 eNodeB를 지칭하는 용어이다.
MME: Mobility Management Entity의 약자로서, UE에 대한 세션과 이동성을 제공하기 위해 EPS 내에서 각 엔티티를 제어하는 역할을 한다.
세션(Session): 세션은 데이터 전송을 위한 통로로써 그 단위는 PDN, Bearer, IP flow 단위 등이 될 수 있다. 각 단위의 차이는 3GPP에서 정의한 것처럼 대상 네트워크 전체 단위(APN 또는 PDN 단위), 그 내에서 QoS로 구분하는 단위(Bearer 단위), 목적지 IP 주소 단위로 구분할 수 있다.
PDN 연결(connection): 단말에서 PDN으로의 연결, 즉, ip 주소로 표현되는 단말과 APN으로 표현되는 PDN과의 연관(연결)을 나타낸다. 이는 세션이 형성될 수 있도록 코어 네트워크 내의 엔티티간 연결(단말-PDN GW)을 의미한다.
UE Context: 네크워크에서 UE를 관리하기 위해 사용되는 UE의 상황 정보, 즉, UE id, 이동성(현재 위치 등), 세션의 속성(QoS, 우선순위 등)으로 구성된 상황 정보
OMA DM(Open Mobile Alliance Device Management): 핸드폰, PDA, 휴대용 컴퓨터 등과 같은 모바일 디바이스들 관리를 위해 디자인 된 프로토콜로써, 디바이스 설정(설정), 펌웨어 업그레이드(firmware upgrade), 에러 보고(Error Report)등의 기능을 수행함
OAM(Operation Administration and Maintenance): OAM이란 네트워크 결함 표시, 성능정보, 그리고 데이터와 진단 기능을 제공하는 네트워크 관리 기능군을 말함
NAS 설정 MO(Management Object): NAS 기능(Functionality)와 연관된 파라미터들(parameters)을 UE에게 설정(설정)하는 데 사용하는 MO(Management object)를 말함
NAS(Non-Access-Stratum): UE와 MME간의 제어 플레인(control plane)의 상위 stratum. UE와 네트워크간의 이동성 관리(Mobility management)와 세션 관리(Session management), IP 주소 관리(IP address maintenance) 등을 지원
MM(Mobility Management) 동작/절차: UE의 이동성(mobility) 제어/관리/control을 위한 동작 또는 절차. MM 동작/절차는 CS 망에서의 MM 동작/절차, GPRS 망에서의 GMM 동작/절차, EPS 망에서의 EMM 동작/절차 중 하나 이상을 포함하는 것으로 해석될 수 있다. UE와 네트워크 노드(MME, SGSN, MSC)는 MM 동작/절차를 수행하기 위해 MM 메시지를 주고 받는다.
SM(Session Management) 동작/절차: UE의 user plane 및/또는 bearer context/PDP context를 제어/관리/처리/handling 하기 위한 동작 또는 절차. SM 동작/절차는 GPRS 망에서의 SM 동작/절차, EPS 망에서의 ESM 동작/절차 중 하나 이상을 포함하는 것으로 해석될 수 있다. UE와 네트워크 노드(MME, SGSN)는 SM 동작/절차를 수행하기 위해 SM 메시지를 주고 받는다.
저 순위(Low priority) 단말: NAS 신호 저 순위로 설정된 단말. 자세한 사항은 표준문서 3GPP TS 24.301 및 TS 24.008을 참고할 수 있다.
정상 순위(Normal priority) 단말: 저 순위(Low priority)로 설정되지 않은 일반적인 단말
이중 순위(Dual priority) 단말: 이중 순위(Dual priority)로 설정된 단말, 이는 NAS 신호 저 순위로 설정됨과 동시에 상기 설정된 NAS 신호 저 순위를 무시(override) 할 수 있게 설정된 단말(즉, UE which provides dual priority support is 설정 for NAS signalling low priority and also 설정 to override the NAS signalling low priority indicator). 자세한 사항은 표준문서 3GPP TS 24.301 및 TS 24.008을 참고할 수 있다.
PLMN: 공중 육상 통신 망(Public Land Mobile Network)의 약어로서, 사업자의 네트워크 식별번호를 의미한다. UE의 로밍 상황에서 PLMN은 Home PLMN(HPLMN)과 Visited PLMN(VPLMN)으로 구분된다.
도 1은 무선 통신 시스템이다.
도 1을 참조하여 알 수 있는 바와 같이, 무선 통신 시스템은 적어도 하나의 기지국(base station: BS)(20)을 포함한다. 각 기지국(20)은 특정한 지리적 영역(일반적으로 셀이라고 함)(20a, 20b, 20c)에 대해 통신 서비스를 제공한다. 셀은 다시 다수의 영역(섹터라고 함)으로 나누어질 수 있다.
UE은 통상적으로 하나의 셀에 속하는데, UE이 속한 셀을 서빙셀(serving cell)이라 한다. 서빙셀에 대해 통신 서비스를 제공하는 기지국을 서빙 기지국(serving BS)이라 한다. 무선 통신 시스템은 셀룰러 시스템(cellular system)이므로, 서빙셀에 인접하는 다른 셀이 존재한다. 서빙셀에 인접하는 다른 셀을 인접 셀(neighbor cell)이라 한다. 인접 셀에 대해 통신 서비스를 제공하는 기지국을 인접 기지국(neighbor BS)이라 한다. 서빙셀 및 인접 셀은 UE을 기준으로 상대적으로 결정된다.
이하에서, 하향링크는 기지국(20)에서 UE(10)로의 통신을 의미하며, 상향링크는 UE(10)에서 기지국(20)으로의 통신을 의미한다. 하향링크에서 송신기는 기지국(20)의 일부분이고, 수신기는 UE(10)의 일부분일 수 있다. 상향링크에서 송신기는 UE(10)의 일부분이고, 수신기는 기지국(20)의 일부분일 수 있다.
이하에서는, LTE 시스템에 대해서 보다 상세하게 알아보기로 한다.
도 2는 3GPP LTE에서 FDD에 따른 무선 프레임(radio frame)의 구조를 나타낸다.
도 2를 참조하면, 무선 프레임은 10개의 서브프레임(subframe)을 포함하고, 하나의 서브프레임은 2개의 슬롯(slot)을 포함한다. 무선 프레임 내 슬롯은 0부터 19까지 슬롯 번호가 매겨진다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 전송시간구간(Transmission Time interval: TTI)라 한다. TTI는 데이터 전송을 위한 스케줄링 단위라 할 수 있다. 예를 들어, 하나의 무선 프레임의 길이는 10ms이고, 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다.
무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수 등은 다양하게 변경될 수 있다.
한편, 하나의 슬롯은 복수의 OFDM(orthogonal frequency division multiplexing) 심볼을 포함할 수 있다. 하나의 슬롯에 몇개의 OFDM 심볼이 포함되는지는 순환전치(cyclic prefix: CP)에 따라 달라질 수 있다.
하나의 슬롯은 주파수 영역(frequency domain)에서 NRB 개의 자원블록(RB)을 포함한다. 예를 들어, LTE 시스템에서 자원블록(RB)의 개수, 즉 NRB은 6 내지 110 중 어느 하나일 수 있다.
자원블록(resource block: RB)은 자원 할당 단위로, 하나의 슬롯에서 복수의 부반송파를 포함한다. 예를 들어, 하나의 슬롯이 시간 영역에서 7개의 OFDM 심벌을 포함하고, 자원블록은 주파수 영역에서 12개의 부반송파를 포함한다면, 하나의 자원블록은 7Х12개의 자원요소(resource element: RE)를 포함할 수 있다.
<측정 및 측정 보고>
이동 통신 시스템에서 UE(100)의 이동성(mobility) 지원은 필수적이다. 따라서, UE(100)은 현재 서비스를 제공하는 서빙셀(serving cell)에 대한 품질 및 이웃셀에 대한 품질을 지속적으로 측정한다. UE(100)은 측정 결과를 적절한 시간에 네트워크에게 보고하고, 네트워크는 핸드오버 등을 통해 UE에게 최적의 이동성을 제공한다. 흔히 이러한 목적의 측정을 무선 자원 관리 측정(radio resource management: RRM)라고 일컫는다.
한편, UE(100)는 CRS에 기반하여 프라이머리 셀(Pcell)의 하향링크 품질을 모니터링 한다. 이를 RLM(Radio Link Monitoring)이라고 한다.
도 3은 측정 및 측정 보고 절차를 나타낸다.
도 3을 참조하여 알 수 있는 바와 같이, UE는 이웃 셀로부터 전송되는 동기 신호(Synchronization Signal: SS)에 기초하여 이웃 셀을 검출한다. 상기 SS는 PSS(Primary Synchronization Signal)와 SSS(Secondary Synchronization Signal)을 포함할 수 있다.
그리고, UE(100)로 서빙셀(200a) 및 이웃셀(200b)이 각기 CRS(Cell-specific Reference Signal)를 전송하면, 상기 UE(100)은 상기 CRS를 통하여, 측정을 수행하고, 그 측정 결과를 서빙셀 (200a)로 전송한다. 이때, UE(100)은 수신된 기준 신호 전력(reference signal power)에 대한 정보에 기초하여, 상기 수신되는 CRS의 파워를 비교한다.
이때, UE(100)은 다음 3가지 방법으로 측정을 수행할 수 있다.
1) RSRP(reference signal received power): 전 대역에 걸쳐 전송되는 CRS를 운반하는 모든 RE의 평균 수신 전력을 나타낸다. 이때 CRS 대신 CSI(Channel State Information)-RS(Reference Signal)를 운반하는 모든 RE의 평균 수신 전력을 측정할 수도 있다.
2) RSSI(received signal strength indicator): 전체 대역에서 측정된 수신 전력을 나타낸다. RSSI는 신호, 간섭(interference), 열 잡음(thermal noise)을 모두 포함한다.
3) RSRQ(reference symbol received quality): CQI를 나타내며, 측정 대역폭(bandwidth) 또는 서브밴드에 따른 RSRP/RSSI로 결정될 수 있다. 즉, RSRQ는 신호 대 잡음 간섭 비(SINR; signal-to-noise interference ratio)를 의미한다. RSRP는 충분한 이동성(mobility) 정보를 제공하지 못하므로, 핸드오버 또는 셀 재선택(cell reselection) 과정에서는 RSRP 대신 RSRQ가 대신 사용될 수 있다.
RSRQ = RSSI/RSSP로 산출될 수 있다.
한편, UE(100)는 상기 측정을 위해 상기 서빙셀(100a)로부터 측정 설정(measurement configuration) 정보 엘리먼트(IE: Information Element)를 수신한다. 측정 설정 정보 엘리먼트(IE)를 포함하는 메시지를 측정 설정 메시지라 한다. 여기서 상기 측정 설정 정보 엘리먼트(IE)는 RRC 연결 재설정 메시지를 통해서 수신될 수도 있다. UE은 측정 결과가 측정 설정 정보 내의 보고 조건을 만족하면, 측정 결과를 기지국에게 보고한다. 측정 결과를 포함하는 메시지를 측정 보고 메시지라 한다.
상기 측정 설정 IE는 측정 오브젝트(Measurement object) 정보를 포함할 수 있다. 상기 측정 오브젝트 정보는 UE가 측정을 수행할 오브젝트에 관한 정보이다. 측정 오브젝트는 셀내 측정의 대상인 intra-frequency 측정 대상, 셀간 측정의 대상인 상이한-주파수(inter-frequency) 측정 대상, 및 inter-RAT 측정의 대상인 inter-RAT 측정 대상 중 적어도 어느 하나를 포함한다. 예를 들어, 인접-주파수(intra-frequency) 측정 대상은 서빙셀과 동일한 주파수 밴드를 갖는 주변 셀을 지시하고, 상이한-주파수(inter-frequency) 측정 대상은 서빙셀과 다른 주파수 밴드를 갖는 주변 셀을 지시하고, inter-RAT 측정 대상은 서빙셀의 RAT와 다른 RAT의 주변 셀을 지시할 수 있다.
한편, UE(100)는 도시된 바와 같이 무선 자원 설정(Radio Resource Configuration) 정보 엘리먼트(IE)도 수신한다.
상기 무선 자원 설정(Radio Resource Configuration Dedicated) 정보 엘리먼트(IE: Information Element)는 무선 베어러(Radio Bearer)를 설정/수정/해제하거나, MAC 구성을 수정하는 등을 위해서 사용된다. 상기 무선 자원 설정 IE는 서브프레임 패턴 정보를 포함한다. 상기 서브프레임 패턴 정보는 1차 셀(즉, Primary Cell: PCell)에 대한 RSRP, RSRQ를 측정하는 데에 대한 시간 도메인 상의 측정 자원 제한 패턴에 대한 정보이다.
<차세대 이동통신 네트워크>
4G LTE / IMT(international mobile telecommunications) 표준에 기반한 이동통신의 상용화 성공에 힘입어, 차세대 이동통신(5세대 이동통신)에 대한 연구가 진행중이다. 5세대 이동통신 시스템은 현재의 4G LTE보다 높은 용량을 목표로 하며, 모바일 광대역 사용자의 밀도를 높이고, D2D(Device to Device), 높은 안정성 및 MTC(Machine type communication)을 지원할 수 있다. 5G 연구 개발은 또한 사물의 인터넷을 보다 잘 구현하기 위해 4G 이동 통신 시스템 보다 낮은 대기 시간과 낮은 배터리 소모를 목표로 한다. 이러한 5G 이동 통신을 위해서 새로운 무선 액세스 기술(new radio access technology: New RAT 또는 NR)이 제시될 수 있다.
상기 NR에서, 기지국으로부터의 수신은 다운 링크 서브프레임을 이용하고, 기지국으로의 송신은 업 링크 서브 프레임을 이용하는 것이 고려 될 수 있다. 이 방식은 쌍으로 된 스펙트럼 및 쌍을 이루지 않은 스펙트럼에 적용될 수 있다. 한 쌍의 스펙트럼은 다운 링크 및 업 링크 동작을 위해 두 개의 반송파 스펙트럼을 포함된다는 것을 의미한다. 예를 들어, 한 쌍 스펙트럼에서, 하나의 반송파는 서로 쌍을 이루는 하향링크 대역 및 상향링크 대역을 포함 할 수 있다.
도 4는 NR에서의 서브프레임 유형의 예를 도시한다.
도 4에 도시된 TTI(transmission time interval)는 NR(또는 new RAT)을 위한 서브프레임 또는 슬롯으로 불릴 수 있다. 도 4의 서브프레임(또는 슬롯)은, 데이터 전송 지연을 최소화하기 위해 NR(또는 new RAT)의 TDD 시스템에서 사용될 수 있다. 도 4에 도시 된 바와 같이, 서브프레임(또는 슬롯)은 현재의 서브 프레임과 마찬가지로, 14 개의 심볼을 포함한다.
서브프레임(또는 슬롯)의 앞부분 심볼은 DL 제어 채널을 위해서 사용될 수 있고, 서브프레임(또는 슬롯)의 뒷부분 심볼은 UL 제어 채널을 위해서 사용될 수 있다. 나머지 심볼들은 DL 데이터 전송 또는 UL 데이터 전송을 위해 사용될 수 있다. 이러한 서브프레임(또는 슬롯) 구조에 따르면, 하향 링크 전송과 상향 링크 전송은 하나의 서브프레임(또는 슬롯)에서 순차적으로 진행될 수 있다. 따라서, 서브프레임(또는 슬롯) 내에서 하향 링크 데이터가 수신될 수 있고, 그 서브프레임(또는 슬롯) 내에서 상향 링크 확인 응답(ACK / NACK)이 전송될 수도 있다.
이러한 서브프레임(또는 슬롯)의 구조를 자체-포함(self-contained)된 서브프레임(또는 슬롯)이라고 할 수 있다. 이러한 서브프레임(또는 슬롯)의 구조를 사용하면, 수신 오류난 데이터를 재전송하는 데 걸리는 시간이 줄어들어 최종 데이터 전송 대기 시간이 최소화될 수 있는 장점이 있다. 이와 같은 자체-포함(self-contained)된 서브프레임(또는 슬롯) 구조에서, 송신 모드에서 수신 모드로 또는 수신 모드에서 송신 모드로의 전이 과정에 시간 차(time gap)가 필요할 수 있다. 이를 위해, 서브 프레임 구조에서 DL에서 UL로 전환 할 때의 일부 OFDM 심볼은 보호 구간(Guard Period: GP)으로 설정 될 수 있다.
도 5는 NR에서 동기 신호(SS)의 빔 스위핑의 예를 나타낸 예시도이다 .
기존 LTE-A 시스템에서는 단말이 상이한-주파수(inter-frequency)/상이한 RAT(inter-radio access technology)으로 동작하는 이웃 셀에 대해 측정을 할 수 있도록, 서빙 기지국은 측정 갭(measurement gap)을 단말에게 설정하여 주었다. 따라서, 단말은 서빙 기지국에 의해 설정된 측정 갭의 구간 내에 RF 재조정(retuning)을 한 후 셀 검출과 RSRP 측정을 수행하였다. 한편, 인접 주파수(intra-frequency) 상의 셀들에 대해서는 단말은 RF 재조정 없이 측정을 수행할 수 있기 때문에, 측정 갭(measurement gap)은 설정되지 않는다.
하지만 NR 시스템에서는, 단말이 설사 인접 주파수(intra-frequency) 상의 셀들에 대해서는 RF 재조정 없이 측정을 수행할 수 있을 지라도, 신호 전송에 있어 빔포밍이 적용하기 때문에, 빔포밍 방향에 대한 빔 스위핑(beam sweeping)이 필요하다.
한편, NR에서는 SS에 대해서 빔 스위핑(beam sweeping)이 수행된다. 도 5를 참조하면, SS 버스트는 미리 정해진 주기(periodicity) 마다 전송된다. 이때, 기지국은 SS 버스트 내의 각 SS 블록을 시간에 따라 빔 스위핑을 하면서 전송하게 된다. 따라서, 단말은 빔 스위핑을 수행하면서 SS 블록을 수신하고, 셀 검출 및 측정을 수행한다.
NR에서 인접-주파수(intra-frequency) 및 상이한-주파수(inter-frequency)의 정의는 아래와 같다.
(1) SS(Synchronization Signal)이 전송되는 블록(SSB이라고 함) 기반 RRM 측정 관점
1) SSB 기반 RRM 측정 관점에서 인접 주파수(intra-frequency)
ㆍ 서빙셀의 SSB의 중심 주파수와 이웃 셀의 SSB의 중심 주파수가 동일한 경우에, 서로 인접 주파수 관계라고 할 수 있다.
ㆍ서빙셀의 SSB와 이웃셀의 SSB에 대한 부반송파 간격이 서로 동일한 경우, 서로 인접 주파수 관계라고 할 수 있다.
2) SSB 기반 RRM 측정 관점에서 상이한-주파수(inter-frequency)
ㆍ 서빙셀의 SSB의 중심 주파수와 이웃 셀의 SSB의 중심 주파수가 서로 다른 경우에, 서로 상이한 주파수 관계라고 할 수 있다.
ㆍ서빙셀의 SSB와 이웃셀의 SSB에 대한 부반송파 간격이 서로 상이한 경우, 서로 상이한 주파수 관계라고 할 수 있다.
(2) CSI-RS 기반 RRM 측정 관점
1) CSI-RS 기반 RRM 측정 관점에서 인접 주파수(intra-frequency)
ㆍ 이웃 셀에 대한 측정을 위해 설정된 CSI-RS 자원의 대역폭이 섯빙 셀에 대한 측정을 위해 설정된 CSI-RS 자원의 대역폭 내에 존재한다면, 서로 인접 주파수 관계라고 할 수 있다.
ㆍ서빙셀의 CSI-RS와 이웃셀의 CSI-RS에 대한 부반송파 간격이 서로 동일한 경우, 서로 인접 주파수 관계라고 할 수 있다.
2) CSI-RS 기반 RRM 측정 관점에서 상이한-주파수(inter-frequency)
ㆍ 이웃 셀에 대한 측정을 위해 설정된 CSI-RS 자원의 대역폭이 서빙셀에 대한 측정을 위해 설정된 CSI-RS 자원의 대역폭 내에 존재하지 않는 다면, 서로 상이한 주파수 관계라고 할 수 있다.
ㆍ서빙셀의 CSI-RS와 이웃셀의 CSI-RS에 대한 부반송파 간격이 서로 다른 경우, 서로 상이한 주파수 관계라고 할 수 있다.
측정 카테고리는 아래와 같이 3가지로 구분한다.
ㆍRF 재조정이 필요없는 인접 주파수(Intra-frequency) 측정
ㆍRF 재조정이 필요한 인접 주파수(Intra-frequency) 측정
ㆍRF 재조정이 필요한 상이한-주파수(inter-frequency) 측정
인접 주파수(Intra-frequency) 상의 셀에 대한 셀 검출 및 측정
NR에서는 단말이 초기 액세스를 수행하는데 필요한 정보, 즉 MIB를 포함하는 PBCH(Physical Broadcast Channel)와 동기 신호(SS)(PSS 및 SSS를 포함)를 SS 블록으로 정의한다. 그리고, 복수 개의 SS 블록을 묶어서 SS 버스트라 정의하고, 다시 복수 개수의 SS 버스트(burst)를 묶어서 SS 버스트 세트라고 정의할 수 있다. 각 SS 블록은 특정 방향으로 빔포밍되어 있는 것을 가정하고 있고, SS 버스트 세트내에 있는 여러 SS 블록은 각각 다른 방향에 존재하는 단말을 지원하기 위해서 설계되고 있다.
한편, NR에서는 SS에 대해서 빔 스위핑(beam sweeping)이 수행된다. 도 5를 참조하면, SS 버스트는 미리 정해진 주기(periodicity) 마다 전송된다. 이때, 기지국은 SS 버스트 내의 각 SS 블록을 시간에 따라 빔 스위핑을 하면서 전송하게 된다. 따라서, 단말은 빔 스위핑을 수행하면서 SS 블록을 수신하고, 셀 검출 및 측정을 수행한다.
SS의 대역폭과 주기성은 아래와 같은 후보 값들 중에서 설정된다.
(a) NR SS 대역폭
- 주파수 범위 카테고리 #1(6 GHz 이하)에 대해서, 반송파 간격의 후보가 [15 kHz, 30 kHz, 60 kHz] 중 하나 일 경우,
ㆍ NR 반송파의 최소 대역폭의 후보는 [5 kHz, 10 kHz, 20 kHz]이고,
ㆍ각 동기 신호에 대한 전송 대역의 후보는 [1.08 MHz, 2.16 MHz, 4.32 MHz, 8.64 MHz]이다.
- 주파수 범위 카테고리 #2(6 GHz 이상)에 대해서, 반송파 간격의 후보가 [120 kHz, 240 kHz] 중 하나 일 경우,
ㆍ NR 반송파의 최소 대역폭의 후보는 [20 MHz, 40 MHz, 80 MHz]이고,
ㆍ 각 동기 신호에 대한 전송 대역의 후보는 [8.64 MHz, 17.28 MHz, 34.56 MHz, 69.12 MHz]이다.
(b) SS의 주기
- 주파수 범위 카테고리 #1(6 GHz 이하)에 대해서, SS의 주기는 [5ms, 10ms, 20ms, 40ms, 80ms, 100ms]이다.
- 주파수 범위 카테고리 #2(6 GHz 이상)에 대해서, SS의 주기는 [5ms, 10ms, 20ms, 40ms, 80ms, 100ms]이다.
도 6은 SS 버스트를 고려한 측정 및 측정 보고 절차를 나타낸다.
도 6을 참조하여 알 수 있는 바와 같이, 단말은 서빙셀로부터 측정 설정 정보를 수신할 수 있다. 상기 측정 설정 정보는 제1 측정 갭, 예컨대 인트라 빔 측정 갭에 대한 정보를 포함할 수 있다. 또한, 상기 측정 설정 정보는 제2 측정 갭, 예컨대 인트라 RSRP 측정 갭에 대한 정보를 포함할 수 있다.
상기 단말은 하나 이상의 이웃 셀로부터의 SS 버스트를 수신하여, 셀 검출을 할 수 있다.
그리고, 상기 단말은 상기 정보에 의해 지시된 제1 측정 갭(예컨대, 인트라 빔 측정 갭) 동안에 하나 이상의 이웃 셀로부터 수신되는 SS 버스트에 기초하여 측정을 수행할 수 있다.
아울러, 도시되지는 않았으나, 상기 단말은 상기 제2 측정 갭 동안에 상기 하나 이상의 이웃 셀들로부터의 참조 신호(RS)에 기초하여 RSRP 측정을 수행할 수 있다.
그리고, 상기 단말은 측정 보고를 수행할 수 있다.
도 7은 NR에서 단말에 대해 설정되는 BWP의 예를 나타낸다.
NR에서는 최대 400MHz에 달하는 광대역 주파수가 사용될 수 있다. 다양한 단말들이 주파수 자원을 효율적을 분배하여 사용할 수 있도록 하기 위해, NR에서는 BWP라는 새로운 개념을 도입하였다.
단말들이 초기 액세스를 수행하며 기지국에게 단말의 능력에 대한 정보를 전송하면, 기지국은 이 정보를 기반으로 단말이 사용할 BWP를 각 단말별로 설정하고 각 단말에게 설정된 BWP에 대한 정보를 전송할 수 있다. 그러면, 각 단말과 기지국 간의 하향링크 및 상향링크 데이터 송수신은 각 단말에 대해 설정된 BWP를 통해서만 수행된다. 즉, 기지국이 단말에게 BWP를 설정하는 것은 이후 단말이 기지국과 무선통신을 수행함에 있어서 BWP 이외의 주파수 대역을 사용하지 말도록 지시하는 것이다.
도 7을 참조하면, NR에서 단말에 대해 설정되는 BWP의 예가 도시된다. 도 7에서 Overall carrier는 기지국이 사용할 수 있는 전체 캐리어 주파수를 나타내며, BWP는 기지국이 단말에 대해 설정한 BWP를 나타낸다.
기지국은 최대 400MHz에 달하는 캐리어 주파수 전 대역을 단말에 대한 BWP로 설정할 수도 있으며, 도 7에 도시된 바와 같이 일부 대역만을 단말에 대한 BWP로 설정할 수도 있다. 또한, 기지국은 하나의 단말에게 여러 개의 BWP를 설정할 수도 있다. 하나의 단말에게 여러 개의 BWP가 설정되는 경우, 각각의 BWP의 주파수 대역은 서로 겹칠 수도 있으며, 그렇지 않을 수도 있다.
<본 명세서의 개시>
I. BWP에 기초한 RSSI 측정 및 RSRQ 측정
NR에서의 단말은 LTE에서의 단말과 마찬가지로, 네트워크로부터 이동성을 제공받기 위해 RSRP, RSRQ, RS-SINR(reference signal SINR) 등의 측정을 수행할 수 있다. 단말은 SSS(secondary synchronization signal) 기반의 측정 및 CSI-RS(channel state information reference signal) 기반의 측정을 수행할 수 있다.
NR에서의 RSRQ 및 RSSI의 정의는 아래와 같다.
- RSRQ
1) SS-RSRQ(Secondary synchronization signal RSRQ): N*(SSB RSRP)/(NR 캐리어 RSSI)로 정의된다. 여기서, N은 RSSI 측정 대역폭에 포함된 NR 캐리어의 RB의 수를 의미하고, 분자와 분모의 측정은 동일한 RB들의 세트를 이용하여 수행된다. (Secondary synchronization signal reference signal received quality (SS-RSRQ) is defined as the ratio NХ(SS block RSRP)/(NR carrier RSSI), where N is the number of RB's of the NR carrier RSSI measurement bandwidth. The measurements in the numerator and denominator are made over the same set of resource blocks.)
2) CSI-RSRQ(CSI reference signal RSRQ): N*(CSI-RSRP)/(CSI-RSSI)로 정의된다. 여기서, N은 CSI-RSSI 측정 대역폭의 RB의 수를 의미하고, 분자와 분모의 측정은 동일한 RB들의 세트를 이용하여 수행된다. (CSI reference signal received quality (CSI-RSRQ) is defined as the ratio (NХCSI-RSRP)/ CSI-RSSI , where N is the number of resource blocks in the CSI-RSSI measurement bandwidth. The measurements in the numerator and denominator are made over the same set of resource blocks.)
- RSSI
1) SS-RSSI(SS received signal strength indicator): 측정 대역폭에서, 모든 소스로부터의 N개의 RB에 걸친 측정 시간 자원의 OFDM 심볼들에서 측정된 전체 수신 전력(공동 채널 서빙셀, 비 서빙셀, 인접 채널 간섭 및 열 잡음 등을 모두 포함)의 선형 평균(Watt 단위)으로 구성된다. 여기서, 측정 시간 자원은 SMTC(SSB-based measurement timing configuration) 내로 제한된다. (SS received signal strength indicator (SS-RSSI), comprises the linear average of the total received power (in [W]) observed in OFDM symbols of measurement time resource(s), in the measurement bandwidth, over N number of resource blocks from all sources, including co-channel serving and non-serving cells, adjacent channel interference, thermal noise etc. Measurement time resource(s) are confined within SMTC(SSB-based measurement timing configuration) window duration(s).)
2) CSI-RSSI(CSI received signal strength indicator): 측정 대역폭에서, 모든 소스로부터의 측정 시간 자원의 OFDM 심볼에서만 측정된, 전체 수신 전력(공동 채널 서빙셀 및 비서빙 셀, 인접 채널 간섭, 열 잡음 등을 모두 포함)의 선형 평균(Watt 단위)으로 구성된다. 여기서, CSI-RSSI의 측정 시간 자원은 L3(Layer 3) 이동성 CSI-RS를 포함하는 OFDM 심볼에 대응한다. (CSI received Signal Strength Indicator (CSI-RSSI), comprises the linear average of the total received power (in [W]) observed only in OFDM symbols of measurement time resource(s), in the measurement bandwidth, over N number of resource blocks from all sources, including co-channel serving and non-serving cells, adjacent channel interference, thermal noise etc. Measurement time resource(s) for CSI-RSSI corresponds to OFDM symbols containing L3 mobility CSI-RS.)
전술한 바와 같이, NR에서 단말은 SSS 기반 및 CSI-RS 기반의 두 가지 RSRP 측정 및 RSSI 측정을 수행할 수 있다. 단말은 전술한 정의에 따라 SSS 기반의 측정 및 CSI-RS 기반의 측정을 수행할 수 있다. SSS 기반의 RSRP 측정 및 RSSI 측정의 경우, SSS는 SSB 내에서 전송되는데, SSB의 주파수 대역과 실제 단말이 동작하는 BWP가 다를 수 있다. SSB의 주파수 대역이 BWP와 다른 경우, 부정확한 측정으로 단말이 최적의 이동성을 제공받지 못할 수 있다.
구체적으로, NR에서 기지국은 SSB를 통해 SSS를 전송하는데, SSS 기반의 측정을 위해서 단말은 SSB가 존재하는 대역으로 RF(radio frequency) 재조정(retuning)을 한 후 기지국으로부터 수신되는 SSB를 모니터링할 수 있다. 기지국이 셀 특정 SSB(cell defining SSB)를 설정할 수 있기 때문에, 단말은 모니터링한 SSB에 기초하여 RSRP 측정, RSSI 측정, RS-SINR 측정을 수행할 수 있다. 그리고 단말은 RSRP 측정 및 RSSI 측정에 기초하여 RSRQ 측정을 수행할 수 있다. SSB가 BWP에 포함되지 않을 수 있기 때문에, RSRQ 측정의 결과가 단말이 동작하는 대역인 BWP에서의 채널 환경 특성을 제대로 반영하지 못하는 문제가 발생할 수 있다.
이하, 도 8 내지 도 10을 참조하여 SSB가 BWP에 포함된 경우 및 SSB가 BWP에 포함되지 않은 경우에서 단말이 RSRQ를 측정하는 예를 구체적으로 설명한다.
도 8은 SSB가 BWP에 포함된 경우에 단말이 RSRQ를 측정하는 예를 나타낸다.
도 8을 참조하면, 서빙셀은 단말에 설정된 하향링크 BWP(UE active DL BWP) 내에 SSB를 전송한다. 이와 같은 경우, 단말이 서빙셀로부터 수신한 SSB에 기초하여 RSRP 측정 및 RSSI 측정을 수행하고, RSRP 측정의 결과와 RSSI 측정의 결과를 이용하여 RSRQ를 계산할 수 있다.
도 8에서는 단말이 동작하는 대역인 BWP에서 주변 간섭셀로부터 수신되는 신호에 대한 RSSI 측정이 수행되기 때문에, 계산된 RSRQ는 BWP의 간섭 및 채널 특성을 잘 반영하고 있다. 따라서, 도 8과 같은 경우에는 단말이 SSB에 기초하여 RSRP 측정 및 RSSI 측정을 수행하여도 네트워크로부터 최적의 이동성을 제공받을 수 있다.
도 9는 SSB가 BWP에 포함되지 않은 경우에 단말이 RSRQ를 측정하는 제1예를 나타낸다.
도 9를 참조하면, 서빙셀은 단말에 설정된 BWP에 포함되지 않는 주파수 대역에서 SSB를 전송한다. 단말은 간섭셀 1 및 간섭셀 2가 전송하는 간섭 데이터를 SSB와 동일한 대역에서 수신하며, 간섭셀 3(I3)이 전송하는 간섭 데이터를 BWP와 동일한 대역에서 수신할 수 있다.
이와 같은 경우, 단말이 종래와 같은 방식으로 SSB에 기초하여 RSSI 측정을 수행하면, 그 결과값은 RSSI종래=S(서빙셀로부터의 수신 전력)+I1(간섭셀 1의 간섭 데이터로 인한 간섭)+I2(간섭셀 2의 간섭 데이터로 인한 간섭)가 된다.
한편, 측정된 RSSI종래와 달리, 단말은 단말에 설정된 BWP에서 간섭셀 3의 간섭을 받게 된다. 만약 실제 단말에 설정된 BWP에서 RSSI를 측정한다면 그 결과값은 S+I3가 될 것이다.
다시 말해서, RSSI종래는 단말이 동작하는 BWP의 간섭 및 채널 특성을 제대로 반영하지 못하기 때문에, 단말이 RSSI종래에 따른 RSRQ를 서빙셀에 보고하면 핸드오버가 필요하지 않은 상황에서 핸드오버 동작을 수행하게 되는 등 단말의 이동성에 문제가 발생할 수 있다.
도 10은 SSB가 BWP에 포함되지 않은 경우에 단말이 RSRQ를 측정하는 제2예를 나타낸다.
도 10을 참조하면, 서빙셀은 단말에 설정된 BWP에 포함되지 않는 주파수 대역에서 SSB를 전송한다. 단말은 간섭셀 3이 전송하는 간섭 데이터를 SSB와 동일한 대역에서 수신하며, 간섭셀 3이 전송하는 간섭 데이터를 BWP와 동일한 대역에서 수신할 수 있다.
이와 같은 경우, 단말이 종래와 같은 방식으로 SSB에 기초하여 RSSI 측정을 수행하면, 그 결과값은 RSSI종래=S+I3(간섭셀 3의 간섭 데이터로 인한 간섭) 가 된다.
한편, 측정된 RSSI종래와 달리, 단말은 단말에 설정된 BWP에서 간섭셀 1 및 간섭셀 2의 간섭을 받게 된다. 만약 실제 단말에 설정된 BWP에서 RSSI를 측정한다면 그 결과값은 S+I1+I2가 될 것이다.
다시 말해서, RSSI종래는 단말이 동작하는 BWP의 간섭 및 채널 특성을 제대로 반영하지 못하기 때문에, 단말이 RSSI종래에 따른 RSRQ를 서빙셀에 보고하면 핸드오버가 필요한 상황에서 핸드오버 동작을 수행하지 않는 등 단말의 이동성에 문제가 발생할 수 있다.
도 9 및 도 10의 예시를 통해 설명한 문제를 해결하기 위해 본 명세서는 SSB가 BWP에 포함되지 않은 경우, BWP에 기초하여 RSSI 측정 및 RSRQ 측정을 수행하는 방안을 제시한다.
구체적으로, 단말이 동작하는 BWP에서의 간섭에 따른 대역 및 채널 특성을 반영하기 위해, 단말 및 기지국은 SSB가 BWP에 포함되지 않은 경우에 종래의 RSSI 및 종래의 RSRQ와 다른 별도의 RSSI 및 RSRQ를 사용할 수 있다.
종래의 RSSI 및 종래의 RSRQ와 구별하기 위해, 이 경우에 사용되는 RSSI의 명칭은 QCLed-RSSI(Quasi-Co-Located-RSSI), RSRQ의 명칭은 QCLed-RSRQ(Quasi-Co-Located-RSRQ)로 칭하기로 한다.
여기서, QCLed-RSSI는 단말이 BWP 내에서 수신되는 참조 신호를 이용하여 측정하는 RSSI이다. 그리고, QCLed-RSRQ는 QCLed-RSSI 측정의 결과 및 RSRP 측정의 결과에 기초하여 결정된 RSRQ이다. 다만, 이 명칭들은 종래의 RSSI 및 RSRQ와 구별하기 위한 예시에 불과하며, 본 명세서의 일 개시의 범위는 이 명칭들에 제한되지 않는다.
RSRP 측정에 대해서, 단말은 종래와 같은 방식으로 RSRP 측정을 수행할 수 있다. 단말은 서빙셀로부터 수신되는 SSB에 기초하여 RSRP 측정을 수행할 수 있다. 구체적으로, 단말은 SSB에 포함된 SSS를 이용하여 RSRP 측정을 수행할 수 있다. 단말은 RSRP 측정의 결과를 종래의 RSRQ 또는 QCLed-RSRQ를 결정하는 데 사용할 수 있다.
한편, 단말은 서빙셀에 대한 초기 액세스를 통해 SSB가 수신되는 주파수 대역을 식별할 수 있다. 초기 액세스 이후, 단말은 서빙셀로부터 단말에 대해 설정된 BWP에 대한 정보를 수신할 수 있다. 그러면, 단말은 BWP와 SSB를 비교하여 SSB의 주파수 대역이 BWP에 포함되는지 여부를 식별할 수 있다. 단말은 SSB의 주파수 대역이 BWP에 포함되는지 여부에 따라 RSSI 측정 및 RSRQ 측정을 다르게 수행할 수 있다.
1) SSB의 주파수 대역이 BWP에 포함되는 경우
SSB의 주파수 대역이 단말에 대해 설정된 BWP에 포함되는 경우, 단말은 종래와 같은 방식으로 RSSI 측정을 수행할 수 있다. 단말은 서빙셀로부터 수신되는 SSB에 기초하여 RSSI 측정을 수행할 수 있다. 구체적으로, 단말은 SSB에 포함된 SSS를 이용하여 RSSI 측정을 수행할 수 있다. 단말은 RSSI 측정의 결과 및 RSRP 측정의 결과에 기초하여 RSRQ를 결정할 수 있다. 그리고, 단말은 결정된 RSRQ를 서빙셀에게 보고할 수 있다.
2) SSB의 주파수 대역이 BWP에 포함되지 않는 경우
SSB의 주파수 대역이 단말에 대해 설정된 BWP에 포함되지 않는 경우, 단말은 BWP 내에서 수신되는 참조 신호를 이용하여 QCLed-RSSI 측정을 수행할 수 있다. 구체적으로, 단말은 BWP 내에서 수신되는 TRS(tracking reference signal) 또는 DMRS(demodulation reference signal) 등의 참조 신호를 이용하여 QCLed-RSSI 측정을 수행할 수 있다.
참고로, 서로 다른 대역에서 각각 수행된 RSRP 측정과 RSSI 측정의 결과를 이용하여 RSRQ를 결정하기 위해서, 단말은 RSRP를 측정하는 대역과 QCLed-RSSI를 측정하는 대역의 특성이 유사하다고 가정할 수 있다. 다시 말해서, 단말은 SSS가 전송되는 채널과 RSSI를 측정하는 대역이 QCL(Quasi-Co-Location) 관계에 있다고 가정할 수 있다. 즉, 단말은 두 대역이 공간(spatial), 평균 이득(average gain), 도플러 파라미터(doppler parameters)에 대해 QCL 관계에 있다고 가정할 수 있다.
예를 들어, 단말은 SSB의 주파수 대역이 단말에 대해 설정된 BWP에 포함되지 않으면 SSB의 주파수 대역과 BWL이 QCL 관계에 있다고 판단할 수 있다. 또는, 단말은 서빙셀으로부터 SSB와 BWP 내의 참조 신호가 QCL 관계임을 나타내는 인디케이션을 수신할 수 있다. 단말은 인디케이션을 수신하는 경우, SSB와 BWP 내의 참조 신호가 QCL 관계라고 판단할 수 있다.
이에 따라, 단말은 SSB와 BWP 내의 참조 신호가 QCL 관계일 때 QCLed-RSSI 측정을 수행할 수 있다.
단말은 BWP의 일부 대역에 대해서 QCLed-RSSI 측정을 수행할 수도 있다. 구체적으로, 단말은 서빙셀로부터 BWP에 포함되는 RSSI 측정 대상 대역에 대한 정보를 수신할 수 있다. 여기서, RSSI 측정 대상 대역은 BWP에 포함되는 주파수 대역일 수 있다. RSSI 측정 대상 대역에 대한 정보에는 단말이 RSSI를 측정할 RB 수를 포함할 수 있다. 단말은 수신된 정보에 기초하여 RSSI 측정 대상 대역에 대한 RSSI 측정을 수행할 수 있다. 즉, 단말은 RSSI 측정 대상 대역 내에서 수신되는 참조 신호를 이용하여 RSSI 측정을 수행할 수 있다.
그리고, 단말은 QCLed-RSSI 측정의 결과와 RSRP 측정의 결과에 기초하여 QCLed-RSRQ를 결정할 수 있다. 단말은 결정된 QCLed-RSRQ를 서빙셀에게 보고할 수 있다.
도 9 및 도 10를 다시 참조하면, 각각의 도면에서 QCLed-RSSI 측정 결과의 예시가 RSSI제안으로 도시된다. 도 9에서 QCLed-RSSI 측정 결과는 S+I3이고, 도 10에서 QCLed-RSSI 측정 결과는 S+I1+I2이다.
즉, 본 명세서에서 제시하는 방안에 따라 QCLed-RSSI 측정을 수행하면, QCLed-RSSI 측정의 결과에는 실제 단말이 동작하는 BWP의 간섭 및 채널 특성을 반영될 수 있다. 단말이 QCLed-RSSI 측정의 결과에 기초하여 결정한 QCLed-RSRQ를 서빙셀에게 보고하면, 네트워크로부터 최적의 이동성을 제공받을 수 있다.
도 11은 RSRQ 측정 절차를 간략하게 정리하여 나타낸 흐름도이다.
도 11을 참조하면, SSB의 주파수 대역이 단말에 대해 설정된 BWP에 포함되지 않는 경우, 단말(UE)는 서빙셀(gNB)로부터 QCLed-RSRQ 측정을 지시하는 신호(QCLedRSRQ-Meas)를 수신할 수 있다.
그리고, 단말은 서빙셀로부터 RSSI 측정의 대상이 되는 RB의 수를 지시하는 신호(Measure-Bandwidth)를 수신할 수 있다. QCLedRSRQ-Meas 및 Measure-Bandwidth는 표 1에 기재된 예시와 같이 정의될 수 있다.
-- ASN1STARTMeasObjectNR ::= SEQUENCE { QCLedRSRQ-Meas-rxx BOOLEAN OPTIONAL -- Cond QCLed-RSRQ Measure-Bandwidth-rxx ENUMERATED {n12, spare3, spare2, spare1}}
전술한 신호들을 수신한 후, 단말은 SSB에 기초하여 RSRP 측정을 수행할 수 있다. 그리고, 단말은 단말에 대해 설정된 BWP(UE 액티브 하향링크 BWP)에서 수신되는 참조 신호를 이용하여 RSSI 측정을 수행할 수 있다.단말은 RSRP 측정의 결과 및 RSSI 측정의 결과에 기초하여 QCLed-RSRQ를 결정할 수 있다. 그리고, 단말은 결정된 QCLed-RSRQ를 서빙셀에게 보고할 수 있다.
II. 수신 안테나의 타입에 따른 단말의 능력 정의 및 단말의 능력 보고
NR에서는 기지국과 단말이 아날로그 빔포밍(analog beamforming)을 수행하는 것을 고려하고 있다. 특히, 단말의 수신 안테나는 무지향성(omni-direction)이나 아날로그 빔포밍을 수행하는 2가지 타입으로 구현될 수 있다. 수신 안테나의 타입에 따라 단말의 각 셀에 대한 SINR(signal-power-to-interference-power ratio)가 달라질 수 있으며, 이에 따라 단말의 셀 검출(cell detection) 성능도 달라질 수 있다. 또한, NR에서는 기지국이 동기 신호(synchronization signal)를 아날로그 빔포밍을 수행하여 전송하기 때문에, 단말의 수신 안테나의 타입에 따라 단말의 셀 검출 및 빔(beam) 검출이 달라질 수 있다. 하지만, 현재까지 수신 안테나의 타입을 고려한 단말의 능력이 정의되지 않았으며, 기지국이 단말의 수신 안테나의 타입에 대한 정보를 얻는 방안도 제시되지 않았다.
본 명세서는 시뮬레이션을 통해 수신 안테나의 타입을 고려한 단말의 능력을 정의하고, 기지국에게 단말의 수신 안테나의 타입에 따른 단말의 능력을 보고하는 방안을 제시한다.
단말은 서빙셀에게 안테나와 관련된 능력에 대한 정보를 보고할 수 있다. 여기서, 안테나와 관련된 능력에 대한 정보는 수신 안테나가 아날로그 빔포밍을 지원하는지 여부에 대한 정보를 포함할 수 있다.
구체적으로, 수신 안테나의 타입에 따른 단말의 능력, 즉 측정 능력(measurement capablility)을 표 2에 기재된 예시와 같이 정의할 것을 제안한다. 구체적으로, 표 2를 참조하면, ue-RxAnalogBeamFormingSupported에 수신 안테나의 아날로그 빔포밍을 지원하는지 여부에 대한 정보가 포함될 수 있다. 그리고, ue-RxAnalogBeamFormingSupported는 phyLayerParameters에 포함될 수 있다.
UE-NR-Capability ::= SEQUENCE { accessStratumRelease AccessStratumRelease, ue-Category INTEGER (1..5), phyLayerParameters PhyLayerParameters, rf-Parameters RF-Parameters, measParameters MeasParameters 쪋}PhyLayerParameters ::= SEQUENCE { ue-RxAnalogBeamFormingSupported BOOLEAN, }
이하, 도 12a 내지 도 14의 시뮬레이션 결과를 통해 수신 안테나의 타입에 따른 단말의 능력을 구체적으로 정의하기로 한다.
도 12a는 30GHz에서 수신 안테나가 무지향성 안테나인 경우의 단말이 검출하는 셀 및 빔의 수에 대한 CDF (누적 분포 함수: cumulative distribution function)를 시뮬레이션한 결과이다. 도 12b는 30GHz에서 수신 안테나가 아날로그 빔포밍 안테나인 경우의 단말이 검출하는 셀 및 빔의 수에 대한 CDF를 시뮬레이션한 결과이다.
도 12a 및 도 12b의 시뮬레이션은 실내 핫스팟(indoor hotspot) 환경에서 수행되었으며, 도 12a 및 도 12b를 참조하면, 30GHz의 캐리어 주파수에서 무지향성 수신 안테나와 빔포밍 수신 안테나 각각이 검출하는 셀 및 빔에 대한 CDF가 서로 다른 것을 알 수 있다.
도 13a는 4GHz에서 수신 안테나가 무지향성 안테나인 경우의 단말이 검출하는 셀 및 빔의 수에 대한 CDF를 시뮬레이션한 결과이다. 도 13b는 4GHz에서 수신 안테나가 아날로그 빔포밍 안테나인 경우의 단말이 검출하는 셀 및 빔의 수에 대한 CDF를 시뮬레이션한 결과이다.
도 13a 및 도 13b의 시뮬레이션은 실내 핫스팟(indoor hotspot) 환경에서 수행되었으며, 도 13a 및 도 13b를 참조하면, 4GHz의 캐리어 주파수에서 무지향성 수신 안테나와 빔포밍 수신 안테나 각각이 검출하는 셀 및 빔에 대한 CDF가 서로 다른 것을 알 수 있다.
도 12a 내지 도 13b의 시뮬레이션 결과에 기초하여 단말이 캐리어 주파수 범위(carrier frequency range) 및 수신 안테나의 타입에 따라 평균적으로 검출하는 인접셀의 수를 정리하면 표 3과 같다.
시나리오 실내 핫스팟
캐리어 주파수 범위 4GHz 30GHz
무지향성 수신 안테나 평균 검출 셀의 수 1.21 4.2
평균 검출 빔의 수 1.67 14.89
빔포밍 수신 안테나 평균 검출 셀의 수 3.82 6.15
평균 검출 빔의 수 8.44 36.99
표 3을 참조하면, sub 6GHz(frequency range 1)인 4GHz 보다 above 6GHz(frequency range 2)인 30GHz에서 단말이 더 많은 수의 셀 및 빔을 검출하는 것을 알 수 있다. 이는 NR에서 아래와 같이 주파수 영역(frequency range) 별로 기지국이 전송하는 빔의 수를 제한하였기 때문이다. 하기의 제한에 따라 단말은 높은 주파수 영역에서 더 많은 수의 셀 및 빔을 검출할 수 있다.- SS 버스트 셋(SS burst set) 내의 SSB의 최대 개수(L)은 아래와 같다.
i) 3GHz 미만의 주파수 영역에서 L=4
ii) 3GHz 이상, 6GHz 미만의 주파수 영역에서 L=8
iii) 6GHz 이상의 주파수 영역에서 L=64
또한, 표 3을 참조하면, 무지향성 수신 안테나보다 아날로그 빔포밍 안테나를 사용하는 경우에 단말이 더 많은 수의 셀 및 빔을 검출하는 것을 알 수 있다.
도 14는 기지국이 전송하는 빔의 수 및 단말의 수신 안테나 타입에 따라 단말이 검출하는 셀의 수, 빔의 수 및 셀의 수와 빔의 수의 비율을 시뮬레이션한 결과이다.
도 14를 참조하면, 기지국이 전송하는 빔의 개수가 3개, 8개, 16개, 32개, 64개일 때, 무지향성 수신 안테나를 사용하는 단말 및 빔포밍 수신 안테나를 사용하는 단말이 검출한 셀의 수, 빔의 수 및 셀의 수와 빔의 수의 비율이 도시된다. 도 14에서, omni Rx는 무지향성 수신 안테나를 의미하고, beamF Rx는 아날로그 빔포밍 안테나를 의미한다.
도 14의 시뮬레이션 결과에 따르면, 기지국이 전송하는 빔의 개수가 증가함에 따라 각각의 단말이 검출한 셀의 수 및 빔의 수가 증가하는 것을 알 수 있다.
도 12a 내지 도 14의 시뮬레이션 결과를 종합하여, 단말의 능력을 기지국이 전송하는 빔의 개수 및 단말의 수신 안테나의 타입에 따라 아래와 같이 정의할 것을 제안한다. 참고로, NR에서는 FDD와 TDD의 구분이 없고, inter-RAT(inter-radio access technology)에 대한 측정이 필요 없기 때문에, 인접-주파수(intra-frequecny)와 상이한-주파수(inter-frequency)에 대해서만 단말의 능력을 정의하면 된다.
1) 인접-주파수(intra-frequency) 측정에서 단말의 능력
- 주파수 영역 1(frequency range 1): 캐리어 주파수 6GHz 미만인 경우
i) 무지향성 수신 안테나를 지원하는 단말: Xintra1 _ omni개의 식별된 intra-frequency 셀 및 셀 당 Yintra1 _ omni개의 식별된 intra-frequency에 대해 RSRP 측정, RSRQ 측정 및 RS-SINR 측정을 수행할 수 있음.
ii) 아날로그 빔포밍 수신 안테나를 지원하는 단말: Xintra1 _ beamf개의 식별된 intra-frequency 셀 및 셀 당 Yintra1 _ beamf개의 식별된 intra-frequency에 대해 RSRP 측정, RSRQ 측정 및 RS-SINR 측정을 수행할 수 있음.
- 주파수 영역 2(frequency range 2): 캐리어 주파수 6GHz 이상인 경우
i) 무지향성 수신 안테나를 지원하는 단말: Xintra2 _ omni개의 식별된 intra-frequency 셀 및 셀 당 Yintra2 _ omni개의 식별된 intra-frequency에 대해 RSRP 측정, RSRQ 측정 및 RS-SINR 측정을 수행할 수 있음.
ii) 아날로그 빔포밍 수신 안테나를 지원하는 단말: Xintra2 _ beamf개의 식별된 intra-frequency 셀 및 셀 당 Yintra2 _ beamf개의 식별된 intra-frequency에 대해 RSRP 측정, RSRQ 측정 및 RS-SINR 측정을 수행할 수 있음.
2) NR 상이한-주파수(inter-frequency) 측정에서 단말의 능력
- 주파수 영역 1(frequency range 1): 캐리어 주파수 6GHz 미만인 경우
i) 무지향성 수신 안테나를 지원하는 단말: Xinter1 _ omni개의 식별된 inter-frequency 셀 및 셀 당 Yinter1 _ omni개의 식별된 inter-frequency에 대해 RSRP 측정, RSRQ 측정 및 RS-SINR 측정을 수행할 수 있음.
ii) 아날로그 빔포밍 수신 안테나를 지원하는 단말: Xinter1 _ beamf개의 식별된 inter-frequency 셀 및 셀 당 Yinter1 _ beamf개의 식별된 inter-frequency에 대해 RSRP 측정, RSRQ 측정 및 RS-SINR 측정을 수행할 수 있음.
- 주파수 영역 2(frequency range 2): 캐리어 주파수 6GHz 이상인 경우
i) 무지향성 수신 안테나를 지원하는 단말: Xinter2 _ omni개의 식별된 inter-frequency 셀 및 셀 당 Yinter2 _ omni개의 식별된 inter-frequency에 대해 RSRP 측정, RSRQ 측정 및 RS-SINR 측정을 수행할 수 있음.
ii) 아날로그 빔포밍 수신 안테나를 지원하는 단말: Xinter2 _ beamf개의 식별된 inter-frequency 셀 및 셀 당 Yinter2 _ beamf개의 식별된 inter-frequency에 대해 RSRP 측정, RSRQ 측정 및 RS-SINR 측정을 수행할 수 있음.
도 12a 내지 도 14의 시뮬레이션 결과를 종합하면, 상기 1) 및 2)의 단말의 성능을 아래의 예시와 같이 설정할 수 있다.
Xintra1 _ omni=2, Yintra1 _ omni=1, Xintra1 _ beamf=4, Yintra1 _ beamf=2, Xintra2 _ omni=4, Yintra2 _ omni=4, Xintra2_beamf=6, Yintra2_beamf=6
Xinter1 _ omni=2, Yinter1 _ omni=1, Xinter1 _ beamf=2, Yintrer1 _ beamf=2, Xinter2 _ omni=2, Yinter2 _ omni=2, Xinter2_beamf=3, Yinter2_beamf=3
도 15은 본 명세서의 개시가 구현되는 무선통신 시스템을 나타낸 블록도이다.
기지국(200)은 프로세서(processor, 201), 메모리(memory, 202) 및 RF부(RF(radio frequency) unit, 203)을 포함한다. 메모리(202)는 프로세서(201)와 연결되어, 프로세서(201)를 구동하기 위한 다양한 정보를 저장한다. RF부(203)는 프로세서(201)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(201)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시 예에서 기지국의 동작은 프로세서(201)에 의해 구현될 수 있다.
UE(100)는 프로세서(101), 메모리(102) 및 송수신부(103)을 포함한다. 메모리(102)는 프로세서(101)와 연결되어, 프로세서(101)를 구동하기 위한 다양한 정보를 저장한다. 송수신부(103)는 프로세서(101)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(101)는 제안된 기능, 과정 및/또는 방법을 구현한다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. 송수신부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.

Claims (13)

  1. 단말 (user equipment: UE)이 수행하는 측정 방법으로서,
    서빙셀(serving cell)로부터 수신되는 SSB(synchronization signal block)에 기초하여 RSRP(reference signal received power) 측정을 수행하는 단계;
    상기 SSB의 주파수 대역이 상기 단말에 대해 설정된 BWP(bandwidth part)에 포함되지 않는 경우, 상기 BWP 내에서 수신되는 참조 신호를 이용하여 RSSI(received signal strength indicator) 측정을 수행하는 단계; 및
    상기 수행된 RSRP 측정의 결과 및 상기 수행된 RSSI 측정의 결과에 기초하여 RSRQ(reference symbol received quality)를 결정하는 단계를 포함하는 것을 특징으로 하는 측정 방법.
  2. 제1항에 있어서,
    상기 서빙셀로부터 상기 BWP에 포함되는 RSSI 측정 대상 대역에 대한 정보를 수신하는 단계를 더 포함하고,
    상기 RSSI 측정 대상 대역은,
    상기 BWP에 포함되는 주파수 대역인 것을 특징으로 하는 측정 방법.
  3. 제2항에 있어서,
    상기 RSSI 측정을 수행하는 단계는,
    상기 RSSI 측정 대상 대역 내에서 수신되는 참조 신호를 이용하여 RSSI 측정을 수행하는 단계인 것을 특징으로 하는 측정 방법.
  4. 제1항에 있어서,
    상기 BWP 내에서 수신되는 참조 신호를 이용한 RSSI 측정은,
    상기 SSB와 상기 BWP 내의 참조 신호가 QCL(quasi-co-location) 관계 일 때 수행되는 것을 특징으로 하는 측정 방법.
  5. 제4항에 있어서,
    상기 SSB와 상기 BWP 내의 참조 신호가 QCL(quasi-co-location) 관계임을 나타내는 인디케이션을 수신하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  6. 제1항에 있어서,
    상기 SSB의 주파수 대역이 상기 BWP에 포함되는 경우, 상기 SSB 내에서 수신되는 참조 신호를 이용하여 RSSI 측정을 수행하는 단계를 더 포함하는 것을 특징으로 하는 측정 방법.
  7. 제1항에 있어서,
    상기 결정된 RSRQ를 상기 서빙셀에게 보고하는 단계를 더 포함하는 것을 특징으로 하는 측정 방법.
  8. 제1항에 있어서,
    상기 서빙셀에게 안테나와 관련된 능력(capablility)에 대한 정보를 보고하는 단계를 더 포함하는 것을 특징으로 하는 측정 방법.
  9. 제8항에 있어서,
    상기 안테나와 관련된 능력에 대한 정보는,
    수신 안테나가 아날로그 빔포밍을 지원하는지 여부에 대한 정보를 포함하는 것을 특징으로 하는 측정 방법.
  10. 측정을 수행하는 단말로서,
    송수신부; 및
    상기 송수신부를 제어하는 프로세서를 포함하고,
    상기 프로세서는,
    상기 송수신부를 통해 서빙셀(serving cell)로부터 수신되는 SSB(synchronization signal block)에 기초하여 RSRP(reference signal received power) 측정을 수행하고,
    상기 SSB의 주파수 대역이 상기 단말에 대해 설정된 BWP(bandwidth part)에 포함되지 않는 경우, 상기 BWP 내에서 수신되는 참조 신호를 이용하여 RSSI(received signal strength indicator) 측정을 수행하고,
    상기 수행된 RSRP 측정의 결과 및 상기 수행된 RSSI 측정의 결과에 기초하여 RSRQ(reference symbol received quality)를 결정하는 것을 특징으로 하는 단말.
  11. 제10항에 있어서,
    상기 프로세서는,
    상기 송수신부를 제어하여 서빙셀로부터 RSSI 측정 대상 대역에 대한 정보를 수신하고,
    상기 수신된 정보에 기초하여 상기 RSSI 측정 대상 대역 내에서 수신되는 참조 신호를 이용하여 RSSI 측정을 수행하고,
    상기 RSSI 측정 대상 대역은,
    상기 BWP에 포함되는 주파수 대역인 것을 특징으로 하는 단말.
  12. 제10항에 있어서,
    상기 프로세서는,
    상기 송수신부를 제어하여, 상기 서빙셀에게 안테나와 관련된 능력(capability)에 대한 정보를 보고하는 것을 특징으로 하는 단말.
  13. 제12항에 있어서,
    상기 안테나와 관련된 능력에 대한 정보는,
    수신 안테나가 아날로그 빔포밍을 지원하는지 여부에 대한 정보를 포함하는 것을 특징으로 하는 단말.
PCT/KR2018/008904 2017-08-10 2018-08-06 Bwp 내의 참조 신호를 이용하여 rsrq를 측정하는 방법 및 이를 수행하는 단말 WO2019031791A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/627,995 US11483081B2 (en) 2017-08-10 2018-08-06 Method for measuring RSRQ using reference signal in BWP and terminal performing same
JP2019572487A JP7008088B2 (ja) 2017-08-10 2018-08-06 Bwp内の参照信号を利用してrsrqを測定する方法及びこれを実行する端末
CN201880044327.5A CN110809894B (zh) 2017-08-10 2018-08-06 在bwp中使用参考信号测量rsrq的方法和执行该方法的终端
EP18845116.5A EP3629617B1 (en) 2017-08-10 2018-08-06 Method for measuring rsrq using reference signal in bwp and terminal performing same
KR1020197036556A KR102375747B1 (ko) 2017-08-10 2018-08-06 Bwp 내의 참조 신호를 이용하여 rsrq를 측정하는 방법 및 이를 수행하는 단말

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762543933P 2017-08-10 2017-08-10
US62/543,933 2017-08-10
US201762586902P 2017-11-16 2017-11-16
US62/586,902 2017-11-16

Publications (1)

Publication Number Publication Date
WO2019031791A1 true WO2019031791A1 (ko) 2019-02-14

Family

ID=65272346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/008904 WO2019031791A1 (ko) 2017-08-10 2018-08-06 Bwp 내의 참조 신호를 이용하여 rsrq를 측정하는 방법 및 이를 수행하는 단말

Country Status (6)

Country Link
US (1) US11483081B2 (ko)
EP (1) EP3629617B1 (ko)
JP (1) JP7008088B2 (ko)
KR (1) KR102375747B1 (ko)
CN (1) CN110809894B (ko)
WO (1) WO2019031791A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11206632B2 (en) * 2019-02-14 2021-12-21 Samsung Electronics Co., Ltd. Position of user equipment
EP3965460A4 (en) * 2019-04-30 2022-08-17 Fujitsu Limited SSB-BASED MEASUREMENT METHOD AND DEVICE

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019028850A1 (en) * 2017-08-11 2019-02-14 Mediatek Singapore Pte. Ltd. METHODS OF TRANSMITTING MULTIPLE SS BLOCKS AND MEASURING RRM IN A BROADBAND CARRIER
EP3669587A1 (en) * 2017-08-16 2020-06-24 Telefonaktiebolaget LM Ericsson (publ.) Energy efficient camping with optimal beam finding before access
WO2019068926A1 (en) * 2017-10-06 2019-04-11 Telefonaktiebolaget Lm Ericsson (Publ) DYNAMIC CHANGE OF MEASUREMENT INTERVALS
CA3078837C (en) * 2017-10-28 2023-09-05 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for transmitting data in dual-connectivity scenario, network device and terminal device
US11558790B2 (en) * 2018-07-23 2023-01-17 Apple Inc. Configuration of multiple measurement gap patterns
WO2021087821A1 (zh) * 2019-11-06 2021-05-14 华为技术有限公司 一种应用同步信号块的测量方法、终端设备及基站
US10979979B1 (en) * 2019-11-22 2021-04-13 Qualcomm Incorporated Synchronization signal block (SSB) measurements based on a measurement cycle frequency
US11672017B2 (en) 2020-02-03 2023-06-06 Samsung Electronics Co., Ltd. Method and apparatus for performing communication in wireless communication system
EP4117334A4 (en) * 2020-03-20 2023-04-12 Huawei Technologies Co., Ltd. METHOD AND APPARATUS FOR DETERMINING CELL QUALITY INFORMATION
US20210360458A1 (en) * 2020-05-15 2021-11-18 Mediatek Inc. User equipment for rssi measurement and rssi measurement method
KR20220006928A (ko) 2020-07-09 2022-01-18 삼성전자주식회사 핸드오버 안정성을 개선하기 위한 장치 및 방법
KR20230045008A (ko) * 2020-07-31 2023-04-04 퀄컴 인코포레이티드 서빙 및 비서빙 셀들에 걸친 셀간 이동성
CN114071443B (zh) * 2020-08-06 2022-12-20 维沃移动通信有限公司 参考信号测量方法、终端及网络侧设备
TWI771103B (zh) * 2021-07-14 2022-07-11 立積電子股份有限公司 雷達裝置及其訊號接收方法
WO2023055972A1 (en) * 2021-10-01 2023-04-06 Qualcomm Incorporated Inter-cell measurement and reporting for beam management
WO2023073677A2 (en) * 2021-11-01 2023-05-04 Telefonaktiebolaget Lm Ericsson (Publ) Measurements in a communication network
CN115942340B (zh) * 2021-11-05 2023-11-03 华为技术有限公司 通信方法和装置
US20230198642A1 (en) * 2021-12-22 2023-06-22 Qualcomm Incorporated Measurement resource for measuring a received signal strength indicator
US20230308914A1 (en) * 2022-02-17 2023-09-28 Qualcomm Incorporated Serving cell measurement objects associated with active bandwidth parts
WO2024024999A1 (ko) * 2022-07-26 2024-02-01 엘지전자 주식회사 Ssb를 송수신하는 방법 및 장치
WO2024031312A1 (en) * 2022-08-09 2024-02-15 Qualcomm Incorporated Inter-frequency l1 csi report for l1/l2 mobility
CN117676614A (zh) * 2022-08-09 2024-03-08 华为技术有限公司 一种通信方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8750808B2 (en) * 2011-02-15 2014-06-10 Telefonaktiebolaget Lm Ericsson (Publ) Configuration of reference signal transmission bandwidth
KR101450266B1 (ko) * 2010-04-13 2014-10-13 퀄컴 인코포레이티드 무선 통신 네트워크에서의 수신 전력 및 수신 품질의 측정
KR101537644B1 (ko) * 2009-12-21 2015-07-17 퀄컴 인코포레이티드 무선 디바이스에서의 동적 안테나 선택
KR20160129902A (ko) * 2014-05-09 2016-11-09 인텔 아이피 코포레이션 참조 신호 수신 품질(rsrq) 측정들에 대한 보고 기법들
KR101685905B1 (ko) * 2009-06-08 2016-12-13 텔레포나크티에볼라게트 엘엠 에릭슨(피유비엘) 동기 신호에 근거한 신호 측정

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111132184B (zh) 2014-05-27 2023-07-21 Lg电子株式会社 执行针对同步信号块的测量的方法和用户设备
US9363683B2 (en) * 2014-07-15 2016-06-07 Qualcomm Incorporated Asymmetric capability-driven methods for beam tracking in mm-wave access systems
WO2016021993A2 (ko) * 2014-08-08 2016-02-11 엘지전자(주) 무선 통신 시스템에서 측정 수행 방법 및 이를 위한 장치
WO2017047988A1 (ko) * 2015-09-18 2017-03-23 엘지전자 주식회사 비 면허 대역에 대한 채널 상태 정보를 보고하는 방법 및 사용자 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101685905B1 (ko) * 2009-06-08 2016-12-13 텔레포나크티에볼라게트 엘엠 에릭슨(피유비엘) 동기 신호에 근거한 신호 측정
KR101537644B1 (ko) * 2009-12-21 2015-07-17 퀄컴 인코포레이티드 무선 디바이스에서의 동적 안테나 선택
KR101450266B1 (ko) * 2010-04-13 2014-10-13 퀄컴 인코포레이티드 무선 통신 네트워크에서의 수신 전력 및 수신 품질의 측정
US8750808B2 (en) * 2011-02-15 2014-06-10 Telefonaktiebolaget Lm Ericsson (Publ) Configuration of reference signal transmission bandwidth
KR20160129902A (ko) * 2014-05-09 2016-11-09 인텔 아이피 코포레이션 참조 신호 수신 품질(rsrq) 측정들에 대한 보고 기법들

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 10", 3GPP TS 36.211, December 2011 (2011-12-01)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11206632B2 (en) * 2019-02-14 2021-12-21 Samsung Electronics Co., Ltd. Position of user equipment
EP3965460A4 (en) * 2019-04-30 2022-08-17 Fujitsu Limited SSB-BASED MEASUREMENT METHOD AND DEVICE

Also Published As

Publication number Publication date
EP3629617A4 (en) 2021-03-17
KR102375747B1 (ko) 2022-03-16
KR20200003197A (ko) 2020-01-08
US11483081B2 (en) 2022-10-25
EP3629617B1 (en) 2023-10-04
EP3629617A1 (en) 2020-04-01
CN110809894A (zh) 2020-02-18
CN110809894B (zh) 2023-05-09
JP7008088B2 (ja) 2022-01-25
JP2020528685A (ja) 2020-09-24
US20200169340A1 (en) 2020-05-28

Similar Documents

Publication Publication Date Title
WO2019031791A1 (ko) Bwp 내의 참조 신호를 이용하여 rsrq를 측정하는 방법 및 이를 수행하는 단말
WO2018026218A1 (ko) 이동 통신 시스템에서 빔을 선택하는 방법 및 장치
WO2018147527A1 (ko) 차세대 이동통신 시스템에서 측정 수행 방법 및 단말
WO2018111004A1 (en) Method and apparatus of signal measurement for terminal moving at high speed in wireless communication system
WO2018048203A1 (en) Apparatus and method for selecting cell in wireless communication system
WO2019194490A1 (ko) 측정을 수행하는 방법, 사용자 장치 및 기지국
WO2019031899A1 (en) METHOD AND APPARATUS FOR MANAGING RADIO LINK FAILURE IN A SYSTEM USING MULTIPLE REFERENCE SIGNALS
WO2021029686A1 (ko) 무선 통신 시스템에서 rrm 측정을 수행하는 방법 및 단말
WO2019059673A1 (ko) 무선 통신 시스템에서 데이터 송수신 방법 및 장치
WO2018084660A1 (ko) 무선 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널 송수신 방법 및 이를 지원하는 장치
WO2020050575A1 (ko) 이동통신 시스템에서 셀 측정 정보를 수집하고 보고하는 방법 및 장치
AU2017323374B2 (en) Apparatus and method for selecting cell in wireless communication system
WO2014157904A1 (en) Location-specific wlan information provision method in cell of wireless communication system
WO2013187693A1 (ko) 이동통신 시스템에서 작은 크기의 데이터를 송수신하는 방법 및 장치
WO2015170812A1 (en) Method for performing comp operation in wireless communication system and an apparatus for supporting the same
WO2018030841A1 (ko) 무선 통신 시스템에서 단말이 참조 신호 측정 정보를 보고하는 방법 및 이를 지원하는 장치
WO2019139254A1 (ko) 복수의 수신 빔을 사용하여 측정을 수행하는 방법 및 사용자 장치
WO2021182863A1 (ko) 무선 통신 시스템에서 무선 링크 품질 평가 방법 및 장치
WO2018030875A1 (ko) 무선 통신 시스템에서 아날로그 빔 관련 정보를 전송하는 방법 및 상기 방법을 이용하는 개체
WO2013112010A1 (en) Apparatus and method for controlling indevice coexistence interference in wireless communication system
WO2021002736A1 (ko) 사이드링크를 지원하는 무선통신시스템에서 단말이 데이터를 전송하는 방법 및 이를 위한 장치
WO2018155918A1 (ko) 단말의 이동성 히스토리를 보고하는 방법 및 이를 지원하는 장치
AU2018314063B2 (en) Method and apparatus for handling radio link failure in system using multiple reference signals
WO2017026780A1 (ko) 단말이 wlan 측정 결과를 보고할지 여부를 결정하는 방법 및 장치
WO2022149774A1 (ko) 무선 통신 시스템에서 빔 실패 복구 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18845116

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197036556

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019572487

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018845116

Country of ref document: EP

Effective date: 20191226

NENP Non-entry into the national phase

Ref country code: DE