WO2019031725A1 - 음압이 작용하는 튜브 인프라 구조물 - Google Patents

음압이 작용하는 튜브 인프라 구조물 Download PDF

Info

Publication number
WO2019031725A1
WO2019031725A1 PCT/KR2018/008160 KR2018008160W WO2019031725A1 WO 2019031725 A1 WO2019031725 A1 WO 2019031725A1 KR 2018008160 W KR2018008160 W KR 2018008160W WO 2019031725 A1 WO2019031725 A1 WO 2019031725A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
fluid
infrastructure
fluid tank
region
Prior art date
Application number
PCT/KR2018/008160
Other languages
English (en)
French (fr)
Inventor
최재헌
이관섭
최수용
이창영
임정열
이진호
장용준
조정민
옥민환
김재훈
Original Assignee
한국철도기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국철도기술연구원 filed Critical 한국철도기술연구원
Priority to EP18844367.5A priority Critical patent/EP3666615B1/en
Priority to US16/607,943 priority patent/US11320070B2/en
Publication of WO2019031725A1 publication Critical patent/WO2019031725A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/14Sealings between relatively-stationary surfaces by means of granular or plastic material, or fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B13/00Other railway systems
    • B61B13/10Tunnel systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/002Sealings comprising at least two sealings in succession
    • F16J15/004Sealings comprising at least two sealings in succession forming of recuperation chamber for the leaking fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/40Sealings between relatively-moving surfaces by means of fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L17/00Joints with packing adapted to sealing by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L17/00Joints with packing adapted to sealing by fluid pressure
    • F16L17/02Joints with packing adapted to sealing by fluid pressure with sealing rings arranged between outer surface of pipe and inner surface of sleeve or socket
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L21/00Joints with sleeve or socket
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L21/00Joints with sleeve or socket
    • F16L21/02Joints with sleeve or socket with elastic sealing rings between pipe and sleeve or between pipe and socket, e.g. with rolling or other prefabricated profiled rings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/32Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators
    • G01M3/3236Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators by monitoring the interior space of the containers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/32Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators
    • G01M3/3236Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators by monitoring the interior space of the containers
    • G01M3/3245Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators by monitoring the interior space of the containers using a level monitoring device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L2201/00Special arrangements for pipe couplings
    • F16L2201/30Detecting leaks

Definitions

  • the present invention relates to a subsonic capsule train known as a hypertube or a hyper loop, and more particularly to a tube infrastructure with sound pressure acting.
  • Some embodiments of the present invention relate to a coupling structure for coupling two separate tubes, comprising a fluid container formed to enclose a coupling region of a tube, wherein the fluid of high viscosity acts as a gasket, Thereby maintaining the sealed state inside.
  • a tube infrastructure including: a first tube; A second tube coupled to the first tube; And a fluid tank disposed to surround the coupling region of the first tube and the second tube and filled with fluid to provide a sealed state for the coupling region, Ensure sound pressure is maintained.
  • the tube infrastructure structure proposed in the present invention can simplify the construction and maintenance method to save costs and minimize the influence of the infrastructure on environmental changes such as thermal deformation of the tube infrastructure.
  • FIG. 1 is a view showing a railway bridge including a tube infrastructure according to an embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view of the tube infrastructure according to an embodiment of the present invention, which is an enlarged view of FIG. 1 A.
  • FIG. 2 is an enlarged cross-sectional view of the tube infrastructure according to an embodiment of the present invention, which is an enlarged view of FIG. 1 A.
  • FIG. 3 is an enlarged view of FIG. 1 A and is a cross-sectional view of a tube infrastructure in accordance with an embodiment of the present invention.
  • FIG. 4 is a longitudinal sectional view for explaining a packing portion interposed in a coupling region of a tube according to an embodiment of the present invention.
  • FIG. 5 is a longitudinal section view of a tube infrastructure without a packing portion according to another embodiment of the present invention.
  • FIG. 1 is a view of a railroad bridge including a tube infrastructure according to an embodiment of the present invention.
  • FIG. 2 is an enlarged view of FIG. 1
  • FIG. 3 is a cross-sectional view of a tube infrastructure according to an embodiment of the present invention, which is an enlarged view of FIG. 1 A.
  • FIG. 4 is a cross- Fig. 5 is a longitudinal sectional view of a tube infrastructure without a packing according to another embodiment of the present invention.
  • a railway bridge includes a plurality of infrastructures, wherein one tube infrastructure A includes a first tube 10, a second tube 20, a first tube 10, And a fluid tank (30) surrounding the engagement region of the tube (20). And includes a plurality of tube piers (A) disposed horizontally along the transverse direction and a plurality of piers (40) disposed at the bottom of the fluid tanks (30) to support the tube infrastructure (A).
  • the tube infrastructure includes a first tube 10, a second tube 20 coupled to the first tube 10, a first tube 10 and a second tube 20 , And a fluid tank (30) which is disposed to surround the coupling region of the first tube (10) and the second tube (20) and filled with a fluid to provide a sealed state to the coupling region, The inside ensures sound pressure is maintained.
  • the inflow of the gas through the tank containing the high-viscosity fluid surrounding the outside of the joint region of the first tube 10 and the second tube 20 can be completely blocked.
  • the pressure difference between the inside and the outside of the tube is maintained at about 1 atm or more, so that a negative pressure acts inside the tube infrastructure.
  • the fluid contained in the fluid tank 30 is first introduced into the first tube 10 and the second tube 20, There is an effect that it can be maintained for a certain period of time.
  • the fluid tank 30 is disposed so as to surround the coupling region of the first tube 10 and the second tube 20, and the fluid is filled in the fluid tank 30 to provide a sealed state for the coupling region.
  • the inside of the first tube 10 and the second tube 20 is subjected to a low pressure (about 0.001 atm) close to a vacuum and an atmospheric pressure (one atmospheric pressure) to the outside.
  • the fluid tank 30 includes an opening 310 through which fluid flows into one region of the upper portion.
  • the rainwater can flow in through the opening 310 and can be used instead of the fluid having a high viscosity.
  • the fluid may include at least one of fine particles (powder) and short fibers to control the viscosity.
  • the fluid may comprise at least one of a volatile fluid and a non-volatile fluid.
  • a volatile fluid and a non-volatile fluid For example, when a mixture of a volatile fluid and a non-volatile fluid is used, it is possible to prevent the volatile fluid from evaporating by allowing the non-volatile fluid to be positioned on the top of the volatile fluid. The cycle can be held longer.
  • the first tube 10 and the second tube 20 are circular tubes having a diameter enough for a super high-speed vacuum train to pass through. Based on the existing railway tunnel technology, the diameter of the tube is about 2 to 3 m But not limited to, individual tubes may be formed to have various lengths and thicknesses.
  • the tube may be made of a metal material such as carbon steel, stainless steel or aluminum, a mixed material using steel and concrete, a concrete material containing a steel rib, a fiber reinforced plastic (FRP), a polyethylene PE, polyethylene), and the like.
  • a metal material such as carbon steel, stainless steel or aluminum, a mixed material using steel and concrete, a concrete material containing a steel rib, a fiber reinforced plastic (FRP), a polyethylene PE, polyethylene), and the like.
  • the first tube 10 and the second tube 20 have a female connector 110 and a male connector 210,
  • the female coupling portion 110 of the first tube 10 and the male coupling portion 210 of the second tube 20 can be coupled by fitting.
  • the packing part 150 may include at least one of an O-ring and a gasket made of an elastomer, but is not limited thereto.
  • the packing portion 150 is interposed between the inner circumferential surface of the female coupling portion 110 of the first tube 10 and the outer circumferential surface of the male coupling portion 210 of the second tube 20, The inside of the first tube 10 and the second tube 20 can be sealed.
  • the diameter of the inner circumferential surface of the female coupling portion 110 is larger than the diameter of the outer circumferential surface of the male coupling portion 210.
  • the male coupling portion 210 of the second tube 20 is formed to be larger than the diameter of the female coupling portion 110 of the first tube 10. [ Respectively.
  • a coupling margin is formed between the first tube 10 and the second tube 20 to buffer a change in length due to thermal deformation.
  • the inflow of the gas through the packing part 150 is stopped first, and the inflow of the gas through the high viscosity fluid contained in the fluid tank 30 can be completely blocked. Even if a minute gap is formed between each of the first and second tubes 10 and 20 and the packing part 150, the surrounding fluid does not flow into the gap due to the high viscosity,
  • the fluid tank 30 can function as a double seal structure. Since the fluid contained in the fluid tank 30 is first introduced into the first and second tubes 10 and 20 even if a problem occurs in the coupling region of the first tube 10 and the second tube 20 Vacuum inside the tube infrastructure can be maintained for a certain period of time.
  • the tube infrastructure of the present invention further includes a sensor 320 for detecting the leakage of fluid from the fluid tank 30.
  • the sensor 320 may be provided inside the fluid tank 30 to determine that fluid is leaked when the volume of the fluid is measured to be less than the initial measured value. That is, the volume of the fluid contained in the fluid tank 30 may be measured first, and the volume of the fluid may be measured in real time through the sensor 320. If the volume of the fluid is then measured below the initial measurement, it can be determined that the fluid has leaked. In this way, only by measuring the volume of the fluid through the sensor 320, there is an advantage that leakage can be detected in real time without the need for a separate system for airtight detection.
  • the female coupling portion 110 is formed such that the diameter of the inner circumferential surface increases toward the other end, and includes a flange portion 101 formed on the other end surface.
  • the diameter of the inner circumferential surface of the male coupling portion 210 decreases toward one end And a groove 201 formed on the outer peripheral surface.
  • the groove 201 of the second tube 20 can be fitted to the flange portion 101 of the first tube 10 so that the inside of the first tube 10 and the second tube 20 is sealed .
  • the groove portion 201 coupled with the flange portion 101 may be formed to have a coupling margin so that the first tube 10 or the second tube 20 can be moved horizontally by thermal deformation.
  • the female connection portion 110 of the first tube 10 is extended to be inclined outwardly toward the other end, and the flange portion 101 protruded from the other end surface .
  • the grooved portion 201 of the second tube 20 includes an inner circumferential surface of the flange portion 101 of the first tube 10 and an inner circumferential surface of the flange portion 101 of the first tube 10.
  • the groove portion 201 extends inwardly As shown in FIG. A coupling margin is formed between the flange portion 101 and the groove portion 201 to compensate for a change in length of the first tube 10 or the second tube 20 due to thermal deformation.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Transportation (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Gasket Seals (AREA)

Abstract

본 발명의 튜브 인프라 구조물은 제 1 튜브; 제 1 튜브에 결합된 제 2 튜브; 및 제 1 튜브와 제 2 튜브의 결합영역을 에워싸도록 배치되며, 내부에 유체가 충진되어, 결합영역에 대한 밀폐 상태를 제공하는 유체 탱크를 포함하되, 제 1 튜브 및 제 2 튜브 내부는 음압이 유지되도록 한다.

Description

음압이 작용하는 튜브 인프라 구조물
본 발명은 하이퍼튜브 또는 하이퍼루프로 알려진 아음속 캡슐 트레인에 대한 것으로, 특히 음압이 작용하는 튜브 인프라 구조물에 관한 것이다.
최근 튜브 안을 진공에 가까운 상태로 만들어 공기저항을 최소화함으로써 속도를 크게 향상시킬 수 있는 초고속 진공 열차에 대한 연구가 활발히 진행되고 있다. 특히 초고속 진공 열차를 구현하기 위해서는 크고 긴 진공 터널(튜브)을 만들어야 한다. 이로 인해 튜브는 직경과 길이가 매우 크게 형성되며 구간을 나누어 건설할 필요가 있다. 또한 일정한 길이마다 차단 밸브가 장착되어야 하기 때문에 많은 연결 부위가 생기게 된다. 이때 연결 부위를 통해 터널 외부 공기가 터널 내부로 유입되는 것을 차단함으로써 터널 내부의 아진공 상태를 유지한다. 따라서 튜브 자체의 밀폐 상태를 유지하는 것이 매우 중요하다.
종래에는 탄소강, 스테인레스강, 알루미늄 등의 금속 튜브를 용접으로 연결하는 방법, 그루브 타입(Grooved type), 메탈벨로우즈 타입(Metal bellows type) 등의 신축 이음을 적용하는 방법, 섬유강화플라스틱(FRP, fiber reinforced plastics), 폴리에틸렌(PE, polyethylene) 등의 폴리머 재질의 튜브 사이에 탄성중합체 개스킷(Gasket)을 사용하여 밀폐시키는 방법, 에폭시, 실리콘 등의 접착제로 튜브 간의 틈을 메우는 방법이 알려져 있다.
그러나, 용접 및 접착을 이용한 밀폐 구조의 경우 계절 및 주야의 온도차에 의한 튜브 열변형 발생 시에 완충이 어려워 열충격이 가해지고, 연결부의 손상이 발생하며, 시공비용이 높다는 문제가 있다. 개스킷을 이용한 밀폐 구조는 탄성중합체 특성상, 오랜 기간 동안 체결 압력이 가해지면 압축변형이 발생하여 두께가 감소하고 밀폐성능이 떨어진다는 문제가 있다.
또한 이와 같은 튜브 인프라는 상용 튜브 길이의 한계로 인해 연결부가 다수 존재하기 때문에, 유지보수를 위한 비용이 많이 들고, 밀폐 검지를 위한 추가적인 시스템이 필요하다. 즉 종래의 밀폐 구조는 수명 한계가 존재하여 주기적인 유지보수 및 교체가 반드시 필요하므로, 장수명을 목표로 하는 진공 튜브 인프라에는 적합하지 않다.
이와 관련하여 한국등록특허 10-1130807호(발명의 명칭: 튜브 철도 시스템의 진공 분할 관리 시스템 및 진공 차단막 장치)는 밀폐된 진공 상태의 튜브를 철도 선로로 이용하여, 소음과 공기 저항을 최소화시켜 열차를 초고속으로 달릴 수 있도록 하는 튜브 철도 시스템에 관하여 개시하고 있다.
본 발명의 일부 실시예는 두 개의 분리된 튜브를 연결하는 결합 구조에 관한 것으로 튜브의 결합영역을 에워싸도록 형성된 유체가 담긴 컨테이너를 포함하며, 고점도의 유체가 개스킷 역할을 함으로써 누설을 방지하고 튜브 내부의 밀폐 상태를 유지하는 것을 목적으로 한다.
또한 컨테이너 내의 유체 부피 변화를 측정하여 실시간으로 누설을 감지하는 것을 목적으로 한다.
상술한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본 발명의 일 실시예에 따른 튜브 인프라 구조물은 제 1 튜브; 제 1 튜브에 결합된 제 2 튜브; 및 제 1 튜브와 제 2 튜브의 결합영역을 에워싸도록 배치되며, 내부에 유체가 충진되어, 결합영역에 대한 밀폐 상태를 제공하는 유체 탱크를 포함하되, 제 1 튜브 및 제 2 튜브의 내부는 음압이 유지되도록 한다.
본 발명에서 제안하는 튜브 인프라 구조물은 시공 및 유지보수 방법이 간단하여 비용을 혁신적으로 절약할 수 있으며, 튜브 인프라의 열변형 등 환경적인 변화에도 인프라가 받는 영향을 최소화할 수 있다.
또한 유체를 이용하는 구조의 특성상 누설이 발생하더라도 대처에 필요한 시간적인 여유를 확보할 수 있고, 실시간으로 누설감지를 할 수 있다는 장점이 있다.
도 1은 본 발명의 일 실시예에 따른 튜브 인프라 구조물를 포함하는 철도 교량을 도시한 도면이다.
도 2는 도1의 A를 확대하여 도시한 것으로 본 발명의 일 실시예에 따른 튜브 인프라 구조물의 종단면도이다.
도 3은 도1의 A를 확대하여 도시한 것으로 본 발명의 일 실시예에 따른 튜브 인프라 구조물의 횡단면도이다.
도 4는 본 발명의 일 실시예에 따른 튜브의 결합 영역에 패킹부가 개재된 것을 설명하기 위한 종단면도이다.
도 5는 본 발명의 다른 실시예에 따른 패킹부가 없는 튜브 인프라 구조물의 종단면도이다.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
도 1은 본 발명의 일 실시예에 따른 튜브 인프라 구조물를 포함하는 철도 교량을 도시한 도면이고, 도 2는 도1의 A를 확대하여 도시한 것으로 본 발명의 일 실시예에 따른 튜브 인프라 구조물의 종단면도이고, 도 3은 도1의 A를 확대하여 도시한 것으로 본 발명의 일 실시예에 따른 튜브 인프라 구조물의 횡단면도이고, 도 4 는 본 발명의 일 실시예에 따른 튜브의 결합 영역에 패킹부가 개재된 것을 설명하기 위한 종단면도이고, 도 5는 본 발명의 다른 실시예에 따른 패킹부가 없는 튜브 인프라 구조물의 종단면도이다.
도1을 참조하면, 철도 교량은 복수의 인프라 구조물을 포함하는 것으로, 하나의 튜브 인프라 구조물(A)은 제 1 튜브(10), 제 2 튜브(20) 및 제 1 튜브(10)와 제 2 튜브(20)의 결합영역을 에워싸는 유체 탱크(30)를 포함한다. 또한 횡 방향을 따라 수평하게 배치되는 복수의 튜브 인프라 구조물(A)과 유체 탱크(30)의 하단에 배치되어 튜브 인프라 구조물(A)을 지지하는 복수의 교각(40)을 포함한다.
구체적으로 도 2 및 도 3을 참조하면, 튜브 인프라 구조물은 제 1 튜브(10), 제 1 튜브(10)에 결합된 제 2 튜브(20) 및 제 1 튜브(10)와 제 2 튜브(20)의 결합영역을 에워싸도록 배치되며, 내부에 유체가 충진되어, 결합영역에 대한 밀폐 상태를 제공하는 유체 탱크(30)를 포함하되, 제 1 튜브(10) 및 제 2 튜브(20)의 내부는 음압이 유지되도록 한다.
즉, 제 1 튜브(10)와 제 2 튜브(20)의 결합 영역의 외부를 둘러싸는 고점도 유체가 담긴 탱크를 통해 기체 유입을 완전히 차단할 수 있다. 이로 인해 튜브의 내부와 외부의 압력차는 약 1기압 정도 또는 그 이상으로 유지되어 튜브 인프라 내부에 음압이 작용하게 된다. 또한, 유체의 높은 점도로 인하여 밀폐 구조에 문제가 생기더라도 유체 탱크(30)에 담긴 유체가 먼저 제 1 튜브(10) 및 제 2 튜브(20)의 내부로 유입되기 때문에 튜브 인프라 내부의 진공을 일정 시간 동안 더 유지할 수 있다는 효과가 있다.
먼저, 유체 탱크(30)는 제 1 튜브(10)와 제 2튜브(20)의 결합 영역을 에워싸도록 배치되며 내부에 유체가 충진되어 결합영역에 대한 밀폐 상태를 제공할 수 있다. 예를 들어 제 1 튜브(10) 및 제 2 튜브(20)의 내부는 진공에 가까운 낮은 압력 (약 0.001 기압)이고 외부는 대기압 (1기압)이 가해지게 된다. 또한 유체 탱크(30)는 상부의 일 영역에 유체가 유입되는 개구부(310)를 포함한다. 일 예로, 이와 같은 개구부(310)를 통해 빗물을 유입하여, 고점도의 유체 대신에 활용할 수 있다.
여기서, 유체는 미세입자(파우더) 및 단섬유 중 적어도 하나를 포함하여 점도를 조절할 수 있다. 또한, 유체는 휘발성 유체 및 비휘발성 유체 중 적어도 하나를 포함할 수 있다. 예를 들어, 휘발성 유체 및 비휘발성 유체를 혼합하여 사용하는 경우, 휘발성 유체의 상부에 비휘발성 유체가 위치하도록 하여, 휘발성 유체의 증발을 방지할 수 있으며, 이와 같은 비휘발성 유체를 사용하여 유지보수 주기를 길게 잡을 수 있다.
제 1 튜브(10) 및 제 2 튜브(20)는 초고속 진공 열차가 지날 수 있을 정도의 직경을 갖는 원형의 튜브이며, 기존의 철도 터널 기술에 근거하면 튜브의 직경은 대략 2~3 m로 정도로 형성될 수 있으나 이에 한정된 것은 아니며, 개별 튜브는 다양한 길이와 두께를 갖도록 형성될 수 있다.
예시적으로 튜브는 탄소강, 스테인레스강, 알루미늄 등의 금속 재질, 강철과 콘크리트를 같이 사용하는 혼합 재질, 강철 뼈대(rib)가 포함된 콘크리트 재질, 섬유강화플라스틱(FRP, fiber reinforced plastics), 폴리에틸렌(PE, polyethylene) 등의 폴리머 재질 등으로 이루어질 수 있다.
도 2 및 도 3을 참조하면, 본 발명의 튜브 인프라 구조물에 있어서,은 제 1 튜브(10) 및 제 2 튜브(20)는 양측 단부에 각각 위치하는 암연결부(110)와 수연결부(210)를 포함하되, 제 1 튜브(10)의 암연결부(110)와 제 2 튜브(20)의 수연결부(210)가 끼움 방식에 의하여 결합될 수 있다.
또한 제 1 튜브(10)와 제 2 튜브(20)의 결합영역 사이에 개재되는 패킹부(150)를 더 포함한다. 패킹부(150)는 오링(O-ring) 및 탄성중합체로 이루어진 면 개스킷 중 적어도 하나로 이루어질 수 있으나, 이에 한정된 것은 아니다.
예시적으로, 도 4를 참조하면 패킹부(150)는 제 1 튜브(10)의 암연결부(110)의 내주면과 제 2 튜브(20)의 수연결부(210)의 외주면에 사이에 개재되어 제 1 튜브(10) 및 제 2 튜브(20)의 내부를 밀폐할 수 있다. 또한 암연결부(110)의 내주면의 직경은 수연결부(210)의 외주면의 직경보다 크게 형성되며, 제 2 튜브(20)의 수연결부(210)가 제 1 튜브(10)의 암연결부(110)에 끼워 맞춰질 수 있다. 더불어 제 1 튜브(10)와 제 2 튜브(20) 사이에 결합 마진을 형성하여 열변형에 의한 길이 변화를 완충시킬 수 있다.
이로 인해 일차적으로는 패킹부(150)를 통해 기체 유입을 차단하고, 이차적으로는 유체 탱크(30)에 담긴 고점도 유체를 통해 기체 유입을 완전히 차단할 수 있다. 또한 각 제 1 튜브(10) 및 제 2 튜브(20)와 패킹부(150) 사이에 미세한 틈이 발생하더라도, 주변의 유체는 높은 점도로 인하여 틈으로 흘러들어 가지 않기 때문에 패킹부(150)와 유체 탱크(30)가 이중 밀폐 구조로 작용할 수 있다. 더불어 제 1 튜브(10) 및 제 2 튜브(20)의 결합 영역에 문제가 발생하더라도, 유체 탱크(30)에 담긴 유체가 먼저 제 1 및 제 2 튜브(10, 20)의 내부로 유입되기 때문에 튜브 인프라 내부의 진공을 일정 시간 동안 유지할 수 있다.
본 발명의 튜브 인프라 구조물은 유체 탱크(30)의 유체 누설 여부를 감지하는 센서(320)를 더 포함한다.
센서(320)는 유체 탱크(30)의 내부에 구비되어 유체의 부피가 초기 측정값 이하로 측정되는 경우 유체가 누설된 것으로 판단할 수 있다. 즉, 최초에 유체 탱크(30)에 담긴 유체의 부피를 측정하고, 센서(320)를 통해 실시간으로 유체의 부피를 측정할 수 있다. 이후 유체의 부피가 초기 측정값 이하로 측정되는 경우 유체가 누설된 것으로 판단할 수 있다. 이와 같이, 센서(320)를 통해 유체의 부피를 측정하는 것만으로, 밀폐 검지를 위한 별도의 시스템 필요 없이 실시간으로 누설 여부를 감지를 할 수 있다는 장점이 있다.
도 5를 참조하면, 암연결부(110)는 내주면의 직경이 타단으로 갈수록 증가하도록 형성되며, 타단면에 형성된 플랜지부(101)를 포함하고, 수연결부(210)는 내주면의 직경이 일단으로 갈수록 감소하도록 형성되며, 외주면에 형성된 홈부(201)를 포함한다. 여기서 제 1 튜브(10)의 플랜지부(101)에 제 2 튜브(20)의 홈부(201)가 끼워 맞춰질 수 있으며, 이로 인해 제 1 튜브(10) 및 제 2 튜브(20)의 내부가 밀폐될 수 있다.
또한 플랜지부(101)와 결합된 홈부(201)는 열변형에 의해 제 1 튜브(10) 또는 제 2 튜브(20)의 수평 이동이 가능하도록 결합 마진을 갖도록 형성될 수 있다.
예시적으로, 도 5에 도시된 것처럼, 종단면에서 바라볼 때 제 1 튜브(10)의 암연결부(110)는 타단으로 갈수록 외측으로 경사지도록 연장되며, 타단면에서 돌출된 플랜지부(101)를 구비할 수 있다. 제 2 튜브(20)의 수연결부(210)는 일단으로 갈수록 내측으로 경사지도록 연장된 홈부(201)를 포함하며, 홈부(201)는 제 1 튜브(10)의 플랜지부(101)의 내주면과 대응하도록 형성될 수 있다. 또한 플랜지부(101)와 홈부(201) 사이에 결합 마진을 형성하여 열변형에 의한 제 1 튜브(10) 또는 제 2 튜브(20)의 길이 변화를 완충시킬 수 있다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (12)

  1. 튜브 인프라 구조물에 있어서,
    제 1 튜브;
    상기 제 1 튜브에 결합된 제 2 튜브; 및
    상기 제 1 튜브와 제 2 튜브의 결합영역을 에워싸도록 배치되며, 내부에 유체가 충진되어, 상기 결합영역에 대한 밀폐 상태를 제공하는 유체 탱크를 포함하되,
    상기 제 1 튜브 및 제 2 튜브의 내부는 음압이 유지되도록 하는 것인 튜브 인프라 구조물.
  2. 제 1 항에 있어서,
    상기 제 1 튜브 및 제 2 튜브는 양측 단부에 각각 위치하는 암연결부와 수연결부를 포함하되,
    상기 제 1 튜브의 암연결부와 상기 제 2 튜브의 수연결부가 끼움 방식에 의하여 결합되는 것인 튜브 인프라 구조물.
  3. 제 2 항에 있어서,
    상기 암연결부는 내주면의 직경이 타단으로 갈수록 증가하도록 형성되며, 타단면에 형성된 플랜지부를 포함하고,
    상기 수연결부는 내주면의 직경이 타단으로 갈수록 감소하도록 형성되며, 외주면에 형성된 홈부를 포함하며,
    상기 제 1 튜브의 플랜지부에 상기 제 2튜브의 홈부가 끼워 맞춰지는 것인 튜브 인프라 구조물.
  4. 제 3 항에 있어서,
    상기 플랜지부와 결합된 홈부는 열변형에 의해 상기 제 1 튜브 또는 제 2 튜브의 수평 이동이 가능하도록 결합 마진을 갖도록 형성되는 것인 튜브 인프라 구조물.
  5. 제 1 항에 있어서,
    상기 제 1 튜브와 제 2 튜브의 결합영역 사이에 개재되는 패킹부를 더 포함하는 것인 튜브 인프라 구조물.
  6. 제 5 항에 있어서,
    상기 패킹부는 오링(O-ring) 및 면 개스킷 중 적어도 하나로 이루어지는 것인 튜브 인프라 구조물.
  7. 제 1 항에 있어서,
    상기 유체 탱크의 유체 누설 여부를 감지하는 센서를 더 포함하는 것인 튜브 인프라 구조물.
  8. 제 7 항에 있어서,
    상기 센서는 상기 유체 탱크의 내부에 구비되어 상기 유체의 부피가 초기 측정값 이하로 측정되는 경우 상기 유체가 누설된 것으로 판단하는 것인 튜브 인프라 구조물.
  9. 제 1 항에 있어서,
    상기 유체 탱크는 상부의 일 영역에 상기 유체가 유입되는 개구부를 포함하는 것인 튜브 인프라 구조물.
  10. 제 1 항에 있어서,
    상기 유체는 미세입자 및 단섬유 중 적어도 하나를 포함하는 것인 튜브 인프라 구조물.
  11. 제 10 항에 있어서,
    상기 유체는 휘발성 유체 및 비휘발성 유체 중 적어도 하나를 포함하는 것인 튜브 인프라 구조물.
  12. 튜브 인프라 구조물을 포함하는 철도 교량에 있어서,
    횡 방향을 따라 수평하게 배치되는 복수의 제 1 항에 따른 튜브 인프라 구조물; 및
    상기 튜브 인프라 구조물의 유체 탱크 하단에 배치되어 상기 튜브 인프라 구조물을 지지하는 복수의 교각을 포함하는 철도 교량.
PCT/KR2018/008160 2017-08-10 2018-07-19 음압이 작용하는 튜브 인프라 구조물 WO2019031725A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18844367.5A EP3666615B1 (en) 2017-08-10 2018-07-19 Tube infrastructure with vacuum pressure
US16/607,943 US11320070B2 (en) 2017-08-10 2018-07-19 Tube infrastructure with vacuum pressure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170101788A KR101950475B1 (ko) 2017-08-10 2017-08-10 음압이 작용하는 튜브 인프라 구조물
KR10-2017-0101788 2017-08-10

Publications (1)

Publication Number Publication Date
WO2019031725A1 true WO2019031725A1 (ko) 2019-02-14

Family

ID=65271724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/008160 WO2019031725A1 (ko) 2017-08-10 2018-07-19 음압이 작용하는 튜브 인프라 구조물

Country Status (4)

Country Link
US (1) US11320070B2 (ko)
EP (1) EP3666615B1 (ko)
KR (1) KR101950475B1 (ko)
WO (1) WO2019031725A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102122076B1 (ko) * 2018-05-21 2020-06-26 한국철도기술연구원 하이퍼튜브용 실링장치
KR102409040B1 (ko) 2020-03-31 2022-06-17 한국철도기술연구원 튜브트레인용 음압 기밀튜브의 누기 검측 시스템 및 그 방법
WO2024015490A1 (en) * 2022-07-15 2024-01-18 Fsc Technologies Llc System for conveying at least one transport capsule

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4041718A (en) * 1974-11-14 1977-08-16 Deep Sea Grouting Packers, Inc. Sealing devices
JP2000240810A (ja) * 1999-02-19 2000-09-08 Nok Corp 縦型液体シール装置
JP2005042328A (ja) * 2003-07-23 2005-02-17 Nippon Steel Corp 樹脂シート、樹脂シートの継手構造及びコンクリート構造物の施工方法並びにコンクリートセグメント及びコンクリート中詰め鋼製セグメント
KR101130807B1 (ko) 2009-12-17 2012-03-28 한국철도기술연구원 튜브 철도 시스템의 진공 분할 관리 시스템 및 진공 차단막 장치
US20160230350A1 (en) * 2015-02-08 2016-08-11 Hyperloop Technologies, Inc. Transportation system
JP2016191638A (ja) * 2015-03-31 2016-11-10 株式会社東芝 漏洩検知システム及び漏洩検知方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2327171A1 (fr) 1973-12-13 1977-05-06 Reboul Sa Sofra Dispositif de transfert pneumatique de petites pieces
US4181995A (en) * 1977-10-11 1980-01-08 Zur Henry C Modular structure for bridges, overpasses and roadways
DE2948204C2 (de) 1979-11-30 1982-06-16 Festo-Maschinenfabrik Gottlieb Stoll, 7300 Esslingen Druckmittelbetätigter Stellantrieb für eine Arbeits- oder Transportvorrichtung
US5170659A (en) * 1991-04-08 1992-12-15 Kemp Development Corporation Apparatus and method for detecting fluid leakage
US5461904A (en) * 1993-09-13 1995-10-31 Texaco Limited Leak detection means and method
US5918914A (en) * 1997-11-25 1999-07-06 Morris; Waldo Ivan Sealing lock joint pipe fitting
JP3921208B2 (ja) 2003-06-02 2007-05-30 乙一 落合 管体の接続構造
GB0625227D0 (en) * 2006-12-19 2007-01-24 Aker Kvaerner Subsea Ltd Subsea couplers
US8851099B2 (en) * 2012-06-06 2014-10-07 International Businss Machines Corporation Pipe monitoring system and method
US9228298B2 (en) 2013-03-14 2016-01-05 Daryl Oster Evacuated tube transport system with interchange capability

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4041718A (en) * 1974-11-14 1977-08-16 Deep Sea Grouting Packers, Inc. Sealing devices
JP2000240810A (ja) * 1999-02-19 2000-09-08 Nok Corp 縦型液体シール装置
JP2005042328A (ja) * 2003-07-23 2005-02-17 Nippon Steel Corp 樹脂シート、樹脂シートの継手構造及びコンクリート構造物の施工方法並びにコンクリートセグメント及びコンクリート中詰め鋼製セグメント
KR101130807B1 (ko) 2009-12-17 2012-03-28 한국철도기술연구원 튜브 철도 시스템의 진공 분할 관리 시스템 및 진공 차단막 장치
US20160230350A1 (en) * 2015-02-08 2016-08-11 Hyperloop Technologies, Inc. Transportation system
JP2016191638A (ja) * 2015-03-31 2016-11-10 株式会社東芝 漏洩検知システム及び漏洩検知方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3666615A4

Also Published As

Publication number Publication date
EP3666615A4 (en) 2021-05-19
EP3666615B1 (en) 2022-12-28
EP3666615A1 (en) 2020-06-17
US11320070B2 (en) 2022-05-03
US20200362995A1 (en) 2020-11-19
KR101950475B1 (ko) 2019-02-20

Similar Documents

Publication Publication Date Title
WO2019031725A1 (ko) 음압이 작용하는 튜브 인프라 구조물
CN102588592B (zh) 法兰连接结构
BR112013005597B1 (pt) junta tubular
KR100917144B1 (ko) 단열이중관의 신축 조인트장치
CN109707945A (zh) 一种耐高温高压补偿器
CN211449944U (zh) 装配式建筑管道系统的管道防漏结构
KR102122076B1 (ko) 하이퍼튜브용 실링장치
EP1314917B1 (en) Seal ring and seal structure at flange joint used for composite tanks and pipes
NO327623B1 (no) Subsea fiberoptisk penetrator
KR102409040B1 (ko) 튜브트레인용 음압 기밀튜브의 누기 검측 시스템 및 그 방법
US2875917A (en) High temperature spring seal
CN215000057U (zh) 应用于盾构机上的防爆型伸缩管
CN210119617U (zh) 一种便于光缆敷设更换的管中管结构
CN205207971U (zh) 一种环压成型管接头
CN107489846A (zh) 一种带有报警装置的密封球形补偿器
CN2755588Y (zh) 粘稠物料压力传感装置
ES2715331T3 (es) Depósito de combustible de aeronave que comprende un sistema para medir la presión a distancia
CN209892931U (zh) 一种高性能汽车空调连接管路
CN103726875A (zh) 一种煤矿防爆抗压密闭的远程填充方法
CN212843813U (zh) 一种密封效果好的旋进流量计管道
KR101513849B1 (ko) 배관 연결부 밀봉 구조
CN208333772U (zh) 管道螺纹密封性检测工装和管道螺纹密封性检测装置
CN209385072U (zh) 防缠绕连接器以及地应力测量系统
CN206770835U (zh) 一种金属与非金属双密封型非粘结挠性管注胶接头
CN216345467U (zh) 一种燃气气体流量计

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18844367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018844367

Country of ref document: EP

Effective date: 20200310