WO2019031623A1 - 비결정질 나노 세라믹 파우더 제조 방법 - Google Patents

비결정질 나노 세라믹 파우더 제조 방법 Download PDF

Info

Publication number
WO2019031623A1
WO2019031623A1 PCT/KR2017/008571 KR2017008571W WO2019031623A1 WO 2019031623 A1 WO2019031623 A1 WO 2019031623A1 KR 2017008571 W KR2017008571 W KR 2017008571W WO 2019031623 A1 WO2019031623 A1 WO 2019031623A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
aqueous solution
main reactor
phosphoric acid
powder
Prior art date
Application number
PCT/KR2017/008571
Other languages
English (en)
French (fr)
Inventor
이민수
이호준
권영훈
홍범기
장서요
Original Assignee
(주)오스테오닉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)오스테오닉 filed Critical (주)오스테오닉
Priority to PCT/KR2017/008571 priority Critical patent/WO2019031623A1/ko
Publication of WO2019031623A1 publication Critical patent/WO2019031623A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/32Phosphates of magnesium, calcium, strontium, or barium

Definitions

  • the present invention relates to an amorphous nanoceramic powder, and more particularly, to a method for preparing amorphous nanoceramic powder capable of increasing the rate of reaction of a mixed aqueous solution as well as the solubility of an amorphous phase to be produced.
  • bone grafting methods such as autogenous bone graft, allograft bone grafting, and heterogeneous bone grafting have various constraints depending on the biocompatibility depending on the bone defect site and the body of the patient
  • artificial bone grafts produced by compression and sintering of metal or ceramic powder Techniques have been developed to implant bone defect sites.
  • the artificial bone is made of a substance having a low solubility while having a low heat-generating property when it is curable with respect to tissues.
  • calcium phosphate material suitable for these properties has been widely used as a bone substitute material in dental and medical fields as well as artificial bone manufacturing.
  • HA Hydrophilicity
  • TCP tricalcium phosphate
  • HA is similar in crystallinity and chemistry to inorganic components that make up the actual bone, and has a property of binding directly to the bone.
  • the low solubility in vivo has disadvantages.
  • TCP has the property of binding directly to bone, dissolving in vivo over time, and ultimately providing a calcium source necessary for osteogenesis.
  • the nano-sized HA and TCP manufacturing techniques according to the prior art are required to have a long reaction time, and the solubility is lowered due to crystallization due to drying and calcination at a high temperature.
  • the present invention has been made in view of the above points, and it is an object of the present invention to provide an amorphous nano ceramic powder manufacturing method in which an aqueous solution mixed in an atmosphere containing no carbon dioxide is reacted to increase the solubility of amorphous materials to be produced, .
  • a method for preparing an amorphous nano-ceramic powder which comprises: transferring calcium hydroxide (Ca (OH) 2 ) powder to a three-necked flask containing no carbon dioxide, calcium hydroxide (Ca (OH) 2) to prepare a solution, phosphoric acid (H 3 PO 4) solution by the addition of secondary or more of distilled water and then put into another three-necked flask was charged with the carbon dioxide-free atmosphere, phosphoric acid (H 3 PO 4 ) aqueous solution; The aqueous solution of calcium hydroxide (Ca (OH) 2 ) and the aqueous solution of phosphoric acid (H 3 PO 4 ) were transferred to the main reactor at the same rate and at the same volume, and then [in the main reactor of the atmosphere containing no carbon dioxide ; ≪ / RTI > And a third step of drying the main reactor in the carbon dioxide-free atmosphere to manufacture
  • the carbon dioxide-free atmosphere is formed by injecting decarbonized air through the KOH into the three-way flask while purging the N 2 gas in the three-way flask, After the N 2 gas is purged in the flask, the carbon dioxide-free atmosphere can be formed by injecting decarboxylated air through the KOH into the three-necked flask.
  • the Ca / P molar ratio of the calcium hydroxide (Ca (OH) 2 ) and phosphoric acid (H 3 PO 4 ) is transferred to the main reactor
  • the pH of the mixed phase is 5.0 or less and irradiating with microwaves
  • nano-sized beta-tris (calcium phosphate) (beta-TCP) powders can be prepared in the third step.
  • the Ca / P molar ratio of the calcium hydroxide (Ca (OH) 2 ) to the phosphoric acid (H 3 PO 4 ) is 1.67 or more.
  • NaOH is added to the main reactor, the pH of the mixed phase is adjusted to 12 or more, and microwave is irradiated, so that nano-sized HA (hydroxyapatite) powder can be produced in the third step.
  • the second step may irradiate the mixed solution of the main reactor with 700 W of microwave for 5 to 30 minutes.
  • the nanoceramics powder can be prepared by drying the main reactor in an atmosphere containing no carbon dioxide at 200 ° C or lower.
  • the solubility of the amorphous nano- since the mixed solution of the aqueous solution of calcium hydroxide (Ca (OH) 2 ) and the aqueous solution of phosphoric acid (H 3 PO 4 ) is reacted in the main reactor without the carbon dioxide atmosphere, the solubility of the amorphous nano- .
  • the reaction rate of the mixed solution can be improved by irradiating with microwave . Accordingly, the time required for manufacturing the amorphous nano-ceramic powder can be remarkably reduced.
  • the main reactor in a carbon dioxide-free atmosphere is dried at a low temperature of 200 ⁇ ⁇ or less to produce a nanoceramics powder without a high-temperature calcination process which lowers the amorphous solubility. Therefore, it is possible to prevent the crystallization of the ceramic, which has been caused by calcination at a high temperature, in advance.
  • nano-sized ceramic powder having a high degree of solubility while having a sufficient degree of compactness and strength in the process of manufacturing an artificial bone.
  • FIG. 1 is a diagram illustrating a method of manufacturing an amorphous nanoceramics powder according to the present invention
  • FIG. 2 is a diagram illustrating a method for producing nano-sized beta-trisodium phosphate ( ⁇ -TCP) powder based on the amorphous nanoceramics powder manufacturing method according to the present invention
  • FIG. 3 is a diagram illustrating a method of manufacturing nano-sized HA (hydroxyapatite) powder based on the amorphous nanoceramics powder manufacturing method according to the present invention.
  • FIG. 1 is a diagram illustrating a method of manufacturing an amorphous nanoceramics powder according to the present invention.
  • a method for manufacturing amorphous nanoceramics powder according to the present invention includes the steps of forming a calcium phosphate-based bone composition by using calcium hydroxide (Ca (OH) 2 ) and phosphoric acid (H 3 PO 4 ) Of powder.
  • Calcium hydroxide (Ca (OH) 2) powder-free carbon dioxide (CO 2 -Free) was then transferred to a three-necked flask, the atmosphere was added a sufficient amount of distilled water than the second free Ca 2 + ions and OH - free ions (Ca (OH) 2 ) aqueous solution was prepared (S10).
  • the calcium hydroxide (Ca (OH) 2 ) powder is transferred to a three-necked flask containing no carbon dioxide, and the second or more distilled water is slowly added while stirring by using a stirrer bar and a stirrer chamber.
  • the second or higher distilled water is slowly added over 2 hours, which takes into account the intense exothermic reaction, and the internal temperature varies depending on the amount of distilled water more than the second one added and the rate at which it is added.
  • the carbon dioxide-free atmosphere of the three-necked flask is formed by purging N 2 gas and injecting decarboxylated air through KOH.
  • N 2 gas may be purged in a three-necked flask, and decarboxylated air may be injected through the KOH into the three-necked flask to form a carbon dioxide-free atmosphere.
  • N 2 gas may be purged in a three-necked flask, then decarboxylated air may be injected through the KOH into the three-necked flask to form a carbon dioxide-free atmosphere. That is, the calcium hydroxide (Ca (OH) 2) to close the right rubber stopper, move the powder into a three-neck flask, and after using the single hose and the Schlenk line (Schlenk line) attached to the rubber stopper of N 2 gas 3 times or more. The decarbonated air passed through the KOH flask is supplied to the three-necked flask through another hose, thereby enabling a carbon dioxide-free atmosphere.
  • Ca (OH) 2 calcium hydroxide
  • the aqueous solution of calcium hydroxide (Ca (OH) 2 ) and the aqueous solution of phosphoric acid (H 3 PO 4 ) prepared above were transferred to the main reactor at the same rate and the same volume using a peristaltic pump (S30).
  • a peristaltic pump S30
  • the volume ratio can be 1: 1 in the main reactor.
  • the calcium phosphate-based compound finally prepared can be determined by controlling the molar ratio to the starting material.
  • the main reactor in which the aqueous solution of calcium hydroxide (Ca (OH) 2 ) and the aqueous solution of phosphoric acid (H 3 PO 4 ) are transferred is that after the purging of N 2 gas, Carbon dioxide-free atmosphere.
  • the pH of the mixed phase was adjusted in a main reactor in which carbon dioxide (Ca (OH) 2 ) aqueous solution and phosphoric acid (H 3 PO 4 ) aqueous solution were transferred and mixed in a carbon dioxide free atmosphere, followed by microwave irradiation to cause a coprecipitation reaction (S40). As a result, fine nano-sized precipitates are formed.
  • the optimum range of the calcium phosphate compound finally produced according to the pH condition of the mixed phase may be varied. For example, by adjusting the pH to 5.0 or less, beta-trisodium phosphate ( ⁇ -TCP) is formed in the most stable manner, and the pH is adjusted to 12 or more so that HA (hydroxyapatite) is formed most stably.
  • conditions for irradiating microwave to the main reactor in a carbon dioxide-free atmosphere can be irradiated with microwaves of 700 W for 5 to 30 minutes. That is, the pH adjusted mixture of the mixed phase is irradiated with 700 W of microwave for 5 to 30 minutes to increase the reaction rate.
  • the carbon dioxide-free atmosphere of the main reactor can remove carbon dioxide from the internal air of the main reactor by injecting decarbonated air passed through KOH into the main reactor while drawing carbonic acid through the N 2 gas purge in the mixture in the main reactor as much as possible .
  • the reaction mixture reacts with calcium to cause crystallization and precipitation in the form of apatite. Therefore, in order to prevent crystallization precipitation, the mixed solution in the main reactor is reacted in a carbon dioxide- free atmosphere.
  • the main reactor of the carbon dioxide-free atmosphere was dried (S50).
  • the nano-ceramic powder is produced according to the drying (S60).
  • An exothermic reaction occurs when the aqueous solution of calcium hydroxide (Ca (OH) 2 ) and the aqueous solution of phosphoric acid (H 3 PO 4 ) are mixed.
  • drying is performed at a temperature of 200 ° C or lower, which corresponds to an optimum yield range of the finally produced calcium phosphate-based compound.
  • the ceramic powder to be produced may be nanoparticles having a length of 100 to 200 nm, a diameter of 10 to 50 nm, and an aspect ratio of 10 to 20.
  • FIG. 2 is a diagram illustrating a method for producing nano-sized beta-trisodium phosphate ( ⁇ -TCP) powder based on the amorphous nanoceramics powder manufacturing method according to the present invention.
  • FIG. 1 is a diagram illustrating a method of manufacturing a nano-sized HA (hydroxyapatite) powder based on a manufacturing method.
  • FIG. 2 is a diagram illustrating a method of manufacturing a nanoporous nano- And a process for producing a calcium phosphate-based compound.
  • ⁇ -TCP nano-sized beta-tris (calcium) phosphate
  • ⁇ -TCP nano-sized beta-tris (calcium) phosphate
  • the pH of the mixed phase was adjusted to 5.0 or less in a main reactor in a carbon dioxide-free atmosphere in which calcium hydroxide (Ca (OH) 2 ) aqueous solution and phosphoric acid (H 3 PO 4 ) aqueous solution were transferred and mixed. (S42).
  • Beta-trisodium phosphate (beta-TCP) powder was prepared (S62).
  • the other conditions such as the time for adding distilled water of the second or higher order, the velocity for transferring the aqueous solution, the intensity and time for irradiation of microwaves, and the temperature condition for drying were the same as described in FIG.
  • FIG 3 is to illustrate a method for preparing HA (hydroxyapatite) powder of the nano-scale, the calcium prepared in a three-necked flask was charged with the carbon dioxide-free atmosphere hydroxide (Ca (OH) 2) aqueous solution and phosphoric acid (H 3 PO 4 ) Aqueous solution was transferred to the main reactor at the same rate and at the same volume using a peristaltic pump.
  • the pH of the mixed phase was adjusted to 12 or more in a main reactor of a carbon dioxide-free atmosphere in which an aqueous solution of calcium hydroxide (Ca (OH) 2 ) and a solution of phosphoric acid (H 3 PO 4 ) followsed by coprecipitation (S44).
  • Ca (OH) 2 calcium hydroxide
  • H 3 PO 4 phosphoric acid
  • the molar ratio of Ca / P molar ratio of calcium hydroxide (Ca (OH) 2 ) to phosphoric acid (H 3 PO 4 ) is 1.67 or more and the pH condition Nano-sized HA (hydroxyapatite) powders were prepared (S64).
  • the other conditions such as the time for adding distilled water of the second or higher order, the velocity for transferring the aqueous solution, the intensity and time for irradiation of microwaves, and the temperature condition for drying were the same as described in FIG.
  • the amorphous nanoceramic powder according to the present invention is described as being optimal for preparing nano-sized beta-trisodium phosphate (beta-TCP) powder and HA (hydroxyapatite) powder.
  • beta-TCP beta-trisodium phosphate
  • HA hydroxyapatite
  • the calcium phosphate- phosphate material in amorphous nano-sized powder form.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials For Medical Uses (AREA)

Abstract

본 발명은 비결정질 나노 세라믹 파우더 제조에 있어서, 특히 제조되는 비결정질의 용해도는 물론 혼합된 수용액의 반응속도를 높일 수 있는 비결정질 나노 세라믹 파우더 제조 방법에 관한 것으로, 칼슘하이드록사이드(Ca(OH)2) 분말을 이산화탄소 비함유 분위기의 3구 플라스크에 옮긴 후 2차 이상의 증류수를 첨가시켜 칼슘하이드록사이드(Ca(OH)2) 수용액을 제조하고, 인산(H3PO4) 용액을 이산화탄소 비함유 분위기의 또다른 3구 플라스크에 투입한 후 2차 이상의 증류수를 첨가시켜 인산(H3PO4) 수용액을 제조하는 제1단계; 상기 칼슘하이드록사이드(Ca(OH)2) 수용액과 상기 인산(H3PO4) 수용액을 동일한 속도와 동일한 볼륨으로 주반응기로 옮긴 후에 이산화탄소 비함유 분위기의 주반응기에서 혼합액을 반응시키는 제2단계; 그리고 상기 이산화탄소 비함유 분위기의 주반응기를 건조시켜 나노 세라믹 파우더를 제조하는 제3단계로 이루어지는 것이 특징인 발명이다.

Description

비결정질 나노 세라믹 파우더 제조 방법
본 발명은 비결정질 나노 세라믹 파우더 제조에 관한 것으로, 특히 제조되는 비결정질의 용해도는 물론 혼합된 수용액의 반응속도를 높일 수 있는 비결정질 나노 세라믹 파우더 제조 방법에 관한 것이다.
일반적으로 골조직이 손상되어 골 결손이 있는 경우에, 그 골 결손 부위에 자가골을 이식하거나, 동종골 및 이종골 등을 이식하는 방법을 사용한다.
자가골 이식, 동종골 이식, 이종골 이식 등과 같은 골 이식 방법은 환자의 골 결손 부위 및 신체에 따라 생체 적합성 유무에 따른 각종 제약이 발생하기 때문에, 금속 또는 세라믹 분말의 압축과 소결로 제조하는 인공골을 골 결손 부위에 이식하는 기술이 개발되었다.
인공골은 조직과 친화적이면서 경화 시에는 저발열 특성을 가지면서 용해도가 높은 물질로 제조되는 것이 바람직하다. 최근에는 이러한 특성들에 적합한 인산칼슘계(calcium phosphate) 물질이 인공골 제조는 물론 치과 및 의학분야에서 대표적인 골 대체재료 중 하나로 널리 사용되고 있다.
인산칼슘계 골조성물 중에는 높은 생체적합성, 우수한 생체활성, 자가 경화특성, 낮은 발열온도 및 우수한 성형성 등의 장점을 가지는 HA(Hydrpxyapatite)와 TCP(tricalcium phosphate) 등이 있다.
HA는 실제 뼈를 구성하는 무기성분과 결정학적, 화학적으로 유사하고 뼈와 직접 결합하는 특성이 있다. 그러나 생체 내에서 낮은 용해성 가지는 단점이 있다. TCP는 뼈와 직접 결합하는 특성을 가지면서 생체 내에서 시간 경과에 따라 용해되고, 최종적으로는 뼈형성 과정(Osteogenesis)에 필요한 칼슘원을 제공하는 특성을 가진다.
상기한 HA와 TCP의 특성에도 불구하고 그들의 단위입자 크기가 너무 크기 때문에 실제 인공골로 제조하는 과정에서 충분한 정도의 치밀도 및 강도를 제공하지 못한다는 단점이 있었다.
그에 따라 기계적 강도를 향상시키면서도 성형성도 우수한 인공골을 제조하기 위한 나노 크기의 HA와 TCP를 제조하는 기술이 개발되었다.
그러나 종래 기술에 따른 나노 크기의 HA와 TCP 제조 기술은 장시간의 반응시간이 요구되고 또한 고온에서 건조 및 하소를 함에 따른 결정화로 인해 용해도가 저하되는 문제를 여전히 안고 있다.
본 발명은 상기한 점을 감안하여 안출한 것으로, 특히 제조되는 비결정질의 용해도를 높이기 위해 이산화탄소 비함유 분위기에서 혼합된 수용액을 반응시키고 그 반응속도의 향상을 위해 마이크로파를 조사하는 비결정질 나노 세라믹 파우더 제조 방법을 제공하는 데 있다.
상기한 목적을 달성하기 위한 본 발명에 따른 비결정질 나노 세라믹 파우더 제조 방법은, 칼슘하이드록사이드(Ca(OH)2) 분말을 이산화탄소 비함유 분위기의 3구 플라스크에 옮긴 후 2차 이상의 증류수를 첨가시켜 칼슘하이드록사이드(Ca(OH)2) 수용액을 제조하고, 인산(H3PO4) 용액을 이산화탄소 비함유 분위기의 또다른 3구 플라스크에 투입한 후 2차 이상의 증류수를 첨가시켜 인산(H3PO4) 수용액을 제조하는 제1단계; 상기 칼슘하이드록사이드(Ca(OH)2) 수용액과 상기 인산(H3PO4) 수용액을 동일한 속도와 동일한 볼륨으로 주반응기로 옮긴 후에 이산화탄소 비함유 분위기의 주반응기에서 [마이크로파를 조사하여] 혼합액을 반응시키는 제2단계; 그리고 상기 이산화탄소 비함유 분위기의 주반응기를 건조시켜 나노 세라믹 파우더를 제조하는 제3단계로 이루어지는 것이다.
바람직하게, 상기 제1단계는 상기 3구 플라스크에서 N2 가스를 퍼징(purging)하면서 상기 3구 플라스크에 KOH를 통과하여 탈탄산화된 공기를 주입하여 상기 이산화탄소 비함유 분위기를 형성하거나, 상기 3구 플라스크에서 N2 가스를 퍼징(purging)한 후에 상기 3구 플라스크에 KOH를 통과하여 탈탄산화된 공기를 주입하여 상기 이산화탄소 비함유 분위기를 형성할 수 있다.
바람직하게, 상기 제2단계에서 상기 칼슘하이드록사이드(Ca(OH)2)와 상기 인산(H3PO4)의 Ca/P 몰비가 1.5가 되도록 동일한 속도와 동일한 볼륨으로 상기 주반응기로 옮긴 후에 그 혼합상의 pH를 5.0 이하로 조절하고 마이크로파를 조사함에 따라, 상기 제3단계에서 나노 크기의 베타-삼인산칼슘(β-TCP) 분말이 제조될 수 있다.
바람직하게, 상기 제2단계에서 상기 칼슘하이드록사이드(Ca(OH)2)와 상기 인산(H3PO4)의 Ca/P 몰비가 1.67 이상이 되도록 동일한 속도와 동일한 볼륨으로 상기 주반응기로 옮긴 후에 상기 주반응기에 NaOH를 첨가하여 그 혼합상의 pH를 12 이상으로 조절하고 마이크로파를 조사함에 따라, 상기 제3단계에서 나노 크기의 HA(hydroxyapatite) 분말이 제조될 수 있다.
바람직하게, 상기 제2단계는 상기 주반응기의 혼합액에 700W의 마이크로파를 5 내지 30분 동안 조사할 수 있다.
바람직하게, 상기 제3단계는 상기 이산화탄소 비함유 분위기의 주반응기를 200℃ 이하에서 건조시켜 나노 세라믹 파우더를 제조할 수 있다.
본 발명에 따르면, 칼슘하이드록사이드(Ca(OH)2) 수용액과 인산(H3PO4) 수용액의 혼합액을 이산화탄소 비함유 분위기의 주반응기에서 반응시키기 때문에, 제조되는 비결정질 나노 세라믹 파우더의 용해도를 높일 수 있다.
칼슘하이드록사이드(Ca(OH)2) 수용액과 인산(H3PO4) 수용액의 혼합액을 이산화탄소 비함유 분위기의 주반응기에서 반응시킬 때, 마이크로파를 조사함으로써 그 혼합액의 반응속도를 향상시킬 수 있다. 그에 따라 비결정질 나노 세라믹 파우더를 제조하는데 소요되는 시간을 현저히 줄일 수 있다.
비결정질의 용해도를 저하시키는 고온의 하소 과정 없이 이산화탄소 비함유 분위기의 주반응기를 200℃이하의 저온에서 건조시켜 나노 세라믹 파우더를 제조한다. 따라서, 고온의 하소로 인해 발생하던 세라믹의 결정화를 미연에 방지할 수 있다.
인공골로 제조하는 과정에서 충분한 정도의 치밀도 및 강도를 가지면서 높은 용해도를 가지는 나노 크기의 세라믹 파우더를 제공할 수 있다.
도 1은 본 발명에 따른 비결정질 나노 세라믹 파우더 제조 방법을 도시한 다이어그램이고,
도 2는 본 발명에 따른 비결정질 나노 세라믹 파우더 제조 방법에 기반하여 나노 크기의 베타-삼인산칼슘(β-TCP) 분말을 제조하는 방법을 도시한 다이어그램이고,
도 3은 본 발명에 따른 비결정질 나노 세라믹 파우더 제조 방법에 기반하여 나노 크기의 HA(hydroxyapatite) 분말을 제조하는 방법을 도시한 다이어그램이다.
본 발명의 다른 목적, 특징 및 이점들은 첨부한 도면을 참조한 실시 예들의 상세한 설명을 통해 명백해질 것이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예의 구성과 그 작용을 설명하며, 도면에 도시되고 또 이것에 의해서 설명되는 본 발명의 구성과 작용은 적어도 하나의 실시 예로서 설명되는 것이며, 이것에 의해서 상기한 본 발명의 기술적 사상과 그 핵심 구성 및 작용이 제한되지는 않는다.
우선, 도면들 중, 동일한 구성요소, 부품들, 그리고 절차상 단계는 가능한 동일한 참조부호로 나타내고 있음에 유의하여야 한다. 본 발명을 설명함에 있어, 관련된 공지기능 혹은 구성에 대한 구체적인 설명은 본 발명의 요지를 모호하지 않기 위하여 생략한다.
이하, 첨부한 도면을 참조하여 본 발명에 따른 비결정질 나노 세라믹 파우더 제조 방법의 바람직한 실시 예를 자세히 설명한다.
도 1은 본 발명에 따른 비결정질 나노 세라믹 파우더 제조 방법을 도시한 다이어그램이다.
도 1을 참조하면, 본 발명에 따른 비결정질 나노 세라믹 파우더 제조 방법은 개시물질로 칼슘하이드록사이드(Ca(OH)2)와 인산(H3PO4)을 사용하여 인산칼슘계 골조성물을 나노 크기의 파우더로 제조하는 것이다.
칼슘하이드록사이드(Ca(OH)2) 분말을 이산화탄소 비함유(CO2-Free) 분위기의 3구 플라스크에 옮긴 후 2차 이상의 증류수를 첨가시켜 충분한 양의 Ca2 + 자유이온 및 OH- 자유이온이 용해된 칼슘하이드록사이드(Ca(OH)2) 수용액을 제조하였다(S10). 상세하게, 칼슘하이드록사이드(Ca(OH)2) 분말을 이산화탄소 비함유 분위기의 3구 플라스크에 옮겨 스터링 바와 스터링 챔버를 이용하여 혼련(stirrer mixing)시키면서 2차 이상의 증류수를 서서히 첨가한다. 2차 이상의 증류수는 2시간에 걸쳐 서서히 첨가하는데, 이는 격렬한 발열반응을 고려한 것으로 첨가되는 2차 이상의 증류수의 양과 첨가되는 속도에 따라 내부 온도는 변화한다. 3구 플라스크의 이산화탄소 비함유 분위기는 N2 가스의 퍼징(purging) 및 KOH를 통과하여 탈탄산화된 공기를 주입하여 형성된다.
일예로, 3구 플라스크에서 N2 가스를 퍼징(purging)하면서 그 3구 플라스크에 KOH를 통과하여 탈탄산화된 공기를 주입하여 이산화탄소 비함유 분위기를 형성할 수 있다.
다른 예로, 3구 플라스크에서 N2 가스를 퍼징(purging)한 후에 그 3구 플라스크에 KOH를 통과하여 탈탄산화된 공기를 주입하여 이산화탄소 비함유 분위기를 형성할 수 있다. 즉, 칼슘하이드록사이드(Ca(OH)2) 분말을 3구 플라스크에 옮긴 후 바로 고무마개를 닫고, 이어 그 고무마개에 연결된 하나의 호스와 쉬렝크 라인(Schlenk line)을 이용하여 N2 가스로 3회 이상 퍼징한다. 이어 KOH 플라스크를 통과시킨 탈탄산화된 공기를 다른 호스를 통해 3구 플라스크 공급함으로써 이산화탄소 비함유 분위기가 가능해진다.
칼슘하이드록사이드(Ca(OH)2) 수용액의 제조와 함께 인산(H3PO4) 용액을 이산화탄소 비함유 분위기의 또다른 3구 플라스크에 투입한 후 2차 이상의 증류수를 첨가시켜 인산(H3PO4) 수용액을 제조하였다(S20). 즉, 또다른 3구 플라스크에 적정량의 인산(H3PO4) 용액을 투입하고 2차 이상의 증류수를 채운 후에, 닫힌 고무마개에 연결된 하나의 호스를 통해 질소가스를 퍼징한 후 KOH 플라스크를 통과시킨 탈탄산화된 공기를 다른 호스를 통해 공급한다.
상기에서 제조된 칼슘하이드록사이드(Ca(OH)2) 수용액과 인산(H3PO4) 수용액을 정량펌프(Peristaltic pump)를 이용하여 동일한 속도와 동일한 볼륨으로 주반응기로 옮겼다(S30). 여기서, 두 수용액을 정량펌프를 이용하여 동일한 속도로 주반응기로 옮기기 때문에 주반응기에서는 볼륨 비가 1:1로 반응시킬 수 있다. 그러나 개시물질에 대한 몰비를 조절하여 최종적으로 제조되는 인산칼슘계 화합물을 결정할 수 있다. 일예로, 주반응기에 동일한 속도와 동일한 볼륨으로 옮겨지는 칼슘하이드록사이드(Ca(OH)2) 수용액과 인산(H3PO4) 수용액의 Ca/P 몰비를 1,5로 하는 경우에는 베타-삼인산칼슘(β-TCP)이 제조되며, 주반응기에 동일한 속도와 동일한 볼륨으로 옮겨지는 칼슘하이드록사이드(Ca(OH)2) 수용액과 인산(H3PO4) 수용액의 Ca/P 몰비를 1.67 이상으로 하는 경우에는 HA(hydroxyapatite)가 제조될 수 있다. 물론 추가적인 온도조건이나 pH 조건에 대해서도 조절해야 한다. 이때, 칼슘하이드록사이드(Ca(OH)2) 수용액과 인산(H3PO4) 수용액이 옮겨지는 주반응기는 N2 가스의 퍼징(purging) 이후에 KOH를 통과하여 탈탄산화된 공기가 주입된 상태의 이산화탄소 비함유 분위기인 것이 바람직하다.
칼슘하이드록사이드(Ca(OH)2) 수용액과 인산(H3PO4) 수용액이 옮겨져 혼합된 이산화탄소 비함유 분위기의 주반응기에서 그 혼합상의 pH를 조절한 후에 마이크로파를 조사하여 혼합액을 공침 반응시켰다(S40). 그에 따라 미세한 나노 크기의 침전물이 형성된다. 여기서, 혼합상의 pH 조건에 따라 최종적으로 제조되는 인산칼슘계 화합물의 최적 범위가 달라질 수 있다. 일예로, pH를 5.0 이하로 조절하여 베타-삼인산칼슘(β-TCP)이 가장 안정적으로 최다량 형성되도록 하며, pH를 12 이상으로 조절하여 HA(hydroxyapatite)가 가장 안정적으로 최다량 형성되도록 한다. 한편, 이산화탄소 비함유 분위기의 주반응기에 마이크로파를 조사하는 조건은 700W의 마이크로파를 5 내지 30분 동안 조사할 수 있다. 즉, 혼합상의 pH가 조절된 혼합물에 700W의 마이크로파를 5 내지 30분 동안 조사하여 반응속도를 높이는 것이다. 주반응기의 이산화탄소 비함유 분위기는 주반응기 내의 혼합액에서 N2 가스 퍼징을 통해 탄산을 최대한 끌어내면서 KOH를 통과시킨 탈탄산화된 공기를 주반응기에 주입하여 주반응기의 내부 공기에서 탄산을 제거할 수 있다. 주반응기 내의 혼합액을 반응시킬 때 탄산이 존재하면 칼슘과 반응하여 Apatite 형태로 결정화 침전이 일어나기 때문에, 그 결정화 침전을 방지하고자 이산화탄소 비함유 분위기에서 주반응기 내의 혼합액을 반응시켰다.
마이크로파의 조사에 따른 반응에 의해 칼슘 수용액과 인산 수용액이 모두 소모되면, 그 이후에 이산화탄소 비함유 분위기의 주반응기를 건조시켰다(S50). 그 건조에 따라 나노 세라믹 파우더를 제조된다(S60). 칼슘하이드록사이드(Ca(OH)2) 수용액과 인산(H3PO4) 수용액의 혼합 시에는 발열 반응을 일으킨다. 그에 따라, 최종적으로 제조되는 인산칼슘계 화합물을 결정하기 위해서는 각각에 적절한 온도 조건을 유지하는 것이 바람직하다. 본 발명에서는 최종적으로 제조되는 인산칼슘계 화합물의 최적의 수율 범위에 해당하는 200℃이하의 온도조건으로 건조시켰다. 한편, 제조되는 세라믹 파우더는 100 내지 200㎚의 길이, 10 내지 50㎚의 직경을 가지며 종횡비가 10 내지 20의 크기의 나노 입자일 수 있다.
도 2는 본 발명에 따른 비결정질 나노 세라믹 파우더 제조 방법에 기반하여 나노 크기의 베타-삼인산칼슘(β-TCP) 분말을 제조하는 방법을 도시한 다이어그램이고, 도 3은 본 발명에 따른 비결정질 나노 세라믹 파우더 제조 방법에 기반하여 나노 크기의 HA(hydroxyapatite) 분말을 제조하는 방법을 도시한 다이어그램으로, 도 1에 도시된 비결정질 나노 세라믹 파우더 제조 방법에 기반하되 개시물질의 몰비 조건과 pH 조건을 조절하여 서로 다른 인산칼슘계 화합물을 제조하는 과정을 도시한 것이다.
도 2는 나노 크기의 베타-삼인산칼슘(β-TCP) 분말을 제조하는 방법을 도시한 것으로, 이산화탄소 비함유 분위기의 3구 플라스크에서 제조된 칼슘하이드록사이드(Ca(OH)2) 수용액과 인산(H3PO4) 수용액을 정량펌프(Peristaltic pump)를 이용하여 동일한 속도와 동일한 볼륨으로 주반응기로 옮기되, 두 수용액에 대해 칼슘하이드록사이드(Ca(OH)2)와 인산(H3PO4)의 Ca/P 몰비를 1.5로 하여 주반응기로 옮겼다(S32).
칼슘하이드록사이드(Ca(OH)2) 수용액과 인산(H3PO4) 수용액이 옮겨져 혼합된 이산화탄소 비함유 분위기의 주반응기에서 그 혼합상의 pH를 5.0 이하로 조절한 후에 마이크로파를 조사하여 혼합액을 공침 반응시켰다(S42).
정리하면, 칼슘하이드록사이드(Ca(OH)2)와 인산(H3PO4)의 Ca/P 몰비를 1.5로 하는 몰비 조건과 주반응기에서 혼합상의 pH를 5.0 이하로 조절하는 pH 조건으로 나노 크기의 베타-삼인산칼슘(β-TCP) 분말을 제조하였다(S62).
기타 2차 이상의 증류수를 첨가시키는 시간 조건이나 수용액을 옮기는 속도 조건이나 마이크로파의 조사를 위한 세기 및 시간 조건이나 건조를 위한 온도 조건은 도 1을 통해 설명된 바와 동일하게 진행시켰다.
도 3은 나노 크기의 HA(hydroxyapatite) 분말을 제조하는 방법을 도시한 것으로, 이산화탄소 비함유 분위기의 3구 플라스크에서 제조된 칼슘하이드록사이드(Ca(OH)2) 수용액과 인산(H3PO4) 수용액을 정량펌프(Peristaltic pump)를 이용하여 동일한 속도와 동일한 볼륨으로 주반응기로 옮기되, 두 수용액에 대해 칼슘하이드록사이드(Ca(OH)2)와 인산(H3PO4)의 Ca/P 몰비를 1.67 이상으로 하여 주반응기로 옮겼다(S34).
칼슘하이드록사이드(Ca(OH)2) 수용액과 인산(H3PO4) 수용액이 옮겨져 혼합된 이산화탄소 비함유 분위기의 주반응기에서 그 혼합상의 pH를 12 이상으로 조절한 후에 마이크로파를 조사하여 혼합액을 공침 반응시켰다(S44).
정리하면, 칼슘하이드록사이드(Ca(OH)2)와 인산(H3PO4)의 Ca/P 몰비를 1.67 이상으로 하는 몰비 조건과 주반응기에서 혼합상의 pH를 12 이상으로 조절하는 pH 조건으로 나노 크기의 HA(hydroxyapatite) 분말을 제조하였다(S64).
기타 2차 이상의 증류수를 첨가시키는 시간 조건이나 수용액을 옮기는 속도 조건이나 마이크로파의 조사를 위한 세기 및 시간 조건이나 건조를 위한 온도 조건은 도 1을 통해 설명된 바와 동일하게 진행시켰다.
지금까지 본 발명의 바람직한 실시 예에 대해 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 본질적인 특성을 벗어나지 않는 범위 내에서 변형된 형태로 구현할 수 있을 것이다.
그러므로 여기서 설명한 본 발명의 실시 예는 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 하고, 본 발명의 범위는 상술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함되는 것으로 해석되어야 한다.
본 발명에 따른 비결정질 나노 세라믹 파우더 제조 방법은 나노 크기의 베타-삼인산칼슘(β-TCP) 분말과 HA(hydroxyapatite) 분말을 제조하는데 최적인 것으로 설명하나, 인공골 제조에 사용되는 인산칼슘계(calcium phosphate) 물질을 비결정질 나노 크기의 분말 형태로 제조하는데 적절하게 응용가능하다.

Claims (6)

  1. 칼슘하이드록사이드(Ca(OH)2) 분말을 이산화탄소 비함유 분위기의 3구 플라스크에 옮긴 후 2차 이상의 증류수를 첨가시켜 칼슘하이드록사이드(Ca(OH)2) 수용액을 제조하고, 인산(H3PO4) 용액을 이산화탄소 비함유 분위기의 또다른 3구 플라스크에 투입한 후 2차 이상의 증류수를 첨가시켜 인산(H3PO4) 수용액을 제조하는 제1단계;
    상기 칼슘하이드록사이드(Ca(OH)2) 수용액과 상기 인산(H3PO4) 수용액을 동일한 속도와 동일한 볼륨으로 주반응기로 옮긴 후에 이산화탄소 비함유 분위기의 주반응기에서 혼합액을 반응시키는 제2단계; 그리고
    상기 이산화탄소 비함유 분위기의 주반응기를 건조시켜 나노 세라믹 파우더를 제조하는 제3단계로 이루어지는 것을 특징으로 하는 비결정질 나노 세라믹 파우더 제조 방법.
  2. 제 1 항에 있어서,
    상기 제1단계는,
    상기 3구 플라스크에서 N2 가스를 퍼징(purging)하면서 상기 3구 플라스크에 KOH를 통과하여 탈탄산화된 공기를 주입하여 상기 이산화탄소 비함유 분위기를 형성하거나,
    상기 3구 플라스크에서 N2 가스를 퍼징(purging)한 후에 상기 3구 플라스크에 KOH를 통과하여 탈탄산화된 공기를 주입하여 상기 이산화탄소 비함유 분위기를 형성하는 것을 특징으로 하는 비결정질 나노 세라믹 파우더 제조 방법.
  3. 제 1 항에 있어서,
    상기 제2단계에서 상기 칼슘하이드록사이드(Ca(OH)2)와 상기 인산(H3PO4)의 Ca/P 몰비가 1.5가 되도록 동일한 속도와 동일한 볼륨으로 상기 주반응기로 옮긴 후에 그 혼합상의 pH를 5.0 이하로 조절하고 마이크로파를 조사함에 따라,
    상기 제3단계에서 나노 크기의 베타-삼인산칼슘(β-TCP) 분말이 제조되는 것을 특징으로 하는 비결정질 나노 세라믹 파우더 제조 방법.
  4. 제 1 항에 있어서,
    상기 제2단계에서 상기 칼슘하이드록사이드(Ca(OH)2)와 상기 인산(H3PO4)의 Ca/P 몰비가 1.67 이상이 되도록 동일한 속도와 동일한 볼륨으로 상기 주반응기로 옮긴 후에 상기 주반응기에 NaOH를 첨가하여 그 혼합상의 pH를 12 이상으로 조절하고 마이크로파를 조사함에 따라,
    상기 제3단계에서 나노 크기의 HA(hydroxyapatite) 분말이 제조되는 것을 특징으로 하는 비결정질 나노 세라믹 파우더 제조 방법.
  5. 제 1 항에 있어서,
    상기 제2단계는,
    상기 주반응기의 혼합액에 700W의 마이크로파를 5 내지 30분 동안 조사하는 것을 특징으로 하는 비결정질 나노 세라믹 파우더 제조 방법.
  6. 제 1 항에 있어서,
    상기 제3단계는,
    상기 이산화탄소 비함유 분위기의 주반응기를 200℃ 이하에서 건조시켜 나노 세라믹 파우더를 제조하는 것을 특징으로 하는 비결정질 나노 세라믹 파우더 제조 방법.
PCT/KR2017/008571 2017-08-08 2017-08-08 비결정질 나노 세라믹 파우더 제조 방법 WO2019031623A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/008571 WO2019031623A1 (ko) 2017-08-08 2017-08-08 비결정질 나노 세라믹 파우더 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/008571 WO2019031623A1 (ko) 2017-08-08 2017-08-08 비결정질 나노 세라믹 파우더 제조 방법

Publications (1)

Publication Number Publication Date
WO2019031623A1 true WO2019031623A1 (ko) 2019-02-14

Family

ID=65271296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/008571 WO2019031623A1 (ko) 2017-08-08 2017-08-08 비결정질 나노 세라믹 파우더 제조 방법

Country Status (1)

Country Link
WO (1) WO2019031623A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100787526B1 (ko) * 2006-12-29 2007-12-21 순천향대학교 산학협력단 마이크로파 및 pH조절에 따른 구형의 수산화아파타이트,α-tricalcium phosphate,β-tricalcium phosphate 나노분체의제조방법
CN102000361A (zh) * 2010-11-02 2011-04-06 陕西科技大学 一种羟基磷灰石-β-磷酸三钙-氧化铝三相复合生物陶瓷的制备方法
KR101308952B1 (ko) * 2012-11-28 2013-09-24 군산대학교산학협력단 나노 크기의 β-트리칼슘포스페이트를 포함하는 골시멘트용 조성물 및 그의 제조방법
KR20160091034A (ko) * 2015-01-23 2016-08-02 군산대학교산학협력단 습식 나노 tcp 분말 함유 인공골 및 이의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100787526B1 (ko) * 2006-12-29 2007-12-21 순천향대학교 산학협력단 마이크로파 및 pH조절에 따른 구형의 수산화아파타이트,α-tricalcium phosphate,β-tricalcium phosphate 나노분체의제조방법
CN102000361A (zh) * 2010-11-02 2011-04-06 陕西科技大学 一种羟基磷灰石-β-磷酸三钙-氧化铝三相复合生物陶瓷的制备方法
KR101308952B1 (ko) * 2012-11-28 2013-09-24 군산대학교산학협력단 나노 크기의 β-트리칼슘포스페이트를 포함하는 골시멘트용 조성물 및 그의 제조방법
KR20160091034A (ko) * 2015-01-23 2016-08-02 군산대학교산학협력단 습식 나노 tcp 분말 함유 인공골 및 이의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BELL, L. C. ET AL.: "The Point of Zero Charge of Hydroxyapatite and Fluorapatite in Aqueous Solutions", JOURNAL OF COLLOID AND INTERFACE SCIENCE, vol. 42, no. 2, February 1973 (1973-02-01), pages 250 - 261, XP024187070, DOI: doi:10.1016/0021-9797(73)90288-9 *

Similar Documents

Publication Publication Date Title
JP6130098B2 (ja) ガリウム化リン酸カルシウム生体材料
KR101332647B1 (ko) 칼슘 포스페이트 물질, 콜라겐 및 글리코사미노글리칸을포함하는 복합 생체물질
Barralet et al. Cements from nanocrystalline hydroxyapatite
Mardziah et al. Strontium-doped hydroxyapatite nanopowder via sol-gel method: effect of strontium concentration and calcination temperature on phase behavior
Kannan et al. Aqueous precipitation method for the formation of Mg-stabilized β-tricalcium phosphate: An X-ray diffraction study
Salinas et al. Evolution of ceramics with medical applications
Fellah et al. Sol–gel synthesis and characterization of macroporous calcium phosphate bioceramics containing microporosity
Kannan et al. Effect of sodium addition on the preparation of hydroxyapatites and biphasic ceramics
Nomura et al. Fabrication of carbonate apatite blocks from set gypsum based on dissolutionprecipitation reaction in phosphate-carbonate mixed solution
Karimi et al. One-step and low-temperature synthesis of monetite nanoparticles in an all-in-one system (reactant, solvent, and template) based on calcium chloride-choline chloride deep eutectic medium
JP5280403B2 (ja) リン酸カルシウム骨セメント、その前駆体およびその作製方法
JP2009539457A (ja) 医用材料
US20040175320A1 (en) Tetracalcium phosphate (TTCP) having calcium phosphate whisker on surface and process for preparing the same
JP5866205B2 (ja) ガリウムがドープされたリン酸カルシウム化合物
TWI573776B (zh) 磷酸二鈣陶瓷、磷酸二鈣與氫氧基磷灰石之雙相陶瓷及其製造方法
KR101837430B1 (ko) 비결정질 나노 세라믹 파우더 제조 방법
WO2015052495A1 (en) Group 2 metal phosphates
Afonina et al. Synthesis of whitlockite nanopowders with different magnesium content
US8894958B2 (en) Galliated calcium phosphate biomaterials
KR100787526B1 (ko) 마이크로파 및 pH조절에 따른 구형의 수산화아파타이트,α-tricalcium phosphate,β-tricalcium phosphate 나노분체의제조방법
WO2019031623A1 (ko) 비결정질 나노 세라믹 파우더 제조 방법
Massit et al. Sulphate-substituted tricalcium phosphate β-TCP: effect of SO42− insertion and microwave conditions
KR101308952B1 (ko) 나노 크기의 β-트리칼슘포스페이트를 포함하는 골시멘트용 조성물 및 그의 제조방법
Alge et al. Characterization of dicalcium phosphate dihydrate cements prepared using a novel hydroxyapatite-based formulation
US20140305344A1 (en) Magnesium phosphate biomaterials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920643

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17920643

Country of ref document: EP

Kind code of ref document: A1