WO2019031604A1 - Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using liquid crystal alignment film - Google Patents

Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using liquid crystal alignment film Download PDF

Info

Publication number
WO2019031604A1
WO2019031604A1 PCT/JP2018/030083 JP2018030083W WO2019031604A1 WO 2019031604 A1 WO2019031604 A1 WO 2019031604A1 JP 2018030083 W JP2018030083 W JP 2018030083W WO 2019031604 A1 WO2019031604 A1 WO 2019031604A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
liquid crystal
formulas
polymer
compounds represented
Prior art date
Application number
PCT/JP2018/030083
Other languages
French (fr)
Japanese (ja)
Inventor
隆志 岩田
十南 田尻
Original Assignee
Jnc株式会社
Jnc石油化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社, Jnc石油化学株式会社 filed Critical Jnc株式会社
Priority to KR1020207003260A priority Critical patent/KR20200039671A/en
Priority to CN201880050816.1A priority patent/CN110998424B/en
Priority to JP2019535727A priority patent/JP7255482B2/en
Publication of WO2019031604A1 publication Critical patent/WO2019031604A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a liquid crystal alignment agent for forming a liquid crystal alignment film, a liquid crystal alignment film formed using the liquid crystal alignment agent, and a liquid crystal display device having the liquid crystal alignment film.
  • liquid crystal display elements in addition to liquid crystal display elements of vertical electric field mode such as TN (Twisted Nematic) type, STN (Super Twisted Nematic) type, VA (Vertical Alignment) type, IPS (In-Plane Switching) type and FFS (FPS) 2. Description of the Related Art There is known a horizontal electric field liquid crystal display device in which an electrode is formed only on one side of a pair of oppositely arranged substrates such as a Fringe Field Switching) type to generate an electric field in a direction parallel to the substrates. Among them, liquid crystal display elements of lateral electric field type represented by IPS type and FFS type are excellent in viewing angle characteristics and color reproducibility, and are used for various liquid crystal display elements such as televisions, tablets, and smartphones (patented) Literature 1).
  • IPS Fringe Field Switching
  • the liquid crystal aligning film which is one of the structural members used for a liquid crystal display element is an important member in connection with a display quality.
  • the performance required for the liquid crystal alignment film is diversified and advanced with the improvement of the quality of liquid crystal display elements.
  • it is further required to suppress the pretilt angle of liquid crystal low, and further after applying a voltage.
  • a liquid crystal alignment film that gives a liquid crystal display element that does not generate an afterimage after the voltage is turned off, that is, has a small amount of residual DC accumulation and quick relaxation of charge (Patent Documents 2 and 3).
  • a liquid crystal alignment film giving a liquid crystal display element capable of suppressing the pretilt angle of liquid crystal to a low level and having a small amount of residual DC accumulation and quick relaxation of electric charge. It is an object of the present invention to provide a liquid crystal aligning agent capable of Another object of the present invention is to provide a liquid crystal display device having the liquid crystal alignment film and having excellent viewing angle characteristics and afterimage characteristics.
  • the present inventors include at least one selected from the compounds represented by the following formulas (1) to (3) as one of the raw materials used for the synthesis, and the following formula (A)
  • a liquid crystal aligning agent containing a polymer containing at least one selected from a compound represented by the formula (C) and a compound represented by the following formula (D) can suppress the pretilt angle of liquid crystal to a low level.
  • the liquid crystal display element which has this liquid crystal aligning film discovered that a viewing angle characteristic and an afterimage characteristic were favorable, and came to this invention.
  • m is an integer of 3 to 8
  • n is an integer of 1 to 3
  • any carbon constituting a ring A group whose bonding position is not fixed to an atom indicates that the bonding position in the ring is arbitrary
  • a 1 is nitrogen or a nitrogen-containing heterocycle
  • W 1 is independently , Alkylene of 1 to 5 carbons, and optional -CH 2 -may be replaced by -CO-, 1,4-phenylene, or 1,3-phenylene
  • Z 1 is hydrogen, hydrogen by heat A protecting group replacing an atom, or alkyl having 1 to 5 carbon atoms
  • a is independently 0 or 1
  • a 2 is independently a nitrogen or nitrogen-containing heterocycle
  • W 2 and W 3 independently an alkylene having 1 to 5 carbon atoms Ri, arbitrary -CH 2 -, -CO-, 1,4-phenylene, or may be replaced by 1,3-phenylene,
  • T is a divalent unsaturated bond-containing group containing 1 to 2 carbon-carbon double bonds or 1 to 2 carbon-carbon triple bonds
  • a group whose bonding position is not fixed to any carbon atom constituting the ring has an arbitrary bonding position in the ring.
  • the diamine And none of the compounds represented by the formulas (A) to (C) may be included, and the tetracarboxylic acid dianhydride may not be a compound represented by the following formula (D) .
  • the liquid crystal aligning agent of the present invention it is possible to obtain a liquid crystal alignment film capable of suppressing the pretilt angle of liquid crystal to a low level, providing a liquid crystal display element having a small residual DC accumulation and fast charge relaxation. Moreover, the liquid crystal display element which has this liquid crystal aligning film has a favorable viewing angle characteristic and a residual image characteristic.
  • the liquid crystal aligning agent of the present invention contains at least one selected from the compounds represented by the following formulas (1) to (3) as one of the raw materials used for the synthesis, and A) a polymer represented by the formula (C), and a polymer comprising at least one selected from the compounds represented by the following formula (D) (hereinafter simply referred to as “polymer”, “polymer” according to the present invention It may be referred to as a liquid crystal aligning agent containing
  • m is an integer of 3 to 8
  • n is an integer of 1 to 3
  • any carbon constituting a ring A group whose bonding position is not fixed to an atom indicates that the bonding position in the ring is arbitrary
  • a 1 is nitrogen or a nitrogen-containing heterocycle
  • W 1 is independently , Alkylene of 1 to 5 carbons, and optional -CH 2 -may be replaced by -CO-, 1,4-phenylene, or 1,3-phenylene
  • Z 1 is hydrogen, hydrogen by heat A protecting group replacing an atom, or an alkyl having 1 to 5 carbon atoms
  • r is an arbitrary integer of 0 or more
  • a is independently 0 or 1
  • a 2 is independently Te, nitrogen or a nitrogen-containing heterocycle
  • W 2 and W 3 are independently Te alkylene having 1 to 5 carbon atoms, arbitrary -CH 2 -, -CO-, 1,4-
  • the diamine may not contain any of the compounds represented by the formulas (A) to (C), and the tetracarboxylic acid
  • the anhydride may not be the compound represented by the formula (D).
  • the present invention is a liquid crystal aligning agent containing at least one of polymers containing constituent units derived from the following raw materials, and the raw materials are represented by the above formulas (1) to (3) At least one selected from the group consisting of compounds, and at least one selected from the group consisting of said formula (A), said formula (B), said formula (C) and said formula (D);
  • the diamine may not contain any of the compounds represented by the formulas (A) to (C), and the tetracarboxylic acid dianhydride is The liquid crystal aligning agent which does not need to be a compound represented by said Formula (D) is provided.
  • the polymer is at least one selected from the group consisting of polyamic acid, polyimide, partial polyimide, polyamic acid ester, polyamic acid-polyamide copolymer, and polyamideimide.
  • the diamine may not contain any of the compounds represented by the formulas (A) to (C), and the tetracarboxylic acid dianhydride The substance may not be the compound represented by the formula (D).
  • "a polymer which is a reaction product from a raw material containing " may be a "polymer containing a structural unit derived from a raw material".
  • a liquid crystal aligning agent containing at least one of a polymer which is a reaction product from a raw material containing tetracarboxylic acid dianhydride and a diamine, and the polymer is synthesized.
  • the use (application) of the polymer according to the present invention as a liquid crystal aligning agent is also provided.
  • the state in which the polymer is dissolved in an organic solvent is referred to as a varnish.
  • a varnish there is no particular limitation on the method of producing the varnish, and a mixture of a polymer obtained by reacting a mixture of raw materials containing tetracarboxylic acid dianhydride (including its derivative) and diamine (including dihydrazide) in an organic solvent and an organic solvent May be used as a varnish as it is in the production of a liquid crystal aligning agent.
  • a polymer may be recovered from the reaction mixture, and the polymer redissolved in an organic solvent may be used as a varnish in the production of a liquid crystal aligning agent.
  • the liquid crystal aligning agent of the present invention is mainly composed of a varnish obtained by dissolving a polymer selected from the group of polyamic acid, polyimide, partial polyimide, polyamic acid ester, polyamic acid-polyamide copolymer, and polyamideimide in an organic solvent. It is a solution, and two or more kinds of varnish may be used.
  • the liquid crystal aligning agent is applied to a substrate, and then film formation is performed by means such as heating to form a polyimide liquid crystal alignment film.
  • the liquid crystal aligning agent of the present invention is at least one selected from the compounds represented by Formula (1) to Formula (3) as a raw material used for synthesis, and the above-mentioned Formula (A) A compound represented by the formula (C), and at least one polymer obtained by reacting at least one selected from the compounds represented by the formula (D), provided that the formula (1) is
  • the diamine may not contain any of the compounds represented by the formulas (A) to (C), and the tetracarboxylic acid dianhydride may have the formula (D) It does not have to be a compound represented by).
  • a liquid crystal aligning agent containing at least one of a polymer which is a reaction product from a raw material containing tetracarboxylic acid dianhydride and a diamine, which is used to synthesize the polymer
  • Raw materials containing at least one selected from the group of compounds represented by the formulas (1) to (3) and at least one selected from the group of compounds represented by the formulas (A) to (C) And at least one selected from the compounds represented by the above-mentioned formula (D).
  • the liquid crystal aligning agent contains one polymer which is a reaction product from a raw material containing tetracarboxylic acid dianhydride and diamine, and more specifically, the embodiment of the present invention
  • the liquid crystal aligning agent in the above includes at least one selected from the group of compounds represented by the formulas (1) to (3), and a group of compounds represented by the formulas (A) to (C).
  • one polymer using a raw material containing at least one selected from the compounds represented by the above-mentioned formula (D) in an embodiment, it is in the form of being laminated one layer on the substrate, “ It can also be called "monolayer system”. That is, in the embodiment of the present invention, one polymer is contained.
  • the liquid crystal aligning agent of embodiment of this invention contains polymer (P) and polymer (Q) as a raw material used to synthesize
  • the polymer contains at least two, and the at least two polymers include a polymer (P) and a polymer (Q); used to synthesize the polymer (P)
  • the raw material contains at least one selected from the group of compounds represented by the formulas (1) to (3); and the raw material used to synthesize the polymer (Q) is the compound represented by the formula (A) And at least one selected from the group of compounds represented by formula (C), and the compounds represented by formula (D).
  • the polymer is at least one selected from the group consisting of polyamic acid, polyimide, partial polyimide, polyamic acid ester, polyamic acid-polyamide copolymer, and polyamideimide. Also, as used herein, these include their derivatives.
  • the polymer is a polyamic acid or a derivative thereof.
  • m is an integer of 3 to 8, and more specifically, m is 3, 4, 5, 6, 7 or 8.
  • m is 8 in particular because the effect of suppressing the pretilt angle can be exhibited.
  • it is suitable also from the point which shows especially favorable liquid-crystal orientation as m is 3.
  • n is an integer of 1 to 3.
  • a group whose bonding position is not fixed to any carbon atom constituting a ring means that the bonding position on the ring is arbitrary.
  • the bonding position of the amino group to the ring is preferably in the meta or para position in order to ensure the following linearity.
  • the stable conformation of the obtained polymer is very linear. Therefore, it is considered that the pretilt angle of the liquid crystal can be suppressed low.
  • the compounds represented by Formula (1-1), Formula (1-4), Formula (2-1), and Formula (3-1) exhibit high liquid crystal alignment, and the pretilt angle of the liquid crystal is further increased. It is preferable because it can be kept low. In particular, at least one of the formula (1-1) and the formula (1-4) is preferable because the solubility in an organic solvent is excellent.
  • a diamine represented by the above formula (1-4) By using a diamine represented by the above formula (1-4) as a diamine raw material among raw materials used to synthesize a polymer used for a liquid crystal aligning agent, the pretilt angle of liquid crystal can be specifically suppressed low.
  • liquid crystal aligning agent containing at least one of a polymer which is a reaction product from a raw material containing tetracarboxylic acid dianhydride and a diamine, and the diamine is a compound of the above formula (1-4)
  • the liquid crystal aligning agent which consists only of the diamine shown by these is also provided.
  • an acid dianhydride is not restrict
  • the method described in the section of the Examples can be mentioned as an example, but it is not limited thereto.
  • a 1 is nitrogen or a nitrogen-containing heterocycle
  • W 1 is independently alkylene having 1 to 5 carbon atoms
  • arbitrary —CH 2 — is —CO—
  • Z 1 is hydrogen
  • r is any integer of 0 or more
  • a is independently 0 or 1.
  • the nitrogen-containing heterocycle in the present specification is a concept including a nitrogen-containing heterocycle and a nitrogen-containing aliphatic ring.
  • the nitrogen-containing heterocycle may contain a heteroatom such as an oxygen atom or a sulfur atom.
  • an arbitrary integer of r means that when A 1 is a nitrogen-containing heterocycle, the number may vary depending on the number of rings to be fused, the nitrogen atom contained, and the number of heteroatoms. For example, it can be an integer of 1 to 10.
  • a protective group which replaces a hydrogen atom by heat is not particularly limited as long as it replaces a hydrogen atom by heat, but preferably, Boc (abbreviation of t-butoxycarbonyl group), benzyl Carbamate protecting groups such as oxycarbonyl group, 9-fluorenylmethyl oxycarbonyl group, allyloxycarbonyl group and the like can be mentioned.
  • a 2 is independently nitrogen or a nitrogen-containing heterocycle
  • W 2 and W 3 are independently alkylene having 1 to 5 carbon atoms
  • arbitrary —CH 2 — is -CO-, 1,4-phenylene, or 1,3-phenylene may be replaced
  • Z 2 is independently hydrogen, a protecting group which is substituted for hydrogen by heat, or alkyl having 1 to 5 carbon atoms
  • R is any integer of 0 or more
  • a is independently 0 or 1.
  • Z 3 is a monovalent organic group containing at least one secondary or tertiary amino group.
  • T is a divalent unsaturated bond-containing group containing 1 to 2 carbon-carbon double bonds or 1 to 2 carbon-carbon triple bonds.
  • T contains an arylene group having 6 to 12 carbon atoms.
  • T may be an alkylene group, and the alkylene group preferably has 2 to 16 carbon atoms, more preferably 2 to 8 carbon atoms, and 4 to 6 carbon atoms. More preferably, it is 8.
  • the compounds represented by Formula (A) to Formula (C) have nitrogen (in particular, a secondary amino group, a tertiary amino group), or a nitrogen-containing heterocycle. These groups act as groups promoting transfer of charge in the liquid crystal alignment film, and are considered to play a role of quickly relieving the accumulated charge. Further, in the compound represented by the formula (D), a ⁇ electron cloud is spread throughout the molecule. Therefore, the polymer obtained by reacting the compounds represented by the formulas (A) to (C) with the compound represented by the formula (D) has a high degree of conjugation, so that it can be used as a liquid crystal alignment film.
  • the compounds represented by the formulas (A) to (D) are not essential as a diamine, and the effect of being able to remarkably reduce the pretilt angle is exerted.
  • the acid dianhydride to be reacted it may be, for example, a compound represented by the formula (D) or any one of (AN-1) to (AN-18). Or other known ones.
  • a group whose bonding position is not fixed to any carbon atom constituting a ring means that the bonding position in the ring is arbitrary.
  • k is an integer of 1 to 5, and more specifically 1, 2, 3, 4 or 5.
  • n is an integer of 1 to 3, and more specifically 1, 2 or 3.
  • Formula (B-3) and Formula (D-2) are preferable because they reduce residual DC accumulation and charge relaxation is particularly fast.
  • the formula (A-15) is more preferable because it reduces the accumulation of residual DC, not only the relaxation of charges is fast, but also the voltage holding ratio is good.
  • k 2.
  • the compounds represented by the formulas (1) to (3) are compounds represented by the formulas (1) to (3); At least one selected from the group of compounds represented by formula (1-4), formula (2-1), formula (2-2), and formulas (3-1) to formula (3-6)
  • Compounds represented by the above formulas (A) to (C) are the above formulas (A-1) to (A to 20), formulas (B-1) to (B-8), and And at least one selected from the group of compounds represented by Formula (C-1) to Formula (C-3); and the compound represented by Formula (D) is a compound represented by Formula (D-1) to At least one selected from the group of compounds represented by formula (D-4). According to such an embodiment, the intended effects of the present invention can be produced efficiently.
  • the compounds represented by the formulas (1) to (3) are the compounds represented by the formulas (1-1), (1-4), (2-1), and (2-1). At least one selected from the group of compounds represented by formula (3-1); the compounds represented by formulas (A) to (C) are compounds represented by formulas (A-12) and (A) -14), formula (A-15), formula (A-16), formula (A-17), formula (A-19), formula (A-20), formula (B-3), formula (B-) 5) at least one selected from the group of compounds represented by formula (C-2) and formula (C-3); and the compound represented by formula (D) is a compound represented by formula (D-) 2) and at least one selected from the group of compounds represented by formula (D-3). According to such an embodiment, the intended effects of the present invention can be produced efficiently.
  • the raw material used to synthesize the polymer contains at least one selected from the group of compounds represented by the formulas (1) to (3), and the formula It includes at least one selected from the group of compounds represented by (A) to formula (C), and includes at least one selected from the compounds represented by formula (D).
  • the content of the compound represented by the formula (C) relative to the total amount of diamine is preferably significantly reduced, preferably less than 30 mol%, and less than 20 mol% with respect to the total amount of diamine used.
  • substantially free of means less than 0.1 mol% with respect to the total amount of diamine used.
  • 30 mol% or more is contained, there is a possibility that the characteristics of the DC afterimage may be deteriorated.
  • the compound represented by the formula (A) and the compound represented by the formula (B) in particular, represented by the formula (A) It is preferred to further combine the compounds).
  • the orientation is deteriorated.
  • the compound represented by the formula (C) when the compound represented by the formula (C) is added, the compound represented by the formula (A) is also used in combination to have a technical effect of improving the characteristics of the DC afterimage. .
  • a compound represented by Formula (1-1) and a compound represented by Formula (B-3) are used as raw materials for synthesizing the polymer.
  • the content of the compound represented by the formula (1-1) with respect to the total amount of diamine used is 90 with respect to the total amount of diamine used to synthesize the polymer in order to suppress the pretilt angle of the liquid crystal low. It is preferable to use more than mol%, it is more preferable to use 92 mol% or more, and it is further preferable to use 95 mol% or more.
  • the amount is not too large, specifically 90 moles. % Is preferable, 88 mol% or less is more preferable, 86 mol% or less is further preferable, 84 mol% or less is further preferable, and 82 mol% or less is further preferable. It is more preferably 80 mol% or less, and may be 78 mol% or less, 76 mol% or less, 74 mol% or less, or 72 mol% or less.
  • the raw material used to synthesize the polymer is represented by Formula (A-12), Formula (A-14), Formula (A-15), Formula Table (A-16), Formula (A-17), Formula (A-19), Formula (B-3), Formula (B-5), Formula (C-2), and Formula (C-3) (In combination) with at least one selected from the group of compounds listed above; and at least one selected from the group of compounds represented by Formula (D-2) and Formula (D-3).
  • the amount of the compounds represented by the formulas (1) to (3) is the total amount of diamine used to synthesize the polymer (in the liquid crystal aligning agent, two or more kinds of polymers are used to control the pretilt angle of the liquid crystal).
  • it When it is contained, it is preferably used at 27 mol% or more, more preferably 28 mol% or more, and still more preferably 29 mol% or more, based on the total amount (100 mol%) of total diamines. It is more preferable to use 30 mol% or more, more preferably 31 mol% or more, still more preferably 32 mol% or more, still more preferably 33 mol% or more, and 34 mol% or more Is more preferable, and it is even more preferable to use 35 mol% or more. Further, for the purpose of reducing volume resistance, it is preferable to use 99 mol% or less, 98 mol% or less, 96 mol% or less, or 94 mol% or less.
  • the amounts of the compounds represented by the formulas (A) to (C) reduce the accumulation of residual DC while maintaining the electric characteristics such as the voltage holding ratio,
  • the total amount of diamine used to synthesize the polymer in the case where the liquid crystal aligning agent contains two or more polymers, 0 mol% relative to the total amount of diamine (100 mol%) of the total diamine) in order to accelerate relaxation of The above is preferable, more than 0 mol% is more preferable, 1 mol% or more is more preferable, 2 mol% or more is further more preferable, 3 mol% or more is further more preferable, 4 mol% or more is further more preferable, 5 mol% The above is more preferable, and 6 mol% or more is still more preferable.
  • less than 50 mol% is preferable, 46 mol% or less is more preferable, 44 mol% or less is more preferable, 42 mol% or less is more preferable, 38 mol% or less is more preferable , 36 mol% or less is more preferable, 34 mol% or less is further more preferable, 32 mol% or less is still more preferable, 30 mol% or less is still more preferable, 28 mol% or less is even more preferable, 26 mol% or less Is more preferable, 24 mol% or less is even more preferable, and 22 mol% or less is even more preferable.
  • the above formulas (1) to (3) are used with respect to the total amount of diamine used to synthesize the polymer in order to suppress the pretilt angle of the liquid crystal.
  • the ratio of the compounds represented by (total of two or more types thereof) is more than 50 mol%, more preferably 54 mol% or more, with respect to the total amount of diamine to be used, 60 mol % Or more, more preferably 60% or more, still more preferably 65% or more, still more preferably 66% or more, and even more preferably 67% or more. Even more preferably 68 mol% or more, still more preferably 69 mol% or more, 70 mol% or more There is more preferably more.
  • mol% or less may be 98 mol% or less, may be 96 mol% or less, may be 94 mol% or less, or 90 mol% or less. It may well be less than 90 mol%.
  • m is 8 in the formula (1), it is preferably 100 mol%, and the pretilt angle can be surprisingly lowered when it is 100 mol%.
  • the ratio of the compounds represented by the above formulas (A) to (C) (the total amount if two or more types are contained)
  • the amount is preferably 0.5 mol% or more, more preferably 0.8 mol% or more, still more preferably 1 mol% or more, and may be 4 mol% or more. It may be mol% or more.
  • the ratio of the compounds represented by the above formulas (A) to (C) (the total of two or more types) is the total amount of diamine used
  • the ratio of the compounds represented by the above formulas (A) to (C) is the total amount of diamine used
  • less than 50 mol% is preferable, 46 mol% or less is more preferable, 44 mol% or less is more preferable, 42 mol% or less is still more preferable, 40 mol% or less
  • 38 mol% or less is further more preferable
  • 36 mol% or less is further more preferable
  • 34 mol% or less is still more preferable
  • 32 mol% or less is still more preferable
  • 30 mol% or less is further more preferable
  • 28 mol % Or less is more preferable
  • 26 mol% or less is further more preferable
  • 24 mol% or less is still more preferable
  • 22 mol% or less is more preferable Preferred.
  • the use amount of the formulas (C-1) to (C-3) is more preferably 10 mol% or less, and even more preferably less than 10 mol%.
  • the ratio of the compounds represented by the formulas (1) to (3) (the total of two or more types) is the total amount of diamine used
  • the ratio of the compounds represented by the formulas (A) to (C) is 70% by mole or more, and is 1 to 30% by mole relative to the total amount of the diamine to be used.
  • the amount of the compound represented by the formula (D) is not particularly limited, but the retention rate of alignment voltage It may be 10 mol% or more based on the total amount of tetracarboxylic acid dianhydride used to synthesize the polymer in order to reduce residual DC accumulation and accelerate charge relaxation while maintaining the electrical properties. 20 mol% or more may be sufficient, and 30 mol% or more may be sufficient. Moreover, 60 mol% or less is preferable and 50 mol% or less is more preferable.
  • the liquid crystal aligning agent of the present invention preferably contains at least two polymers of polymer (P) and polymer (Q).
  • said at least two polymers comprising a polymer (P) and a polymer (Q);
  • the raw materials used to synthesize said polymer (P) have the formula (1)
  • the raw material used to synthesize the polymer (Q) is a compound represented by the above formulas (A) to (C).
  • the compound represented by the formula (1-4) as a raw material used to synthesize the polymer (P) is a compound that increases surface energy as a raw material used to synthesize the polymer (Q)
  • the compound represented by the formula (E-5) it is also preferable to reduce the amount of the compound represented by the formula (1-4) used for the polymer (P).
  • the upper limit is not particularly limited, and may be 100 mol%, 95 mol% or less, 85 mol% or less, or 75 mol% or less. Good.
  • the amounts of the compounds represented by the formulas (A) to (C) used to synthesize the polymer (Q) are electric characteristics such as voltage holding ratio
  • the amount of the compounds represented by the formulas (A) to (C) used to synthesize the polymer (Q) is preferably 10 to 50 mol%, more preferably 30 to 50 mol%.
  • the amount of the compound represented by the formula (D) is such that the polymer (Q) can be reduced in order to reduce the accumulation of residual DC and accelerate the charge relaxation while maintaining the electrical characteristics such as the voltage holding ratio.
  • the amount is preferably 20 to 50% by mole, and more preferably 20 to 30% by mole, relative to the total amount of tetracarboxylic acid dianhydride used for the synthesis.
  • the ratio of the compounds represented by the formulas (1) to (3) is 70 mol% or more with respect to the total amount of diamine used;
  • the ratio of the compounds represented by the formulas (A) to (C) is 10 to 50 mol% with respect to the total amount of diamine used.
  • the ratio of the compounds represented by the formulas (1) to (3) is 90 mol% or more based on the total amount of diamine used; in the polymer (Q), The ratio of the compounds represented by the formulas (A) to (C) is 30 to 50 mol% with respect to the total amount of diamine used. In the embodiment of the present invention, in the polymer (P), the ratio of the compounds represented by the above formulas (1) to (3) is 70 mol% or more, preferably 90 mol% with respect to the total amount of diamine used. In the polymer (Q), the proportion of the compound represented by the formula (D) is 20 to 50 mol% with respect to the total amount of tetracarboxylic acid dianhydride used.
  • known tetracarboxylic acid dianhydrides including their derivatives
  • diamines including dihydrazides
  • the tetracarboxylic acid dianhydride used in the present invention can be selected without limitation from known tetracarboxylic acid dianhydrides.
  • Known tetracarboxylic acid dianhydrides are aromatic systems (including heteroaromatic ring systems) in which a dicarboxylic acid anhydride is directly bonded to the aromatic ring, and aliphatic systems in which the dicarboxylic acid anhydride is not directly bonded to the aromatic ring It may belong to any group (including heterocyclic ring systems).
  • tetracarboxylic acid dianhydrides disclosed in JP-A-2016-029447 and JP-A-2016-041683 can be used. Preferred examples are shown below.
  • m is independently an integer of 1 to 12.
  • Formula (AN-13), Formula (AN-14), Formula (AN-17), and Formula (AN-18) are preferable.
  • Formula (AN-1), Formula (AN-4), Formula (AN-5), Formula (AN-11), Formula (AN-11) (AN-13), formula (AN-14), formula (AN-16), formula (AN-17), and formula (AN-18) are preferred.
  • nitrogen in particular, a secondary amino group, a tertiary amino group
  • a tetracarboxylic acid dianhydride having a nitrogen-containing heterocycle for example, By using AN-3) and the above equation (AN-11)
  • AN-3 nitrogen-containing heterocycle
  • the tetracarboxylic dianhydride is a combination of two or less in the present embodiment, the liquid crystal alignment may be deteriorated.
  • (AN-2), (AN-4) and (AN-6); -4), (AN-7) and (AN-9); (AN-4), (AN-6) and (AN-11), etc. are preferable. With such a combination, the intended effects of the present invention can be produced efficiently.
  • the formula (AN-8) it is preferred to use the formula (AN-8) as the acid dianhydride. Further, in the case where the formula (1-1) and the formula (B) are combined, it is preferable to use the formula (AN-8) as the acid dianhydride. According to this embodiment, it is possible to reduce the pretilt angle, to reduce the accumulation of residual DC, to improve the relaxation rate, and to further increase the liquid crystal alignment. In the embodiment of the present invention, the ratio of the compound represented by Formula (1-1), which is a case where the compound represented by Formula (1-1) and the compound represented by Formula (B) are combined It is particularly preferable to use the formula (AN-8) as the acid dianhydride when it is 90 mol% or more based on the total amount of diamine used. According to this embodiment, it is possible to reduce the pretilt angle, to reduce the accumulation of residual DC, to improve the relaxation rate, and to further increase the liquid crystal alignment.
  • the diamines (including dihydrazides) used in the present invention can be selected without limitation from known diamines and dihydrazides.
  • diamines and dihydrazides disclosed in JP-A-2016-029447 and JP-A-2016-041683 can be used. Preferred examples are shown below.
  • m is an integer of 1 to 12.
  • the raw material used to synthesize the polymer further contains at least one selected from compounds represented by the following formula (E).
  • W 4 is alkylene having 1 to 6 carbon atoms, 1,3-phenylene or 1,4-phenylene; and W 5 is independently a single bond, —NHCO—, or It is -CONH-.
  • phase separation can be efficiently caused by including the compound represented by the formula (E) in the form of a two-layer system (blend system).
  • the raw material used for the synthesis of the polymer (Q) includes at least one selected from the compounds represented by the formula (E).
  • W 4 is alkylene having 1 to 6 carbons, 1,3-phenylene, or 1,4-phenylene, and W 5 is independently a single bond, —NHCO—, or — It is CONH-.
  • Examples of the compound represented by the formula (E) include the following formulas (E-1) to (E-8). That is, the compound represented by the formula (E) is at least one selected from the compounds represented by the following formulas (E-1) to (E-8).
  • p is each independently an integer of 1 to 6.
  • the compounds represented by the formulas (1) to (3) are compounds represented by the formulas (1-1) to (1-4), (2-1), and 2-2) at least one member selected from the group of compounds represented by formula (3-1); compounds represented by formulas (A) to (C) are compounds represented by formula (A-12): ), Formula (A-14), formula (A-15), formula (A-16), formula (A-17), formula (B-3), formula (C-2), and formula (C-3) And at least one compound selected from the group of compounds represented by formula (D); compounds represented by formula (D-2) and formula (D-3) represented by formula (D): At least one compound selected from the group consisting of: at least one compound selected from the group of compounds represented by Formula (E-5) to Formula (E-7): is there.
  • the compounds represented by the formulas (1) to (3) are at least one selected from the formula (1-1) and the formula (1-4);
  • the compounds represented by the formulas (A) to (C) are at least one selected from the formulas (A-15) and (B-3); and the compounds represented by the formula (D) are A compound represented by the formula (D-2); and a compound represented by the formula (E) is a compound represented by the formula (E-5).
  • diamine including dihydrazide
  • preferred materials for improving each property are described.
  • the formula (DI-3), the formula (DI-6), the formula (DI-7) and the formula DI-9), formula (DI-10), formula (E-1) and formula (E-8) are preferred.
  • Formula (DI-3), Formula (DI-6), Formula (DI-7), and Formula (E-1) are more preferable.
  • the above diamines may be used alone or in combination of two or more.
  • a raw material used for the polymer (P) it is selected from the compounds represented by the above formulas (A) to (C) Or at least one selected from the compounds represented by formulas (1) to (3) may be used as the raw material used for the polymer (Q).
  • the nitrogen-containing heterocycle is preferably a nitrogen-containing cycloalkane, and examples thereof include, for example, Formula (A-15), Formula (A-16) and Formula (A-17) Etc. are preferred.
  • Formula (DI-3), Formula (DI-5), Formula (A-15), and Formula (C-3) are preferable.
  • m 1 or 4 is preferable, and 1 is more preferable.
  • compounds represented by Formula (DI-3), Formula (DI-5), Formula (DI-6), Formula (DI-9), and Formula (E) It is preferable to use at least one selected.
  • m 1, 2 or 4 is preferable, and 1 or 2 is more preferable.
  • a polymer (P) having a role to suppress the liquid crystal pretilt angle to a lower layer On the layer side, it is important to segregate the polymer (Q), which plays a role in giving a liquid crystal display element having a small amount of residual DC accumulation and quick relaxation of charges, to a lower layer (to the substrate side).
  • the use of a compound that increases the surface energy for the polymer (Q) is considered to make the two polymers more susceptible to segregation.
  • the liquid crystal alignment film used to align the liquid crystal layer is a coating film derived from the liquid crystal alignment agent located on the substrate, and the coating film is a polymer (P) and a polymer ( Q), the polymer (P) is located on the liquid crystal layer side, and the polymer (Q) is located on the substrate side.
  • a compound represented by the formula (E) which is considered to be a compound that increases surface energy.
  • formulas (E-1) to (E-8) are preferable, and formulas (E-1), (E-3), (E-4), and (E-5) are preferable.
  • the amount of the compound represented by the formula (E) used to synthesize the polymer (Q) is relative to the total amount of diamine used to synthesize the polymer (Q) And 50 to 70 mol% are preferable. Therefore, in the polymer (Q), the proportion of the compound represented by the formula (E) is 50 to 70 mol% with respect to the total amount of diamine used.
  • a part of the diamine may be replaced by a monoamine in the range of 40 mol% or less of the ratio of monoamine to diamine.
  • Such substitution can cause termination of the polymerization reaction when forming the polymer (for example, polyamic acid), and can suppress the progress of further polymerization reactions.
  • the weight average molecular weight (hereinafter also referred to as Mw) of the obtained polymer for example, polyamic acid, polyamic acid ester or polyimide
  • Mw weight average molecular weight of the obtained polymer
  • the liquid crystal can be obtained without losing the effect of the present invention.
  • the coating properties of the alignment agent can be improved.
  • the diamine to be replaced by the monoamine may be one or more, as long as the effects of the present invention are not impaired.
  • the monoamine include aniline, 4-hydroxyaniline, cyclohexylamine, n-butylamine, n-pentylamine, n-hexylamine, n-heptylamine, n-octylamine, n-nonylamine, n-decylamine, and n- Undecylamine, n-dodecylamine, n-tridecylamine, n-tetradecylamine, n-pentadecylamine, n-hexadecylamine, n-heptadecylamine, n-octadecylamine, and n-eicosylamine Can be mentioned.
  • the polymer may further contain a monoisocyanate compound as its raw material.
  • a monoisocyanate compound as its raw material.
  • the end of the resulting polymer for example, polyamic acid (including its derivative)
  • the coating properties of the liquid crystal aligning agent can be improved, for example, without impairing the effects of the present invention.
  • the content of the monoisocyanate compound in the raw material is preferably 1 to 10 mol% with respect to the total amount of diamine and tetracarboxylic acid dianhydride in the raw material.
  • the monoisocyanate compound include phenyl isocyanate and naphthyl isocyanate.
  • the polymer is obtained by reacting a mixture of tetracarboxylic dianhydride and diamine in an organic solvent.
  • a mixture of tetracarboxylic dianhydride and diamine in an organic solvent.
  • special conditions are not necessary other than the selection of the raw materials, and the conditions in the usual polymer (for example, polyamic acid) synthesis can be applied as they are.
  • the solvent which can be used is mentioned later.
  • the liquid crystal aligning agent may further contain other components other than the polymer.
  • One or more other components may be used.
  • Other components include, for example, other polymers and compounds described later.
  • polymers include polyamic acids other than the polymer (P) and the polymer (Q), polyamic acid esters, or polyimides (hereinafter referred to as "other polyamic acids or derivatives thereof"), polyesters, polyamides, polysiloxanes, Cellulose derivatives, polyacetals, polystyrene derivatives, poly (styrene-phenylmaleimide) derivatives, poly (meth) acrylates and the like can be mentioned. These may be one kind or two or more kinds. Among these, other polyamic acids or derivatives thereof and polysiloxanes are preferable, and other polyamic acids or derivatives thereof are more preferable.
  • the diamine used to synthesize other polyamic acids or derivatives thereof preferably contains 30 mol% or more, more preferably 50 mol% or more of aromatic diamine based on all diamines.
  • the other polyamic acids or their derivatives can be synthesized according to the method described below as a method of synthesizing polyamic acids or their derivatives which are essential components of the liquid crystal aligning agent of the present invention.
  • one of the preferred embodiments of the liquid crystal aligning agent of the present invention is a liquid crystal aligning agent containing at least two polymers of polymer (P) and polymer (Q). It is known that in the process of forming a coating film (especially a thin film) using a liquid crystal alignment agent containing two polymers, a polymer with small surface energy separates in the upper layer and a polymer with large surface energy separates in the lower layer .
  • a polymer (P) which plays a role of suppressing the pretilt angle of liquid crystal to a lower layer and a polymer (Q) which plays a role of giving a liquid crystal display element having a small residual DC accumulation and a fast charge relaxation.
  • At least two polymers of polymer (P) and polymer (Q) have different surface energy from each other, and the surface energy of polymer (Q) is larger than that of polymer (P) .
  • the confirmation as to whether or not the liquid crystal alignment film is separated into layers is, for example, the surface energy of the formed film is measured and the same as the value of the surface energy of the film formed by the liquid crystal alignment agent containing only the polymer (P). It can be confirmed by having a value close to it.
  • the content of the polymer (P) in the liquid crystal aligning agent of the present invention is 20% by weight based on 100% by weight of the total contained polymer It is preferable that it is more than, and it is preferable that it is 30 weight% or more. Moreover, it is preferable that it is 80 weight% or less, and it is more preferable that it is 70 weight% or less.
  • the preferable content of the polymer (P) described here is one guideline, and may vary depending on the combination of tetracarboxylic acid dianhydride or diamine used as a raw material.
  • the Mw of the polymer in the embodiment containing one polymer, is preferably 20,000 to 160,000, more preferably 40,000 to 80,000, and further 45,000 to 70,000. preferable. Also in at least two polymers of polymer (P) and polymer (Q), Mw is preferably independently 20,000 to 160,000, and more preferably 40,000 to 80,000.
  • the Mw of the polymer can be measured by the method described in the examples. The Mw of the polymer can be adjusted, for example, by the time for which the tetracarboxylic acid dianhydride and the diamine are reacted.
  • the end point of the reaction can be determined by collecting a small amount of the reaction solution in the polymerization reaction, determining the Mw of the polymer contained therein by measurement by gel permeation chromatography (GPC), and measuring the value.
  • GPC gel permeation chromatography
  • the composition further contains at least one selected from the group consisting of an alkenyl substituted nadiimide compound, a compound having a radically polymerizable unsaturated double bond, an oxazine compound, an oxazoline compound, and an epoxy compound.
  • the liquid crystal aligning agent of the present invention may further contain an alkenyl-substituted nadiimide compound for the purpose of stabilizing the electric characteristics of the liquid crystal display element over a long period of time.
  • the alkenyl-substituted nadiimide compounds may be used alone or in combination of two or more.
  • the content of the alkenyl-substituted nadiimide compound is preferably 1 to 100% by weight, and preferably 1 to 70% by weight with respect to the polymer (for example, polyamic acid (including its derivatives)), for the above purpose. More preferably, it is more preferably 1 to 50% by weight.
  • the alkenyl-substituted nadiimide compound is preferably a compound that can be dissolved in a solvent that dissolves the polymer (for example, polyamic acid (including its derivative)) used in the present invention.
  • a solvent that dissolves the polymer (for example, polyamic acid (including its derivative)) used in the present invention.
  • an alkenyl substituted nadiimide compound for example, an alkenyl substituted nadiimide compound disclosed in JP 2013-242526 A and the like can be mentioned.
  • Preferred alkenyl-substituted nadiimide compounds include bis ⁇ 4- (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximido) phenyl ⁇ methane, N, N'-m-xylylene-bis (Allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide), N, N'-hexamethylene-bis (allylbicyclo [2.2.1] hept-5-ene- And 2,3-dicarboximide).
  • the liquid crystal aligning agent of the present invention may further contain a compound having a radically polymerizable unsaturated double bond for the purpose of stabilizing the electric characteristics of the liquid crystal display element for a long time.
  • the compound having a radically polymerizable unsaturated double bond may be one type of compound or two or more types of compounds.
  • the alkenyl substituted nadiimide compound is not contained in the compound which has a radically polymerizable unsaturated double bond.
  • the content of the compound having a radically polymerizable unsaturated double bond is preferably 1 to 100% by weight with respect to the polymer (for example, polyamic acid (including its derivatives)), for the above-mentioned purpose. It is more preferably 70% by weight, further preferably 1 to 50% by weight.
  • the ratio of the compound having a radically polymerizable unsaturated double bond to the alkenyl-substituted nadiimide compound reduces the ion density of the liquid crystal display element, suppresses the temporal increase of the ion density, and further suppresses the generation of a residual image.
  • the weight ratio of the compound having a radically polymerizable unsaturated double bond / the alkenyl substituted nadiimide compound is preferably 0.1 to 10, and more preferably 0.5 to 5.
  • the compound which has a radically polymerizable unsaturated double bond As a compound which has a preferable radically polymerizable unsaturated double bond, the compound which has a radically polymerizable unsaturated double bond currently indicated by Unexamined-Japanese-Patent No. 2013-242526 etc. can be mentioned, for example.
  • the liquid crystal aligning agent of the present invention may further contain an oxazine compound for the purpose of stabilizing the electric properties of the liquid crystal display element for a long time.
  • the oxazine compound may be one type of compound or two or more types of compounds.
  • the content of the oxazine compound is preferably 0.1 to 50% by weight, and preferably 1 to 40% by weight with respect to the polymer (for example, polyamic acid (including its derivative)), for the above purpose. More preferably, it is more preferably 1 to 20% by weight.
  • the oxazine compound is soluble in an organic solvent in which a polymer (for example, a polyamic acid (including its derivative)) is dissolved, and in addition, an oxazine compound having ring-opening polymerization is preferable.
  • Preferred oxazine compounds include, for example, oxazine compounds represented by Formula (OX-3-1) and Formula (OX-3-9), and oxazine compounds disclosed in JP-A-2013-242526 and the like. be able to.
  • the liquid crystal aligning agent of the present invention may further contain an oxazoline compound for the purpose of stabilizing the electric characteristics of the liquid crystal display element for a long time.
  • An oxazoline compound is a compound having an oxazoline structure.
  • the oxazoline compound may be one type of compound or two or more types of compounds.
  • the content of the oxazoline compound is preferably 0.1 to 50% by weight, and preferably 1 to 40% by weight with respect to the polymer (for example, polyamic acid (including its derivative)), for the above purpose. More preferably, it is preferably 1 to 20% by weight.
  • the content of the oxazoline compound is 0.1 to 40% by weight with respect to the polymer (for example, polyamic acid (including its derivative)) , Preferred from the above purpose.
  • oxazoline compound As an oxazoline compound, the oxazoline compound currently disclosed by Unexamined-Japanese-Patent No. 2013-242526 etc. can be mentioned, for example.
  • Preferred oxazoline compounds include 1,3-bis (4,5-dihydro-2-oxazolyl) benzene.
  • the liquid crystal aligning agent of the present invention may further contain an epoxy compound for the purpose of stabilizing the electric characteristics of the liquid crystal display element for a long time.
  • the epoxy compound may be one type of compound or two or more types of compounds.
  • the content of the epoxy compound is preferably 0.1 to 50% by weight, and preferably 1 to 40% by weight with respect to the polymer (for example, polyamic acid (including its derivative)), for the above purpose. More preferably, it is more preferably 1 to 20% by weight.
  • epoxy compound the epoxy compound currently disclosed by Unexamined-Japanese-Patent No. 2013-242526 etc. can be mentioned, for example.
  • Preferred epoxy compounds include N, N, N ', N'-tetraglycidyl-4,4'-diaminodiphenylmethane, 3-glycidoxypropyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxy And silanes, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, (3,3 ', 4,4'-diepoxy) bicyclohexyl.
  • the liquid crystal aligning agent of the present invention may further contain various additives.
  • various additives for example, high molecular compounds other than polymers (for example, polyamic acid (including its derivatives)) and low molecular compounds can be mentioned, and they can be selected and used according to the respective purposes.
  • the addition of the additive has the technical effect of enhancing the hardness of the film, and in particular, the resistance to rubbing treatment is enhanced, and thus the reliability as an alignment film is enhanced.
  • the addition of additives tends to increase the pretilt angle
  • the embodiment of the present invention has the effect that the addition of such additives can significantly reduce the pretilt angle.
  • examples of the polymer compound include polymer compounds soluble in organic solvents. It is preferable to add such a polymer compound to the liquid crystal aligning agent of the present invention from the viewpoint of controlling the electrical properties and the alignment of the liquid crystal alignment film to be formed.
  • examples of the polymer compound include polyamides, polyurethanes, polyureas, polyesters, polyepoxides, polyester polyols, silicone-modified polyurethanes, and silicone-modified polyesters.
  • the low molecular weight compound for example, 1) when it is desired to improve the coating property, 2) surfactant according to the purpose, 2) when it is necessary to improve antistatic, 3) adhesion to the substrate
  • silane coupling agents and titanium-based coupling agents may be mentioned, and 4) an imidation catalyst may be mentioned if the imidation is allowed to proceed at a low temperature.
  • silane coupling agent As a silane coupling agent, the silane coupling agent currently disclosed by Unexamined-Japanese-Patent No. 2013-242526 etc. can be mentioned, for example.
  • Preferred silane coupling agents include 3-aminopropyltriethoxysilane.
  • examples of the imidization catalyst include imidization catalysts disclosed in JP-A-2013-242526 and the like.
  • the amount of the silane coupling agent to be added is usually 0 to 20% by weight, preferably 0.1 to 10% by weight, based on the total weight of the polymer (eg, polyamic acid (including its derivative)).
  • the addition amount of the imidization catalyst is usually 0.01 to 5 equivalents, preferably 0.05 to 3 equivalents, with respect to the carbonyl group of the polymer (eg, polyamic acid (including its derivative)).
  • the amount of other additives added varies depending on the application, but is usually 0 to 100% by weight of the total weight of the polymer (for example, polyamic acid (including its derivatives)), and 0.1 to 50% % Is preferred.
  • the liquid crystal aligning agent of the present invention may further contain a solvent from the viewpoint of the coatability of the liquid crystal aligning agent and the adjustment of the concentration of the polymer (for example, polyamic acid (including its derivative)).
  • the solvent can be applied without particular limitation as long as the solvent has the ability to dissolve the polymer component.
  • the solvent widely includes solvents generally used in the production process of the polymer component such as a polymer (for example, polyamic acid, soluble polyimide and the like) and the application, and can be appropriately selected according to the purpose of use.
  • the solvent may be one or a mixture of two or more.
  • a parent solvent of the polymer for example, a polyamic acid (including a derivative thereof)
  • other solvents for the purpose of improving the coating property can be mentioned.
  • aprotic polar organic solvent which is a parent solvent for polymers (for example, polyamic acid (including its derivatives))
  • examples of the aprotic polar organic solvent which is a parent solvent for polymers include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethylimidazolidinone, N Lactones such as -methylcaprolactam, N-methylpropionamide, N, N-dimethylacetamide, dimethylsulfoxide, N, N-dimethylformamide, N, N-diethylformamide, N, N-diethylacetamide, ⁇ -butyrolactone and the like .
  • solvents for the purpose of improving coating properties include alkyl lactate, 3-methyl-3-methoxybutanol, tetralin, isophorone, ethylene glycol monoalkyl ethers such as phenyl acetate, ethylene glycol monobutyl ether, and diethylene glycol monoethyl.
  • Diethylene glycol monoalkyl ether such as ether, triethylene glycol monoalkyl ether, propylene glycol monomethyl ether, propylene glycol monoalkyl ether such as propylene glycol monobutyl ether, dialkyl malonate such as diethyl malonate, dipropylene such as dipropylene glycol monomethyl ether Glycol monoalkyl ether, ester compounds such as these acetates, diisobutyl ketone etc. Tons of compounds and the like.
  • the solvent is N-methyl-2-pyrrolidone, dimethylimidazolidinone, ⁇ -butyrolactone, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, ethylene glycol monomethyl ether, propylene glycol monobutyl ether, propylene glycol monomethyl ether Dipropylene glycol monomethyl ether and diisobutyl ketone are particularly preferred.
  • the concentration of the polymer (for example, polyamic acid) in the liquid crystal aligning agent of the present invention is preferably 0.1 to 40% by weight, more preferably 1 to 20% by weight, and 1.5 to 8% by weight It is further preferred that When the alignment agent is applied to a substrate, an operation of previously diluting the contained polymer (eg, polyamic acid) with a solvent may be required to adjust the film thickness.
  • the viscosity of the liquid crystal aligning agent of the present invention can be determined by the method of application, concentration of polymer (eg, polyamic acid (including its derivative)), type of polymer (eg, polyamic acid (including its derivative)), solvent
  • concentration of polymer eg, polyamic acid (including its derivative)
  • type of polymer eg, polyamic acid (including its derivative)
  • solvent e.g., solvent
  • concentration of polymer eg, polyamic acid (including its derivative)
  • type of polymer eg, polyamic acid (including its derivative)
  • solvent e.g., solvent
  • concentration of polymer eg, polyamic acid (including its derivative)
  • type of polymer eg, polyamic acid (including its derivative)
  • solvent e.g., solvent
  • concentration of polymer eg, polyamic acid (including its derivative)
  • solvent e.g., solvent
  • concentration of polymer eg, polyamic acid (including its derivative)
  • the viscosity of the liquid crystal aligning agent is measured by rotational viscosity measurement, and is measured (measurement temperature: 25 ° C.) using, for example, a rotational viscometer (type TVE-20L manufactured by Toki Sangyo Co., Ltd.). In the examples of the present application, the viscosity was about 5 to 15 mPa ⁇ s.
  • the liquid crystal alignment film is a film formed by heating a coating of the liquid crystal alignment agent.
  • the liquid crystal aligning film of this invention can be obtained by the normal method of producing a liquid crystal aligning film from a liquid crystal aligning agent.
  • the liquid crystal aligning film of this invention can be obtained by passing through the process of forming the coating film of the liquid crystal aligning agent of this invention, the process of heat-drying, and the process of heat-baking.
  • the film obtained through the heating and drying process and the heating and baking process may be rubbed to impart anisotropy, as described later, as necessary.
  • light may be irradiated after the coating step and the heating and drying step, or light may be irradiated after the heating and baking step to impart anisotropy.
  • a coating film can be formed by apply
  • the substrate may be provided with an electrode such as ITO (IndiumTin Oxide), IZO (In 2 O 3 -ZnO), IGZO (In-Ga-ZnO 4 ) electrode, a color filter, etc. glass, silicon nitride, Substrates made of acrylic, polycarbonate, polyimide and the like can be mentioned.
  • ITO IndiumTin Oxide
  • IZO In 2 O 3 -ZnO
  • IGZO In-Ga-ZnO 4
  • a color filter etc. glass
  • Substrates made of acrylic, polycarbonate, polyimide and the like can be mentioned.
  • ITO was used in the Example of this application.
  • the heating and drying step a method of heat treatment in an oven or an infrared furnace, a method of heat treatment on a hot plate, and the like are generally known. It is preferable to carry out the heating and drying step at a temperature within the range where evaporation of the solvent is possible, and it is more preferable to carry out the heating and drying step at a temperature relatively lower than the temperature in the heating and baking step.
  • the heat drying temperature is preferably in the range of 30 ° C. to 150 ° C., and more preferably in the range of 50 ° C. to 120 ° C.
  • the time is not particularly limited, but for example, 1 to 10 minutes, and further 1 to 5 minutes is preferable.
  • the heating and calcining step can be performed, for example, under the conditions necessary for the polyamic acid or a derivative thereof to exhibit a dehydration and ring closure reaction.
  • a method of heat treatment in an oven or an infrared furnace, a method of heat treatment on a hot plate, and the like are generally known. These methods are equally applicable in the present invention.
  • a temperature of about 100 to 300 ° C. is preferable, 120 to 280 ° C. is more preferable, and 150 to 250 ° C. is more preferable.
  • the time is preferably 1 minute to 3 hours.
  • heating and firing can be performed multiple times at different temperatures.
  • a plurality of heating devices set to different temperatures may be used, or one heating device may be used while sequentially changing to different temperatures.
  • the temperature can be changed from low temperature to high temperature for firing.
  • the initial temperature is preferably 90 to 180.degree.
  • the final temperature is preferably 185 to 300 ° C., more preferably 190 to 230 ° C.
  • rubbing method and photo alignment method are provided as means for imparting anisotropy to the alignment film.
  • the formation method of can be used suitably.
  • the material of the rubbing cloth may, for example, be cotton, rayon or nylon.
  • the liquid crystal alignment film is formed by applying the liquid crystal alignment agent to a substrate, heating and drying the substrate coated with the liquid crystal alignment agent, and producing a film
  • the film can be formed through the steps of heating and baking the film and rubbing the film after the heating and baking.
  • the rubbing treatment can be carried out in the same manner as the rubbing treatment for alignment treatment of a normal liquid crystal alignment film, as long as sufficient retardation can be obtained in the liquid crystal alignment film of the present invention.
  • a preferable condition is a hair-foot pushing amount of 0.2 to 0.8 mm.
  • the stage moving speed is 5 to 250 mm / sec.
  • the roller rotation speed is 500 to 2,000 rpm.
  • the liquid crystal alignment film is suitably obtained by a method further including other steps other than the steps described above.
  • the step of washing the film after firing or irradiation with a washing solution is not essential.
  • a cleaning process can be provided as needed.
  • Examples of the cleaning method using a cleaning solution include brushing, jet spray, steam cleaning, ultrasonic cleaning and the like. These methods may be performed alone or in combination.
  • the cleaning solution pure water (preferably ultrapure water) or various alcohols such as methyl alcohol, ethyl alcohol and isopropyl alcohol, aromatic hydrocarbons such as benzene, toluene and xylene, halogen solvents such as methylene chloride, acetone
  • ketones such as methyl ethyl ketone
  • Such a cleaning method can be applied to the above-mentioned cleaning step in the formation of the liquid crystal alignment film of the present invention.
  • annealing treatment with heat or light can be used before and after the heating and baking step and before and after the rubbing step.
  • the annealing temperature is 30 to 180 ° C., preferably 50 to 150 ° C.
  • the time is preferably 1 minute to 2 hours, and more preferably 10 minutes to 1 hour.
  • the annealing light used for the annealing treatment a UV lamp, a fluorescent lamp, an LED lamp and the like can be mentioned.
  • the light irradiation dose is preferably 0.3 to 10 J / cm 2 .
  • the thickness of the liquid crystal alignment film of the present invention is not particularly limited, but is preferably 10 to 300 nm, and more preferably 30 to 150 nm.
  • the film thickness of the liquid crystal alignment film of the present invention can be measured by a known film thickness measuring device such as a step gauge or an ellipsometer.
  • the liquid crystal alignment film of the present invention is characterized by having particularly large anisotropy of alignment.
  • the magnitude of such anisotropy can be evaluated by the method using polarized IR described in JP-A-2005-275364 or the like. It can also be evaluated by a method using ellipsometry as described below.
  • the retardation value of the liquid crystal alignment film can be measured by a spectroscopic ellipsometer. The retardation value of the film increases in proportion to the degree of orientation of the polymer main chain. That is, those having a large retardation value have a large degree of orientation. Therefore, when it is used as a liquid crystal aligning film, since the said liquid crystal aligning film has larger anisotropy, it is thought that alignment control of a liquid crystal composition can be carried out large.
  • the liquid crystal alignment film of the present invention can be suitably used for a transverse electric field liquid crystal display element.
  • the pretilt (Pt) angle is preferably 1.5 ° or less, more preferably 1.2 ° or less. Therefore, according to the embodiment of the present invention, the liquid crystal aligning agent is used in the manufacture of a lateral electric field liquid crystal display device. Further, according to the embodiment of the present invention, there is provided a lateral electric field liquid crystal display device having the liquid crystal alignment film.
  • the liquid crystal alignment film of the present invention can be used to control the alignment of liquid crystal compositions for liquid crystal displays such as smartphones, tablets, in-vehicle monitors, and televisions. Besides the alignment application of the liquid crystal composition for liquid crystal display, it can be used for the alignment control of an optical compensation material and all other liquid crystal materials. In addition, since the alignment film of the present invention has large anisotropy, it can be used alone as an optical compensatory material. Moreover, according to the embodiment of the present invention, there is provided a liquid crystal display device having the liquid crystal alignment film.
  • the liquid crystal display element of the present invention will be described in detail.
  • the present invention is formed on a pair of oppositely disposed substrates, an electrode formed on one or both of opposing surfaces of the pair of substrates, and an opposed surface of the pair of substrates.
  • the said liquid crystal aligning film provides the liquid crystal display element which is an alignment film of this invention.
  • the said electrode will not be specifically limited if it is an electrode formed in one surface of a board
  • Examples of such an electrode include a deposited film of ITO or metal, and the like.
  • the electrode may be formed on the entire surface of one side of the substrate, or may be formed, for example, in a desired shape which is patterned.
  • the desired shape of the electrode includes, for example, a comb or zigzag structure.
  • the electrode may be formed on one of the pair of substrates or may be formed on both of the substrates. The form of formation of the electrodes differs depending on the type of liquid crystal display element.
  • the electrode is disposed on one of the pair of substrates, and in the case of the other liquid crystal display elements Electrodes are disposed on both sides.
  • the liquid crystal alignment film is formed on the substrate or the electrode.
  • the liquid crystal layer is formed in such a manner that a liquid crystal composition is sandwiched between the pair of substrates facing each other on which the liquid crystal alignment film is formed.
  • a spacer such as fine particles or a resin sheet, which is interposed between the pair of substrates to form an appropriate distance.
  • a vacuum injection method or an ODF (One Drop Fill) method can be used.
  • substrate UV curing type and a thermosetting type sealing agent can be used, for example.
  • screen printing can be used for printing the sealing agent.
  • the liquid crystal composition is not particularly limited, and various liquid crystal compositions having positive or negative dielectric anisotropy can be used.
  • Preferred liquid crystal compositions having positive dielectric anisotropy include Japanese Patent No. 3086228, Japanese Patent No. 2635435, Japanese Patent Application No. 5-501735, Japanese Patent Nos. 8-157826 and 8-21960.
  • liquid crystal composition having the negative dielectric anisotropy there are disclosed JP-A-57-114532, JP-A-2-24725, JP-A-4-224885 and JP-A-8-40953.
  • an additive may be further added to the liquid crystal composition used for the liquid crystal display element of the present invention, for example, from the viewpoint of improving the orientation.
  • additives include photopolymerizable monomers, optically active compounds, antioxidants, ultraviolet light absorbers, dyes, antifoaming agents, polymerization initiators, polymerization inhibitors and the like.
  • Preferred photopolymerizable monomers, optically active compounds, antioxidants, ultraviolet light absorbers, dyes, antifoaming agents, polymerization initiators, polymerization inhibitors include compounds disclosed in WO 2015/146330 and the like. Can be mentioned.
  • a polymerizable compound may be mixed into the liquid crystal composition to be compatible with a liquid crystal display device in a PSA (polymer sustained alignment) mode.
  • Preferred examples of the polymerizable compound are compounds having a polymerizable group such as acrylate, methacrylate, vinyl compound, vinyloxy compound, propenyl ether, epoxy compound (oxirane, oxetane), vinyl ketone and the like.
  • Preferred compounds include the compounds disclosed in WO 2015/146330 and the like.
  • HSPgel RT MB-M manufactured by Waters
  • the measurement was performed under the conditions of a column temperature of 50 ° C. and a flow rate of 0.40 mL / min using the mixed solution as a developing agent.
  • TSK standard polystyrene manufactured by Tosoh Corp. was used.
  • Pretilt angle It was measured at room temperature with a liquid crystal evaluation apparatus (OMS-CA3) manufactured by Chuo Seiki Co., Ltd. In order to obtain a wide viewing angle, 1.5 degrees or less is desirable, and 1.2 degrees or less is more desirable.
  • NMP N-methyl-2-pyrrolidone BC: butyl cellosolve (ethylene glycol monobutyl ether)
  • GBL ⁇ -butyrolactone.
  • Additive (Ad1) 1,3-bis (4,5-dihydro-2-oxazolyl) benzene
  • Additive (Ad2) 3-aminopropyltriethoxysilane
  • Additive (Ad3) 2- (3,4-epoxy) Cyclohexyl) ethyltrimethoxysilane.
  • Synthesis Example 1a Synthesis of Compound (1-4) A commercial product of the reagent used for synthesis was used as it was without purification.
  • Second stage In a 1 L 3-neck flask equipped with a dropping funnel and a thermometer, 50.0 g (170.0 mmol) of 1,8-diphenyloctane-1,8-dione obtained in the first step was placed, and 500 mL of dichloromethane was added. The solution was cooled to 5 ° C., and 70.9 g (374.0 mmol, 2.2 eq.) Of titanium (IV) tetrachloride was added dropwise. The solution was kept at 5 ° C. and stirred for 1 hour, and then 59.3 g (510.0 mmol, 3.0 eq.) Of triethylsilane was further added dropwise. The solution was kept at 5 ° C.
  • Step 5> In a 3 L autoclave reaction tube made of SUS316, 40.0 g (74.5 mmol) of the compound (1-4) -N obtained in the fourth step and 4.0 g of 5% Pd / C powder (E type) were placed, and 800 mL of tetrahydrofuran was added. . The solution is stirred at 60 ° C. for 18 hours under a hydrogen atmosphere (hydrogen pressure; 0.6 MPa), allowed to cool, and after removing the Pd / C powder by filtration, the solvent is evaporated under reduced pressure and the compound (1- The crude product of 4) was obtained.
  • hydrogen pressure hydrogen pressure
  • the melting point of the obtained compound (1-4) was 113.3 to 114.7 ° C.
  • the melting point was measured using an automatic melting point measurement system MP-70 manufactured by METTLER TOLEDO.
  • Synthesis Example 1 Synthesis of Varnish 4.001 g of a compound represented by the formula (1-1) was placed in a 100 mL three-necked flask equipped with a stirring blade and a nitrogen introduction tube, and 54.0 g of NMP was added. The solution is ice-cooled to a solution temperature of 5 ° C., and then 0.390 g of the compound represented by the formula (AN-1), 0.965 g of the compound represented by the formula (AN-4), the formula (AN-6) The compound represented by 0.64g and NMP20.0g were added, and it stirred at room temperature for 12 hours. Thereto, 20.0 g of BC was added, and the solution was heated and stirred at 70 ° C.
  • Varnish 1 having a solid content of 6 wt%.
  • the weight average molecular weight (Mw) of the polymer contained in this varnish 1 was 60,000.
  • Synthesis Examples 2 to 55 Varnishes 2 to 55 were prepared according to Synthesis Example 1 except that tetracarboxylic dianhydride and diamine were changed, and the solid concentration of the polymer was 6% by weight.
  • the composition and weight average molecular weight (Mw) of the obtained varnish are shown in Tables 1 to 5.
  • Synthesis Example 1 is also shown again.
  • the inside of [] represents the molar ratio of each of the tetracarboxylic acid compound group and the diamine compound group.
  • Example 1 Preparation of liquid crystal aligning agent, preparation of liquid crystal cell for DC residual image and pretilt angle measurement, DC residual image measurement, and pretilt angle measurement Synthesized in Synthesis Example 1 in a 50 mL eggplant flask equipped with a stirring blade and a nitrogen introducing pipe. 3.0 g of Varnish 1 and 7.0 g of Varnish 27 synthesized in Synthesis Example 27 were weighed out, 4.0 g of NMP, 3.0 g of GBL and 3.0 g of BC were added thereto, and the mixture was stirred at room temperature for 1 hour to obtain a resin content of 3% by weight The liquid crystal aligning agent 1 was obtained.
  • the liquid crystal aligning agent 1 was applied to a glass substrate with an FFS electrode and a glass substrate with a column spacer by a spinner method (2,000 rpm, 15 seconds). After pre-baking at 80 ° C. for about 3 minutes after coating, baking was carried out at 230 ° C. for 30 minutes to form a liquid crystal alignment film having a film thickness of about 100 nm.
  • the obtained liquid crystal alignment film was rubbed by a rubbing cloth (hair length 2.8 mm: cotton) by using a rubbing apparatus manufactured by Iinuma Gauge Mfg. Co., Ltd., and the stage moving speed was 20 mm / sec, Rubbing was performed at a roller rotational speed of 1000 rpm.
  • the surface of the obtained substrate was washed with ultrapure water and then dried in an oven at 120 ° C. for 30 minutes.
  • two substrates on which these liquid crystal alignment films are formed are opposed to each other on the side on which the liquid crystal alignment film is formed, and a gap for injecting a liquid crystal composition is provided between the opposed liquid crystal alignment films. I put it together. At this time, the rubbing directions of the respective liquid crystal alignment films were made parallel.
  • the positive type liquid crystal composition A was vacuum-injected into these cells, and the inlet was sealed with a photo-curing agent to produce a liquid crystal cell (liquid crystal display element) having a cell thickness of 4 ⁇ m.
  • Examples 2 to 23 and Comparative Examples 1 to 3 A liquid crystal cell was prepared according to Example 1 except that the varnish used was changed, and DC afterimage, pretilt angle and voltage holding ratio were measured. The varnishes used and the measurement results are shown in Table 6 together with Example 1.
  • the varnish P is a varnish composition in the state which melt
  • the varnish Q is a varnish composition in which the polymer (Q) component is dissolved in a solvent.
  • DC afterimages were “ ⁇ ” and “ ⁇ ”.
  • the pretilt angle was 1.2 ° or less, and the voltage holding ratio was 99.5% or more.
  • the DC afterimage was “ ⁇ ”, but the pretilt angle was as high as 2.3 °.
  • the pretilt angle was 1.5 degrees or less and was favorable, DC afterimage was "x”.
  • the DC afterimage was “ ⁇ ”, but the pretilt angle was as high as 2.2 °.
  • Example 24 The procedure was carried out except that “3.0 g of Varnish 1 synthesized in Synthesis Example 1 and 7.0 g of Varnish 27 synthesized in Synthesis Example 27 were changed to“ 10.0 g of Varnish 3 synthesized in Synthesis Example 3 ”.
  • the liquid crystal aligning agent 27 was obtained according to Example 1. Using the obtained liquid crystal aligning agent 27, a liquid crystal cell was produced according to the method described in Example 1, and DC afterimage, pretilt angle and voltage retention were measured. The DC afterimage of the liquid crystal cell was “ ⁇ ”, and the pretilt angle was 0.6 °. The initial voltage holding ratio was 99.8%, and the voltage holding ratio of the measuring cell after the reliability test was 99.7%.
  • Examples 25 to 45, Comparative Examples 4 to 6 and Reference Examples 1 to 2 A liquid crystal cell was prepared according to Example 24 except that the varnish used was changed, and DC afterimage, pretilt angle and voltage holding ratio were measured. The varnishes used and the measurement results are shown in Table 7 together with Example 24.
  • the DC afterimage was “ ⁇ ”or“ ⁇ ”. Moreover, the pretilt angle was 1.5 degrees or less, and the voltage retention was 99.5% or more. In the comparative example 4, although the pretilt angle was 1.5 degrees or less and was favorable, DC afterimage was "x". In Comparative Example 5, the DC afterimage was “ ⁇ ”, but the pretilt angle was as high as 2.1 °, and a low pretilt angle could not be expressed. In Comparative Example 6, although the DC afterimage was “ ⁇ ”, the pretilt angle was as high as 2.0 °, and a low pretilt angle could not be expressed. In Reference Example 1, the DC afterimage was “x”, but the pretilt angle was 0.3 ° and was surprisingly low.
  • the DC afterimage was “x”, but the pretilt angle was 0.2 ° and was surprisingly low.
  • the liquid crystal aligning agent which the said diamine in the polymer which is a reaction product from the raw material containing tetracarboxylic dianhydride and a diamine in embodiment containing 1 type of polymer in a liquid crystal aligning agent consists only of Formula (1-4) is It has been found that the pretilt angle can be surprisingly lowered.
  • Example 46 A resin component concentration of 3% by weight in accordance with Example 1 except that 6 mg of additive (Ad1) was further added to “NMP 4.0 g, GBL 3.0 g and BC 3.0 g” in Example 1.
  • the additive concentration was 1 part by weight of the liquid crystal aligning agent 54 per 100 parts by weight of the resin component.
  • a liquid crystal cell was produced according to the method described in Example 1, and DC afterimage, pretilt angle and voltage retention were measured.
  • the DC afterimage of the liquid crystal cell was “ ⁇ ”, and the pretilt angle was 0.9 °.
  • the initial voltage holding ratio was 99.8%, and the voltage holding ratio of the measuring cell after the reliability test was 99.6%.
  • Example 47 to 60 and Comparative Examples 7 to 9 A liquid crystal cell was produced according to Example 46 except that the varnish and the additive used were changed, and the DC afterimage, pretilt angle and voltage retention were measured. The varnishes, additives and measurement results used are shown in Table 8 together with Example 46.
  • the DC afterimage was “60”. Moreover, the pretilt angle was 1.5 degrees or less, and the voltage retention was 99.5% or more. In Comparative Example 7, the DC afterimage was “ ⁇ ”, but the pretilt angle was as high as 2.4 °. In the comparative example 8, although the pretilt angle was 1.5 degrees or less and was favorable, DC afterimage was "x”. In Comparative Example 9, the DC afterimage was “ ⁇ ” but the pretilt angle was as high as 2.3 °.
  • Example 61 A resin component concentration of 3% by weight in accordance with Example 1 except that 6 mg of additive (Ad1) is further added to “NMP 4.0 g, GBL 3.0 g and BC 3.0 g” in Example 24
  • the additive concentration was 1 part by weight of the liquid crystal aligning agent 72 per 100 parts by weight of the resin component.
  • a liquid crystal cell was produced according to the method described in Example 1, and DC afterimage, pretilt angle and voltage retention were measured.
  • the DC afterimage of the liquid crystal cell was “ ⁇ ”, and the pretilt angle was 0.8 °.
  • the initial voltage holding ratio was 99.7%, and the voltage holding ratio of the measuring cell after the reliability test was 99.6%.
  • Example 62 to 82 Comparative Examples 10 to 12 and Reference Examples 3 to 4
  • a liquid crystal cell was produced according to Example 61 except that the varnish and the additive used were changed, and the DC afterimage, pretilt angle and voltage retention were measured.
  • the varnish used, additives and measurement results are shown in Table 9 together with Example 61.
  • the DC afterimage was “ ⁇ ” or “ ⁇ ”. Moreover, the pretilt angle was 1.5 degrees or less, and the voltage retention was 99.5% or more. In the comparative example 10, although the pretilt angle was 1.5 degrees or less and was favorable, DC afterimage was "x". In Comparative Example 11, the DC afterimage was “ ⁇ ”, but the pretilt angle was as high as 2.2 °, and a low pretilt angle could not be expressed. In Comparative Example 12, the DC afterimage was “ ⁇ ”, but the pretilt angle was as high as 2.2 °, and a low pretilt angle could not be expressed. In Reference Example 3, the DC afterimage was “x”, but the pretilt angle was 0.4 ° and was surprisingly low.
  • the DC afterimage was “x”, but the pretilt angle was 0.3 ° and was surprisingly low.
  • the liquid crystal aligning agent which the said diamine in the polymer which is a reaction product from the raw material containing tetracarboxylic dianhydride and a diamine in embodiment containing 1 type of polymer in a liquid crystal aligning agent consists only of Formula (1-4) is It has been found that even when the additive is added, the pretilt angle can be significantly reduced.
  • liquid crystal aligning agent of the present invention By using the liquid crystal aligning agent of the present invention, it is possible to form a liquid crystal alignment film which can suppress the pretilt angle of liquid crystal to a low level, give a liquid crystal display element having a small residual DC accumulation and quick relaxation of charges.
  • the liquid crystal aligning agent of the present invention can be suitably applied to a transverse electric field liquid crystal display device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Liquid Crystal (AREA)

Abstract

[Problem] To provide a liquid crystal alignment agent that makes it possible to form a liquid crystal alignment film that gives a liquid crystal display element that has favorable viewing angle characteristics and afterimage characteristics. [Solution] A liquid crystal alignment agent that contains a polymer that is the product of reacting starting materials that include a tetracarboxylic acid dianhydride and a diamine. The starting materials used to synthesize the polymer include at least one compound selected from compounds represented by formulas (1)–(3) and also include compounds represented by formulas (A)–(C) and at least one compound selected from compounds represented by formula (D), provided that, when m in formula (1) is 8, no compound represented by formulas (A)–(C) need be included in the diamine, and the tetracarboxylic acid dianhydride need not be a compound represented by formula (D).

Description

液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display device using the same
 本発明は、液晶配向膜を形成するための液晶配向剤、この液晶配向剤を用いて形成される液晶配向膜、そして、この液晶配向膜を有する液晶表示素子に関する。 The present invention relates to a liquid crystal alignment agent for forming a liquid crystal alignment film, a liquid crystal alignment film formed using the liquid crystal alignment agent, and a liquid crystal display device having the liquid crystal alignment film.
 液晶表示素子としては、TN(Twisted Nematic)型、STN(Super Twisted Nematic)型、VA(Vertical Alignment)型などの縦電界方式の液晶表示素子のほか、IPS(In-Plane Switching)型やFFS(Fringe Field Switching)型などの、対向配置された一対の基板の片側のみに電極を形成し、基板と平行方向に電界を発生する横電界方式の液晶表示素子が知られている。中でもIPS型やFFS型に代表される横電界方式の液晶表示素子は、視野角特性や色再現性に優れており、テレビ、タブレット、スマートフォンなどの様々な液晶表示素子に用いられている(特許文献1)。 As liquid crystal display elements, in addition to liquid crystal display elements of vertical electric field mode such as TN (Twisted Nematic) type, STN (Super Twisted Nematic) type, VA (Vertical Alignment) type, IPS (In-Plane Switching) type and FFS (FPS) 2. Description of the Related Art There is known a horizontal electric field liquid crystal display device in which an electrode is formed only on one side of a pair of oppositely arranged substrates such as a Fringe Field Switching) type to generate an electric field in a direction parallel to the substrates. Among them, liquid crystal display elements of lateral electric field type represented by IPS type and FFS type are excellent in viewing angle characteristics and color reproducibility, and are used for various liquid crystal display elements such as televisions, tablets, and smartphones (patented) Literature 1).
 液晶表示素子に使用される構成部材の1つである液晶配向膜は、表示品位に関わる重要な部材である。近年、液晶表示素子の高品質化に伴い、液晶配向膜に求められる性能は多様化し、高度化している。特に、横電界方式の液晶表示素子においては、黒表示における視野角特性および色再現性をさらに向上させるために、液晶のプレチルト角を低く抑えることが要求されるのに加え、さらに、電圧印加後に電圧をOFFにしたあと残像を発生させない、つまり、残留DCのたまりが小さく、電荷の緩和が速い液晶表示素子を与える液晶配向膜が求められている(特許文献2および3)。 The liquid crystal aligning film which is one of the structural members used for a liquid crystal display element is an important member in connection with a display quality. In recent years, the performance required for the liquid crystal alignment film is diversified and advanced with the improvement of the quality of liquid crystal display elements. In particular, in a liquid crystal display element of a lateral electric field type, in order to further improve the viewing angle characteristics and color reproducibility in black display, it is further required to suppress the pretilt angle of liquid crystal low, and further after applying a voltage. There is a need for a liquid crystal alignment film that gives a liquid crystal display element that does not generate an afterimage after the voltage is turned off, that is, has a small amount of residual DC accumulation and quick relaxation of charge (Patent Documents 2 and 3).
国際公開第1998/027454号International Publication No. 1998/027454 国際公開第2015/080185号WO 2015/080185 国際公開第2015/050135号WO 2015/050135
 特許文献2および3のように、これまで、それぞれの性能を有する液晶配向膜については提案されてきたが、本発明者は、これら2つの性能を兼ね備えた液晶配向膜を形成する液晶配向剤については提案されていないことを知見した。 Although the liquid crystal aligning film which has each performance was proposed until now like patent document 2 and 3, this inventor is about the liquid crystal aligning agent which forms the liquid crystal aligning film which has these two performances. Found that it was not proposed.
 そこで、本発明は、液晶のプレチルト角を低く抑えることができ、かつ、残留DCのたまりが小さく、電荷の緩和が速い液晶表示素子を与える液晶配向膜、および該液晶配向膜を形成することができる液晶配向剤を提供することを課題とする。また、該液晶配向膜を有し、視野角特性や残像特性が良好な液晶表示素子を提供することを課題とする。 Therefore, according to the present invention, it is possible to form a liquid crystal alignment film giving a liquid crystal display element capable of suppressing the pretilt angle of liquid crystal to a low level and having a small amount of residual DC accumulation and quick relaxation of electric charge. It is an object of the present invention to provide a liquid crystal aligning agent capable of Another object of the present invention is to provide a liquid crystal display device having the liquid crystal alignment film and having excellent viewing angle characteristics and afterimage characteristics.
 本発明者らは、合成するのに用いられる原料の1つとして、下記式(1)~式(3)で表される化合物から選択される少なくとも1つを含み、かつ、下記式(A)~式(C)で表される化合物、および下記式(D)で表される化合物から選択される少なくとも1つを含むポリマーを含有する液晶配向剤が、液晶のプレチルト角を低く抑えることができ、かつ残留DCのたまりが小さく、電荷の緩和が速い液晶表示素子を与える液晶配向膜を形成することができることを見出した。また、該液晶配向膜を有する液晶表示素子は、視野角特性や残像特性が良好であることを見出し、本発明に至った。 The present inventors include at least one selected from the compounds represented by the following formulas (1) to (3) as one of the raw materials used for the synthesis, and the following formula (A) A liquid crystal aligning agent containing a polymer containing at least one selected from a compound represented by the formula (C) and a compound represented by the following formula (D) can suppress the pretilt angle of liquid crystal to a low level. And, it has been found that it is possible to form a liquid crystal alignment film which gives a liquid crystal display element in which the accumulation of residual DC is small and the relaxation of charges is fast. Moreover, the liquid crystal display element which has this liquid crystal aligning film discovered that a viewing angle characteristic and an afterimage characteristic were favorable, and came to this invention.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式(1)において、mは3~8の整数であり、式(3)において、nは1~3の整数であり、式(1)~(3)において、環を構成するいずれかの炭素原子に結合位置が固定されていない基は、その環における結合位置が任意であることを示し、式(A)において、Aは窒素、または窒素含有ヘテロ環であり、Wは独立して、炭素数1~5のアルキレンであり、任意の-CH-は、-CO-、1,4-フェニレン、または1,3-フェニレンに置き換えられてもよく、Zは水素、熱により水素原子に置き換わる保護基、または炭素数1~5のアルキルであり、aは独立して0または1であり、式(B)において、Aは独立して、窒素、または窒素含有ヘテロ環であり、WおよびWは独立して炭素数1~5のアルキレンであり、任意の-CH-は、-CO-、1,4-フェニレン、または1,3-フェニレンに置き換えられてもよく、Zは独立して水素、熱により水素原子に置き換わる保護基、または炭素数1~5のアルキルであり、aは独立して0または1であり、式(C)において、Zは2級または3級アミノ基の少なくとも1つを含有する1価の有機基であり、式(D)において、Tは1~2個の炭素-炭素二重結合または1~2個の炭素-炭素三重結合を含む二価の不飽和結合含有基であり、そして、式(1)~式(3)および式(A)~式(C)において、環を構成するいずれかの炭素原子に結合位置が固定されていない基は、その環における結合位置が任意であることを示し、ただし、前記式(1)においてmが8のときは、前記ジアミンが、前記式(A)~式(C)で表される化合物のいずれも含まれなくてもよく、前記テトラカルボン酸二無水物が、下記式(D)で表される化合物でなくてもよい。 In the formula (1), m is an integer of 3 to 8, and in the formula (3), n is an integer of 1 to 3, and in the formulas (1) to (3), any carbon constituting a ring A group whose bonding position is not fixed to an atom indicates that the bonding position in the ring is arbitrary, and in the formula (A), A 1 is nitrogen or a nitrogen-containing heterocycle, and W 1 is independently , Alkylene of 1 to 5 carbons, and optional -CH 2 -may be replaced by -CO-, 1,4-phenylene, or 1,3-phenylene, Z 1 is hydrogen, hydrogen by heat A protecting group replacing an atom, or alkyl having 1 to 5 carbon atoms, a is independently 0 or 1, and in the formula (B), A 2 is independently a nitrogen or nitrogen-containing heterocycle , W 2 and W 3 independently an alkylene having 1 to 5 carbon atoms Ri, arbitrary -CH 2 -, -CO-, 1,4-phenylene, or may be replaced by 1,3-phenylene, Z 2 is independently hydrogen, thermal by a protecting group to replace the hydrogen atom, Or a C 1-5 alkyl, a is independently 0 or 1, and in formula (C), Z 3 is a monovalent organic group containing at least one of a secondary or tertiary amino group. And in the formula (D), T is a divalent unsaturated bond-containing group containing 1 to 2 carbon-carbon double bonds or 1 to 2 carbon-carbon triple bonds, and 1) In the formula (3) and the formulas (A) to (C), a group whose bonding position is not fixed to any carbon atom constituting the ring has an arbitrary bonding position in the ring. When the m is 8 in the formula (1), the diamine And none of the compounds represented by the formulas (A) to (C) may be included, and the tetracarboxylic acid dianhydride may not be a compound represented by the following formula (D) .
 本発明の液晶配向剤を使用することで、液晶のプレチルト角を低く抑えることができ、かつ残留DCのたまりが小さく、電荷の緩和が速い液晶表示素子を与える液晶配向膜を得ることができる。また、該液晶配向膜を有する液晶表示素子は、視野角特性や残像特性が良好である。 By using the liquid crystal aligning agent of the present invention, it is possible to obtain a liquid crystal alignment film capable of suppressing the pretilt angle of liquid crystal to a low level, providing a liquid crystal display element having a small residual DC accumulation and fast charge relaxation. Moreover, the liquid crystal display element which has this liquid crystal aligning film has a favorable viewing angle characteristic and a residual image characteristic.
 以下、本発明の実施の形態を説明する。なお、本発明は、以下の実施の形態のみには限定されない。また、本明細書において、特記しない限り、操作および物性等の測定は室温(20℃以上25℃以下)/相対湿度40%RH以上50%RH以下の条件で行う。 Hereinafter, embodiments of the present invention will be described. The present invention is not limited to the following embodiments. In the present specification, unless otherwise specified, measurements of operations and physical properties are performed under the conditions of room temperature (20 ° C. or more and 25 ° C. or less) / relative humidity 40% RH or more and 50% RH or less.
 本発明の液晶配向剤は、合成するのに用いられる原料の1つとして、下記式(1)~式(3)で表される化合物から選択される少なくとも1つを含み、かつ、下記式(A)~式(C)で表される化合物、および下記式(D)で表される化合物から選択される少なくとも1つを含むポリマー(以下、単に「ポリマー」、本発明に係る「ポリマー」と称する場合がある)を含有する液晶配向剤である。 The liquid crystal aligning agent of the present invention contains at least one selected from the compounds represented by the following formulas (1) to (3) as one of the raw materials used for the synthesis, and A) a polymer represented by the formula (C), and a polymer comprising at least one selected from the compounds represented by the following formula (D) (hereinafter simply referred to as “polymer”, “polymer” according to the present invention It may be referred to as a liquid crystal aligning agent containing
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 式(1)において、mは3~8の整数であり、式(3)において、nは1~3の整数であり、式(1)~(3)において、環を構成するいずれかの炭素原子に結合位置が固定されていない基は、その環における結合位置が任意であることを示し、式(A)において、Aは窒素、または窒素含有ヘテロ環であり、Wは独立して、炭素数1~5のアルキレンであり、任意の-CH-は、-CO-、1,4-フェニレン、または1,3-フェニレンに置き換えられてもよく、Zは水素、熱により水素原子に置き換わる保護基、または炭素数1~5のアルキルであり、rは0以上の任意の整数であり、aは独立して0または1であり、式(B)において、Aは独立して、窒素、または窒素含有ヘテロ環であり、WおよびWは独立して炭素数1~5のアルキレンであり、任意の-CH-は、-CO-、1,4-フェニレン、または1,3-フェニレンに置き換えられてもよく、Zは独立して水素、熱により水素原子に置き換わる保護基、または炭素数1~5のアルキルであり、rは0以上の任意の整数であり、aは独立して0または1であり、式(C)において、Zは2級または3級アミノ基の少なくとも1つを含有する1価の有機基であり、式(D)において、Tは1~2個の炭素-炭素二重結合または1~2個の炭素-炭素三重結合を含む二価の不飽和結合含有基であり、そして、式(1)~式(3)および式(A)~式(C)において、環を構成するいずれかの炭素原子に結合位置が固定されていない基は、その環における結合位置が任意であることを示し、ただし、前記式(1)においてmが8のときは、前記ジアミンが、前記式(A)~式(C)で表される化合物のいずれも含まれなくてもよく、前記テトラカルボン酸二無水物が、前記式(D)で表される化合物でなくてもよい。かかる構成を有することによって、液晶のプレチルト角を低く抑えることができ、かつ残留DCのたまりが小さく、電荷の緩和が速い液晶配向膜を提供することができる。 In the formula (1), m is an integer of 3 to 8, and in the formula (3), n is an integer of 1 to 3, and in the formulas (1) to (3), any carbon constituting a ring A group whose bonding position is not fixed to an atom indicates that the bonding position in the ring is arbitrary, and in the formula (A), A 1 is nitrogen or a nitrogen-containing heterocycle, and W 1 is independently , Alkylene of 1 to 5 carbons, and optional -CH 2 -may be replaced by -CO-, 1,4-phenylene, or 1,3-phenylene, Z 1 is hydrogen, hydrogen by heat A protecting group replacing an atom, or an alkyl having 1 to 5 carbon atoms, r is an arbitrary integer of 0 or more, a is independently 0 or 1, and in the formula (B), A 2 is independently Te, nitrogen or a nitrogen-containing heterocycle,, W 2 and W 3 are independently Te alkylene having 1 to 5 carbon atoms, arbitrary -CH 2 -, -CO-, 1,4-phenylene, or may be replaced by 1,3-phenylene, Z 2 is independently hydrogen, A protecting group which is substituted by a hydrogen atom by heat, or an alkyl having 1 to 5 carbon atoms, r is an arbitrary integer of 0 or more, a is independently 0 or 1, and in the formula (C), Z 3 is Is a monovalent organic group containing at least one of a secondary or tertiary amino group, and in formula (D), T is a 1 to 2 carbon-carbon double bond or a 1 to 2 carbon- A divalent unsaturated bond-containing group containing a carbon triple bond, and which is bonded to any carbon atom constituting a ring in formulas (1) to (3) and formulas (A) to (C) A group whose position is not fixed indicates that the bonding position in the ring is arbitrary. However, when m is 8 in the formula (1), the diamine may not contain any of the compounds represented by the formulas (A) to (C), and the tetracarboxylic acid The anhydride may not be the compound represented by the formula (D). By having such a configuration, it is possible to suppress the pretilt angle of the liquid crystal to a low level, and to provide a liquid crystal alignment film in which the accumulation of residual DC is small and the relaxation of charges is fast.
 また、本発明の実施形態において、以下の原料由来の構成単位を含むポリマーの少なくとも1つを含有する液晶配向剤であって、前記原料が、前記式(1)~(3)で表される化合物の群から選ばれる少なくとも1つを含み、前記式(A)、前記式(B)、前記式(C)および前記式(D)からなる群から選択される少なくとも1つを含み、ただし、前記式(1)においてmが8のときは、前記ジアミンが、前記式(A)~式(C)で表される化合物のいずれも含まれなくてもよく、前記テトラカルボン酸二無水物が、前記式(D)で表される化合物でなくてもよい、液晶配向剤が提供される。また、当該実施形態において、前記ポリマーが、ポリアミック酸、ポリイミド、部分ポリイミド、ポリアミック酸エステル、ポリアミック酸-ポリアミドコポリマーおよびポリアミドイミドからなる群から選ばれる少なくとも1つである。ただし、前記式(1)においてmが8のときは、前記ジアミンが、前記式(A)~式(C)で表される化合物のいずれも含まれなくてもよく、前記テトラカルボン酸二無水物が、前記式(D)で表される化合物でなくてもよい。本明細書中、「・・・を含む原料からの反応生成物であるポリマー」は、「原料由来の構成単位を含むポリマー」であってもよい。 In the embodiment of the present invention, it is a liquid crystal aligning agent containing at least one of polymers containing constituent units derived from the following raw materials, and the raw materials are represented by the above formulas (1) to (3) At least one selected from the group consisting of compounds, and at least one selected from the group consisting of said formula (A), said formula (B), said formula (C) and said formula (D); When m is 8 in the formula (1), the diamine may not contain any of the compounds represented by the formulas (A) to (C), and the tetracarboxylic acid dianhydride is The liquid crystal aligning agent which does not need to be a compound represented by said Formula (D) is provided. In the embodiment, the polymer is at least one selected from the group consisting of polyamic acid, polyimide, partial polyimide, polyamic acid ester, polyamic acid-polyamide copolymer, and polyamideimide. However, when m is 8 in the formula (1), the diamine may not contain any of the compounds represented by the formulas (A) to (C), and the tetracarboxylic acid dianhydride The substance may not be the compound represented by the formula (D). In the present specification, "a polymer which is a reaction product from a raw material containing ..." may be a "polymer containing a structural unit derived from a raw material".
 なお、本発明の実施形態において、テトラカルボン酸二無水物およびジアミンを含む原料からの反応生成物であるポリマーの少なくとも1つを含有する液晶配向剤の製造方法であって、前記ポリマーを合成するのに用いられる原料として、前記式(1)~(3)で表される化合物の群から選ばれる少なくとも1つと、前記式(A)~式(C)で表される化合物の群、および前記式(D)で表される化合物から選ばれる少なくとも1つとを反応させることを有し、ここで、前記ポリマーはポリアミック酸、ポリイミド、部分ポリイミド、ポリアミック酸エステル、ポリアミック酸-ポリアミドコポリマー、およびポリアミドイミドからなる群から選ばれる少なくとも1つであり、ただし、前記式(1)においてmが8のときは、前記ジアミンが、前記式(A)~式(C)で表される化合物のいずれも含まれなくてもよく、前記テトラカルボン酸二無水物が、下記式(D)で表される化合物でなくてもよい、製造方法が提供される。 In the embodiment of the present invention, it is a method for producing a liquid crystal aligning agent containing at least one of a polymer which is a reaction product from a raw material containing tetracarboxylic acid dianhydride and a diamine, and the polymer is synthesized. And at least one selected from the group of compounds represented by the above-mentioned formulas (1) to (3), the group of compounds represented by the above-mentioned formulas (A) to (C), and And at least one selected from the compounds represented by formula (D), wherein the polymer is a polyamic acid, a polyimide, a partial polyimide, a polyamic acid ester, a polyamic acid-polyamide copolymer, and a polyamideimide At least one member selected from the group consisting of, provided that m is 8 in the above formula (1), And none of the compounds represented by the formulas (A) to (C) may be included, and the tetracarboxylic acid dianhydride may not be a compound represented by the following formula (D) , A manufacturing method is provided.
 なお、本発明の実施形態においては、本発明に係るポリマーの液晶配向剤としての使用(応用)も提供される。 In the embodiment of the present invention, the use (application) of the polymer according to the present invention as a liquid crystal aligning agent is also provided.
 本明細書中において、前記ポリマーが有機溶剤に溶解した状態のものをワニスと称す。ワニスの製造方法には特に制限はなく、テトラカルボン酸二無水物(その誘導体を含む)およびジアミン(ジヒドラジドを含む)を含む原料の混合物を有機溶剤中で反応させたポリマーと有機溶剤との混合物を、そのままワニスとして液晶配向剤の製造に用いてもよい。また、反応混合物からポリマーを回収して、そのポリマーを有機溶剤中に再溶解したものを、ワニスとして液晶配向剤の製造に用いてもよい。本発明の液晶配向剤は、ポリアミック酸、ポリイミド、部分ポリイミド、ポリアミック酸エステル、ポリアミック酸-ポリアミドコポリマー、およびポリアミドイミドなどの群から選択されたポリマーを有機溶剤に溶解させたワニスを主成分とする溶液であり、2種以上のワニスを用いてもよい。本発明の好ましい形態では、この液晶配向剤を基板に塗布した後、加熱等の手段により成膜してポリイミド系液晶配向膜を形成する。 In the present specification, the state in which the polymer is dissolved in an organic solvent is referred to as a varnish. There is no particular limitation on the method of producing the varnish, and a mixture of a polymer obtained by reacting a mixture of raw materials containing tetracarboxylic acid dianhydride (including its derivative) and diamine (including dihydrazide) in an organic solvent and an organic solvent May be used as a varnish as it is in the production of a liquid crystal aligning agent. In addition, a polymer may be recovered from the reaction mixture, and the polymer redissolved in an organic solvent may be used as a varnish in the production of a liquid crystal aligning agent. The liquid crystal aligning agent of the present invention is mainly composed of a varnish obtained by dissolving a polymer selected from the group of polyamic acid, polyimide, partial polyimide, polyamic acid ester, polyamic acid-polyamide copolymer, and polyamideimide in an organic solvent. It is a solution, and two or more kinds of varnish may be used. In a preferred embodiment of the present invention, the liquid crystal aligning agent is applied to a substrate, and then film formation is performed by means such as heating to form a polyimide liquid crystal alignment film.
 さらに詳しくは、本発明の液晶配向剤は、合成するのに用いられる原料として、式(1)~式(3)で表される化合物から選択される少なくとも1つと、かつ、前記式(A)~式(C)で表される化合物、および前記式(D)で表される化合物から選択される少なくとも1つとを反応させて得たポリマーの少なくとも1つを含み、ただし、前記式(1)においてmが8のときは、前記ジアミンが、前記式(A)~式(C)で表される化合物のいずれも含まれなくてもよく、前記テトラカルボン酸二無水物が、前記式(D)で表される化合物でなくてもよい。また、本発明の実施形態において、テトラカルボン酸二無水物およびジアミンを含む原料からの反応生成物であるポリマーの少なくとも1つを含有する液晶配向剤であって、前記ポリマーを合成するのに用いられる原料が、前記式(1)~(3)で表される化合物の群から選ばれる少なくとも1つを含み、前記式(A)~式(C)で表される化合物の群から選ばれる少なくとも1つを含み、かつ、前記式(D)で表される化合物から選ばれる少なくとも1つを含む。また、本発明の実施形態において、液晶配向剤は、テトラカルボン酸二無水物およびジアミンを含む原料からの反応生成物であるポリマーを1つ含有し、より具体的には、本発明の実施形態における液晶配向剤は、前記式(1)~(3)で表される化合物の群から選ばれる少なくとも1つを含み、かつ、前記式(A)~式(C)で表される化合物の群、および前記式(D)で表される化合物から選ばれる少なくとも1つを含む原料を用いたポリマーを1つ含有する(ある実施形態においては基板上に1層積層されている形態であるので「単層系」と呼ぶこともできる)。すなわち、本発明の実施形態において、前記ポリマーを1つ含有する。また、本発明の実施形態において、前記ポリマーを2つ以上含有する(ある実施形態においては基板上に2層以上積層されている形態であるので「ブレンド系」と呼ぶこともできる)。また、本発明の実施形態の液晶配向剤は、合成するのに用いられる原料として、ポリマー(P)およびポリマー(Q)を含む。つまり、本発明の実施形態において、前記ポリマーを少なくとも2つを含有し、前記少なくとも2つのポリマーは、ポリマー(P)およびポリマー(Q)を含み;前記ポリマー(P)を合成するのに用いられる原料は、前記式(1)~(3)で表される化合物の群から選ばれる少なくとも1つを含み;そして、前記ポリマー(Q)を合成するのに用いられる原料は、前記式(A)~式(C)で表される化合物の群、および前記式(D)で表される化合物から選ばれる少なくとも1つを含む。 More specifically, the liquid crystal aligning agent of the present invention is at least one selected from the compounds represented by Formula (1) to Formula (3) as a raw material used for synthesis, and the above-mentioned Formula (A) A compound represented by the formula (C), and at least one polymer obtained by reacting at least one selected from the compounds represented by the formula (D), provided that the formula (1) is When m is 8 in the above, the diamine may not contain any of the compounds represented by the formulas (A) to (C), and the tetracarboxylic acid dianhydride may have the formula (D) It does not have to be a compound represented by). In addition, in an embodiment of the present invention, a liquid crystal aligning agent containing at least one of a polymer which is a reaction product from a raw material containing tetracarboxylic acid dianhydride and a diamine, which is used to synthesize the polymer Raw materials containing at least one selected from the group of compounds represented by the formulas (1) to (3) and at least one selected from the group of compounds represented by the formulas (A) to (C) And at least one selected from the compounds represented by the above-mentioned formula (D). Further, in the embodiment of the present invention, the liquid crystal aligning agent contains one polymer which is a reaction product from a raw material containing tetracarboxylic acid dianhydride and diamine, and more specifically, the embodiment of the present invention The liquid crystal aligning agent in the above includes at least one selected from the group of compounds represented by the formulas (1) to (3), and a group of compounds represented by the formulas (A) to (C). And one polymer using a raw material containing at least one selected from the compounds represented by the above-mentioned formula (D) (in an embodiment, it is in the form of being laminated one layer on the substrate, “ It can also be called "monolayer system". That is, in the embodiment of the present invention, one polymer is contained. Moreover, in the embodiment of the present invention, two or more of the polymers are contained (in an embodiment, two or more layers are laminated on the substrate, and therefore, they may be called “blend systems”). Moreover, the liquid crystal aligning agent of embodiment of this invention contains polymer (P) and polymer (Q) as a raw material used to synthesize | combine. That is, in an embodiment of the present invention, the polymer contains at least two, and the at least two polymers include a polymer (P) and a polymer (Q); used to synthesize the polymer (P) The raw material contains at least one selected from the group of compounds represented by the formulas (1) to (3); and the raw material used to synthesize the polymer (Q) is the compound represented by the formula (A) And at least one selected from the group of compounds represented by formula (C), and the compounds represented by formula (D).
 本発明において、前記ポリマーは、ポリアミック酸、ポリイミド、部分ポリイミド、ポリアミック酸エステル、ポリアミック酸-ポリアミドコポリマー、およびポリアミドイミドからなる群から選ばれる少なくとも1つである。また、本明細書において、これらは、それらの誘導体を含む。例えば、前記ポリマーは、ポリアミック酸またはその誘導体である。 In the present invention, the polymer is at least one selected from the group consisting of polyamic acid, polyimide, partial polyimide, polyamic acid ester, polyamic acid-polyamide copolymer, and polyamideimide. Also, as used herein, these include their derivatives. For example, the polymer is a polyamic acid or a derivative thereof.
 式(1)~式(3)で表される化合物について、説明する。 The compounds represented by the formulas (1) to (3) will be described.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 式(1)において、mは3~8の整数であり、より具体的には、mは、3、4、5、6、7または8である。ここで、mが8であると、特にプレチルト角を低く抑える効果を奏しうる点からも好適である。また、mが3であると、特に良好な液晶配向性を示す点からも好適である。 In the formula (1), m is an integer of 3 to 8, and more specifically, m is 3, 4, 5, 6, 7 or 8. Here, it is preferable that m is 8 in particular because the effect of suppressing the pretilt angle can be exhibited. Moreover, it is suitable also from the point which shows especially favorable liquid-crystal orientation as m is 3.
 式(3)において、nは1~3の整数である。 In the formula (3), n is an integer of 1 to 3.
 式(1)~式(3)において、環を構成するいずれかの炭素原子に結合位置が固定されていない基は、その環における結合位置が任意であることを示す。なお、本発明の実施形態において、環へのアミノ基の結合位置は、下記の直線性を確保するため、メタ位、パラ位であることが好ましい。 In formulas (1) to (3), a group whose bonding position is not fixed to any carbon atom constituting a ring means that the bonding position on the ring is arbitrary. In the embodiment of the present invention, the bonding position of the amino group to the ring is preferably in the meta or para position in order to ensure the following linearity.
 合成するのに用いられる原料として、上記式(1)、(2)および(3)で表される化合物の少なくとも1つを用いることで、得られるポリマーの安定なコンフォメーションが、非常に直線的であるため、液晶のプレチルト角を低く抑えることができると考えられる。 By using at least one of the compounds represented by the above formulas (1), (2) and (3) as a raw material used for the synthesis, the stable conformation of the obtained polymer is very linear. Therefore, it is considered that the pretilt angle of the liquid crystal can be suppressed low.
 式(1)~式(3)で表される化合物の好適な具体例を以下に示す。 Preferred specific examples of the compounds represented by Formula (1) to Formula (3) are shown below.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 中でも、式(1-1)、式(1-4)、式(2-1)、および式(3-1)で表される化合物が、高い液晶配向性を示し、より液晶のプレチルト角を低く抑えることができるため好ましい。特に、式(1-1)および式(1-4)の少なくとも一方であることが、有機溶媒への溶解性が優れるため好ましい。以上のように、本発明においては、前記式(1-4)で示される、ジアミンも提供される。液晶配向剤に用いられるポリマーを合成するのに用いられる原料のうちジアミン原料として前記式(1-4)で示されるジアミンを用いることで、特異的に、液晶のプレチルト角を低く抑えることができ、かつ残留DCのたまりが小さく、電荷の緩和が速い液晶表示素子を与える液晶配向膜を形成することができる。また、液晶配向剤に用いられるポリマーを合成するのに用いられる原料のうちジアミン原料として前記式(1-4)で示されるジアミンのみを用いることで、特異的に、液晶のプレチルト角を低く抑えることができる。よって、本発明においては、テトラカルボン酸二無水物およびジアミンを含む原料からの反応生成物であるポリマーの少なくとも1つを含有する液晶配向剤であって、前記ジアミンが、前記式(1-4)で示されるジアミンのみからなる、液晶配向剤も提供される。なお、液晶配向剤に用いられるポリマーを合成するのに用いられる原料のうちジアミン原料として前記式(1-4)で示されるジアミンを用いる場合、酸二無水物は特に制限されない。また、前記式(1-4)で示されるジアミンの合成方法としては実施例の欄に記載される方法が一例として挙げられるが、これに制限されない。 Among them, the compounds represented by Formula (1-1), Formula (1-4), Formula (2-1), and Formula (3-1) exhibit high liquid crystal alignment, and the pretilt angle of the liquid crystal is further increased. It is preferable because it can be kept low. In particular, at least one of the formula (1-1) and the formula (1-4) is preferable because the solubility in an organic solvent is excellent. As described above, in the present invention, there is also provided a diamine represented by the above formula (1-4). By using a diamine represented by the above formula (1-4) as a diamine raw material among raw materials used to synthesize a polymer used for a liquid crystal aligning agent, the pretilt angle of liquid crystal can be specifically suppressed low. And, it is possible to form a liquid crystal alignment film which gives a liquid crystal display element in which the accumulation of residual DC is small and the relaxation of charges is fast. In addition, by using only the diamine represented by the above formula (1-4) as a diamine raw material among the raw materials used to synthesize the polymer used for the liquid crystal aligning agent, the pretilt angle of the liquid crystal is specifically suppressed low. be able to. Therefore, in the present invention, it is a liquid crystal aligning agent containing at least one of a polymer which is a reaction product from a raw material containing tetracarboxylic acid dianhydride and a diamine, and the diamine is a compound of the above formula (1-4) The liquid crystal aligning agent which consists only of the diamine shown by these is also provided. In addition, when using the diamine shown by said Formula (1-4) as a diamine raw material among the raw materials used to synthesize | combine the polymer used for a liquid crystal aligning agent, an acid dianhydride is not restrict | limited in particular. In addition, as a method for synthesizing the diamine represented by the formula (1-4), the method described in the section of the Examples can be mentioned as an example, but it is not limited thereto.
 続いて、式(A)~式(D)で表される化合物について、説明する。 Subsequently, the compounds represented by the formulas (A) to (D) will be described.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 式(A)において、Aは窒素、または窒素含有ヘテロ環であり、Wは独立して、炭素数1~5のアルキレンであり、任意の-CH-は、-CO-、1,4-フェニレン、または1,3-フェニレンに置き換えられてもよく、Zは水素、熱により水素原子に置き換わる保護基、または炭素数1~5のアルキルであり、rは0以上の任意の整数であり、aは独立して0または1である。ここで、本明細書中の窒素含有ヘテロ環は、窒素含有複素環と、窒素含有脂肪族環とを含む概念である。また、窒素含有ヘテロ環には、窒素原子の他に、酸素原子、硫黄原子等のヘテロ原子が含まれてもよい。また、本明細書中、rの任意の整数とは、Aが窒素含有ヘテロ環である場合、縮合する環の数や、含有されている窒素原子や、ヘテロ原子の数によって変化しうる数であるため特定できないが、例えば、1~10の整数でありうる。本明細書中、「熱により水素原子に置き換わる保護基」とは、熱により水素原子に置き換わるものであれば特に制限はないが、好適には、Boc(t-ブトキシカルボニル基の略)、ベンジルオキシカルボニル基、9-フルオレニルメチルオキシカルボニル基、アリルオキシカルボニル基等のカルバメート系保護基が挙げられる。 In formula (A), A 1 is nitrogen or a nitrogen-containing heterocycle, W 1 is independently alkylene having 1 to 5 carbon atoms, and arbitrary —CH 2 — is —CO—, 1, It may be replaced by 4-phenylene or 1,3-phenylene, Z 1 is hydrogen, a protecting group which is replaced with heat by a hydrogen atom, or alkyl having 1 to 5 carbon atoms, r is any integer of 0 or more And a is independently 0 or 1. Here, the nitrogen-containing heterocycle in the present specification is a concept including a nitrogen-containing heterocycle and a nitrogen-containing aliphatic ring. In addition to the nitrogen atom, the nitrogen-containing heterocycle may contain a heteroatom such as an oxygen atom or a sulfur atom. Further, in the present specification, an arbitrary integer of r means that when A 1 is a nitrogen-containing heterocycle, the number may vary depending on the number of rings to be fused, the nitrogen atom contained, and the number of heteroatoms. For example, it can be an integer of 1 to 10. In the present specification, “a protective group which replaces a hydrogen atom by heat” is not particularly limited as long as it replaces a hydrogen atom by heat, but preferably, Boc (abbreviation of t-butoxycarbonyl group), benzyl Carbamate protecting groups such as oxycarbonyl group, 9-fluorenylmethyl oxycarbonyl group, allyloxycarbonyl group and the like can be mentioned.
 式(B)において、Aは独立して、窒素、または窒素含有ヘテロ環であり、WおよびWは独立して炭素数1~5のアルキレンであり、任意の-CH-は、-CO-、1,4-フェニレン、または1,3-フェニレンに置き換えられてもよく、Zは独立して水素、熱により水素原子に置き換わる保護基、または炭素数1~5のアルキルであり、rは0以上の任意の整数であり、aは独立して0または1である。 In formula (B), A 2 is independently nitrogen or a nitrogen-containing heterocycle, W 2 and W 3 are independently alkylene having 1 to 5 carbon atoms, and arbitrary —CH 2 — is -CO-, 1,4-phenylene, or 1,3-phenylene may be replaced, and Z 2 is independently hydrogen, a protecting group which is substituted for hydrogen by heat, or alkyl having 1 to 5 carbon atoms, , R is any integer of 0 or more, and a is independently 0 or 1.
 式(C)において、Zは2級または3級アミノ基の少なくとも1つを含有する1価の有機基である。 In formula (C), Z 3 is a monovalent organic group containing at least one secondary or tertiary amino group.
 式(D)において、Tは1~2個の炭素-炭素二重結合または1~2個の炭素-炭素三重結合を含む二価の不飽和結合含有基である。本発明の実施形態において、Tは炭素数6~12のアリーレン基を含む。前記式(1)においてmが8のときは、Tはアルキレン基であってもよく、当該アルキレン基の炭素数2~16であることが好ましく、2~8であることがより好ましく、4~8であることがさらに好ましい。 In the formula (D), T is a divalent unsaturated bond-containing group containing 1 to 2 carbon-carbon double bonds or 1 to 2 carbon-carbon triple bonds. In an embodiment of the present invention, T contains an arylene group having 6 to 12 carbon atoms. When m is 8 in the formula (1), T may be an alkylene group, and the alkylene group preferably has 2 to 16 carbon atoms, more preferably 2 to 8 carbon atoms, and 4 to 6 carbon atoms. More preferably, it is 8.
 また、式(1)~式(3)および式(A)~式(C)において、環を構成するいずれかの炭素原子に結合位置が固定されていない基は、その環における結合位置が任意であることを示す。 Further, in the formulas (1) to (3) and the formulas (A) to (C), in the group where the bonding position is not fixed to any carbon atom constituting the ring, the bonding position in the ring is arbitrary. To indicate that
 本発明の実施形態において、式(A)~式(C)で表される化合物は、窒素(特には、2級アミノ基、3級アミノ基)、または窒素含有ヘテロ環を有している。これらの基は、液晶配向膜中の電荷の移動を促進する基として作用し、蓄積された電荷を素早く緩和する働きを担うと考えられる。また、式(D)で表される化合物は、分子全体にわたってπ電子雲が広がっている。よって、式(A)~式(C)で表される化合物と、式(D)で表される化合物とを反応させることで、得られるポリマーは高い共役性を有するため、液晶配向膜として用いたとき、体積抵抗値を下げ、残留DCのたまりを小さくし、電荷の早い緩和に寄与すると考えられる。ただし、前記式(1)においてmが8のときは、ジアミンとして式(A)~式(D)で表される化合物は必須ではなく、プレチルト角を驚くほど下げることができる効果を奏する。また、反応させる酸二無水物にも特に制限はなく、例えば、式(D)で表される化合物であってもよいし、(AN-1)~(AN-18)のいずれかで表されるものでもよいし、その他の公知のものであってもよい。 In the embodiment of the present invention, the compounds represented by Formula (A) to Formula (C) have nitrogen (in particular, a secondary amino group, a tertiary amino group), or a nitrogen-containing heterocycle. These groups act as groups promoting transfer of charge in the liquid crystal alignment film, and are considered to play a role of quickly relieving the accumulated charge. Further, in the compound represented by the formula (D), a π electron cloud is spread throughout the molecule. Therefore, the polymer obtained by reacting the compounds represented by the formulas (A) to (C) with the compound represented by the formula (D) has a high degree of conjugation, so that it can be used as a liquid crystal alignment film. It is thought that when it is used, the volume resistance value is lowered, the residual DC pool is reduced, and it contributes to the quick relaxation of charge. However, when m is 8 in the formula (1), the compounds represented by the formulas (A) to (D) are not essential as a diamine, and the effect of being able to remarkably reduce the pretilt angle is exerted. There is also no particular limitation on the acid dianhydride to be reacted, and it may be, for example, a compound represented by the formula (D) or any one of (AN-1) to (AN-18). Or other known ones.
 式(A)~式(D)で表される化合物の具体例を以下に示す。 Specific examples of the compounds represented by the formulas (A) to (D) are shown below.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 式(A-1)~式(A-11)において、環を構成するいずれかの炭素原子に結合位置が固定されていない基は、その環における結合位置が任意であることを示す。式(B-3)において、kは1~5の整数であり、より具体的には1、2、3、4または5である。式(B-4)において、nは1~3の整数であり、より具体的には1、2または3である。 In formulas (A-1) to (A-11), a group whose bonding position is not fixed to any carbon atom constituting a ring means that the bonding position in the ring is arbitrary. In formula (B-3), k is an integer of 1 to 5, and more specifically 1, 2, 3, 4 or 5. In the formula (B-4), n is an integer of 1 to 3, and more specifically 1, 2 or 3.
 中でも、上記式(A-12)、式(A-14)、式(A-15)、式(A-16)、式(A-17)、式(A-19)、式(B-3)、式(B-5)、式(C-2)、式(C-3)、式(D-2)、および式(D-3)の少なくとも一つが好ましい。特に、式(B-3)および式(D-2)は、残留DCのたまりを小さくし、電荷の緩和が特に速いため好ましい。また、式(A-15)は、残留DCのたまりを小さくし、電荷の緩和が速いだけでなく、電圧保持率も良好であるためより好ましい。ここで、式(B-3)においては、k=2であることがさらに好ましい。 Among them, the above formula (A-12), formula (A-14), formula (A-15), formula (A-16), formula (A-17), formula (A-19) and formula (B-3) And at least one of Formula (B-5), Formula (C-2), Formula (C-3), Formula (D-2), and Formula (D-3). In particular, Formula (B-3) and Formula (D-2) are preferable because they reduce residual DC accumulation and charge relaxation is particularly fast. Further, the formula (A-15) is more preferable because it reduces the accumulation of residual DC, not only the relaxation of charges is fast, but also the voltage holding ratio is good. Here, in the formula (B-3), it is more preferable that k = 2.
 本発明の実施形態によれば、前記式(1)~式(3)で表される化合物が、前記式(1)~式(3)で表される化合物が、前記式(1-1)~式(1-4)、式(2-1)、式(2-2)、および、式(3-1)~式(3-6)で表される化合物の群から選ばれる少なくとも1つであり;前記式(A)~式(C)で表される化合物が、前記式(A-1)~式(A~20)、式(B-1)~式(B-8)、および、式(C-1)~式(C-3)で表される化合物の群から選ばれる少なくとも1つであり;前記式(D)で表される化合物が、前記式(D-1)~式(D-4)で表される化合物の群から選ばれる少なくとも1つである。かかる実施形態によれば、本発明の所期の効果を効率的に奏することができる。 According to an embodiment of the present invention, the compounds represented by the formulas (1) to (3) are compounds represented by the formulas (1) to (3); At least one selected from the group of compounds represented by formula (1-4), formula (2-1), formula (2-2), and formulas (3-1) to formula (3-6) Compounds represented by the above formulas (A) to (C) are the above formulas (A-1) to (A to 20), formulas (B-1) to (B-8), and And at least one selected from the group of compounds represented by Formula (C-1) to Formula (C-3); and the compound represented by Formula (D) is a compound represented by Formula (D-1) to At least one selected from the group of compounds represented by formula (D-4). According to such an embodiment, the intended effects of the present invention can be produced efficiently.
 また、本発明の実施形態においては、前記式(1)~式(3)で表される化合物が、前記式(1-1)、式(1-4)、式(2-1)、および式(3-1)で表される化合物の群から選ばれる少なくとも1つであり;前記式(A)~式(C)で表される化合物が、前記式(A-12)、式(A-14)、式(A-15)、式(A-16)、式(A-17)、式(A-19)、式(A-20)、式(B-3)、式(B-5)、式(C-2)、および式(C-3)で表される化合物の群から選ばれる少なくとも1つであり;前記式(D)で表される化合物が、前記式(D-2)、および式(D-3)で表される化合物の群から選ばれる少なくとも1つである。かかる実施形態によれば、本発明の所期の効果を効率的に奏することができる。 Further, in the embodiment of the present invention, the compounds represented by the formulas (1) to (3) are the compounds represented by the formulas (1-1), (1-4), (2-1), and (2-1). At least one selected from the group of compounds represented by formula (3-1); the compounds represented by formulas (A) to (C) are compounds represented by formulas (A-12) and (A) -14), formula (A-15), formula (A-16), formula (A-17), formula (A-19), formula (A-20), formula (B-3), formula (B-) 5) at least one selected from the group of compounds represented by formula (C-2) and formula (C-3); and the compound represented by formula (D) is a compound represented by formula (D-) 2) and at least one selected from the group of compounds represented by formula (D-3). According to such an embodiment, the intended effects of the present invention can be produced efficiently.
 本発明の実施形態においては、残留DCのたまりが小さく、電荷の緩和が速い、残像特性の優れた液晶表示素子を得るために、式(A)~式(C)で表される化合物の少なくとも1つと、式(D)で表される化合物の少なくとも1つとを併用することも好ましい。よって、本発明の実施形態によれば、前記ポリマーを合成するのに用いられる原料が、前記式(1)~(3)で表される化合物の群から選ばれる少なくとも1つを含み、前記式(A)~式(C)で表される化合物の群から選ばれる少なくとも1つを含み、かつ、前記式(D)で表される化合物から選ばれる少なくとも1つを含む。 In the embodiment of the present invention, at least at least one of the compounds represented by the formulas (A) to (C) is obtained in order to obtain a liquid crystal display element having excellent residual image characteristics and having small residual DC accumulation and quick relaxation of charges. It is also preferable to use one and at least one of the compounds represented by formula (D) in combination. Therefore, according to an embodiment of the present invention, the raw material used to synthesize the polymer contains at least one selected from the group of compounds represented by the formulas (1) to (3), and the formula It includes at least one selected from the group of compounds represented by (A) to formula (C), and includes at least one selected from the compounds represented by formula (D).
 本発明で、前記ポリマーを合成する原料として、式(1)~(3)で表される化合物の群から選ばれる少なくとも1つと、前記式(B)で表される化合物とを含む形態においては、前記式(C)で表される化合物のジアミン全量に対する含有量を有意に低減することが好ましく、使用するジアミン全量に対し、30モル%未満であることが好ましく、20モル%未満であることがより好ましく、10モル%未満であることがさらに好ましく、5モル%未満であることがよりさらに好ましく、4モル%未満であることがよりさらに好ましく、3モル%未満であることがよりさらに好ましく、2モル%未満であることがよりさらに好ましく、1モル%未満であることがよりさらに好ましく、実質的に含ませないことがよりさらに好ましい。ここで「実質的に含ませない」とは、使用するジアミン全量に対し、0.1モル%未満であることを意味する。ここで30モル%以上含ませるとDC残像の特性が悪化する虞がある。 In the present invention, in a form including at least one selected from the group of compounds represented by formulas (1) to (3) and a compound represented by formula (B) as a raw material for synthesizing the polymer, The content of the compound represented by the formula (C) relative to the total amount of diamine is preferably significantly reduced, preferably less than 30 mol%, and less than 20 mol% with respect to the total amount of diamine used. Is more preferably, it is more preferably less than 10 mol%, still more preferably less than 5 mol%, still more preferably less than 4 mol%, still more preferably less than 3 mol% It is further more preferable that it is less than 2 mol%, still more preferable to be less than 1 mol%, and even more preferable not to be substantially contained. Here, "substantially free of" means less than 0.1 mol% with respect to the total amount of diamine used. Here, if 30 mol% or more is contained, there is a possibility that the characteristics of the DC afterimage may be deteriorated.
 本発明の実施形態において、前記ポリマーが1種含まれる場合で、前記ポリマーを合成する原料として、式(1)~(3)で表される化合物の群から選ばれる少なくとも1つと、前記式(C)で表される化合物とを含む形態においては、前記式(A)で表される化合物および前記式(B)で表される化合物の少なくとも一方(特に、前記式(A)で表される化合物)をさらに組み合わせることが好ましい。ここで、前記式(A)で表される化合物および前記式(B)で表される化合物の少なくとも一方(特に、前記式(A)で表される化合物)を使用しない場合、配向性が悪化する虞がある。本発明の実施形態において、前記式(C)で表される化合物を入れる場合に、前記式(A)で表される化合物も併用することによって、DC残像の特性が向上する技術的効果がある。 In the embodiment of the present invention, in the case where one type of the polymer is contained, at least one selected from the group of compounds represented by formulas (1) to (3) as a raw material for synthesizing the polymer In a form including the compound represented by C), at least one of the compound represented by the formula (A) and the compound represented by the formula (B) (in particular, represented by the formula (A) It is preferred to further combine the compounds). Here, when at least one of the compound represented by the formula (A) and the compound represented by the formula (B) (in particular, the compound represented by the formula (A)) is not used, the orientation is deteriorated. There is a risk of In the embodiment of the present invention, when the compound represented by the formula (C) is added, the compound represented by the formula (A) is also used in combination to have a technical effect of improving the characteristics of the DC afterimage. .
 本発明の実施形態において、前記ポリマーが1種含まれる場合、前記ポリマーを合成する原料として、式(1-1)で表される化合物と、式(B-3)で表される化合物とを組み合わせる形態においては、式(1-1)で表される化合物の、使用するジアミン全量に対する含有量は、液晶のプレチルト角を低く抑えるために、ポリマーを合成するのに用いるジアミン全量に対し、90モル%超用いるのが好ましく、92モル%以上用いるのがより好ましく、95モル%以上用いるのがさらに好ましい。電圧保持率などの電気特性を維持しつつ、残留DCのたまりが小さくして、電荷の緩和を速くすることを重視する場合は、過度に多すぎないことが好ましく、具体的には、90モル%未満であることが好ましく、88モル%以下であることがより好ましく、86モル%以下であることがさらに好ましく、84モル%以下であることがさらに好ましく、82モル%以下であることがさらに好ましく、80モル%以下であることがさらに好ましく、78モル%以下でも、76モル%以下でも、74モル%以下でも、72モル%以下でもよい。 In the embodiment of the present invention, when one of the polymers is contained, a compound represented by Formula (1-1) and a compound represented by Formula (B-3) are used as raw materials for synthesizing the polymer. In the combined embodiment, the content of the compound represented by the formula (1-1) with respect to the total amount of diamine used is 90 with respect to the total amount of diamine used to synthesize the polymer in order to suppress the pretilt angle of the liquid crystal low. It is preferable to use more than mol%, it is more preferable to use 92 mol% or more, and it is further preferable to use 95 mol% or more. If it is important to make the charge relaxation faster by reducing the amount of residual DC accumulation while maintaining the electrical characteristics such as the voltage holding ratio, it is preferable that the amount is not too large, specifically 90 moles. % Is preferable, 88 mol% or less is more preferable, 86 mol% or less is further preferable, 84 mol% or less is further preferable, and 82 mol% or less is further preferable. It is more preferably 80 mol% or less, and may be 78 mol% or less, 76 mol% or less, 74 mol% or less, or 72 mol% or less.
 本発明の実施形態において、前記ポリマーが1種含まれる場合、前記ポリマーを合成するのに用いられる原料が、式(A-12)、式(A-14)、式(A-15)、式(A-16)、式(A-17)、式(A-19)、式(B-3)、式(B-5)、式(C-2)、および式(C-3)で表される化合物の群から選ばれる少なくとも1つと;式(D-2)および式(D-3)で表される化合物の群から選ばれる少なくとも1つと;を含んで(併用して)もよい。また、本発明の実施形態によれば、前記ポリマーを合成するのに用いられる原料が、式(A-15)および式(B-3)で表される化合物から選ばれる少なくとも1つと;式(D-2)で表される化合物と;を含む(併用する)のがより好ましく、式(B-3)において、k=2がさらに好ましい。 In the embodiment of the present invention, when one of the polymers is contained, the raw material used to synthesize the polymer is represented by Formula (A-12), Formula (A-14), Formula (A-15), Formula Table (A-16), Formula (A-17), Formula (A-19), Formula (B-3), Formula (B-5), Formula (C-2), and Formula (C-3) (In combination) with at least one selected from the group of compounds listed above; and at least one selected from the group of compounds represented by Formula (D-2) and Formula (D-3). Further, according to an embodiment of the present invention, the raw material used to synthesize the polymer is at least one selected from the compounds represented by Formula (A-15) and Formula (B-3); Is more preferably (used in combination) with the compound represented by D-2), and in the formula (B-3), k = 2 is more preferable.
 本発明の実施形態において、合成するのに用いられる原料として、前記式(1)~式(3)で表される化合物から選択される少なくとも1つと;前記式(A)~式(C)で表される化合物、および式(D)で表される化合物から選択される少なくとも1つを反応させて得たポリマーの少なくとも1つと;を含む液晶配向剤において、前記ポリマーを合成するのに用いる、式(1)~式(3)で表される化合物の使用量は、液晶のプレチルト角を低く抑えるために、ポリマーを合成するのに用いるジアミン全量(前記液晶配向剤に2種以上のポリマーが含まれる場合はその合計のジアミン全量(100モル%))に対し、27モル%以上用いるのが好ましく、28モル%以上用いるのがより好ましく、29モル%以上用いるのがさらに好ましく、30モル%以上用いるのがよりさらに好ましく、31モル%以上用いることがよりさらに好ましく、32モル%以上用いるのがよりさらに好ましく、33モル%以上用いることがよりさらに好ましく、34モル%以上用いるのがよりさらに好ましく、35モル%以上用いることがよりさらに好ましい。また、体積抵抗を下げる目的で、99モル%以下用いることが好ましく、98モル%以下であってもよいし、96モル%以下であってもよいし、94モル%以下であってもよいし、92モル%以下であってもよいし、90モル%以下であってもよいし、88モル%以下であってもよいし、86モル%以下であってもよいし、84モル%以下であってもよいし、82モル%以下であってもよい。また、本発明の実施形態において、式(A)~式(C)で表される化合物の使用量は、電圧保持率などの電気特性を維持しつつ、残留DCのたまりが小さくして、電荷の緩和を速くするために、ポリマーを合成するのに用いるジアミン全量(前記液晶配向剤に2種以上のポリマーが含まれる場合はその合計のジアミン全量(100モル%))に対し、0モル%以上が好ましく、0モル%超がより好ましく、1モル%以上がさらに好ましく、2モル%以上がよりさらに好ましく、3モル%以上がよりさらに好ましく、4モル%以上がよりさらに好ましく、5モル%以上がよりさらに好ましく、6モル%以上がよりさらに好ましい。また、液晶配向性を向上させる目的で、50モル%未満が好ましく、46モル%以下がより好ましく、44モル%以下がさらに好ましく、42モル%以下がさらに好ましく、38モル%以下がよりさらに好ましく、36モル%以下がよりさらに好ましく、34モル%以下がよりさらに好ましく、32モル%以下がよりさらに好ましく、30モル%以下がよりさらに好ましく、28モル%以下がよりさらに好ましく、26モル%以下がよりさらに好ましく、24モル%以下がよりさらに好ましく、22モル%以下がよりさらに好ましい。 In the embodiment of the present invention, at least one selected from the compounds represented by the above formulas (1) to (3) as raw materials used for the synthesis; and in the above formulas (A) to (C) A liquid crystal aligning agent comprising: a compound represented by the formula: and at least one polymer obtained by reacting at least one selected from the compounds represented by the formula (D); used for synthesizing the polymer The amount of the compounds represented by the formulas (1) to (3) is the total amount of diamine used to synthesize the polymer (in the liquid crystal aligning agent, two or more kinds of polymers are used to control the pretilt angle of the liquid crystal). When it is contained, it is preferably used at 27 mol% or more, more preferably 28 mol% or more, and still more preferably 29 mol% or more, based on the total amount (100 mol%) of total diamines. It is more preferable to use 30 mol% or more, more preferably 31 mol% or more, still more preferably 32 mol% or more, still more preferably 33 mol% or more, and 34 mol% or more Is more preferable, and it is even more preferable to use 35 mol% or more. Further, for the purpose of reducing volume resistance, it is preferable to use 99 mol% or less, 98 mol% or less, 96 mol% or less, or 94 mol% or less. , 92 mol% or less, 90 mol% or less, 88 mol% or less, 86 mol% or less, or 84 mol% or less It may be 82 mol% or less. Further, in the embodiment of the present invention, the amounts of the compounds represented by the formulas (A) to (C) reduce the accumulation of residual DC while maintaining the electric characteristics such as the voltage holding ratio, The total amount of diamine used to synthesize the polymer (in the case where the liquid crystal aligning agent contains two or more polymers, 0 mol% relative to the total amount of diamine (100 mol%) of the total diamine) in order to accelerate relaxation of The above is preferable, more than 0 mol% is more preferable, 1 mol% or more is more preferable, 2 mol% or more is further more preferable, 3 mol% or more is further more preferable, 4 mol% or more is further more preferable, 5 mol% The above is more preferable, and 6 mol% or more is still more preferable. Further, for the purpose of improving liquid crystal alignment, less than 50 mol% is preferable, 46 mol% or less is more preferable, 44 mol% or less is more preferable, 42 mol% or less is more preferable, 38 mol% or less is more preferable , 36 mol% or less is more preferable, 34 mol% or less is further more preferable, 32 mol% or less is still more preferable, 30 mol% or less is still more preferable, 28 mol% or less is even more preferable, 26 mol% or less Is more preferable, 24 mol% or less is even more preferable, and 22 mol% or less is even more preferable.
 また、本発明の実施形態において、前記ポリマーが1種含まれる場合、液晶のプレチルト角を低く抑えるために、ポリマーを合成するのに用いるジアミン全量に対し、前記式(1)~式(3)で表される化合物の割合(2種以上含まれる場合はその合計)が、使用するジアミン全量に対し、50モル%超であることが好ましく、54モル%以上であることがより好ましく、60モル%以上であることがさらに好ましく、60モル%超であることがよりさらに好ましく、65モル%以上であることがよりさらに好ましく、66モル%以上であることがよりさらに好ましく、67モル%以上であることがよりさらに好ましく、68モル%以上であることがよりさらに好ましく、69モル%以上であることがよりさらに好ましく、70モル%以上であることがよりさらに好ましい。また、99モル%以下であることが好ましく、98モル%以下であってもよく、96モル%以下であってもよく、94モル%以下であってもよく、90モル%以下であってもよく、90モル%未満であってもよい。ただし、前記式(1)においてmが8のときは、100モル%であることが好ましく、100モル%であると驚くほどプレチルト角を低くすることができる。 In the embodiment of the present invention, when one of the polymers is contained, the above formulas (1) to (3) are used with respect to the total amount of diamine used to synthesize the polymer in order to suppress the pretilt angle of the liquid crystal. It is preferable that the ratio of the compounds represented by (total of two or more types thereof) is more than 50 mol%, more preferably 54 mol% or more, with respect to the total amount of diamine to be used, 60 mol % Or more, more preferably 60% or more, still more preferably 65% or more, still more preferably 66% or more, and even more preferably 67% or more. Even more preferably 68 mol% or more, still more preferably 69 mol% or more, 70 mol% or more There is more preferably more. Further, it is preferably 99 mol% or less, may be 98 mol% or less, may be 96 mol% or less, may be 94 mol% or less, or 90 mol% or less. It may well be less than 90 mol%. However, when m is 8 in the formula (1), it is preferably 100 mol%, and the pretilt angle can be surprisingly lowered when it is 100 mol%.
 また、本形態(前記ポリマーが1種含まれる場合)において、前記式(A)~式(C)で表される化合物の割合(2種以上含まれる場合はその合計)が、使用するジアミン全量に対し、0.5モル%以上であることが好ましく、0.8モル%以上であることがより好ましく、1モル%以上であることがさらに好ましく、4モル%以上であってもよく、6モル%以上であってもよい。また、本形態(前記ポリマーが1種含まれる場合)において、前記式(A)~式(C)で表される化合物(2種以上含まれる場合はその合計)の割合が、使用するジアミン全量に対し、液晶配向性を向上させる目的で、50モル%未満が好ましく、46モル%以下がより好ましく、44モル%以下がさらに好ましく、42モル%以下がよりさらに好ましく、40モル%以下がよりさらに好ましく、38モル%以下がよりさらに好ましく、36モル%以下がよりさらに好ましく、34モル%以下がよりさらに好ましく、32モル%以下がよりさらに好ましく、30モル%以下がよりさらに好ましく、28モル%以下がよりさらに好ましく、26モル%以下がよりさらに好ましく、24モル%以下がよりさらに好ましく、22モル%以下がよりさらに好ましい。ただし、プレチルト角を下げるためには、式(B-3)(例えば、k=2)、式(B-5)、式(B-8)、式(C-1)~式(C-3)の使用量は、40モル%以下が好ましく、40モル%未満がより好ましく、30モル%以下がさらに好ましく、30モル%未満がよりさらに好ましい。特に、式(C-1)~式(C-3)の使用量は、10モル%以下がさらに好ましく、10モル%未満がよりさらに好ましい。 Further, in the present embodiment (in the case where one type of the polymer is contained), the ratio of the compounds represented by the above formulas (A) to (C) (the total amount if two or more types are contained) The amount is preferably 0.5 mol% or more, more preferably 0.8 mol% or more, still more preferably 1 mol% or more, and may be 4 mol% or more. It may be mol% or more. Further, in the present embodiment (in the case where one type of the polymer is contained), the ratio of the compounds represented by the above formulas (A) to (C) (the total of two or more types) is the total amount of diamine used On the other hand, for the purpose of improving the liquid crystal alignment, less than 50 mol% is preferable, 46 mol% or less is more preferable, 44 mol% or less is more preferable, 42 mol% or less is still more preferable, 40 mol% or less It is more preferable, 38 mol% or less is further more preferable, 36 mol% or less is further more preferable, 34 mol% or less is still more preferable, 32 mol% or less is still more preferable, 30 mol% or less is further more preferable, 28 mol % Or less is more preferable, 26 mol% or less is further more preferable, 24 mol% or less is still more preferable, 22 mol% or less is more preferable Preferred. However, in order to reduce the pretilt angle, the formula (B-3) (for example, k = 2), the formula (B-5), the formula (B-8), the formula (C-1) to the formula (C-3) 40 mol% or less is preferable, less than 40 mol% is more preferable, 30 mol% or less is further more preferable, and less than 30 mol% is still more preferable. In particular, the use amount of the formulas (C-1) to (C-3) is more preferably 10 mol% or less, and even more preferably less than 10 mol%.
 よって、本形態(前記ポリマーが1種含まれる場合)において、前記式(1)~式(3)で表される化合物の割合(2種以上含まれる場合はその合計)が、使用するジアミン全量に対し、70モル%以上であって、前記式(A)~式(C)で表される化合物の割合が、使用するジアミン全量に対し、1~30モル%である。 Therefore, in the present embodiment (in the case where one type of the polymer is contained), the ratio of the compounds represented by the formulas (1) to (3) (the total of two or more types) is the total amount of diamine used On the other hand, the ratio of the compounds represented by the formulas (A) to (C) is 70% by mole or more, and is 1 to 30% by mole relative to the total amount of the diamine to be used.
 また、本実施形態において、式(D)で表される化合物が使用される場合、式(D)で表される化合物の使用量は特に制限されるものではないが、配向電圧保持率などの電気特性を維持しつつ、残留DCのたまりが小さく、電荷の緩和をより速くするために、ポリマーを合成するのに用いるテトラカルボン酸二無水物全量に対し、10モル%以上であってもよく、20モル%以上がであってもよく、30モル%以上がであってもよい。また、60モル%以下が好ましく、50モル%以下がより好ましい。 Moreover, in the present embodiment, when the compound represented by the formula (D) is used, the amount of the compound represented by the formula (D) is not particularly limited, but the retention rate of alignment voltage It may be 10 mol% or more based on the total amount of tetracarboxylic acid dianhydride used to synthesize the polymer in order to reduce residual DC accumulation and accelerate charge relaxation while maintaining the electrical properties. 20 mol% or more may be sufficient, and 30 mol% or more may be sufficient. Moreover, 60 mol% or less is preferable and 50 mol% or less is more preferable.
 本発明の液晶配向剤は、ポリマー(P)およびポリマー(Q)の少なくとも2つのポリマーを含有するのが好ましい。よって、前記ポリマーを少なくとも2つを含有し、前記少なくとも2つのポリマーは、ポリマー(P)およびポリマー(Q)を含み;前記ポリマー(P)を合成するのに用いられる原料は、前記式(1)~(3)で表される化合物の群から選ばれる少なくとも1つを含み;そして、前記ポリマー(Q)を合成するのに用いられる原料は、前記式(A)~式(C)で表される化合物の群、および前記式(D)で表される化合物から選ばれる少なくとも1つを含む。 The liquid crystal aligning agent of the present invention preferably contains at least two polymers of polymer (P) and polymer (Q). Thus, containing at least two of said polymers, said at least two polymers comprising a polymer (P) and a polymer (Q); the raw materials used to synthesize said polymer (P) have the formula (1) And at least one selected from the group of compounds represented by (3); and the raw material used to synthesize the polymer (Q) is a compound represented by the above formulas (A) to (C). And at least one selected from the group of compounds represented by the formula (D) and a compound represented by the formula (D).
 ポリマー(P)およびポリマー(Q)を含む液晶配向剤において、ポリマー(P)を合成するのに用いる原料としての、式(1)~式(3)で表される化合物の使用量(2種以上含まれる場合はその合計)は、液晶のプレチルト角を低く抑えるために、ポリマー(P)を合成するのに用いるジアミン全量に対し、50モル%超であることが好ましく、54モル%以上であることがより好ましく、56モル%以上であることがさらに好ましく、60モル%以上であることがよりさらに好ましく、70モル%以上用いるのがよりさらに好ましく、75モル%以上用いるのがよりさらに好ましく、80モル%以上用いるのがよりさらに好ましく、82モル%以上用いるのがよりさらに好ましく、84モル%以上用いるのがよりさらに好ましく、85モル%以上用いるのがよりさらに好ましく、86モル%以上用いるのがよりさらに好ましく、87モル%以上用いるのがよりさらに好ましく、88モル%以上用いるのがよりさらに好ましく、89モル%以上用いるのがよりさらに好ましく、90モル%以上用いるのがよりさらに好ましい。ここで、ポリマー(P)を合成するのに用いる原料として、式(1-4)で表される化合物を、ポリマー(Q)を合成するのに用いる原料として、表面エネルギーを大きくする化合物と考えられる式(E-5)で表される化合物を用いる場合、ポリマー(P)に用いる式(1-4)で表される化合物の使用量を低減することも好ましい。また、上限については特に制限されず、100モル%であってもよいし、95モル%以下であってもよいし、85モル%以下であってもよいし、75モル%以下であってもよい。また、ポリマー(Q)を合成するのに用いる、式(A)~式(C)で表される化合物の使用量(2種以上含まれる場合はその合計)は、電圧保持率などの電気特性を維持しつつ、残留DCのたまりが小さく、電荷の緩和をより速くするために、ポリマーを合成するのに用いるジアミン全量に対し、0モル%超であることが好ましく、5モル%以上であることがより好ましく、10モル%以上であることがさらに好ましく、20モル%以上であることがよりさらに好ましく、25モル%以上であることがよりさらに好ましく、30モル%以上であることがよりさらに好ましい。また、液晶配向性を維持する目的で60モル%以下であることが好ましく、55モル%以下であることがより好ましく、50モル%以下であることがさらに好ましい。ただし、プレチルト角を下げるためには、式(B-3)(例えば、k=2)、式(B-5)、式(B-8)、式(C-1)~式(C-3)の使用量は、30モル%以下が好ましく、30モル%未満がより好ましい。また、ポリマー(Q)を合成するのに用いる、式(A)~式(C)で表される化合物の使用量は、10~50モル%が好ましく、30~50モル%がより好ましい。 The liquid crystal aligning agent containing a polymer (P) and a polymer (Q) WHEREIN: The usage-amount (2 types) of the compound represented by Formula (1)-Formula (3) as a raw material used to synthesize | combine a polymer (P) If the total content is more than 50 mol%, preferably 54 mol% or more, based on the total amount of diamine used to synthesize the polymer (P), in order to keep the pretilt angle of the liquid crystal low. Is more preferably 56 mol% or more, still more preferably 60 mol% or more, still more preferably 70 mol% or more, and still more preferably 75 mol% or more It is still more preferable to use 80 mol% or more, even more preferable to use 82 mol% or more, and even more preferable to use 84 mol% or more. It is more preferable to use mol% or more, more preferably 86 mol% or more, still more preferably 87 mol% or more, still more preferably 88 mol% or more, and 89 mol% or more It is even more preferable to use 90 mol% or more. Here, it is considered that the compound represented by the formula (1-4) as a raw material used to synthesize the polymer (P) is a compound that increases surface energy as a raw material used to synthesize the polymer (Q) When the compound represented by the formula (E-5) is used, it is also preferable to reduce the amount of the compound represented by the formula (1-4) used for the polymer (P). The upper limit is not particularly limited, and may be 100 mol%, 95 mol% or less, 85 mol% or less, or 75 mol% or less. Good. In addition, the amounts of the compounds represented by the formulas (A) to (C) used to synthesize the polymer (Q) (the total of two or more kinds thereof) are electric characteristics such as voltage holding ratio In order to reduce residual DC accumulation and accelerate charge relaxation while maintaining the above, it is preferable to be more than 0 mol%, preferably 5 mol% or more based on the total amount of diamine used to synthesize the polymer. Is more preferably 10 mol% or more, still more preferably 20 mol% or more, still more preferably 25 mol% or more, still more preferably 30 mol% or more preferable. Moreover, in order to maintain liquid crystal alignment, it is preferably 60 mol% or less, more preferably 55 mol% or less, and still more preferably 50 mol% or less. However, in order to reduce the pretilt angle, the formula (B-3) (for example, k = 2), the formula (B-5), the formula (B-8), the formula (C-1) to the formula (C-3) 30 mol% or less is preferable and, as for the usage-amount of), less than 30 mol% is more preferable. The amount of the compounds represented by the formulas (A) to (C) used to synthesize the polymer (Q) is preferably 10 to 50 mol%, more preferably 30 to 50 mol%.
 また、式(D)で表される化合物の使用量は、電圧保持率などの電気特性を維持しつつ、残留DCのたまりが小さく、電荷の緩和をより速くするために、ポリマー(Q)を合成するのに用いるテトラカルボン酸二無水物全量に対し、20~50モル%が好ましく、20~30モル%がより好ましい。 In addition, the amount of the compound represented by the formula (D) is such that the polymer (Q) can be reduced in order to reduce the accumulation of residual DC and accelerate the charge relaxation while maintaining the electrical characteristics such as the voltage holding ratio. The amount is preferably 20 to 50% by mole, and more preferably 20 to 30% by mole, relative to the total amount of tetracarboxylic acid dianhydride used for the synthesis.
 よって、本発明の実施形態では、前記ポリマー(P)において、前記式(1)~式(3)で表される化合物の割合が、使用するジアミン全量に対し、70モル%以上であって;前記ポリマー(Q)において、前記式(A)~式(C)で表される化合物の割合が、使用するジアミン全量に対し、10~50モル%である。 Therefore, in the embodiment of the present invention, in the polymer (P), the ratio of the compounds represented by the formulas (1) to (3) is 70 mol% or more with respect to the total amount of diamine used; In the polymer (Q), the ratio of the compounds represented by the formulas (A) to (C) is 10 to 50 mol% with respect to the total amount of diamine used.
 また、前記ポリマー(P)において、前記式(1)~式(3)で表される化合物の割合が、使用するジアミン全量に対し、90モル%以上であって;前記ポリマー(Q)において、前記式(A)~式(C)で表される化合物の割合が、使用するジアミン全量に対し、30~50モル%である。また、本発明の実施形態では、前記ポリマー(P)において、前記式(1)~式(3)で表される化合物の割合が、使用するジアミン全量に対し、70モル%以上、好ましくは90モル%以上であって;前記ポリマー(Q)において、前記式(D)で表される化合物の割合が、使用するテトラカルボン酸二無水物全量に対し、20~50モル%である。 In the polymer (P), the ratio of the compounds represented by the formulas (1) to (3) is 90 mol% or more based on the total amount of diamine used; in the polymer (Q), The ratio of the compounds represented by the formulas (A) to (C) is 30 to 50 mol% with respect to the total amount of diamine used. In the embodiment of the present invention, in the polymer (P), the ratio of the compounds represented by the above formulas (1) to (3) is 70 mol% or more, preferably 90 mol% with respect to the total amount of diamine used. In the polymer (Q), the proportion of the compound represented by the formula (D) is 20 to 50 mol% with respect to the total amount of tetracarboxylic acid dianhydride used.
 本発明において、ポリマーを合成するのに用いられる原料として、公知のテトラカルボン酸二無水物(その誘導体を含む)、ジアミン(ジヒドラジドを含む)をさらに使用することが出来る。 In the present invention, known tetracarboxylic acid dianhydrides (including their derivatives) and diamines (including dihydrazides) can be further used as raw materials used to synthesize polymers.
 本発明で用いられるテトラカルボン酸二無水物は、公知のテトラカルボン酸二無水物から制限されることなく選択することができる。公知のテトラカルボン酸二無水物は、芳香環に直接ジカルボン酸無水物が結合した芳香族系(複素芳香環系を含む)、および芳香環に直接ジカルボン酸無水物が結合していない脂肪族系(複素環系を含む)の何れの群に属するものであってもよい。例えば、特開2016-029447号公報や特開2016-041683号公報に開示されているテトラカルボン酸二無水物を用いることができる。好ましい例を以下に示す。 The tetracarboxylic acid dianhydride used in the present invention can be selected without limitation from known tetracarboxylic acid dianhydrides. Known tetracarboxylic acid dianhydrides are aromatic systems (including heteroaromatic ring systems) in which a dicarboxylic acid anhydride is directly bonded to the aromatic ring, and aliphatic systems in which the dicarboxylic acid anhydride is not directly bonded to the aromatic ring It may belong to any group (including heterocyclic ring systems). For example, tetracarboxylic acid dianhydrides disclosed in JP-A-2016-029447 and JP-A-2016-041683 can be used. Preferred examples are shown below.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 式(AN-2)および式(AN-8)において、mは独立して1~12の整数である。 In Formula (AN-2) and Formula (AN-8), m is independently an integer of 1 to 12.
 上記テトラカルボン酸二無水物において、各特性を向上させる好ましい材料について述べる。 In the above-mentioned tetracarboxylic acid dianhydride, preferred materials for improving each property will be described.
 液晶の配向性を向上させることを重視する場合には、式(AN-2)、式(AN-7)、および式(AN-8)で表される化合物が好ましい。 When importance is given to improving the orientation of the liquid crystal, compounds represented by Formula (AN-2), Formula (AN-7), and Formula (AN-8) are preferable.
 液晶表示素子の透過率を向上させることを重視する場合には、式(AN-1)、式(AN-5)、式(AN-4)、式(AN-11)、式(AN-12)、式(AN-13)、式(AN-14)、式(AN-17)、および式(AN-18)が好ましい。 When importance is given to improving the transmittance of the liquid crystal display element, Formula (AN-1), Formula (AN-5), Formula (AN-4), Formula (AN-11), and Formula (AN-12). Formula (AN-13), Formula (AN-14), Formula (AN-17), and Formula (AN-18) are preferable.
 液晶表示素子のVHR(電圧保持率)を向上させることを重視する場合には、式(AN-1)、式(AN-4)、式(AN-5)、式(AN-11)、式(AN-13)、式(AN-14)、式(AN-16)、式(AN-17)、および式(AN-18)が好ましい。 When emphasis is placed on improving the VHR (voltage holding ratio) of the liquid crystal display element, Formula (AN-1), Formula (AN-4), Formula (AN-5), Formula (AN-11), Formula (AN-11) (AN-13), formula (AN-14), formula (AN-16), formula (AN-17), and formula (AN-18) are preferred.
 液晶配向膜の体積抵抗値を低下させることにより、配向膜中の残留電荷(残留DC)の緩和速度を向上させることが、焼き付きを防ぐ方法の1つとして有効である。この目的を重視する場合には、式(AN-3)、式(AN-6)、式(AN-7)、式(AN-9)、式(AN-10)、式(AN-11)、および式(AN-15)が好ましい。 It is effective to improve the relaxation rate of the residual charge (residual DC) in the alignment film by reducing the volume resistivity of the liquid crystal alignment film as one of the methods for preventing the image sticking. When the purpose is emphasized, the formula (AN-3), the formula (AN-6), the formula (AN-7), the formula (AN-9), the formula (AN-10) and the formula (AN-11) And formula (AN-15) is preferred.
 本発明において、ポリマーを合成するのに用いられる原料として、窒素(特には、2級アミノ基、3級アミノ基)、または窒素含有へテロ環を有するテトラカルボン酸二無水物(例えば、式(AN-3)や上記式(AN-11))を用いることにより、さらに残留DCのたまりを小さくし、緩和速度を向上させることができると考えられる。ポリマーを合成するのに用いるテトラカルボン酸二無水物全量に対し、1~40モル%用いるのが好ましく、1~15モル%用いるのがより好ましく、1~10モル%用いるのがさらに好ましい。 In the present invention, as a raw material used to synthesize a polymer, nitrogen (in particular, a secondary amino group, a tertiary amino group), or a tetracarboxylic acid dianhydride having a nitrogen-containing heterocycle (for example, By using AN-3) and the above equation (AN-11)), it is considered that the accumulation of residual DC can be further reduced and the relaxation rate can be improved. It is preferable to use 1 to 40% by mole, more preferably 1 to 15% by mole, and even more preferably 1 to 10% by mole relative to the total amount of tetracarboxylic acid dianhydride used to synthesize the polymer.
 本発明の実施形態において、式(1)~(3)で表される化合物の群から選ばれる少なくとも1つと、前記式(A)~式(C)で表される化合物の群から選ばれる少なくとも1つと、を含む形態においては、テトラカルボン酸二無水物を3種以上組み合わせて用いることが好ましい。本形態においてテトラカルボン酸二無水物が2種類以下の組み合わせであると、液晶配向性が悪化する虞がある。ここで、3種以上の具体的な組み合わせの好適な例は、本願の実施例に掲げられている組み合わせの他、(AN-2)、(AN-4)および(AN-6);(AN-4)、(AN-7)および(AN-9);(AN-4)、(AN-6)および(AN-11)等がよい。かような組み合わせであることによって本発明の所期の効果を効率的に奏することができる。 In an embodiment of the present invention, at least one selected from the group of compounds represented by formulas (1) to (3) and at least one selected from the group of compounds represented by formulas (A) to (C). In the form including one, it is preferable to use three or more tetracarboxylic acid dianhydrides in combination. When the tetracarboxylic dianhydride is a combination of two or less in the present embodiment, the liquid crystal alignment may be deteriorated. Here, as preferable examples of three or more specific combinations, in addition to the combinations listed in the examples of the present application, (AN-2), (AN-4) and (AN-6); -4), (AN-7) and (AN-9); (AN-4), (AN-6) and (AN-11), etc. are preferable. With such a combination, the intended effects of the present invention can be produced efficiently.
 本発明の実施形態において、酸二無水物として、式(AN-8)を使用することが好ましい。また、式(1-1)と、式(B)とを組み合わせる場合においては、酸二無水物として、式(AN-8)を使用することが好ましい。かかる実施形態によれば、プレチルト角を下げ、残留DCのたまりを小さくし緩和速度を向上させ、さらに液晶配向性を上げる効果がある。本発明の実施形態において、式(1-1)で表される化合物と、式(B)で表される化合物とを組み合わせる場合であって、式(1-1)で表される化合物の割合が、使用するジアミン全量に対し、90モル%以上のときは、酸二無水物として、式(AN-8)を使用することが特に好ましい。かかる実施形態によれば、プレチルト角を下げ、残留DCのたまりを小さくし緩和速度を向上させ、さらに液晶配向性を上げる効果がある。 In embodiments of the present invention it is preferred to use the formula (AN-8) as the acid dianhydride. Further, in the case where the formula (1-1) and the formula (B) are combined, it is preferable to use the formula (AN-8) as the acid dianhydride. According to this embodiment, it is possible to reduce the pretilt angle, to reduce the accumulation of residual DC, to improve the relaxation rate, and to further increase the liquid crystal alignment. In the embodiment of the present invention, the ratio of the compound represented by Formula (1-1), which is a case where the compound represented by Formula (1-1) and the compound represented by Formula (B) are combined It is particularly preferable to use the formula (AN-8) as the acid dianhydride when it is 90 mol% or more based on the total amount of diamine used. According to this embodiment, it is possible to reduce the pretilt angle, to reduce the accumulation of residual DC, to improve the relaxation rate, and to further increase the liquid crystal alignment.
 本発明において、ポリマー(P)とポリマー(Q)の少なくとも2つのポリマーを含有する形態においては、ポリマー(P)に用いる原料として、前述の式(D)で表される化合物から選ばれる少なくとも1つを用いてもよい。 In the present invention, in a form containing at least two polymers of polymer (P) and polymer (Q), at least one selected from the compounds represented by the above-mentioned formula (D) as a raw material used for polymer (P) One may be used.
 ポリマー(P)に用いる化合物としては、式(AN-1)、式(AN-3)、式(AN-4)、式(AN-6)、式(AN-8)、および式(AN-9)が好ましく、式(AN-8)においては、m=4、または8がより好ましい。液晶配向性や電圧保持率などの電気特性の各特性において、良いバランスで高い特性を示すには、式(AN-4)、式(AN-6)、および式(AN-8)を併用するのが好ましく、式(AN-8)において、m=4、または8がより好ましい。 As a compound used for a polymer (P), Formula (AN-1), Formula (AN-3), Formula (AN-4), Formula (AN-6), Formula (AN-8), and Formula (AN-) 9) is preferable, and in the formula (AN-8), m = 4 or 8 is more preferable. Equation (AN-4), Equation (AN-6), and Equation (AN-8) are used in combination to show high characteristics with good balance in each characteristic of electric characteristics such as liquid crystal alignment and voltage holding ratio. Is preferred, and in the formula (AN-8), m = 4 or 8 is more preferred.
 本発明で用いられるジアミン(ジヒドラジドを含む)は、公知のジアミンおよびジヒドラジドから制限されることなく選択することができる。例えば、特開2016-029447号公報や特開2016-041683号公報に開示されているジアミンやジヒドラジドを用いることができる。好ましい例を以下に示す。 The diamines (including dihydrazides) used in the present invention can be selected without limitation from known diamines and dihydrazides. For example, diamines and dihydrazides disclosed in JP-A-2016-029447 and JP-A-2016-041683 can be used. Preferred examples are shown below.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 式(DI-3)、式(DI-6)および式(DI-7)において、mは1~12の整数である。 In the formulas (DI-3), (DI-6) and (DI-7), m is an integer of 1 to 12.
 本発明の実施形態において、前記ポリマーを合成するのに用いられる原料として、さらに下記式(E)で表される化合物から選ばれる少なくとも1つを含む。 In an embodiment of the present invention, the raw material used to synthesize the polymer further contains at least one selected from compounds represented by the following formula (E).
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 前記式(E)において、Wは炭素数1~6のアルキレン、1,3-フェニレン、または1,4-フェニレンであり;そして、Wは独立して、単結合、-NHCO-、または-CONH-である。特に二層系(ブレンド系)の形態において式(E)で表される化合物を含むことによって相分離を効率的に起こさせることができる。また、本発明の実施形態において、前記ポリマー(Q)の合成に用いられる原料として、前記式(E)で表される化合物から選ばれる少なくとも1つを含む。 In the above formula (E), W 4 is alkylene having 1 to 6 carbon atoms, 1,3-phenylene or 1,4-phenylene; and W 5 is independently a single bond, —NHCO—, or It is -CONH-. In particular, phase separation can be efficiently caused by including the compound represented by the formula (E) in the form of a two-layer system (blend system). In the embodiment of the present invention, the raw material used for the synthesis of the polymer (Q) includes at least one selected from the compounds represented by the formula (E).
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 式(E)において、Wは炭素数1~6のアルキレン、1,3-フェニレン、または1,4-フェニレンであり、そして、Wは独立して、単結合、-NHCO-、または-CONH-である。 In formula (E), W 4 is alkylene having 1 to 6 carbons, 1,3-phenylene, or 1,4-phenylene, and W 5 is independently a single bond, —NHCO—, or — It is CONH-.
 式(E)で表される化合物として、下記式(E-1)~式(E-8)を具体例として挙げることができる。すなわち、前記式(E)で表される化合物が、下記式(E-1)~式(E-8)で表される化合物から選ばれる少なくとも1つである。 Examples of the compound represented by the formula (E) include the following formulas (E-1) to (E-8). That is, the compound represented by the formula (E) is at least one selected from the compounds represented by the following formulas (E-1) to (E-8).
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 式(E-5)、および式(E-8)において、pは、それぞれ独立して、1~6の整数である。 In Formula (E-5) and Formula (E-8), p is each independently an integer of 1 to 6.
 また、本発明の実施形態において、前記式(1)~式(3)で表される化合物が、前記式(1-1)~式(1-4)、式(2-1)、式(2-2)、式(3-1)で表される化合物の群から選ばれる少なくとも1つであり;前記式(A)~式(C)で表される化合物が、前記式(A-12)、式(A-14)、式(A-15)、式(A-16)、式(A-17)、式(B-3)、式(C-2)、および式(C-3)で表される化合物の群から選ばれる少なくとも1つであり;前記式(D)で表される化合物が、前記式(D-2)、および式(D-3)で表される化合物の群から選ばれる少なくとも1つであり;前記式(E)で表される化合物が、前記式(E-5)~式(E-7)で表される化合物の群から選ばれる少なくとも1つである。また、本発明の実施形態において、前記式(1)~式(3)で表される化合物が、前記式(1-1)および式(1-4)から選ばれる少なくとも1つであり;前記式(A)~式(C)で表される化合物が、前記式(A-15)および(B-3)から選ばれる少なくとも1つであり;前記式(D)で表される化合物が、前記式(D-2)で表される化合物であり;前記式(E)で表される化合物が、前記式(E-5)で表される化合物である。 Further, in the embodiment of the present invention, the compounds represented by the formulas (1) to (3) are compounds represented by the formulas (1-1) to (1-4), (2-1), and 2-2) at least one member selected from the group of compounds represented by formula (3-1); compounds represented by formulas (A) to (C) are compounds represented by formula (A-12): ), Formula (A-14), formula (A-15), formula (A-16), formula (A-17), formula (B-3), formula (C-2), and formula (C-3) And at least one compound selected from the group of compounds represented by formula (D); compounds represented by formula (D-2) and formula (D-3) represented by formula (D): At least one compound selected from the group consisting of: at least one compound selected from the group of compounds represented by Formula (E-5) to Formula (E-7): is there. In the embodiment of the present invention, the compounds represented by the formulas (1) to (3) are at least one selected from the formula (1-1) and the formula (1-4); The compounds represented by the formulas (A) to (C) are at least one selected from the formulas (A-15) and (B-3); and the compounds represented by the formula (D) are A compound represented by the formula (D-2); and a compound represented by the formula (E) is a compound represented by the formula (E-5).
 上記ジアミン(ジヒドラジドを含む)において、各特性を向上させる好ましい材料について述べる。 In the above-mentioned diamine (including dihydrazide), preferred materials for improving each property are described.
 液晶の配向性をさらに向上させることを重視する場合には、上記のジアミン(ジヒドラジドを含む)のうち、式(DI-3)、式(DI-6)、式(DI-7)、式(DI-9)、式(DI-10)、式(E-1)、および式(E-8)が好ましい。式(DI-3)、式(DI-6)、式(DI-7)、および式(E-1)がより好ましい。式(DI-3)においては、m=1、2、4または6が好ましく、m=2、4がより好ましい。式(DI-6)においては、m=2~6が好ましく、m=2または5がより好ましい。式(DI-7)においては、m=1、または2が好ましく、m=1がより好ましい。上記のジアミンは、単独でも、2種以上を組み合わせて用いてもよい。 When it is important to further improve the alignment of the liquid crystal, among the above diamines (including dihydrazide), the formula (DI-3), the formula (DI-6), the formula (DI-7) and the formula DI-9), formula (DI-10), formula (E-1) and formula (E-8) are preferred. Formula (DI-3), Formula (DI-6), Formula (DI-7), and Formula (E-1) are more preferable. In formula (DI-3), m = 1, 2, 4 or 6 is preferable, and m = 2, 4 is more preferable. In the formula (DI-6), m = 2 to 6 is preferable, and m = 2 or 5 is more preferable. In formula (DI-7), m = 1 or 2 is preferable, and m = 1 is more preferable. The above diamines may be used alone or in combination of two or more.
 透過率を向上させることを重視する場合には、上記のジアミン(ジヒドラジドを含む)のうち、式(DI-1)、式(DI-3)、式(DI-8)、および式(E-8)が好ましく、(DI-1)がより好ましい。式(DI-3)において、m=1、2、4または6が好ましく、m=1または2がより好ましい。 When importance is given to improving the transmittance, among the above-mentioned diamines (including dihydrazide), Formula (DI-1), Formula (DI-3), Formula (DI-8), and Formula (E-). 8) is preferable, and (DI-1) is more preferable. In Formula (DI-3), m = 1, 2, 4 or 6 is preferable, and m = 1 or 2 is more preferable.
 液晶表示素子のVHRを向上させることを重視する場合には、上記のジアミン(ジヒドラジドを含む)のうち、式(DI-1)、式(DI-3)、式(E-1)、および式(E-2)が好ましく、式(DI-1)、および式(DI-3)がより好ましい。式(DI-3)においては、m=1が好ましい。 When importance is given to improving the VHR of the liquid crystal display element, among the above diamines (including dihydrazide), the formula (DI-1), the formula (DI-3), the formula (E-1), and the formula (E-2) is preferred, and formulas (DI-1) and (DI-3) are more preferred. In the formula (DI-3), m = 1 is preferable.
 液晶配向膜の体積抵抗値を低下させることにより、液晶配向膜中の残留電荷(残留DC)の緩和速度を向上させることが、焼き付きを防ぐ方法の1つとして有効である。この目的を重視する場合には、上記のジアミン(ジヒドラジドを含む)のうち、式(DI-3)、式(DI-6)、式(DI-7)、および式(E-1)~式(E-6)が好ましく、式(DI-3)、式(DI-7)、式(E-1)、式(E-5)、および式(E-6)がより好ましい。式(DI-3)においては、m=1、2、4または6が好ましく、m=1または2がより好ましい。式(DI-6)においては、m=2~6が好ましく、m=2または5がより好ましい。式(DI-7)においては、m=1、または2が好ましく、m=1がより好ましい。式(E-5)においては、p=4が好ましい。 It is effective to improve the relaxation rate of the residual charge (residual DC) in the liquid crystal alignment film by reducing the volume resistivity of the liquid crystal alignment film as one of the methods for preventing the image sticking. When the purpose is emphasized, among the above-mentioned diamines (including dihydrazide), Formula (DI-3), Formula (DI-6), Formula (DI-7), and Formula (E-1) to Formula (E-6) is preferable, and formulas (DI-3), (DI-7), (E-1), (E-5), and (E-6) are more preferable. In formula (DI-3), m = 1, 2, 4 or 6 is preferable, and m = 1 or 2 is more preferable. In the formula (DI-6), m = 2 to 6 is preferable, and m = 2 or 5 is more preferable. In formula (DI-7), m = 1 or 2 is preferable, and m = 1 is more preferable. In formula (E-5), p = 4 is preferable.
 本発明の実施形態において、ポリマー(P)およびポリマー(Q)を含む液晶配向剤において、ポリマー(P)に用いる原料として、前述の式(A)~式(C)で表される化合物から選ばれる少なくとも1つを用いてもよく、ポリマー(Q)に用いる原料として、式(1)~式(3)で表される化合物から選ばれる少なくとも1つを用いてもよい。当該形態において、ポリマー(P)に用いる原料において、窒素含有ヘテロ環が、窒素含有シクロアルカンであることが好ましく、例えば、式(A-15)、式(A-16)、式(A-17)等が好ましい。 In a liquid crystal aligning agent containing a polymer (P) and a polymer (Q) according to an embodiment of the present invention, as a raw material used for the polymer (P), it is selected from the compounds represented by the above formulas (A) to (C) Or at least one selected from the compounds represented by formulas (1) to (3) may be used as the raw material used for the polymer (Q). In the embodiment, in the raw material used for the polymer (P), the nitrogen-containing heterocycle is preferably a nitrogen-containing cycloalkane, and examples thereof include, for example, Formula (A-15), Formula (A-16) and Formula (A-17) Etc. are preferred.
 ポリマー(P)に用いる化合物として、式(DI-3)、式(DI-5)、式(A-15)、および式(C-3)が好ましい。ここで、式(DI-3)では、m=1または4が好ましく、1がより好ましい。また、ポリマー(Q)に用いる化合物として、式(DI-3)、式(DI-5)、式(DI-6)、式(DI-9)、および式(E)で表される化合物から選ばれる少なくとも1つを用いることが好ましい。ここで、式(DI-3)では、m=1、2または4が好ましく、1または2がより好ましい。ここで、式(DI-6)では、m=2または5が好ましく、2がより好ましい。 As a compound used for a polymer (P), Formula (DI-3), Formula (DI-5), Formula (A-15), and Formula (C-3) are preferable. Here, in the formula (DI-3), m = 1 or 4 is preferable, and 1 is more preferable. In addition, as compounds used for the polymer (Q), compounds represented by Formula (DI-3), Formula (DI-5), Formula (DI-6), Formula (DI-9), and Formula (E) It is preferable to use at least one selected. Here, in the formula (DI-3), m = 1, 2 or 4 is preferable, and 1 or 2 is more preferable. Here, in the formula (DI-6), m = 2 or 5 is preferable, and 2 is more preferable.
 本発明の実施形態において、液晶のプレチルト角をより低く抑え、残留DCのたまりを小さく、緩和を速くするためには、液晶プレチルト角を低く抑える役割を担うポリマー(P)をより上層に(液晶層側に)、残留DCのたまりが小さく、電荷の緩和が速い液晶表示素子を与える役割を担うポリマー(Q)をより下層に(基板側に)、偏析させることが重要である。ポリマー(Q)に、表面エネルギーを大きくする化合物を用いることで、2つのポリマーはより偏析しやすくなると考えられる。よって、本発明の実施形態において、液晶層を配向させるために用いられる液晶配向膜が、基板上に位置する液晶配向剤由来の塗膜からなり、当該塗膜が、ポリマー(P)およびポリマー(Q)を含み、当該ポリマー(P)が液晶層側に位置し、当該ポリマー(Q)が基板側に位置する。 In the embodiment of the present invention, in order to suppress the pretilt angle of the liquid crystal to a lower level, to reduce the accumulation of residual DC and to accelerate the relaxation, a polymer (P) having a role to suppress the liquid crystal pretilt angle to a lower layer On the layer side, it is important to segregate the polymer (Q), which plays a role in giving a liquid crystal display element having a small amount of residual DC accumulation and quick relaxation of charges, to a lower layer (to the substrate side). The use of a compound that increases the surface energy for the polymer (Q) is considered to make the two polymers more susceptible to segregation. Therefore, in the embodiment of the present invention, the liquid crystal alignment film used to align the liquid crystal layer is a coating film derived from the liquid crystal alignment agent located on the substrate, and the coating film is a polymer (P) and a polymer ( Q), the polymer (P) is located on the liquid crystal layer side, and the polymer (Q) is located on the substrate side.
 本発明の実施形態において、ポリマー(Q)に用いる原料として、表面エネルギーを大きくする化合物と考えられる、式(E)で表される化合物を用いることが好ましい。具体的な化合物としては、式(E-1)~式(E-8)が好ましく、式(E-1)、式(E-3)、式(E-4)、式(E-5)、式(E-6)がより好ましく、式(E-3)、式(E-4)、式(E-5)、式(E-6)がさらに好ましく、(E-5)、(E-6)を使用することがよりさらに好ましく、(E-5)がよりさらに好ましく、式(E-5)においては、p=4が好ましい。また、本発明の実施形態において、前記ポリマー(Q)を合成するのに用いる、式(E)で表される化合物の使用量は、前記ポリマー(Q)を合成するのに用いるジアミン全量に対し、50~70モル%が好ましい。よって、前記ポリマー(Q)において、前記式(E)で表される化合物の割合が、使用するジアミン全量に対し、50~70モル%である。 In the embodiment of the present invention, as a raw material used for the polymer (Q), it is preferable to use a compound represented by the formula (E), which is considered to be a compound that increases surface energy. As specific compounds, formulas (E-1) to (E-8) are preferable, and formulas (E-1), (E-3), (E-4), and (E-5) are preferable. Formula (E-6) is more preferable, Formula (E-3), Formula (E-4), Formula (E-5), and Formula (E-6) are more preferable, and (E-5), (E-5) It is still more preferable to use -6), (E-5) is even more preferable, and in the formula (E-5), p = 4 is preferable. In the embodiment of the present invention, the amount of the compound represented by the formula (E) used to synthesize the polymer (Q) is relative to the total amount of diamine used to synthesize the polymer (Q) And 50 to 70 mol% are preferable. Therefore, in the polymer (Q), the proportion of the compound represented by the formula (E) is 50 to 70 mol% with respect to the total amount of diamine used.
 本発明の実施形態において、各ジアミンにおいて、ジアミンに対するモノアミンの比率が40モル%以下の範囲で、ジアミンの一部がモノアミンに置き換えられていてもよい。このような置き換えによって、ポリマー(例えば、ポリアミック酸)を生成する際の重合反応のターミネーションを起こすことができ、それ以上の重合反応の進行を抑えることができる。そして、得られるポリマー(例えば、ポリアミック酸、ポリアミック酸エステルもしくはポリイミド)の重量平均分子量(以下、Mwとも表記する。)を容易に制御することができ、例えば本発明の効果が損なわれることなく液晶配向剤の塗布特性を改善することができる。モノアミンに置き換えられるジアミンは、本発明の効果が損なわれなければ、1種でも2種以上でもよい。前記モノアミンとしては、例えばアニリン、4-ヒドロキシアニリン、シクロヘキシルアミン、n-ブチルアミン、n-ペンチルアミン、n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミン、n-ノニルアミン、n-デシルアミン、n-ウンデシルアミン、n-ドデシルアミン、n-トリデシルアミン、n-テトラデシルアミン、n-ペンタデシルアミン、n-ヘキサデシルアミン、n-ヘプタデシルアミン、n-オクタデシルアミン、およびn-エイコシルアミンが挙げられる。 In an embodiment of the present invention, in each diamine, a part of the diamine may be replaced by a monoamine in the range of 40 mol% or less of the ratio of monoamine to diamine. Such substitution can cause termination of the polymerization reaction when forming the polymer (for example, polyamic acid), and can suppress the progress of further polymerization reactions. Then, the weight average molecular weight (hereinafter also referred to as Mw) of the obtained polymer (for example, polyamic acid, polyamic acid ester or polyimide) can be easily controlled, and for example, the liquid crystal can be obtained without losing the effect of the present invention. The coating properties of the alignment agent can be improved. The diamine to be replaced by the monoamine may be one or more, as long as the effects of the present invention are not impaired. Examples of the monoamine include aniline, 4-hydroxyaniline, cyclohexylamine, n-butylamine, n-pentylamine, n-hexylamine, n-heptylamine, n-octylamine, n-nonylamine, n-decylamine, and n- Undecylamine, n-dodecylamine, n-tridecylamine, n-tetradecylamine, n-pentadecylamine, n-hexadecylamine, n-heptadecylamine, n-octadecylamine, and n-eicosylamine Can be mentioned.
 本発明の実施形態において、前記ポリマーは、その原料にモノイソシアネート化合物をさらに含んでいてもよい。モノイソシアネート化合物を原料に含むことによって、得られるポリマー(例えば、ポリアミック酸(その誘導体を含む))の末端が修飾され、Mwが調節される。この末端修飾型のポリマー(例えば、ポリアミック酸(その誘導体を含む))を用いることにより、例えば本発明の効果が損なわれることなく液晶配向剤の塗布特性を改善することができる。原料中のモノイソシアネート化合物の含有量は、原料中のジアミンおよびテトラカルボン酸二無水物の総量に対して1~10モル%であることが、前記の観点から好ましい。前記モノイソシアネート化合物としては、例えばフェニルイソシアネート、およびナフチルイソシアネートが挙げられる。 In the embodiment of the present invention, the polymer may further contain a monoisocyanate compound as its raw material. By including the monoisocyanate compound as a raw material, the end of the resulting polymer (for example, polyamic acid (including its derivative)) is modified to adjust Mw. By using this end-modified type polymer (for example, polyamic acid (including its derivative)), the coating properties of the liquid crystal aligning agent can be improved, for example, without impairing the effects of the present invention. From the above viewpoint, the content of the monoisocyanate compound in the raw material is preferably 1 to 10 mol% with respect to the total amount of diamine and tetracarboxylic acid dianhydride in the raw material. Examples of the monoisocyanate compound include phenyl isocyanate and naphthyl isocyanate.
 本発明の実施形態において、前記ポリマーは、テトラカルボン酸二無水物とジアミンの混合物を有機溶剤中で反応させることによって得られる。この合成反応においては、原料の選択以外に特別な条件は必要でなく、通常のポリマー(例えば、ポリアミック酸)合成における条件をそのまま適用することができる。使用できる溶剤については後述する。 In an embodiment of the present invention, the polymer is obtained by reacting a mixture of tetracarboxylic dianhydride and diamine in an organic solvent. In this synthesis reaction, special conditions are not necessary other than the selection of the raw materials, and the conditions in the usual polymer (for example, polyamic acid) synthesis can be applied as they are. The solvent which can be used is mentioned later.
 本発明の実施形態において、液晶配向剤は、前記ポリマー以外の他の成分をさらに含有していてもよい。他の成分は、1種であっても2種以上であってもよい。他の成分として、例えば後述するその他のポリマーや化合物などが挙げられる。 In the embodiment of the present invention, the liquid crystal aligning agent may further contain other components other than the polymer. One or more other components may be used. Other components include, for example, other polymers and compounds described later.
 その他のポリマーとしては、前記ポリマー(P)およびポリマー(Q)以外のポリアミック酸、ポリアミック酸エステル、またはポリイミド(以下、“その他のポリアミック酸またはその誘導体”という。)、ポリエステル、ポリアミド、ポリシロキサン、セルロース誘導体、ポリアセタール、ポリスチレン誘導体、ポリ(スチレン-フェニルマレイミド)誘導体、ポリ(メタ)アクリレートなどを挙げることができる。これらは、1種であっても2種以上であってもよい。これらのうち、その他のポリアミック酸またはその誘導体およびポリシロキサンが好ましく、その他のポリアミック酸またはその誘導体がより好ましい。 Other polymers include polyamic acids other than the polymer (P) and the polymer (Q), polyamic acid esters, or polyimides (hereinafter referred to as "other polyamic acids or derivatives thereof"), polyesters, polyamides, polysiloxanes, Cellulose derivatives, polyacetals, polystyrene derivatives, poly (styrene-phenylmaleimide) derivatives, poly (meth) acrylates and the like can be mentioned. These may be one kind or two or more kinds. Among these, other polyamic acids or derivatives thereof and polysiloxanes are preferable, and other polyamic acids or derivatives thereof are more preferable.
 その他のポリアミック酸またはその誘導体を合成するために用いられるジアミンは、芳香族ジアミンを、全ジアミンに対して、30モル%以上含むものであることが好ましく、50モル%以上含むものであることがより好ましい。 The diamine used to synthesize other polyamic acids or derivatives thereof preferably contains 30 mol% or more, more preferably 50 mol% or more of aromatic diamine based on all diamines.
 その他のポリアミック酸またはその誘導体は、それぞれ、本発明の液晶配向剤の必須成分であるポリアミック酸またはその誘導体の合成方法として下記に記載したところに準じて合成することができる。 The other polyamic acids or their derivatives can be synthesized according to the method described below as a method of synthesizing polyamic acids or their derivatives which are essential components of the liquid crystal aligning agent of the present invention.
 上述の通り、本発明の液晶配向剤の好ましい実施形態の1つは、ポリマー(P)およびポリマー(Q)の少なくとも2つのポリマーを含有する、液晶配向剤である。2つのポリマーを含む液晶配向剤を用いて塗膜(特には、薄膜)を形成する過程で、表面エネルギーが小さいポリマーは上層に、表面エネルギーの大きいポリマーは下層に分離する現象が知られている。本発明においては、液晶のプレチルト角を低く抑える役割を担うポリマー(P)を上層に、残留DCのたまりが小さく、電荷の緩和が速い液晶表示素子を与える役割を担うポリマー(Q)を下層に偏析させることにより、上述の2つの特性を発揮する液晶配向膜を形成することができる。本発明の実施形態において、ポリマー(P)およびポリマー(Q)の少なくとも2つのポリマーは互いに表面エネルギーが異なり、ポリマー(Q)の表面エネルギーの方が、ポリマー(P)の表面エネルギーの方より大きい。 As mentioned above, one of the preferred embodiments of the liquid crystal aligning agent of the present invention is a liquid crystal aligning agent containing at least two polymers of polymer (P) and polymer (Q). It is known that in the process of forming a coating film (especially a thin film) using a liquid crystal alignment agent containing two polymers, a polymer with small surface energy separates in the upper layer and a polymer with large surface energy separates in the lower layer . In the present invention, a polymer (P) which plays a role of suppressing the pretilt angle of liquid crystal to a lower layer, and a polymer (Q) which plays a role of giving a liquid crystal display element having a small residual DC accumulation and a fast charge relaxation. By segregating, it is possible to form a liquid crystal alignment film exhibiting the above two properties. In an embodiment of the present invention, at least two polymers of polymer (P) and polymer (Q) have different surface energy from each other, and the surface energy of polymer (Q) is larger than that of polymer (P) .
 上記の液晶配向膜が層分離しているかの確認は、例えば、形成した膜の表面エネルギーを測定し、ポリマー(P)のみを含有する液晶配向剤によって形成された膜の表面エネルギーの値と同じか、それに近い値であることによって確認することができる。 The confirmation as to whether or not the liquid crystal alignment film is separated into layers is, for example, the surface energy of the formed film is measured and the same as the value of the surface energy of the film formed by the liquid crystal alignment agent containing only the polymer (P). It can be confirmed by having a value close to it.
 上記のように良好な液晶配向性および低プレチルト角特性を示すために、本発明の液晶配向剤中のポリマー(P)の含有量は、含まれるポリマー全量を100重量%としたとき20重量%以上であることが好ましく、30重量%以上であることが好ましい。また、80重量%以下であることが好ましく、70重量%以下であることがより好ましい。ただし、ここで述べるポリマー(P)の好ましい含有量は1つの指針であり、原料に用いるテトラカルボン酸二無水物またはジアミンの組み合わせによって変動することがある。 In order to exhibit good liquid crystal alignment and low pretilt angle characteristics as described above, the content of the polymer (P) in the liquid crystal aligning agent of the present invention is 20% by weight based on 100% by weight of the total contained polymer It is preferable that it is more than, and it is preferable that it is 30 weight% or more. Moreover, it is preferable that it is 80 weight% or less, and it is more preferable that it is 70 weight% or less. However, the preferable content of the polymer (P) described here is one guideline, and may vary depending on the combination of tetracarboxylic acid dianhydride or diamine used as a raw material.
 本発明で、前記ポリマーを1つ含有する実施形態において、ポリマーのMwは、20,000~160,000が好ましく、40,000~80,000がより好ましく、45,000~70,000がさらに好ましい。ポリマー(P)およびポリマー(Q)の少なくとも2つのポリマーにおいても、Mwは、それぞれ独立して、20,000~160,000が好ましく、40,000~80,000がより好ましい。ポリマーのMwは、実施例記載の方法によって測定することができる。ポリマーのMwは、例えば、テトラカルボン酸二無水物とジアミンを反応させる時間によって調整することができる。反応の終点は、重合反応中の反応液を少量採取して、これに含まれるポリマーのMwをゲルパーミエーションクロマトグラフィー(GPC)法による測定によって求め、その測定値によって決定することができる。また、反応開始時にテトラカルボン酸二無水物およびジアミンの相当量を、モノカルボン酸またはモノアミンに置き換えることにより、重合反応のターミネーションを起こさせて、Mwを制御する方法もよく知られている。 In the present invention, in the embodiment containing one polymer, the Mw of the polymer is preferably 20,000 to 160,000, more preferably 40,000 to 80,000, and further 45,000 to 70,000. preferable. Also in at least two polymers of polymer (P) and polymer (Q), Mw is preferably independently 20,000 to 160,000, and more preferably 40,000 to 80,000. The Mw of the polymer can be measured by the method described in the examples. The Mw of the polymer can be adjusted, for example, by the time for which the tetracarboxylic acid dianhydride and the diamine are reacted. The end point of the reaction can be determined by collecting a small amount of the reaction solution in the polymerization reaction, determining the Mw of the polymer contained therein by measurement by gel permeation chromatography (GPC), and measuring the value. There is also well known a method of controlling Mw by causing termination of a polymerization reaction by replacing a considerable amount of tetracarboxylic acid dianhydride and diamine at the start of the reaction with a monocarboxylic acid or a monoamine.
 前記ポリシロキサンとしては、特開2009-036966号公報、特開2010-185001号公報、特開2011-102963号公報、特開2011-253175号公報、特開2012-159825号公報、国際公開第2008/044644号公報、国際公開第2009/148099号公報、国際公開第2010/074261号公報、国際公開第2010/074264号公報、国際公開第2010/126108号公報、国際公開第2011/068123号公報、国際公開第2011/068127号公報、国際公開第2011/068128号公報、国際公開第2012/115157号公報、国際公開第2012/165354号公報等に開示されているポリシロキサンをさらに含有することができる。 As said polysiloxane, Unexamined-Japanese-Patent 2009-036966, 2010-185001, 2011-102963, 2011-253175, 2012-159825, the international publication 2008 are mentioned. WO 04/044, WO 2009/148099, WO 2010/074261, WO 2010/074264, WO 2010/126108, WO 2011/068123, It can further contain the polysiloxane disclosed in WO 2011/068127, WO 2011/068128, WO 2012/115157, WO 2012/165354, etc. .
 本発明の実施形態において、アルケニル置換ナジイミド化合物、ラジカル重合性不飽和二重結合を有する化合物、オキサジン化合物、オキサゾリン化合物、およびエポキシ化合物からなる化合物の群から選ばれる少なくとも1つをさらに含有する。 In an embodiment of the present invention, the composition further contains at least one selected from the group consisting of an alkenyl substituted nadiimide compound, a compound having a radically polymerizable unsaturated double bond, an oxazine compound, an oxazoline compound, and an epoxy compound.
 <アルケニル置換ナジイミド化合物>
 例えば、本発明の液晶配向剤は、液晶表示素子の電気特性を長期に安定させる目的から、アルケニル置換ナジイミド化合物をさらに含有していてもよい。アルケニル置換ナジイミド化合物は1種で用いてもよいし、2種以上を併用してもよい。アルケニル置換ナジイミド化合物の含有量は、上記の目的から、ポリマー(例えば、ポリアミック酸(その誘導体を含む))に対して1~100重量%であることが好ましく、1~70重量%であることがより好ましく、1~50重量%であることがさらに好ましい。
<Alkenyl substituted nadiimide compound>
For example, the liquid crystal aligning agent of the present invention may further contain an alkenyl-substituted nadiimide compound for the purpose of stabilizing the electric characteristics of the liquid crystal display element over a long period of time. The alkenyl-substituted nadiimide compounds may be used alone or in combination of two or more. The content of the alkenyl-substituted nadiimide compound is preferably 1 to 100% by weight, and preferably 1 to 70% by weight with respect to the polymer (for example, polyamic acid (including its derivatives)), for the above purpose. More preferably, it is more preferably 1 to 50% by weight.
 アルケニル置換ナジイミド化合物は、本発明で用いられるポリマー(例えば、ポリアミック酸(その誘導体を含む))を溶解する溶剤に溶解させることができる化合物であることが好ましい。このようなアルケニル置換ナジイミド化合物として、例えば、特開2013-242526号公報等に開示されているアルケニル置換ナジイミド化合物を挙げることができる。好ましいアルケニル置換ナジイミド化合物としては、ビス{4-(アリルビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド)フェニル}メタン、N,N’-m-キシリレン-ビス(アリルビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド)、N,N’-ヘキサメチレン-ビス(アリルビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド)が挙げられる。 The alkenyl-substituted nadiimide compound is preferably a compound that can be dissolved in a solvent that dissolves the polymer (for example, polyamic acid (including its derivative)) used in the present invention. As such an alkenyl substituted nadiimide compound, for example, an alkenyl substituted nadiimide compound disclosed in JP 2013-242526 A and the like can be mentioned. Preferred alkenyl-substituted nadiimide compounds include bis {4- (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximido) phenyl} methane, N, N'-m-xylylene-bis (Allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide), N, N'-hexamethylene-bis (allylbicyclo [2.2.1] hept-5-ene- And 2,3-dicarboximide).
 <ラジカル重合性不飽和二重結合を有する化合物>
 例えば、本発明の液晶配向剤は、液晶表示素子の電気特性を長期に安定させる目的から、ラジカル重合性不飽和二重結合を有する化合物をさらに含有していてもよい。ラジカル重合性不飽和二重結合を有する化合物は1種の化合物であってもよいし、2種以上の化合物であってもよい。なお、ラジカル重合性不飽和二重結合を有する化合物にはアルケニル置換ナジイミド化合物は含まれない。ラジカル重合性不飽和二重結合を有する化合物の含有量は、上記の目的から、ポリマー(例えば、ポリアミック酸(その誘導体を含む))に対して1~100重量%であることが好ましく、1~70重量%であることがより好ましく、1~50重量%であることがさらに好ましい。
<Compound Having Radically Polymerizable Unsaturated Double Bond>
For example, the liquid crystal aligning agent of the present invention may further contain a compound having a radically polymerizable unsaturated double bond for the purpose of stabilizing the electric characteristics of the liquid crystal display element for a long time. The compound having a radically polymerizable unsaturated double bond may be one type of compound or two or more types of compounds. In addition, the alkenyl substituted nadiimide compound is not contained in the compound which has a radically polymerizable unsaturated double bond. The content of the compound having a radically polymerizable unsaturated double bond is preferably 1 to 100% by weight with respect to the polymer (for example, polyamic acid (including its derivatives)), for the above-mentioned purpose. It is more preferably 70% by weight, further preferably 1 to 50% by weight.
 なお、アルケニル置換ナジイミド化合物に対するラジカル重合性不飽和二重結合を有する化合物の比率は、液晶表示素子のイオン密度を低減し、イオン密度の経時的な増加を抑制し、さらに残像の発生を抑制するために、ラジカル重合性不飽和二重結合を有する化合物/アルケニル置換ナジイミド化合物が重量比で0.1~10であることが好ましく、0.5~5であることがより好ましい。 The ratio of the compound having a radically polymerizable unsaturated double bond to the alkenyl-substituted nadiimide compound reduces the ion density of the liquid crystal display element, suppresses the temporal increase of the ion density, and further suppresses the generation of a residual image. For this reason, the weight ratio of the compound having a radically polymerizable unsaturated double bond / the alkenyl substituted nadiimide compound is preferably 0.1 to 10, and more preferably 0.5 to 5.
 好ましいラジカル重合性不飽和二重結合を有する化合物としては、例えば、特開2013-242526号公報等に開示されているラジカル重合性不飽和二重結合を有する化合物を挙げることができる。 As a compound which has a preferable radically polymerizable unsaturated double bond, the compound which has a radically polymerizable unsaturated double bond currently indicated by Unexamined-Japanese-Patent No. 2013-242526 etc. can be mentioned, for example.
 <オキサジン化合物>
 例えば、本発明の液晶配向剤は、液晶表示素子における電気特性を長期に安定させる目的から、オキサジン化合物をさらに含有していてもよい。オキサジン化合物は1種の化合物であってもよいし、2種以上の化合物であってもよい。オキサジン化合物の含有量は、上記の目的から、ポリマー(例えば、ポリアミック酸(その誘導体を含む))に対して0.1~50重量%であることが好ましく、1~40重量%であることがより好ましく、1~20重量%であることがさらに好ましい。
<Oxazine Compound>
For example, the liquid crystal aligning agent of the present invention may further contain an oxazine compound for the purpose of stabilizing the electric properties of the liquid crystal display element for a long time. The oxazine compound may be one type of compound or two or more types of compounds. The content of the oxazine compound is preferably 0.1 to 50% by weight, and preferably 1 to 40% by weight with respect to the polymer (for example, polyamic acid (including its derivative)), for the above purpose. More preferably, it is more preferably 1 to 20% by weight.
 オキサジン化合物は、ポリマー(例えば、ポリアミック酸(その誘導体を含む))を溶解させる有機溶媒に可溶であり、加えて、開環重合性を有するオキサジン化合物が好ましい。好ましいオキサジン化合物としては、例えば、式(OX-3-1)、式(OX-3-9)で表されるオキサジン化合物や、特開2013-242526号公報等に開示されているオキサジン化合物を挙げることができる。 The oxazine compound is soluble in an organic solvent in which a polymer (for example, a polyamic acid (including its derivative)) is dissolved, and in addition, an oxazine compound having ring-opening polymerization is preferable. Preferred oxazine compounds include, for example, oxazine compounds represented by Formula (OX-3-1) and Formula (OX-3-9), and oxazine compounds disclosed in JP-A-2013-242526 and the like. be able to.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 <オキサゾリン化合物>
 例えば、本発明の液晶配向剤は、液晶表示素子における電気特性を長期に安定させる目的から、オキサゾリン化合物をさらに含有していてもよい。オキサゾリン化合物はオキサゾリン構造を有する化合物である。オキサゾリン化合物は1種の化合物であってもよいし、2種以上の化合物であってもよい。オキサゾリン化合物の含有量は、上記の目的から、ポリマー(例えば、ポリアミック酸(その誘導体を含む))に対して0.1~50重量%であることが好ましく、1~40重量%であることがより好ましく、1~20重量%であることが好ましい。または、オキサゾリン化合物の含有量は、オキサゾリン化合物中のオキサゾリン構造をオキサゾリンに換算したときに、ポリマー(例えば、ポリアミック酸(その誘導体を含む))に対して0.1~40重量%であることが、上記の目的から好ましい。
<Oxazoline compound>
For example, the liquid crystal aligning agent of the present invention may further contain an oxazoline compound for the purpose of stabilizing the electric characteristics of the liquid crystal display element for a long time. An oxazoline compound is a compound having an oxazoline structure. The oxazoline compound may be one type of compound or two or more types of compounds. The content of the oxazoline compound is preferably 0.1 to 50% by weight, and preferably 1 to 40% by weight with respect to the polymer (for example, polyamic acid (including its derivative)), for the above purpose. More preferably, it is preferably 1 to 20% by weight. Alternatively, when the oxazoline structure in the oxazoline compound is converted to oxazoline, the content of the oxazoline compound is 0.1 to 40% by weight with respect to the polymer (for example, polyamic acid (including its derivative)) , Preferred from the above purpose.
 オキサゾリン化合物としては、例えば、特開2013-242526号公報等に開示されているオキサゾリン化合物を挙げることできる。好ましいオキサゾリン化合物としては、1,3-ビス(4,5-ジヒドロ-2-オキサゾリル)ベンゼンが挙げられる。 As an oxazoline compound, the oxazoline compound currently disclosed by Unexamined-Japanese-Patent No. 2013-242526 etc. can be mentioned, for example. Preferred oxazoline compounds include 1,3-bis (4,5-dihydro-2-oxazolyl) benzene.
 <エポキシ化合物>
 例えば、本発明の液晶配向剤は、液晶表示素子における電気特性を長期に安定させる目的から、エポキシ化合物をさらに含有していてもよい。エポキシ化合物は1種の化合物であってもよいし、2種以上の化合物であってもよい。エポキシ化合物の含有量は、上記の目的から、ポリマー(例えば、ポリアミック酸(その誘導体を含む))に対して0.1~50重量%であることが好ましく、1~40重量%であることがより好ましく、1~20重量%であることがさらに好ましい。
<Epoxy compound>
For example, the liquid crystal aligning agent of the present invention may further contain an epoxy compound for the purpose of stabilizing the electric characteristics of the liquid crystal display element for a long time. The epoxy compound may be one type of compound or two or more types of compounds. The content of the epoxy compound is preferably 0.1 to 50% by weight, and preferably 1 to 40% by weight with respect to the polymer (for example, polyamic acid (including its derivative)), for the above purpose. More preferably, it is more preferably 1 to 20% by weight.
 エポキシ化合物としては、例えば、特開2013-242526号公報等に開示されているエポキシ化合物を挙げることができる。好ましいエポキシ化合物としては、N,N,N’,N’-テトラグリシジル-4,4’-ジアミノジフェニルメタン、3-グリシドキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、(3,3‘,4,4’-ジエポキシ)ビシクロヘキシルが挙げられる。 As an epoxy compound, the epoxy compound currently disclosed by Unexamined-Japanese-Patent No. 2013-242526 etc. can be mentioned, for example. Preferred epoxy compounds include N, N, N ', N'-tetraglycidyl-4,4'-diaminodiphenylmethane, 3-glycidoxypropyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxy And silanes, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, (3,3 ', 4,4'-diepoxy) bicyclohexyl.
 また例えば、本発明の液晶配向剤は各種添加剤をさらに含有していてもよい。各種添加剤としては、例えばポリマー(例えば、ポリアミック酸(その誘導体を含む))以外の高分子化合物、および低分子化合物が挙げられ、それぞれの目的に応じて選択して使用することができる。添加剤を含有させることで膜の硬度を高める技術的効果を有し、特にラビング処理への耐性を高め、ひいては配向膜としての信頼性を高める。添加剤を入れるとプレチルト角が高まる傾向にはあるが、本発明の実施形態においては、かような添加剤を入れてもプレチルト角を有意に低減させることができるとの効果を有する。 For example, the liquid crystal aligning agent of the present invention may further contain various additives. As various additives, for example, high molecular compounds other than polymers (for example, polyamic acid (including its derivatives)) and low molecular compounds can be mentioned, and they can be selected and used according to the respective purposes. The addition of the additive has the technical effect of enhancing the hardness of the film, and in particular, the resistance to rubbing treatment is enhanced, and thus the reliability as an alignment film is enhanced. Although the addition of additives tends to increase the pretilt angle, the embodiment of the present invention has the effect that the addition of such additives can significantly reduce the pretilt angle.
 例えば、前記高分子化合物としては、有機溶媒に可溶性の高分子化合物が挙げられる。このような高分子化合物を本発明の液晶配向剤に添加することは、形成される液晶配向膜の電気特性や配向性を制御する観点から好ましい。該高分子化合物としては、例えばポリアミド、ポリウレタン、ポリウレア、ポリエステル、ポリエポキサイド、ポリエステルポリオール、シリコーン変性ポリウレタン、およびシリコーン変性ポリエステルが挙げられる。 For example, examples of the polymer compound include polymer compounds soluble in organic solvents. It is preferable to add such a polymer compound to the liquid crystal aligning agent of the present invention from the viewpoint of controlling the electrical properties and the alignment of the liquid crystal alignment film to be formed. Examples of the polymer compound include polyamides, polyurethanes, polyureas, polyesters, polyepoxides, polyester polyols, silicone-modified polyurethanes, and silicone-modified polyesters.
 また、前記低分子化合物としては、例えば1)塗布性の向上を望むときにはかかる目的に沿った界面活性剤、2)帯電防止の向上を必要とするときは帯電防止剤、3)基板との密着性の向上を望むときにはシランカップリング剤やチタン系のカップリング剤、また、4)低温でイミド化を進行させる場合はイミド化触媒、が挙げられる。 Further, as the low molecular weight compound, for example, 1) when it is desired to improve the coating property, 2) surfactant according to the purpose, 2) when it is necessary to improve antistatic, 3) adhesion to the substrate When it is desired to improve the properties, silane coupling agents and titanium-based coupling agents may be mentioned, and 4) an imidation catalyst may be mentioned if the imidation is allowed to proceed at a low temperature.
 シランカップリング剤としては、例えば、特開2013-242526号公報等に開示されているシランカップリング剤を挙げることができる。好ましいシランカップリング剤としては、3-アミノプロピルトリエトキシシランが挙げられる。また、イミド化触媒としては、特開2013-242526号公報等に開示されているイミド化触媒を挙げることができる。 As a silane coupling agent, the silane coupling agent currently disclosed by Unexamined-Japanese-Patent No. 2013-242526 etc. can be mentioned, for example. Preferred silane coupling agents include 3-aminopropyltriethoxysilane. Further, examples of the imidization catalyst include imidization catalysts disclosed in JP-A-2013-242526 and the like.
 シランカップリング剤の添加量は、通常、ポリマー(例えば、ポリアミック酸(その誘導体を含む))の総重量の0~20重量%であり、0.1~10重量%であることが好ましい。 The amount of the silane coupling agent to be added is usually 0 to 20% by weight, preferably 0.1 to 10% by weight, based on the total weight of the polymer (eg, polyamic acid (including its derivative)).
 イミド化触媒の添加量は、通常、ポリマー(例えば、ポリアミック酸(その誘導体を含む))のカルボニル基に対して0.01~5当量であり、0.05~3当量であることが好ましい。 The addition amount of the imidization catalyst is usually 0.01 to 5 equivalents, preferably 0.05 to 3 equivalents, with respect to the carbonyl group of the polymer (eg, polyamic acid (including its derivative)).
 その他の添加剤の添加量は、その用途に応じて異なるが、通常、ポリマー(例えば、ポリアミック酸(その誘導体を含む))の総重量の0~100重量%であり、0.1~50重量%であることが好ましい。 The amount of other additives added varies depending on the application, but is usually 0 to 100% by weight of the total weight of the polymer (for example, polyamic acid (including its derivatives)), and 0.1 to 50% % Is preferred.
 また例えば、本発明の液晶配向剤は、液晶配向剤の塗布性や前記ポリマー(例えば、ポリアミック酸(その誘導体を含む))の濃度の調整の観点から、溶剤をさらに含有していてもよい。前記溶剤は、高分子成分を溶解する能力を持った溶剤であれば格別制限なく適用可能である。前記溶剤は、ポリマー(例えば、ポリアミック酸、可溶性ポリイミド等)の高分子成分の製造工程や用途面で通常使用されている溶剤を広く含み、使用目的に応じて、適宜選択できる。前記溶剤は1種でも2種以上の混合溶剤であってもよい。 Also, for example, the liquid crystal aligning agent of the present invention may further contain a solvent from the viewpoint of the coatability of the liquid crystal aligning agent and the adjustment of the concentration of the polymer (for example, polyamic acid (including its derivative)). The solvent can be applied without particular limitation as long as the solvent has the ability to dissolve the polymer component. The solvent widely includes solvents generally used in the production process of the polymer component such as a polymer (for example, polyamic acid, soluble polyimide and the like) and the application, and can be appropriately selected according to the purpose of use. The solvent may be one or a mixture of two or more.
 溶剤としては、前記ポリマー(例えば、ポリアミック酸(その誘導体を含む))の親溶剤や、塗布性改善を目的とした他の溶剤が挙げられる。 As the solvent, a parent solvent of the polymer (for example, a polyamic acid (including a derivative thereof)) and other solvents for the purpose of improving the coating property can be mentioned.
 ポリマー(例えば、ポリアミック酸(その誘導体を含む))に対し親溶剤である非プロトン性極性有機溶剤としては、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルイミダゾリジノン、N-メチルカプロラクタム、N-メチルプロピオンアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジエチルアセトアミド、γ-ブチロラクトン等のラクトンが挙げられる。 Examples of the aprotic polar organic solvent which is a parent solvent for polymers (for example, polyamic acid (including its derivatives)) include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethylimidazolidinone, N Lactones such as -methylcaprolactam, N-methylpropionamide, N, N-dimethylacetamide, dimethylsulfoxide, N, N-dimethylformamide, N, N-diethylformamide, N, N-diethylacetamide, γ-butyrolactone and the like .
 塗布性改善等を目的とした他の溶剤の例としては、乳酸アルキル、3-メチル-3-メトキシブタノール、テトラリン、イソホロン、フェニルアセテート、エチレングリコールモノブチルエーテル等のエチレングリコールモノアルキルエーテル、ジエチレングリコールモノエチルエーテル等のジエチレングリコールモノアルキルエーテル、トリエチレングリコールモノアルキルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル等のプロピレングリコールモノアルキルエーテル、マロン酸ジエチル等のマロン酸ジアルキル、ジプロピレングリコールモノメチルエーテル等のジプロピレングリコールモノアルキルエーテル、これらのアセテート類等のエステル化合物、ジイソブチルケトンなどのケトン化合物が挙げられる。 Examples of other solvents for the purpose of improving coating properties include alkyl lactate, 3-methyl-3-methoxybutanol, tetralin, isophorone, ethylene glycol monoalkyl ethers such as phenyl acetate, ethylene glycol monobutyl ether, and diethylene glycol monoethyl. Diethylene glycol monoalkyl ether such as ether, triethylene glycol monoalkyl ether, propylene glycol monomethyl ether, propylene glycol monoalkyl ether such as propylene glycol monobutyl ether, dialkyl malonate such as diethyl malonate, dipropylene such as dipropylene glycol monomethyl ether Glycol monoalkyl ether, ester compounds such as these acetates, diisobutyl ketone etc. Tons of compounds and the like.
 これらの中で、前記溶剤は、N-メチル-2-ピロリドン、ジメチルイミダゾリジノン、γ-ブチロラクトン、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、およびジイソブチルケトンが特に好ましい。 Among these, the solvent is N-methyl-2-pyrrolidone, dimethylimidazolidinone, γ-butyrolactone, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, ethylene glycol monomethyl ether, propylene glycol monobutyl ether, propylene glycol monomethyl ether Dipropylene glycol monomethyl ether and diisobutyl ketone are particularly preferred.
 本発明の液晶配向剤中のポリマー(例えば、ポリアミック酸)の濃度は0.1~40重量%であることが好ましく、1~20重量%であることがより好ましく、1.5~8重量%であることがさらに好ましい。この配向剤を基板に塗布するときには、膜厚の調整のために、含有されているポリマー(例えば、ポリアミック酸)を予め溶剤により希釈する操作が必要とされることがある。 The concentration of the polymer (for example, polyamic acid) in the liquid crystal aligning agent of the present invention is preferably 0.1 to 40% by weight, more preferably 1 to 20% by weight, and 1.5 to 8% by weight It is further preferred that When the alignment agent is applied to a substrate, an operation of previously diluting the contained polymer (eg, polyamic acid) with a solvent may be required to adjust the film thickness.
 本発明の液晶配向剤の粘度は、塗布する方法、ポリマー(例えば、ポリアミック酸(その誘導体を含む))の濃度、使用するポリマー(例えば、ポリアミック酸(その誘導体を含む))の種類、溶剤の種類と割合によって好ましい範囲が異なる。例えば、印刷機による塗布の場合、5~100mPa・sの範囲であると、十分な膜厚が得られ、印刷ムラが大きくなることを防ぐことができるため好ましく、10~80mPa・sであることがより好ましい。スピンコートによる塗布の場合は5~200mPa・s(より好ましくは10~100mPa・s)が適している。インクジェット塗布装置を用いて塗布する場合は5~50mPa・s(より好ましくは5~20mPa・s)が適している。液晶配向剤の粘度は回転粘度測定法により測定され、例えば回転粘度計(東機産業製TVE-20L型)を用いて測定(測定温度:25℃)される。なお、本願の実施例では5~15mPa・s程度であった。 The viscosity of the liquid crystal aligning agent of the present invention can be determined by the method of application, concentration of polymer (eg, polyamic acid (including its derivative)), type of polymer (eg, polyamic acid (including its derivative)), solvent The preferred range differs depending on the type and ratio. For example, in the case of coating by a printing machine, a range of 5 to 100 mPa · s is preferable because a sufficient film thickness can be obtained, and large printing unevenness can be prevented, and it is preferably 10 to 80 mPa · s. Is more preferred. In the case of coating by spin coating, 5 to 200 mPa · s (more preferably 10 to 100 mPa · s) is suitable. In the case of coating using an ink jet coating apparatus, 5 to 50 mPa · s (more preferably 5 to 20 mPa · s) is suitable. The viscosity of the liquid crystal aligning agent is measured by rotational viscosity measurement, and is measured (measurement temperature: 25 ° C.) using, for example, a rotational viscometer (type TVE-20L manufactured by Toki Sangyo Co., Ltd.). In the examples of the present application, the viscosity was about 5 to 15 mPa · s.
 <液晶配向膜>
 本発明の実施形態によれば、前記液晶配向剤によって形成される、液晶配向膜が提供される。以下、詳細に説明する。本発明の実施形態において、液晶配向膜は、前記液晶配向剤の塗膜を加熱することによって形成される膜である。本発明の液晶配向膜は、液晶配向剤から液晶配向膜を作製する通常の方法によって得ることができる。例えば本発明の液晶配向膜は、本発明の液晶配向剤の塗膜を形成する工程と、加熱乾燥する工程と、加熱焼成する工程とを経ることによって得ることができる。本発明の液晶配向膜については、必要に応じて後述の通り、加熱乾燥工程、加熱焼成工程を経て得られる膜をラビング処理して異方性を付与してもよい。または、必要に応じて、塗膜工程、加熱乾燥工程の後に光を照射して、または加熱焼成工程の後に光を照射して異方性を付与してもよい。
<Liquid crystal alignment film>
According to the embodiment of the present invention, there is provided a liquid crystal alignment film formed by the liquid crystal alignment agent. The details will be described below. In the embodiment of the present invention, the liquid crystal alignment film is a film formed by heating a coating of the liquid crystal alignment agent. The liquid crystal aligning film of this invention can be obtained by the normal method of producing a liquid crystal aligning film from a liquid crystal aligning agent. For example, the liquid crystal aligning film of this invention can be obtained by passing through the process of forming the coating film of the liquid crystal aligning agent of this invention, the process of heat-drying, and the process of heat-baking. With respect to the liquid crystal alignment film of the present invention, the film obtained through the heating and drying process and the heating and baking process may be rubbed to impart anisotropy, as described later, as necessary. Alternatively, if necessary, light may be irradiated after the coating step and the heating and drying step, or light may be irradiated after the heating and baking step to impart anisotropy.
 塗膜は、通常の液晶配向膜の作製と同様に、液晶表示素子における基板に本発明の液晶配向剤を塗布することによって形成することができる。基板には、ITO(IndiumTinOxide)、IZO(In-ZnO)、IGZO(In-Ga-ZnO)電極等の電極やカラーフィルタ等が設けられていてもよいガラス製、窒化ケイ素製、アクリル製、ポリカーボネート製、ポリイミド製等の基板が挙げられる。なお、本願の実施例ではITOを使用した。 A coating film can be formed by apply | coating the liquid crystal aligning agent of this invention to the board | substrate in a liquid crystal display element similarly to preparation of a normal liquid crystal aligning film. The substrate may be provided with an electrode such as ITO (IndiumTin Oxide), IZO (In 2 O 3 -ZnO), IGZO (In-Ga-ZnO 4 ) electrode, a color filter, etc. glass, silicon nitride, Substrates made of acrylic, polycarbonate, polyimide and the like can be mentioned. In addition, ITO was used in the Example of this application.
 液晶配向剤を基板に塗布する方法としてはスピンナー法、印刷法、ディッピング法、滴下法、インクジェット法等が一般に知られている。これらの方法は本発明においても同様に適用可能である。 Generally as a method of apply | coating a liquid crystal aligning agent to a board | substrate, a spinner method, the printing method, the dipping method, the dripping method, the inkjet method etc. are known. These methods are equally applicable to the present invention.
 前記加熱乾燥工程(予備焼成工程)は、オーブンまたは赤外炉の中で加熱処理する方法、ホットプレート上で加熱処理する方法等が一般に知られている。加熱乾燥工程は溶剤の蒸発が可能な範囲内の温度で実施することが好ましく、加熱焼成工程における温度に対して比較的低い温度で実施することがより好ましい。具体的には加熱乾燥温度は30℃~150℃の範囲であること、さらには50℃~120℃の範囲であることが好ましい。また、時間としても特に制限はないが、例えば、1~10分間、さらには1~5分間が好適である。 As the heating and drying step (pre-baking step), a method of heat treatment in an oven or an infrared furnace, a method of heat treatment on a hot plate, and the like are generally known. It is preferable to carry out the heating and drying step at a temperature within the range where evaporation of the solvent is possible, and it is more preferable to carry out the heating and drying step at a temperature relatively lower than the temperature in the heating and baking step. Specifically, the heat drying temperature is preferably in the range of 30 ° C. to 150 ° C., and more preferably in the range of 50 ° C. to 120 ° C. Also, the time is not particularly limited, but for example, 1 to 10 minutes, and further 1 to 5 minutes is preferable.
 前記加熱焼成工程は、例えば、前記ポリアミック酸またはその誘導体が脱水・閉環反応を呈するのに必要な条件で行うことができる。前記塗膜の焼成は、オーブンまたは赤外炉の中で加熱処理する方法、ホットプレート上で加熱処理する方法等が一般に知られている。これらの方法も本発明において同様に適用可能である。一般に100~300℃程度の温度が好ましく、120~280℃がより好ましく、150~250℃がさらに好ましい。また、時間としては、1分間~3時間行うことが好ましい。また、異なる温度で複数回加熱焼成することができる。異なる温度に設定された複数の加熱装置を用いてもよいし、1台の加熱装置を用いて、異なる温度に順次変化させながら行ってもよい。異なる温度で2回加熱焼成を行う場合、1回目は90~180℃、2回目は185℃以上の温度で行うのが好ましい。また、低温から高温へと温度を変化させて焼成することができる。温度を変化させて焼成を行なう場合、初期温度は90~180℃が好ましい。最終温度は185~300℃が好ましく、190~230℃がより好ましい。 The heating and calcining step can be performed, for example, under the conditions necessary for the polyamic acid or a derivative thereof to exhibit a dehydration and ring closure reaction. As the baking of the coating film, a method of heat treatment in an oven or an infrared furnace, a method of heat treatment on a hot plate, and the like are generally known. These methods are equally applicable in the present invention. In general, a temperature of about 100 to 300 ° C. is preferable, 120 to 280 ° C. is more preferable, and 150 to 250 ° C. is more preferable. The time is preferably 1 minute to 3 hours. In addition, heating and firing can be performed multiple times at different temperatures. A plurality of heating devices set to different temperatures may be used, or one heating device may be used while sequentially changing to different temperatures. In the case of performing heating and baking twice at different temperatures, it is preferable to carry out the heat treatment at a temperature of 90 to 180 ° C. for the first time and a temperature of 185 ° C. or more for the second time. In addition, the temperature can be changed from low temperature to high temperature for firing. When firing is carried out by changing the temperature, the initial temperature is preferably 90 to 180.degree. The final temperature is preferably 185 to 300 ° C., more preferably 190 to 230 ° C.
 本発明の液晶配向膜の形成方法において、液晶を水平および/または垂直方向に対して一方向に配向させるために、配向膜へ異方性を付与する手段として、ラビング法や光配向法など公知の形成方法を好適に用いることができる。ラビング布の材質としては、コットン、レーヨン、ナイロン等が挙げられる。 In the method of forming a liquid crystal alignment film of the present invention, in order to align the liquid crystal in one direction with respect to the horizontal and / or vertical directions, known methods such as rubbing method and photo alignment method are provided as means for imparting anisotropy to the alignment film. The formation method of can be used suitably. The material of the rubbing cloth may, for example, be cotton, rayon or nylon.
 ラビング法を用いた本発明の実施形態において、液晶配向膜は、前記液晶配向剤を基板に塗布する工程と、前記液晶配向剤を塗布した基板を加熱乾燥して膜を作製する工程と、前記膜を加熱焼成する工程と、前記加熱焼成後の膜をラビング処理する工程とを経て形成することができる。 In the embodiment of the present invention using the rubbing method, the liquid crystal alignment film is formed by applying the liquid crystal alignment agent to a substrate, heating and drying the substrate coated with the liquid crystal alignment agent, and producing a film The film can be formed through the steps of heating and baking the film and rubbing the film after the heating and baking.
 ラビング処理は、通常の液晶配向膜の配向処理のためのラビング処理と同様に行うことができ、本発明の液晶配向膜において十分なリタデーションが得られる条件であればよい。好ましい条件は、毛足押し込み量0.2~0.8mmである。また、ステージ移動速度は5~250mm/secである。また、ローラー回転速度は500~2,000rpmである。 The rubbing treatment can be carried out in the same manner as the rubbing treatment for alignment treatment of a normal liquid crystal alignment film, as long as sufficient retardation can be obtained in the liquid crystal alignment film of the present invention. A preferable condition is a hair-foot pushing amount of 0.2 to 0.8 mm. The stage moving speed is 5 to 250 mm / sec. The roller rotation speed is 500 to 2,000 rpm.
 本発明の実施形態において、液晶配向膜は、前述した工程以外の他の工程をさらに含む方法によって好適に得られる。例えば、液晶配向膜を作製するための工程の一部に、作製された膜を洗浄液で洗浄する工程を設けてもよい。無論、本発明の液晶配向膜は焼成または放射線照射後の膜を洗浄液で洗浄する工程は必須としない。また、他の工程でも必須とたしないが、必要に応じ洗浄工程を設けることができる。 In the embodiment of the present invention, the liquid crystal alignment film is suitably obtained by a method further including other steps other than the steps described above. For example, you may provide the process of wash | cleaning the produced film with a washing | cleaning liquid as a part of process for producing a liquid crystal aligning film. Of course, in the liquid crystal alignment film of the present invention, the step of washing the film after firing or irradiation with a washing solution is not essential. Moreover, although it is not essential also in other processes, a cleaning process can be provided as needed.
 洗浄液による洗浄方法としては、ブラッシング、ジェットスプレー、蒸気洗浄または超音波洗浄等が挙げられる。これらの方法は単独で行ってもよいし、併用してもよい。洗浄液としては純水(好ましくは超純水)または、メチルアルコール、エチルアルコール、イソプロピルアルコール等の各種アルコール類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、塩化メチレン等のハロゲン系溶剤、アセトン、メチルエチルケトン等のケトン類を用いることができるが、これらに限定されるものではない。もちろん、これらの洗浄液は十分に精製された不純物の少ないものが用いられる。このような洗浄方法は、本発明の液晶配向膜の形成における前記洗浄工程にも適用することができる。 Examples of the cleaning method using a cleaning solution include brushing, jet spray, steam cleaning, ultrasonic cleaning and the like. These methods may be performed alone or in combination. As the cleaning solution, pure water (preferably ultrapure water) or various alcohols such as methyl alcohol, ethyl alcohol and isopropyl alcohol, aromatic hydrocarbons such as benzene, toluene and xylene, halogen solvents such as methylene chloride, acetone Although ketones, such as methyl ethyl ketone, can be used, it is not limited to these. Of course, as these cleaning solutions, those which are sufficiently purified and low in impurities are used. Such a cleaning method can be applied to the above-mentioned cleaning step in the formation of the liquid crystal alignment film of the present invention.
 本発明の液晶配向膜の液晶配向能を高めるために、加熱焼成工程の前後、ラビング工程の前後に、熱や光によるアニール処理を用いることができる。該アニール処理において、アニール温度が30~180℃、好ましくは50~150℃である、また時間は1分~2時間が好ましく、10分~1時間がより好ましい。また、アニール処理に使用するアニール光には、UVランプ、蛍光ランプ、LEDランプなどが挙げられる。光の照射量は0.3~10J/cmであることが好ましい。 In order to enhance the liquid crystal alignment ability of the liquid crystal alignment film of the present invention, annealing treatment with heat or light can be used before and after the heating and baking step and before and after the rubbing step. In the annealing treatment, the annealing temperature is 30 to 180 ° C., preferably 50 to 150 ° C., and the time is preferably 1 minute to 2 hours, and more preferably 10 minutes to 1 hour. Further, as the annealing light used for the annealing treatment, a UV lamp, a fluorescent lamp, an LED lamp and the like can be mentioned. The light irradiation dose is preferably 0.3 to 10 J / cm 2 .
 本発明の液晶配向膜の膜厚は、特に限定されないが、10~300nmであることが好ましく、30~150nmであることがより好ましい。本発明の液晶配向膜の膜厚は、段差計やエリプソメータ等の公知の膜厚測定装置によって測定することができる。 The thickness of the liquid crystal alignment film of the present invention is not particularly limited, but is preferably 10 to 300 nm, and more preferably 30 to 150 nm. The film thickness of the liquid crystal alignment film of the present invention can be measured by a known film thickness measuring device such as a step gauge or an ellipsometer.
 本発明の液晶配向膜は特に大きな配向の異方性を持つことを特徴とする。このような異方性の大きさは特開2005-275364号公報等に記載の偏光IRを用いた方法で評価することができる。また以下に示すようにエリプソメトリーを用いた方法によっても評価することができる。詳しくは、分光エリプソメータによって液晶配向膜のリタデーション値を測定することができる。膜のリタデーション値はポリマー主鎖の配向度に比例して大きくなる。すなわち、大きなリタデーション値を持つものは、大きな配向度を持つ。よって、それを液晶配向膜として使用した場合、当該液晶配向膜はより大きな異方性を持つため、液晶組成物を大きく配向規制できると考えられる。 The liquid crystal alignment film of the present invention is characterized by having particularly large anisotropy of alignment. The magnitude of such anisotropy can be evaluated by the method using polarized IR described in JP-A-2005-275364 or the like. It can also be evaluated by a method using ellipsometry as described below. Specifically, the retardation value of the liquid crystal alignment film can be measured by a spectroscopic ellipsometer. The retardation value of the film increases in proportion to the degree of orientation of the polymer main chain. That is, those having a large retardation value have a large degree of orientation. Therefore, when it is used as a liquid crystal aligning film, since the said liquid crystal aligning film has larger anisotropy, it is thought that alignment control of a liquid crystal composition can be carried out large.
 本発明の液晶配向膜は横電界方式の液晶表示素子に好適に用いることができる。横電界方式の液晶表示素子に用いる場合、プレチルト(Pt)角が小さいほど、また液晶配向能が高いほど暗状態での黒表示レベルは高くなり、コントラストが向上する。プレチルト(Pt)角は1.5°以下が望ましく、1.2°以下がより望ましい。よって、本発明の実施形態によれば、前記液晶配向剤は、横電界型液晶表示素子の製造に用いられる。また、本発明の実施形態によれば、前記液晶配向膜を有する、横電界型液晶表示素子が提供される。 The liquid crystal alignment film of the present invention can be suitably used for a transverse electric field liquid crystal display element. When it is used for a liquid crystal display device of a transverse electric field system, the smaller the pretilt (Pt) angle and the higher the liquid crystal alignment ability, the higher the black display level in the dark state, and the contrast is improved. The pretilt (Pt) angle is preferably 1.5 ° or less, more preferably 1.2 ° or less. Therefore, according to the embodiment of the present invention, the liquid crystal aligning agent is used in the manufacture of a lateral electric field liquid crystal display device. Further, according to the embodiment of the present invention, there is provided a lateral electric field liquid crystal display device having the liquid crystal alignment film.
 本発明の液晶配向膜は、スマートフォン、タブレット、車載モニター、テレビ等、液晶ディスプレイ用の液晶組成物の配向制御に用いることができる。液晶ディスプレイ用の液晶組成物の配向用途以外に、光学補償材やその他すべての液晶材料の配向制御に用いることができる。また本発明の配向膜は大きな異方性を有するので、単独で光学補償材用途に使用することができる。また、本発明の実施形態によれば、前記液晶配向膜を有する、液晶表示素子が提供される。 The liquid crystal alignment film of the present invention can be used to control the alignment of liquid crystal compositions for liquid crystal displays such as smartphones, tablets, in-vehicle monitors, and televisions. Besides the alignment application of the liquid crystal composition for liquid crystal display, it can be used for the alignment control of an optical compensation material and all other liquid crystal materials. In addition, since the alignment film of the present invention has large anisotropy, it can be used alone as an optical compensatory material. Moreover, according to the embodiment of the present invention, there is provided a liquid crystal display device having the liquid crystal alignment film.
 <液晶表示素子>
 本発明の液晶表示素子について詳細に説明する。本発明は、対向配置されている一対の基板と、前記一対の基板それぞれの対向している面の一方または両方に形成されている電極と、前記一対の基板それぞれの対向している面に形成された液晶配向膜と、前記一対の基板間に形成された液晶層とを有する液晶表示素子において、前記液晶配向膜が本発明の配向膜である液晶表示素子を提供する。
<Liquid crystal display element>
The liquid crystal display element of the present invention will be described in detail. The present invention is formed on a pair of oppositely disposed substrates, an electrode formed on one or both of opposing surfaces of the pair of substrates, and an opposed surface of the pair of substrates. The liquid crystal display element which has the liquid crystal aligning film and the liquid crystal layer formed between a pair of board | substrates, Comprising: The said liquid crystal aligning film provides the liquid crystal display element which is an alignment film of this invention.
 前記電極は、基板の一面に形成される電極であれば特に限定されない。このような電極には、例えばITOや金属の蒸着膜等が挙げられる。また電極は、基板の一方の面の全面に形成されていてもよいし、例えばパターン化されている所望の形状に形成されていてもよい。電極の前記所望の形状には、例えば櫛型またはジグザグ構造等が挙げられる。電極は、一対の基板のうちの一方の基板に形成されていてもよいし、両方の基板に形成されていてもよい。電極の形成の形態は液晶表示素子の種類に応じて異なり、例えばIPS型液晶表示素子の場合は前記一対の基板の一方に電極が配置され、その他の液晶表示素子の場合は前記一対の基板の双方に電極が配置される。前記基板または電極の上に前記液晶配向膜が形成される。 The said electrode will not be specifically limited if it is an electrode formed in one surface of a board | substrate. Examples of such an electrode include a deposited film of ITO or metal, and the like. The electrode may be formed on the entire surface of one side of the substrate, or may be formed, for example, in a desired shape which is patterned. The desired shape of the electrode includes, for example, a comb or zigzag structure. The electrode may be formed on one of the pair of substrates or may be formed on both of the substrates. The form of formation of the electrodes differs depending on the type of liquid crystal display element. For example, in the case of an IPS type liquid crystal display element, the electrode is disposed on one of the pair of substrates, and in the case of the other liquid crystal display elements Electrodes are disposed on both sides. The liquid crystal alignment film is formed on the substrate or the electrode.
 前記液晶層は、液晶配向膜が形成された面が対向している前記一対の基板によって液晶組成物が挟持される形で形成される。液晶層の形成では、微粒子や樹脂シート等の、前記一対の基板の間に介在して適当な間隔を形成するスペーサを必要に応じて用いることができる。 The liquid crystal layer is formed in such a manner that a liquid crystal composition is sandwiched between the pair of substrates facing each other on which the liquid crystal alignment film is formed. In the formation of the liquid crystal layer, it is possible to use a spacer, such as fine particles or a resin sheet, which is interposed between the pair of substrates to form an appropriate distance.
 液晶層の形成方法としては、例えば、真空注入法やODF(One Drop Fill)法を用いることができる。基板の張り合わせに用いられるシール剤としては、例えば、UV硬化型や熱硬化型のシール剤を用いることができる。シール剤の印刷には、例えば、スクリーン印刷法を用いることができる。 As a method of forming the liquid crystal layer, for example, a vacuum injection method or an ODF (One Drop Fill) method can be used. As a sealing agent used for bonding of a board | substrate, UV curing type and a thermosetting type sealing agent can be used, for example. For example, screen printing can be used for printing the sealing agent.
 液晶組成物には、特に制限はなく、誘電率異方性が正または負の各種の液晶組成物を用いることができる。誘電率異方性が正の好ましい液晶組成物には、特許第3086228号公報、特許第2635435号公報、特表平5-501735号公報、特開平8-157826号公報、特開平8-231960号公報、特開平9-241644号公報(EP885272A1)、特開平9-302346号公報(EP806466A1)、特開平8-199168号公報(EP722998A1)、特開平9-235552号公報、特開平9-255956号公報、特開平9-241643号公報(EP885271A1)、特開平10-204016号公報(EP844229A1)、特開平10-204436号公報、特開平10-231482号公報、特開2000-087040号公報、特開2001-48822号公報等に開示されている液晶組成物が挙げられる。 The liquid crystal composition is not particularly limited, and various liquid crystal compositions having positive or negative dielectric anisotropy can be used. Preferred liquid crystal compositions having positive dielectric anisotropy include Japanese Patent No. 3086228, Japanese Patent No. 2635435, Japanese Patent Application No. 5-501735, Japanese Patent Nos. 8-157826 and 8-21960. JP, 9-241644 (EP8852722A1), JP-A-9-302346 (EP806466A1), JP-A-8-199168 (EP722998A1), JP-A-9-235552, JP-A-9-255956 JP-A-9-241643 (EP885271A1), JP-A-10-204016 (EP844229A1), JP-A-10-204436, JP-A-10-231482, JP-A2000-087040, JP-A-2001 No. -48822 is disclosed Crystal compositions.
 前記負の誘電率異方性を有する液晶組成物の好ましい例として、特開昭57-114532号公報、特開平2-4725号公報、特開平4-224885号公報、特開平8-40953号公報、特開平8-104869号公報、特開平10-168076号公報、特開平10-168453号公報、特開平10-236989号公報、特開平10-236990号公報、特開平10-236992号公報、特開平10-236993号公報、特開平10-236994号公報、特開平10-237000号公報、特開平10-237004号公報、特開平10-237024号公報、特開平10-237035号公報、特開平10-237075号公報、特開平10-237076号公報、特開平10-237448号公報(EP967261A1)、特開平10-287874号公報、特開平10-287875号公報、特開平10-291945号公報、特開平11-029581号公報、特開平11-080049号公報、特開2000-256307号公報、特開2001-019965号公報、特開2001-072626号公報、特開2001-192657号公報、特開2010-037428号公報、国際公開第2011/024666号公報、国際公開第2010/072370号公報、特表2010-537010号公報、特開2012-077201号公報、特開2009-084362号公報等に開示されている液晶組成物が挙げられる。誘電率異方性が正または負の液晶組成物に1種以上の光学活性化合物を添加して使用することも何ら差し支えない。 As preferable examples of the liquid crystal composition having the negative dielectric anisotropy, there are disclosed JP-A-57-114532, JP-A-2-24725, JP-A-4-224885 and JP-A-8-40953. JP-A-8-104869, JP-A-10-168076, JP-A-10-168453, JP-A-10-236989, JP-A-10-236990, JP-A-10-236992, and the like. Japanese Patent Application Laid-Open Nos. 10-236993, 10-236994, 10-237000, 10-237004, 10-237024, 10-237035, 10 -237075, JP-A-10-237076, JP-A-10-237448 (EP 9672) 1A1), JP-A-10-287874, JP-A-10-287875, JP-A-10-291945, JP-A-11-029581, JP-A-11-080049, JP-A-2000-256307 JP-A 2001-019965, JP-A 2001-072626, JP-A 2001-192657, JP-A 2010-037428, WO 2011/024666, WO 2010/072370 The liquid crystal compositions disclosed in JP-A-2010-537010, JP-A-2012-077201, JP-A-2009-084362, etc. can be mentioned. It is also acceptable to use one or more optically active compounds added to a liquid crystal composition having positive or negative dielectric anisotropy.
 また例えば、本発明の液晶表示素子に用いる液晶組成物は、例えば配向性を向上させる観点から、添加物をさらに添加してもよい。このような添加物は、光重合性モノマー、光学活性な化合物、酸化防止剤、紫外線吸収剤、色素、消泡剤、重合開始剤、重合禁止剤などである。好ましい光重合性モノマー、光学活性な化合物、酸化防止剤、紫外線吸収剤、色素、消泡剤、重合開始剤、重合禁止剤には、国際公開第2015/146330号公報等に開示されている化合物が挙げられる。 For example, an additive may be further added to the liquid crystal composition used for the liquid crystal display element of the present invention, for example, from the viewpoint of improving the orientation. Such additives include photopolymerizable monomers, optically active compounds, antioxidants, ultraviolet light absorbers, dyes, antifoaming agents, polymerization initiators, polymerization inhibitors and the like. Preferred photopolymerizable monomers, optically active compounds, antioxidants, ultraviolet light absorbers, dyes, antifoaming agents, polymerization initiators, polymerization inhibitors include compounds disclosed in WO 2015/146330 and the like. Can be mentioned.
 PSA(polymer sustained alignment)モードの液晶表示素子に適合させるために重合可能な化合物を液晶組成物に混合することができる。重合可能な化合物の好ましい例はアクリレート、メタクリレート、ビニル化合物、ビニルオキシ化合物、プロペニルエーテル、エポキシ化合物(オキシラン、オキセタン)、ビニルケトンなどの重合可能な基を有する化合物である。好ましい化合物には、国際公開第2015/146330号公報等に開示されている化合物が挙げられる。 A polymerizable compound may be mixed into the liquid crystal composition to be compatible with a liquid crystal display device in a PSA (polymer sustained alignment) mode. Preferred examples of the polymerizable compound are compounds having a polymerizable group such as acrylate, methacrylate, vinyl compound, vinyloxy compound, propenyl ether, epoxy compound (oxirane, oxetane), vinyl ketone and the like. Preferred compounds include the compounds disclosed in WO 2015/146330 and the like.
以下、本発明を実施例により説明するが、本発明はこれらに限定されるものではない。なお、実施例において用いる評価法および化合物は次の通りである。 Hereinafter, the present invention will be described by way of examples, but the present invention is not limited thereto. The evaluation methods and compounds used in the examples are as follows.
 1.重量平均分子量(Mw)
 ポリアミック酸の重量平均分子量は、2695セパレーションモジュール・2414示差屈折計(Waters製)を用いてGPC法により測定し、ポリスチレン換算することにより求めた。得られたポリアミック酸をリン酸-DMF混合溶液(リン酸/DMF=0.6/100:重量比)で、ポリアミック酸濃度が約2重量%になるように希釈した。カラムはHSPgel RT MB-M(Waters製)を使用し、前記混合溶液を展開剤として、カラム温度50℃、流速0.40mL/minの条件で測定を行った。標準ポリスチレンは東ソー(株)製TSK標準ポリスチレンを用いた。
1. Weight average molecular weight (Mw)
The weight average molecular weight of the polyamic acid was measured by GPC method using a 2695 separation module · 2414 differential refractometer (manufactured by Waters), and determined by polystyrene conversion. The obtained polyamic acid was diluted with a phosphoric acid-DMF mixed solution (phosphoric acid / DMF = 0.6 / 100: weight ratio) so that the polyamic acid concentration was about 2% by weight. As the column, HSPgel RT MB-M (manufactured by Waters) was used, and the measurement was performed under the conditions of a column temperature of 50 ° C. and a flow rate of 0.40 mL / min using the mixed solution as a developing agent. As the standard polystyrene, TSK standard polystyrene manufactured by Tosoh Corp. was used.
 2.プレチルト角(Pt角)
 中央精機(株)製の液晶評価装置(OMS-CA3)にて、室温で測定した。広視野角を得るためには、1.5°以下が望ましく、1.2°以下がより望ましい。
2. Pretilt angle (Pt angle)
It was measured at room temperature with a liquid crystal evaluation apparatus (OMS-CA3) manufactured by Chuo Seiki Co., Ltd. In order to obtain a wide viewing angle, 1.5 degrees or less is desirable, and 1.2 degrees or less is more desirable.
 3.DC残像評価
 30Hz、3Vの矩形波を10分間印加した後、0.3Vの直流電圧を20分間重畳した。直流電圧を0Vにした後、再び3Vの矩形波を20分間印加した。直流電圧重畳時の電荷の吸収が早いほど、非対称なAC駆動となった場合の残留DCが小さく、DC残像が発生しにくいことから、直流電圧を重畳してから20分経過するまでにフリッカー消去電圧が0.15V以下となった場合はDC残像が「○」、0.1V以下となった場合はDC残像が「◎」と定義して評価した。直流電圧を重畳してから20分経過するまでにフリッカー消去電圧が0.15V以下とならなかった場合は、DC残像が「×」と定義して評価した。
3. DC Persistence Evaluation After applying a rectangular wave of 30 Hz and 3 V for 10 minutes, a DC voltage of 0.3 V was superimposed for 20 minutes. After the DC voltage was set to 0 V, a 3 V rectangular wave was applied again for 20 minutes. As the charge absorption at the time of DC voltage superposition is quicker, the residual DC in the asymmetrical AC drive becomes smaller and the DC residual image is less likely to occur, so flicker elimination is performed 20 minutes after the DC voltage is superimposed. When the voltage became 0.15 V or less, the DC afterimage was defined as “○” when the DC afterimage became “○”, 0.1 V or less. When the flicker erase voltage did not become 0.15 V or less by 20 minutes after superimposing the DC voltage, the DC afterimage was defined as “×” and evaluated.
 4.電圧保持率
 「水嶋他、第14回液晶討論会予稿集 p78(1988)」に記載の方法で行った。測定は、周波数30Hz、波高±5Vの矩形波をセルに印加して行った。測定は60℃で行った。この値は、印加した電圧がフレーム周期後どの程度保持されているかを示す指標であり、この値が100%ならば全ての電荷が保持されていることを示す。値が99.5%以上であれば表示品位が良好な液晶表示素子となる。
4. Voltage holding ratio It carried out by the method as described in "Mizushima et al., Proceedings of the 14th Liquid Crystal Display Symposium p78 (1988)". The measurement was performed by applying a rectangular wave with a frequency of 30 Hz and a wave height of ± 5 V to the cell. The measurement was performed at 60 ° C. This value is an index showing how much the applied voltage is held after the frame period, and if this value is 100%, it indicates that all charges are held. When the value is 99.5% or more, the liquid crystal display element with good display quality is obtained.
 <溶剤>
 NMP: N-メチル-2-ピロリドン
 BC: ブチルセロソルブ(エチレングリコールモノブチルエーテル)
 GBL: γ-ブチロラクトン。
<Solvent>
NMP: N-methyl-2-pyrrolidone BC: butyl cellosolve (ethylene glycol monobutyl ether)
GBL: γ-butyrolactone.
 <添加剤>
 添加剤(Ad1): 1,3-ビス(4,5-ジヒドロ-2-オキサゾリル)ベンゼン
 添加剤(Ad2): 3-アミノプロピルトリエトキシシラン
 添加剤(Ad3): 2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン。
<Additives>
Additive (Ad1): 1,3-bis (4,5-dihydro-2-oxazolyl) benzene Additive (Ad2): 3-aminopropyltriethoxysilane Additive (Ad3): 2- (3,4-epoxy) Cyclohexyl) ethyltrimethoxysilane.
 [合成例1a]化合物(1-4)の合成
 合成に供した試薬は市販品を精製せずにそのまま用いた。
Synthesis Example 1a Synthesis of Compound (1-4) A commercial product of the reagent used for synthesis was used as it was without purification.
 <第1段階>
 滴下漏斗、温度計を装着した1L3つ口フラスコに、スベロイルクロリド50.0g(236.9mmol)を入れ、ジクロロメタン250mLを加えた。この溶液を5℃に冷却し、塩化アルミニウム(III)75.8g(568.6mmol、2.4eq.)を加えた。溶液を5℃に保ち30分間攪拌した後、ベンゼン38.9g(497.5mmol、2.1eq.)をジクロロメタン250mLに溶解させた溶液を滴下し加えた。滴下終了後、溶液の冷却を止め、室温まで昇温させ、この溶液をさらに12時間室温で攪拌した。この一連の反応は窒素雰囲気下で行った。反応溶液を3NHCl1500mLにあけ、有機層を回収し、その有機層を純水500mLで3回洗浄した。洗浄後、有機層を無水硫酸マグネシウムで乾燥させた後、溶媒を減圧留去して粗結晶を得た。得られた粗結晶をトルエンから再結晶させ、得られた結晶を80℃で12時間真空乾燥させ、1,8-ジフェニルオクタン-1,8-ジオンを得た(収量;61.4g、収率;88%)。
<First stage>
In a 1 L three-necked flask equipped with a dropping funnel and a thermometer, 50.0 g (236.9 mmol) of suberoyl chloride was placed, and 250 mL of dichloromethane was added. The solution was cooled to 5 ° C., and 75.8 g (568.6 mmol, 2.4 eq.) Of aluminum (III) chloride was added. The solution was kept at 5 ° C. and stirred for 30 minutes, and then a solution of 38.9 g (497.5 mmol, 2.1 eq.) Of benzene in 250 mL of dichloromethane was added dropwise. After the addition was over, cooling of the solution was stopped, the temperature was raised to room temperature, and this solution was stirred at room temperature for a further 12 hours. This series of reactions was performed under a nitrogen atmosphere. The reaction solution was poured into 1500 mL of 3N HCl, the organic layer was recovered, and the organic layer was washed three times with 500 mL of pure water. After washing, the organic layer was dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure to obtain crude crystals. The obtained crude crystals were recrystallized from toluene, and the obtained crystals were vacuum dried at 80 ° C. for 12 hours to obtain 1,8-diphenyloctane-1,8-dione (yield: 61.4 g, yield) 88%).
 <第2段階>
 滴下漏斗、温度計を装着した1L3つ口フラスコに、第1段階で得た1,8-ジフェニルオクタン-1,8-ジオン50.0g(170.0mmol)を入れ、ジクロロメタン500mLを加えた。この溶液を5℃に冷却し、四塩化チタン(IV)70.9g(374.0mmol、2.2eq.)を滴下した。この溶液を5℃に保ち1時間攪拌した後、さらにトリエチルシラン59.3g(510.0mmol、3.0eq. )を滴下した。この溶液を5℃に保ち6時間攪拌した。この一連の反応は窒素雰囲気下で行った。反応溶液を純水1Lにあけ、有機層を回収し、その有機層を飽和重曹水500mLで3回、次いで純水500mLで3回洗浄した。洗浄後、有機層を無水硫酸マグネシウムで乾燥させた後、溶媒を減圧留去して粗体を得た。得られた粗体をカラムクロマトグラフィー(充填剤;シリカゲル、展開溶媒;トルエン:ヘプタン=2:1)にて分離精製し、1,8-ジフェニルオクタンを得た(収量;42.6g、収率;94%)。
Second stage
In a 1 L 3-neck flask equipped with a dropping funnel and a thermometer, 50.0 g (170.0 mmol) of 1,8-diphenyloctane-1,8-dione obtained in the first step was placed, and 500 mL of dichloromethane was added. The solution was cooled to 5 ° C., and 70.9 g (374.0 mmol, 2.2 eq.) Of titanium (IV) tetrachloride was added dropwise. The solution was kept at 5 ° C. and stirred for 1 hour, and then 59.3 g (510.0 mmol, 3.0 eq.) Of triethylsilane was further added dropwise. The solution was kept at 5 ° C. and stirred for 6 hours. This series of reactions was performed under a nitrogen atmosphere. The reaction solution was poured into 1 L of pure water, the organic layer was recovered, and the organic layer was washed with 500 mL of saturated aqueous sodium bicarbonate three times and then with 500 mL of pure water three times. After washing, the organic layer was dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure to obtain a crude product. The obtained crude product was separated and purified by column chromatography (filler; silica gel, developing solvent; toluene: heptane = 2: 1) to obtain 1,8-diphenyloctane (yield: 42.6 g, yield) 94%).
 <第3段階> <Third stage>
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 滴下漏斗、温度計を装着した1L3つ口フラスコに、4-ニトロベンゾイルクロリド50.1g(270.2mmol、2.4eq. )を入れ、ジクロロメタン250mLを加えた。この溶液を5℃に冷却し、塩化アルミニウム(III)45.0g(337.8mmol、3.0eq. )を加えた。溶液を5℃に保ち30分間攪拌した後、第2段階で得た1,8-ジフェニルオクタン30.0g(112.6mmol)をジクロロメタン150mLに溶解させた溶液を滴下し加えた。滴下終了後、溶液の冷却を止め、室温まで昇温させ、この溶液をさらに12時間室温で攪拌した。この一連の反応は窒素雰囲気下で行った。反応溶液を3NHCl1500mLにあけ、有機層を回収し、その有機層を純水500mLで3回洗浄した。洗浄後、有機層を無水硫酸マグネシウムで乾燥させた後、溶媒を減圧留去して粗体を得た。得られた粗体をカラムクロマトグラフィー(充填剤;シリカゲル、展開溶媒;ジクロロメタン)にて分離精製し、化合物(1-4)-NKを得た(収量;52.1g、収率;82%)。 In a 1 L three-necked flask equipped with a dropping funnel and a thermometer, 50.1 g (270.2 mmol, 2.4 eq.) Of 4-nitrobenzoyl chloride was placed, and 250 mL of dichloromethane was added. The solution was cooled to 5 ° C., and 45.0 g (337.8 mmol, 3.0 eq.) Of aluminum (III) chloride was added. The solution was kept at 5 ° C. and stirred for 30 minutes, and then a solution of 30.0 g (112.6 mmol) of 1,8-diphenyloctane obtained in the second step in 150 mL of dichloromethane was added dropwise. After the addition was over, cooling of the solution was stopped, the temperature was raised to room temperature, and this solution was stirred at room temperature for a further 12 hours. This series of reactions was performed under a nitrogen atmosphere. The reaction solution was poured into 1500 mL of 3N HCl, the organic layer was recovered, and the organic layer was washed three times with 500 mL of pure water. After washing, the organic layer was dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure to obtain a crude product. The obtained crude product was separated and purified by column chromatography (packing agent: silica gel, developing solvent: dichloromethane) to obtain compound (1-4) -NK (yield: 52.1 g, 82%) .
 <第4段階> Stage 4
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 滴下漏斗、温度計を装着した1L3つ口フラスコに、第3段階で得た化合物(1-4)-NK 50.0g(88.6mmol)を入れ、ジクロロメタン500mLを加えた。この溶液を5℃に冷却し、そこに四塩化チタン(IV)37.0g(194.9mmol、2.2eq. )を滴下した。この溶液を5℃に保ち1時間攪拌した後、そこにトリエチルシラン30.9g(265.8mmol、3.0eq.)を滴下した。この溶液を5℃に保ち、4時間攪拌した。この一連の反応は窒素雰囲気下で行った。反応溶液を純水1Lにあけ有機層を回収し、有機層を飽和重曹水500mLで3回、次いで純水500mLで3回洗浄した。洗浄後、有機層を無水硫酸マグネシウムで乾燥させた後、溶媒を減圧留去して粗体を得た。得られた粗体をカラムクロマトグラフィー(充填剤;シリカゲル、展開溶媒;テトラヒドロフラン)にて分離精製し、化合物(1-4)-Nを得た(収量;41.7g、収率;88%)。 In a 1 L 3-neck flask equipped with a dropping funnel and a thermometer, 50.0 g (88.6 mmol) of the compound (1-4) -NK obtained in the third step was placed, and 500 mL of dichloromethane was added. The solution was cooled to 5 ° C., and 37.0 g (194.9 mmol, 2.2 eq.) Of titanium (IV) tetrachloride was added dropwise thereto. The solution was kept at 5 ° C. and stirred for 1 hour, and then 30.9 g (265.8 mmol, 3.0 eq.) Of triethylsilane was added dropwise thereto. The solution was kept at 5 ° C. and stirred for 4 hours. This series of reactions was performed under a nitrogen atmosphere. The reaction solution was poured into 1 L of pure water, the organic layer was recovered, and the organic layer was washed three times with 500 mL of saturated aqueous sodium bicarbonate solution and then three times with 500 mL of pure water. After washing, the organic layer was dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure to obtain a crude product. The obtained crude product was separated and purified by column chromatography (packing agent: silica gel, developing solvent: tetrahydrofuran) to obtain compound (1-4) -N (yield: 41.7 g, 88%) .
 <第5段階>
 SUS316製3Lオートクレーブ反応管に第4段階で得た化合物(1-4)-N40.0g(74.5mmol)、5%Pd/C粉末(Eタイプ)4.0gを入れ、テトラヒドロフラン800mLを加えた。この溶液を水素雰囲気下(水素圧;0.6MPa)、60℃で18時間攪拌し、放冷後、ろ過にてPd/C粉末を取り除いた後、溶媒を減圧留去して化合物(1-4)の粗体を得た。得られた粗体をカラムクロマトグラフィー(充填剤;シリカゲル、展開溶媒;テトラヒドロフラン)にて分離精製し、次いでエタノール:トルエン=2:1(容積比)の混合溶媒から再結晶させ、得られた結晶を80℃で12時間真空乾燥させ、化合物(1-4)を得た(収量;32.0g、収率;90%)。
<Step 5>
In a 3 L autoclave reaction tube made of SUS316, 40.0 g (74.5 mmol) of the compound (1-4) -N obtained in the fourth step and 4.0 g of 5% Pd / C powder (E type) were placed, and 800 mL of tetrahydrofuran was added. . The solution is stirred at 60 ° C. for 18 hours under a hydrogen atmosphere (hydrogen pressure; 0.6 MPa), allowed to cool, and after removing the Pd / C powder by filtration, the solvent is evaporated under reduced pressure and the compound (1- The crude product of 4) was obtained. The obtained crude product is separated and purified by column chromatography (packing agent: silica gel, developing solvent: tetrahydrofuran) and then recrystallized from a mixed solvent of ethanol: toluene = 2: 1 (volume ratio) to obtain crystals The residue was vacuum dried at 80 ° C. for 12 hours to give compound (1-4) (yield: 32.0 g, yield: 90%).
 得られた化合物(1-4)の融点は113.3~114.7℃であった。融点はメトラートレド社製自動融点測定システムMP-70を使用して測定を行った。 The melting point of the obtained compound (1-4) was 113.3 to 114.7 ° C. The melting point was measured using an automatic melting point measurement system MP-70 manufactured by METTLER TOLEDO.
 [合成例1]ワニスの合成
 攪拌翼、窒素導入管を装着した100mL3つ口フラスコに、式(1-1)で表される化合物4.001gを入れ、NMPを54.0g加えた。その溶液を氷冷させ液温を5℃とした後、式(AN-1)で表される化合物0.390g、式(AN-4)で表される化合物0.965g、式(AN-6)で表される化合物0.644g、およびNMP20.0gを加え、12時間室温で攪拌した。そこにBC20.0gを加え、溶質のポリマーの重量平均分子量が所望する重量平均分子量になるまで、その溶液を70℃で加熱攪拌し、固形分6wt%のワニス1を得た。このワニス1に含まれるポリマーの重量平均分子量(Mw)は60,000であった。
Synthesis Example 1 Synthesis of Varnish 4.001 g of a compound represented by the formula (1-1) was placed in a 100 mL three-necked flask equipped with a stirring blade and a nitrogen introduction tube, and 54.0 g of NMP was added. The solution is ice-cooled to a solution temperature of 5 ° C., and then 0.390 g of the compound represented by the formula (AN-1), 0.965 g of the compound represented by the formula (AN-4), the formula (AN-6) The compound represented by 0.64g and NMP20.0g were added, and it stirred at room temperature for 12 hours. Thereto, 20.0 g of BC was added, and the solution was heated and stirred at 70 ° C. until the weight average molecular weight of the polymer of the solute reached a desired weight average molecular weight, to obtain Varnish 1 having a solid content of 6 wt%. The weight average molecular weight (Mw) of the polymer contained in this varnish 1 was 60,000.
 [合成例2~55]
 テトラカルボン酸二無水物およびジアミンを変更した以外は、合成例1に準拠して、ポリマー固形分濃度が6重量%のワニス2~ワニス55を調製した。得られたワニスの組成、重量平均分子量(Mw)を表1~表5に示す。合成例1も再掲する。[ ]内はテトラカルボン酸化合物群、ジアミン化合物群の中でのそれぞれのモル比を表す。
Synthesis Examples 2 to 55
Varnishes 2 to 55 were prepared according to Synthesis Example 1 except that tetracarboxylic dianhydride and diamine were changed, and the solid concentration of the polymer was 6% by weight. The composition and weight average molecular weight (Mw) of the obtained varnish are shown in Tables 1 to 5. Synthesis Example 1 is also shown again. The inside of [] represents the molar ratio of each of the tetracarboxylic acid compound group and the diamine compound group.
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
 [実施例1]液晶配向剤の調製、DC残像およびプレチルト角測定用液晶セルの作製、DC残像測定、およびプレチルト角測定
 攪拌翼、窒素導入管を装着した50mLナスフラスコに合成例1で合成したワニス1を3.0gおよび合成例27で合成したワニス27を7.0g秤取り、そこにNMP4.0g、GBL3.0gおよびBC3.0gを加え室温で1時間攪拌し樹脂分濃度3重量%の液晶配向剤1を得た。この液晶配向剤1をFFS電極付きガラス基板およびカラムスペーサー付きガラス基板にスピンナー法により塗布した(2,000rpm、15秒)。塗膜後80℃にて約3分間予備焼成した後、230℃にて30分間焼成処理を行い膜厚およそ100nmの液晶配向膜を形成した。得られた液晶配向膜を株式会社飯沼ゲージ製作所製のラビング処理装置を用いて、ラビング布(毛足長2.8mm:コットン)の毛足押し込み量0.40mm、ステージ移動速度を20mm/sec、ローラー回転速度を1000rpmの条件で、ラビング処理した。得られた基板を超純水にて表面を洗浄してからオーブン中120℃で30分間乾燥した。次いで、これらの液晶配向膜が形成された基板2枚を、液晶配向膜が形成されている面を対向させ、かつ、対向する液晶配向膜の間に液晶組成物を注入するための空隙を設けて貼り合わせた。この時、それぞれの液晶配向膜のラビング方向が平行になるようにした。これらのセルにポジ型液晶組成物Aを真空注入し、注入口を光硬化剤で封止して、セル厚4μmの液晶セル(液晶表示素子)を作製した。
[Example 1] Preparation of liquid crystal aligning agent, preparation of liquid crystal cell for DC residual image and pretilt angle measurement, DC residual image measurement, and pretilt angle measurement Synthesized in Synthesis Example 1 in a 50 mL eggplant flask equipped with a stirring blade and a nitrogen introducing pipe. 3.0 g of Varnish 1 and 7.0 g of Varnish 27 synthesized in Synthesis Example 27 were weighed out, 4.0 g of NMP, 3.0 g of GBL and 3.0 g of BC were added thereto, and the mixture was stirred at room temperature for 1 hour to obtain a resin content of 3% by weight The liquid crystal aligning agent 1 was obtained. The liquid crystal aligning agent 1 was applied to a glass substrate with an FFS electrode and a glass substrate with a column spacer by a spinner method (2,000 rpm, 15 seconds). After pre-baking at 80 ° C. for about 3 minutes after coating, baking was carried out at 230 ° C. for 30 minutes to form a liquid crystal alignment film having a film thickness of about 100 nm. The obtained liquid crystal alignment film was rubbed by a rubbing cloth (hair length 2.8 mm: cotton) by using a rubbing apparatus manufactured by Iinuma Gauge Mfg. Co., Ltd., and the stage moving speed was 20 mm / sec, Rubbing was performed at a roller rotational speed of 1000 rpm. The surface of the obtained substrate was washed with ultrapure water and then dried in an oven at 120 ° C. for 30 minutes. Next, two substrates on which these liquid crystal alignment films are formed are opposed to each other on the side on which the liquid crystal alignment film is formed, and a gap for injecting a liquid crystal composition is provided between the opposed liquid crystal alignment films. I put it together. At this time, the rubbing directions of the respective liquid crystal alignment films were made parallel. The positive type liquid crystal composition A was vacuum-injected into these cells, and the inlet was sealed with a photo-curing agent to produce a liquid crystal cell (liquid crystal display element) having a cell thickness of 4 μm.
 <ポジ型液晶組成物A> <Positive Liquid Crystal Composition A>
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
 物性値:NI 100.1℃; Δε 5.1; Δn 0.093; η 25.6mPa・s.
 液晶セルのDC残像を測定したところ、「◎」であった。また、プレチルト角を測定したところ、値は0.7°であった。さらに、この液晶セルの電圧保持率は5V-30Hzで99.8%であった。このセルを点灯させたバックライト試験機(富士フイルム(株)製、FujiCOLOR LED Viewer Pro HR-2;輝度2,700cd/m)の上に500時間載せ、信頼性試験を行った。信頼性試験後の測定用セルの電圧保持率は99.7%であった。
Physical property values: NI 100.1 ° C .; Δε 5.1; Δn 0.093; η 25.6 mPa · s.
When the DC afterimage of the liquid crystal cell was measured, it was "◎". Moreover, when the pretilt angle was measured, the value was 0.7 °. Furthermore, the voltage holding ratio of this liquid crystal cell was 99.8% at 5V-30 Hz. The cell was placed on a backlight tester (FujiCOLOR LED Viewer Pro HR-2 manufactured by Fujifilm Corp .; luminance 2,700 cd / m 2 ) for 500 hours to conduct a reliability test. The voltage holding ratio of the measuring cell after the reliability test was 99.7%.
 [実施例2~23および比較例1~3]
 使用するワニスを変更した以外は、実施例1に準拠して、液晶セルを作成し、DC残像、プレチルト角および電圧保持率を測定した。使用したワニスおよび測定結果を実施例1と併せて表6に示す。ここで、ワニスPは、ポリマー(P)成分を溶剤に溶解した状態のワニス組成物である。ワニスQは、ポリマー(Q)成分を溶剤に溶解した状態のワニス組成物である。
[Examples 2 to 23 and Comparative Examples 1 to 3]
A liquid crystal cell was prepared according to Example 1 except that the varnish used was changed, and DC afterimage, pretilt angle and voltage holding ratio were measured. The varnishes used and the measurement results are shown in Table 6 together with Example 1. Here, the varnish P is a varnish composition in the state which melt | dissolved the polymer (P) component in the solvent. The varnish Q is a varnish composition in which the polymer (Q) component is dissolved in a solvent.
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000048
 実施例1~23のすべてにおいてDC残像は「○」および「◎」であった。また、プレチルト角は1.2°以下であり、電圧保持率は99.5%以上であった。比較例1においては、DC残像は「◎」であったが、プレチルト角が、2.3°と高かった。比較例2においては、プレチルト角は1.5°以下であり良好であったが、DC残像は「×」あった。比較例3においては、DC残像は「◎」であったが、プレチルト角が、2.2°と高かった。 In all of Examples 1 to 23, DC afterimages were “○” and “◎”. In addition, the pretilt angle was 1.2 ° or less, and the voltage holding ratio was 99.5% or more. In Comparative Example 1, the DC afterimage was “◎”, but the pretilt angle was as high as 2.3 °. In the comparative example 2, although the pretilt angle was 1.5 degrees or less and was favorable, DC afterimage was "x". In Comparative Example 3, the DC afterimage was “◎”, but the pretilt angle was as high as 2.2 °.
 [実施例24]
 「合成例1で合成したワニス1を3.0gおよび合成例27で合成したワニス27を7.0g」を、「合成例3で合成したワニス3を10.0g」に変更した以外は、実施例1に準拠して、液晶配向剤27を得た。得られた液晶配向剤27を用いて、実施例1に記載の方法に準じ液晶セルを作製し、DC残像、プレチルト角および電圧保持率を測定した。液晶セルのDC残像は「○」であり、プレチルト角は0.6°であった。初期の電圧保持率は99.8%であり、信頼性試験後の測定用セルの電圧保持率は99.7%であった。
[Example 24]
The procedure was carried out except that “3.0 g of Varnish 1 synthesized in Synthesis Example 1 and 7.0 g of Varnish 27 synthesized in Synthesis Example 27 were changed to“ 10.0 g of Varnish 3 synthesized in Synthesis Example 3 ”. The liquid crystal aligning agent 27 was obtained according to Example 1. Using the obtained liquid crystal aligning agent 27, a liquid crystal cell was produced according to the method described in Example 1, and DC afterimage, pretilt angle and voltage retention were measured. The DC afterimage of the liquid crystal cell was “○”, and the pretilt angle was 0.6 °. The initial voltage holding ratio was 99.8%, and the voltage holding ratio of the measuring cell after the reliability test was 99.7%.
 [実施例25~45、比較例4~6および参考例1~2]
 使用するワニスを変更した以外は、実施例24に準拠して、液晶セルを作成し、DC残像、プレチルト角および電圧保持率を測定した。使用したワニスおよび測定結果を実施例24と併せて表7に示す。
[Examples 25 to 45, Comparative Examples 4 to 6 and Reference Examples 1 to 2]
A liquid crystal cell was prepared according to Example 24 except that the varnish used was changed, and DC afterimage, pretilt angle and voltage holding ratio were measured. The varnishes used and the measurement results are shown in Table 7 together with Example 24.
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000049
 実施例24~45のすべてにおいてDC残像は「○」または「◎」であった。また、プレチルト角は1.5°以下であり、電圧保持率は99.5%以上であった。比較例4においては、プレチルト角は1.5°以下であり良好であったが、DC残像は「×」あった。比較例5においては、DC残像は「◎」であったが、プレチルト角は2.1°と高く、低プレチルト角を発現することはできなかった。比較例6においては、DC残像は「◎」であったが、プレチルト角は2.0°と高く、低プレチルト角を発現することはできなかった。参考例1においては、DC残像は「×」あったが、プレチルト角は0.3°であり、驚くほど低かった。参考例2においても、DC残像は「×」あったが、プレチルト角は0.2°であり、驚くほど低かった。液晶配向剤にポリマーを1種含む実施形態において、テトラカルボン酸二無水物およびジアミンを含む原料からの反応生成物であるポリマーにおける前記ジアミンが、式(1-4)のみからなる液晶配向剤は、プレチルト角を驚くほど下げることができる効果を奏することが分かった。 In all of Examples 24 to 45, the DC afterimage was “」 ”or“ ◎ ”. Moreover, the pretilt angle was 1.5 degrees or less, and the voltage retention was 99.5% or more. In the comparative example 4, although the pretilt angle was 1.5 degrees or less and was favorable, DC afterimage was "x". In Comparative Example 5, the DC afterimage was “◎”, but the pretilt angle was as high as 2.1 °, and a low pretilt angle could not be expressed. In Comparative Example 6, although the DC afterimage was “◎”, the pretilt angle was as high as 2.0 °, and a low pretilt angle could not be expressed. In Reference Example 1, the DC afterimage was “x”, but the pretilt angle was 0.3 ° and was surprisingly low. Also in Reference Example 2, the DC afterimage was “x”, but the pretilt angle was 0.2 ° and was surprisingly low. The liquid crystal aligning agent which the said diamine in the polymer which is a reaction product from the raw material containing tetracarboxylic dianhydride and a diamine in embodiment containing 1 type of polymer in a liquid crystal aligning agent consists only of Formula (1-4) is It has been found that the pretilt angle can be surprisingly lowered.
 [実施例46]
 実施例1の「NMP4.0g、GBL3.0gおよびBC3.0g」に対して更に、添加剤(Ad1)6mgを加えたこと以外は、実施例1に準拠して、樹脂分濃度3重量%、添加剤濃度が樹脂分100重量部当たり1重量部の液晶配向剤54を得た。得られた液晶配向剤54を用いて、実施例1に記載の方法に準じ液晶セルを作製し、DC残像、プレチルト角および電圧保持率を測定した。液晶セルのDC残像は「◎」であり、プレチルト角は0.9°であった。初期の電圧保持率は99.8%であり、信頼性試験後の測定用セルの電圧保持率は99.6%であった。
[Example 46]
A resin component concentration of 3% by weight in accordance with Example 1 except that 6 mg of additive (Ad1) was further added to “NMP 4.0 g, GBL 3.0 g and BC 3.0 g” in Example 1. The additive concentration was 1 part by weight of the liquid crystal aligning agent 54 per 100 parts by weight of the resin component. Using the obtained liquid crystal aligning agent 54, a liquid crystal cell was produced according to the method described in Example 1, and DC afterimage, pretilt angle and voltage retention were measured. The DC afterimage of the liquid crystal cell was “◎”, and the pretilt angle was 0.9 °. The initial voltage holding ratio was 99.8%, and the voltage holding ratio of the measuring cell after the reliability test was 99.6%.
 [実施例47~60および比較例7~9]
 使用するワニスと添加剤を変更した以外は、実施例46に準拠して、液晶セルを作製し、DC残像、プレチルト角および電圧保持率を測定した。使用したワニス、添加剤および測定結果を実施例46と併せて表8に示す。
[Examples 47 to 60 and Comparative Examples 7 to 9]
A liquid crystal cell was produced according to Example 46 except that the varnish and the additive used were changed, and the DC afterimage, pretilt angle and voltage retention were measured. The varnishes, additives and measurement results used are shown in Table 8 together with Example 46.
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000050
 実施例46~60のすべてにおいてDC残像は「◎」であった。また、プレチルト角は1.5°以下であり、電圧保持率は99.5%以上であった。比較例7においては、DC残像は「◎」であったが、プレチルト角は、2.4°と高かった。比較例8においては、プレチルト角は1.5°以下であり良好であったが、DC残像は「×」であった。比較例9においては、DC残像は「◎」であったが、プレチルト角は、2.3°と高かった。 In all of Examples 46 to 60, the DC afterimage was “60”. Moreover, the pretilt angle was 1.5 degrees or less, and the voltage retention was 99.5% or more. In Comparative Example 7, the DC afterimage was “◎”, but the pretilt angle was as high as 2.4 °. In the comparative example 8, although the pretilt angle was 1.5 degrees or less and was favorable, DC afterimage was "x". In Comparative Example 9, the DC afterimage was “◎” but the pretilt angle was as high as 2.3 °.
 [実施例61]
 実施例24における「NMP4.0g、GBL3.0gおよびBC3.0g」に対して更に、添加剤(Ad1)6mgを加えたこと以外は、実施例1に準拠して、樹脂分濃度3重量%、添加剤濃度が樹脂分100重量部当たり1重量部の液晶配向剤72を得た。得られた液晶配向剤72を用いて、実施例1に記載の方法に準じ液晶セルを作製し、DC残像、プレチルト角および電圧保持率を測定した。液晶セルのDC残像は「○」であり、プレチルト角は0.8°であった。初期の電圧保持率は99.7%であり、信頼性試験後の測定用セルの電圧保持率は99.6%であった。
[Example 61]
A resin component concentration of 3% by weight in accordance with Example 1 except that 6 mg of additive (Ad1) is further added to “NMP 4.0 g, GBL 3.0 g and BC 3.0 g” in Example 24 The additive concentration was 1 part by weight of the liquid crystal aligning agent 72 per 100 parts by weight of the resin component. Using the obtained liquid crystal alignment agent 72, a liquid crystal cell was produced according to the method described in Example 1, and DC afterimage, pretilt angle and voltage retention were measured. The DC afterimage of the liquid crystal cell was “○”, and the pretilt angle was 0.8 °. The initial voltage holding ratio was 99.7%, and the voltage holding ratio of the measuring cell after the reliability test was 99.6%.
 [実施例62~82、比較例10~12および参考例3~4]
 使用するワニスと添加剤を変更した以外は、実施例61に準拠して、液晶セルを作製し、DC残像、プレチルト角および電圧保持率を測定した。使用したワニス、添加剤および測定結果を実施例61と併せて表9に示す。
[Examples 62 to 82, Comparative Examples 10 to 12 and Reference Examples 3 to 4]
A liquid crystal cell was produced according to Example 61 except that the varnish and the additive used were changed, and the DC afterimage, pretilt angle and voltage retention were measured. The varnish used, additives and measurement results are shown in Table 9 together with Example 61.
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000051
 実施例61~82のすべてにおいてDC残像は「○」または「◎」であった。また、プレチルト角は1.5°以下であり、電圧保持率は99.5%以上であった。比較例10においては、プレチルト角は1.5°以下であり良好であったが、DC残像は「×」あった。比較例11においては、DC残像は「◎」であったが、プレチルト角は2.2°と高く、低プレチルト角を発現することはできなかった。比較例12においては、DC残像は「◎」であったが、プレチルト角は2.2°と高く、低プレチルト角を発現することはできなかった。参考例3においては、DC残像は「×」あったが、プレチルト角は0.4°であり、驚くほど低かった。参考例4においても、DC残像は「×」あったが、プレチルト角は0.3°であり、驚くほど低かった。液晶配向剤にポリマーを1種含む実施形態において、テトラカルボン酸二無水物およびジアミンを含む原料からの反応生成物であるポリマーにおける前記ジアミンが、式(1-4)のみからなる液晶配向剤は、添加剤を入れてもプレチルト角を有意に低減させることができる効果を奏することが分かった。 In all of Examples 61 to 82, the DC afterimage was “○” or “◎”. Moreover, the pretilt angle was 1.5 degrees or less, and the voltage retention was 99.5% or more. In the comparative example 10, although the pretilt angle was 1.5 degrees or less and was favorable, DC afterimage was "x". In Comparative Example 11, the DC afterimage was “◎”, but the pretilt angle was as high as 2.2 °, and a low pretilt angle could not be expressed. In Comparative Example 12, the DC afterimage was “◎”, but the pretilt angle was as high as 2.2 °, and a low pretilt angle could not be expressed. In Reference Example 3, the DC afterimage was “x”, but the pretilt angle was 0.4 ° and was surprisingly low. Also in Reference Example 4, the DC afterimage was “x”, but the pretilt angle was 0.3 ° and was surprisingly low. The liquid crystal aligning agent which the said diamine in the polymer which is a reaction product from the raw material containing tetracarboxylic dianhydride and a diamine in embodiment containing 1 type of polymer in a liquid crystal aligning agent consists only of Formula (1-4) is It has been found that even when the additive is added, the pretilt angle can be significantly reduced.
 本発明の液晶配向剤を用いれば、液晶のプレチルト角を低く抑えることができ、かつ残留DCのたまりが小さく、電荷の緩和が速い液晶表示素子を与える液晶配向膜を形成することができる。本発明の液晶配向剤は横電界型液晶表示素子に好適に適用することができる。 By using the liquid crystal aligning agent of the present invention, it is possible to form a liquid crystal alignment film which can suppress the pretilt angle of liquid crystal to a low level, give a liquid crystal display element having a small residual DC accumulation and quick relaxation of charges. The liquid crystal aligning agent of the present invention can be suitably applied to a transverse electric field liquid crystal display device.

Claims (23)

  1.  テトラカルボン酸二無水物およびジアミンを含む原料からの反応生成物であるポリマーの少なくとも1つを含有する液晶配向剤であって;
     前記ポリマーを合成するのに用いられる原料は、下記式(1)~(3)で表される化合物の群から選ばれる少なくとも1つを含み、かつ、;
     下記式(A)~式(C)で表される化合物の群、および下記式(D)で表される化合物から選ばれる少なくとも1つを含む、液晶配向剤;
     ここで、前記ポリマーはポリアミック酸、ポリイミド、部分ポリイミド、ポリアミック酸エステル、ポリアミック酸-ポリアミドコポリマー、およびポリアミドイミドからなる群から選ばれる少なくとも1つであり;
    Figure JPOXMLDOC01-appb-C000001

    Figure JPOXMLDOC01-appb-C000002

    Figure JPOXMLDOC01-appb-C000003

     式(1)において、mは3~8の整数であり;
     式(3)において、nは1~3の整数であり;
     式(1)~(3)において、環を構成するいずれかの炭素原子に結合位置が固定されていない基は、その環における結合位置が任意であることを示し;そして、
     式(A)において、Aは窒素、または窒素含有ヘテロ環であり、Wは独立して、炭素数1~5のアルキレンであり、任意の-CH-は、-CO-、1,4-フェニレン、または1,3-フェニレンに置き換えられてもよく、Zは水素、熱により水素原子に置き換わる保護基、または炭素数1~5のアルキルであり、rは0以上の任意の整数であり、aは独立して0または1であり;
     式(B)において、Aは独立して、窒素、または窒素含有ヘテロ環であり、WおよびWは、独立して、炭素数1~5のアルキレンであり、任意の-CH-は、-CO-、1,4-フェニレン、または1,3-フェニレンに置き換えられてもよく、Zは独立して水素、熱により水素原子に置き換わる保護基、または炭素数1~5のアルキルであり、rは独立して0以上の任意の整数であり、aは独立して0または1であり;
     式(C)において、Zは2級または3級アミノ基の少なくとも1つを含有する1価の有機基であり;
     式(D)において、Tは1~2個の炭素-炭素二重結合または1~2個の炭素-炭素三重結合を含む二価の不飽和結合含有基であり;
     式(1)~式(3)および式(A)~式(C)において、環を構成するいずれかの炭素原子に結合位置が固定されていない基は、その環における結合位置が任意であることを示し、ただし、前記式(1)においてmが8のときは、前記ジアミンが、前記式(A)~式(C)で表される化合物のいずれも含まれなくてもよく、前記テトラカルボン酸二無水物が、前記式(D)で表される化合物でなくてもよい。
    A liquid crystal aligning agent containing at least one of a polymer which is a reaction product from a raw material containing tetracarboxylic acid dianhydride and a diamine;
    The raw material used to synthesize the polymer contains at least one selected from the group of compounds represented by the following formulas (1) to (3), and
    A liquid crystal aligning agent comprising at least one selected from a group of compounds represented by the following formulas (A) to (C) and a compound represented by the following formula (D);
    Here, the polymer is at least one selected from the group consisting of polyamic acid, polyimide, partial polyimide, polyamic acid ester, polyamic acid-polyamide copolymer, and polyamideimide;
    Figure JPOXMLDOC01-appb-C000001

    Figure JPOXMLDOC01-appb-C000002

    Figure JPOXMLDOC01-appb-C000003

    In formula (1), m is an integer of 3 to 8;
    In formula (3), n is an integer of 1 to 3;
    In formulas (1) to (3), a group whose bonding position is not fixed to any carbon atom constituting the ring indicates that the bonding position on the ring is arbitrary;
    In formula (A), A 1 is nitrogen or a nitrogen-containing heterocycle, W 1 is independently alkylene having 1 to 5 carbon atoms, and arbitrary —CH 2 — is —CO—, 1, It may be replaced by 4-phenylene or 1,3-phenylene, Z 1 is hydrogen, a protecting group which is replaced with heat by a hydrogen atom, or alkyl having 1 to 5 carbon atoms, r is any integer of 0 or more And a is independently 0 or 1;
    In formula (B), A 2 is independently nitrogen or a nitrogen-containing heterocycle, W 2 and W 3 are independently alkylene having 1 to 5 carbon atoms, and any —CH 2 — And -CO-, 1,4-phenylene, or 1,3-phenylene may be replaced, and Z 2 is independently hydrogen, a protecting group which replaces a hydrogen atom by heat, or an alkyl having 1 to 5 carbon atoms And r is independently any integer of 0 or more, and a is independently 0 or 1;
    In formula (C), Z 3 is a monovalent organic group containing at least one of a secondary or tertiary amino group;
    In Formula (D), T is a divalent unsaturated bond-containing group containing 1 to 2 carbon-carbon double bonds or 1 to 2 carbon-carbon triple bonds;
    In the formulas (1) to (3) and the formulas (A) to (C), a group whose bonding position is not fixed to any carbon atom constituting the ring has an arbitrary bonding position in the ring. However, when m is 8 in the formula (1), the diamine may not contain any of the compounds represented by the formulas (A) to (C); The carboxylic acid dianhydride may not be the compound represented by the above formula (D).
  2.  前記ポリマーを1つ含有する、請求項1に記載の液晶配向剤。 The liquid crystal aligning agent of Claim 1 which contains one said polymer.
  3.  前記式(1)~式(3)で表される化合物の割合が、使用するジアミン全量に対し、70モル%以上であって、前記式(A)~式(C)で表される化合物の割合が、使用するジアミン全量に対し、1~30モル%である、請求項2に記載の液晶配向剤。 The ratio of the compounds represented by the formulas (1) to (3) is 70 mol% or more with respect to the total amount of diamine used, and the compounds represented by the formulas (A) to (C) The liquid crystal aligning agent according to claim 2, wherein the proportion is 1 to 30 mol% with respect to the total amount of diamine used.
  4.  前記ポリマーを少なくとも2つを含有し、
     前記少なくとも2つのポリマーは、ポリマー(P)およびポリマー(Q)を含み;
     前記ポリマー(P)を合成するのに用いられる原料は、前記式(1)~(3)で表される化合物の群から選ばれる少なくとも1つを含み;そして、
     前記ポリマー(Q)を合成するのに用いられる原料は、前記式(A)~式(C)で表される化合物の群、および前記式(D)で表される化合物から選ばれる少なくとも1つを含む、請求項1に記載の液晶配向剤。
    Containing at least two of said polymers,
    The at least two polymers comprise a polymer (P) and a polymer (Q);
    The raw material used to synthesize the polymer (P) contains at least one selected from the group of compounds represented by the formulas (1) to (3);
    The raw materials used to synthesize the polymer (Q) are at least one selected from the group of compounds represented by the above formulas (A) to (C) and the compounds represented by the above formula (D) The liquid crystal aligning agent of Claim 1 containing B.
  5.  前記式(1)~式(3)で表される化合物が、下記式(1-1)~式(1-4)、式(2-1)、式(2-2)、および、式(3-1)~式(3-6)で表される化合物の群から選ばれる少なくとも1つであり;
     前記式(A)~式(C)で表される化合物が、下記式(A-1)~式(A~20)、式(B-1)~式(B-8)、および、式(C-1)~式(C-3)で表される化合物の群から選ばれる少なくとも1つであり;
     前記式(D)で表される化合物が、下記式(D-1)~式(D-4)で表される化合物の群から選ばれる少なくとも1つである、請求項1~4のいずれか1項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000004

    Figure JPOXMLDOC01-appb-C000005

    Figure JPOXMLDOC01-appb-C000006

    Figure JPOXMLDOC01-appb-C000007

    Figure JPOXMLDOC01-appb-C000008

    Figure JPOXMLDOC01-appb-C000009

    Figure JPOXMLDOC01-appb-C000010

    Figure JPOXMLDOC01-appb-C000011

    Figure JPOXMLDOC01-appb-C000012

     式(A-1)~式(A-11)において、環を構成するいずれかの炭素原子に結合位置が固定されていない基は、その環における結合位置が任意であることを示し;
     式(B-3)において、kは1~5の整数であり;そして、
     式(B-4)において、nは1~3の整数である。
    The compounds represented by the formulas (1) to (3) have the following formulas (1-1) to (1-4), (2-1), (2-2), and 3-1) to at least one selected from the group of compounds represented by formula (3-6);
    The compounds represented by the formulas (A) to (C) are represented by the following formulas (A-1) to (A to 20), formulas (B-1) to (B-8), and C-1) to at least one selected from the group of compounds represented by formula (C-3);
    The compound represented by said Formula (D) is at least one selected from the group of the compound represented by following formula (D-1)-formula (D-4). The liquid crystal aligning agent of 1 item.
    Figure JPOXMLDOC01-appb-C000004

    Figure JPOXMLDOC01-appb-C000005

    Figure JPOXMLDOC01-appb-C000006

    Figure JPOXMLDOC01-appb-C000007

    Figure JPOXMLDOC01-appb-C000008

    Figure JPOXMLDOC01-appb-C000009

    Figure JPOXMLDOC01-appb-C000010

    Figure JPOXMLDOC01-appb-C000011

    Figure JPOXMLDOC01-appb-C000012

    In formulas (A-1) to (A-11), a group whose bonding position is not fixed to any carbon atom constituting a ring means that the bonding position on the ring is arbitrary;
    In formula (B-3), k is an integer of 1 to 5; and
    In formula (B-4), n is an integer of 1 to 3.
  6.  前記式(1)~式(3)で表される化合物が、前記式(1-1)、式(1-4)、式(2-1)、および式(3-1)で表される化合物の群から選ばれる少なくとも1つであり;
     前記式(A)~式(C)で表される化合物が、前記式(A-12)、式(A-14)、式(A-15)、式(A-16)、式(A-17)、式(A-19)、式(A-20)、式(B-3)、式(B-5)、式(C-2)、および式(C-3)で表される化合物の群から選ばれる少なくとも1つであり;
     前記式(D)で表される化合物が、前記式(D-2)、および式(D-3)で表される化合物の群から選ばれる少なくとも1つである、請求項5に記載の液晶配向剤。
    The compounds represented by the formulas (1) to (3) are represented by the formulas (1-1), (1-4), (2-1), and (3-1). At least one selected from the group of compounds;
    The compounds represented by the formulas (A) to (C) are the compounds represented by the formulas (A-12), (A-14), (A-15), (A-16), and (A-). 17) Compounds represented by Formula (A-19), Formula (A-20), Formula (B-3), Formula (B-5), Formula (C-2), and Formula (C-3) At least one selected from the group of
    The liquid crystal according to claim 5, wherein the compound represented by the formula (D) is at least one selected from the group of compounds represented by the formula (D-2) and the formula (D-3). Alignment agent.
  7.  前記ポリマーを合成するのに用いられる原料として、さらに下記式(E)で表される化合物から選ばれる少なくとも1つを含む、請求項1~6のいずれか1項に記載の液晶配向剤;
    Figure JPOXMLDOC01-appb-C000013

     前記式(E)において、Wは炭素数1~6のアルキレン、1,3-フェニレン、または1,4-フェニレンであり;そして、
     Wは独立して、単結合、-NHCO-、または-CONH-である。
    The liquid crystal aligning agent according to any one of claims 1 to 6, further comprising at least one selected from a compound represented by the following formula (E) as a raw material used to synthesize the polymer:
    Figure JPOXMLDOC01-appb-C000013

    In the formula (E), W 4 is alkylene having 1 to 6 carbon atoms, 1,3-phenylene or 1,4-phenylene;
    W 5 is independently a single bond, -NHCO-, or -CONH-.
  8.  前記式(E)で表される化合物が、下記式(E-1)~式(E-8)で表される化合物から選ばれる少なくとも1つである、請求項7に記載の液晶配向剤;
    Figure JPOXMLDOC01-appb-C000014

     式(E-5)および式(E-8)において、pは、それぞれ独立して1~6の整数である。
    The liquid crystal aligning agent according to claim 7, wherein the compound represented by the formula (E) is at least one selected from compounds represented by the following formulas (E-1) to (E-8);
    Figure JPOXMLDOC01-appb-C000014

    In Formula (E-5) and Formula (E-8), p is each independently an integer of 1 to 6.
  9.  前記ポリマー(Q)の合成に用いられる原料として、前記式(E)で表される化合物から選ばれる少なくとも1つを含む、請求項7または8に記載の液晶配向剤。 The liquid crystal aligning agent of Claim 7 or 8 containing at least 1 chosen from the compound represented by the said Formula (E) as a raw material used for the synthesis | combination of the said polymer (Q).
  10.  前記式(1)~式(3)で表される化合物が、前記式(1-1)~式(1-4)、式(2-1)、式(2-2)、式(3-1)で表される化合物の群から選ばれる少なくとも1つであり;
     前記式(A)~式(C)で表される化合物が、前記式(A-12)、式(A-14)、式(A-15)、式(A-16)、式(A-17)、式(B-3)、式(C-2)、および式(C-3)で表される化合物の群から選ばれる少なくとも1つであり;
     前記式(D)で表される化合物が、前記式(D-2)、および式(D-3)で表される化合物の群から選ばれる少なくとも1つであり;
     前記式(E)で表される化合物が、前記式(E-5)~式(E-7)で表される化合物の群から選ばれる少なくとも1つである、請求項1~9のいずれか1項に記載の液晶配向剤。
    The compounds represented by the formulas (1) to (3) can be represented by the formulas (1-1) to (1-4), (2-1), (2-2), and (3-). At least one selected from the group of compounds represented by 1);
    The compounds represented by the formulas (A) to (C) are the compounds represented by the formulas (A-12), (A-14), (A-15), (A-16), and (A-). 17) at least one selected from the group of compounds represented by Formula (B-3), Formula (C-2), and Formula (C-3);
    The compound represented by the formula (D) is at least one selected from the group of compounds represented by the formula (D-2) and the formula (D-3);
    10. The compound according to any one of claims 1 to 9, wherein the compound represented by the formula (E) is at least one selected from the group of compounds represented by the formulas (E-5) to (E-7). The liquid crystal aligning agent of 1 item.
  11.  前記式(1)~式(3)で表される化合物が、前記式(1-1)および式(1-4)から選ばれる少なくとも1つであり;
     前記式(A)~式(C)で表される化合物が、前記式(A-15)および(B-3)から選ばれる少なくとも1つであり;
     前記式(D)で表される化合物が、前記式(D-2)で表される化合物であり;
     前記式(E)で表される化合物が、前記式(E-5)で表される化合物である、請求項10に記載の液晶配向剤。
    The compounds represented by the formulas (1) to (3) are at least one selected from the formulas (1-1) and (1-4);
    The compounds represented by the above formulas (A) to (C) are at least one selected from the above formulas (A-15) and (B-3);
    The compound represented by the formula (D) is a compound represented by the formula (D-2);
    The liquid crystal aligning agent of Claim 10 whose compound represented by said Formula (E) is a compound represented by said Formula (E-5).
  12.  前記ポリマー(P)において、前記式(1)~式(3)で表される化合物の割合が、使用するジアミン全量に対し、70モル%以上であって;
     前記ポリマー(Q)において、前記式(A)~式(C)で表される化合物の割合が、使用するジアミン全量に対し、10~50モル%である、請求項4~11のいずれか1項に記載の液晶配向剤。
    In the polymer (P), the ratio of the compounds represented by the formulas (1) to (3) is 70 mol% or more with respect to the total amount of diamine used;
    12. The polymer (Q) according to any one of claims 4 to 11, wherein the ratio of the compounds represented by the formulas (A) to (C) is 10 to 50 mol% with respect to the total amount of diamine used. The liquid crystal aligning agent as described in a term.
  13.  前記ポリマー(P)において、前記式(1)~式(3)で表される化合物の割合が、使用するジアミン全量に対し、70モル%以上であって;
     前記ポリマー(Q)において、前記式(D)で表される化合物の割合が、使用するテトラカルボン酸二無水物全量に対し、20~50モル%である、請求項4~11のいずれか1項に記載の液晶配向剤。
    In the polymer (P), the ratio of the compounds represented by the formulas (1) to (3) is 70 mol% or more with respect to the total amount of diamine used;
    12. The polymer (Q) according to any one of claims 4 to 11, wherein the ratio of the compound represented by the formula (D) is 20 to 50 mol% with respect to the total amount of tetracarboxylic acid dianhydride used. The liquid crystal aligning agent as described in a term.
  14.  前記ポリマー(P)において、前記式(1)~式(3)で表される化合物の割合が、使用するジアミン全量に対し、90モル%以上であって;
     前記ポリマー(Q)において、前記式(A)~式(C)で表される化合物の割合が、使用するジアミン全量に対し、30~50モル%である、請求項12に記載の液晶配向剤。
    In the polymer (P), the ratio of the compounds represented by the formulas (1) to (3) is 90 mol% or more with respect to the total amount of diamine used;
    The liquid crystal aligning agent according to claim 12, wherein in the polymer (Q), the ratio of the compounds represented by the formulas (A) to (C) is 30 to 50 mol% with respect to the total amount of diamine used. .
  15.  前記ポリマー(P)において、前記式(1)~式(3)で表される化合物の割合が、使用するジアミン全量に対し、90モル%以上である、請求項13に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 13, wherein in the polymer (P), the ratio of the compounds represented by the formulas (1) to (3) is 90% by mole or more based on the total amount of the diamine to be used.
  16.  前記ポリマー(Q)において、前記式(E)で表される化合物の割合が、使用するジアミン全量に対し、50~70モル%である、請求項7~15のいずれか1項に記載の液晶配向剤。 The liquid crystal according to any one of claims 7 to 15, wherein the proportion of the compound represented by the formula (E) in the polymer (Q) is 50 to 70 mol% with respect to the total amount of diamine used. Alignment agent.
  17.  アルケニル置換ナジイミド化合物、ラジカル重合性不飽和二重結合を有する化合物、オキサジン化合物、オキサゾリン化合物、およびエポキシ化合物からなる化合物の群から選ばれる少なくとも1つをさらに含有する、請求項1~16のいずれか1項に記載の光配向用液晶配向剤。 The compound according to any one of claims 1 to 16, further comprising at least one selected from the group consisting of an alkenyl substituted nadiimide compound, a compound having a radically polymerizable unsaturated double bond, an oxazine compound, an oxazoline compound, and an epoxy compound. The liquid crystal aligning agent for photo alignment as described in 1 item.
  18.  横電界型液晶表示素子の製造に用いられる、請求項1~17のいずれか1項に記載の液晶配向剤。 The liquid crystal aligning agent according to any one of claims 1 to 17, which is used for the production of an in-plane switching liquid crystal display device.
  19.  前記式(1-4)で示される、ジアミン。 A diamine represented by the above formula (1-4).
  20.  テトラカルボン酸二無水物およびジアミンを含む原料からの反応生成物であるポリマーの少なくとも1つを含有する液晶配向剤であって、
     前記ジアミンが、請求項19に記載の前記式(1-4)で示されるジアミンのみからなる、液晶配向剤。
    It is a liquid crystal aligning agent containing at least one of a polymer which is a reaction product from a raw material containing tetracarboxylic acid dianhydride and a diamine,
    The liquid crystal aligning agent which consists of only the said diamine shown by the said Formula (1-4) of Claim 19.
  21.  請求項1~20のいずれか1項に記載の液晶配向剤によって形成される、液晶配向膜。 A liquid crystal alignment film formed of the liquid crystal alignment agent according to any one of claims 1 to 20.
  22.  請求項21に記載の液晶配向膜を有する、液晶表示素子。 The liquid crystal display element which has a liquid crystal aligning film of Claim 21.
  23.  請求項21に記載の液晶配向膜を有する、横電界型液晶表示素子。
     
    A lateral electric field liquid crystal display device comprising the liquid crystal alignment film according to claim 21.
PCT/JP2018/030083 2017-08-10 2018-08-10 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using liquid crystal alignment film WO2019031604A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207003260A KR20200039671A (en) 2017-08-10 2018-08-10 Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display device using same
CN201880050816.1A CN110998424B (en) 2017-08-10 2018-08-10 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same
JP2019535727A JP7255482B2 (en) 2017-08-10 2018-08-10 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017155628 2017-08-10
JP2017-155628 2017-08-10

Publications (1)

Publication Number Publication Date
WO2019031604A1 true WO2019031604A1 (en) 2019-02-14

Family

ID=65272303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030083 WO2019031604A1 (en) 2017-08-10 2018-08-10 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using liquid crystal alignment film

Country Status (5)

Country Link
JP (1) JP7255482B2 (en)
KR (1) KR20200039671A (en)
CN (1) CN110998424B (en)
TW (1) TWI788401B (en)
WO (1) WO2019031604A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014205819A (en) * 2013-03-21 2014-10-30 Jnc株式会社 Liquid crystal alignment agent, liquid crystal display element, and tetracarboxylic acid dianhydride
JP2016029447A (en) * 2014-07-15 2016-03-03 Jnc株式会社 Diamine, polyamic acid or derivative thereof, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
JP2017088801A (en) * 2015-11-16 2017-05-25 Jnc株式会社 Diamine, polyamic acid or derivative of the same, liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998027454A1 (en) 1996-12-18 1998-06-25 Hitachi, Ltd. Transverse electric field system liquid crystal display device suitable for improving aperture ratio
JP2012155311A (en) * 2011-01-05 2012-08-16 Jnc Corp Liquid crystal aligning agent for forming photo-aligning liquid crystal alignment layer, liquid crystal alignment layer and liquid crystal display element using the same
JP6213281B2 (en) * 2013-03-19 2017-10-18 Jnc株式会社 Photosensitive diamine, liquid crystal aligning agent, and liquid crystal display element
JP6558245B2 (en) 2013-10-01 2019-08-14 日産化学株式会社 LIQUID CRYSTAL ORIENTING LIQUID CRYSTAL Alignment Agent, LIQUID CRYSTAL ALIGNMENT FILM, AND LIQUID CRYSTAL DISPLAY DEVICE USING THE SAME
WO2015080185A1 (en) 2013-11-28 2015-06-04 日産化学工業株式会社 Liquid crystal aligning agent and liquid crystal display element using same
JP6421545B2 (en) * 2014-10-21 2018-11-14 Jnc株式会社 Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display element containing polyamic acid or derivative thereof
CN105694912B (en) * 2014-12-11 2019-11-19 捷恩智株式会社 Light orientation aligning agent for liquid crystal, liquid crystal orientation film and the liquid crystal display element using it
JP6627595B2 (en) * 2015-06-11 2020-01-08 Jnc株式会社 Liquid crystal alignment agent for forming liquid crystal alignment film for photo alignment, liquid crystal alignment film, and liquid crystal display device using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014205819A (en) * 2013-03-21 2014-10-30 Jnc株式会社 Liquid crystal alignment agent, liquid crystal display element, and tetracarboxylic acid dianhydride
JP2016029447A (en) * 2014-07-15 2016-03-03 Jnc株式会社 Diamine, polyamic acid or derivative thereof, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
JP2017088801A (en) * 2015-11-16 2017-05-25 Jnc株式会社 Diamine, polyamic acid or derivative of the same, liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Also Published As

Publication number Publication date
JP7255482B2 (en) 2023-04-11
TW201920365A (en) 2019-06-01
JPWO2019031604A1 (en) 2020-09-03
CN110998424B (en) 2023-08-15
CN110998424A (en) 2020-04-10
TWI788401B (en) 2023-01-01
KR20200039671A (en) 2020-04-16

Similar Documents

Publication Publication Date Title
TWI481587B (en) Diamine
KR101905897B1 (en) Diamines, liquid crystal aligning agents, liquid crystal alignment layers and liquid crystal display devices
JP6911885B2 (en) Manufacturing method of liquid crystal alignment film and manufacturing method of liquid crystal element
JP5481771B2 (en) Photo-alignment film and liquid crystal display element
JP2007183564A (en) Liquid crystal alignment agent
JP7180196B2 (en) Liquid crystal aligning agent for forming a photo-alignment liquid crystal alignment film, liquid crystal alignment film, liquid crystal display element using the same, polymer, and diamine
TW201602694A (en) Liquid crystal aligning agent containing urea compound having alkoxysilyl group
JP7139956B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element, tetracarboxylic dianhydride, polyamic acid and its derivatives
JP2017181965A (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP7102536B2 (en) Liquid crystal alignment agent composition, manufacturing method of liquid crystal alignment film using this, liquid crystal alignment film and liquid crystal display element using this
JP2013246405A (en) Liquid crystal alignment agent
JP2019211777A (en) Liquid crystal aligning agent for photo-alignment, liquid crystal alignment film and liquid crystal display element using the same
JP7255482B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using the same
JP2018180227A (en) Liquid crystal aligning agent for photo-alignment to be used for photo-aligning method, and photo-alignment film and liquid crystal display element using the same
JP2019049636A (en) Liquid crystal photo-aligning agent, liquid crystal alignment film, and liquid crystal display device using the same
JP2019014837A (en) Tetracarboxylic acid dianhydride, liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element prepared therewith
JP6492982B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP7102991B2 (en) A liquid crystal alignment film and its manufacturing method, and a liquid crystal display element using the liquid crystal alignment film.
JP7494537B2 (en) Liquid crystal alignment agent for photoalignment, liquid crystal alignment film, and liquid crystal display element
JP7120032B2 (en) Liquid crystal aligning agent for photo-alignment, liquid crystal alignment film, and liquid crystal display element
JP7484622B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element using the same, and diamine and polymer
TW202101093A (en) Liquid crystal alignment agent for optical alignment, liquid crystal alignment film and liquid crystal display element having high adhesion to a sealant and capable of improving the residual image characteristics and VHR reliability of a liquid crystal display element
JP2023032586A (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display device using the same
JP2018106096A (en) Liquid crystal alignment agent for optical alignment used for optical alignment method, optical alignment film using the same, and liquid crystal display
JP5673869B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18844291

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019535727

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18844291

Country of ref document: EP

Kind code of ref document: A1