WO2019031324A1 - Electrically-conductive sheet and method for manufacturing said electrically conductive-sheet - Google Patents
Electrically-conductive sheet and method for manufacturing said electrically conductive-sheet Download PDFInfo
- Publication number
- WO2019031324A1 WO2019031324A1 PCT/JP2018/028772 JP2018028772W WO2019031324A1 WO 2019031324 A1 WO2019031324 A1 WO 2019031324A1 JP 2018028772 W JP2018028772 W JP 2018028772W WO 2019031324 A1 WO2019031324 A1 WO 2019031324A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode layer
- conductive sheet
- metal
- underlayer
- substrate
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0445—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
- B32B15/082—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0446—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/02—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/14—Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
Definitions
- the present invention relates to a conductive sheet for forming a touch panel or the like. More specifically, the present invention relates to a conductive sheet including a first and a second two types of metal wires on a substrate, and an electrode layer having those metal wires formed in a two-layer structure on one side of the substrate.
- Touch panels have conventionally been used as input devices for various electronic devices such as PCs, tablets, and smartphones.
- the touch panel is configured of a conductive sheet in which a wire for detecting touch input is formed on a transparent substrate.
- transparent electrodes such as ITO have been applied as wiring materials until now, but in order to cope with the increase in wiring length due to the recent increase in panel size, the application of metal wiring such as silver or copper with low electrical resistance Is being considered.
- metal is not originally a transparent material, it exhibits transparency equivalent to that of a transparent electrode by forming a micron-order thin line exceeding human visible range.
- Patent Document 1 Conventionally, photolithography has been known as a method of forming metal wiring on various substrates, but the applicant has proposed a method of manufacturing metal wiring using a metal ink having a predetermined configuration including metal particles.
- Patent Document 1 In this method of forming a metal wiring, after a liquid repellent fluororesin is applied to a substrate, a functional group (hydrophilic group) is formed at a portion where the metal wiring is to be formed. Then, a metal ink is applied to the substrate to bond metal particles in the ink to a functional group, and the metal particles are sintered to form a metal wiring close to bulk.
- Patent Document 2 describes a touch panel including a conductive sheet in which a layer including a first electrode is formed on one surface of a substrate and a layer including a second electrode is formed on the other surface of the substrate.
- a conductive sheet in which wiring is formed on the front surface and the back surface of a substrate may be referred to as “double-sided structure”.
- metal wiring such as silver
- a wiring pattern may be identified by reflected light depending on the angle at which even a very thin wire is viewed.
- Patent Document 3 describes that by treating a silver wiring with tellurium hydrochloric acid solution, a blackened layer of a certain thickness is formed on the wiring surface, and it becomes possible to cope with the problem of reflection of metal wiring. ing.
- the conductive sheet having a double-sided structure can not completely carry out the above-described anti-reflection treatment on the metal wiring.
- the double-sided conductive sheet to which the transparent substrate is applied the user can observe the outer surface of the wiring on one side of the substrate and the interface between the other surface of the substrate and the wiring.
- reflection prevention of the wiring outer surface of one side is possible with the conductive sheet of a double-sided structure, reflection of the metal wiring of the other side can not be prevented.
- the above-described anti-reflection treatment is a treatment that acts on the outer surface of the metal wiring, and does not act on the interface between the formed wiring and the substrate. Therefore, only incomplete processing can be performed on the double-sided conductive sheet.
- the present invention has been made based on the background as described above, and the conductive sheet in which the first and second two metal wiring lines are formed on the substrate is affected by the metal wiring even if it is bent or deformed. Disclose what is unlikely to occur.
- a metal wiring which can be effectively processed is provided. Then, a method of manufacturing such a conductive sheet, which can form a conductive sheet efficiently while forming a high-definition metal wiring, will be clarified.
- the problem with the above-described conventional double-sided conductive sheet is that the wiring is formed on each side of the substrate.
- the substrate is the thickest member that defines the thickness of the entire sheet. Therefore, in order to eliminate the difference in the deformation rate (curvature) received by the wiring at the time of bending deformation, it is conceivable to form both wirings on one side of the substrate to form a two-layer structure.
- the conductive sheet of such a laminated structure does not solve the problem of wiring damage in bending deformation. That is, when the upper layer substrate is viewed as a reference, the arrangement relationship of each metal wiring is the same as that of the double-sided structure. In addition, since such a laminated structure uses two substrates, the thickness of the entire conductive sheet is increased. Furthermore, there is a concern that the cost increases due to the production of two conductive sheets.
- Patent Document 1 a metal wiring (Patent Document 1) to which a predetermined fluororesin and metal ink are applied.
- the present invention was conceived as a preferable conductive sheet can be obtained by laminating a plurality of electrode layers including the metal wiring formed by this method on one side of the substrate.
- the present invention is a conductive sheet having a substrate and an electrode layer formed on one side of the substrate, the electrode layer including a first electrode layer and a second electrode layer, A first electrode layer and a second electrode layer are laminated in this order on a substrate, and the first electrode layer is a first underlayer made of a fluorocarbon resin, and the surface of the first underlayer. And the second electrode layer is formed of a second base layer made of a fluorocarbon resin and a second metal layer formed on the surface of the second base layer. It is a conductive sheet.
- the configuration of the conductive sheet according to the present invention will be described in detail.
- the present invention comprises a substrate and an electrode layer formed on one side of the substrate.
- the electrode layer is formed by laminating the first electrode layer and the second electrode layer.
- the minimum necessary structure of the conductive sheet of the present invention is as shown in FIG. Each component will be described below.
- the structure of the conductive sheet according to the present invention may sometimes be referred to as "one-sided two-layer structure" as needed.
- the substrate applied to the conductive sheet of the single-sided two-layer structure of the present invention is not particularly limited, and a substrate made of metal or ceramic can be applied, and further, a resin or plastic substrate can be applied is there. It is also possible to use glass without weight limitations. However, the substrate is preferably made of a transparent material. This is because the present invention is suitably used for display devices such as touch panels and displays.
- Electrode Layer In the conductive sheet according to the present invention, two electrode layers are formed on one side of the substrate described above. As a configuration of these electrode layers, the first electrode layer and the second electrode layer are stacked in this order on the substrate. Hereinafter, the configuration of each electrode layer will be described.
- the first electrode layer is formed on the surface of the substrate, and comprises a first underlayer made of a fluorocarbon resin and a first metal wiring formed on the surface thereof. .
- the first under layer plays a major role in producing the conductive sheet of the present invention, as described in detail below.
- a functional group is formed by a predetermined process with a desired wiring pattern, and metal particles, which are precursors of metal wiring, are fixed thereto. And the fixed metal particle turns into metal wiring.
- the fluorine resin forming the underlayer is required to have liquid repellency to prevent the metal particles from being fixed to a portion other than the wiring pattern, and reactivity to generate a functional group by a predetermined treatment. . Further, in view of application to a touch panel or the like, it is preferable to have transparency.
- the fluororesin to be the underlayer is made of a resin material containing carbon (C) and fluorine (F) in its structural formula.
- a polymer having at least one repeating unit based on a fluorine-containing monomer and having a ratio (F / C) of the number of fluorine atoms to the number of carbon atoms of 1.0 or more is preferable.
- the ratio (F / C) of the number of fluorine atoms to the number of carbon atoms of 1.0 or more is required when forming metal wiring in the underlayer.
- the value of F / C is more preferably 1.5 or more.
- the fluorine resin in the present invention preferably contains at least one repeating unit based on the above-mentioned fluorine-containing monomer. If this condition is satisfied, the fluorine resin of the present invention may contain a repeating unit based on a fluorine-containing monomer having an F / C of less than 1.0, and further, a fluorine-free monomer containing no fluorine atom. May contain a repeating unit based on Moreover, the fluorine resin may contain hetero atoms such as oxygen, nitrogen and chlorine in part of the repeating unit based on the fluorine-containing monomer.
- PTFE polytetrafluoroethylene
- a suitable fluorine resin in consideration of other characteristics. For example, in consideration of solubility in a solvent when applied to a substrate, it is preferable to use a perfluoro resin having a cyclic structure in its main chain. When the fluorine resin is required to be transparent, it is more preferable to use an amorphous perfluoro resin.
- a fluorine resin containing at least one oxygen atom (O) in the repeating unit based on the fluorine-containing monomer constituting the polymer is particularly preferable as the fluorine resin to be the underlayer.
- a fluorine resin is particularly preferable because a functional group can be easily and suitably formed when forming a metal wiring on the surface of the underlayer.
- the upper limit of the number of oxygen atoms in this repeating unit is preferably three.
- perfluorobutenyl vinyl ether polymer (CYTOP (registered trademark): Asahi Glass Co., Ltd.), tetrafluoroethylene-perfluorodioxole copolymer (TFE-PDD) , Teflon (registered trademark) AF: Mitsui-Dupont Fluorochemical Co., Ltd., tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), perfluoroalkoxy polymer (Algoflon (registered trademark): Solvay Japan Ltd.) Etc.
- CYTOP registered trademark
- TFE-PDD tetrafluoroethylene-perfluorodioxole copolymer
- Teflon (registered trademark) AF Mitsui-Dupont Fluorochemical Co., Ltd., tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), per
- the thickness of the first underlayer which is made of the above-described fluororesin, is preferably 0.01 ⁇ m to 5 ⁇ m. If it is less than 0.01 ⁇ m, it is difficult to exhibit the liquid-ejecting property. In order to maintain the transparency of the underlayer, the upper limit is preferably about 5 ⁇ m.
- the thickness of the first underlayer is the thickness from the interface between the underlayer and the substrate to the outermost surface of the underlayer, and it is preferable to adopt an average value.
- the presence of the underlying layer made of the fluorocarbon resin described above can be confirmed by various analysis means.
- analysis means SIMS (secondary ion mass spectrometry), XPS (X-ray photoelectron spectroscopy), EPMA (electron probe micro analysis), EDX (energy dispersive X-ray analysis), etc. can be applied.
- elemental analysis of carbon (C) and fluorine (F) is performed at an arbitrary location on the surface of the underlayer or the underlayer in the cross section of the conductive sheet by SIMS to measure the detection intensity of each element and measure the intensity ratio ( F / C) can be calculated to estimate the configuration of the fluorine resin.
- the ratio (F / C) of the detected intensity of fluorine to the detected intensity of carbon is 1.0 or more
- the above-mentioned suitable fluororesin ratio of the number of fluorine atoms to the number of carbon atoms (F / C) It can be determined that the polymer has at least one repeating unit of which 1.0) or more.
- the first metal wiring is formed on the underlying layer made of the fluorine resin described above to form a first electrode layer.
- the first metal wiring is preferably made of at least one of silver, gold, platinum, palladium, copper and nickel as a constituent material thereof. These metals are excellent in conductivity and useful as wiring materials.
- silver is preferably applied from the viewpoint of the conductive wire.
- the first metal wiring may be an alloy in which each metal is solid-solved or a mixture of each metal, in addition to a metal made of only one metal among the above-described metals.
- the metal wiring may have a single layer structure, but may have a multilayer structure. When it is set as a multilayer structure, you may form with a same metal, and you may form with a different metal.
- the first metal wiring may be provided with another metal or compound on its surface to prevent reflection.
- the metal or compound for preventing reflection may form a layer, or may be dispersed in the form of particles.
- a monomolecular film of a thiol compound, a fatty acid or the like may be formed.
- the dimensions (thickness, line width) of the first metal wiring are not limited. Also, the shape of the wiring pattern is not particularly limited. In addition, in consideration of applications such as a touch panel and the like, fine wires in the micron order exceeding the visible region are preferable, and therefore, the width of the metal wiring is preferably 0.5 ⁇ m or more and 8.0 ⁇ m or less. Further, the thickness of the metal wiring is preferably 0.1 ⁇ m or more and 1.0 ⁇ m or less. When forming a multilayer metal wiring, the total thickness is preferably in the above range. The width and thickness of the metal wiring are preferably defined by an average value.
- the metal wiring in this invention what was formed by the formation method (patent document 1) of the metal wiring by the above-mentioned applicant of this application mentioned above is preferable.
- the metal particles are sintered to form the metal wiring.
- the metal wiring is made of a dense bulky thin film free of voids due to sintering while using metal particles as a precursor. At this time, the purity of the metal (silver and copper) constituting the metal wiring is 99% by mass or more.
- (B-2) Second Electrode Layer A feature of the conductive sheet according to the present invention is that a second electrode layer is laminated on the first electrode layer to form a single-sided two-layer structure. .
- the second electrode layer has the same configuration as the second electrode layer, and includes a second underlayer made of fluorocarbon resin and a second metal wire.
- (B-2-1) Second Underlayer The configuration of the fluorine resin to be the second under layer of the second electrode layer is basically the same as that of the first under layer. That is, a repeating unit containing carbon (C) and fluorine (F) and based on a fluorine-containing monomer, wherein the ratio of the number of fluorine atoms to the number of carbon atoms (F / C) is 1.0 or more Polymers having at least one unit are preferred. Moreover, what contains at least 1 oxygen atom (O) in the repeating unit based on this fluorine-containing monomer is preferable. Preferred specific examples of the fluorine resin applied to the second underlayer are also the same as the first underlayer.
- the fluorocarbon resin of the second underlayer may be the same as the fluorocarbon resin of the first underlayer. Moreover, as long as it is a fluorine resin having the above-described preferable configuration, the fluorine resin of the second underlayer may be a fluorine resin different from the first underlayer.
- the thickness of the second underlayer is an important matter in the context of the first underlayer.
- the second underlayer may have the same thickness as the first underlayer, but is preferably 0.04 ⁇ m or more and 1 ⁇ m or less. That is, the preferred range of the thickness of the second underlayer is narrower than the preferred range of the thickness of the underlayer of the first electrode layer.
- the lower limit (0.04 ⁇ m) of the thickness of the second underlayer is preferably thicker than the lower limit (0.01 ⁇ m) of the thickness of the first underlayer. This is because, if the second underlayer is too thin, the metal wiring (second metal wiring) formed thereon may not have the designed line width. Specifically, in forming the second metal wiring, the exposure process is performed on the surface of the second underlayer to form a functional group. At this time, if the second underlayer is too thin, adhesion with a photomask for exposure processing may be insufficient, and an exposure pattern with a desired line width may not be formed. As a result, the line width of the second wiring may be increased in whole or in part.
- the lower limit value of the second underlying layer thickness is set.
- the upper limit (1 ⁇ m) of the thickness of the second underlayer is preferably thinner than the upper limit (5 ⁇ m) of the thickness of the first underlayer. This is because when the second underlayer is excessively thick, the difference in the deformation rate (curvature) of the metal wiring at the time of deformation of the conductive sheet becomes large, and it becomes difficult to secure the bending strength of the conductive sheet. In addition, when the second underlayer is excessively thick, the transparency may be impaired.
- the first and second electrode layers are stacked, but it is preferable to set conditions in consideration of the influence of the second underlayer, instead of simply stacking the first and second electrode layers.
- the thickness of the second underlayer means the interface between the second underlayer and the first metal wiring, or the interface between the second underlayer and the intermediate layer when the intermediate layer described later is applied.
- the starting point is the distance from this starting point to the outermost surface of the second underlayer.
- the second metal wiring is preferably made of at least one of silver, gold, platinum, palladium, copper and nickel.
- the second metal wiring may be made of only one of these metals, or may be an alloy / mixture.
- a single layer structure or a multilayer structure can be employed.
- other metals and compounds may be provided on the metal wiring.
- the size and shape of the second metal wiring are not limited. Therefore, the width of the second metal wiring is preferably 0.5 ⁇ m or more and 8.0 ⁇ m or less.
- the thickness of the second metal wiring is preferably 0.1 ⁇ m or more and 1.0 ⁇ m or less.
- the second metal wire may be made of the same metal as the first metal wire, but a different metal may be applied.
- copper may be applied to the second metal interconnection while silver is applied to the first metal interconnection.
- the pattern shape of the metal wiring is not restricted either, it is general that the first metal wiring and the second metal wiring intersect to form a mesh pattern.
- the second electrode layer in relation to the first electrode layer it is preferable to set the distance between them to 1.2 ⁇ m or more and 4.5 ⁇ m or less.
- the interlayer distance is the distance between the bottom of the first metal wire and the bottom of the second metal wire.
- a location where the capacitance of the conductive sheet becomes excessive locally occurs if the interlayer distance is too small. This is because a difference in sensor sensitivity may occur internally, which may cause a malfunction.
- layers made of fluorocarbon resin are formed as the first and second underlayers.
- the lower limit value of the interlayer distance was set as described above in order to secure the in-plane stability of the capacitance in consideration of the influence of each of the configurations.
- the upper limit value of the interlayer distance is set as described above. If the interlayer distance is too large, the second metal wiring may be broken due to bending deformation. Moreover, it is because it violates the shortening of the conductive sheet.
- the electrode layer of the present invention basically has two layers of the first electrode layer and the second electrode layer. However, in the present invention, in addition to these, the presence of another configuration is optionally permitted. Specifically, an intermediate layer between the first electrode layer and the second electrode layer, and a coating layer on the second electrode layer can be mentioned.
- the conductive sheet of the present invention can include at least one intermediate layer made of a dielectric or an insulator between the first electrode layer and the second electrode layer.
- the intermediate layer is formed on the first metal wiring of the first electrode layer for the purpose of preventing migration, preventing moisture, preventing oxidation, preventing peeling, and the like. Further, application of the intermediate layer may be applied to secure smoothness when forming the second electrode layer (second base layer) simultaneously with the various functions described above.
- the intermediate layer on the first electrode layer the surface on which the second underlayer is formed can be made flat, and the underlayer can be formed uniformly.
- a fluorine resin to be the second underlayer may be thickly coated on the first electrode layer.
- the second underlayer may be excessively thick.
- many fluorocarbon resins suitable as the underlayer in the present invention are expensive.
- the intermediate layer also has an effect of adjusting the manufacturing cost of the conductive sheet while securing the flatness of the second underlayer.
- resin such as a fluoro resin, an acrylic resin, an epoxy resin, an alkyd resin, a vinyl resin, a phenol resin, a silicon resin
- resin such as a fluoro resin, an acrylic resin, an epoxy resin, an alkyd resin, a vinyl resin, a phenol resin, a silicon resin
- this migration inhibitor include fluororesins of trade names such as DURASURF (manufactured by Herbes Co., Ltd.), KP-911 (manufactured by Shin-Etsu Chemical Co., Ltd.), and METAX (manufactured by Kanto Kasei Co., Ltd.).
- migration inhibitors containing sulfur compounds such as methanethiol, ethanethiol, thiophenol, cysteine, glutathione, decanethiol, octadecanethiol, triazinethiol and the like.
- the intermediate layer may have various functions as described above, and may use one type of material alone to perform a plurality of functions.
- the intermediate layer may be formed of a single layer, but a plurality of types may be combined and applied.
- the thickness of the intermediate layer is preferably 1 ⁇ m to 3 ⁇ m in total. When the intermediate layer is less than 1 ⁇ m, in particular, when the conductive sheet is bent and deformed, the first metal wiring and the second metal wiring may be connected. In addition, the thickness of the intermediate layer affects the interlayer distance (the distance between the bottom surface of the first metal wiring and the bottom surface of the second metal wiring). Therefore, considering this point, the thickness of the intermediate layer is 1 ⁇ m It is preferable to set it as the above.
- the thickness of the intermediate layer is increased, there is a concern that the second metal wiring may be broken at the time of bending deformation.
- the intermediate layer may need to be baked after application depending on the material to be applied.
- the thickness of the intermediate layer is excessive, the amount of contraction at the time of firing becomes large, and the first electrode layer therebelow may be deformed to cause disconnection. From this, it is preferable to set the thickness of the intermediate layer to 3 ⁇ m as the upper limit.
- the thickness of the intermediate layer is the distance between the interface between the intermediate layer and the first metal wiring and the outermost surface of the intermediate layer. It is preferable to adopt an average value of a plurality of places as this thickness.
- the electrode layer of the conductive sheet according to the present invention can include at least one coating layer on the surface of the second electrode layer, in addition to the above-described intermediate layer.
- This coating layer also has the same function as the intermediate layer, and is formed for the purpose of preventing migration, preventing moisture, preventing oxidation, preventing peeling, and the like for the second metal wiring of the second electrode layer. Therefore, the same material as the intermediate layer can be applied.
- a relatively hard top coat may be applied for scratch prevention, adhesion with other films, and the like.
- the material of the top coat may, for example, be a fluorine resin, an acrylic resin, an epoxy resin, an alkyd resin, a vinyl resin, a phenol resin or a silicon resin.
- the coating layer may also be formed as a single layer, or a plurality of types may be combined and applied.
- the thickness of the coating layer can be adjusted depending on the application and the material used, but it is preferable that the total thickness is 1 ⁇ m or more and 3 ⁇ m or less. For example, it is preferable to set it as the said range for wound prevention of a 2nd electrode layer.
- the thickness of the coating layer is the distance between the interface between the coating layer and the second metal wiring and the outermost surface of the coating layer. It is preferable to adopt an average value of a plurality of places as this thickness.
- FIG. 1 An example of the conductive sheet according to the present invention including the intermediate layer and the coating layer described above is shown in FIG. In this figure, the meaning of the thickness of the intermediate layer and the coating layer is also added to help understand them.
- the conductive sheet according to the present invention described above comprises the base material and the electrode layer (first and second underlayers, metal wiring, intermediate layer, coating layer) It is preferable to have transparency by appropriately adjusting the material and thickness of each component.
- the total light transmittance based on JIS K7361-1 when incident from the second electrode layer side is 85% or more. It is preferable that this transmittance
- a particularly preferred mode of use of the conductive sheet according to the present invention described above is a component of a touch panel.
- a touch panel can be formed by bonding a cover glass or a protective film to the conductive sheet according to the present invention, bonding a connection connector (FPC connector or the like), and further connecting to an external controller IC.
- FPC connector connection connector
- An example of the process of comprising a touch panel from the electroconductive sheet which concerns on FIG. 4 at this invention is demonstrated.
- the touch panel including the conductive sheet of the present invention is excellent in the resistance to the damage of the electrode due to the bending deformation, and can be made thin by optimizing the thickness of each layer.
- the conductive sheet according to the present invention is formed by sequentially applying the first and second electrode layers on one side of the substrate by applying the above-described method of forming a metal wiring (Patent Document 1) by the applicant of the present invention.
- the method for producing a conductive sheet according to the present invention includes the steps of forming a first electrode layer and a second electrode layer in this order on one side of a substrate, and forming the first and second electrode layers. This is a method of producing a conductive sheet by a method including the following steps (a) to (c).
- a step of applying a fluorine resin to a substrate to form an underlayer (B) forming a functional group at a portion of the underlying layer where the metal wiring is formed. (C) A metal ink comprising a protective agent A comprising an amine compound and metal fine particles protected by a protective agent B comprising a fatty acid dispersed in a solvent is applied to the surface of the substrate, and the metal fine particles are applied to the underlayer. The process of forming metal wiring by fixing.
- each electrode layer first, a fluorine resin is applied to the substrate to form an underlayer (step (a)).
- the materials and the like of the substrate and the fluorine resin are as described above.
- coating of a fluorine resin it can respond by apply
- baking is performed to form an underlayer made of a fluorocarbon resin. It does not specifically limit as a coating method of a fluorine resin, such as dipping, a spin coat, a roll coater. After the fluorine resin is applied, appropriate post-treatments (drying and baking) are performed to form an underlayer.
- the above-described application of the fluorine resin is performed at least in the region where the metal wiring is to be formed, and does not necessarily have to be applied over the entire surface of the substrate.
- This functional group is a functional group formed by cleaving the covalent bond of the fluorocarbon resin. Specifically, a carboxy group, a hydroxy group and a carbonyl group are formed.
- a treatment method of functional group formation to the fluorocarbon resin surface it is by ultraviolet irradiation, corona discharge treatment, plasma discharge treatment, excimer laser irradiation. In these treatments, a photochemical reaction is caused on the surface of the fluorine resin to break covalent bonds, and it is necessary that the treatment is appropriate energy application treatment.
- the amount of energy applied to the pattern forming portion is preferably about 1 mJ / cm 2 or more and 4000 mJ / cm 2 or less.
- UV irradiation with a wavelength of 10 nm or more and 380 nm or less is preferable, and particularly preferably, UV light with a wavelength of 100 nm or more and 200 nm or less is irradiated.
- an exposure process using a photomask is generally performed.
- a photomask reticle
- the exposure method either a non-contact exposure method (proximity exposure, projection exposure) or a contact exposure method (contact exposure) can be applied.
- proximity exposure the distance between the mask and the surface of the fluorine resin is preferably 10 ⁇ m or less, more preferably 3 ⁇ m or less.
- the substrate is brought into contact with the metal ink to form the metal wiring ((c) Process).
- the metal ink is a metal particle dispersion liquid in which a metal particle in a bonding state with a predetermined protective agent is dispersed in a solvent.
- the configuration of a suitable metal ink is as follows.
- the dispersed metal particles are made of at least one of silver, gold, platinum, palladium and copper as described above.
- the metal particles preferably have an average particle diameter of 0.005 ⁇ m (5 nm) or more and 0.1 ⁇ m (100 nm or less).
- the particle diameter is preferably 0.03 ⁇ m (30 nm) or less.
- excessively fine metal particles are easily aggregated and inferior in handleability.
- the protective agent used in the metal ink is an additive for suppressing aggregation and coarsening of metal particles and stabilizing the dispersion state.
- the aggregation and coarsening of the metal particles not only cause the metal to precipitate during storage and use of the dispersion, but also must be avoided from affecting the sintering characteristics after bonding to the substrate.
- the protective agent also acts as a marker for fixing the metal by substituting the functional group on the surface of the underlayer made of a fluorocarbon resin on the substrate.
- the protective agent for the metal ink used in the present invention it is preferable to use two kinds of compounds having different basic structures in combination. Specifically, it is preferable to use two kinds of protecting agents, protecting agent A and protecting agent B, to apply an amine as the protecting agent A and a fatty acid as the protecting agent B.
- the amine compound which is the protective agent A preferably has a total carbon number of 4 or more and 12 or less. This is because the carbon number of the amine affects the stability of the metal particles and the sintering characteristics during pattern formation.
- the number of amino groups in the amine compound (mono) amine having one amino group or diamine having two amino groups can be applied.
- the number of hydrocarbon groups bonded to the amino group is preferably one or two, that is, a primary amine (RNH 2 ) or a secondary amine (R 2 NH) is preferable.
- RNH 2 primary amine
- R 2 NH secondary amine
- the thing of a primary amine or a secondary amine whose at least 1 or more amino group is primary is preferable.
- the hydrocarbon group bonded to the amino group may be a chain hydrocarbon having a linear structure or a branched structure, or may be a hydrocarbon group having a cyclic structure.
- oxygen may be contained in part.
- amine compound applied as a protective agent in the present invention include butylamine (C4), 1,4-diaminobutane (C4), 3-methoxypropylamine (C4), pentylamine (C4) Carbon number 5), 2,2-dimethylpropylamine (carbon number 5), 3-ethoxypropylamine (carbon number 5), N, N-dimethyl-1,3-diaminopropane (carbon number 5), hexylamine (carbon number 5) C6), heptylamine (C7), benzylamine (C7), N, N-diethyl-1,3-diaminopropane (C7), octylamine (C8), 2-ethylhexyl Amine (carbon number 8), nonylamine (carbon number 9), decylamine (carbon number 10), diaminodecane (carbon number 10), undecylamine (carbon number 11), dodecylamine (12 carbon atoms), dia
- the amine compound which is the protective agent A may be used in combination or in combination with one another for the purpose of controlling the dispersibility of the metal particles in the dispersion and the low temperature sinterability.
- the total of carbon number should just contain at least 1 sort (s) of 4 or more and 12 or less amine compound, and if so, the amine compound of carbon number out of the said range may exist.
- the fatty acid applied as the protective agent B acts as an auxiliary protective agent for the amine compound in the dispersion to enhance the stability of the metal particles.
- the effect of the fatty acid appears clearly after the metal particles are applied to the substrate, and the addition of the fatty acid can form a metal pattern with a uniform film thickness. This effect can be clearly understood in contrast to the case where metal particles without fatty acid are applied, and metal particles without fatty acid can not form a stable metal pattern.
- the fatty acid is preferably a saturated fatty acid or unsaturated fatty acid having 4 to 26 carbon atoms.
- preferred fatty acids include butanoic acid (C4), pentanoic acid (C5), hexanoic acid (C6), heptanoic acid (C7), octanoic acid (C8), Nonanoic acid (carbon number 9), decanoic acid (alias: capric acid, carbon number 10), undecanoic acid (alias: undecylic acid, carbon number 11), dodecanoic acid (alias: lauric acid, carbon number 12), tridecanoic acid ( Aliases: Tridecyl acid, 13 carbon atoms, tetradecanoic acid (alias: myristic acid, 14 carbon atoms), pentadecanoic acid (alias: pentadecyl acid, 15 carbon atoms), hexadecanoic acid (alias: palmitic acid, 16 carbon atoms), h
- oleic acid particularly preferred are oleic acid, linoleic acid, stearic acid, lauric acid, butanoic acid and erucic acid.
- fatty acid to be the protective agent B described above plural kinds of fatty acids may be used in combination.
- the metal ink protected by the protective agent A and the protective agent B described above is dispersed in a solvent to constitute a metal ink.
- the solvent applicable here is an organic solvent, for example, alcohol, benzene, toluene, alkane and the like. You may mix these.
- Preferred solvents are alkanes such as hexane, heptane, octane, nonane and decane, alcohols such as methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol and the like, more preferably among these And a mixed solvent of one or more alcohols selected from and one or more alkanes.
- the content of the metal particles in the metal ink is preferably 20% by mass or more and 60% by mass or less in terms of the metal mass with respect to the liquid mass. If the content of the metal particles is less than 20%, a metal pattern having a uniform film thickness for securing sufficient conductivity can not be formed in the pattern forming portion, and the resistance value of the metal pattern becomes high. . When the content of the metal particles exceeds 60%, it becomes difficult to form a stable metal pattern due to aggregation and enlargement of the metal particles.
- the content of the protective agent of the metal ink is preferably defined on the basis of the mass of the metal in the metal ink. And about the amine compound which is protective agent A, it is preferable to set it as 0.08 mmol / g or more and 3.0 mmol / g or less based on metal mass. Moreover, it is preferable that content of the fatty acid which is the protective agent B sets it as 0.008 mmol / g or more and 0.5 mmol / g or less on a metal mass basis.
- the content of the protective agent in the metal ink does not affect the dispersibility of the metal particles even if the content of the protective agent exceeds the above preferable range, but the excess protective agent causes the low temperature sinterability of the metal particles and the formed metal pattern
- the above range is preferable because it affects the resistance value of
- about the number-of-moles of said protective agent when using several types of amine compounds and a fatty acid, a total number-of-moles is applied, respectively.
- the metal ink described above is applied to a substrate subjected to a process such as exposure.
- the ink may be applied by dipping, spin coating, or roll coating, but the ink may be dropped and spread using an application member such as a blade, squeegee or spatula.
- a functional group for selectively fixing metal particles to a pattern formation portion is formed in advance, and a pattern can be formed efficiently by spreading the dispersion liquid at a stretch.
- the metal ink is repelled by its liquid repellence on the basis of a fluorine resin having no functional group.
- an application member such as a blade
- the repelled dispersion is removed from the substrate surface.
- a substitution reaction of the protective agent of the metal particle and the functional group occurs, and the first metal particle is fixed to the substrate.
- the solvent of the dispersion is evaporated, and the first metal particles on the substrate are self-sintered to form a metal film, whereby a metal pattern is formed.
- this self-sintering is a phenomenon that occurs even at room temperature, heating of the substrate is not an essential step in forming a metal pattern.
- the protective agent amine compound, fatty acid
- the metal pattern after self-sintering the protective agent (amine compound, fatty acid) remaining in the metal film can be completely removed, whereby the resistance value can be reduced. It is preferable to perform this baking process at 40 degreeC or more and 250 degreeC. If it is less than 40 ° C., it is not preferable because the removal and volatilization of the protective agent take a long time. When the temperature exceeds 250 ° C., the resin substrate or the like becomes a factor of deformation.
- the firing time is preferably 3 minutes or more and 120 minutes or less. The firing step may be performed in the air or in a vacuum.
- a metal wiring is formed and a first electrode layer is formed.
- the second electrode layer can be formed by performing the steps (a) to (c) as described above.
- the process when it is necessary to treat the surface of the first metal wiring, for example, in order to prevent reflection of the metal wiring, processing such as adjusting the surface roughness of the metal wiring and forming a compound In the case of performing the process, the process is performed before forming the second electrode layer.
- the intermediate layer is formed before forming the second electrode layer.
- the intermediate layer is, as described above, a dielectric or an insulator for the purpose of preventing migration of the first metal wiring or the like, and is applied according to the respective materials.
- the intermediate layer can also cover the surface of the first electrode layer and contribute to the planarization of the second underlayer.
- the second electrode layer is formed by the steps (a) to (c).
- the contents of the fluorine resin application (step (a) step), the functional group formation treatment (step (b) step), and the application / sintering of metal ink (step (c) step) are the same as in the second electrode layer. Is applied.
- the second underlayer since the range of thickness suitable for the first underlayer is limited, it is preferable to adjust the coating amount. In addition, it is preferable that the second underlayer be excellent in flatness. In this respect, when the intermediate layer is applied and formed, the flatness of the second underlayer is influenced by the thickness unevenness of the intermediate layer and the surface state. Therefore, it is preferable to diselectrify the surface of the intermediate layer with an eliminator (ionizer) and then to apply a fluorocarbon resin to be the second underlayer. Since the fluorocarbon resin of the base layer is easily charged with static electricity, a uniform coating layer can be formed by discharging the coating surface.
- an eliminator ionizer
- the second underlayer may be applied thicker without forming the intermediate layer, but in this case, after applying the fluorocarbon resin, it is allowed to stand for a fixed time (5 seconds or more) to homogenize the coating film. Then, it is preferable to carry out the subsequent step (b).
- step (c) In the same manner as the first electrode layer after formation of the second underlayer (step (a)), functional group formation treatment (step (b)), coating and sintering of metal ink (step (c)) As a result, the second electrode layer is formed, and the conductive sheet according to the present invention is manufactured. Incidentally, after the formation of the second electrode layer, the surface treatment (antireflection treatment etc.) of the second metal wiring and the formation treatment of the coating layer can be appropriately performed.
- the conductive sheet according to the present invention described above is provided with two electrode layers on one side of the substrate, and has durability against bending of a conventional double-sided conductive sheet.
- the configuration of the base layer or the like of the fluorine resin appropriate, it is possible to cope with the thinning of the conductive sheet.
- the figure explaining the structure of the conductive sheet on which the conventional conductive sheet was laminated (laminated structure).
- a base layer made of fluorocarbon resin is formed on a transparent substrate, and a silver ink is applied to form a metal wiring made of silver, thereby producing a conductive sheet having a single-sided two-layer structure.
- silver ink is used as the metal ink.
- the silver ink is obtained by dispersing silver particles produced by a thermal decomposition method in a solvent.
- a silver compound having thermal decomposition properties such as silver oxalate (Ag 2 C 2 O 4 ) is used as a starting material, and a silver compound and a protective agent are reacted to form a silver complex, which is then used as a precursor. It is a method of obtaining silver particles by heating and decomposing as a body.
- the cream silver complex gradually turned brown and turned to black. This heating and stirring operation was performed until the generation of bubbles from the reaction system disappeared. After completion of the reaction, the reaction system was allowed to cool to room temperature, methanol was added thereto, and the mixture was sufficiently stirred, followed by centrifugation to remove excess protecting agent, and the silver fine particles were purified. The addition of methanol and the purification of silver fine particles by centrifugation were performed again to obtain silver fine particles as a precipitate.
- the silver concentration of this silver ink was 40% by mass.
- FIG. 5 shows the appearance of the conductive sheet manufactured in the present embodiment.
- a transparent resin substrate dimension: 210 mm ⁇ 297 mm, thickness 50 ⁇ m
- PET polyethylene terephthalate
- a first electrode layer is formed in a 12.5 mm ⁇ 16.3 mm area on the substrate, and a second electrode layer is further formed in a 9.0 mm ⁇ 16.3 mm area on the first electrode layer. It formed.
- the dimensions (horizontal widths) of the first electrode layer and the second electrode layer are different in order to measure the resistance value of the metal wiring of each electrode layer.
- first electrode layer on the resin substrate was formed.
- an amorphous perfluorobutenyl ether polymer (CYTOP (registered trademark): manufactured by Asahi Glass Co., Ltd.) as a fluorine resin to a substrate by a spin coating method (rotational speed 2000 rpm, 20 sec), 10 minutes at 50 ° C.
- the resultant was heated at 80 ° C. for 10 minutes, and further baked at 140 ° C. for 10 minutes in an oven.
- an underlayer of 0.06 ⁇ m (60 nm) made of fluororesin was formed.
- a photomask of a comb-shaped wiring pattern (line width 2.0 ⁇ m, line interval 300 ⁇ m) is adhered to the surface of the substrate on which the base layer is formed (contact exposure of mask-substrate distance 0), It was irradiated with ultraviolet light (VUV light). VUV light was irradiated at a wavelength of 172 nm and 11 mW / cm 2 for 20 seconds.
- the silver ink described above was applied to the substrate having the functional group formed on the surface of the underlayer as described above.
- the dispersion was wetted and spread in advance at the contact portion between the substrate and the blade (made of glass), and then the blade was swept in one direction.
- the sweep speed is 2 mm / sec. It was confirmed by the application by the blade that the ink was adhering only to the ultraviolet ray irradiated portion (functional group forming portion) of the substrate.
- the substrate was subjected to hot air drying at 120 ° C. to form silver wiring.
- the thickness of the silver wiring was 0.04 ⁇ m (40 nm), and the line width was 2.0 ⁇ m.
- an acrylic resin (TKK-1001 HSC: manufactured by JGC Corporation) was applied as an intermediate layer.
- the acrylic resin was adjusted to have a maximum film thickness of 1 ⁇ m after coating.
- the film thickness is set to 1 ⁇ m in order to smooth the surface on which the second electrode layer is formed while considering the thickness of the metal wiring of the first electrode layer.
- the second electrode layer was formed on the substrate coated with the intermediate layer as described above.
- the same fluorocarbon resin as that for the first underlayer is applied onto the intermediate layer.
- a fluorine resin was applied to a designated area on the substrate (intermediate layer) to form an underlayer.
- the fluorine resin coating method was the same as that of the first electrode layer, and the thickness of the base layer was also 0.06 ⁇ m (60 nm).
- a photomask of a comb-shaped wiring pattern was adhered, and ultraviolet light was irradiated thereto. Furthermore, the silver ink described above was applied.
- the coating conditions were the same as for the first electrode layer, and the substrate was dried with hot air at 120 ° C. to form a silver wiring (thickness 0.04 ⁇ m, line width 2.0 ⁇ m).
- Comparative Example 1 A conductive sheet having a double-sided structure was manufactured as a comparative example of the conductive sheet according to the present embodiment.
- the same PET substrate as this embodiment was prepared, and the electrode layer was formed in the process similar to this embodiment on the both surfaces.
- a fluorocarbon resin (CYTOP (registered trademark)) was applied to a region of 13.5 mm ⁇ 17.3 mm with a bar coater and baked to form a 0.06 ⁇ m fluorocarbon underlayer.
- a photomask with a comb-like wiring pattern (line width: 2.0 ⁇ m, line spacing: 300 ⁇ m) similar to that of the present embodiment was adhered to the surface of the underlayer and exposed.
- the silver ink described above was applied, and the substrate was dried with hot air at 120 ° C. to form a silver electrode (line width: 2.0 ⁇ m).
- a fluorine resin was applied to the area of the other surface of the substrate: 13.5 mm ⁇ 17.3 mm to form a base layer, and after exposure, a silver ink was applied to form a second electrode layer.
- a double-sided conductive sheet having electrode layers on both sides of the substrate was produced.
- the configuration of the conductive sheet of this comparative example is shown in FIG.
- the bending radius of the sheet was 2 mm, and bending was performed along the center line of the substrate of the conductive sheet.
- the number of times of bending was 100,000 bendings, with the bending process in which the film expanded and contracted into a U-shape counted as one bending.
- the resistance value of the silver wiring of the electrode layer of each layer was measured by the digital tester. The results of this bending test are shown in Table 1.
- the conductive sheet of this embodiment was not damaged in the first and second metal wirings even after being subjected to 100,000 bending tests. Although there was an increase in the resistance value of the metal wiring, no problem occurred in the energization. On the other hand, in the comparative example, after the bending test, it was overloaded on one side and the resistance value could not be measured. This is considered to be a break in the metal wiring. From this comparison, it was confirmed that in the double-sided conductive sheet, the influence of the bending deformation was large, and it was found that the single-sided two-layer structure of the present embodiment is resistant to deformation.
- the conductive sheet of the first embodiment was manufactured by changing the thickness (film thickness) of the wiring, and the bending test was performed.
- the used substrate, the fluorine resin (CYTOP (registered trademark)), the metal ink (silver ink), and the photomask are the same as in the first embodiment.
- the thickness of the metal wiring is adjusted by applying a metal ink in an overlapping manner. Specifically, in the manufacturing process of each of the first and second metal wires, the combination of metal ink application and hot air drying was used as a single "application" to form metal wires by multiple applications.
- one application (film thickness 0.04 ⁇ m: first embodiment), two applications (film thickness 0.08 ⁇ m), five applications (film thickness 0.2 ⁇ m), eight applications (film thickness 0) .32 ⁇ m).
- a metal wiring was formed by application 16 times (film thickness 0.64 ⁇ m). In each example, the thicknesses of the first and second metal wires were the same. Moreover, the metal wiring of several film thickness was similarly formed also about the conductive sheet of the double-sided structure which is a comparative example. Then, as in the first embodiment, the bending test and the measurement of the resistance value were performed. The results are shown in Table 2.
- the resistance value decreases.
- the thickness is set to 0.08 ⁇ m or more, the disconnection occurring at 0.04 ⁇ m does not occur.
- the increase in resistance value on the back side after the bending test is extremely large.
- both the first and second metal wires maintain a stable resistance value.
- a conductive sheet in which the line width of the metal wiring is changed is manufactured and a bending test is performed.
- the substrate used, the fluorocarbon resin (CYTOP (registered trademark)) and the metal ink (silver ink) are the same as in the first embodiment, and after the photomask is exposed using a photomask whose line width only has been changed, Silver wiring was formed with metal ink (silver ink).
- photomasks having line widths of 1 ⁇ m, 2 ⁇ m (first embodiment) and 5 ⁇ m were used.
- a conductive sheet having a single-sided two-layer structure and a double-sided structure which is a comparative example was manufactured, and a bending test and measurement of a resistance value were performed. The results are shown in Table 3.
- the resistance value of the metal wiring after the bending test tends to increase.
- the increase in resistance value was remarkable. That is, when the line width is 1 ⁇ m, the increase in the resistance value of the second electrode layer of this embodiment is 1.05 k ⁇ , but in the comparative example, a remarkable increase of 6.38 k ⁇ is observed. Also, this tendency was remarkable when the line width was small. Even if the line width was changed, it was found that the double-sided structure of the comparative example was weak to bending deformation, and the single-sided two-layer structure of the present invention was strong to bending deformation.
- a conductive sheet is manufactured while changing the configuration (thickness) of the first electrode layer, the intermediate layer, and the second electrode layer.
- the manufacturing process of the conductive sheet was basically the same as that of the first embodiment, and the same substrate, metal ink and the like were used.
- the thickness was adjusted by changing the number of times of application of the precursor material of each layer.
- the same fluorocarbon resin (CYTOP (registered trademark)) as that of the first embodiment is used as the fluorocarbon resin to be the first and second underlayers, but some examples (No. 9) ), Another fluorocarbon resin (Algoflon (registered trademark) AD40) was used. However, the formation conditions of each underlayer were the same.
- the electroconductive sheet manufactured by this embodiment showed a generally favorable evaluation result.
- the second underlayer is too thin, a part of the metal wiring may be rejected (No. 5), so the thickness of the second underlayer should be 0.04 ⁇ m or more. Is preferable (No. 4).
- the first underlayer a thin layer of 0.02 ⁇ m is sufficiently effective (NO. 2).
- the intermediate layer is not an essential component, and even if there is no intermediate layer, it can be coped with by adjusting the thickness of the second underlayer (No. 6). And when setting an intermediate
- CYTOP registered trademark
- Algoflon (registered trademark) AD40 has, in the repeating unit, 6 carbon atoms, 10 fluorine atoms, and 1 oxygen atom.
- the ratio (F / C) of the number of fluorine atoms to the number of carbon atoms on the structural formula is 1.7. In the present embodiment, it was confirmed that good results were obtained no matter which fluorine resin was applied.
- the conductive sheet according to the present invention is a sheet in which two electrode layers are formed in a two-layer structure on one side of a substrate.
- the present invention is resistant to bending with respect to a conventional double-sided conductive sheet, and can also cope with thinning of the conductive sheet.
- the conductive sheet of the present invention is capable of appropriately performing anti-reflection processing on metal wires while being provided with extremely fine metal wires. Therefore, this invention can also be made into a suitable transparent conductive sheet by making selection of a board
- the present invention can be effectively applied as a component of a touch panel.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Laminated Bodies (AREA)
- Non-Insulated Conductors (AREA)
- Manufacturing Of Electric Cables (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Conductive Materials (AREA)
Abstract
The present invention relates to an electrically-conductive sheet comprising a substrate having two metal wire systems formed thereon. The electrically-conductive sheet comprises a substrate and an electrode layer formed on one side of the substrate. The electrode layer includes a first electrode layer and a second electrode layer. The first electrode layer and the second electrode layer are stacked in this order on the substrate. The first electrode layer comprises a first underlayer comprising a fluorine resin, and first metal wiring formed on the first underlayer surface. The second electrode layer comprises a second underlayer comprising a fluorine resin, and second metal wiring formed on the second underlayer surface. The present invention has a structure in which two electrode layers are formed on one side of the substrate. In this way, compared to conductive sheets of the prior art having a double-side structure, durability with respect to bending and deformation is improved.
Description
本発明は、タッチパネル等を構成するための導電シートに関する。詳しくは、基板上に第1、第2の2系統の金属配線を備え、それら金属配線を有する電極層が基板の片面側に2層構造で形成された導電シートに関する。
The present invention relates to a conductive sheet for forming a touch panel or the like. More specifically, the present invention relates to a conductive sheet including a first and a second two types of metal wires on a substrate, and an electrode layer having those metal wires formed in a two-layer structure on one side of the substrate.
PC、タブレット、スマートフォン等の各種電子機器の入力装置として、従来からタッチパネルが使用されている。タッチパネルは、タッチ入力を検出する配線を透明基板上に形成した導電シートにより構成されている。この導電シートに関しては、これまでITO等の透明電極が配線材料として適用されてきたが、近年のパネル大型化による配線長増大に対応するため、電気抵抗の低い銀や銅等の金属配線の適用が検討されている。金属は、本来は透明な材料ではないが、人間の可視領域を超えるミクロンオーダーの細線にすることで、透明電極と同等に透光性を発揮する。
Touch panels have conventionally been used as input devices for various electronic devices such as PCs, tablets, and smartphones. The touch panel is configured of a conductive sheet in which a wire for detecting touch input is formed on a transparent substrate. For this conductive sheet, transparent electrodes such as ITO have been applied as wiring materials until now, but in order to cope with the increase in wiring length due to the recent increase in panel size, the application of metal wiring such as silver or copper with low electrical resistance Is being considered. Although metal is not originally a transparent material, it exhibits transparency equivalent to that of a transparent electrode by forming a micron-order thin line exceeding human visible range.
各種の基板に金属配線を形成する方法としては、従来からフォトリソグラフィ法が知られているが、本願出願人は、金属粒子を含む所定構成の金属インクを用いた金属配線の製造方法を提案している(特許文献1)。この金属配線の形成方法では、撥液性を有するフッ素樹脂を基板に塗布した後、金属配線を形成する部位に官能基(親水基)を形成する。そして、この基板に金属インクを塗布することで、インク中の金属粒子を官能基に結合させ、金属粒子を焼結させてバルク状に近い金属配線を形成する。この金属配線の形成法では、フッ素樹脂表面に官能基を形成する方法として、微細なパターニングが可能な紫外線等の光照射を採用しており、これにより、高精細な配線を効率的に製造できる。また、この方法では、金属粒子を比較的低温で焼結させて金属配線にすることができる。そのため、基板の熱損傷を懸念することもなく、透明で軽量な樹脂材料も使用することができる。
Conventionally, photolithography has been known as a method of forming metal wiring on various substrates, but the applicant has proposed a method of manufacturing metal wiring using a metal ink having a predetermined configuration including metal particles. (Patent Document 1). In this method of forming a metal wiring, after a liquid repellent fluororesin is applied to a substrate, a functional group (hydrophilic group) is formed at a portion where the metal wiring is to be formed. Then, a metal ink is applied to the substrate to bond metal particles in the ink to a functional group, and the metal particles are sintered to form a metal wiring close to bulk. In this method of forming a metal wiring, light irradiation such as ultraviolet light capable of fine patterning is employed as a method of forming a functional group on the surface of a fluorocarbon resin, whereby high definition wiring can be efficiently manufactured. . Also, in this method, metal particles can be sintered at relatively low temperature to form metal wiring. Therefore, transparent and lightweight resin materials can also be used without concern about thermal damage to the substrate.
ところで、タッチパネル用の導電シートの構成は、基板に電気的に絶縁された2系統(X方向、Y方向)の配線が形成されているものが一般的である。これらの配線は、通常、交差して格子状のパターンを形成している。そして、このような2系統の配線を有する導電シートは、図7のように、1枚の基板の表面と裏面に、それぞれ配線を形成することが多い。このような導電シートでは、基板がそれぞれの配線を電気的に絶縁することとなる。例えば、特許文献2には、基板の一面に第1の電極を含む層を形成し、基板の他面に第2の電極を含む層を形成した導電シートを含むタッチパネルが記載されている。ここで、本願明細書においては、基板の表面と裏面に配線を形成する導電シートについて、「両面構造」と称することがある。
By the way, as a configuration of the conductive sheet for the touch panel, it is general that wirings of two systems (X direction, Y direction) which are electrically insulated on the substrate are formed. These wires usually intersect to form a grid-like pattern. And as shown in FIG. 7, the conductive sheet having such two lines of wiring often forms the wiring on the front and back of one substrate, respectively. In such a conductive sheet, the substrate electrically insulates each wiring. For example, Patent Document 2 describes a touch panel including a conductive sheet in which a layer including a first electrode is formed on one surface of a substrate and a layer including a second electrode is formed on the other surface of the substrate. Here, in the specification of the present application, a conductive sheet in which wiring is formed on the front surface and the back surface of a substrate may be referred to as “double-sided structure”.
しかしながら、本発明者等の検討によれば、上記した基板の両面に配線を形成する導電シートは、変形(曲げ)に対する耐久性に問題がある。近年、可撓性を有する折り曲げ可能なディスプレイ、タッチパネルが発表されている。このようなフレキシブルタイプのディスプレイ等では、指先によるタッチに加え、画面を曲げることによっても入力が可能となっているものがある。このときの曲げの方向は固定されることはなく、タッチパネルは繰返し曲げ変形を受けることになる。
However, according to the study of the present inventors et al., The conductive sheet in which the wiring is formed on both sides of the above-described substrate has a problem in durability against deformation (bending). In recent years, flexible and foldable displays and touch panels have been announced. Among such flexible type displays and the like, in addition to touch by a finger, there are some which can be input by bending a screen. The direction of bending at this time is not fixed, and the touch panel is subjected to repeated bending deformation.
従来の両面構造の導電シートについて曲げ変形が加えられると、表側及び裏側の配線が追従して変形するが、このときの曲率(R)は表裏で相違し、曲げの表側の曲率が大きくなる。従って、表側・裏側において、配線が受ける変形率が相違する。そして、曲げの繰返しにより、配線の断面積減少による抵抗値増加や断線による絶縁が生じるおそれがある。また、配線の断線等は片面だけでなく両面で発生することがある。上記のとおり、曲げの方向は固定されることがないからである。このように両面構造の導電シートは、曲げ変形に対する配線の耐久性に問題が生じ得る。
When bending deformation is applied to the conventional double-sided conductive sheet, the wires on the front and back sides follow and deform, but the curvature (R) at this time is different on the front and back, and the curvature on the front side of bending becomes large. Therefore, the deformation rates received by the wiring are different on the front side and the back side. And, by repeated bending, there is a possibility that the increase of the resistance value due to the reduction of the cross-sectional area of the wiring and the insulation due to the disconnection occur. In addition, disconnection of wiring may occur not only on one side but also on both sides. As described above, the direction of bending is not fixed. Thus, the conductive sheet having a double-sided structure may cause a problem in the durability of the wiring against bending deformation.
また、上記のとおり、導電シートにおける配線材料として、銀等の金属配線の適用が検討されているが、金属配線には光反射による視認性に係る問題がある。銀等の金属は光反射率が高いので、極細線であっても見る角度によって反射光によって配線パターンが識別されることがある。かかる金属配線の問題には、いくつかの対策が知られており、例えば、金属配線表面を反射性のない材質で被覆することが提案されている。例えば、特許文献3では、銀の配線をテルル塩酸溶液で処理することで、配線表面に一定厚さの黒化層が形成され、金属配線の反射の問題に対応が可能となることが記載されている。
Moreover, although application of metal wiring, such as silver, is examined as a wiring material in a conductive sheet as mentioned above, there exists a problem which concerns on the visibility by light reflection in metal wiring. Since metal such as silver has a high light reflectance, a wiring pattern may be identified by reflected light depending on the angle at which even a very thin wire is viewed. Several measures are known for the problem of such metal wiring, for example, it has been proposed to coat the surface of the metal wiring with a non-reflective material. For example, Patent Document 3 describes that by treating a silver wiring with tellurium hydrochloric acid solution, a blackened layer of a certain thickness is formed on the wiring surface, and it becomes possible to cope with the problem of reflection of metal wiring. ing.
しかしながら、両面構造の導電シートは、上記のような金属配線に対する反射防止の処理を完全に行うことができない。透明基板を適用した両面構造の導電シートにおいて、使用者が観察できるのは、基板の一方の面の配線の外表面と、基板の他方の面と配線との界面である。そして、両面構造の導電シートに対しては、一方の面の配線外表面の反射防止は可能であるが、他方の面の金属配線の反射を防止することはできない。上記した反射防止処理は、金属配線の外表面に対して作用する処理であって、形成済の配線と基板との界面には作用しない。従って、両面構造の導電シートに対しては、不完全な処理しかできない。
However, the conductive sheet having a double-sided structure can not completely carry out the above-described anti-reflection treatment on the metal wiring. In the double-sided conductive sheet to which the transparent substrate is applied, the user can observe the outer surface of the wiring on one side of the substrate and the interface between the other surface of the substrate and the wiring. And although the reflection prevention of the wiring outer surface of one side is possible with the conductive sheet of a double-sided structure, reflection of the metal wiring of the other side can not be prevented. The above-described anti-reflection treatment is a treatment that acts on the outer surface of the metal wiring, and does not act on the interface between the formed wiring and the substrate. Therefore, only incomplete processing can be performed on the double-sided conductive sheet.
本発明は上記のような背景のもとになされたものであり、基板に第1、第2の2系統の金属配線を形成した導電シートについて、曲げや変形を受けても金属配線への影響が生じ難いものを開示する。また、金属配線に対して反射防止処理を行うに際して、双方の金属配線に有効に処理ができるものを提供する。そして、そのような導電シートの製造方法であって、高精細な金属配線を形成しつつ効率的に導電シートを製造できる方法も明らかにする。
The present invention has been made based on the background as described above, and the conductive sheet in which the first and second two metal wiring lines are formed on the substrate is affected by the metal wiring even if it is bent or deformed. Disclose what is unlikely to occur. In addition, when the metal wiring is subjected to the reflection preventing process, a metal wiring which can be effectively processed is provided. Then, a method of manufacturing such a conductive sheet, which can form a conductive sheet efficiently while forming a high-definition metal wiring, will be clarified.
上記した従来の両面構造の導電シートに対する問題は、基板の両面それぞれに配線を形成することにある。導電シートにとって、基板はシート全体の厚みを規定する最も厚い部材だからである。従って、曲げ変形時の配線が受ける変形率(曲率)の差をなくすためには、基板の片面に双方の配線を形成して2層構造にすることが考えられる。
The problem with the above-described conventional double-sided conductive sheet is that the wiring is formed on each side of the substrate. For the conductive sheet, the substrate is the thickest member that defines the thickness of the entire sheet. Therefore, in order to eliminate the difference in the deformation rate (curvature) received by the wiring at the time of bending deformation, it is conceivable to form both wirings on one side of the substrate to form a two-layer structure.
ここで、従来から知られている金属配線の形成方法としては、フォトリソグラフィ法があるが、この方法はレジストの塗布及び除去の工程が必要となる。レジストの除去工程は、レジストを溶液で溶解する処理であるので、1つの基板上に2層の金属配線を形成することは不可能である。そのため、フォトリソグラフィ法の適用を考慮する場合、図1のように、1つの基板に1つの金属配線を形成した導電シートを2枚積層すれば、形式上2層構造の金属配線を形成できる。このような構成であれば、それぞれの導電シートの金属配線に反射防止の処理ができるので、両面構造の問題点の一部は解決できる。尚、このように1つの基板に1つの金属配線有する導電シートを2枚積層する構造について、「積層構造」と称することがある。
Here, as a method of forming a metal wiring conventionally known, there is a photolithography method, but this method requires steps of coating and removing a resist. Since the resist removal process is a process of dissolving the resist in a solution, it is impossible to form two layers of metal wiring on one substrate. Therefore, in consideration of application of the photolithography method, as shown in FIG. 1, if two conductive sheets in which one metal wiring is formed on one substrate are laminated, it is possible to form a metal wiring having a formal two-layer structure. With such a configuration, the metal wiring of each conductive sheet can be treated to prevent reflection, so that some of the problems with the double-sided structure can be solved. In addition, about the structure which laminates | stacks two electroconductive sheets which have one metal wiring on one board | substrate in this way, it may be called "layered structure."
但し、かかる積層構造の導電シートは、曲げ変形における配線損傷の問題の解決にはならない。即ち、上層の基板を基準としてみれば、各金属配線の配置関係は、両面構造のそれと同じだからである。また、このような積層構造は、基板を2枚使用するので、導電シート全体の厚みを厚くする。更に、2枚の導電シートを製造する分、コストアップも懸念される。
However, the conductive sheet of such a laminated structure does not solve the problem of wiring damage in bending deformation. That is, when the upper layer substrate is viewed as a reference, the arrangement relationship of each metal wiring is the same as that of the double-sided structure. In addition, since such a laminated structure uses two substrates, the thickness of the entire conductive sheet is increased. Furthermore, there is a concern that the cost increases due to the production of two conductive sheets.
そこで、本発明者等は、更なる検討を行ったところ、上記した本願出願人による、所定のフッ素樹脂及び金属インクを適用した金属配線の形成方法(特許文献1)を応用することに想到した。そして、この方法で形成される金属配線を含む電極層を、基板の片面に複数積層させることで、好適な導電シートを得ることができるとして本発明に想到した。
Then, the inventors of the present invention conducted further studies, and considered the application of the above-mentioned applicant of the present invention to apply the method for forming a metal wiring (Patent Document 1) to which a predetermined fluororesin and metal ink are applied. . Then, the present invention was conceived as a preferable conductive sheet can be obtained by laminating a plurality of electrode layers including the metal wiring formed by this method on one side of the substrate.
即ち、本発明は、基板と、前記基板の片面側に形成された電極層とを有する導電シートであって、前記電極層は、第1の電極層と第2の電極層とを含み、前記基板上に、第1の電極層、第2の電極層がこの順で積層されており、前記第1の電極層は、フッ素樹脂からなる第1の下地層と、前記第1の下地層表面に形成された第1の金属配線とからなり、前記第2の電極層は、フッ素樹脂からなる第2の下地層と、前記第2の下地層表面に形成された第2の金属配線とからなる、導電シートである。以下、本発明に係る導電シートについて、その構成を詳細に説明する。
That is, the present invention is a conductive sheet having a substrate and an electrode layer formed on one side of the substrate, the electrode layer including a first electrode layer and a second electrode layer, A first electrode layer and a second electrode layer are laminated in this order on a substrate, and the first electrode layer is a first underlayer made of a fluorocarbon resin, and the surface of the first underlayer. And the second electrode layer is formed of a second base layer made of a fluorocarbon resin and a second metal layer formed on the surface of the second base layer. It is a conductive sheet. Hereinafter, the configuration of the conductive sheet according to the present invention will be described in detail.
(I)本発明に係る導電シートの構成
上記のとおり、本発明は、基板と基板片面側に形成された電極層とからなる。そして、この電極層は、第1の電極層と第2の電極層とを積層させて構成される。本発明の導電シートにおける必要最小限の構造は、図2のようになる。以下、各構成について説明する。尚、本願明細書においては、本発明に係る導電シートの構造について、必要に応じて「片面2層構造」と称するときがある。 (I) Configuration of Conductive Sheet According to the Present Invention As described above, the present invention comprises a substrate and an electrode layer formed on one side of the substrate. The electrode layer is formed by laminating the first electrode layer and the second electrode layer. The minimum necessary structure of the conductive sheet of the present invention is as shown in FIG. Each component will be described below. In the specification of the present application, the structure of the conductive sheet according to the present invention may sometimes be referred to as "one-sided two-layer structure" as needed.
上記のとおり、本発明は、基板と基板片面側に形成された電極層とからなる。そして、この電極層は、第1の電極層と第2の電極層とを積層させて構成される。本発明の導電シートにおける必要最小限の構造は、図2のようになる。以下、各構成について説明する。尚、本願明細書においては、本発明に係る導電シートの構造について、必要に応じて「片面2層構造」と称するときがある。 (I) Configuration of Conductive Sheet According to the Present Invention As described above, the present invention comprises a substrate and an electrode layer formed on one side of the substrate. The electrode layer is formed by laminating the first electrode layer and the second electrode layer. The minimum necessary structure of the conductive sheet of the present invention is as shown in FIG. Each component will be described below. In the specification of the present application, the structure of the conductive sheet according to the present invention may sometimes be referred to as "one-sided two-layer structure" as needed.
(A)基板
本発明の片面2層構造の導電シートに適用される基板は、特に限定する必要はなく、金属、セラミックからなる基板が適用でき、更に、樹脂、プラスチック製の基板も適用可能である。また、重量の制限がなければガラスを使用することも可能である。但し、基板は透明体からなるものが好ましい。本発明は、タッチパネル、ディスプレイ等の表示装置に好適に使用されるものだからである。 (A) Substrate The substrate applied to the conductive sheet of the single-sided two-layer structure of the present invention is not particularly limited, and a substrate made of metal or ceramic can be applied, and further, a resin or plastic substrate can be applied is there. It is also possible to use glass without weight limitations. However, the substrate is preferably made of a transparent material. This is because the present invention is suitably used for display devices such as touch panels and displays.
本発明の片面2層構造の導電シートに適用される基板は、特に限定する必要はなく、金属、セラミックからなる基板が適用でき、更に、樹脂、プラスチック製の基板も適用可能である。また、重量の制限がなければガラスを使用することも可能である。但し、基板は透明体からなるものが好ましい。本発明は、タッチパネル、ディスプレイ等の表示装置に好適に使用されるものだからである。 (A) Substrate The substrate applied to the conductive sheet of the single-sided two-layer structure of the present invention is not particularly limited, and a substrate made of metal or ceramic can be applied, and further, a resin or plastic substrate can be applied is there. It is also possible to use glass without weight limitations. However, the substrate is preferably made of a transparent material. This is because the present invention is suitably used for display devices such as touch panels and displays.
(B)電極層
本発明に係る導電シートは、上記で説明した基板の片面に2層の電極層が形成されてなる。これら電極層の構成としては、基板に対して、第1の電極層、第2の電極層がこの順で積層されている。以下、各電極層の構成について説明する。 (B) Electrode Layer In the conductive sheet according to the present invention, two electrode layers are formed on one side of the substrate described above. As a configuration of these electrode layers, the first electrode layer and the second electrode layer are stacked in this order on the substrate. Hereinafter, the configuration of each electrode layer will be described.
本発明に係る導電シートは、上記で説明した基板の片面に2層の電極層が形成されてなる。これら電極層の構成としては、基板に対して、第1の電極層、第2の電極層がこの順で積層されている。以下、各電極層の構成について説明する。 (B) Electrode Layer In the conductive sheet according to the present invention, two electrode layers are formed on one side of the substrate described above. As a configuration of these electrode layers, the first electrode layer and the second electrode layer are stacked in this order on the substrate. Hereinafter, the configuration of each electrode layer will be described.
(B-1)第1の電極層
第1の電極層は、基板表面上に形成され、フッ素樹脂からなる第1の下地層と、その表面上に形成される第1の金属配線とからなる。 (B-1) First electrode layer The first electrode layer is formed on the surface of the substrate, and comprises a first underlayer made of a fluorocarbon resin and a first metal wiring formed on the surface thereof. .
第1の電極層は、基板表面上に形成され、フッ素樹脂からなる第1の下地層と、その表面上に形成される第1の金属配線とからなる。 (B-1) First electrode layer The first electrode layer is formed on the surface of the substrate, and comprises a first underlayer made of a fluorocarbon resin and a first metal wiring formed on the surface thereof. .
(B-1-1)第1の下地層
第1の下地層は、以下で詳細に説明するように、本発明の導電シートを製造する上で主要な役割を有する。このフッ素樹脂からなる第1の下地層においては、所望の配線パターンで所定の処理により官能基が形成され、そこに金属配線の前駆体である金属粒子が固定される。そして、固定された金属粒子が金属配線となる。この下地層を形成するフッ素樹脂には、配線パターン以外の部位に金属粒子が固定されないようにするための撥液性、及び、所定の処理により官能基を生成するための反応性が要求される。また、タッチパネル等への適用を考慮すると、透明性を有することが好ましい。 (B-1-1) First Underlayer The first under layer plays a major role in producing the conductive sheet of the present invention, as described in detail below. In the first underlayer made of this fluorocarbon resin, a functional group is formed by a predetermined process with a desired wiring pattern, and metal particles, which are precursors of metal wiring, are fixed thereto. And the fixed metal particle turns into metal wiring. The fluorine resin forming the underlayer is required to have liquid repellency to prevent the metal particles from being fixed to a portion other than the wiring pattern, and reactivity to generate a functional group by a predetermined treatment. . Further, in view of application to a touch panel or the like, it is preferable to have transparency.
第1の下地層は、以下で詳細に説明するように、本発明の導電シートを製造する上で主要な役割を有する。このフッ素樹脂からなる第1の下地層においては、所望の配線パターンで所定の処理により官能基が形成され、そこに金属配線の前駆体である金属粒子が固定される。そして、固定された金属粒子が金属配線となる。この下地層を形成するフッ素樹脂には、配線パターン以外の部位に金属粒子が固定されないようにするための撥液性、及び、所定の処理により官能基を生成するための反応性が要求される。また、タッチパネル等への適用を考慮すると、透明性を有することが好ましい。 (B-1-1) First Underlayer The first under layer plays a major role in producing the conductive sheet of the present invention, as described in detail below. In the first underlayer made of this fluorocarbon resin, a functional group is formed by a predetermined process with a desired wiring pattern, and metal particles, which are precursors of metal wiring, are fixed thereto. And the fixed metal particle turns into metal wiring. The fluorine resin forming the underlayer is required to have liquid repellency to prevent the metal particles from being fixed to a portion other than the wiring pattern, and reactivity to generate a functional group by a predetermined treatment. . Further, in view of application to a touch panel or the like, it is preferable to have transparency.
本発明で下地層となるフッ素樹脂は、その構造式において、炭素(C)、フッ素(F)を含む樹脂材料からなる。具体的には、フッ素含有単量体に基づく繰り返し単位であって、フッ素原子数と炭素原子数との比(F/C)が1.0以上である繰り返し単位を少なくとも1種有する重合体が好ましい。本発明のフッ素樹脂を構成する重合体の繰り返し単位について、フッ素原子数と炭素原子数との比(F/C)を1.0以上とするのは、下地層に金属配線形成の際に要求される撥液性を具備させるためである。このF/Cの数値は、1.5以上であるものがより好ましい。尚、F/Cの上限については、撥液性、入手容易性の理由からF/Cは2.0を上限とするのが好ましい。
In the present invention, the fluororesin to be the underlayer is made of a resin material containing carbon (C) and fluorine (F) in its structural formula. Specifically, a polymer having at least one repeating unit based on a fluorine-containing monomer and having a ratio (F / C) of the number of fluorine atoms to the number of carbon atoms of 1.0 or more is preferable. In the repeating unit of the polymer constituting the fluorine resin of the present invention, the ratio (F / C) of the number of fluorine atoms to the number of carbon atoms of 1.0 or more is required when forming metal wiring in the underlayer. In order to have the liquid repellence. The value of F / C is more preferably 1.5 or more. In addition, about the upper limit of F / C, it is preferable to make an upper limit 2.0 in F / C from the reason of liquid repellency and availability.
本発明におけるフッ素樹脂は、上記のフッ素含有単量体に基づく繰り返し単位を少なくとも1種を含むこが好ましい。この条件を具備すれば、本発明のフッ素樹脂は、F/Cが1.0未満のフッ素含有単量体に基づく繰り返し単位を含んでもよく、更に、フッ素原子を含まないフッ素非含有単量体に基づく繰り返し単位を含んでいても良い。また、フッ素樹脂は、フッ素含有単量体に基づく繰り返し単位の一部に、酸素、窒素、塩素等のヘテロ原子を含んでいてもよい。
The fluorine resin in the present invention preferably contains at least one repeating unit based on the above-mentioned fluorine-containing monomer. If this condition is satisfied, the fluorine resin of the present invention may contain a repeating unit based on a fluorine-containing monomer having an F / C of less than 1.0, and further, a fluorine-free monomer containing no fluorine atom. May contain a repeating unit based on Moreover, the fluorine resin may contain hetero atoms such as oxygen, nitrogen and chlorine in part of the repeating unit based on the fluorine-containing monomer.
このような構成元素及びF/Cの条件を満足し得るフッ素樹脂の具体例としては、ポリテトラフルオロエチレン(PTFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、エチレン-テトラフルオロエチレン共重合体(ETFE)、エチレン-クロロトリフルオロエチレン共重合体(ECTFE)、テトラフルオロエチレン-パーフルオロジオキソール共重合体(TFE/PDD)、環状パーフルオロアルキル構造又は環状パーフルオロアルキルエーテル構造を有するフッ素樹脂等が挙げられる。
Specific examples of the fluorocarbon resin which can satisfy the condition of such constituent elements and F / C include polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), ethylene-tetrafluoroethylene copolymer (ETFE), ethylene-chlorotrifluoro copolymer Examples thereof include ethylene copolymer (ECTFE), tetrafluoroethylene-perfluorodioxole copolymer (TFE / PDD), and a fluorocarbon resin having a cyclic perfluoroalkyl structure or a cyclic perfluoroalkyl ether structure.
また、撥液性を担保するためのフッ素の含有量に関する条件に加えて、他の特性を考慮して好適なフッ素樹脂を選択することも好ましい。例えば、基板に塗布する際の溶媒への可溶性を考慮して、主鎖に環状構造を有するパーフルオロ樹脂をフッ素樹脂とするのが好ましい。また、フッ素樹脂に透明性を要求するときには、非晶質のパーフルオロ樹脂を適用するのがより好ましい。
Moreover, in addition to the conditions regarding the content of fluorine for securing liquid repellency, it is also preferable to select a suitable fluorine resin in consideration of other characteristics. For example, in consideration of solubility in a solvent when applied to a substrate, it is preferable to use a perfluoro resin having a cyclic structure in its main chain. When the fluorine resin is required to be transparent, it is more preferable to use an amorphous perfluoro resin.
そして、下地層となるフッ素樹脂として特に好ましいのは、重合体を構成するフッ素含有単量体に基づく繰り返し単位に、少なくとも1つの酸素原子(O)を含むフッ素樹脂である。かかるフッ素樹脂を特に好ましいとするのは、下地層表面に金属配線を形成する際、容易且つ好適に官能基を形成できるからである。尚、この繰返し単位中の酸素原子の数は、3を上限とするものが好ましい。
And, a fluorine resin containing at least one oxygen atom (O) in the repeating unit based on the fluorine-containing monomer constituting the polymer is particularly preferable as the fluorine resin to be the underlayer. Such a fluorine resin is particularly preferable because a functional group can be easily and suitably formed when forming a metal wiring on the surface of the underlayer. The upper limit of the number of oxygen atoms in this repeating unit is preferably three.
これらの点を考慮したときに好ましいフッ素樹脂としては、パーフルオロブテニルビニルエーテル重合体(CYTOP(登録商標):旭硝子株式会社)、テトラフルオロエチレンーパーフルオロジオキソール共重合体(TFE-PDD)、テフロン(登録商標)AF:三井・デュポン フロロケミカル株式会社)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、パーフルオロアルコキシ重合体(アルゴフロン(登録商標):ソルベイジャパン株式会社)等が挙げられる。
As a preferable fluorocarbon resin in consideration of these points, perfluorobutenyl vinyl ether polymer (CYTOP (registered trademark): Asahi Glass Co., Ltd.), tetrafluoroethylene-perfluorodioxole copolymer (TFE-PDD) , Teflon (registered trademark) AF: Mitsui-Dupont Fluorochemical Co., Ltd., tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), perfluoroalkoxy polymer (Algoflon (registered trademark): Solvay Japan Ltd.) Etc.
以上説明したフッ素樹脂からなる、第1の下地層の厚さは、0.01μm以上5μm以下とするのが好ましい。0.01μm未満では発液性が発揮され難くなる。また、下地層の透明性を維持するためには5μm程度を上限とするのが好ましい。この第1の下地層の厚さとは、下地層と基板との界面から下地層の最表面までの厚さであり、平均値を採用するのが好ましい。
The thickness of the first underlayer, which is made of the above-described fluororesin, is preferably 0.01 μm to 5 μm. If it is less than 0.01 μm, it is difficult to exhibit the liquid-ejecting property. In order to maintain the transparency of the underlayer, the upper limit is preferably about 5 μm. The thickness of the first underlayer is the thickness from the interface between the underlayer and the substrate to the outermost surface of the underlayer, and it is preferable to adopt an average value.
本発明に係る導電シートについて、以上説明したフッ素樹脂からなる下地層は、各種の分析手段によりその存在が確認できる。分析手段としては、SIMS(2次イオン質量分析)、XPS(X線光電子分光分析)、EPMA(電子線プローブマイクロ分析)、EDX(エネルギー分散型X線分析)等が適用できる。例えば、SIMSにより、導電シート断面における下地層或いは下地層の表面を対象として、任意箇所において炭素(C)、フッ素(F)の元素分析を行い、各元素の検出強度を測定して強度比(F/C)を算出し、フッ素樹脂の構成を推定することができる。このとき、フッ素の検出強度と炭素の検出強度との比(F/C)が1.0以上であるとき、上記した好適なフッ素樹脂(フッ素原子数と炭素原子数との比(F/C)が1.0以上である繰り返し単位を少なくとも1種有する重合体)と判定することができる。尚、このような分析では、複数箇所の分析を行って、強度比の平均値を採用するのが好ましい。
With respect to the conductive sheet according to the present invention, the presence of the underlying layer made of the fluorocarbon resin described above can be confirmed by various analysis means. As analysis means, SIMS (secondary ion mass spectrometry), XPS (X-ray photoelectron spectroscopy), EPMA (electron probe micro analysis), EDX (energy dispersive X-ray analysis), etc. can be applied. For example, elemental analysis of carbon (C) and fluorine (F) is performed at an arbitrary location on the surface of the underlayer or the underlayer in the cross section of the conductive sheet by SIMS to measure the detection intensity of each element and measure the intensity ratio ( F / C) can be calculated to estimate the configuration of the fluorine resin. At this time, when the ratio (F / C) of the detected intensity of fluorine to the detected intensity of carbon is 1.0 or more, the above-mentioned suitable fluororesin (ratio of the number of fluorine atoms to the number of carbon atoms (F / C) It can be determined that the polymer has at least one repeating unit of which 1.0) or more. In addition, in such analysis, it is preferable to analyze at a plurality of places and adopt the average value of the intensity ratio.
(B-1-2)第1の金属配線
以上説明したフッ素樹脂からなる下地層の上に、第1の金属配線が形成されて第1の電極層となる。ここで、第1の金属配線は、その構成材料として銀、金、白金、パラジウム、銅、ニッケルの少なくともいずれかよりなるものが好ましい。これらの金属は、導電性に優れ配線材料として有用である。特に、導電線の観点から銀を適用するのが好ましい。 (B-1-2) First Metal Wiring The first metal wiring is formed on the underlying layer made of the fluorine resin described above to form a first electrode layer. Here, the first metal wiring is preferably made of at least one of silver, gold, platinum, palladium, copper and nickel as a constituent material thereof. These metals are excellent in conductivity and useful as wiring materials. In particular, silver is preferably applied from the viewpoint of the conductive wire.
以上説明したフッ素樹脂からなる下地層の上に、第1の金属配線が形成されて第1の電極層となる。ここで、第1の金属配線は、その構成材料として銀、金、白金、パラジウム、銅、ニッケルの少なくともいずれかよりなるものが好ましい。これらの金属は、導電性に優れ配線材料として有用である。特に、導電線の観点から銀を適用するのが好ましい。 (B-1-2) First Metal Wiring The first metal wiring is formed on the underlying layer made of the fluorine resin described above to form a first electrode layer. Here, the first metal wiring is preferably made of at least one of silver, gold, platinum, palladium, copper and nickel as a constituent material thereof. These metals are excellent in conductivity and useful as wiring materials. In particular, silver is preferably applied from the viewpoint of the conductive wire.
第1の金属配線は、上記した金属のうち、1種の金属のみよりなるものの他、各金属が固溶した合金や各金属の混合体であっても良い。また、金属配線は、単層構造であっても良いが、多層構造を有するものでも良い。多層構造とするとき、同種金属で形成しても良いし、異種金属で形成しても良い。
The first metal wiring may be an alloy in which each metal is solid-solved or a mixture of each metal, in addition to a metal made of only one metal among the above-described metals. The metal wiring may have a single layer structure, but may have a multilayer structure. When it is set as a multilayer structure, you may form with a same metal, and you may form with a different metal.
更に、第1の金属配線は、その表面上に反射防止のために他の金属、化合物を備えていても良い。この反射防止のための金属、化合物は、層を形成していても良いし、粒子状で分散していても良い。また、第1の金属配線は、その表面状態を安定化するためにチオール化合物、脂肪酸等の単分子膜が形成されていても良い。
Furthermore, the first metal wiring may be provided with another metal or compound on its surface to prevent reflection. The metal or compound for preventing reflection may form a layer, or may be dispersed in the form of particles. In addition, in order to stabilize the surface state of the first metal wiring, a monomolecular film of a thiol compound, a fatty acid or the like may be formed.
第1の金属配線の寸法(厚さ、線幅)は限定されることはない。また、配線パターンの形状も特に限定されることはない。尚、タッチパネル等の用途を考慮し、可視領域を超えたミクロンオーダーの細線が好ましことから、金属配線の幅は、0.5μm以上8.0μm以下のものが好ましい。また、金属配線の厚さは、0.1μm以上1.0μm以下とするのが好ましい。多層構造の金属配線を形成するときは、合計の厚さを前記範囲にするのが好ましい。金属配線の幅、厚さは、平均値により規定するのが好ましい。
The dimensions (thickness, line width) of the first metal wiring are not limited. Also, the shape of the wiring pattern is not particularly limited. In addition, in consideration of applications such as a touch panel and the like, fine wires in the micron order exceeding the visible region are preferable, and therefore, the width of the metal wiring is preferably 0.5 μm or more and 8.0 μm or less. Further, the thickness of the metal wiring is preferably 0.1 μm or more and 1.0 μm or less. When forming a multilayer metal wiring, the total thickness is preferably in the above range. The width and thickness of the metal wiring are preferably defined by an average value.
尚、本発明における金属配線は、上記した本願出願人による金属配線の形成方法(特許文献1)により形成されたものが好ましい。この方法では、金属粒子が溶媒に分散したインクを塗布後、金属粒子同士を焼結させることで金属配線が形成される。この金属配線は、金属の粒子を前駆体としつつも、焼結により空隙のない緻密なバルク状の薄膜からなる。このとき、金属配線を構成する金属(銀及び銅)の純度は、99質量%以上である。
In addition, as for the metal wiring in this invention, what was formed by the formation method (patent document 1) of the metal wiring by the above-mentioned applicant of this application mentioned above is preferable. In this method, after applying the ink in which the metal particles are dispersed in the solvent, the metal particles are sintered to form the metal wiring. The metal wiring is made of a dense bulky thin film free of voids due to sintering while using metal particles as a precursor. At this time, the purity of the metal (silver and copper) constituting the metal wiring is 99% by mass or more.
(B-2)第2の電極層
本発明に係る導電シートの特徴は、上記第1の電極層の上に第2の電極層を積層し、片面2層構造を形成している点にある。この第2の電極層は、第2の電極層と同様の構成を有し、フッ素樹脂からなる第2の下地層と第2の金属配線とを含む。 (B-2) Second Electrode Layer A feature of the conductive sheet according to the present invention is that a second electrode layer is laminated on the first electrode layer to form a single-sided two-layer structure. . The second electrode layer has the same configuration as the second electrode layer, and includes a second underlayer made of fluorocarbon resin and a second metal wire.
本発明に係る導電シートの特徴は、上記第1の電極層の上に第2の電極層を積層し、片面2層構造を形成している点にある。この第2の電極層は、第2の電極層と同様の構成を有し、フッ素樹脂からなる第2の下地層と第2の金属配線とを含む。 (B-2) Second Electrode Layer A feature of the conductive sheet according to the present invention is that a second electrode layer is laminated on the first electrode layer to form a single-sided two-layer structure. . The second electrode layer has the same configuration as the second electrode layer, and includes a second underlayer made of fluorocarbon resin and a second metal wire.
(B-2-1)第2の下地層
第2の電極層の第2の下地層となるフッ素樹脂の構成は、基本的に第1の下地層と同様である。即ち、炭素(C)、フッ素(F)を含み、フッ素含有単量体に基づく繰り返し単位であって、フッ素原子数と炭素原子数との比(F/C)が1.0以上である繰り返し単位を少なくとも1種有する重合体が好ましい。また、このフッ素含有単量体に基づく繰り返し単位には、少なくとも1つの酸素原子(O)を含むものが好ましい。この第2の下地層に適用されるフッ素樹脂の好ましい具体例も、第1の下地層と同じである。 (B-2-1) Second Underlayer The configuration of the fluorine resin to be the second under layer of the second electrode layer is basically the same as that of the first under layer. That is, a repeating unit containing carbon (C) and fluorine (F) and based on a fluorine-containing monomer, wherein the ratio of the number of fluorine atoms to the number of carbon atoms (F / C) is 1.0 or more Polymers having at least one unit are preferred. Moreover, what contains at least 1 oxygen atom (O) in the repeating unit based on this fluorine-containing monomer is preferable. Preferred specific examples of the fluorine resin applied to the second underlayer are also the same as the first underlayer.
第2の電極層の第2の下地層となるフッ素樹脂の構成は、基本的に第1の下地層と同様である。即ち、炭素(C)、フッ素(F)を含み、フッ素含有単量体に基づく繰り返し単位であって、フッ素原子数と炭素原子数との比(F/C)が1.0以上である繰り返し単位を少なくとも1種有する重合体が好ましい。また、このフッ素含有単量体に基づく繰り返し単位には、少なくとも1つの酸素原子(O)を含むものが好ましい。この第2の下地層に適用されるフッ素樹脂の好ましい具体例も、第1の下地層と同じである。 (B-2-1) Second Underlayer The configuration of the fluorine resin to be the second under layer of the second electrode layer is basically the same as that of the first under layer. That is, a repeating unit containing carbon (C) and fluorine (F) and based on a fluorine-containing monomer, wherein the ratio of the number of fluorine atoms to the number of carbon atoms (F / C) is 1.0 or more Polymers having at least one unit are preferred. Moreover, what contains at least 1 oxygen atom (O) in the repeating unit based on this fluorine-containing monomer is preferable. Preferred specific examples of the fluorine resin applied to the second underlayer are also the same as the first underlayer.
尚、第2の下地層のフッ素樹脂は、第1の下地層と同じフッ素樹脂と同じであっても良い。また、上記の好ましい構成を具備するフッ素樹脂であれば、第2の下地層のフッ素樹脂は、第1の下地層とは相違するフッ素樹脂であっても良い。
The fluorocarbon resin of the second underlayer may be the same as the fluorocarbon resin of the first underlayer. Moreover, as long as it is a fluorine resin having the above-described preferable configuration, the fluorine resin of the second underlayer may be a fluorine resin different from the first underlayer.
第2の下地層について、第1の下地層との関連で重要な事項として、その厚さが挙げられる。第2の下地層は、第1の下地層と同じ厚さとしても良いが、0.04μm以上1μm以下とするのがより好ましい。つまり、第2の下地層の厚さの好適範囲は、第1の電極層の下地層の厚さの好適範囲よりも狭くなっている。
The thickness of the second underlayer is an important matter in the context of the first underlayer. The second underlayer may have the same thickness as the first underlayer, but is preferably 0.04 μm or more and 1 μm or less. That is, the preferred range of the thickness of the second underlayer is narrower than the preferred range of the thickness of the underlayer of the first electrode layer.
上記のように、第2の下地層の厚さの下限値(0.04μm)は、第1の下地層の厚さの下限値(0.01μm)よりも厚いことが好ましい。これは、第2の下地層が薄すぎると、その上に形成される金属配線(第2の金属配線)が設計通りの線幅とならないときがある。具体的に説明すると、第2の金属配線形成の際には、第2の下地層表面に官能基形成のために露光処理を行うこととなる。このとき、第2の下地層が薄すぎると、露光処理のためのフォトマスクとの密着が不十分になることがあり、所望の線幅の露光パターンが形成されないことがある。その結果、全体的或いは部分的に、第2の配線の線幅が太くなることがある。また、このような金属配線の品質の問題に加えて、第2の下地層が薄すぎると、導電シートが曲げ変形を受けたときに下地層付近に破れが生じる可能性がある。以上のような理由により、第2の下地層厚さの下限値を設定している。
As described above, the lower limit (0.04 μm) of the thickness of the second underlayer is preferably thicker than the lower limit (0.01 μm) of the thickness of the first underlayer. This is because, if the second underlayer is too thin, the metal wiring (second metal wiring) formed thereon may not have the designed line width. Specifically, in forming the second metal wiring, the exposure process is performed on the surface of the second underlayer to form a functional group. At this time, if the second underlayer is too thin, adhesion with a photomask for exposure processing may be insufficient, and an exposure pattern with a desired line width may not be formed. As a result, the line width of the second wiring may be increased in whole or in part. Moreover, in addition to the problem of the quality of such metal wiring, when the second underlayer is too thin, a break may occur in the vicinity of the underlayer when the conductive sheet is subjected to bending deformation. For the above reasons, the lower limit value of the second underlying layer thickness is set.
一方、第2の下地層の厚さの上限値(1μm)は、第1の下地層の厚さの上限値(5μm)よりも薄いことが好ましい。これは、第2の下地層が過度に厚くなると、導電シート変形時の金属配線の変形率(曲率)の差異が大きくなり、導電シートの曲げ強度が確保し難くなるからである。また、第2の下地層が過度に厚いと、透明性確保にも支障が生じる。このように、本発明では、第1、第2の電極層を積層させているが、単純に積層させるのではなく、第2の下地層による影響を考慮した条件設定を行うことが好ましい。
On the other hand, the upper limit (1 μm) of the thickness of the second underlayer is preferably thinner than the upper limit (5 μm) of the thickness of the first underlayer. This is because when the second underlayer is excessively thick, the difference in the deformation rate (curvature) of the metal wiring at the time of deformation of the conductive sheet becomes large, and it becomes difficult to secure the bending strength of the conductive sheet. In addition, when the second underlayer is excessively thick, the transparency may be impaired. As described above, in the present invention, the first and second electrode layers are stacked, but it is preferable to set conditions in consideration of the influence of the second underlayer, instead of simply stacking the first and second electrode layers.
第2の下地層の厚さとは、第2の下地層と第1の金属配線との界面、若しくは、後述する中間層が適用される場合には第2の下地層と中間層との界面を起点とし、この起点から第2の下地層の最表面までの距離とする。この第2の下地層の厚さも、複数個所の平均値を採用するのが好ましい。
The thickness of the second underlayer means the interface between the second underlayer and the first metal wiring, or the interface between the second underlayer and the intermediate layer when the intermediate layer described later is applied. The starting point is the distance from this starting point to the outermost surface of the second underlayer. As for the thickness of the second underlayer, it is preferable to adopt an average value at a plurality of places.
(B-2-2)第2の金属配線
第2の金属配線についても、第1の金属の配線と同様の構成を適用することが好ましい。即ち、第2の金属配線は、銀、金、白金、パラジウム、銅、ニッケルの少なくともいずれかよりなるものが好ましい。第2の金属配線は、これらの1種の金属のみからなるものでも良いし、合金・混合体であっても良い。また、単層構造又は多層構造をとることができる。更に、金属配線の上に他の金属、化合物を備えていても良い。 (B-2-2) Second Metal Wiring It is preferable to apply the same configuration as the first metal wiring also to the second metal wiring. That is, the second metal wiring is preferably made of at least one of silver, gold, platinum, palladium, copper and nickel. The second metal wiring may be made of only one of these metals, or may be an alloy / mixture. In addition, a single layer structure or a multilayer structure can be employed. Furthermore, other metals and compounds may be provided on the metal wiring.
第2の金属配線についても、第1の金属の配線と同様の構成を適用することが好ましい。即ち、第2の金属配線は、銀、金、白金、パラジウム、銅、ニッケルの少なくともいずれかよりなるものが好ましい。第2の金属配線は、これらの1種の金属のみからなるものでも良いし、合金・混合体であっても良い。また、単層構造又は多層構造をとることができる。更に、金属配線の上に他の金属、化合物を備えていても良い。 (B-2-2) Second Metal Wiring It is preferable to apply the same configuration as the first metal wiring also to the second metal wiring. That is, the second metal wiring is preferably made of at least one of silver, gold, platinum, palladium, copper and nickel. The second metal wiring may be made of only one of these metals, or may be an alloy / mixture. In addition, a single layer structure or a multilayer structure can be employed. Furthermore, other metals and compounds may be provided on the metal wiring.
また、第2の金属配線の寸法、形状も限定されることはない。よって、第2の金属配線の幅についても、0.5μm以上8.0μm以下のものが好ましい。また、第2の金属配線の厚さとしては、0.1μm以上1.0μm以下とするのが好ましい。
In addition, the size and shape of the second metal wiring are not limited. Therefore, the width of the second metal wiring is preferably 0.5 μm or more and 8.0 μm or less. The thickness of the second metal wiring is preferably 0.1 μm or more and 1.0 μm or less.
第2の金属配線は、第1の金属配線と同じ金属で構成されても良いが、異なる金属を適用しても良い。例えば、第1の金属配線で銀を適用しつつ、第2の金属配線で銅を適用しても良い。尚、金属配線のパターン形状も制約を受けないが、第1の金属配線と、第2の金属配線とが交差してメッシュパターンを形成するようにするのが一般的である。
The second metal wire may be made of the same metal as the first metal wire, but a different metal may be applied. For example, copper may be applied to the second metal interconnection while silver is applied to the first metal interconnection. Although the pattern shape of the metal wiring is not restricted either, it is general that the first metal wiring and the second metal wiring intersect to form a mesh pattern.
ここで、第1の電極層との関連における第2の電極層の好ましい形態としては、それらの層間距離を1.2μm以上4.5μm以下することが好ましい。この層間距離とは、第1の金属配線の底面と第2の金属配線の底面との距離である。このように第1の電極層と第2の電極層との層間距離を規定するのは、層間距離が小さすぎる場合、導電シートの静電容量が過大になる箇所が局所的に発生し、面内でセンサー感度の差異が生じて誤作動を起こす可能性があるからである。本件においては、片面2層構造を採用しつつ、第1、第2下地層としてフッ素樹脂からなる層が形成されている。それら各構成の影響を考慮しつつ、静電容量の面内の安定性確保のため、層間距離の下限値を上記のように設定した。
Here, as a preferable form of the second electrode layer in relation to the first electrode layer, it is preferable to set the distance between them to 1.2 μm or more and 4.5 μm or less. The interlayer distance is the distance between the bottom of the first metal wire and the bottom of the second metal wire. As described above, when the interlayer distance between the first electrode layer and the second electrode layer is defined as too small, a location where the capacitance of the conductive sheet becomes excessive locally occurs if the interlayer distance is too small. This is because a difference in sensor sensitivity may occur internally, which may cause a malfunction. In the present case, while employing a single-sided two-layer structure, layers made of fluorocarbon resin are formed as the first and second underlayers. The lower limit value of the interlayer distance was set as described above in order to secure the in-plane stability of the capacitance in consideration of the influence of each of the configurations.
一方、層間距離の上限値を上記のように設定したのは、層間距離が過大となると、曲げ変形による第2の金属配線の断線のおそれが生じる。また、導電シートの低背化に反するからである。
On the other hand, the upper limit value of the interlayer distance is set as described above. If the interlayer distance is too large, the second metal wiring may be broken due to bending deformation. Moreover, it is because it violates the shortening of the conductive sheet.
(B-4)電極層の任意的構成
上記のとおり、本発明の電極層は、第1の電極層と第2の電極層の2層を基本的構成とする。但し、本発明では、これらに加え、任意的に他の構成の存在を許容する。具体的には、第1電極層と第2電極層との間における中間層と、第2電極層上のコーティング層が挙げられる。 (B-4) Optional Configuration of Electrode Layer As described above, the electrode layer of the present invention basically has two layers of the first electrode layer and the second electrode layer. However, in the present invention, in addition to these, the presence of another configuration is optionally permitted. Specifically, an intermediate layer between the first electrode layer and the second electrode layer, and a coating layer on the second electrode layer can be mentioned.
上記のとおり、本発明の電極層は、第1の電極層と第2の電極層の2層を基本的構成とする。但し、本発明では、これらに加え、任意的に他の構成の存在を許容する。具体的には、第1電極層と第2電極層との間における中間層と、第2電極層上のコーティング層が挙げられる。 (B-4) Optional Configuration of Electrode Layer As described above, the electrode layer of the present invention basically has two layers of the first electrode layer and the second electrode layer. However, in the present invention, in addition to these, the presence of another configuration is optionally permitted. Specifically, an intermediate layer between the first electrode layer and the second electrode layer, and a coating layer on the second electrode layer can be mentioned.
(B-4-1)中間層
本発明の導電シートは、第1の電極層と第2の電極層との間に、誘電体又は絶縁体からなる中間層を少なくとも1層含むことができる。この中間層は、第1の電極層の第1の金属配線について、マイグレーション防止、防湿・酸化防止、剥離防止等を目的として形成される。また、中間層の適用は、前記した各種機能と同時に、第2の電極層(第2の下地層)を形成する際の、平滑性を確保するために適用されることがある。また、第1の電極層の上に中間層を適用することで、第2の下地層を形成する面を平坦にして、下地層を均等に形成することができる。第2の下地層を平坦にするためには、第1の電極層の上に第2の下地層となるフッ素樹脂を厚塗りしても良い。但し、この場合、第2の下地層が過度に厚くなる可能性がある。また、本発明で下地層として好適とされるフッ素樹脂は高価なものが多い。中間層は、第2の下地層の平坦性を確保しつつ、導電シートの製造コストを調整する作用も有する。 (B-4-1) Intermediate Layer The conductive sheet of the present invention can include at least one intermediate layer made of a dielectric or an insulator between the first electrode layer and the second electrode layer. The intermediate layer is formed on the first metal wiring of the first electrode layer for the purpose of preventing migration, preventing moisture, preventing oxidation, preventing peeling, and the like. Further, application of the intermediate layer may be applied to secure smoothness when forming the second electrode layer (second base layer) simultaneously with the various functions described above. In addition, by applying the intermediate layer on the first electrode layer, the surface on which the second underlayer is formed can be made flat, and the underlayer can be formed uniformly. In order to make the second underlayer flat, a fluorine resin to be the second underlayer may be thickly coated on the first electrode layer. However, in this case, the second underlayer may be excessively thick. In addition, many fluorocarbon resins suitable as the underlayer in the present invention are expensive. The intermediate layer also has an effect of adjusting the manufacturing cost of the conductive sheet while securing the flatness of the second underlayer.
本発明の導電シートは、第1の電極層と第2の電極層との間に、誘電体又は絶縁体からなる中間層を少なくとも1層含むことができる。この中間層は、第1の電極層の第1の金属配線について、マイグレーション防止、防湿・酸化防止、剥離防止等を目的として形成される。また、中間層の適用は、前記した各種機能と同時に、第2の電極層(第2の下地層)を形成する際の、平滑性を確保するために適用されることがある。また、第1の電極層の上に中間層を適用することで、第2の下地層を形成する面を平坦にして、下地層を均等に形成することができる。第2の下地層を平坦にするためには、第1の電極層の上に第2の下地層となるフッ素樹脂を厚塗りしても良い。但し、この場合、第2の下地層が過度に厚くなる可能性がある。また、本発明で下地層として好適とされるフッ素樹脂は高価なものが多い。中間層は、第2の下地層の平坦性を確保しつつ、導電シートの製造コストを調整する作用も有する。 (B-4-1) Intermediate Layer The conductive sheet of the present invention can include at least one intermediate layer made of a dielectric or an insulator between the first electrode layer and the second electrode layer. The intermediate layer is formed on the first metal wiring of the first electrode layer for the purpose of preventing migration, preventing moisture, preventing oxidation, preventing peeling, and the like. Further, application of the intermediate layer may be applied to secure smoothness when forming the second electrode layer (second base layer) simultaneously with the various functions described above. In addition, by applying the intermediate layer on the first electrode layer, the surface on which the second underlayer is formed can be made flat, and the underlayer can be formed uniformly. In order to make the second underlayer flat, a fluorine resin to be the second underlayer may be thickly coated on the first electrode layer. However, in this case, the second underlayer may be excessively thick. In addition, many fluorocarbon resins suitable as the underlayer in the present invention are expensive. The intermediate layer also has an effect of adjusting the manufacturing cost of the conductive sheet while securing the flatness of the second underlayer.
上記機能を発揮する中間層の材質としては、例えば、フッ素樹脂、アクリル樹脂、エポキシ樹脂、アルキド樹脂、ビニル樹脂、フェノール樹脂、ケイ素樹脂等の樹脂が挙げられる。特に、マイグレーション防止のための中間層を適用することが好ましい。このマイグレーション防止剤の具体例として、DURASURF(株式会社ハーベス製)、KP-911(信越化学工業株式会社製)、METAX(カントーカセイ株式会社製)等の商品名のフッ素樹脂が挙げられる。また、メタンチオール、エタンチオール、チオフェノール、システイン、グルタチオン、デカンチオール、オクタデカンチオール、トリアジンチオール等の硫黄化合物を配合したマイグレーション防止剤も知られている。
As a material of the intermediate | middle layer which exhibits the said function, resin, such as a fluoro resin, an acrylic resin, an epoxy resin, an alkyd resin, a vinyl resin, a phenol resin, a silicon resin, is mentioned, for example. In particular, it is preferable to apply an intermediate layer for preventing migration. Specific examples of this migration inhibitor include fluororesins of trade names such as DURASURF (manufactured by Herbes Co., Ltd.), KP-911 (manufactured by Shin-Etsu Chemical Co., Ltd.), and METAX (manufactured by Kanto Kasei Co., Ltd.). Also known are migration inhibitors containing sulfur compounds such as methanethiol, ethanethiol, thiophenol, cysteine, glutathione, decanethiol, octadecanethiol, triazinethiol and the like.
中間層は、上記のような多用な機能を有し、1種類の材料を単独で使用して複数の機能を発揮する場合がある。中間層は、単層で形成されていても良いが、複数種類を組み合わせて適用しても良い。中間層の厚さは、合計で1μm以上3μm以下とするのが好ましい。中間層が1μm未満であると、特に、導電シートを曲げ変形したときに、第1の金属配線と第2の金属配線が繋がるおそれがある。また、中間層の厚さは、層間距離(第1の金属配線の底面と第2の金属配線の底面との距離)に影響を与えるので、この点も考慮すると、中間層の厚さは1μm以上とするのが好ましい。
The intermediate layer may have various functions as described above, and may use one type of material alone to perform a plurality of functions. The intermediate layer may be formed of a single layer, but a plurality of types may be combined and applied. The thickness of the intermediate layer is preferably 1 μm to 3 μm in total. When the intermediate layer is less than 1 μm, in particular, when the conductive sheet is bent and deformed, the first metal wiring and the second metal wiring may be connected. In addition, the thickness of the intermediate layer affects the interlayer distance (the distance between the bottom surface of the first metal wiring and the bottom surface of the second metal wiring). Therefore, considering this point, the thickness of the intermediate layer is 1 μm It is preferable to set it as the above.
一方、中間層の厚さが大きくなると、曲げ変形時の第2の金属配線の断線が懸念される。また、中間層は、適用する材料によっては塗布後に焼成処理が必要なものある。このとき、中間層の厚さが過剰であると焼成時の収縮量が大きくなってしまい、その下の第1電極層を変形させて断線を生じさせることがある。このことから、中間層の厚さは3μmを上限とするのが好ましい。尚、中間層の厚さとは、中間層と第1の金属配線との界面と、中間層の最表面との間の距離とする。この厚さも複数個所の平均値を採用するのが好ましい。
On the other hand, if the thickness of the intermediate layer is increased, there is a concern that the second metal wiring may be broken at the time of bending deformation. In addition, the intermediate layer may need to be baked after application depending on the material to be applied. At this time, if the thickness of the intermediate layer is excessive, the amount of contraction at the time of firing becomes large, and the first electrode layer therebelow may be deformed to cause disconnection. From this, it is preferable to set the thickness of the intermediate layer to 3 μm as the upper limit. The thickness of the intermediate layer is the distance between the interface between the intermediate layer and the first metal wiring and the outermost surface of the intermediate layer. It is preferable to adopt an average value of a plurality of places as this thickness.
(B-4-2)コーティング層
本発明に係る導電シートの電極層は、上記した中間層に加えて、第2の電極層の表面上に、少なくとも1層のコーティング層を含むことができる。このコーティング層も、中間層と同様の機能を有し、第2の電極層の第2の金属配線について、マイグレーション防止、防湿・酸化防止、剥離防止等を目的として形成される。従って、中間層と同様の材料を適用することができる。また、コーティング層は、中間層とは相違し、導電シートの最表面に近いので、傷防止、他フィルムとの接着等のための比較的硬質のトップコートを適用することがある。トップコートの材質としては、フッ素樹脂、アクリル樹脂、エポキシ樹脂、アルキド樹脂、ビニル樹脂、フェノール樹脂、ケイ素樹脂等が挙げられる。 (B-4-2) Coating Layer The electrode layer of the conductive sheet according to the present invention can include at least one coating layer on the surface of the second electrode layer, in addition to the above-described intermediate layer. This coating layer also has the same function as the intermediate layer, and is formed for the purpose of preventing migration, preventing moisture, preventing oxidation, preventing peeling, and the like for the second metal wiring of the second electrode layer. Therefore, the same material as the intermediate layer can be applied. Also, since the coating layer is different from the intermediate layer and close to the outermost surface of the conductive sheet, a relatively hard top coat may be applied for scratch prevention, adhesion with other films, and the like. The material of the top coat may, for example, be a fluorine resin, an acrylic resin, an epoxy resin, an alkyd resin, a vinyl resin, a phenol resin or a silicon resin.
本発明に係る導電シートの電極層は、上記した中間層に加えて、第2の電極層の表面上に、少なくとも1層のコーティング層を含むことができる。このコーティング層も、中間層と同様の機能を有し、第2の電極層の第2の金属配線について、マイグレーション防止、防湿・酸化防止、剥離防止等を目的として形成される。従って、中間層と同様の材料を適用することができる。また、コーティング層は、中間層とは相違し、導電シートの最表面に近いので、傷防止、他フィルムとの接着等のための比較的硬質のトップコートを適用することがある。トップコートの材質としては、フッ素樹脂、アクリル樹脂、エポキシ樹脂、アルキド樹脂、ビニル樹脂、フェノール樹脂、ケイ素樹脂等が挙げられる。 (B-4-2) Coating Layer The electrode layer of the conductive sheet according to the present invention can include at least one coating layer on the surface of the second electrode layer, in addition to the above-described intermediate layer. This coating layer also has the same function as the intermediate layer, and is formed for the purpose of preventing migration, preventing moisture, preventing oxidation, preventing peeling, and the like for the second metal wiring of the second electrode layer. Therefore, the same material as the intermediate layer can be applied. Also, since the coating layer is different from the intermediate layer and close to the outermost surface of the conductive sheet, a relatively hard top coat may be applied for scratch prevention, adhesion with other films, and the like. The material of the top coat may, for example, be a fluorine resin, an acrylic resin, an epoxy resin, an alkyd resin, a vinyl resin, a phenol resin or a silicon resin.
コーティング層も単層で形成されていても良いし、複数種類を組み合わせて適用しても良い。コーティング層の厚さについては、その用途及び使用材料によって調整可能であるが、合計で1μm以上3μm以下とするのが好ましい。例えば、第2の電極層の傷防止のために前記範囲とすることが好ましい。尚、コーティング層の厚さとは、コーティング層と第2の金属配線との界面と、コーティング層の最表面との間の距離とする。この厚さも複数個所の平均値を採用するのが好ましい。
The coating layer may also be formed as a single layer, or a plurality of types may be combined and applied. The thickness of the coating layer can be adjusted depending on the application and the material used, but it is preferable that the total thickness is 1 μm or more and 3 μm or less. For example, it is preferable to set it as the said range for wound prevention of a 2nd electrode layer. The thickness of the coating layer is the distance between the interface between the coating layer and the second metal wiring and the outermost surface of the coating layer. It is preferable to adopt an average value of a plurality of places as this thickness.
以上説明した、中間層及びコーティング層を含む本発明の導電シート構成例を図3に示す。この図では、中間層及びコーティング層の厚さの意義について、それらの理解を補助するための説明も付加している。
An example of the conductive sheet according to the present invention including the intermediate layer and the coating layer described above is shown in FIG. In this figure, the meaning of the thickness of the intermediate layer and the coating layer is also added to help understand them.
(II)本発明に係る導電シートの特性と利用態様
以上説明した本発明に係る導電シートは、基材、電極層(第1、第2の下地層、金属配線、中間層、コーティング層)の各構成の材質、厚さを的確にすることで、透明性を有するものが好ましい。具体的な基準としては、第2の電極層側から入射したときのJIS K7361-1に基づく全光線透過率が85%以上である。この透過率は、濁度計(曇り度計)を用いて、第2の電極層側から光を入射させて測定し、複数測定した平均値を採用するのが好ましい。 (II) Characteristics and Use Aspects of the Conductive Sheet According to the Present Invention The conductive sheet according to the present invention described above comprises the base material and the electrode layer (first and second underlayers, metal wiring, intermediate layer, coating layer) It is preferable to have transparency by appropriately adjusting the material and thickness of each component. As a specific reference, the total light transmittance based on JIS K7361-1 when incident from the second electrode layer side is 85% or more. It is preferable that this transmittance | permeability makes a light enter from the 2nd electrode layer side using a turbidity meter (cloudiness meter), measures it, and it is preferable to employ | adopt two or more average value.
以上説明した本発明に係る導電シートは、基材、電極層(第1、第2の下地層、金属配線、中間層、コーティング層)の各構成の材質、厚さを的確にすることで、透明性を有するものが好ましい。具体的な基準としては、第2の電極層側から入射したときのJIS K7361-1に基づく全光線透過率が85%以上である。この透過率は、濁度計(曇り度計)を用いて、第2の電極層側から光を入射させて測定し、複数測定した平均値を採用するのが好ましい。 (II) Characteristics and Use Aspects of the Conductive Sheet According to the Present Invention The conductive sheet according to the present invention described above comprises the base material and the electrode layer (first and second underlayers, metal wiring, intermediate layer, coating layer) It is preferable to have transparency by appropriately adjusting the material and thickness of each component. As a specific reference, the total light transmittance based on JIS K7361-1 when incident from the second electrode layer side is 85% or more. It is preferable that this transmittance | permeability makes a light enter from the 2nd electrode layer side using a turbidity meter (cloudiness meter), measures it, and it is preferable to employ | adopt two or more average value.
以上説明した本発明に係る導電シートの特に好適な利用態様は、タッチパネルの構成部材である。例えば、本発明に係る導電シートに、カバーガラスや保護フィルムを貼り合せると共に、接続コネクタ(FPCコネクタ等)を接合し、更に、外部コントローラーICに接続することで、タッチパネルを形成することができる。図4に、本発明に係る導電シートから、タッチパネルを構成する過程の一例を説明する。本発明の導電シートを含むタッチパネルは、曲げ変形による電極の損傷に対する耐性に優れ、また、各層の厚さを最適化することで薄型化にも対応できる。
A particularly preferred mode of use of the conductive sheet according to the present invention described above is a component of a touch panel. For example, a touch panel can be formed by bonding a cover glass or a protective film to the conductive sheet according to the present invention, bonding a connection connector (FPC connector or the like), and further connecting to an external controller IC. An example of the process of comprising a touch panel from the electroconductive sheet which concerns on FIG. 4 at this invention is demonstrated. The touch panel including the conductive sheet of the present invention is excellent in the resistance to the damage of the electrode due to the bending deformation, and can be made thin by optimizing the thickness of each layer.
(III)本発明に係る導電シートの製造方法
次に、本発明に係る導電シートの製造方法について説明する。これまで述べたように、本発明に係る導電シートは、上記した本願出願人による金属配線の形成方法(特許文献1)を応用して、基板の片面に第1、第2の電極層を順次積層することで製造される。即ち、本発明に係る導電シートの製造方法は、基板の片面に、第1の電極層と第2の電極層とをこの順で形成する工程を含み、第1及び第2の電極層を、下記の(a)~(c)の工程を含む方法で形成して導電シートを製造する方法である。 (III) Method of Manufacturing Conductive Sheet According to the Present Invention Next, a method of manufacturing a conductive sheet according to the present invention will be described. As described above, the conductive sheet according to the present invention is formed by sequentially applying the first and second electrode layers on one side of the substrate by applying the above-described method of forming a metal wiring (Patent Document 1) by the applicant of the present invention. Manufactured by laminating. That is, the method for producing a conductive sheet according to the present invention includes the steps of forming a first electrode layer and a second electrode layer in this order on one side of a substrate, and forming the first and second electrode layers This is a method of producing a conductive sheet by a method including the following steps (a) to (c).
次に、本発明に係る導電シートの製造方法について説明する。これまで述べたように、本発明に係る導電シートは、上記した本願出願人による金属配線の形成方法(特許文献1)を応用して、基板の片面に第1、第2の電極層を順次積層することで製造される。即ち、本発明に係る導電シートの製造方法は、基板の片面に、第1の電極層と第2の電極層とをこの順で形成する工程を含み、第1及び第2の電極層を、下記の(a)~(c)の工程を含む方法で形成して導電シートを製造する方法である。 (III) Method of Manufacturing Conductive Sheet According to the Present Invention Next, a method of manufacturing a conductive sheet according to the present invention will be described. As described above, the conductive sheet according to the present invention is formed by sequentially applying the first and second electrode layers on one side of the substrate by applying the above-described method of forming a metal wiring (Patent Document 1) by the applicant of the present invention. Manufactured by laminating. That is, the method for producing a conductive sheet according to the present invention includes the steps of forming a first electrode layer and a second electrode layer in this order on one side of a substrate, and forming the first and second electrode layers This is a method of producing a conductive sheet by a method including the following steps (a) to (c).
(a)基板にフッ素樹脂を塗布して下地層を形成する工程。
(b)前記下地層の金属配線を形成する部位に官能基を形成する工程。
(c)アミン化合物からなる保護剤A、及び、脂肪酸からなる保護剤Bにより保護された金属微粒子が溶媒に分散してなる金属インクを、前記基板表面に塗布し、前記金属微粒子を下地層に固定することで金属配線を形成する工程。 (A) A step of applying a fluorine resin to a substrate to form an underlayer.
(B) forming a functional group at a portion of the underlying layer where the metal wiring is formed.
(C) A metal ink comprising a protective agent A comprising an amine compound and metal fine particles protected by a protective agent B comprising a fatty acid dispersed in a solvent is applied to the surface of the substrate, and the metal fine particles are applied to the underlayer. The process of forming metal wiring by fixing.
(b)前記下地層の金属配線を形成する部位に官能基を形成する工程。
(c)アミン化合物からなる保護剤A、及び、脂肪酸からなる保護剤Bにより保護された金属微粒子が溶媒に分散してなる金属インクを、前記基板表面に塗布し、前記金属微粒子を下地層に固定することで金属配線を形成する工程。 (A) A step of applying a fluorine resin to a substrate to form an underlayer.
(B) forming a functional group at a portion of the underlying layer where the metal wiring is formed.
(C) A metal ink comprising a protective agent A comprising an amine compound and metal fine particles protected by a protective agent B comprising a fatty acid dispersed in a solvent is applied to the surface of the substrate, and the metal fine particles are applied to the underlayer. The process of forming metal wiring by fixing.
ここで、本発明の方法に関し、(a)~(c)の第1、第2の電極層の形成工程について詳細に説明する。各電極層の形成にあたっては、まず、基板にフッ素樹脂を塗布して下地層を形成する((a)工程)。基板及びフッ素樹脂の材質等については、上述のとおりである。
Here, the steps of forming the first and second electrode layers of (a) to (c) will be described in detail with respect to the method of the present invention. In forming each electrode layer, first, a fluorine resin is applied to the substrate to form an underlayer (step (a)). The materials and the like of the substrate and the fluorine resin are as described above.
フッ素樹脂の塗布の際、フッ素樹脂を適宜の溶媒に溶解させたものを塗布することで対応できる。塗布後は焼成することでフッ素樹脂からなる下地層が形成される。フッ素樹脂の塗布方法としては、ディッピング、スピンコート、ロールコーター等特に限定されない。フッ素樹脂を塗布した後は、適宜の後処理(乾燥処理、焼成処理)を行い、下地層を形成する。以上のフッ素樹脂の塗布は、少なくとも金属配線を形成する領域において行うこととし、必ずしも基板全面に塗布する必要はない。
In the case of application | coating of a fluorine resin, it can respond by apply | coating what melt | dissolved the fluorine resin in the suitable solvent. After application, baking is performed to form an underlayer made of a fluorocarbon resin. It does not specifically limit as a coating method of a fluorine resin, such as dipping, a spin coat, a roll coater. After the fluorine resin is applied, appropriate post-treatments (drying and baking) are performed to form an underlayer. The above-described application of the fluorine resin is performed at least in the region where the metal wiring is to be formed, and does not necessarily have to be applied over the entire surface of the substrate.
次に、下地層であるフッ素樹脂表面に官能基を形成する((b)工程)。この官能基とは、フッ素樹脂の共有結合を切断することで形成される官能基である。具体的には、カルボキシ基、ヒドロキシ基、カルボニル基が形成される。
Next, functional groups are formed on the surface of the fluorocarbon resin which is the underlayer (step (b)). This functional group is a functional group formed by cleaving the covalent bond of the fluorocarbon resin. Specifically, a carboxy group, a hydroxy group and a carbonyl group are formed.
フッ素樹脂表面への官能基形成の処理方法としては、紫外線照射、コロナ放電処理、プラズマ放電処理、エキシマレーザー照射による。これらの処理は、フッ素樹脂表面に光化学反応を生じさせて共有結合を切断するものであり、適度なエネルギーの印加処理であることが必要である。パターン形成部に対する印加エネルギー量は、1mJ/cm2以上4000mJ/cm2以下を目安とするのが好ましい。例えば、紫外線照射による場合、波長が10nm以上380nm以下の範囲の紫外線照射が好ましく、特に好ましくは、波長が100nm以上200nm以下の範囲の紫外線を照射する。
As a treatment method of functional group formation to the fluorocarbon resin surface, it is by ultraviolet irradiation, corona discharge treatment, plasma discharge treatment, excimer laser irradiation. In these treatments, a photochemical reaction is caused on the surface of the fluorine resin to break covalent bonds, and it is necessary that the treatment is appropriate energy application treatment. The amount of energy applied to the pattern forming portion is preferably about 1 mJ / cm 2 or more and 4000 mJ / cm 2 or less. For example, in the case of UV irradiation, UV irradiation with a wavelength of 10 nm or more and 380 nm or less is preferable, and particularly preferably, UV light with a wavelength of 100 nm or more and 200 nm or less is irradiated.
フッ素樹脂表面への紫外線照射等においては、一般にフォトマスク(レチクル)を使用した露光処理がなされる。本発明では露光方式に関しては、非接触の露光方式(プロキシミティ露光、プロジェクション露光)と接触の露光方式(コンタクト露光)のいずれも適用できる。プロキシミティ露光においては、マスクとフッ素樹脂表面との間隔は、10μm以下とするのが好ましく、3μm以下とするのがより好ましい。
In the irradiation of ultraviolet light onto the surface of the fluorine resin, an exposure process using a photomask (reticle) is generally performed. In the present invention, as the exposure method, either a non-contact exposure method (proximity exposure, projection exposure) or a contact exposure method (contact exposure) can be applied. In proximity exposure, the distance between the mask and the surface of the fluorine resin is preferably 10 μm or less, more preferably 3 μm or less.
以上のようにして、基板にフッ素樹脂からなる下地層を形成し、金属配線形成部に対する官能基形成処理を行った後、この基板を金属インクに接触させて金属配線を形成する((c)工程)。金属インクとは、所定の保護剤と結合状態にある金属粒子を溶剤に分散させて構成された金属粒子分散液である。本発明において金属配線の形成を適切に行うため、好適な金属インクの構成とは以下のようなものである。
As described above, after forming the base layer made of fluorocarbon resin on the substrate and performing the functional group formation processing on the metal wiring formation portion, the substrate is brought into contact with the metal ink to form the metal wiring ((c) Process). The metal ink is a metal particle dispersion liquid in which a metal particle in a bonding state with a predetermined protective agent is dispersed in a solvent. In order to appropriately form the metal wiring in the present invention, the configuration of a suitable metal ink is as follows.
金属インクにおいて、分散する金属粒子は、上記のとおり、銀、金、白金、パラジウム、銅の少なくともいずれかの金属よりなる。金属粒子は、平均粒径が0.005μm(5nm)以上0.1μm(100nm以下)のものが好ましい。微細な配線パターンを形成するためには0.03μm(30nm)以下の粒径とすることが好ましい。一方、過度に微細な金属粒子は凝集し易く取り扱い性に劣ることとなる。
In the metal ink, the dispersed metal particles are made of at least one of silver, gold, platinum, palladium and copper as described above. The metal particles preferably have an average particle diameter of 0.005 μm (5 nm) or more and 0.1 μm (100 nm or less). In order to form a fine wiring pattern, the particle diameter is preferably 0.03 μm (30 nm) or less. On the other hand, excessively fine metal particles are easily aggregated and inferior in handleability.
金属インクで使用される保護剤とは、金属粒子の凝集・粗大化を抑制し、分散状態を安定させるための添加物である。金属粒子の凝集・粗大化は、分散液の保管や使用時の金属の沈殿の要因になるばかりでなく、基板に接合させた後の焼結特性に影響を及ぼすことから回避されなければならない。また、本発明においては、保護剤は、基板上のフッ素樹脂からなる下地層表面の官能基と置換することで金属を固定するためのマーカーとしての作用も有する。
The protective agent used in the metal ink is an additive for suppressing aggregation and coarsening of metal particles and stabilizing the dispersion state. The aggregation and coarsening of the metal particles not only cause the metal to precipitate during storage and use of the dispersion, but also must be avoided from affecting the sintering characteristics after bonding to the substrate. Further, in the present invention, the protective agent also acts as a marker for fixing the metal by substituting the functional group on the surface of the underlayer made of a fluorocarbon resin on the substrate.
ここで、本発明で使用する金属インクの保護剤は、基本構造の相違する2系統の化合物を複合的に使用することが好ましい。具体的には、保護剤Aと保護剤Bの2種の保護剤を使用することとし、保護剤Aとしてアミンを、保護剤Bとして脂肪酸を適用するのが好ましい。
Here, as the protective agent for the metal ink used in the present invention, it is preferable to use two kinds of compounds having different basic structures in combination. Specifically, it is preferable to use two kinds of protecting agents, protecting agent A and protecting agent B, to apply an amine as the protecting agent A and a fatty acid as the protecting agent B.
保護剤Aであるアミン化合物は、その炭素数の総和が4以上12以下であるものが好ましい。これは、アミンの炭素数が金属粒子の安定性、パターン形成時の焼結特性に影響を及ぼすからである。
The amine compound which is the protective agent A preferably has a total carbon number of 4 or more and 12 or less. This is because the carbon number of the amine affects the stability of the metal particles and the sintering characteristics during pattern formation.
また、アミン化合物中のアミノ基の数としては、アミノ基が1つである(モノ)アミンや、アミノ基を2つ有するジアミンを適用できる。また、アミノ基に結合する炭化水素基の数は、1つ又は2つが好ましく、すなわち、1級アミン(RNH2)、又は2級アミン(R2NH)が好ましい。そして、保護剤としてジアミンを適用する場合、少なくとも1以上のアミノ基が1級アミン又は2級アミンのものが好ましい。アミノ基に結合する炭化水素基は、直鎖構造又は分枝構造を有する鎖式炭化水素の他、環状構造の炭化水素基であっても良い。また、一部に酸素を含んでいても良い。
Further, as the number of amino groups in the amine compound, (mono) amine having one amino group or diamine having two amino groups can be applied. In addition, the number of hydrocarbon groups bonded to the amino group is preferably one or two, that is, a primary amine (RNH 2 ) or a secondary amine (R 2 NH) is preferable. And when applying a diamine as a protecting agent, the thing of a primary amine or a secondary amine whose at least 1 or more amino group is primary is preferable. The hydrocarbon group bonded to the amino group may be a chain hydrocarbon having a linear structure or a branched structure, or may be a hydrocarbon group having a cyclic structure. In addition, oxygen may be contained in part.
本発明で保護剤として適用されるアミン化合物の具体例としては、ブチルアミン(炭素数4)、1,4-ジアミノブタン(炭素数4)、3-メトキシプロピルアミン(炭素数4)、ペンチルアミン(炭素数5)、2,2-ジメチルプロピルアミン(炭素数5)、3-エトキシプロピルアミン(炭素数5)、N,N-ジメチル-1,3-ジアミノプロパン(炭素数5)、ヘキシルアミン(炭素数6)、ヘプチルアミン(炭素数7)、ベンジルアミン(炭素数7)、N,N-ジエチル-1,3-ジアミノプロパン(炭素数7)、オクチルアミン(炭素数8)、2-エチルヘキシルアミン(炭素数8)、ノニルアミン(炭素数9)、デシルアミン(炭素数10)、ジアミノデカン(炭素数10)、ウンデシルアミン(炭素数11)、ドデシルアミン(炭素数12)、ジアミノドデカン(炭素数12)等が挙げられる。尚、保護剤Aであるアミン化合物は、分散液中での金属粒子の分散性や低温焼結性を調節する目的で複数種のアミン化合物を混合・組合せて使用しても良い。また、炭素数の総和が4以上12以下のアミン化合物を少なくとも1種含んでいればよく、そうであれば当該範囲外の炭素数のアミン化合物が存在していても良い。
Specific examples of the amine compound applied as a protective agent in the present invention include butylamine (C4), 1,4-diaminobutane (C4), 3-methoxypropylamine (C4), pentylamine (C4) Carbon number 5), 2,2-dimethylpropylamine (carbon number 5), 3-ethoxypropylamine (carbon number 5), N, N-dimethyl-1,3-diaminopropane (carbon number 5), hexylamine (carbon number 5) C6), heptylamine (C7), benzylamine (C7), N, N-diethyl-1,3-diaminopropane (C7), octylamine (C8), 2-ethylhexyl Amine (carbon number 8), nonylamine (carbon number 9), decylamine (carbon number 10), diaminodecane (carbon number 10), undecylamine (carbon number 11), dodecylamine (12 carbon atoms), diamino dodecane (having 12 carbon atoms) and the like. The amine compound which is the protective agent A may be used in combination or in combination with one another for the purpose of controlling the dispersibility of the metal particles in the dispersion and the low temperature sinterability. Moreover, the total of carbon number should just contain at least 1 sort (s) of 4 or more and 12 or less amine compound, and if so, the amine compound of carbon number out of the said range may exist.
一方、保護剤Bとして適用される脂肪酸は、分散液中ではアミン化合物の補助的な保護剤として作用し金属粒子の安定性を高める。そして、脂肪酸の作用が明確に現れるのは、金属粒子を基板に塗布した後であり、脂肪酸を添加することで均一な膜厚の金属パターンを形成することができる。この作用は脂肪酸の無い金属粒子を塗布した場合と対比することで顕著に理解でき、脂肪酸の無い金属粒子では安定した金属パターンを形成することができない。
On the other hand, the fatty acid applied as the protective agent B acts as an auxiliary protective agent for the amine compound in the dispersion to enhance the stability of the metal particles. The effect of the fatty acid appears clearly after the metal particles are applied to the substrate, and the addition of the fatty acid can form a metal pattern with a uniform film thickness. This effect can be clearly understood in contrast to the case where metal particles without fatty acid are applied, and metal particles without fatty acid can not form a stable metal pattern.
脂肪酸は、好ましくは、炭素数4以上26以下の飽和脂肪酸又は不飽和脂肪酸が好ましい。好ましい脂肪酸としては、具体的には、ブタン酸(炭素数4)、ペンタン酸(炭素数5)、ヘキサン酸(炭素数6)、ヘプタン酸(炭素数7)、オクタン酸(炭素数8)、ノナン酸(炭素数9)、デカン酸(別名:カプリン酸、炭素数10)、ウンデカン酸(別名:ウンデシル酸、炭素数11)、ドデカンサン酸(別名:ラウリン酸、炭素数12)、トリデカン酸(別名:トリデシル酸、炭素数13)、テトラデカン酸(別名:ミリスチン酸、炭素数14)、ペンタデカン酸(別名:ペンタデシル酸、炭素数15)、ヘキサデカン酸(別名:パルミチン酸、炭素数16)、ヘプタデカン酸(別名:マルガリン酸、炭素数17)、オクタデカン酸(別名:ステアリン酸、炭素数18)、ノナデカン酸(別名:ノナデシル酸、炭素数19)、エイコサン酸(別名:アラキジン酸、炭素数20)、ベヘン酸(別名:ドコサン酸、炭素数22)、リグノセリン酸(別名:テトラコサン酸、炭素数24)、ヘキサコサン酸(別名:セロチン酸、炭素数26)等の飽和脂肪酸、パルミトレイン酸(炭素数16)、オレイン酸(炭素数18)、リノール酸(炭素数18)、リノレン酸(炭素数18)、アラキドン酸(炭素数20)、エルカ酸(炭素数22)、ネルボン酸(別名:cis-15-テトラコセン酸、炭素数24)等の不飽和脂肪酸が挙げられる。特に好ましいのは、オレイン酸、リノール酸、ステアリン酸、ラウリン酸、ブタン酸、エルカ酸である。尚、以上説明した保護剤Bとなる脂肪酸に関しても、複数種のものを組合せて使用しても良い。また、炭素数が4以上24以下の不飽和脂肪酸又は飽和脂肪酸を少なくとも1種含んでいればよく、そうであればそれ以外の脂肪酸が存在していても良い。
The fatty acid is preferably a saturated fatty acid or unsaturated fatty acid having 4 to 26 carbon atoms. Specific examples of preferred fatty acids include butanoic acid (C4), pentanoic acid (C5), hexanoic acid (C6), heptanoic acid (C7), octanoic acid (C8), Nonanoic acid (carbon number 9), decanoic acid (alias: capric acid, carbon number 10), undecanoic acid (alias: undecylic acid, carbon number 11), dodecanoic acid (alias: lauric acid, carbon number 12), tridecanoic acid ( Aliases: Tridecyl acid, 13 carbon atoms, tetradecanoic acid (alias: myristic acid, 14 carbon atoms), pentadecanoic acid (alias: pentadecyl acid, 15 carbon atoms), hexadecanoic acid (alias: palmitic acid, 16 carbon atoms), heptadecane Acid (alias: margaric acid, carbon number 17), octadecanoic acid (alias: stearic acid, carbon number 18), nonadecanoic acid (alia: nonadecyl acid, carbon number 19), San acid (aka: arachidic acid, carbon number 20), behenic acid (aka: docosanoic acid, carbon number 22), lignoceric acid (aka: tetracosanoic acid, carbon number 24), hexacosanoic acid (aka: serotic acid, carbon number 26) Etc., palmitoleic acid (C16), oleic acid (C18), linoleic acid (C18), linolenic acid (C18), arachidonic acid (C20), erucic acid (carbon) And unsaturated fatty acids such as nervonic acid (alias: cis-15-tetracosenoic acid, carbon number 24). Particularly preferred are oleic acid, linoleic acid, stearic acid, lauric acid, butanoic acid and erucic acid. Also with regard to the fatty acid to be the protective agent B described above, plural kinds of fatty acids may be used in combination. In addition, it is sufficient if it contains at least one kind of unsaturated fatty acid or saturated fatty acid having 4 to 24 carbon atoms, and if so, other fatty acids may be present.
上記した保護剤A及び保護剤Bにより保護された金属粒子を、溶媒に分散することで金属インクが構成される。ここで適用可能な溶媒は、有機溶媒であり、例えば、アルコール、ベンゼン、トルエン、アルカン等である。これらを混合しても良い。好ましい溶媒は、ヘキサン、ヘプタン、オクタン、ノナン、デカン等のアルカン、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール等のアルコールであり、より好ましくは、これらの中から選択される1種又は2種以上のアルコールと1種又は2種以上のアルカンとの混合溶媒である。
The metal ink protected by the protective agent A and the protective agent B described above is dispersed in a solvent to constitute a metal ink. The solvent applicable here is an organic solvent, for example, alcohol, benzene, toluene, alkane and the like. You may mix these. Preferred solvents are alkanes such as hexane, heptane, octane, nonane and decane, alcohols such as methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol and the like, more preferably among these And a mixed solvent of one or more alcohols selected from and one or more alkanes.
金属インク中の金属粒子の含有量は、液質量に対する金属質量で20質量%以上60質量%以下とするのが好ましい。金属粒子の含有量が20%未満の場合は、パターン形成部に、十分な導電性を確保するための均一な膜厚の金属パターンを形成することができず、金属パターンの抵抗値が高くなる。金属粒子の含有量が60%を超える場合は、金属粒子の凝集・肥大化により安定した金属パターンを形成することが困難となる。
The content of the metal particles in the metal ink is preferably 20% by mass or more and 60% by mass or less in terms of the metal mass with respect to the liquid mass. If the content of the metal particles is less than 20%, a metal pattern having a uniform film thickness for securing sufficient conductivity can not be formed in the pattern forming portion, and the resistance value of the metal pattern becomes high. . When the content of the metal particles exceeds 60%, it becomes difficult to form a stable metal pattern due to aggregation and enlargement of the metal particles.
金属インクの保護剤の含有量は、金属インク中の金属の質量基準で規定することが好ましい。そして、保護剤Aであるアミン化合物については、金属質量基準で0.08mmol/g以上3.0mmol/g以下とするのが好ましい。また、保護剤Bである脂肪酸の含有量は、金属質量基準で0.008mmol/g以上0.5mmol/g以下とするのが好ましい。金属インク中の保護剤の含有量は、上記好適範囲を超えても金属粒子の分散性には影響が生じないが、過剰な保護剤は、金属粒子の低温焼結性や形成される金属パターンの抵抗値に影響を及ぼすことから上記範囲にするのが好ましい。尚、上記の保護剤のモル数については、複数種のアミン化合物、脂肪酸を使用する場合には、それぞれ、合計モル数を適用する。
The content of the protective agent of the metal ink is preferably defined on the basis of the mass of the metal in the metal ink. And about the amine compound which is protective agent A, it is preferable to set it as 0.08 mmol / g or more and 3.0 mmol / g or less based on metal mass. Moreover, it is preferable that content of the fatty acid which is the protective agent B sets it as 0.008 mmol / g or more and 0.5 mmol / g or less on a metal mass basis. The content of the protective agent in the metal ink does not affect the dispersibility of the metal particles even if the content of the protective agent exceeds the above preferable range, but the excess protective agent causes the low temperature sinterability of the metal particles and the formed metal pattern The above range is preferable because it affects the resistance value of In addition, about the number-of-moles of said protective agent, when using several types of amine compounds and a fatty acid, a total number-of-moles is applied, respectively.
金属配線の形成工程においては、以上で説明した金属インクを、露光等の処理を行った基板に塗布する。インクの塗布法は、ディッピング、スピンコート、ロールコーターが適用できるが、ブレード、スキージ、ヘラのような塗布部材を用いて、インクを滴下して塗り広げても良い。本発明は、予めパターン形成部に金属粒子を選択的に固定するための官能基が形成されており、一気に分散液を塗り広げることでパターン形成ができ効率的である。
In the metal wiring formation step, the metal ink described above is applied to a substrate subjected to a process such as exposure. The ink may be applied by dipping, spin coating, or roll coating, but the ink may be dropped and spread using an application member such as a blade, squeegee or spatula. In the present invention, a functional group for selectively fixing metal particles to a pattern formation portion is formed in advance, and a pattern can be formed efficiently by spreading the dispersion liquid at a stretch.
金属インクは、官能基が存在しないフッ素樹脂の素地面ではその撥液性により弾かれる。ブレード等の塗布部材を使用した場合、弾かれた分散液は基板表面から除去される。一方、官能基が形成されたパターン形成部では、金属粒子の保護剤と官能基との置換反応が生じ、第1金属粒子が基板に固定される。その後、分散液の溶剤が揮発すると共に、基板上の第1金属粒子同士が自己焼結して金属膜となり金属パターンが形成される。
The metal ink is repelled by its liquid repellence on the basis of a fluorine resin having no functional group. When an application member such as a blade is used, the repelled dispersion is removed from the substrate surface. On the other hand, in the pattern formation portion in which the functional group is formed, a substitution reaction of the protective agent of the metal particle and the functional group occurs, and the first metal particle is fixed to the substrate. Thereafter, the solvent of the dispersion is evaporated, and the first metal particles on the substrate are self-sintered to form a metal film, whereby a metal pattern is formed.
この自己焼結は室温であっても生じる現象であるので、金属パターン形成に際して基板の加熱は必須の工程ではない。但し、自己焼結後の金属パターンを焼成することで、金属膜中に残存する保護剤(アミン化合物、脂肪酸)を完全に除去することができ、これにより抵抗値の低減を図ることができる。この焼成処理は、40℃以上250℃で行うことが好ましい。40℃未満では保護剤の脱離や揮発に長時間を要するため好ましくない。また、250℃を超えると樹脂基板等について変形の要因となる。焼成時間は、3分以上120分以下が好ましい。尚、焼成工程は、大気雰囲気で行っても良いし、真空雰囲気でも良い。
Since this self-sintering is a phenomenon that occurs even at room temperature, heating of the substrate is not an essential step in forming a metal pattern. However, by baking the metal pattern after self-sintering, the protective agent (amine compound, fatty acid) remaining in the metal film can be completely removed, whereby the resistance value can be reduced. It is preferable to perform this baking process at 40 degreeC or more and 250 degreeC. If it is less than 40 ° C., it is not preferable because the removal and volatilization of the protective agent take a long time. When the temperature exceeds 250 ° C., the resin substrate or the like becomes a factor of deformation. The firing time is preferably 3 minutes or more and 120 minutes or less. The firing step may be performed in the air or in a vacuum.
上記のような金属インクの塗布及び金属粒子の焼結・結合により、金属配線が形成され第1の電極層が形成される。
By the application of the metal ink as described above and the sintering / bonding of the metal particles, a metal wiring is formed and a first electrode layer is formed.
第1の電極層を形成した後、上記と同様の(a)~(c)の工程を行うことで第2の電極層を形成することができる。
After forming the first electrode layer, the second electrode layer can be formed by performing the steps (a) to (c) as described above.
ここで、第2の電極層形成に際しては、第1の金属配線の表面を処理する必要がある場合、例えば、金属配線の反射防止のため、金属配線表面の粗さ調整や化合物形成といった処理を行う場合、第2の電極層を形成する前に処理を行う。
Here, when forming the second electrode layer, when it is necessary to treat the surface of the first metal wiring, for example, in order to prevent reflection of the metal wiring, processing such as adjusting the surface roughness of the metal wiring and forming a compound In the case of performing the process, the process is performed before forming the second electrode layer.
また、中間層を設定する場合も、第2の電極層を形成する前にその中間層を形成する。中間層は、上記のとおり、第1の金属配線のマイグレーション防止等を目的とした誘電体又は絶縁体であり、それぞれの材質に応じて塗布する。また、中間層は、第1の電極層表面を被覆して、第2の下地層の平坦化にも寄与することができる。
Also, in the case of setting an intermediate layer, the intermediate layer is formed before forming the second electrode layer. The intermediate layer is, as described above, a dielectric or an insulator for the purpose of preventing migration of the first metal wiring or the like, and is applied according to the respective materials. The intermediate layer can also cover the surface of the first electrode layer and contribute to the planarization of the second underlayer.
必要に応じて第1の金属配線の表面処理や中間層の形成処理を行った後、上記(a)~(c)の工程により第2の電極層を形成する。ここでの、フッ素樹脂の塗布((a)工程)、官能基形成処理((b)工程)、金属インクの塗布・焼結((c)工程)の内容は第2の電極層でも同じ条件が適用される。
After the surface treatment of the first metal wiring and the formation treatment of the intermediate layer as necessary, the second electrode layer is formed by the steps (a) to (c). Here, the contents of the fluorine resin application (step (a) step), the functional group formation treatment (step (b) step), and the application / sintering of metal ink (step (c) step) are the same as in the second electrode layer. Is applied.
但し、第2の下地層に関しては、上記のとおり、第1の下地層よりも好適な厚さの範囲が限定的であるので、塗布量を調整することが好ましい。また、第2の下地層は平坦性が良好であることが好ましい。この点、中間層を適用・形成するとき、第2の下地層の平坦性は、中間層の厚さムラや表面状態の影響を受ける。そこで、中間層の表面を除電器(イオナイザー)で除電し、その後、第2の下地層となるフッ素樹脂を塗布することが好ましい。下地層のフッ素樹脂は、静電気を帯びやすいので、塗布面を除電することで均一な塗布層を形成することができる。この除電処理は、1sec以上120sec以下で行うことが好ましい。また、中間層を形成することなく、第2の下地層を厚めに塗布しても良いが、この場合、フッ素樹脂を塗布した後、一定時間(5sec以上)放置して、塗膜の均質化してから、その後の(b)工程を行うことが好ましい。
However, as for the second underlayer, as described above, since the range of thickness suitable for the first underlayer is limited, it is preferable to adjust the coating amount. In addition, it is preferable that the second underlayer be excellent in flatness. In this respect, when the intermediate layer is applied and formed, the flatness of the second underlayer is influenced by the thickness unevenness of the intermediate layer and the surface state. Therefore, it is preferable to diselectrify the surface of the intermediate layer with an eliminator (ionizer) and then to apply a fluorocarbon resin to be the second underlayer. Since the fluorocarbon resin of the base layer is easily charged with static electricity, a uniform coating layer can be formed by discharging the coating surface. It is preferable to perform this static elimination process in 1 second or more and 120 seconds or less. Also, the second underlayer may be applied thicker without forming the intermediate layer, but in this case, after applying the fluorocarbon resin, it is allowed to stand for a fixed time (5 seconds or more) to homogenize the coating film. Then, it is preferable to carry out the subsequent step (b).
第2の下地層の形成((a)工程)後の、第1の電極層と同様にして、官能基形成処理((b)工程)、金属インクの塗布・焼結((c)工程)を行うことで、第2の電極層が形成され、本発明に係る導電シートが製造される。尚、第2の電極層の形成後に、第2の金属配線の表面処理(反射防止処理等)、コーティング層の形成処理を適宜に行うことができる
In the same manner as the first electrode layer after formation of the second underlayer (step (a)), functional group formation treatment (step (b)), coating and sintering of metal ink (step (c)) As a result, the second electrode layer is formed, and the conductive sheet according to the present invention is manufactured. Incidentally, after the formation of the second electrode layer, the surface treatment (antireflection treatment etc.) of the second metal wiring and the formation treatment of the coating layer can be appropriately performed.
以上説明した本発明に係る導電シートは、基板の片面に2層の電極層を備えるものであり、従来の両面構造の導電シートに対して曲げに対する耐久性を有する。また、フッ素樹脂の下地層等の構成を適正にすることで、導電シートの薄型化にも対応できる。
The conductive sheet according to the present invention described above is provided with two electrode layers on one side of the substrate, and has durability against bending of a conventional double-sided conductive sheet. In addition, by making the configuration of the base layer or the like of the fluorine resin appropriate, it is possible to cope with the thinning of the conductive sheet.
第1実施形態:以下、本発明の好適な実施形態について説明する。本実施形態では、透明基板にフッ素樹脂からなる下地層を形成し、銀インクを塗布して銀からなる金属配線を形成し片面2層構造の導電シートを製造した。
First Embodiment A preferred embodiment of the present invention will be described below. In this embodiment, a base layer made of fluorocarbon resin is formed on a transparent substrate, and a silver ink is applied to form a metal wiring made of silver, thereby producing a conductive sheet having a single-sided two-layer structure.
[銀インクの製造]
本実施形態では、金属インクとして銀インクを使用した。この銀インクは、熱分解法により製造された銀粒子を溶媒に分散させたものである。この熱分解法は、シュウ酸銀(Ag2C204)等の熱分解性を有する銀化合物を出発原料とし、銀化合物と保護剤とを反応させて銀錯体を形成し、これを前駆体として加熱し分解することで銀粒子を得る方法である。 [Manufacturing of silver ink]
In the present embodiment, silver ink is used as the metal ink. The silver ink is obtained by dispersing silver particles produced by a thermal decomposition method in a solvent. In this thermal decomposition method, a silver compound having thermal decomposition properties such as silver oxalate (Ag 2 C 2 O 4 ) is used as a starting material, and a silver compound and a protective agent are reacted to form a silver complex, which is then used as a precursor. It is a method of obtaining silver particles by heating and decomposing as a body.
本実施形態では、金属インクとして銀インクを使用した。この銀インクは、熱分解法により製造された銀粒子を溶媒に分散させたものである。この熱分解法は、シュウ酸銀(Ag2C204)等の熱分解性を有する銀化合物を出発原料とし、銀化合物と保護剤とを反応させて銀錯体を形成し、これを前駆体として加熱し分解することで銀粒子を得る方法である。 [Manufacturing of silver ink]
In the present embodiment, silver ink is used as the metal ink. The silver ink is obtained by dispersing silver particles produced by a thermal decomposition method in a solvent. In this thermal decomposition method, a silver compound having thermal decomposition properties such as silver oxalate (Ag 2 C 2 O 4 ) is used as a starting material, and a silver compound and a protective agent are reacted to form a silver complex, which is then used as a precursor. It is a method of obtaining silver particles by heating and decomposing as a body.
銀粒子の製造では、まず、出発原料であるシュウ酸銀1.519g(銀:1.079g)にデカン0.651gを添加し湿らせた。そして、このシュウ酸銀に、保護剤となるアミン化合物と脂肪酸を添加した。具体的には、最初にN,N-ジメチル-1,3-ジアミノプロパン(0.778g)を加えて暫く混練した後、更にヘキシルアミン(1.156g)、ドデシルアミン(0.176g)、オレイン酸(0.042g)を加えて混練し、その後110℃で加熱攪拌した。加熱攪拌中、クリ‐ム色の銀錯体が徐々に褐色になりさらに黒色に変化した。この加熱・攪拌操作は、反応系からの気泡発生がなくなるまで行った。反応終了後、反応系を放冷し室温にした後、メタノールを加えて十分に攪拌し、遠心分離を行うことで、過剰の保護剤を除去し、銀微粒子を精製した。このメタノール添加と遠心分離による銀微粒子の精製を再び行い、沈殿物として銀微粒子を得た。
In the production of silver particles, first, 0.651 g of decane was added to and wetted with 1.519 g of silver oxalate (1.079 g of silver) as a starting material. Then, an amine compound as a protective agent and a fatty acid were added to the silver oxalate. Specifically, after first adding N, N-dimethyl-1,3-diaminopropane (0.778 g) and kneading for a while, further hexylamine (1.156 g), dodecylamine (0.176 g), olein The acid (0.042 g) was added and kneaded, and then heated and stirred at 110 ° C. During heating and stirring, the cream silver complex gradually turned brown and turned to black. This heating and stirring operation was performed until the generation of bubbles from the reaction system disappeared. After completion of the reaction, the reaction system was allowed to cool to room temperature, methanol was added thereto, and the mixture was sufficiently stirred, followed by centrifugation to remove excess protecting agent, and the silver fine particles were purified. The addition of methanol and the purification of silver fine particles by centrifugation were performed again to obtain silver fine particles as a precipitate.
そして、製造した銀微粒子に、オクタンとブタノールとの混合溶媒(オクタン:ブタノール=4:1(体積比))を添加し、銀インクを得た。この銀インクの銀濃度は40質量%とした。
Then, a mixed solvent of octane and butanol (octane: butanol = 4: 1 (volume ratio)) was added to the produced silver fine particles to obtain a silver ink. The silver concentration of this silver ink was 40% by mass.
上記の金属インクを使用して片面2層構造の導電シートを製造した。図5は、本実施形態で製造した導電シートの外観を示す。この導電シートは、基板としてポリエチレンテレフタレート(PET)からなる透明樹脂基板(寸法:210mm×297mm、厚さ50μm)を使用した。そして、基板上の12.5mm×16.3mmの領域に第1の電極層を形成し、更に、第1の電極層の上の9.0mm×16.3mmの領域に第2の電極層を形成した。第1の電極層と第2の電極層との寸法(横幅)が相違するのは、各電極層の金属配線の抵抗値を測定するためである。
The above-described metal ink was used to produce a single-sided two-layer conductive sheet. FIG. 5 shows the appearance of the conductive sheet manufactured in the present embodiment. As the conductive sheet, a transparent resin substrate (dimension: 210 mm × 297 mm, thickness 50 μm) made of polyethylene terephthalate (PET) was used as a substrate. Then, a first electrode layer is formed in a 12.5 mm × 16.3 mm area on the substrate, and a second electrode layer is further formed in a 9.0 mm × 16.3 mm area on the first electrode layer. It formed. The dimensions (horizontal widths) of the first electrode layer and the second electrode layer are different in order to measure the resistance value of the metal wiring of each electrode layer.
[第1電極層の形成]
まず、樹脂基板の上第1の電極層を形成することとした。基板にフッ素樹脂として非晶質性パーフルオロブテニルエーテル重合体(CYTOP(登録商標):旭硝子(株)製)をスピンコート法(回転数2000rpm、20sec)で塗布した後、50℃で10分、続いて80℃で10分加熱し、更にオーブンにて140℃で10分加熱して焼成した。これにより0.06μm(60nm)のフッ素樹脂からなる下地層が形成された。 [Formation of first electrode layer]
First, the first electrode layer on the resin substrate was formed. After applying an amorphous perfluorobutenyl ether polymer (CYTOP (registered trademark): manufactured by Asahi Glass Co., Ltd.) as a fluorine resin to a substrate by a spin coating method (rotational speed 2000 rpm, 20 sec), 10 minutes at 50 ° C. Subsequently, the resultant was heated at 80 ° C. for 10 minutes, and further baked at 140 ° C. for 10 minutes in an oven. As a result, an underlayer of 0.06 μm (60 nm) made of fluororesin was formed.
まず、樹脂基板の上第1の電極層を形成することとした。基板にフッ素樹脂として非晶質性パーフルオロブテニルエーテル重合体(CYTOP(登録商標):旭硝子(株)製)をスピンコート法(回転数2000rpm、20sec)で塗布した後、50℃で10分、続いて80℃で10分加熱し、更にオーブンにて140℃で10分加熱して焼成した。これにより0.06μm(60nm)のフッ素樹脂からなる下地層が形成された。 [Formation of first electrode layer]
First, the first electrode layer on the resin substrate was formed. After applying an amorphous perfluorobutenyl ether polymer (CYTOP (registered trademark): manufactured by Asahi Glass Co., Ltd.) as a fluorine resin to a substrate by a spin coating method (rotational speed 2000 rpm, 20 sec), 10 minutes at 50 ° C. Subsequently, the resultant was heated at 80 ° C. for 10 minutes, and further baked at 140 ° C. for 10 minutes in an oven. As a result, an underlayer of 0.06 μm (60 nm) made of fluororesin was formed.
次に、この下地層が形成された基板の表面に、櫛形の配線パターン(線幅2.0μm、線間隔300μm)のフォトマスクを密着し(マスク-基板間距離0のコンタクト露光)、ここに紫外線(VUV光)を照射した。VUV光は、波長172nm、11mW/cm2で20秒照射した。
Next, a photomask of a comb-shaped wiring pattern (line width 2.0 μm, line interval 300 μm) is adhered to the surface of the substrate on which the base layer is formed (contact exposure of mask-substrate distance 0), It was irradiated with ultraviolet light (VUV light). VUV light was irradiated at a wavelength of 172 nm and 11 mW / cm 2 for 20 seconds.
以上のようにして下地層表面に官能基を形成した基板に、上記した銀インクを塗布した。塗布は、基板とブレード(ガラス製)との接触部分に予め分散液を濡れ広がらせた後、ブレードを一方向に掃引した。ここでは、掃引速度を2mm/secとした。このブレードによる塗布により、基板の紫外線照射部(官能基形成部)のみにインクが付着しているのが確認された。そして、基板を120℃で熱風乾燥させて銀配線を形成した。銀配線の厚さは0.04μm(40nm)であり、線幅2.0μmであった。
The silver ink described above was applied to the substrate having the functional group formed on the surface of the underlayer as described above. In the application, the dispersion was wetted and spread in advance at the contact portion between the substrate and the blade (made of glass), and then the blade was swept in one direction. Here, the sweep speed is 2 mm / sec. It was confirmed by the application by the blade that the ink was adhering only to the ultraviolet ray irradiated portion (functional group forming portion) of the substrate. Then, the substrate was subjected to hot air drying at 120 ° C. to form silver wiring. The thickness of the silver wiring was 0.04 μm (40 nm), and the line width was 2.0 μm.
以上のようにして第1電極層を形成した基板について、中間層としてアクリル樹脂(TKK-1001HSC:日揮触媒化成株式会社製)を塗布した。アクリル樹脂は塗工後の膜厚で最大1μmになるように調整した。膜厚を1μmに設定したのは、第1電極層の金属配線の厚さを考慮しつつ、第2電極層の形成面を平滑にするためである。
On the substrate on which the first electrode layer was formed as described above, an acrylic resin (TKK-1001 HSC: manufactured by JGC Corporation) was applied as an intermediate layer. The acrylic resin was adjusted to have a maximum film thickness of 1 μm after coating. The film thickness is set to 1 μm in order to smooth the surface on which the second electrode layer is formed while considering the thickness of the metal wiring of the first electrode layer.
[第2電極層の形成]
上記のようにして中間層をコーティングした基板に、第2電極層を形成した。本実施形態では、中間層の上に第1の下地層と同じフッ素樹脂を塗布した。基板(中間層)の上の指定領域に、フッ素樹脂を塗布して下地層を形成した。フッ素樹脂の塗布方法は、第1の電極層と同様であり、下地層の厚さも0.06μm(60nm)とした。 [Formation of Second Electrode Layer]
The second electrode layer was formed on the substrate coated with the intermediate layer as described above. In the present embodiment, the same fluorocarbon resin as that for the first underlayer is applied onto the intermediate layer. A fluorine resin was applied to a designated area on the substrate (intermediate layer) to form an underlayer. The fluorine resin coating method was the same as that of the first electrode layer, and the thickness of the base layer was also 0.06 μm (60 nm).
上記のようにして中間層をコーティングした基板に、第2電極層を形成した。本実施形態では、中間層の上に第1の下地層と同じフッ素樹脂を塗布した。基板(中間層)の上の指定領域に、フッ素樹脂を塗布して下地層を形成した。フッ素樹脂の塗布方法は、第1の電極層と同様であり、下地層の厚さも0.06μm(60nm)とした。 [Formation of Second Electrode Layer]
The second electrode layer was formed on the substrate coated with the intermediate layer as described above. In the present embodiment, the same fluorocarbon resin as that for the first underlayer is applied onto the intermediate layer. A fluorine resin was applied to a designated area on the substrate (intermediate layer) to form an underlayer. The fluorine resin coating method was the same as that of the first electrode layer, and the thickness of the base layer was also 0.06 μm (60 nm).
そして、第1の電極層を形成したときと同様に、櫛形の配線パターンのフォトマスクを密着し、ここに紫外線を照射した。更に、上記した銀インクを塗布した。塗布条件は、第1の電極層と同じとした、そして、基板を120℃で熱風乾燥させて銀配線(厚さ0.04μm、線幅2.0μm)を形成した。
Then, in the same manner as when the first electrode layer was formed, a photomask of a comb-shaped wiring pattern was adhered, and ultraviolet light was irradiated thereto. Furthermore, the silver ink described above was applied. The coating conditions were the same as for the first electrode layer, and the substrate was dried with hot air at 120 ° C. to form a silver wiring (thickness 0.04 μm, line width 2.0 μm).
比較例1:本実施形態に係る導電シートの比較例として、両面構造の導電シートを製造した。本実施形態と同じPET基板を用意し、その両面に本実施形態と同様の工程で電極層を形成した。まず、一方の面の寸法:13.5mm×17.3mmの領域にフッ素樹脂(CYTOP(登録商標))をバーコーターで塗布・焼成し、0.06μmのフッ素樹脂の下地層を形成した。この下地層表面に、本実施形態と同様の櫛形の配線パターン(線幅2.0μm、線間隔300μm)のフォトマスクを密着、露光した。その後、上記した銀インクを塗布し、基板を120℃で熱風乾燥させて銀極線(線幅2.0μm)を形成した。
Comparative Example 1 A conductive sheet having a double-sided structure was manufactured as a comparative example of the conductive sheet according to the present embodiment. The same PET substrate as this embodiment was prepared, and the electrode layer was formed in the process similar to this embodiment on the both surfaces. First, a fluorocarbon resin (CYTOP (registered trademark)) was applied to a region of 13.5 mm × 17.3 mm with a bar coater and baked to form a 0.06 μm fluorocarbon underlayer. A photomask with a comb-like wiring pattern (line width: 2.0 μm, line spacing: 300 μm) similar to that of the present embodiment was adhered to the surface of the underlayer and exposed. Thereafter, the silver ink described above was applied, and the substrate was dried with hot air at 120 ° C. to form a silver electrode (line width: 2.0 μm).
次に、基板の他方の面の寸法:13.5mm×17.3mmの領域にフッ素樹脂を塗布して下地層を形成し、露光後、銀インクを塗布して第2の電極層を形成した。以上のようにして、基板の両面に電極層を有する両面構造の導電シートを製造した。この比較例の導電シートの構成を図6に示す。
Next, a fluorine resin was applied to the area of the other surface of the substrate: 13.5 mm × 17.3 mm to form a base layer, and after exposure, a silver ink was applied to form a second electrode layer. . As described above, a double-sided conductive sheet having electrode layers on both sides of the substrate was produced. The configuration of the conductive sheet of this comparative example is shown in FIG.
[曲げ試験]
上記で製造した本実施形態、比較例1の導電シートについて、曲げ試験を行い、変形に対する耐久性を検討した。曲げ試験に際し、製造した導電シートの第1の電極層の端から10mmの位置と反対側の端から10mmの位置、第2の電極層の基板の中心線から両側5mmの位置に端子を接続することとした。曲げ試験では、まず、試験前の各電極層の金属配線の抵抗値をデジタルテスターで測定した。 [Bending test]
A bending test was performed on the conductive sheets of the present embodiment and the comparative example 1 manufactured above, and durability against deformation was examined. In the bending test, the terminal is connected at a position of 10 mm from the end of the first electrode layer of the manufactured conductive sheet and at a position of 10 mm from the opposite end, and at a position of 5 mm on both sides from the center line of the substrate of the second electrode layer. I decided. In the bending test, first, the resistance value of the metal wiring of each electrode layer before the test was measured by a digital tester.
上記で製造した本実施形態、比較例1の導電シートについて、曲げ試験を行い、変形に対する耐久性を検討した。曲げ試験に際し、製造した導電シートの第1の電極層の端から10mmの位置と反対側の端から10mmの位置、第2の電極層の基板の中心線から両側5mmの位置に端子を接続することとした。曲げ試験では、まず、試験前の各電極層の金属配線の抵抗値をデジタルテスターで測定した。 [Bending test]
A bending test was performed on the conductive sheets of the present embodiment and the comparative example 1 manufactured above, and durability against deformation was examined. In the bending test, the terminal is connected at a position of 10 mm from the end of the first electrode layer of the manufactured conductive sheet and at a position of 10 mm from the opposite end, and at a position of 5 mm on both sides from the center line of the substrate of the second electrode layer. I decided. In the bending test, first, the resistance value of the metal wiring of each electrode layer before the test was measured by a digital tester.
そして、シートの屈曲半径を2mmとし、導電シートの基板の中央線に沿って曲げを行った。曲げ回数は、フィルムがU字に伸縮する曲げ加工を曲げ回数1回とカウントし、10万回の曲げを行った。そして、この曲げ試験後の導電シートについて、各層の電極層の銀配線の抵抗値をデジタルテスターで測定した。この曲げ試験の結果を表1に示す。
Then, the bending radius of the sheet was 2 mm, and bending was performed along the center line of the substrate of the conductive sheet. The number of times of bending was 100,000 bendings, with the bending process in which the film expanded and contracted into a U-shape counted as one bending. And about the conductive sheet after this bending test, the resistance value of the silver wiring of the electrode layer of each layer was measured by the digital tester. The results of this bending test are shown in Table 1.
表1から、本実施形態の導電シートは、10万回の曲げ試験を受けても第1、第2の金属配線に損傷が生じることはなかった。金属配線の抵抗値に増加はあるものの、通電に問題は生じなかった。一方、比較例においては、曲げ試験後、一方の面でオーバーロードとなり抵抗値測定ができなくなっていた。これは金属配線に断線が生じたものと考えられる。この対比から、両面構造の導電シートにおいては、曲げ変形による影響が大きいことが確認され、本実施形態の片面2層構造が変形に強いことが分かった。
From Table 1, the conductive sheet of this embodiment was not damaged in the first and second metal wirings even after being subjected to 100,000 bending tests. Although there was an increase in the resistance value of the metal wiring, no problem occurred in the energization. On the other hand, in the comparative example, after the bending test, it was overloaded on one side and the resistance value could not be measured. This is considered to be a break in the metal wiring. From this comparison, it was confirmed that in the double-sided conductive sheet, the influence of the bending deformation was large, and it was found that the single-sided two-layer structure of the present embodiment is resistant to deformation.
第2実施形態:ここでは、第1実施形態の導電シートに対して、配線の厚さ(膜厚)を変更して導電シートを製造し、曲げ試験を行った。使用した基板、フッ素樹脂(CYTOP(登録商標))、金属インク(銀インク)、フォトマスクは第1実施形態と同様である。本実施形態では金属インクを重ね塗りすることで、金属配線の厚さを調整した。具体的には、第1、第2の金属配線それぞれの製造工程において、金属インクの塗布と熱風乾燥との組み合わせを1回の「塗布」として複数回の塗布により金属配線を形成した。本実施形態では、1回塗布(膜厚0.04μm:第1実施形態)、2回塗布(膜厚0.08μm)、5回塗布(膜厚0.2μm)、8回塗布(膜厚0.32μm)。16回塗布(膜厚0.64μm)により金属配線を形成した。各実施例において、第1、第2の金属配線の厚さは同じくした。また、比較例である両面構造の導電シートについても、同様に複数の膜厚の金属配線を形成した。そして、第1実施形態同様、曲げ試験及び抵抗値の測定を行った。この結果を表2に示す。
Second Embodiment Here, with respect to the conductive sheet of the first embodiment, the conductive sheet was manufactured by changing the thickness (film thickness) of the wiring, and the bending test was performed. The used substrate, the fluorine resin (CYTOP (registered trademark)), the metal ink (silver ink), and the photomask are the same as in the first embodiment. In the present embodiment, the thickness of the metal wiring is adjusted by applying a metal ink in an overlapping manner. Specifically, in the manufacturing process of each of the first and second metal wires, the combination of metal ink application and hot air drying was used as a single "application" to form metal wires by multiple applications. In the present embodiment, one application (film thickness 0.04 μm: first embodiment), two applications (film thickness 0.08 μm), five applications (film thickness 0.2 μm), eight applications (film thickness 0) .32 μm). A metal wiring was formed by application 16 times (film thickness 0.64 μm). In each example, the thicknesses of the first and second metal wires were the same. Moreover, the metal wiring of several film thickness was similarly formed also about the conductive sheet of the double-sided structure which is a comparative example. Then, as in the first embodiment, the bending test and the measurement of the resistance value were performed. The results are shown in Table 2.
本実施形態及び比較例においては、いずれも、厚さが増大と配線の断面積が増大するので抵抗値の数値は低減した。比較例においては、厚さを0.08μm以上とすることで、0.04μmのときに生じた断線は発生しない。しかしながら、比較例では、曲げ試験後の裏側の抵抗値の増大幅が極めて大きくなっている。これに対して、本実施形態の導電シートの場合、第1、第2の金属配線のいずれも安定した抵抗値を維持している。このように、金属配線の厚さを変化させても、本実施形態の片面2層構造が変形に強いことが確認された。
In each of the embodiment and the comparative example, since the thickness increases and the cross-sectional area of the wiring increases, the resistance value decreases. In the comparative example, when the thickness is set to 0.08 μm or more, the disconnection occurring at 0.04 μm does not occur. However, in the comparative example, the increase in resistance value on the back side after the bending test is extremely large. On the other hand, in the case of the conductive sheet of the present embodiment, both the first and second metal wires maintain a stable resistance value. Thus, it was confirmed that the single-sided two-layer structure of the present embodiment is resistant to deformation even when the thickness of the metal wiring is changed.
第3実施形態:本実施形態では、金属配線の線幅を変更した導電シートを製造し、曲げ試験を行った。使用した基板、フッ素樹脂(CYTOP(登録商標))、金属インク(銀インク)は、第1実施形態と同じであり、フォトマスクは線幅のみ変更したフォトマスクを使用して露光処理した後、金属インク(銀インク)で銀配線を形成した。具体的には、1μm、2μm(第1実施形態)、5μmの線幅を有するフォトマスクを使用した。第1実施形態同様、片面2層構造と比較例である両面構造の導電シートを製造し、曲げ試験及び抵抗値の測定を行った。この結果を表3に示す。
Third Embodiment : In the present embodiment, a conductive sheet in which the line width of the metal wiring is changed is manufactured and a bending test is performed. The substrate used, the fluorocarbon resin (CYTOP (registered trademark)) and the metal ink (silver ink) are the same as in the first embodiment, and after the photomask is exposed using a photomask whose line width only has been changed, Silver wiring was formed with metal ink (silver ink). Specifically, photomasks having line widths of 1 μm, 2 μm (first embodiment) and 5 μm were used. As in the first embodiment, a conductive sheet having a single-sided two-layer structure and a double-sided structure which is a comparative example was manufactured, and a bending test and measurement of a resistance value were performed. The results are shown in Table 3.
表3から、本実施形態、比較例の導電シートでも、曲げ試験後の金属配線の抵抗値は増加傾向にある。しかし、比較例の両面構造の一方の金属配線(第2電極層)は、抵抗値の増加幅が顕著だった。即ち、線幅1μmのとき、本実施形態の第2電極層の抵抗値の増加幅は1.05kΩであったが、比較例では6.38kΩと著しい増加が見られた。また、この傾向は線幅が小さいときに顕著に見られた。線幅を変更しても、比較例の両面構造は曲げ変形に弱く、本願の片面2層構造が曲げ変形に強いことが分かった。
From Table 3, even in the conductive sheets of the present embodiment and the comparative example, the resistance value of the metal wiring after the bending test tends to increase. However, in one metal wiring (second electrode layer) of the double-sided structure of the comparative example, the increase in resistance value was remarkable. That is, when the line width is 1 μm, the increase in the resistance value of the second electrode layer of this embodiment is 1.05 kΩ, but in the comparative example, a remarkable increase of 6.38 kΩ is observed. Also, this tendency was remarkable when the line width was small. Even if the line width was changed, it was found that the double-sided structure of the comparative example was weak to bending deformation, and the single-sided two-layer structure of the present invention was strong to bending deformation.
第4実施形態:本実施形態では、第1の電極層、中間層、第2の電極層の構成(厚さ)を変更しつつ導電シートを製造した。導電シートの製造工程は、基本的に第1実施形態と同様にし、基板、金属インク等は同じものを使用した。各層の前駆体材料の塗布回数を変更して厚さを調整した。
Fourth Embodiment In this embodiment, a conductive sheet is manufactured while changing the configuration (thickness) of the first electrode layer, the intermediate layer, and the second electrode layer. The manufacturing process of the conductive sheet was basically the same as that of the first embodiment, and the same substrate, metal ink and the like were used. The thickness was adjusted by changing the number of times of application of the precursor material of each layer.
また、本実施形態では、第1、第2の下地層となるフッ素樹脂として、第1実施形態と同じフッ素樹脂(CYTOP(登録商標))を使用したが、一部の実施例(No.9)で、他のフッ素樹脂(アルゴフロン(登録商標)AD40)を使用した。但し、各下地層の形成条件は同様とした。
Further, in the present embodiment, the same fluorocarbon resin (CYTOP (registered trademark)) as that of the first embodiment is used as the fluorocarbon resin to be the first and second underlayers, but some examples (No. 9) ), Another fluorocarbon resin (Algoflon (registered trademark) AD40) was used. However, the formation conditions of each underlayer were the same.
本実施形態で製造した各種導電シートの評価では、第1及び第2金属配線が設計通りに形成されているかを判定した。各導電シートについて、
第1及び第2金属配線からランダムに10点の測定ポイントを定め、測定ポイントにおける線幅を測定した。このとき、設計値である2.0μmに対して、誤差が50%以下である場合(線幅1.5~2.5μm)を合格とした。そして、10点の測定ポイントに対して、10点で合格となったものを優良「◎」とし、8点で合格となったものを良「○」とした。また、合格が7点以下であったもの、若しくは、断線が1点でも観察されたものを不良「×」と判定した。この評価結果を表4に示す。 In the evaluation of the various conductive sheets manufactured in the present embodiment, it was determined whether the first and second metal wires were formed as designed. For each conductive sheet,
Ten measurement points were randomly determined from the first and second metal wires, and line widths at the measurement points were measured. At this time, when the error is 50% or less with respect to the design value of 2.0 μm (a line width of 1.5 to 2.5 μm), it is regarded as pass. Then, for ten measurement points, those that passed at 10 points were regarded as excellent “優良”, and those that passed at eight points were regarded as good “○”. Further, those having a score of 7 points or less, or those having observed even one disconnection were judged as “bad”. The evaluation results are shown in Table 4.
第1及び第2金属配線からランダムに10点の測定ポイントを定め、測定ポイントにおける線幅を測定した。このとき、設計値である2.0μmに対して、誤差が50%以下である場合(線幅1.5~2.5μm)を合格とした。そして、10点の測定ポイントに対して、10点で合格となったものを優良「◎」とし、8点で合格となったものを良「○」とした。また、合格が7点以下であったもの、若しくは、断線が1点でも観察されたものを不良「×」と判定した。この評価結果を表4に示す。 In the evaluation of the various conductive sheets manufactured in the present embodiment, it was determined whether the first and second metal wires were formed as designed. For each conductive sheet,
Ten measurement points were randomly determined from the first and second metal wires, and line widths at the measurement points were measured. At this time, when the error is 50% or less with respect to the design value of 2.0 μm (a line width of 1.5 to 2.5 μm), it is regarded as pass. Then, for ten measurement points, those that passed at 10 points were regarded as excellent “優良”, and those that passed at eight points were regarded as good “○”. Further, those having a score of 7 points or less, or those having observed even one disconnection were judged as “bad”. The evaluation results are shown in Table 4.
表4から、本実施形態で製造した導電シートは、概ね良好な評価結果を示した。但し、第2の下地層が薄すぎる場合、金属配線の一部で不合格となる箇所が見られたことから(No.5)、第2の下地層の厚さは0.04μm以上にすることが好ましいといえる(No.4)。尚、第1の下地層については、0.02μmの薄いものでも十分効果がある(NO.2)。
From Table 4, the electroconductive sheet manufactured by this embodiment showed a generally favorable evaluation result. However, if the second underlayer is too thin, a part of the metal wiring may be rejected (No. 5), so the thickness of the second underlayer should be 0.04 μm or more. Is preferable (No. 4). As to the first underlayer, a thin layer of 0.02 μm is sufficiently effective (NO. 2).
また、中間層は必須の構成ではなく、中間層がなくても第2の下地層の厚さ調整で対応できる(No.6)。そして、中間層を設定する場合、その下にある第1の電極層の構成を考慮しつつ厚さを設定することができる(No.7)。但し、中間層の厚さを過度に厚くすると断線がみられ導電シートとして不適なものとなった(No.8)。中間層については、設定する場合には、その厚さを適切にする必要があることが確認された。また、中間層は必須の構成ではないが、本実施形態で使用したフッ素樹脂と中間層で使用したアクリル樹脂とを対比すると、中間層で使用したアクリル樹脂の方が低廉であることから、中間層の適用は有用であると考えられる。
Further, the intermediate layer is not an essential component, and even if there is no intermediate layer, it can be coped with by adjusting the thickness of the second underlayer (No. 6). And when setting an intermediate | middle layer, thickness can be set in consideration of the structure of the 1st electrode layer under it (No. 7). However, when the thickness of the intermediate layer was excessively thick, disconnection was observed and it became unsuitable as a conductive sheet (No. 8). It was confirmed that, when setting the intermediate layer, it is necessary to make its thickness appropriate. Also, although the intermediate layer is not an essential component, when the fluorine resin used in the present embodiment and the acrylic resin used in the intermediate layer are compared, the acrylic resin used in the intermediate layer is less expensive. Application of layers is considered useful.
尚、本実施形態では、下地層にCYTOP(登録商標)を適用するNo1の導電シートと、アルゴフロン(登録商標)AD40を適用するNo.9の導電シートについての検討を行った。ここで、CYTOP(登録商標)は、その繰返し単位において、炭素原子数:6、フッ素原子数:10、酸素原子数:3を有する。構造式上のフッ素原子数と炭素原子数の比率(F/C)は、1.7となる。また、アルゴフロン(登録商標)AD40は、その繰返し単位において、炭素原子数:6、フッ素原子数:10、酸素原子数:1を有する。構造式上のフッ素原子数と炭素原子数の比率(F/C)は、1.7となる。本実施形態では、いずれのフッ素樹脂を適用しても良好な結果を示すことが確認された。
In the present embodiment, the conductive sheet No. 1 in which CYTOP (registered trademark) is applied to the underlayer, and No. 1 in which Algoflon (registered trademark) AD 40 is applied. We examined about nine conductive sheets. Here, CYTOP (registered trademark) has 6 carbon atoms, 10 fluorine atoms, and 3 oxygen atoms in its repeating unit. The ratio (F / C) of the number of fluorine atoms to the number of carbon atoms on the structural formula is 1.7. In addition, Algoflon (registered trademark) AD40 has, in the repeating unit, 6 carbon atoms, 10 fluorine atoms, and 1 oxygen atom. The ratio (F / C) of the number of fluorine atoms to the number of carbon atoms on the structural formula is 1.7. In the present embodiment, it was confirmed that good results were obtained no matter which fluorine resin was applied.
以上説明したように、本発明に係る導電シートは、基板の片面に2系統の電極層を2層構造で形成したものである。本発明は、従来の両面構造の導電シートに対して曲げに対する耐久性を有すると共に、導電シートの薄型化にも対応可能である。本発明の導電シートは、極めて精細な金属配線を備えつつ、適宜に金属配線についての反射防止処理も可能である。よって、本発明は、基板の選択を適切にすることで好適な透明導電シートとすることも可能である。本発明は、タッチパネルの構成部材として有効に適用できる。
As described above, the conductive sheet according to the present invention is a sheet in which two electrode layers are formed in a two-layer structure on one side of a substrate. The present invention is resistant to bending with respect to a conventional double-sided conductive sheet, and can also cope with thinning of the conductive sheet. The conductive sheet of the present invention is capable of appropriately performing anti-reflection processing on metal wires while being provided with extremely fine metal wires. Therefore, this invention can also be made into a suitable transparent conductive sheet by making selection of a board | substrate appropriate. The present invention can be effectively applied as a component of a touch panel.
As described above, the conductive sheet according to the present invention is a sheet in which two electrode layers are formed in a two-layer structure on one side of a substrate. The present invention is resistant to bending with respect to a conventional double-sided conductive sheet, and can also cope with thinning of the conductive sheet. The conductive sheet of the present invention is capable of appropriately performing anti-reflection processing on metal wires while being provided with extremely fine metal wires. Therefore, this invention can also be made into a suitable transparent conductive sheet by making selection of a board | substrate appropriate. The present invention can be effectively applied as a component of a touch panel.
Claims (20)
- 基板と、前記基板の片面側に形成された電極層とを有する導電シートであって、
前記電極層は、第1の電極層と第2の電極層とを含み、
前記基板上に、第1の電極層、第2の電極層がこの順で積層されており、
前記第1の電極層は、フッ素樹脂からなる第1の下地層と、前記第1の下地層表面に形成された第1の金属配線とからなり、
前記第2の電極層は、フッ素樹脂からなる第2の下地層と、前記第2の下地層表面に形成された第2の金属配線とからなる、導電シート。 A conductive sheet comprising a substrate and an electrode layer formed on one side of the substrate,
The electrode layer includes a first electrode layer and a second electrode layer,
A first electrode layer and a second electrode layer are laminated in this order on the substrate,
The first electrode layer comprises a first underlayer made of a fluorocarbon resin and a first metal wiring formed on the surface of the first underlayer,
The conductive sheet according to claim 1, wherein the second electrode layer comprises a second underlayer made of a fluorocarbon resin and a second metal wire formed on the surface of the second underlayer. - 第1及び第2の下地層を構成するフッ素樹脂は、炭素(C)、フッ素(F)を含み、フッ素含有単量体に基づく繰り返し単位であって、フッ素原子数と炭素原子数との比(F/C)が1.0以上である繰り返し単位を少なくとも1種有する重合体からなる樹脂である請求項1記載の導電シート。 The fluorine resin constituting the first and second underlayers is a repeating unit containing carbon (C) and fluorine (F) and based on a fluorine-containing monomer, and the ratio of the number of fluorine atoms to the number of carbon atoms The conductive sheet according to claim 1, which is a resin comprising a polymer having at least one repeating unit having (F / C) of 1.0 or more.
- 第1及び第2の下地層を構成するフッ素樹脂は、重合体を構成するフッ素含有単量体に基づく繰り返し単位に、更に、少なくとも1つの酸素原子(O)を含む請求項2記載の導電シート。 The conductive sheet according to claim 2, wherein the fluorine resin constituting the first and second underlayers further contains at least one oxygen atom (O) in a repeating unit based on a fluorine-containing monomer constituting the polymer. .
- 第1の下地層の厚さは、0.01μm以上5μm以下である請求項1~請求項3のいずれかに記載の導電シート。 The conductive sheet according to any one of claims 1 to 3, wherein the thickness of the first underlayer is 0.01 μm or more and 5 μm or less.
- 第2の下地層の厚さは、0.04μm以上1μm以下である請求項1~請求項4のいずれかに記載の導電シート。 5. The conductive sheet according to any one of claims 1 to 4, wherein the thickness of the second underlayer is 0.04 μm or more and 1 μm or less.
- 第1の金属配線の底面と第2の金属配線の底面との距離が、1.2μm以上4.5μm以下である請求項1~請求項5のいずれかに記載の導電シート。 The conductive sheet according to any one of claims 1 to 5, wherein a distance between a bottom surface of the first metal wiring and a bottom surface of the second metal wiring is 1.2 μm or more and 4.5 μm or less.
- 第1及び第2の金属配線は、銀、金、白金、パラジウム、銅、ニッケルの少なくともいずれかよりなる請求項1~請求項6のいずれかに記載の導電シート。 The conductive sheet according to any one of claims 1 to 6, wherein the first and second metal wires are made of at least one of silver, gold, platinum, palladium, copper and nickel.
- 第1の電極層と第2の電極層との間に、誘電体又は絶縁体からなる中間層を少なくとも1層含む請求項1~請求項7のいずれかに記載の導電シート。 The conductive sheet according to any one of claims 1 to 7, further comprising at least one intermediate layer made of a dielectric or an insulator between the first electrode layer and the second electrode layer.
- 中間層の厚さは、合計で1μm以上3μm以下である請求項8記載の導電シート。 The conductive sheet according to claim 8, wherein the thickness of the intermediate layer is 1 μm to 3 μm in total.
- 第2の電極層の表面に、少なくとも1層のコーティング層を含む請求項1~請求項9のいずれかに記載の導電シート。 The conductive sheet according to any one of claims 1 to 9, wherein the surface of the second electrode layer comprises at least one coating layer.
- コーティング層の厚さは、合計で1μm以上3μm以下である請求項10記載の導電シート。 The conductive sheet according to claim 10, wherein the thickness of the coating layer is 1 μm to 3 μm in total.
- JIS K7361-1に基づく全光線透過率が85%以上である請求項1~請求項11のいずれかに記載の導電シート。 The conductive sheet according to any one of claims 1 to 11, which has a total light transmittance of 85% or more based on JIS K7361-1.
- 請求項1~請求項12のいずれかに記載の導電シートを備えるタッチパネル。 A touch panel comprising the conductive sheet according to any one of claims 1 to 12.
- 請求項1~請求項12のいずれかに記載の導電シートの製造方法であって、
基板の片面に、第1の電極層と第2の電極層とをこの順で形成する工程を含み、
前記第1及び第2の電極層を、下記の(a)~(c)の工程を含む方法で形成して導電シートを製造する方法。
(a)基板にフッ素樹脂を塗布して下地層を形成する工程。
(b)前記下地層の金属配線を形成する部位に官能基を形成する工程。
(c)アミン化合物からなる保護剤A、及び、脂肪酸からなる保護剤Bにより保護された金属微粒子が溶媒に分散してなる金属インクを、前記基板表面に塗布し、前記金属微粒子を下地層に固定することで金属配線を形成する工程。 A method of manufacturing a conductive sheet according to any one of claims 1 to 12,
Forming a first electrode layer and a second electrode layer in this order on one side of the substrate;
A method of producing a conductive sheet by forming the first and second electrode layers by a method including the following steps (a) to (c):
(A) A step of applying a fluorine resin to a substrate to form an underlayer.
(B) forming a functional group at a portion of the underlying layer where the metal wiring is formed.
(C) A metal ink comprising a protective agent A comprising an amine compound and metal fine particles protected by a protective agent B comprising a fatty acid dispersed in a solvent is applied to the surface of the substrate, and the metal fine particles are applied to the underlayer. The process of forming metal wiring by fixing. - フッ素樹脂からなる下地層表面に官能基を形成する工程は、下地層の金属配線を形成する部位に1mJ/cm2以上4000mJ/cm2以下のエネルギーを印加するものである請求項14記載の導電シートの製造方法。 The process according to claim 14, wherein in the step of forming the functional group on the surface of the underlayer made of a fluorocarbon resin, energy of 1 mJ / cm 2 or more and 4000 mJ / cm 2 or less is applied to the portion of the underlayer for forming metal wiring. Sheet manufacturing method.
- 官能基として、カルボキシ基、ヒドロキシ基、カルボニル基の少なくともいずれかを形成する請求項14又は請求項15に記載の導電基シートの製造方法。 The method for producing a conductive base sheet according to claim 14 or 15, wherein at least one of a carboxy group, a hydroxy group and a carbonyl group is formed as a functional group.
- 金属インクのアミン化合物からなる保護剤Aは、炭素数4以上12以下のアミン化合物の少なくとも1種からなり、脂肪酸からなる保護剤Bは、炭素数4以上26以下の脂肪酸の少なくとも1種からなる請求項14~請求項16のいずれかに記載の導電基シートの製造方法。 Protecting agent A consisting of an amine compound of metal ink consists of at least one of amine compounds of 4 to 12 carbon atoms, and protecting agent B consisting of fatty acids consists of at least one fatty acid of 4 to 26 carbon atoms A method of producing a conductive base sheet according to any one of claims 14 to 16.
- (c)工程で金属粒子を下地層に固定後、基板を40℃以上250℃以下に加熱することで金属粒子同士を結合し金属配線を形成する請求項14~請求項17のいずれかに記載の導電基板の製造方法。 The metal particles are bonded to form a metal wiring by heating the substrate to 40 ° C. or more and 250 ° C. or less after fixing the metal particles to the underlayer in the step (c). Method of producing a conductive substrate.
- 第1の電極層を形成後、第2の電極層を形成前に、少なくとも1層の中間層を形成する工程を含む請求項14~請求項18のいずれかに記載の導電基板の製造方法。 The method for manufacturing a conductive substrate according to any one of claims 14 to 18, comprising the step of forming at least one intermediate layer after forming the first electrode layer and before forming the second electrode layer.
- 第2の電極層を形成後、少なくとも1層のコーティング層を形成する工程を含む請求項14~請求項19のいずれかに記載の導電基板の製造方法。 The method for producing a conductive substrate according to any one of claims 14 to 19, including the step of forming at least one coating layer after forming the second electrode layer.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017153667A JP6496784B2 (en) | 2017-08-08 | 2017-08-08 | Conductive sheet and method for producing the conductive sheet |
JP2017-153667 | 2017-08-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019031324A1 true WO2019031324A1 (en) | 2019-02-14 |
Family
ID=65271062
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/028772 WO2019031324A1 (en) | 2017-08-08 | 2018-08-01 | Electrically-conductive sheet and method for manufacturing said electrically conductive-sheet |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6496784B2 (en) |
TW (1) | TWI678134B (en) |
WO (1) | WO2019031324A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020256072A1 (en) * | 2019-06-20 | 2020-12-24 | 田中貴金属工業株式会社 | Method for forming metal pattern |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7287455B2 (en) | 2019-03-26 | 2023-06-06 | 三菱マテリアル株式会社 | Manufacturing method of insulated circuit board |
TWI774439B (en) | 2020-07-03 | 2022-08-11 | 日商田中貴金屬工業股份有限公司 | Metal wiring and conductive sheet with excellent bending resistance and metal paste for forming the metal wiring |
WO2022071273A1 (en) * | 2020-09-30 | 2022-04-07 | 富士フイルム株式会社 | Method for manufacturing touch panel electroconductive member, and touch panel electroconductive member |
TWI837555B (en) * | 2020-12-24 | 2024-04-01 | 南韓商東友精細化工有限公司 | Circuit board |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002006156A (en) * | 2000-06-22 | 2002-01-09 | Kyocera Corp | Photoelectric circuit substrate |
JP2006024618A (en) * | 2004-07-06 | 2006-01-26 | Toshiba Corp | Wiring board |
JP2016048601A (en) * | 2014-08-27 | 2016-04-07 | 田中貴金属工業株式会社 | Method for forming metal pattern, and electric conductor |
WO2016100405A1 (en) * | 2014-12-16 | 2016-06-23 | Amphenol Corporation | High-speed interconnects for printed circuit boards |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5990493B2 (en) * | 2012-11-12 | 2016-09-14 | 富士フイルム株式会社 | Manufacturing method of conductive sheet, conductive sheet |
-
2017
- 2017-08-08 JP JP2017153667A patent/JP6496784B2/en active Active
-
2018
- 2018-07-23 TW TW107125281A patent/TWI678134B/en active
- 2018-08-01 WO PCT/JP2018/028772 patent/WO2019031324A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002006156A (en) * | 2000-06-22 | 2002-01-09 | Kyocera Corp | Photoelectric circuit substrate |
JP2006024618A (en) * | 2004-07-06 | 2006-01-26 | Toshiba Corp | Wiring board |
JP2016048601A (en) * | 2014-08-27 | 2016-04-07 | 田中貴金属工業株式会社 | Method for forming metal pattern, and electric conductor |
WO2016100405A1 (en) * | 2014-12-16 | 2016-06-23 | Amphenol Corporation | High-speed interconnects for printed circuit boards |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020256072A1 (en) * | 2019-06-20 | 2020-12-24 | 田中貴金属工業株式会社 | Method for forming metal pattern |
JP2021002549A (en) * | 2019-06-20 | 2021-01-07 | 田中貴金属工業株式会社 | Method for forming metal pattern |
JP7291553B2 (en) | 2019-06-20 | 2023-06-15 | 田中貴金属工業株式会社 | METHOD FOR FORMING METAL PATTERN |
US11864325B2 (en) | 2019-06-20 | 2024-01-02 | Tanaka Kikinzoku Kogyo K.K. | Method for forming metal pattern |
Also Published As
Publication number | Publication date |
---|---|
JP2019033007A (en) | 2019-02-28 |
TW201911982A (en) | 2019-03-16 |
TWI678134B (en) | 2019-11-21 |
JP6496784B2 (en) | 2019-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6496784B2 (en) | Conductive sheet and method for producing the conductive sheet | |
JP5916159B2 (en) | Method for forming metal pattern and conductor | |
JP4918790B2 (en) | Method for producing transparent conductive film, transparent conductive film and coating solution | |
JP2008041445A (en) | Manufacturing method of transparent conductive film, and transparent conductive film | |
JP2016184741A5 (en) | ||
JP5646671B2 (en) | Conductive member, manufacturing method thereof, touch panel, and solar cell | |
JPWO2018051830A1 (en) | Silver paste for flexible substrates | |
JPWO2015083307A1 (en) | Method for producing metal thin film and method for producing conductive structure | |
JP2008028164A (en) | Transparent conductive film and manufacturing method thereof, electromagnetic shield body using same, and display device | |
JP2016068047A (en) | Die coating apparatus and manufacturing method for transparent conductive base material | |
JP6496775B2 (en) | Conductive substrate having metal wiring, and method for manufacturing the conductive substrate | |
TWI688971B (en) | Heat-curing conductive paste | |
WO2017018427A1 (en) | Method for producing conductive film, and conductive film | |
JP6510998B2 (en) | Flexible wiring board and use thereof | |
WO2018051831A1 (en) | Silver paste for resin substrate | |
WO2017104651A1 (en) | Method for manufacturing transparent electroconductive body and transparent electroconductive body | |
TWI708821B (en) | Heat-curing conductive paste | |
JP7073860B2 (en) | Manufacturing method of base material with functional thin wire, and set of ink and base material | |
JP7291553B2 (en) | METHOD FOR FORMING METAL PATTERN | |
JP7131615B2 (en) | Method for forming conductive thin wire, method for manufacturing transparent conductor, method for manufacturing device, and set of conductive ink and substrate | |
US12035470B2 (en) | Electroconductive substrate having metal wiring, method for producing the electroconductive substrate, and metal ink for forming metal wiring | |
JP2022115595A (en) | Conductive paste, and application of the same | |
JP6720869B2 (en) | Transparent film for flexible circuit board and flexible circuit board | |
KR20210120991A (en) | Wiring board, manufacturing method thereof, and manufacturing method of high-conductivity wiring board | |
JP2020194734A (en) | Translucent conductive film with electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18844589 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18844589 Country of ref document: EP Kind code of ref document: A1 |