WO2019031300A1 - Liquefied fuel gas vaporization system and temperature control method for same - Google Patents
Liquefied fuel gas vaporization system and temperature control method for same Download PDFInfo
- Publication number
- WO2019031300A1 WO2019031300A1 PCT/JP2018/028588 JP2018028588W WO2019031300A1 WO 2019031300 A1 WO2019031300 A1 WO 2019031300A1 JP 2018028588 W JP2018028588 W JP 2018028588W WO 2019031300 A1 WO2019031300 A1 WO 2019031300A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat medium
- vaporizer
- temperature
- fuel gas
- liquid heat
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H21/00—Use of propulsion power plant or units on vessels
- B63H21/12—Use of propulsion power plant or units on vessels the vessels being motor-driven
- B63H21/14—Use of propulsion power plant or units on vessels the vessels being motor-driven relating to internal-combustion engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H21/00—Use of propulsion power plant or units on vessels
- B63H21/38—Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C9/00—Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
- F17C9/02—Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T70/00—Maritime or waterways transport
- Y02T70/50—Measures to reduce greenhouse gas emissions related to the propulsion system
- Y02T70/5218—Less carbon-intensive fuels, e.g. natural gas, biofuels
Definitions
- the present invention relates to a liquefied fuel gas vaporization system for heating and vaporizing a liquefied fuel gas such as liquefied natural gas with a liquid heat medium such as water, and supplying the vaporized gas as a fuel gas to a combustion apparatus.
- the invention also relates to a temperature control method for a liquefied fuel gas vaporization system.
- Gas engines are diesel engines and are widely used in generators, automobile engines, marine engines and the like. Gas engines are narrower in stable combustion area between knocking area and misfire area than liquid fuel diesel engines, and are more sensitive to conditions such as excess air ratio, charge air temperature, fuel gas composition, and fuel gas temperature. There is a problem that the combustion state is affected. For this reason, in general, a gas engine uses a governor (speed governor) to prevent a large change in engine rotation speed due to a minute change in engine load.
- a governor speed governor
- LNG liquefied natural gas
- a vaporizer or the like As a heat source of the vaporizer, for example, water (liquid heat medium) is used.
- the present invention has been conceived under such circumstances, and using only the exhaust heat of the combustion apparatus without using means for forced heating and cooling, it is discharged from the vaporizer and burned. It is a primary object to provide a liquefied fuel gas vaporization system suitable for supplying a gaseous fuel (e.g., natural gas) supplied to the apparatus in a predetermined temperature range.
- a gaseous fuel e.g., natural gas
- a liquefied fuel gas vaporization system for vaporizing liquefied fuel gas and supplying it to a combustion apparatus, comprising: a vaporizer for heating and vaporizing liquefied fuel gas with a liquid heat medium; A heat recovery unit that recovers the exhaust heat of the combustion apparatus with the liquid heat medium, a heat medium circulation line for circulating the liquid heat medium between the heat recovery unit and the vaporizer, and the heat medium circulation A mixing unit provided in a line for mixing the liquid heat medium that has passed through the heat recovery unit and the liquid heat medium that has been discharged from the vaporizer and has not passed through the heat recovery unit; And a flow rate control unit for controlling the flow rate of the liquid heat medium supplied to the liquid fuel gas vaporization system.
- a gas temperature detection unit for detecting the temperature of the fuel gas discharged from the vaporizer is further provided, and the flow rate adjustment unit is configured to perform the vaporization based on the temperature of the fuel gas detected by the gas temperature detection unit. The flow rate of the liquid heat medium supplied to the vessel is adjusted.
- the heat medium circulation line includes a low temperature side line for sending the liquid heat medium having a relatively low temperature discharged from the vaporizer to the heat recovery unit, and the heat recovery unit passed through the heat recovery unit.
- a high temperature side line for sending the liquid heat medium which is high temperature to the vaporizer, the mixing unit has one end connected to the low temperature side line and the other end connected to the high temperature side line 1 Includes a bypass line.
- a heat medium temperature detection unit is provided downstream of the connection point with the first bypass line in the high temperature side line and detects the temperature of the liquid heat medium, and the heat medium temperature detection unit detects the temperature of the liquid heat medium.
- a temperature control unit for controlling the flow rate of the liquid heat medium that is mixed with the high temperature side line through the first bypass line so that the temperature of the liquid heat medium falls within a predetermined range.
- the flow rate adjustment unit is provided in the high temperature side line, and is connected to a flow rate adjustment three-way valve that adjusts the flow rate of the liquid heat medium supplied to the vaporizer, and one end is connected to the flow rate adjustment three-way valve And a second bypass line connected at the other end to the low temperature side line.
- the high temperature side line further includes a temperature maintaining chamber provided between the mixing unit and the flow rate adjusting unit, and the heat medium temperature detecting unit is provided in the temperature maintaining chamber.
- the combustion device is a dual fuel engine for ships.
- the heat recovery unit further includes a heat exchanger provided between the low temperature side line and the high temperature side line, and in the heat exchanger, the cooling water from the combustion device and the low temperature side line Heat exchange between the heat transfer medium and the heat transfer medium.
- the fuel gas is natural gas and the heat medium is water.
- a temperature control method in a liquefied fuel gas vaporization system for vaporizing liquefied natural gas and supplying it to a combustion apparatus.
- the liquid heat medium is circulated between the vaporizer which heats and vaporizes the liquefied fuel gas with the liquid heat medium, and the heat recovery unit which recovers the exhaust heat of the combustion apparatus, and
- the liquid heat medium that has been discharged and has not passed through the heat recovery unit is mixed with the liquid heat medium that has passed through the heat recovery unit so that the temperature of the liquid heat medium after mixing falls within a predetermined range.
- a control step of controlling the temperature of the liquid heat medium and a flow rate of the liquid heat medium supplied to the vaporizer are controlled to control the temperature of the fuel gas discharged from the vaporizer to be within a predetermined range. And temperature control steps.
- the fuel gas is natural gas and the heat medium is water.
- the liquefied fuel gas vaporization system has passed through the low temperature side line for sending the liquid heat medium discharged from the vaporizer at a relatively low temperature to the heat recovery unit, and the heat recovery unit.
- a heat medium circulation line including a high temperature side line for sending the liquid heat medium having a relatively high temperature to the vaporizer, one end connected to the low temperature side line, and the other end connected to the high temperature side line Adjusting a flow rate of the liquid heat medium supplied to the high temperature side line through the bypass line, a gas temperature detection unit for detecting the temperature of the fuel gas discharged from the vaporizer, and the bypass line;
- a temperature control unit for maintaining the temperature of the liquid heat medium at a substantially constant temperature within a predetermined range; a flow rate control unit for adjusting the flow rate of the liquid heat medium supplied to the vaporizer via the high temperature side line; Equipped with The flow rate adjusting unit is configured to supply the liquid heat medium to the vaporizer through the high temperature side line so that the temperature of the fuel gas detected by the gas temperature detection
- the flow rate control unit is configured to control the flow rate of the liquid heat medium supplied to the vaporizer through the high temperature side line so as to fall within the range of 15 to 50 ° C., which is ⁇ 5 ° C. from the target temperature of the fuel gas. Adjust the
- FIG. 1 shows an embodiment of a liquefied fuel gas vaporization system according to the present invention.
- the liquefied fuel gas vaporization system X1 of the present embodiment includes a fuel storage tank 1, a vaporizer 2, a buffer tank 3, a heat recovery unit 4 (heat exchanger), and lines connected thereto. .
- the liquefied fuel gas vaporization system X1 supplies the fuel gas to the combustion device 5.
- the combustion device 5 may be, for example, a gas engine for a ship, and is mounted, for example, on a bottom portion of the ship.
- the fuel gas may be, for example, natural gas. In the following, for the sake of simplicity, the description will be made assuming that the combustion device 5 is a ship engine and the fuel gas is a natural gas.
- the fuel storage tank 1 is for storing liquefied natural gas (LNG) to be a fuel.
- the fuel storage tank 1 has a double surrounding wall, and a heat insulating material is filled between the two surrounding walls and the pressure is reduced to a vacuum to block the heat of entry from the outside air. .
- LNG is stored at a temperature of ⁇ 160 ° C. or less.
- the fuel storage tank 1 receives the natural gas generated by the vaporization of the LNG in the vaporizer 2 through the gas line 67 at a pressure of about 0.7 MPaG (G indicates that it is a gauge pressure). There is.
- a fuel supply line 61 is connected to the lower portion of the fuel storage tank 1.
- the fuel supply line 61 is a flow path for transferring the LNG delivered from the fuel storage tank 1 to the carburetor 2.
- the fuel supply line 61 is provided with a shutoff valve 611.
- a gas extraction line 612 is connected to the upper portion of the fuel storage tank 1.
- the gas extraction line 612 is for extracting the gas in the space in the fuel storage tank 1 and flowing it to the fuel supply line 61 when the fuel storage tank 1 is refilled with LNG.
- the gas extraction line 612 is provided with a shutoff valve 613.
- the vaporizer 2 is for evaporating and vaporizing LNG using a liquid heat medium (hereinafter, simply referred to as “heat medium”) as a heating source.
- the vaporizer 2 includes a heat medium container 21 and heat transfer tubes 22 and 23 disposed inside the heat medium container 21.
- the heat medium container 21 is a sealed container for containing a heat medium for heating and vaporizing the LNG in the heat transfer tube 22.
- the heat medium can be replenished. Examples of the heat medium include water.
- the heat medium container 21 has a structure in which a substantially bell-shaped container body 212 is mounted on a disc-shaped bottom plate 211, and the container body 212 and the bottom plate 211 sandwich bolts for sealing and bolts. Integrated and fixed. According to such a configuration, when carrying out a periodic inspection required by high pressure gas or the laws and regulations of the ship, if the heat medium is extracted and the bolt is removed, the bell-shaped container body 212 can It is possible to directly inspect the heat transfer pipes 22 and 23 simply by pulling up the fuel supply line 61) and the heat medium pipe (heat medium circulation lines 62, 63, etc. described later) (the heat medium circulation lines 62, 63 and the like).
- the heat medium circulation lines 62 and 63 are connected to the heat medium container 21.
- the heat medium circulation lines 62 and 63 circulate the heat medium between the vaporizer 2 and the heat recovery unit 4.
- the heat medium circulation line 62 is connected to the bottom plate 211 of the heat medium container 21 and is a flow path for sending the heat medium having passed through the heat recovery unit 4 to the heat medium container 21 (vaporizer 2).
- the heat medium circulation line 63 is connected to the bottom plate 211 of the heat medium container 21 and is connected to the overflow pipe 24 penetrating the bottom plate 211 in a sealed state.
- the heat medium having passed through the inside of the heat medium container 21 by being sequentially supplied via the heat medium circulation line 62 is discharged to the heat medium circulation line 63 via the overflow pipe 24.
- the heat medium discharged from the heat medium container 21 is reheated in the heat recovery unit 4 and supplied again to the heat medium container 21 (vaporizer 2) to be circulated and used.
- the heat medium circulation line 62 is provided with a circulation pump 621.
- the heat medium passing through the heat recovery unit 4 and flowing through the heat medium circulation line 62 has a relatively high temperature.
- the heat medium passing through the heat medium container 21 (vaporizer 2) and flowing through the heat medium circulation line 63 has a relatively low temperature. Therefore, the heat medium circulation line 62 can also be called a high temperature side line, and the heat medium circulation line 63 can also be called a low temperature side line.
- the heat medium circulation lines 62 and 63 are connected to the bypass line 71 (first bypass line).
- One end of the bypass line 71 is connected to the heat medium circulation line 63 (low temperature side line), and the other end is connected to the heat medium circulation line 62 (high temperature side line).
- the bypass line 71 is a flow path for mixing the heat medium that has passed through the heat recovery unit 4 with the heat medium that has been discharged from the vaporizer 2 and has not passed through the heat recovery unit 4.
- the temperature of the heat medium flowing through the bypass line 71 is lower than the temperature of the heat medium flowing through the heat medium circulation line 62.
- a temperature control unit 72 is provided at the connection point of the bypass line 71 to the heat medium circulation line 62.
- the temperature control unit 72 adjusts the flow rate of the heat medium to be mixed with the heat medium circulation line 62 through the bypass line 71 and includes, for example, a three-way valve.
- the temperature control unit 72 passes the bypass line 71 so that the temperature of the heat medium detected by the heat medium temperature detection unit 622 falls within a predetermined range, and the heat medium circulation line 62 (high temperature side line) Adjust the flow rate of the heat medium mixed into the
- a temperature maintenance chamber 623 is provided near the downstream side of the connection point of the bypass line 71 in the heat medium circulation line 62. A predetermined amount of heat medium is accommodated in the temperature maintenance chamber 623, and the heat medium temperature detection unit 622 detects the temperature of the heat medium in the temperature maintenance chamber 623.
- the heat medium circulation line 62 is provided with a flow control valve 624 (flow control unit).
- the flow control valve 624 is for adjusting the flow rate of the heat medium supplied to the vaporizer 2 and includes a three-way valve.
- the flow control valve 624 is provided between the circulation pump 621 and the vaporizer 2, and is preferably provided near the vaporizer 2.
- the flow control valve 624 is connected to the bypass line 73 (second bypass line). One end of the bypass line 73 is connected to the flow rate control valve 624, and the other end is connected to the heat medium circulation line 63 (low temperature side line).
- the bypass line 73 is provided for mixing a part of the heat medium which is derived from the temperature maintenance chamber 623 and flows in the heat medium circulation line 62 into the heat medium circulation line 63 (low temperature side line) without passing through the vaporizer 2. It is a flow path.
- the flow rate control valve 624 adjusts the flow rate of the heat medium supplied to the vaporizer 2 based on the temperature of the natural gas detected by the gas temperature detection unit 641 described later. When the flow rate of the heat medium supplied to the vaporizer 2 is reduced by the flow rate adjustment valve 624, the heat medium corresponding to the reduced flow rate passes through the bypass line 73 and is mixed with the heat medium circulation line 63.
- the heat transfer tube 22 is a flow path through which the LNG introduced into the heat medium container 21 flows, and is wound, for example, in a coil shape.
- the upstream end of the heat transfer tube 22 penetrates the bottom plate 211 of the heat medium container 21 and is connected to the fuel supply line 61.
- a gas line 64 is also connected to the bottom plate 211 of the heat medium container 21.
- the downstream end of the heat transfer tube 22 penetrates the bottom plate 211 and is connected to the gas line 64.
- the LNG in the heat transfer tube 22 is heated by the heat medium present in the surrounding area to be vaporized and vaporized, and the vaporized natural gas is discharged to the gas line 64 leading to the outside of the heat medium container 21.
- the downstream end of the gas line 64 is connected to the buffer tank 3. Natural gas vaporized in the heat transfer tube 22 is fed to the buffer tank 3 via the gas line 64.
- water when water is used as the heat medium, water flows in a temperature range of, for example, 20 to 60 ° C. in the heat medium container 21 (vaporizer 2).
- the fuel gas vaporized in the heat transfer tube 22 is heated, for example, to a temperature range of 15 to 50 ° C., preferably 20 to 45 ° C., and discharged to the gas line 64 at a pressure of about 0.70 MPaG.
- a gas temperature detection unit 641 is provided at a portion near the heat medium container 21 (vaporizer 2) in the gas line 64.
- the gas temperature detection unit 641 detects the temperature of the fuel gas discharged from the vaporizer 2.
- the heat transfer tube 23 is a flow path through which the LNG introduced into the heat medium container 21 flows, and is wound, for example, in a coil shape.
- the heat transfer tube 23 raises the pressure in the space portion inside the fuel storage tank 1 by the vaporized natural gas.
- the upstream end of the heat transfer tube 23 penetrates the lower portion (bottom plate 211) of the heat medium container 21 and is connected to the LNG supply line 66.
- the LNG supply line 66 is connected in the middle of the LNG supply line 61 in a branched manner.
- the LNG supply line 66 is provided with a shutoff valve 661.
- a gas line 67 is also connected to the lower portion (bottom plate 211) of the heat medium container 21.
- the downstream end of the heat transfer tube 23 penetrates the bottom plate 211 and is connected to the gas line 67.
- the gas line 67 is provided with a pressure control valve 671.
- the fuel gas vaporized in the heat transfer pipe 23 is sent to the fuel storage tank 1 through the gas line 67.
- the gas pressure is pressurized, for example, to 0.75 MPaG.
- This pressurized pressure is the pressure for supplying LNG from the fuel storage tank 1 and is a gas fuel supply pressure source necessary for the marine gas engine 5 (diesel engine) which is an internal combustion engine.
- the buffer tank 3 is a sealed container for containing the vaporized natural gas.
- the buffer tank 3 is used to absorb load fluctuation of the consumption gas amount of the combustion apparatus 5 (gas engine 5 for ships) of the latter stage with respect to the natural gas fed in through the gas line 64.
- the configuration in which natural gas is stored by the buffer tank 3 is effective in absorbing load fluctuations.
- a gas line 65 is connected to the buffer tank 3.
- the gas line 65 is provided with a pressure control valve 651. In the pressure control valve 651, the natural gas flowing through the gas line 65 is depressurized to a pressure suitable for consumption by the ship gas engine 5 in the subsequent stage.
- the natural gas passed through the gas line 65 is supplied to the marine gas engine 5.
- the marine vessel gas engine 5 is, for example, a dual fuel engine (a dual fuel diesel engine), and is switched on from liquid fuel mode to gas fuel mode after being activated by liquid fuel such as heavy oil, and gas fuel is supplied. .
- the gas fuel supplied to the marine vessel gas engine 5 is burned through the governor 51 (speed governor) with a consumption amount corresponding to the output of the marine vessel gas engine 5.
- the marine vessel gas engine 5 is cooled while circulating engine cooling water by the cooling water pump 681 or the engine driven pump 682 (driven by the engine 5) all the time during operation.
- the engine cooling water circulates in a temperature range of 55 to 90 ° C. while repeating exhaust heat recovery and cooling in a steady operation state.
- the engine cooling water leaving the marine vessel gas engine 5 is introduced into the heat recovery unit 4 while the temperature is detected by the cooling water temperature detection unit 683 through the cooling water circulation line 68.
- the heat recovery unit 4 is for recovering the exhaust heat of the marine gas engine 5 with water (liquid heat medium).
- the heat recovery unit 4 is configured by an indirect heat exchanger.
- the water (liquid heat medium) discharged from the vaporizer 2 and flowing through the heat medium circulation line 63 and the engine cooling water flowing through the cooling water circulation line 68 are subjected to heat exchange. Exhaust heat is recovered to water (liquid heat carrier).
- the engine cooling water removed by the heat recovery unit 4 is further cooled by seawater by the cooler 684 and mixed with part of the engine cooling water flowing through the cooling water bypass line 686 while being controlled by the cooling temperature control valve 685. Then, the pressure is raised again by the cooling water pump 681 or the engine driven pump 682 and supplied to the marine gas engine 5.
- the heat medium discharged from the vaporizer 2 and flowing through the heat medium circulation line 63 has a relatively low temperature due to heat exchange with the LNG or vaporized natural gas in the heat transfer tube 22 in the vaporizer 2.
- the heat medium flowing through the heat medium circulation line 63 recovers the exhaust heat of the marine gas engine 5 by passing through the heat recovery unit 4 and is temporarily stored in the temperature maintenance chamber 623 after the heat medium temperature rises. Ru.
- the heat medium temperature in the temperature maintenance chamber 623 is detected by the heat medium temperature detection unit 622, and a part of the heat medium flowing through the heat medium circulation line 63 is a bypass line so that the heat medium temperature becomes a constant temperature.
- the flow rate is adjusted by the temperature control unit 72 via the point 71 and mixed with the heat medium in the heat medium circulation line 62.
- a heat medium having a substantially constant temperature hereinafter referred to as "basic temperature heat medium” as appropriate
- the heat medium stored in the temperature maintenance chamber 623 is the basic temperature heat medium.
- the temperature of the basic temperature heat transfer medium is set to a predetermined temperature, for example, in a temperature range of 25 to 60.degree.
- the basic temperature heat transfer medium that has reached a constant temperature using the temperature control unit 72 is pressurized by the circulation pump 621 and flows toward the vaporizer 2.
- the basic temperature heat transfer medium flowing at a constant temperature is divided into two flow paths by the flow rate control valve 624, one flows into the vaporizer 2, and the other passes the vaporizer 2. Instead, it flows to the bypass line 73 to adjust the heating amount of the vaporizer 2.
- the distribution of the basic temperature heat medium is adjusted so that the temperature of the fuel gas discharged from the vaporizer 2 becomes a predetermined target temperature (for example, 30 ° C., 32 ° C., or 35 ° C.).
- the engine load is at least 15 m 3 / h when the engine load is 100%. It is appropriate to flow the basic temperature heat transfer medium to the vaporizer 2.
- the flow rate of the LNG flowing from the fuel storage tank 1 to the carburetor 2 is determined by the consumption of the gas fuel in the marine gas engine 5.
- the gas fuel consumption also fluctuates correspondingly.
- the temperature of the natural gas discharged from the vaporizer 2 is detected by the gas temperature detection unit 641 in the vicinity of the vaporizer 2. Then, the detected temperature of the natural gas discharged from the vaporizer 2 becomes the target temperature within the temperature range of the fuel gas (for example, 25 ⁇ 5 ° C. to 40 ⁇ 5 ° C.) suitable to be supplied to the marine gas engine 5
- the flow rate of the heat medium supplied to the vaporizer 2 via the heat medium circulation line 62 is controlled.
- the change characteristic of the gas fuel consumption with respect to the operation time of the gas engine 5 for ships will be described.
- the ship gas engine 5 two-fueled diesel engine
- the liquid fuel mode is changed to the gas fuel mode to shift to the operation of the gas engine.
- the gas fuel consumption switches from 0 to 100% in about 30 seconds as shown by the rising line at the left end of FIG.
- the engine cooling water is already circulated in the cooling water circulation line 68 in the liquid fuel mode, and from the state cooled by the seawater by the cooler 684, the heat recovery unit 4 changes to a state where the heat medium recovers the exhaust heat. .
- the function of exhaust heat recovery by the heat recovery unit 4 is that the heat medium corresponding to the heat of vaporization of the liquefied natural gas is deprived of more heat from the heat medium as the gas fuel consumption increases, and the heat medium returned from the vaporizer 2 As the temperature starts to fall, it automatically changes to the state of recovering more exhaust heat from the engine coolant.
- the temperature of the heat medium is measured in the temperature maintenance chamber 623, and the first bypass line is adjusted by the temperature control unit 72.
- the heat medium temperature is set to 25 ° C. by increasing or decreasing the amount of the heat medium mixed with the heat medium heated by the heat recovery unit 4 among the cooled heat medium returned from the vaporizer 2 through 72. Maintain at any set temperature in the temperature range of -60 ° C.
- the temperature of the natural gas discharged from the vaporizer 2 is detected by the gas temperature detection unit 641, and the flow control valve 624 controls the flow rate of the heat medium supplied to the vaporizer 2. Operate to increase.
- the temperature of the natural gas discharged from the vaporizer 2 does not become higher than the temperature of the basic temperature heat medium, so even if the control of the flow control valve 624 becomes faulty. It is safe.
- the same control is performed even when the gas engine (gas engine for ships 5) switches from the gas fuel mode to the liquid fuel mode and the ship enters a halted state.
- the gas engine gas engine for ships 5
- an operation to keep the temperature of the natural gas discharged from the vaporizer 2 always at the target temperature required by the gas engine is executed.
- the vaporizer 2 has a structure in which a heat transfer tube 22 in the form of a coil is immersed in a heat medium container 21 accommodating a heat medium.
- the heat medium flowing from the lower part of the heat medium container 21 ascends while circulating along the inner wall of the heat medium container 21 and passes through the overflow pipe 24 penetrating the center from the upper part of the heat medium container 21 to circulate the external heat medium.
- the amount of vaporized natural gas delivered from the heat transfer pipe 22 to the engine 5 decreases (that is, the amount of vaporized natural gas remaining in the heat transfer pipe 22 increases).
- the heat transfer area of decreases, and the heat transfer area of the gas heating portion (region where only the vaporized natural gas is present) increases.
- the temperature (basic heat medium temperature) of the heat medium supplied to the vaporizer 2 (heat medium container 21) is constant regardless of the gas fuel consumption.
- the degree of temperature drop of the heat medium due to cooling in the vaporizer 2 becomes smaller, and the temperature difference between the heat medium and the fuel gas through the heat transfer tube 22 becomes large.
- the heat advances and the temperature of the fuel gas discharged from the carburetor 2 rises.
- the heat transfer area of the evaporation unit increases and the heat transfer area of the gas heating unit decreases.
- the degree of temperature drop of the heat medium is increased, the temperature difference between the heat medium and the natural gas through the heat transfer tube 22 is reduced, the heat transfer is delayed, and the temperature of the natural gas discharged from the vaporizer 2 is decreased.
- the present invention has been made by focusing on such characteristics of the carburetor 2 of a fixed capacity when the gas fuel consumption fluctuates.
- FIG. 3 shows that the gasification capacity of LNG in the vaporizer 2 is about 400 kg / h, and the temperature of the basic temperature heat medium supplied to the vaporizer 2 can be adapted to the marine gas engine 5 with an output of 1,200 kw. In the case of 40 ° C., it represents the temperature change of the natural gas discharged from the vaporizer 2 with respect to the gas fuel consumption.
- FIG. 3 shows four examples in the case where the circulation flow rate of the basic temperature heat medium supplied to the vaporizer 2 is different, and each curve shows that the flow rate control valve 624 vaporizes the basic temperature heat medium having a constant flow rate.
- the four curves show that the basic temperature heat medium to the vaporizer 2 has a circulation flow rate of 20 m 3 / h, 10 m 3 / h, 5 m 3 / h and 3 m 3 / h. Respectively.
- the load of the gas engine is usually 15% when the maximum load factor is 100%, and the corresponding load factor of the gas fuel consumption is 19% when the maximum load factor is 100%. Therefore, if the maximum gas fuel consumption is about 400 kg / h, the minimum is about 76 kg / h.
- the basic temperature heat medium having a temperature of 40 ° C. is flowed to the vaporizer 2 at a flow rate of 20 m 3 / h as one example shown in FIG.
- the temperature of the fuel gas discharged from the carburetor 2 approaches 40 ° C., which is almost the same as the water temperature.
- the temperature of the natural gas discharged from the vaporizer 2 falls to 27 ° C. at the maximum fuel load ratio of 100%.
- the gas fuel consumption is the smallest (fuel load rate 19%, engine load rate 15% ),
- the temperature of the natural gas discharged from the vaporizer 2 is 37.degree.
- the temperature of the natural gas discharged from the vaporizer 2 drops rapidly.
- the temperature control unit 72 adjusts the temperature of the base temperature heat medium to 40 ° C. and supplies the base temperature heat medium to the vaporizer 2. Thereafter, as the gas fuel consumption increases as the gas engine load increases, the temperature of the natural gas discharged from the carburetor 2 falls. Then, the gas temperature detection unit 641 detects the temperature drop of the natural gas, and the flow rate control valve 624 increases the flow rate of the basic temperature heat medium supplied to the vaporizer 2.
- the flow rate of the heat medium in the vaporizer 2 rises immediately, and the natural gas discharged from the vaporizer 2
- the temperature is 27.degree.
- the temperature change of the natural gas fuel produced by changing the flow rate of the heat medium supplied to the vaporizer 2 is excellent in responsiveness.
- the temperature of the natural gas discharged from the vaporizer 2 rises, but does not exceed 40 ° C. Then, when the fuel load rate decreases to 19% and the heat medium flow rate reaches 3 m 3 / h, the temperature of the natural gas discharged from the vaporizer 2 settles at 37 ° C. As a result, the target value 32 ° C. ⁇ 5 ° C. of the gas fuel temperature is achieved.
- the structure of the vaporizer is not limited to the water tank type vaporizer described in FIG. 1, and any structure can be adopted as long as the vaporizer can circulate the heat medium to vaporize the liquefied fuel gas. You may
- the mounting position and the configuration of the flow control valve for controlling the flow rate of the heat medium supplied to the vaporizer 2 are not limited to the configuration and the mounting position of the flow control valve 624 shown in FIG. If the flow rate of the heat medium supplied to the vaporizer 2 is adjusted in the vicinity of the vaporizer 2, even if it is performed on the upstream side (heat medium circulation line 62 side) of the vaporizer 2, the downstream side (heat medium circulation line) 63).
- FIG. 4 to 6 illustrate variations of attachment of the flow control valve for adjusting the flow rate of the heat medium supplied to the vaporizer 2.
- a flow control valve 625 is provided on the downstream side of the vaporizer 2.
- the flow control valve 625 is provided in the heat medium circulation line 63 (low temperature side line) and includes a three-way valve.
- the flow control valve 625 is connected to a bypass line 74 branched from the heat medium circulation line 62 (high temperature side line).
- the bypass line 74 is drawn from the temperature maintenance chamber 623 and mixes a part of the heat medium flowing in the heat medium circulation line 62 with the heat medium circulation line 63 (low temperature side line) without passing through the vaporizer 2. It is a flow path.
- the flow rate adjustment valve 625 adjusts the flow rate of the heat medium supplied to the vaporizer 2 based on the temperature of the natural gas detected by the gas temperature detection unit 641.
- a flow control valve 626 is provided in the heat medium circulation line 62 (high temperature side line).
- the flow control valve 626 includes a two-way valve instead of the three-way valve.
- a pressure loss can be reduced by using a three-way valve
- the flow rate of water supplied to the vaporizer 2 may be adjusted by changing the opening degree directly by using a flow control valve 626 which is a two-way valve.
- a flow control valve 627 which is a two-way valve is provided in a bypass line 75 branched from the heat medium circulation line 62.
- One end of the bypass line 75 is connected to the heat medium circulation line 62, and the other end is connected to the heat medium circulation line 63.
- the bypass line 75 is a flow path for mixing a part of the heat medium flowing in the heat medium circulation line 62 with the heat medium circulation line 63 (low temperature side line) without passing through the vaporizer 2.
- the flow rate of the heat medium supplied to the vaporizer 2 is adjusted by changing the opening degree of the flow rate control valve 627 (two-way valve) provided in the bypass line 75.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Ocean & Marine Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
This liquefied fuel gas vaporization system (X1) for vaporizing a liquefied fuel gas for the purpose of supplying the liquefied fuel gas to a combustion device (5) is provided with: a vaporizer (2) which vaporizes a liquefied fuel gas by heating the liquefied fuel gas by means of a liquid heat medium; a heat recovery unit (4) which recovers exhaust heat of the combustion device (5) by means of the liquid heat medium; heat medium circulation lines (62, 63) for circulating the liquid heat medium between the heat recovery unit (4) and the vaporizer (2); a mixing unit (71) which is provided in the heat medium circulation lines (62, 63) so as to mix the liquid heat medium which has passed through the heat recovery unit (4) and the liquid heat medium which is discharged from the vaporizer (2) and has not passed through the heat recovery unit (4); and flow rate control units (624, 73) which control the flow rate of the liquid heat medium to be supplied to the vaporizer (2).
Description
本発明は、液化天然ガスなどの液化燃料ガスを水などの液体熱媒で加熱して気化し、当該気化ガスを燃料ガスとして燃焼装置に供給するための液化燃料ガス気化システムに関する。また、本発明は、液化燃料ガス気化システムのための温度制御方法にも関する。
The present invention relates to a liquefied fuel gas vaporization system for heating and vaporizing a liquefied fuel gas such as liquefied natural gas with a liquid heat medium such as water, and supplying the vaporized gas as a fuel gas to a combustion apparatus. The invention also relates to a temperature control method for a liquefied fuel gas vaporization system.
ガスエンジンはディーゼルエンジンであり、発電機、自動車のエンジン、船舶のエンジンなどで幅広く用いられている。ガスエンジンは液体燃料のディーゼルエンジンと比べて、ノッキング域と失火域にはさまれた安定燃焼域が狭く、空気過剰率、給気温度、燃料ガス組成、及び燃料ガス温度などの条件により敏感にその燃焼状態が影響を受けるという課題を抱えている。このため、一般的にガスエンジンは、ガバナ(調速機)を用いて、エンジン負荷の微細な変動によりエンジンの回転数が大きく変化するのを防止している。
Gas engines are diesel engines and are widely used in generators, automobile engines, marine engines and the like. Gas engines are narrower in stable combustion area between knocking area and misfire area than liquid fuel diesel engines, and are more sensitive to conditions such as excess air ratio, charge air temperature, fuel gas composition, and fuel gas temperature. There is a problem that the combustion state is affected. For this reason, in general, a gas engine uses a governor (speed governor) to prevent a large change in engine rotation speed due to a minute change in engine load.
ガスエンジンなどの燃焼装置に天然ガス燃料を供給する設備では、LNG(液化天然ガス)を-160℃以下の低温で燃料貯槽に蓄え、気化器などで加熱し蒸発気化させてガス状にする。気化器の加熱源としては、例えば水(液体熱媒)が使用される。
In a facility that supplies natural gas fuel to a combustion apparatus such as a gas engine, LNG (liquefied natural gas) is stored in a fuel storage tank at a low temperature of -160 ° C. or less, heated by a vaporizer or the like to be vaporized and gasified. As a heat source of the vaporizer, for example, water (liquid heat medium) is used.
特許文献1では、燃焼装置としての船舶用ガスエンジン(デュアルフューエルエンジン)において、燃料ガスを効率的にかつ安全に供給するために、機関冷却水(エンジン冷却水)を直接気化器の加温用の水として用いている。ガスエンジンには、燃料噴射ポンプのようなものがないので、ガス燃料温度が変化すると標準状態(0℃、大気圧)でのガス燃料供給量が変わり、供給カロリーが変わって、ガバナの調節機能が損なわれてしまう。したがって、例えば燃料ガス温度が急激に変化した場合はガバナでは制御しきれないという問題があった。これに対し、従来技術の天然ガス供給システムをそのまま用いると、ガスエンジンとして負荷変動が大きく変化する船舶用ディーゼルエンジンのような場合では、エンジンの出力に応じた燃料ガス量を所定の温度範囲内(例えば±5℃)でエンジンに供給することができなかった。
In Patent Document 1, in a marine gas engine (dual fuel engine) as a combustion apparatus, in order to supply fuel gas efficiently and safely, engine cooling water (engine cooling water) is directly heated for heating a carburetor. It is used as water. Since there is no such thing as a fuel injection pump in a gas engine, if the gas fuel temperature changes, the amount of gas fuel supplied at standard conditions (0 ° C, atmospheric pressure) changes, the calories supplied change, and the governor adjustment function Will be lost. Therefore, for example, when the fuel gas temperature changes rapidly, there is a problem that the governor can not control. On the other hand, when the natural gas supply system according to the prior art is used as it is, in the case of a marine diesel engine such as a marine diesel engine where load fluctuation largely changes as a gas engine, the amount of fuel gas according to the output of the engine It could not be supplied to the engine at (e.g. ± 5 ° C).
本発明は、このような事情の下で考え出されたものであって、強制的に加熱や冷却をする手段を用いずに燃焼装置の排熱のみを利用し、気化器から排出されて燃焼装置に供給されるガス燃料(例えば、天然ガス)を所定の温度範囲で供給するのに適した液化燃料ガス気化システムを提供することを主たる目的とする。
The present invention has been conceived under such circumstances, and using only the exhaust heat of the combustion apparatus without using means for forced heating and cooling, it is discharged from the vaporizer and burned. It is a primary object to provide a liquefied fuel gas vaporization system suitable for supplying a gaseous fuel (e.g., natural gas) supplied to the apparatus in a predetermined temperature range.
本発明の第1の側面によれば、液化燃料ガスを気化して燃焼装置に供給するための液化燃料ガス気化システムであって、液化燃料ガスを液体熱媒で加熱して気化させる気化器と、上記燃焼装置の排熱を上記液体熱媒により回収する熱回収部と、上記熱回収部と上記気化器の間で上記液体熱媒を循環させるための熱媒循環ラインと、上記熱媒循環ラインに設けられ、上記熱回収部を通過した上記液体熱媒と、上記気化器から排出され、かつ上記熱回収部を通過していない上記液体熱媒とを混合する混合部と、上記気化器に供給される上記液体熱媒の流量を調節する流量調節部と、を備える液化燃料ガス気化システムが提供される。
According to a first aspect of the present invention, there is provided a liquefied fuel gas vaporization system for vaporizing liquefied fuel gas and supplying it to a combustion apparatus, comprising: a vaporizer for heating and vaporizing liquefied fuel gas with a liquid heat medium; A heat recovery unit that recovers the exhaust heat of the combustion apparatus with the liquid heat medium, a heat medium circulation line for circulating the liquid heat medium between the heat recovery unit and the vaporizer, and the heat medium circulation A mixing unit provided in a line for mixing the liquid heat medium that has passed through the heat recovery unit and the liquid heat medium that has been discharged from the vaporizer and has not passed through the heat recovery unit; And a flow rate control unit for controlling the flow rate of the liquid heat medium supplied to the liquid fuel gas vaporization system.
好ましくは、上記気化器から排出される燃料ガスの温度を検出するガス温度検出部を更に備え、上記流量調節部は、上記ガス温度検出部で検出される燃料ガスの温度に基づいて、上記気化器に供給される上記液体熱媒の流量を調節する。
Preferably, a gas temperature detection unit for detecting the temperature of the fuel gas discharged from the vaporizer is further provided, and the flow rate adjustment unit is configured to perform the vaporization based on the temperature of the fuel gas detected by the gas temperature detection unit. The flow rate of the liquid heat medium supplied to the vessel is adjusted.
好ましくは、上記熱媒循環ラインは、上記気化器から排出された、相対的に低温である上記液体熱媒を上記熱回収部まで送る低温側ラインと、上記熱回収部を通過した、相対的に高温である上記液体熱媒を上記気化器まで送る高温側ラインと、を含み、上記混合部は、一端が上記低温側ラインに接続され、かつ他端が上記高温側ラインに接続された第1バイパスラインを含む。
Preferably, the heat medium circulation line includes a low temperature side line for sending the liquid heat medium having a relatively low temperature discharged from the vaporizer to the heat recovery unit, and the heat recovery unit passed through the heat recovery unit. A high temperature side line for sending the liquid heat medium which is high temperature to the vaporizer, the mixing unit has one end connected to the low temperature side line and the other end connected to the high temperature side line 1 Includes a bypass line.
好ましくは、上記高温側ラインにおいて上記第1バイパスラインとの接続箇所よりも下流側に設けられ、上記液体熱媒の温度を検出する熱媒温度検出部と、上記熱媒温度検出部で検出される上記液体熱媒の温度が所定の範囲に収まるように上記第1バイパスラインを通過して上記高温側ラインに混合される上記液体熱媒の流量を調節する温度調節部と、を更に備える。
Preferably, a heat medium temperature detection unit is provided downstream of the connection point with the first bypass line in the high temperature side line and detects the temperature of the liquid heat medium, and the heat medium temperature detection unit detects the temperature of the liquid heat medium. And a temperature control unit for controlling the flow rate of the liquid heat medium that is mixed with the high temperature side line through the first bypass line so that the temperature of the liquid heat medium falls within a predetermined range.
好ましくは、上記流量調節部は、上記高温側ラインに設けられ、上記気化器に供給される上記液体熱媒の流量を調節する流量調節三方弁と、一端が上記流量調節三方弁に接続され、かつ他端が上記低温側ラインに接続された第2バイパスラインと、を含む。
Preferably, the flow rate adjustment unit is provided in the high temperature side line, and is connected to a flow rate adjustment three-way valve that adjusts the flow rate of the liquid heat medium supplied to the vaporizer, and one end is connected to the flow rate adjustment three-way valve And a second bypass line connected at the other end to the low temperature side line.
好ましくは、上記高温側ラインにおいて上記混合部と上記流量調節部との間に設けられた温度維持チャンバを更に含んでおり、上記熱媒温度検出部は、上記温度維持チャンバに設けられている。
Preferably, the high temperature side line further includes a temperature maintaining chamber provided between the mixing unit and the flow rate adjusting unit, and the heat medium temperature detecting unit is provided in the temperature maintaining chamber.
好ましくは、上記燃焼装置は、船舶用のデュアルフューエルエンジンである。
Preferably, the combustion device is a dual fuel engine for ships.
好ましくは、上記熱回収部は、上記低温側ラインと上記高温側ラインとの間に設けられた熱交換器をさらに含み、当該熱交換器において、前記燃焼装置からの冷却水と前記低温側ラインを流れる熱媒との間で熱交換を行わせるように構成されている。
Preferably, the heat recovery unit further includes a heat exchanger provided between the low temperature side line and the high temperature side line, and in the heat exchanger, the cooling water from the combustion device and the low temperature side line Heat exchange between the heat transfer medium and the heat transfer medium.
好ましくは、上記燃料ガスは天然ガスであり、上記熱媒は水である。
Preferably, the fuel gas is natural gas and the heat medium is water.
本発明の第2の側面によれば、液化天然ガスを気化して燃焼装置に供給するための液化燃料ガス気化システムにおける温度制御方法が提供される。当該方法は、液化燃料ガスを液体熱媒で加熱して気化させる気化器と、上記燃焼装置の排熱を回収する熱回収部と、の間で上記液体熱媒を循環させ、上記気化器から排出され、かつ上記熱回収部を通過していない上記液体熱媒を、上記熱回収部を通過した上記液体熱媒に混合し、混合後の上記液体熱媒の温度が所定範囲となるように制御する液体熱媒温度制御ステップと、上記気化器に供給される上記液体熱媒の流量を調節し、上記気化器から排出される燃料ガスの温度が所定範囲内となるように制御する燃料ガス温度制御ステップと、を含む。
According to a second aspect of the present invention, there is provided a temperature control method in a liquefied fuel gas vaporization system for vaporizing liquefied natural gas and supplying it to a combustion apparatus. According to the method, the liquid heat medium is circulated between the vaporizer which heats and vaporizes the liquefied fuel gas with the liquid heat medium, and the heat recovery unit which recovers the exhaust heat of the combustion apparatus, and The liquid heat medium that has been discharged and has not passed through the heat recovery unit is mixed with the liquid heat medium that has passed through the heat recovery unit so that the temperature of the liquid heat medium after mixing falls within a predetermined range. A control step of controlling the temperature of the liquid heat medium and a flow rate of the liquid heat medium supplied to the vaporizer are controlled to control the temperature of the fuel gas discharged from the vaporizer to be within a predetermined range. And temperature control steps.
好ましくは、上記燃料ガスは天然ガスであり、上記熱媒は水である。
Preferably, the fuel gas is natural gas and the heat medium is water.
好ましくは、上記液化燃料ガス気化システムは、上記気化器から排出された、相対的に低温である上記液体熱媒を上記熱回収部まで送る低温側ライン、及び、上記熱回収部を通過した、相対的に高温である上記液体熱媒を上記気化器まで送る高温側ライン、を含む熱媒循環ラインと、一端が上記低温側ラインに接続され、かつ他端が上記高温側ラインに接続されたバイパスラインと、上記気化器から排出される燃料ガスの温度を検出するガス温度検出部と、上記バイパスラインを通過して上記高温側ラインに供給される上記液体熱媒の流量を調節して、上記液体熱媒の温度を所定範囲内の略一定温度に維持する温度調節部と、上記高温側ラインを介して上記気化器に供給される上記液体熱媒の流量を調節する流量調節部と、を備えており、上記流量調節部は、上記ガス温度検出部で検出される上記燃料ガスの温度が所定範囲内に維持されるように、上記高温側ラインを介して上記気化器に供給される上記液体熱媒の流量を調節する。
Preferably, the liquefied fuel gas vaporization system has passed through the low temperature side line for sending the liquid heat medium discharged from the vaporizer at a relatively low temperature to the heat recovery unit, and the heat recovery unit. A heat medium circulation line including a high temperature side line for sending the liquid heat medium having a relatively high temperature to the vaporizer, one end connected to the low temperature side line, and the other end connected to the high temperature side line Adjusting a flow rate of the liquid heat medium supplied to the high temperature side line through the bypass line, a gas temperature detection unit for detecting the temperature of the fuel gas discharged from the vaporizer, and the bypass line; A temperature control unit for maintaining the temperature of the liquid heat medium at a substantially constant temperature within a predetermined range; a flow rate control unit for adjusting the flow rate of the liquid heat medium supplied to the vaporizer via the high temperature side line; Equipped with The flow rate adjusting unit is configured to supply the liquid heat medium to the vaporizer through the high temperature side line so that the temperature of the fuel gas detected by the gas temperature detection unit is maintained within a predetermined range. Adjust the flow rate.
好ましくは、上記流量調節部は、上記燃料ガスの目標温度から±5℃である15~50℃に収まるように、上記高温側ラインを介して上記気化器に供給される上記液体熱媒の流量を調節する。
Preferably, the flow rate control unit is configured to control the flow rate of the liquid heat medium supplied to the vaporizer through the high temperature side line so as to fall within the range of 15 to 50 ° C., which is ± 5 ° C. from the target temperature of the fuel gas. Adjust the
本発明のその他の特徴および利点は、添付図面を参照して以下に行う詳細な説明によって、より明らかとなろう。
Other features and advantages of the present invention will become more apparent from the detailed description given below with reference to the accompanying drawings.
以下、本発明の好ましい実施の形態について、図面を参照して具体的に説明する。
Hereinafter, preferred embodiments of the present invention will be specifically described with reference to the drawings.
図1は、本発明に係る液化燃料ガス気化システムの一実施形態を示している。本実施形態の液化燃料ガス気化システムX1は、燃料貯槽1と、気化器2と、バッファタンク3と、熱回収部4(熱交換器)と、これらに接続される各ラインとを含んでいる。液化燃料ガス気化システムX1は、燃焼装置5に燃料ガスを供給する。燃焼装置5は、例えば船舶用ガスエンジンであってよく、例えば船舶内の船底部分に搭載されている。また、燃料ガスは、例えば天然ガスであってよい。なお、以下においては、単純化のために、燃焼装置5が船舶用エンジンであり、燃料ガスが天然ガスであるものとして、説明を進める。
FIG. 1 shows an embodiment of a liquefied fuel gas vaporization system according to the present invention. The liquefied fuel gas vaporization system X1 of the present embodiment includes a fuel storage tank 1, a vaporizer 2, a buffer tank 3, a heat recovery unit 4 (heat exchanger), and lines connected thereto. . The liquefied fuel gas vaporization system X1 supplies the fuel gas to the combustion device 5. The combustion device 5 may be, for example, a gas engine for a ship, and is mounted, for example, on a bottom portion of the ship. Also, the fuel gas may be, for example, natural gas. In the following, for the sake of simplicity, the description will be made assuming that the combustion device 5 is a ship engine and the fuel gas is a natural gas.
燃料貯槽1は、燃料となる液化天然ガス(LNG)を貯蔵するためのものである。燃料貯槽1は、周囲壁が2重とされており、当該2つの周囲壁の間には断熱材が充填されるとともに真空に減圧されて、外気からの侵入熱を遮断する構造になっている。燃料貯槽1には、LNGが-160℃以下の温度で貯蔵されている。詳細は後述するが、燃料貯槽1は、気化器2においてLNGが気化して生じた天然ガスを、ガスライン67を通じて0.7MPaG(Gはゲージ圧であることを示す)程度の圧力で受け入れている。
The fuel storage tank 1 is for storing liquefied natural gas (LNG) to be a fuel. The fuel storage tank 1 has a double surrounding wall, and a heat insulating material is filled between the two surrounding walls and the pressure is reduced to a vacuum to block the heat of entry from the outside air. . In the fuel storage tank 1, LNG is stored at a temperature of −160 ° C. or less. Although the details will be described later, the fuel storage tank 1 receives the natural gas generated by the vaporization of the LNG in the vaporizer 2 through the gas line 67 at a pressure of about 0.7 MPaG (G indicates that it is a gauge pressure). There is.
燃料貯槽1の下部には、燃料供給ライン61が接続されている。燃料供給ライン61は、燃料貯槽1から送り出されるLNGを気化器2に移送するための流路である。燃料供給ライン61には、遮断弁611が設けられている。
A fuel supply line 61 is connected to the lower portion of the fuel storage tank 1. The fuel supply line 61 is a flow path for transferring the LNG delivered from the fuel storage tank 1 to the carburetor 2. The fuel supply line 61 is provided with a shutoff valve 611.
燃料貯槽1の上部には、ガス抜き出しライン612が接続されている。ガス抜き出しライン612は、燃料貯槽1へLNGを補充する際、燃料貯槽1内の空間部のガスを抜き出して燃料供給ライン61に流すものである。ガス抜き出しライン612には、遮断弁613が設けられている。
A gas extraction line 612 is connected to the upper portion of the fuel storage tank 1. The gas extraction line 612 is for extracting the gas in the space in the fuel storage tank 1 and flowing it to the fuel supply line 61 when the fuel storage tank 1 is refilled with LNG. The gas extraction line 612 is provided with a shutoff valve 613.
気化器2は、液体熱媒(以下、単に「熱媒」という)を加熱源として、LNGを蒸発気化するためのものである。気化器2は、熱媒容器21と、熱媒容器21の内部に配置された伝熱管22,23とを含んでいる。
The vaporizer 2 is for evaporating and vaporizing LNG using a liquid heat medium (hereinafter, simply referred to as “heat medium”) as a heating source. The vaporizer 2 includes a heat medium container 21 and heat transfer tubes 22 and 23 disposed inside the heat medium container 21.
熱媒容器21は、伝熱管22内のLNGを加熱気化するための熱媒を収容するための密閉状容器である。熱媒は、補充可能である。当該熱媒としては、例えば水が挙げられる。
The heat medium container 21 is a sealed container for containing a heat medium for heating and vaporizing the LNG in the heat transfer tube 22. The heat medium can be replenished. Examples of the heat medium include water.
本実施形態において、熱媒容器21は、ディスク状の底板211の上に略釣鐘状の容器体212が載った構造をしており、容器体212と底板211とはシール用ガスケットを挟んでボルトで一体化固定されている。このような構成によれば、高圧ガスや船舶に関する法律や規則などで要求されている定期的な検査を行う場合、熱媒を抜き出してボルトを外せば釣鐘状の容器体212はLNGの配管(燃料供給ライン61)や熱媒の配管(後述の熱媒循環ライン62,63等)を外すことなく上部に単純に引き上げるだけで、伝熱管22,23を直接検査できるようになる。
In the present embodiment, the heat medium container 21 has a structure in which a substantially bell-shaped container body 212 is mounted on a disc-shaped bottom plate 211, and the container body 212 and the bottom plate 211 sandwich bolts for sealing and bolts. Integrated and fixed. According to such a configuration, when carrying out a periodic inspection required by high pressure gas or the laws and regulations of the ship, if the heat medium is extracted and the bolt is removed, the bell-shaped container body 212 can It is possible to directly inspect the heat transfer pipes 22 and 23 simply by pulling up the fuel supply line 61) and the heat medium pipe (heat medium circulation lines 62, 63, etc. described later) (the heat medium circulation lines 62, 63 and the like).
熱媒容器21には、熱媒循環ライン62,63が接続されている。熱媒循環ライン62,63は、気化器2と熱回収部4との間で熱媒を循環させる。熱媒循環ライン62は、熱媒容器21の底板211に接続されており、熱回収部4を通過した熱媒を熱媒容器21(気化器2)まで送る流路である。熱媒循環ライン63は、熱媒容器21の底板211に接続されており、かつ底板211をシールされた状態で貫通するオーバーフロー管24につながっている。熱媒循環ライン62を介して順次供給されることにより熱媒容器21の内部を通過した熱媒は、オーバーフロー管24を介して熱媒循環ライン63に排出される。詳細は後述するが、熱媒容器21から排出される熱媒は、熱回収部4において再加熱され、再び熱媒容器21(気化器2)に供給されて循環利用される。なお、熱媒循環ライン62には循環用ポンプ621が設けられている。
The heat medium circulation lines 62 and 63 are connected to the heat medium container 21. The heat medium circulation lines 62 and 63 circulate the heat medium between the vaporizer 2 and the heat recovery unit 4. The heat medium circulation line 62 is connected to the bottom plate 211 of the heat medium container 21 and is a flow path for sending the heat medium having passed through the heat recovery unit 4 to the heat medium container 21 (vaporizer 2). The heat medium circulation line 63 is connected to the bottom plate 211 of the heat medium container 21 and is connected to the overflow pipe 24 penetrating the bottom plate 211 in a sealed state. The heat medium having passed through the inside of the heat medium container 21 by being sequentially supplied via the heat medium circulation line 62 is discharged to the heat medium circulation line 63 via the overflow pipe 24. Although the details will be described later, the heat medium discharged from the heat medium container 21 is reheated in the heat recovery unit 4 and supplied again to the heat medium container 21 (vaporizer 2) to be circulated and used. The heat medium circulation line 62 is provided with a circulation pump 621.
熱回収部4を通過し、熱媒循環ライン62を流れる熱媒は、相対的に高温である。熱媒容器21(気化器2)を通過し、熱媒循環ライン63を流れる熱媒は、相対的に低温である。従って、熱媒循環ライン62は、高温側ラインと呼ぶこともでき、熱媒循環ライン63は、低温側ラインと呼ぶこともできる。
The heat medium passing through the heat recovery unit 4 and flowing through the heat medium circulation line 62 has a relatively high temperature. The heat medium passing through the heat medium container 21 (vaporizer 2) and flowing through the heat medium circulation line 63 has a relatively low temperature. Therefore, the heat medium circulation line 62 can also be called a high temperature side line, and the heat medium circulation line 63 can also be called a low temperature side line.
本実施形態において、熱媒循環ライン62,63には、バイパスライン71(第1バイパスライン)が接続されている。バイパスライン71は、一端が熱媒循環ライン63(低温側ライン)に接続されており、他端が熱媒循環ライン62(高温側ライン)に接続されている。バイパスライン71は、熱回収部4を通過した熱媒に、気化器2から排出され、かつ熱回収部4を通過していない熱媒を混合するための流路である。ここで、バイパスライン71を流れる熱媒の温度は、熱媒循環ライン62を流れる熱媒の温度よりも低い。
In the present embodiment, the heat medium circulation lines 62 and 63 are connected to the bypass line 71 (first bypass line). One end of the bypass line 71 is connected to the heat medium circulation line 63 (low temperature side line), and the other end is connected to the heat medium circulation line 62 (high temperature side line). The bypass line 71 is a flow path for mixing the heat medium that has passed through the heat recovery unit 4 with the heat medium that has been discharged from the vaporizer 2 and has not passed through the heat recovery unit 4. Here, the temperature of the heat medium flowing through the bypass line 71 is lower than the temperature of the heat medium flowing through the heat medium circulation line 62.
本実施形態において、熱媒循環ライン62に対するバイパスライン71の接続箇所には、温度調節部72が設けられている。温度調節部72は、バイパスライン71を通過して熱媒循環ライン62に混合される熱媒の流量を調整するものであり、例えば三方弁を含む。
In the present embodiment, a temperature control unit 72 is provided at the connection point of the bypass line 71 to the heat medium circulation line 62. The temperature control unit 72 adjusts the flow rate of the heat medium to be mixed with the heat medium circulation line 62 through the bypass line 71 and includes, for example, a three-way valve.
本実施形態において、温度調節部72は、熱媒温度検出部622で検出される熱媒の温度が所定の範囲に収まるようにバイパスライン71を通過して熱媒循環ライン62(高温側ライン)に混合される熱媒の流量を調節する。本実施形態において、熱媒循環ライン62においてバイパスライン71の接続箇所の下流側近傍には、温度維持チャンバ623が設けられている。当該温度維持チャンバ623内には所定量の熱媒が収容されており、熱媒温度検出部622は、温度維持チャンバ623内の熱媒の温度を検出する。
In the present embodiment, the temperature control unit 72 passes the bypass line 71 so that the temperature of the heat medium detected by the heat medium temperature detection unit 622 falls within a predetermined range, and the heat medium circulation line 62 (high temperature side line) Adjust the flow rate of the heat medium mixed into the In the present embodiment, a temperature maintenance chamber 623 is provided near the downstream side of the connection point of the bypass line 71 in the heat medium circulation line 62. A predetermined amount of heat medium is accommodated in the temperature maintenance chamber 623, and the heat medium temperature detection unit 622 detects the temperature of the heat medium in the temperature maintenance chamber 623.
本実施形態において、熱媒循環ライン62には、流量調節弁624(流量調節部)が設けられている。流量調節弁624は、気化器2に供給される熱媒の流量を調節するものであり、三方弁を含む。流量調節弁624は、循環用ポンプ621と気化器2との間に設けられており、好ましくは気化器2の近傍に設けられる。
In the present embodiment, the heat medium circulation line 62 is provided with a flow control valve 624 (flow control unit). The flow control valve 624 is for adjusting the flow rate of the heat medium supplied to the vaporizer 2 and includes a three-way valve. The flow control valve 624 is provided between the circulation pump 621 and the vaporizer 2, and is preferably provided near the vaporizer 2.
本実施形態において、流量調節弁624には、バイパスライン73(第2バイパスライン)が接続されている。バイパスライン73は、一端が流量調節弁624に接続されており、他端が熱媒循環ライン63(低温側ライン)に接続されている。バイパスライン73は、温度維持チャンバ623から導出されて熱媒循環ライン62を流れる熱媒の一部を、気化器2を通過させずに熱媒循環ライン63(低温側ライン)に混合するための流路である。流量調節弁624は、後述するガス温度検出部641で検出される天然ガスの温度に基づいて、気化器2に供給される熱媒の流量を調節する。流量調節弁624により気化器2に供給される熱媒の流量が減じられると、その減じられた流量相当分の熱媒がバイパスライン73を通過して熱媒循環ライン63に混合される。
In the present embodiment, the flow control valve 624 is connected to the bypass line 73 (second bypass line). One end of the bypass line 73 is connected to the flow rate control valve 624, and the other end is connected to the heat medium circulation line 63 (low temperature side line). The bypass line 73 is provided for mixing a part of the heat medium which is derived from the temperature maintenance chamber 623 and flows in the heat medium circulation line 62 into the heat medium circulation line 63 (low temperature side line) without passing through the vaporizer 2. It is a flow path. The flow rate control valve 624 adjusts the flow rate of the heat medium supplied to the vaporizer 2 based on the temperature of the natural gas detected by the gas temperature detection unit 641 described later. When the flow rate of the heat medium supplied to the vaporizer 2 is reduced by the flow rate adjustment valve 624, the heat medium corresponding to the reduced flow rate passes through the bypass line 73 and is mixed with the heat medium circulation line 63.
伝熱管22は、熱媒容器21内に導入されるLNGが流れる流路であり、例えばコイル状に巻かれている。伝熱管22の上流側端は、熱媒容器21の底板211を貫通して燃料供給ライン61につながっている。熱媒容器21の底板211にはまた、ガスライン64が接続されている。伝熱管22の下流側端は、底板211を貫通してガスライン64につながっている。
The heat transfer tube 22 is a flow path through which the LNG introduced into the heat medium container 21 flows, and is wound, for example, in a coil shape. The upstream end of the heat transfer tube 22 penetrates the bottom plate 211 of the heat medium container 21 and is connected to the fuel supply line 61. A gas line 64 is also connected to the bottom plate 211 of the heat medium container 21. The downstream end of the heat transfer tube 22 penetrates the bottom plate 211 and is connected to the gas line 64.
伝熱管22内のLNGは、周囲にある熱媒により加熱されて蒸発気化し、気化した天然ガスが、熱媒容器21の外部に通じるガスライン64に排出される。ガスライン64の下流側端は、バッファタンク3につながっている。伝熱管22において気化した天然ガスは、ガスライン64を介してバッファタンク3に送り込まれる。
The LNG in the heat transfer tube 22 is heated by the heat medium present in the surrounding area to be vaporized and vaporized, and the vaporized natural gas is discharged to the gas line 64 leading to the outside of the heat medium container 21. The downstream end of the gas line 64 is connected to the buffer tank 3. Natural gas vaporized in the heat transfer tube 22 is fed to the buffer tank 3 via the gas line 64.
ここで、熱媒として水を用いる場合、熱媒容器21(気化器2)の内部においては、例えば20~60℃の温度範囲の水が満たされた状態で流れている。伝熱管22内において気化した燃料ガスは、例えば15~50℃、好ましくは20~45℃の温度範囲まで加温されて、0.70MPaG程度の圧力でガスライン64に排出される。
Here, when water is used as the heat medium, water flows in a temperature range of, for example, 20 to 60 ° C. in the heat medium container 21 (vaporizer 2). The fuel gas vaporized in the heat transfer tube 22 is heated, for example, to a temperature range of 15 to 50 ° C., preferably 20 to 45 ° C., and discharged to the gas line 64 at a pressure of about 0.70 MPaG.
本実施形態において、ガスライン64における熱媒容器21(気化器2)寄りの部位には、ガス温度検出部641が設けられている。ガス温度検出部641は、気化器2から排出された燃料ガスの温度を検出するものである。
In the present embodiment, a gas temperature detection unit 641 is provided at a portion near the heat medium container 21 (vaporizer 2) in the gas line 64. The gas temperature detection unit 641 detects the temperature of the fuel gas discharged from the vaporizer 2.
伝熱管23は、熱媒容器21内に導入されるLNGが流れる流路であり、例えばコイル状に巻かれている。伝熱管23は、気化した天然ガスにより燃料貯槽1内部の空間部分の圧力を高める。伝熱管23の上流側端は、熱媒容器21の下部(底板211)を貫通してLNG供給ライン66につながっている。LNG供給ライン66は、LNG供給ライン61の途中において分岐状に接続されている。LNG供給ライン66には、遮断弁661が設けられている。熱媒容器21の下部(底板211)にはまた、ガスライン67が接続されている。伝熱管23の下流側端は、底板211を貫通してガスライン67につながっている。ガスライン67には、圧力制御弁671が設けられている。
The heat transfer tube 23 is a flow path through which the LNG introduced into the heat medium container 21 flows, and is wound, for example, in a coil shape. The heat transfer tube 23 raises the pressure in the space portion inside the fuel storage tank 1 by the vaporized natural gas. The upstream end of the heat transfer tube 23 penetrates the lower portion (bottom plate 211) of the heat medium container 21 and is connected to the LNG supply line 66. The LNG supply line 66 is connected in the middle of the LNG supply line 61 in a branched manner. The LNG supply line 66 is provided with a shutoff valve 661. A gas line 67 is also connected to the lower portion (bottom plate 211) of the heat medium container 21. The downstream end of the heat transfer tube 23 penetrates the bottom plate 211 and is connected to the gas line 67. The gas line 67 is provided with a pressure control valve 671.
伝熱管23において気化した燃料ガスは、ガスライン67を通じて燃料貯槽1に送られる。ガスライン67内ではガス圧力が例えば0.75MPaGまで加圧される。この加圧圧力は、燃料貯槽1からのLNG供給圧力となり、内燃機関である船舶用ガスエンジン5(ディーゼルエンジン)に必要なガス燃料供給圧力源となる。
The fuel gas vaporized in the heat transfer pipe 23 is sent to the fuel storage tank 1 through the gas line 67. In the gas line 67, the gas pressure is pressurized, for example, to 0.75 MPaG. This pressurized pressure is the pressure for supplying LNG from the fuel storage tank 1 and is a gas fuel supply pressure source necessary for the marine gas engine 5 (diesel engine) which is an internal combustion engine.
バッファタンク3は、気化された天然ガスを収容する密閉状容器である。バッファタンク3は、ガスライン64で送り込まれた天然ガスについて後段の燃焼装置5(船舶用ガスエンジン5)の消費ガス量の負荷変動を吸収するために用いられる。例えば燃焼装置が内燃機関の場合、バッファタンク3により天然ガスを貯留する構成は負荷変動を吸収する上で有効である。バッファタンク3にはガスライン65が接続されている。ガスライン65には、圧力制御弁651が設けられている。この圧力制御弁651において、ガスライン65を流れる天然ガスが後段の船舶用ガスエンジン5での消費に適した圧力まで減圧される。
The buffer tank 3 is a sealed container for containing the vaporized natural gas. The buffer tank 3 is used to absorb load fluctuation of the consumption gas amount of the combustion apparatus 5 (gas engine 5 for ships) of the latter stage with respect to the natural gas fed in through the gas line 64. For example, when the combustion apparatus is an internal combustion engine, the configuration in which natural gas is stored by the buffer tank 3 is effective in absorbing load fluctuations. A gas line 65 is connected to the buffer tank 3. The gas line 65 is provided with a pressure control valve 651. In the pressure control valve 651, the natural gas flowing through the gas line 65 is depressurized to a pressure suitable for consumption by the ship gas engine 5 in the subsequent stage.
ガスライン65を経た天然ガスは、船舶用ガスエンジン5に供給される。船舶用ガスエンジン5は、例えばデュアルフューエルエンジン(2元燃料ディーゼルエンジン)であり、重油などの液体燃料で起動された後、液体燃料モードからガス燃料モードに切り替えられると、ガス燃料が供給される。船舶用ガスエンジン5に供給されるガス燃料は、ガバナ51(調速機)を通じて当該船舶用ガスエンジン5の出力に見合う消費量で燃焼させられる。
The natural gas passed through the gas line 65 is supplied to the marine gas engine 5. The marine vessel gas engine 5 is, for example, a dual fuel engine (a dual fuel diesel engine), and is switched on from liquid fuel mode to gas fuel mode after being activated by liquid fuel such as heavy oil, and gas fuel is supplied. . The gas fuel supplied to the marine vessel gas engine 5 is burned through the governor 51 (speed governor) with a consumption amount corresponding to the output of the marine vessel gas engine 5.
船舶用ガスエンジン5は、運転中常時、冷却水ポンプ681もしくはエンジン駆動式ポンプ682(エンジン5により駆動)でエンジン冷却水を循環させながら冷却される。当該エンジン冷却水は、定常運転状態において、排熱回収および冷却を繰り返しながら55~90℃の温度範囲で循環している。船舶用ガスエンジン5を出たエンジン冷却水は、冷却水循環ライン68を通って冷却水温度検出部683で温度検出されながら熱回収部4に導入される。
The marine vessel gas engine 5 is cooled while circulating engine cooling water by the cooling water pump 681 or the engine driven pump 682 (driven by the engine 5) all the time during operation. The engine cooling water circulates in a temperature range of 55 to 90 ° C. while repeating exhaust heat recovery and cooling in a steady operation state. The engine cooling water leaving the marine vessel gas engine 5 is introduced into the heat recovery unit 4 while the temperature is detected by the cooling water temperature detection unit 683 through the cooling water circulation line 68.
熱回収部4は、船舶用ガスエンジン5の排熱を水(液体熱媒)により回収するためのものである。本実施形態において、熱回収部4は、間接式熱交換器で構成されている。熱回収部4においては、気化器2から排出されて熱媒循環ライン63を流れる水(液体熱媒)と、冷却水循環ライン68を流れるエンジン冷却水とが熱交換され、船舶用ガスエンジン5の排熱が水(液体熱媒)に回収されていく。
The heat recovery unit 4 is for recovering the exhaust heat of the marine gas engine 5 with water (liquid heat medium). In the present embodiment, the heat recovery unit 4 is configured by an indirect heat exchanger. In the heat recovery unit 4, the water (liquid heat medium) discharged from the vaporizer 2 and flowing through the heat medium circulation line 63 and the engine cooling water flowing through the cooling water circulation line 68 are subjected to heat exchange. Exhaust heat is recovered to water (liquid heat carrier).
熱回収部4で除熱されたエンジン冷却水は、クーラー684で海水によってさらに冷却され、冷却用温調弁685で調節されながら、冷却水バイパスライン686を流れるエンジン冷却水の一部と混合し、冷却水ポンプ681もしくはエンジン駆動式ポンプ682で再び昇圧されて船舶用ガスエンジン5に送入される。
The engine cooling water removed by the heat recovery unit 4 is further cooled by seawater by the cooler 684 and mixed with part of the engine cooling water flowing through the cooling water bypass line 686 while being controlled by the cooling temperature control valve 685. Then, the pressure is raised again by the cooling water pump 681 or the engine driven pump 682 and supplied to the marine gas engine 5.
次に、液化燃料ガス気化システムX1の稼働時において、気化器2および熱回収部4の間で循環する熱媒の温度制御方法について説明する。
Next, a method of controlling the temperature of the heat medium circulating between the vaporizer 2 and the heat recovery unit 4 when the liquefied fuel gas vaporization system X1 is in operation will be described.
気化器2から排出されて熱媒循環ライン63を流れる熱媒は、気化器2において伝熱管22内のLNGないし気化した天然ガスとの熱交換により、相対的に低温となっている。この熱媒循環ライン63を流れる熱媒は、熱回収部4を通過することにより船舶用ガスエンジン5の排熱を回収して熱媒温度が上昇した後、温度維持チャンバ623内に一旦収容される。ここで、温度維持チャンバ623内の熱媒温度が熱媒温度検出部622により検出され、この熱媒温度が一定温度となるように、熱媒循環ライン63を流れる熱媒の一部がバイパスライン71を介して温度調節部72により流量が調整されて熱媒循環ライン62内の熱媒に混合される。このようにして、実質的に一定温度の熱媒(以下、適宜「基本温度熱媒」という)が作られる。本実施形態では、温度維持チャンバ623に収容された熱媒が基本温度熱媒である。基本温度熱媒の温度は、例えば25~60℃の温度範囲において所定温度に設定される。
The heat medium discharged from the vaporizer 2 and flowing through the heat medium circulation line 63 has a relatively low temperature due to heat exchange with the LNG or vaporized natural gas in the heat transfer tube 22 in the vaporizer 2. The heat medium flowing through the heat medium circulation line 63 recovers the exhaust heat of the marine gas engine 5 by passing through the heat recovery unit 4 and is temporarily stored in the temperature maintenance chamber 623 after the heat medium temperature rises. Ru. Here, the heat medium temperature in the temperature maintenance chamber 623 is detected by the heat medium temperature detection unit 622, and a part of the heat medium flowing through the heat medium circulation line 63 is a bypass line so that the heat medium temperature becomes a constant temperature. The flow rate is adjusted by the temperature control unit 72 via the point 71 and mixed with the heat medium in the heat medium circulation line 62. In this way, a heat medium having a substantially constant temperature (hereinafter referred to as "basic temperature heat medium" as appropriate) is produced. In the present embodiment, the heat medium stored in the temperature maintenance chamber 623 is the basic temperature heat medium. The temperature of the basic temperature heat transfer medium is set to a predetermined temperature, for example, in a temperature range of 25 to 60.degree.
温度調節部72を用いて一定温度になった基本温度熱媒は、循環用ポンプ621で昇圧され気化器2に向かって流れる。気化器2の入口部近傍では、一定温度で流れてくる基本温度熱媒を流量調節弁624で二つの流路に振り分けて、一方は気化器2内へ流し、他方は気化器2を通過させずにバイパスライン73へ流し、気化器2の加熱量を調節する。この基本温度熱媒の振り分けは、気化器2から排出される燃料ガスの温度が所定の目標温度(例えば30℃や32℃、あるいは35℃)となるように調節される。例えば船舶用ガスエンジン5の出力が1,200kwで、天然ガスの供給について約400kg/hの気化能力を有する気化器2の場合には、エンジン負荷が100%の場合に15m3/h以上の基本温度熱媒を気化器2に流すのが適当である。
The basic temperature heat transfer medium that has reached a constant temperature using the temperature control unit 72 is pressurized by the circulation pump 621 and flows toward the vaporizer 2. In the vicinity of the inlet of the vaporizer 2, the basic temperature heat transfer medium flowing at a constant temperature is divided into two flow paths by the flow rate control valve 624, one flows into the vaporizer 2, and the other passes the vaporizer 2. Instead, it flows to the bypass line 73 to adjust the heating amount of the vaporizer 2. The distribution of the basic temperature heat medium is adjusted so that the temperature of the fuel gas discharged from the vaporizer 2 becomes a predetermined target temperature (for example, 30 ° C., 32 ° C., or 35 ° C.). For example, in the case of a carburetor 2 having an output of 1,200 kw for the marine gas engine 5 and a vaporization capacity of about 400 kg / h for the supply of natural gas, the engine load is at least 15 m 3 / h when the engine load is 100%. It is appropriate to flow the basic temperature heat transfer medium to the vaporizer 2.
一方、燃料貯槽1から気化器2(伝熱管22)に流れるLNGの流量は、船舶用ガスエンジン5におけるガス燃料の消費量によって決定される。船舶用ガスエンジン5の負荷変動があると、それに対応してガス燃料消費量も変動する。
On the other hand, the flow rate of the LNG flowing from the fuel storage tank 1 to the carburetor 2 (heat transfer pipe 22) is determined by the consumption of the gas fuel in the marine gas engine 5. When there is a load fluctuation of the marine gas engine 5, the gas fuel consumption also fluctuates correspondingly.
伝熱管22の内部では、例えば圧力が0.7MPaGの場合、約-130℃のLNGが気化して、その後15~50℃の温度範囲、好ましくは20~45℃の温度範囲まで昇温される。本実施形態において、気化器2から排出される天然ガスの温度は、気化器2の近傍のガス温度検出部641で検出される。そして、気化器2から排出される天然ガスの検出温度が船舶用ガスエンジン5に供給するのに適した燃料ガスの温度範囲(例えば25±5℃から40±5℃)内の目標温度となるように、熱媒循環ライン62を介して気化器2に供給される熱媒の流量が制御される。
In the heat transfer tube 22, for example, when the pressure is 0.7 MPaG, about -130 ° C. of LNG is vaporized and then heated to a temperature range of 15 to 50 ° C., preferably 20 to 45 ° C. . In the present embodiment, the temperature of the natural gas discharged from the vaporizer 2 is detected by the gas temperature detection unit 641 in the vicinity of the vaporizer 2. Then, the detected temperature of the natural gas discharged from the vaporizer 2 becomes the target temperature within the temperature range of the fuel gas (for example, 25 ± 5 ° C. to 40 ± 5 ° C.) suitable to be supplied to the marine gas engine 5 Thus, the flow rate of the heat medium supplied to the vaporizer 2 via the heat medium circulation line 62 is controlled.
次に、図2を参照して、船舶用ガスエンジン5の稼働時間に対するガス燃料消費量の変化特性について説明する。まず、船舶用ガスエンジン5(2元燃料ディーゼルエンジン)が起動して液体燃料モードで運転された後、ガスエンジンの運転に移行すべく液体燃料モードからガス燃料モードになる。そのとき、図2の左端の立ち上がり線のように約30秒間でガス燃料消費量が0から100%に切り替わる。この切り替わりにより、液体燃料モードで既にエンジン冷却水が冷却水循環ライン68を循環し、クーラー684で海水によって冷却されていた状態から、熱回収部4において熱媒が排熱を回収する状態に変化する。この熱回収部4による排熱回収の機能は、ガス燃料消費量が増加するに従って、液化天然ガスの気化熱に相当する熱量が熱媒からより多く奪われ、気化器2から戻ってくる熱媒温度が下がり始めることによって、自動的にエンジン冷却水からより多くの排熱を回収する状態に変化する。
Next, with reference to FIG. 2, the change characteristic of the gas fuel consumption with respect to the operation time of the gas engine 5 for ships will be described. First, after the ship gas engine 5 (two-fueled diesel engine) is started and operated in the liquid fuel mode, the liquid fuel mode is changed to the gas fuel mode to shift to the operation of the gas engine. At that time, the gas fuel consumption switches from 0 to 100% in about 30 seconds as shown by the rising line at the left end of FIG. By this switching, the engine cooling water is already circulated in the cooling water circulation line 68 in the liquid fuel mode, and from the state cooled by the seawater by the cooler 684, the heat recovery unit 4 changes to a state where the heat medium recovers the exhaust heat. . The function of exhaust heat recovery by the heat recovery unit 4 is that the heat medium corresponding to the heat of vaporization of the liquefied natural gas is deprived of more heat from the heat medium as the gas fuel consumption increases, and the heat medium returned from the vaporizer 2 As the temperature starts to fall, it automatically changes to the state of recovering more exhaust heat from the engine coolant.
ここで、熱回収部4で排熱を回収した熱媒の温度を一定にしておくために、温度維持チャンバ623内で熱媒温度を測定し、温度調節部72による調節により、第1バイパスライン72を介して、気化器2から戻ってくる冷却された熱媒のうち、熱回収部4にて加熱された熱媒に混合される熱媒の量を増減して、熱媒温度を25℃~60℃の温度範囲のいずれかの設定温度に維持し続ける。
Here, in order to keep the temperature of the heat medium whose exhaust heat has been recovered by the heat recovery unit 4 constant, the temperature of the heat medium is measured in the temperature maintenance chamber 623, and the first bypass line is adjusted by the temperature control unit 72. The heat medium temperature is set to 25 ° C. by increasing or decreasing the amount of the heat medium mixed with the heat medium heated by the heat recovery unit 4 among the cooled heat medium returned from the vaporizer 2 through 72. Maintain at any set temperature in the temperature range of -60 ° C.
また、ガス燃料消費量が増加すると、気化器2から排出される天然ガスの温度をガス温度検出部641により検知して、流量調節弁624は、気化器2に供給される熱媒の流量を増やす動作をする。
In addition, when the gas fuel consumption increases, the temperature of the natural gas discharged from the vaporizer 2 is detected by the gas temperature detection unit 641, and the flow control valve 624 controls the flow rate of the heat medium supplied to the vaporizer 2. Operate to increase.
上述のガス燃料消費量(エンジン負荷)が100%まで上昇する動作とは逆にエンジン負荷が下がり、ガスエンジンのガス燃料消費量が減少すると、図2に示したように100%のガス燃料消費量がエンジン負荷の低下に伴い、最低で19%のガス燃料消費量(エンジン負荷では15%に相当)にまで下がるときがある。このとき、液化燃料ガス気化システムX1においては、温度調節部72で基本温度熱媒を作る動作を常にしているので、LNGの気化熱の消費量が減少しても基本温度熱媒の温度は変わることがない。したがって、ガス燃料消費量が減少しても気化器2から排出される天然ガスの温度が基本温度熱媒の温度よりも高くなることはないので、流量調節弁624の制御が不調になっても安全である。同様の制御は、ガスエンジン(船舶用ガスエンジン5)がガス燃料モードから液体燃料モードに切り替わり、船舶が停船状態に入った場合でも行われる。以上のように、液化燃料ガス気化システムX1が稼働すると、気化器2から排出される天然ガスの温度を常にガスエンジンが必要とする目標温度に維持しようとする動作が実行される。
Contrary to the above-mentioned operation in which the gas fuel consumption (engine load) rises to 100%, when the engine load decreases and the gas fuel consumption of the gas engine decreases, 100% gas fuel consumption as shown in FIG. 2 The amount may drop to a minimum of 19% gas fuel consumption (equivalent to 15% for engine load) as engine load decreases. At this time, in the liquefied fuel gas vaporization system X1, since the temperature control unit 72 always operates to make the basic temperature heat medium, the temperature of the basic temperature heat medium is reduced even if the amount of consumption of vaporization heat of LNG decreases. There is no change. Therefore, even if the gas fuel consumption decreases, the temperature of the natural gas discharged from the vaporizer 2 does not become higher than the temperature of the basic temperature heat medium, so even if the control of the flow control valve 624 becomes faulty. It is safe. The same control is performed even when the gas engine (gas engine for ships 5) switches from the gas fuel mode to the liquid fuel mode and the ship enters a halted state. As described above, when the liquefied fuel gas vaporization system X1 is operated, an operation to keep the temperature of the natural gas discharged from the vaporizer 2 always at the target temperature required by the gas engine is executed.
気化器2は、熱媒を収容する熱媒容器21の内部にコイル状の伝熱管22を浸したような状態でセットされた構造を有している。熱媒容器21の下部から流入した熱媒は、当該熱媒容器21の内壁に沿って周回しながら上昇し、熱媒容器21の上部から中央を貫通するオーバーフロー管24を通り外部の熱媒循環ライン63に流れ出る。ガス燃料消費量、すなわち気化ガス量がどのように負荷変動しても、気化器2の大きさは固定されているので熱媒容器21内の伝熱管22によって形成される全伝熱面積は一定である。したがって、ガス燃料消費量が小さくなると、伝熱管22からエンジン5に送り出される気化天然ガスの量が減る(すなわち、伝熱管22に残る気化天然ガスの量が増える)ので、伝熱管22における蒸発部(LNGと気化天然ガスが混在する領域)の伝熱面積が減少し、ガス加温部(気化天然ガスのみが存在する領域)の伝熱面積が増加する。これに対して、気化器2(熱媒容器21)に供給される熱媒の温度(基本熱媒温度)は、ガス燃料消費量に関係なく一定である。従って、ガス燃料消費量の負荷が小さくなると、気化器2内での冷却による熱媒の温度降下の程度が小さくなり、熱媒と伝熱管22を通しての燃料ガスとの温度差は大きくなり、伝熱が進んで気化器2から排出される燃料ガスの温度は上昇する。一方、ガス燃料消費量が大きくなると、蒸発部の伝熱面積が増加してガス加温部の伝熱面積は減少する。それと同時に、熱媒の温度降下の程度が大きくなり、熱媒と伝熱管22を通しての天然ガスとの温度差が縮まり、伝熱が遅くなって気化器2から排出される天然ガスの温度は低下する。本発明は、ガス燃料消費量が変動する際、一定容量の気化器2におけるこのような特性に着目してなされたものである。
The vaporizer 2 has a structure in which a heat transfer tube 22 in the form of a coil is immersed in a heat medium container 21 accommodating a heat medium. The heat medium flowing from the lower part of the heat medium container 21 ascends while circulating along the inner wall of the heat medium container 21 and passes through the overflow pipe 24 penetrating the center from the upper part of the heat medium container 21 to circulate the external heat medium. Flow into line 63. Since the size of the vaporizer 2 is fixed no matter how the load of the gas fuel consumption, ie, the amount of vaporized gas, fluctuates, the total heat transfer area formed by the heat transfer tubes 22 in the heat medium container 21 is constant. It is. Therefore, when the gas fuel consumption decreases, the amount of vaporized natural gas delivered from the heat transfer pipe 22 to the engine 5 decreases (that is, the amount of vaporized natural gas remaining in the heat transfer pipe 22 increases). The heat transfer area of (the region where LNG and vaporized natural gas are mixed) decreases, and the heat transfer area of the gas heating portion (region where only the vaporized natural gas is present) increases. On the other hand, the temperature (basic heat medium temperature) of the heat medium supplied to the vaporizer 2 (heat medium container 21) is constant regardless of the gas fuel consumption. Therefore, when the load of gas fuel consumption decreases, the degree of temperature drop of the heat medium due to cooling in the vaporizer 2 becomes smaller, and the temperature difference between the heat medium and the fuel gas through the heat transfer tube 22 becomes large. The heat advances and the temperature of the fuel gas discharged from the carburetor 2 rises. On the other hand, when the gas fuel consumption increases, the heat transfer area of the evaporation unit increases and the heat transfer area of the gas heating unit decreases. At the same time, the degree of temperature drop of the heat medium is increased, the temperature difference between the heat medium and the natural gas through the heat transfer tube 22 is reduced, the heat transfer is delayed, and the temperature of the natural gas discharged from the vaporizer 2 is decreased. Do. The present invention has been made by focusing on such characteristics of the carburetor 2 of a fixed capacity when the gas fuel consumption fluctuates.
次に、図3を参照して、ガス燃料消費量に対する気化器2から排出される天然ガス温度の変化特性について説明する。図3は、1,200kwの出力の船舶用ガスエンジン5に適合できるように、気化器2におけるLNGの気化能力を約400kg/hとし、気化器2に供給される基本温度熱媒の温度を40℃の場合において、ガス燃料消費量に対する気化器2から排出される天然ガスの温度変化を表したものである。図3においては、気化器2に供給される基本温度熱媒の循環流量が異なる場合の四例を示しており、それぞれの曲線は、流量調節弁624により一定流量の基本温度熱媒を気化器2に供給したとき、ガスエンジンの負荷変動によって変わるガス燃料消費量に対して気化器2から排出される天然ガスの温度がどのように変化をするかを表したものである。図3においては、4つの曲線は、気化器2への基本温度熱媒の循環流量が20m3/hの場合、10m3/hの場合、5m3/hの場合、3m3/hの場合をそれぞれ示している。ガスエンジンの負荷は、通常最大の負荷率を100%とすると最小の負荷率は15%であり、それに相当するガス燃料消費量の負荷率は最大を100%とすると最小は19%になる。したがって、最大のガス燃料消費量を約400kg/hとすると最小は約76kg/hとなる。
Next, with reference to FIG. 3, the change characteristic of the temperature of the natural gas discharged from the vaporizer 2 with respect to the gas fuel consumption will be described. FIG. 3 shows that the gasification capacity of LNG in the vaporizer 2 is about 400 kg / h, and the temperature of the basic temperature heat medium supplied to the vaporizer 2 can be adapted to the marine gas engine 5 with an output of 1,200 kw. In the case of 40 ° C., it represents the temperature change of the natural gas discharged from the vaporizer 2 with respect to the gas fuel consumption. FIG. 3 shows four examples in the case where the circulation flow rate of the basic temperature heat medium supplied to the vaporizer 2 is different, and each curve shows that the flow rate control valve 624 vaporizes the basic temperature heat medium having a constant flow rate. When supplied to 2, it represents how the temperature of the natural gas discharged from the vaporizer 2 changes with respect to the gas fuel consumption which changes with the load fluctuation of the gas engine. In FIG. 3, the four curves show that the basic temperature heat medium to the vaporizer 2 has a circulation flow rate of 20 m 3 / h, 10 m 3 / h, 5 m 3 / h and 3 m 3 / h. Respectively. The load of the gas engine is usually 15% when the maximum load factor is 100%, and the corresponding load factor of the gas fuel consumption is 19% when the maximum load factor is 100%. Therefore, if the maximum gas fuel consumption is about 400 kg / h, the minimum is about 76 kg / h.
まず、図3に示されたうちの一例として、温度が40℃の基本温度熱媒を20m3/hの流量で気化器2に流すと、ガス燃料消費量が最も少ない場合(燃料負荷率19%、エンジン負荷率15%)には、気化器2から排出される燃料ガスの温度は水温度とほぼ同じ40℃に接近していく。しかし、ガス燃料消費量が増加し、気化ガス量が増加していくと、最大の燃料負荷率100%のときには気化器2から排出される天然ガスの温度は27℃まで降下する。また、もう一例として、温度が40℃の基本温度熱媒を3m3/hの流量で気化器2に流すと、ガス燃料消費量が最も少ない場合(燃料負荷率19%、エンジン負荷率15%)には、気化器2から排出される天然ガスの温度は37℃になる。しかし、ガス燃料消費量が増加していくと、気化器2から排出される天然ガスの温度は急激に降下する。
First, when the basic temperature heat medium having a temperature of 40 ° C. is flowed to the vaporizer 2 at a flow rate of 20 m 3 / h as one example shown in FIG. The temperature of the fuel gas discharged from the carburetor 2 approaches 40 ° C., which is almost the same as the water temperature. However, when the amount of gas fuel consumption increases and the amount of vaporized gas increases, the temperature of the natural gas discharged from the vaporizer 2 falls to 27 ° C. at the maximum fuel load ratio of 100%. As another example, when the basic temperature heat medium having a temperature of 40 ° C. is flowed to the vaporizer 2 at a flow rate of 3 m 3 / h, the gas fuel consumption is the smallest (fuel load rate 19%, engine load rate 15% ), The temperature of the natural gas discharged from the vaporizer 2 is 37.degree. However, as the amount of gas fuel consumption increases, the temperature of the natural gas discharged from the vaporizer 2 drops rapidly.
したがって、ガスエンジンのガス燃料温度の目標値を32℃にしたいときには、まず温度調節部72で基本温度熱媒の温度を40℃に調節し、その基本温度熱媒を気化器2に供給する。その後、ガスエンジン負荷の増加にともなってガス燃料消費量が増えると、気化器2から排出される天然ガスの温度が降下する。そうすると、この天然ガスの温度降下をガス温度検出部641が検知して、流量調節弁624により気化器2に供給する基本温度熱媒の流量を増やす。例えば基本温度熱媒を20m3/hの流量で気化器2に流すと、気化器2(熱媒容器21)内における熱媒の流速がすぐに上昇し、気化器2から排出される天然ガスの温度は27℃となる。このように、気化器2に供給する熱媒の流量を変化させることによって生じる天然ガス燃料の温度変化は、応答性に優れている。
Therefore, when it is desired to set the target value of the gas fuel temperature of the gas engine to 32 ° C., first, the temperature control unit 72 adjusts the temperature of the base temperature heat medium to 40 ° C. and supplies the base temperature heat medium to the vaporizer 2. Thereafter, as the gas fuel consumption increases as the gas engine load increases, the temperature of the natural gas discharged from the carburetor 2 falls. Then, the gas temperature detection unit 641 detects the temperature drop of the natural gas, and the flow rate control valve 624 increases the flow rate of the basic temperature heat medium supplied to the vaporizer 2. For example, when the basic temperature heat medium is flowed to the vaporizer 2 at a flow rate of 20 m 3 / h, the flow rate of the heat medium in the vaporizer 2 (heat medium container 21) rises immediately, and the natural gas discharged from the vaporizer 2 The temperature is 27.degree. As described above, the temperature change of the natural gas fuel produced by changing the flow rate of the heat medium supplied to the vaporizer 2 is excellent in responsiveness.
また、ガス燃料消費量が減少すると、気化器2から排出される天然ガスの温度は上昇するが、40℃を上回ることはない。そして、燃料負荷率が19%まで減少して熱媒流量が3m3/hになると、気化器2から排出される天然ガスの温度は37℃に落ち着く。この結果、ガス燃料温度の目標値32℃±5℃は、達成される。
In addition, when the gas fuel consumption decreases, the temperature of the natural gas discharged from the vaporizer 2 rises, but does not exceed 40 ° C. Then, when the fuel load rate decreases to 19% and the heat medium flow rate reaches 3 m 3 / h, the temperature of the natural gas discharged from the vaporizer 2 settles at 37 ° C. As a result, the target value 32 ° C. ± 5 ° C. of the gas fuel temperature is achieved.
以上、本発明の実施形態を説明したが、本発明の範囲は上記した実施形態に限定されるものではなく、各請求項に記載した範囲内でのあらゆる変更は、すべて本発明の範囲に包摂される。
Although the embodiment of the present invention has been described above, the scope of the present invention is not limited to the above-described embodiment, and all modifications within the scope described in each claim are all included in the scope of the present invention. Be done.
気化器の構造については、図1に記載された水槽式気化器に限られたものではなく、熱媒を循環させて液化燃料ガスを気化させることができる気化器であれば、いかなる構造を採用してもよい。
The structure of the vaporizer is not limited to the water tank type vaporizer described in FIG. 1, and any structure can be adopted as long as the vaporizer can circulate the heat medium to vaporize the liquefied fuel gas. You may
また、気化器2に供給される熱媒の流量を調節する流量調節弁の取り付け位置や構成については、上記実施形態において図1に示した流量調節弁624の構成や取付位置に限定されない。気化器2に供給される熱媒の流量の調節は、気化器2の近傍であれば、気化器2の上流側(熱媒循環ライン62側)で行っても、下流側(熱媒循環ライン63側)で行ってもよい。
Further, the mounting position and the configuration of the flow control valve for controlling the flow rate of the heat medium supplied to the vaporizer 2 are not limited to the configuration and the mounting position of the flow control valve 624 shown in FIG. If the flow rate of the heat medium supplied to the vaporizer 2 is adjusted in the vicinity of the vaporizer 2, even if it is performed on the upstream side (heat medium circulation line 62 side) of the vaporizer 2, the downstream side (heat medium circulation line) 63).
図4~図6は、気化器2に供給される熱媒の流量を調節するための流量調節弁について、その取り付けのバリエーションを例示している。図4においては、気化器2の下流側に流量調節弁625が設けられている。流量調節弁625は、熱媒循環ライン63(低温側ライン)に設けられており、三方弁を含んでいる。流量調節弁625には、熱媒循環ライン62(高温側ライン)から分岐するバイパスライン74が接続されている。バイパスライン74は、温度維持チャンバ623から導出されて熱媒循環ライン62を流れる熱媒の一部を、気化器2を通過させずに熱媒循環ライン63(低温側ライン)に混合するための流路である。流量調節弁625は、ガス温度検出部641で検出される天然ガスの温度に基づいて、気化器2に供給される熱媒の流量を調節する。
4 to 6 illustrate variations of attachment of the flow control valve for adjusting the flow rate of the heat medium supplied to the vaporizer 2. In FIG. 4, a flow control valve 625 is provided on the downstream side of the vaporizer 2. The flow control valve 625 is provided in the heat medium circulation line 63 (low temperature side line) and includes a three-way valve. The flow control valve 625 is connected to a bypass line 74 branched from the heat medium circulation line 62 (high temperature side line). The bypass line 74 is drawn from the temperature maintenance chamber 623 and mixes a part of the heat medium flowing in the heat medium circulation line 62 with the heat medium circulation line 63 (low temperature side line) without passing through the vaporizer 2. It is a flow path. The flow rate adjustment valve 625 adjusts the flow rate of the heat medium supplied to the vaporizer 2 based on the temperature of the natural gas detected by the gas temperature detection unit 641.
図5においては、熱媒循環ライン62(高温側ライン)に流量調節弁626が設けられている。図5に示した例では、流量調節弁626は、三方弁の代わりに二方弁を含む。三方弁を用いると圧力損失を減らすことができるが、二方弁である流量調節弁626を用いて、気化器2に供給される水流量について直接開度を変化させて調節してもよい。
In FIG. 5, a flow control valve 626 is provided in the heat medium circulation line 62 (high temperature side line). In the example shown in FIG. 5, the flow control valve 626 includes a two-way valve instead of the three-way valve. Although a pressure loss can be reduced by using a three-way valve, the flow rate of water supplied to the vaporizer 2 may be adjusted by changing the opening degree directly by using a flow control valve 626 which is a two-way valve.
図6においては、熱媒循環ライン62から分岐するバイパスライン75に、二方弁である流量調節弁627が設けられている。バイパスライン75は、一端が熱媒循環ライン62に接続され、かつ他端が熱媒循環ライン63に接続されている。バイパスライン75は、熱媒循環ライン62を流れる熱媒の一部を、気化器2を通過させずに熱媒循環ライン63(低温側ライン)に混合するための流路である。図6に示した構成では、バイパスライン75に設けられた流量調節弁627(二方弁)の開度を変化させることにより、気化器2に供給される熱媒の流量を調節する。
In FIG. 6, a flow control valve 627 which is a two-way valve is provided in a bypass line 75 branched from the heat medium circulation line 62. One end of the bypass line 75 is connected to the heat medium circulation line 62, and the other end is connected to the heat medium circulation line 63. The bypass line 75 is a flow path for mixing a part of the heat medium flowing in the heat medium circulation line 62 with the heat medium circulation line 63 (low temperature side line) without passing through the vaporizer 2. In the configuration shown in FIG. 6, the flow rate of the heat medium supplied to the vaporizer 2 is adjusted by changing the opening degree of the flow rate control valve 627 (two-way valve) provided in the bypass line 75.
X1 液化燃料ガス気化システム
1 燃料貯槽
2 気化器
21 熱媒容器
211 底板
212 容器体
22 伝熱管
23 伝熱管
24 オーバーフロー管
3 バッファタンク
4 熱回収部
5 船舶用ガスエンジン
51 ガバナ
61 燃料供給ライン
611 遮断弁
612 ガス抜き出しライン
613 遮断弁
62 熱媒循環ライン(高温側ライン)
621 循環用ポンプ
622 熱媒温度検出部
623 温度維持チャンバ
624 流量調節弁(流量調節部、流量調節三方弁)
625 流量調節弁(流量調節部)
626 流量調節弁(流量調節部)
627 流量調節弁(流量調節部)
63 熱媒循環ライン(低温側ライン)
64 ガスライン
641 ガス温度検出部
65 ガスライン
651 圧力制御弁
66 燃料供給ライン
661 遮断弁
67 ガスライン
671 圧力制御弁
68 冷却水循環ライン
681 冷却水ポンプ
682 エンジン駆動式ポンプ
683 冷却水温度検出部
684 クーラー
685 冷却用温調弁
686 冷却水バイパスライン
71 バイパスライン(第1バイパスライン)
72 温度調節部
73 バイパスライン(第2バイパスライン)
74 バイパスライン(第2バイパスライン)
75 バイパスライン(第2バイパスライン) X1 liquefied fuel gas vaporization system 1fuel storage tank 2 vaporizer 21 heat medium container 211 bottom plate 212 container body 22 heat transfer tube 23 heat transfer tube 24 overflow tube 3 buffer tank 4 heat recovery unit 5 marine gas engine 51 governor 61 fuel supply line 611 shut off Valve 612 Gas extraction line 613 Shut-off valve 62 Heat medium circulation line (high temperature side line)
621Circulation pump 622 Heat medium temperature detection unit 623 Temperature maintenance chamber 624 Flow control valve (Flow control unit, flow control three-way valve)
625 Flow control valve (flow control unit)
626 Flow control valve (flow control unit)
627 Flow control valve (flow control unit)
63 Heat medium circulation line (low temperature side line)
64gas line 641 gas temperature detection unit 65 gas line 651 pressure control valve 66 fuel supply line 66 shutoff valve 67 gas line 671 pressure control valve 68 cooling water circulation line 681 cooling water pump 682 engine driven pump 683 cooling water temperature detection unit 684 cooler 685 Cooling control valve 686 Cooling water bypass line 71 Bypass line (1st bypass line)
72Temperature control unit 73 bypass line (second bypass line)
74 Bypass line (second bypass line)
75 bypass line (second bypass line)
1 燃料貯槽
2 気化器
21 熱媒容器
211 底板
212 容器体
22 伝熱管
23 伝熱管
24 オーバーフロー管
3 バッファタンク
4 熱回収部
5 船舶用ガスエンジン
51 ガバナ
61 燃料供給ライン
611 遮断弁
612 ガス抜き出しライン
613 遮断弁
62 熱媒循環ライン(高温側ライン)
621 循環用ポンプ
622 熱媒温度検出部
623 温度維持チャンバ
624 流量調節弁(流量調節部、流量調節三方弁)
625 流量調節弁(流量調節部)
626 流量調節弁(流量調節部)
627 流量調節弁(流量調節部)
63 熱媒循環ライン(低温側ライン)
64 ガスライン
641 ガス温度検出部
65 ガスライン
651 圧力制御弁
66 燃料供給ライン
661 遮断弁
67 ガスライン
671 圧力制御弁
68 冷却水循環ライン
681 冷却水ポンプ
682 エンジン駆動式ポンプ
683 冷却水温度検出部
684 クーラー
685 冷却用温調弁
686 冷却水バイパスライン
71 バイパスライン(第1バイパスライン)
72 温度調節部
73 バイパスライン(第2バイパスライン)
74 バイパスライン(第2バイパスライン)
75 バイパスライン(第2バイパスライン) X1 liquefied fuel gas vaporization system 1
621
625 Flow control valve (flow control unit)
626 Flow control valve (flow control unit)
627 Flow control valve (flow control unit)
63 Heat medium circulation line (low temperature side line)
64
72
74 Bypass line (second bypass line)
75 bypass line (second bypass line)
Claims (14)
- 液化燃料ガスを気化して燃焼装置に供給するための液化燃料ガス気化システムであって、
液化燃料ガスを液体熱媒で加熱して気化させる気化器と、
上記燃焼装置の排熱を上記液体熱媒により回収する熱回収部と、
上記熱回収部と上記気化器の間で上記液体熱媒を循環させるための熱媒循環ラインと、
上記熱媒循環ラインに設けられ、上記熱回収部を通過した上記液体熱媒と、上記気化器から排出され、かつ上記熱回収部を通過していない上記液体熱媒とを混合する混合部と、
上記気化器に供給される上記液体熱媒の流量を調節する流量調節部と、を備える、液化燃料ガス気化システム。 A liquefied fuel gas vaporization system for vaporizing liquefied fuel gas and supplying it to a combustion device, comprising:
A vaporizer that vaporizes liquefied fuel gas by heating it with a liquid heat medium;
A heat recovery unit that recovers the exhaust heat of the combustion apparatus with the liquid heat medium;
A heat medium circulation line for circulating the liquid heat medium between the heat recovery unit and the vaporizer;
A mixing unit provided in the heat medium circulation line for mixing the liquid heat medium that has passed through the heat recovery unit and the liquid heat medium that has been discharged from the vaporizer and has not passed through the heat recovery unit ,
A liquefied fuel gas vaporization system comprising: a flow rate control unit which controls the flow rate of the liquid heat medium supplied to the vaporizer. - 上記気化器から排出される燃料ガスの温度を検出するガス温度検出部を更に備え、
上記流量調節部は、上記ガス温度検出部で検出される燃料ガスの温度に基づいて、上記気化器に供給される上記液体熱媒の流量を調節する、請求項1に記載の液化燃料ガス気化システム。 And a gas temperature detection unit for detecting the temperature of the fuel gas discharged from the vaporizer.
The liquefied fuel gas vaporization according to claim 1, wherein the flow rate adjustment unit adjusts the flow rate of the liquid heat medium supplied to the vaporizer based on the temperature of the fuel gas detected by the gas temperature detection unit. system. - 上記熱媒循環ラインは、上記気化器から排出された、相対的に低温である上記液体熱媒を上記熱回収部まで送る低温側ラインと、上記熱回収部を通過した、相対的に高温である上記液体熱媒を上記気化器まで送る高温側ラインと、を含み、
上記混合部は、一端が上記低温側ラインに接続され、かつ他端が上記高温側ラインに接続された第1バイパスラインを含む、請求項1または2に記載の液化燃料ガス気化システム。 The heat medium circulation line is a relatively high temperature which has passed through the heat recovery unit, a low temperature side line for sending the liquid heat medium which is relatively low temperature discharged from the vaporizer to the heat recovery unit, and the heat recovery unit. A high temperature side line for sending the above liquid heat medium to the above vaporizer;
The liquefied fuel gas vaporization system according to claim 1 or 2, wherein the mixing unit includes a first bypass line having one end connected to the low temperature side line and the other end connected to the high temperature side line. - 上記高温側ラインにおいて上記第1バイパスラインとの接続箇所よりも下流側に設けられ、上記液体熱媒の温度を検出する熱媒温度検出部と、
上記熱媒温度検出部で検出される上記液体熱媒の温度が所定の範囲に収まるように上記第1バイパスラインを通過して上記高温側ラインに混合される上記液体熱媒の流量を調節する温度調節部と、を更に備える、請求項3に記載の液化燃料ガス気化システム。 A heat medium temperature detection unit provided downstream of the connection point with the first bypass line in the high temperature side line and detecting the temperature of the liquid heat medium;
The flow rate of the liquid heat medium, which passes through the first bypass line and is mixed with the high temperature side line, is adjusted so that the temperature of the liquid heat medium detected by the heat medium temperature detection unit falls within a predetermined range. The liquefied fuel gas vaporization system according to claim 3, further comprising: a temperature control unit. - 上記流量調節部は、上記高温側ラインに設けられ、上記気化器に供給される上記液体熱媒の流量を調節する流量調節三方弁と、
一端が上記流量調節三方弁に接続され、かつ他端が上記低温側ラインに接続された第2バイパスラインと、を含む、請求項3または4に記載の液化燃料ガス気化システム。 The flow rate adjusting unit is provided in the high temperature side line, and a flow rate adjusting three-way valve that adjusts the flow rate of the liquid heat medium supplied to the vaporizer;
The liquefied fuel gas vaporization system according to claim 3 or 4 including the 2nd bypass line by which one end was connected to said flow control three way valve, and the other end was connected to said low temperature side line. - 上記高温側ラインにおいて上記混合部と上記流量調節部との間に設けられた温度維持チャンバを更に含んでおり、
上記熱媒温度検出部は、上記温度維持チャンバに設けられている、請求項3ないし5のいずれかに記載の液化燃料ガス気化システム。 And a temperature maintaining chamber provided between the mixing unit and the flow rate control unit in the high temperature side line,
The liquefied fuel gas vaporization system according to any one of claims 3 to 5, wherein the heat medium temperature detection unit is provided in the temperature maintenance chamber. - 上記燃焼装置は、船舶用のデュアルフューエルエンジンである、請求項1ないし6のいずれかに記載の液化燃料ガス気化システム。 The liquefied fuel gas vaporization system according to any one of claims 1 to 6, wherein the combustion device is a dual fuel engine for ships.
- 上記熱回収部は、上記低温側ラインと上記高温側ラインとの間に設けられた熱交換器をさらに含み、当該熱交換器において、前記燃焼装置からの冷却水と前記低温側ラインを流れる熱媒との間で熱交換を行わせるように構成されている、請求項3ないし7のいずれかに記載の液化燃料ガス気化システム。 The heat recovery unit further includes a heat exchanger provided between the low temperature side line and the high temperature side line, and in the heat exchanger, the cooling water from the combustion device and the heat flowing through the low temperature side line The liquefied fuel gas vaporization system according to any one of claims 3 to 7, which is configured to perform heat exchange with the medium.
- 上記燃料ガスは天然ガスである、請求項1ないし8のいずれかに記載の液化燃料ガス気化システム。 The liquefied fuel gas vaporization system according to any one of claims 1 to 8, wherein the fuel gas is natural gas.
- 上記熱媒は水である、請求項1ないし9のいずれかに記載の液化燃料ガス気化システム。 The liquefied fuel gas vaporization system according to any one of claims 1 to 9, wherein the heat medium is water.
- 液化燃料ガスを気化して燃焼装置に供給するための液化燃料ガス気化システムにおいて、
液化燃料ガスを液体熱媒で加熱して気化させる気化器と、上記燃焼装置の排熱を回収する熱回収部と、の間で上記液体熱媒を循環させ、
上記気化器から排出され、かつ上記熱回収部を通過していない上記液体熱媒を、上記熱回収部を通過した上記液体熱媒に混合して、混合後の上記液体熱媒の温度が所定範囲内となるように制御する液体熱媒温度制御ステップと、
上記気化器に供給される上記液体熱媒の流量を調節し、上記気化器から排出される燃料ガスの温度が所定範囲内となるように制御する燃料ガス温度制御ステップと、を含む、液化燃料ガス気化システムの温度制御方法。 In a liquefied fuel gas vaporization system for vaporizing liquefied fuel gas and supplying it to a combustion device,
The liquid heat medium is circulated between a vaporizer that heats and vaporizes liquefied fuel gas with a liquid heat medium, and a heat recovery unit that recovers the exhaust heat of the combustion apparatus,
The liquid heat medium discharged from the vaporizer and not passing through the heat recovery unit is mixed with the liquid heat medium passed through the heat recovery unit, and the temperature of the liquid heat medium after mixing is predetermined A liquid heat medium temperature control step of controlling to be within the range;
A fuel gas temperature control step of adjusting the flow rate of the liquid heat medium supplied to the vaporizer and controlling the temperature of the fuel gas discharged from the vaporizer to be within a predetermined range; Method of temperature control of gas vaporization system. - 上記燃料ガスは天然ガスであり、上記熱媒は水である、請求項11に記載の液体熱媒温度制御方法。 The liquid heat medium temperature control method according to claim 11, wherein the fuel gas is a natural gas, and the heat medium is water.
- 上記液化燃料ガス気化システムは、
上記気化器から排出された、相対的に低温である上記液体熱媒を上記熱回収部まで送る低温側ライン、及び、上記熱回収部を通過した、相対的に高温である上記液体熱媒を上記気化器まで送る高温側ライン、を含む熱媒循環ラインと、
一端が上記低温側ラインに接続され、かつ他端が上記高温側ラインに接続されたバイパスラインと、
上記気化器から排出される燃料ガスの温度を検出するガス温度検出部と、
上記バイパスラインを通過して上記高温側ラインに供給される上記液体熱媒の流量を調節して、上記液体熱媒の温度を所定範囲内の略一定温度に維持する温度調節部と、
上記高温側ラインを介して上記気化器に供給される上記液体熱媒の流量を調節する流量調節部と、を備えており、
上記流量調節部は、上記ガス温度検出部で検出される上記燃料ガスの温度が所定範囲内に維持されるように、上記高温側ラインを介して上記気化器に供給される上記液体熱媒の流量を調節する、請求項11または12に記載の液体熱媒温度制御方法。 The above liquefied fuel gas vaporization system
The liquid heat medium having a relatively high temperature which has passed through the heat recovery unit and the low temperature side line for sending the liquid heat medium having a relatively low temperature discharged from the vaporizer to the heat recovery unit A heat medium circulation line including a high temperature side line for sending to the vaporizer;
A bypass line having one end connected to the low temperature side line and the other end connected to the high temperature side line;
A gas temperature detection unit that detects the temperature of the fuel gas discharged from the vaporizer;
A temperature control unit which maintains the temperature of the liquid heat medium at a substantially constant temperature within a predetermined range by adjusting the flow rate of the liquid heat medium supplied to the high temperature side line through the bypass line;
A flow rate control unit for controlling the flow rate of the liquid heat medium supplied to the vaporizer through the high temperature side line;
The flow rate adjustment unit is configured to supply the liquid heat medium to the vaporizer through the high temperature side line such that the temperature of the fuel gas detected by the gas temperature detection unit is maintained within a predetermined range. The liquid heat medium temperature control method according to claim 11, wherein the flow rate is adjusted. - 上記流量調節部は、上記燃料ガスの目標温度から±5℃である15~50℃に収まるように、上記高温側ラインを介して上記気化器に供給される上記液体熱媒の流量を調節する、請求項13に記載の液体熱媒温度制御方法。 The flow rate adjusting unit adjusts the flow rate of the liquid heat medium supplied to the vaporizer through the high temperature side line so as to be within 15 to 50 ° C., which is ± 5 ° C. from the target temperature of the fuel gas. The liquid heat medium temperature control method according to claim 13.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-153194 | 2017-08-08 | ||
JP2017153194A JP2020186732A (en) | 2017-08-08 | 2017-08-08 | Liquefied natural gas vaporizing system and temperature control method of liquefied natural gas vaporizing system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019031300A1 true WO2019031300A1 (en) | 2019-02-14 |
Family
ID=65271441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/028588 WO2019031300A1 (en) | 2017-08-08 | 2018-07-31 | Liquefied fuel gas vaporization system and temperature control method for same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2020186732A (en) |
WO (1) | WO2019031300A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113970065A (en) * | 2021-11-09 | 2022-01-25 | 新地能源工程技术有限公司 | LNG emergency gasification device and method with adjustable heat value |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5993600A (en) * | 1982-11-18 | 1984-05-30 | Kawasaki Heavy Ind Ltd | Liquefied gas transporting tank lorry |
JP2007518940A (en) * | 2003-12-11 | 2007-07-12 | バイエリッシェ モートーレン ウエルケ アクチエンゲゼルシャフト | System and method for evaporating cold stored fuel |
JP2015147508A (en) * | 2014-02-06 | 2015-08-20 | 新潟原動機株式会社 | Liquefied gas supply device of ship propulsion gas fuel engine |
-
2017
- 2017-08-08 JP JP2017153194A patent/JP2020186732A/en active Pending
-
2018
- 2018-07-31 WO PCT/JP2018/028588 patent/WO2019031300A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5993600A (en) * | 1982-11-18 | 1984-05-30 | Kawasaki Heavy Ind Ltd | Liquefied gas transporting tank lorry |
JP2007518940A (en) * | 2003-12-11 | 2007-07-12 | バイエリッシェ モートーレン ウエルケ アクチエンゲゼルシャフト | System and method for evaporating cold stored fuel |
JP2015147508A (en) * | 2014-02-06 | 2015-08-20 | 新潟原動機株式会社 | Liquefied gas supply device of ship propulsion gas fuel engine |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113970065A (en) * | 2021-11-09 | 2022-01-25 | 新地能源工程技术有限公司 | LNG emergency gasification device and method with adjustable heat value |
Also Published As
Publication number | Publication date |
---|---|
JP2020186732A (en) | 2020-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9726327B2 (en) | System and method for processing liquefied gas | |
JP5340602B2 (en) | Natural gas supply method and apparatus | |
KR20170084121A (en) | Device and method for cooling a liquefied gas | |
WO2014129558A1 (en) | Natural gas fuel evaporator, natural gas fuel supply device, and method for supplying natural gas fuel to ships and motors | |
JP2015147508A (en) | Liquefied gas supply device of ship propulsion gas fuel engine | |
KR20190033067A (en) | Ship | |
KR101686912B1 (en) | Devivce for liquefied gas supply | |
KR102338967B1 (en) | floating body | |
CN110167837B (en) | Fuel gas supply system | |
WO2019031300A1 (en) | Liquefied fuel gas vaporization system and temperature control method for same | |
CN111649229B (en) | LNG filling vessel filling system and LNG filling vessel cabin pressure control method | |
KR20110041854A (en) | Oil supplying system for ships | |
KR102113919B1 (en) | Regasification System of liquefied Gas and Ship Having the Same | |
JP6557793B2 (en) | Liquefied fuel gas vaporization system and liquid heating medium temperature control method therefor | |
US20240159460A1 (en) | Method for cooling a heat exchanger of a gas supply system for a gas-consuming apparatus of a ship | |
KR101751850B1 (en) | LNG Unloading Method and Fuel Supply Operating System and Method the Same of Liquefied Gas Carrier | |
WO2022234176A1 (en) | Fuel storage and supply system, method of operating such a system and marine vessel | |
WO2020226504A1 (en) | A method and a system for heating lng before it enters a storage tank of a ship or other gas | |
WO2024018873A1 (en) | Floating body | |
KR20140082332A (en) | Ocean floating structure and lng regasification method | |
KR102710835B1 (en) | Fuel gas supply system and ship including the same | |
JP4152918B2 (en) | System for suppressing variation in calorie of delivered fuel gas and method for suppressing variation in calorie | |
KR101933973B1 (en) | Floating generating system | |
KR20230090261A (en) | System for supplying a consumer configured to be supplied with a fuel prepared from a gas resulting from the evaporation of a liquid mixture of methane and an alkane | |
JP2024039088A (en) | Ammonia refrigeration system and ammonia refrigeration method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18844859 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18844859 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |