WO2019030953A1 - Corrosion-resistant electronic substrate and coating composition used for same - Google Patents

Corrosion-resistant electronic substrate and coating composition used for same Download PDF

Info

Publication number
WO2019030953A1
WO2019030953A1 PCT/JP2018/006335 JP2018006335W WO2019030953A1 WO 2019030953 A1 WO2019030953 A1 WO 2019030953A1 JP 2018006335 W JP2018006335 W JP 2018006335W WO 2019030953 A1 WO2019030953 A1 WO 2019030953A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating layer
corrosion
coating
electronic substrate
curing
Prior art date
Application number
PCT/JP2018/006335
Other languages
French (fr)
Japanese (ja)
Inventor
和義 西川
中村 正樹
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2019030953A1 publication Critical patent/WO2019030953A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • the present invention relates to an electronic substrate having a substrate body coated with a coating composition to enhance corrosion resistance, and a coating composition used therefor.
  • This multilayer barrier layer can prevent the entry of liquid and gas, is flexible, and can prevent the occurrence of cracks and the like.
  • an inorganic material is formed by evaporation to a thickness of 50 to 500 ⁇ to form a barrier layer.
  • the organic layer was a polymerizable, crosslinkable monomer, which was formed to a thickness of 0.1 ⁇ m to 1.0 ⁇ m by vapor deposition.
  • the surface of the inorganic layer is plasma-treated before the organic layer is deposited by vapor deposition.
  • Such multilayer barrier coatings can achieve structural stress relaxation and improve crack resistance and flexibility (see, for example, Patent Document 1).
  • the conventional multilayer barrier coating deposits an organic layer and a barrier layer on an electronic substrate on which a large number of electronic components are mounted, there is a concern that the electronic components may be damaged.
  • the present invention has been made in view of the above circumstances, and protects a corrosive gas to enhance corrosion resistance even under a corrosive gas environment or an environment to which repeated thermal shock or cold thermal shock is applied. It is an object of the present invention to provide a corrosion-resistant electronic substrate that can be used, and a coating composition for forming a coating layer of the corrosion-resistant electronic substrate.
  • the corrosion-resistant electronic substrate according to the present invention for solving the above-mentioned problems forms a second coating layer after forming a first coating layer on the whole or a part of the surface of the substrate body after the electronic component is constructed.
  • a corrosion-resistant electronic substrate obtained by coating a conductive metal portion including the electrode of the electronic component with the coating layer, wherein the first coating layer is formed of -20 ° C. to 0 of DMA after curing.
  • the second coating layer is 0.32 nm or less (0 is included in the distribution of measured values of free volume radius according to the positron lifetime annihilation method after curing). Distribution area of 70% or more.
  • the first coating layer and the second coating layer may be integrated via an interface thereof.
  • any one of the first coating layer is selected from styrene rubber, urethane rubber, silicone rubber, fluorine rubber, olefin elastomer, styrene elastomer and fluorine elastomer. It may be one or more.
  • the second coating layer may be at least one selected from an acrylic resin, a polyester resin, a polyurethane resin, a silicone resin, a fluorine resin, and an epoxy resin.
  • the thickness of the first coating layer may be 10 ⁇ m to 500 ⁇ m, and the thickness of the second coating layer may be 5 ⁇ m to 200 ⁇ m.
  • the coating composition of the present invention for solving the above-mentioned problems is a coating composition for forming the first coating layer in the corrosion resistant electronic substrate, which is DMA after curing of the first coating layer.
  • the coating composition of the present invention for solving the above problems is a coating composition for forming the second coating layer in the corrosion-resistant electronic substrate, which comprises a positron after curing of the second coating layer.
  • the distribution of measured values of free volume radius by the life annihilation method includes a resin composition having a distribution area of 0.32 nm or less (not including 0) of 70% or more and a solvent therefor.
  • tan ⁇ of DMA after curing is ⁇ 0.10 or more at ⁇ 20 ° C. to 0 ° C. and 10 Hz over the entire surface or a part of the surface of the substrate main body after the electronic component is constructed.
  • the distribution area of 0.32 nm or less (not including 0) is 70% or more in the distribution of the measured value of free volume radius by the positron lifetime annihilation method after curing.
  • a first coating layer which has a tan ⁇ of 0.10 or more at ⁇ 20 ° C. to 0 ° C. and 10 Hz after curing, under an environment where repeated thermal shock or cold thermal shock is applied.
  • the corrosion of the electronic substrate can be prevented by preventing the cracking of the flux residue on the surface of the electronic substrate and the propagation of the cracking to the coating layer resulting from the cracking.
  • FIG. 1 (a) is a cross-sectional view taken along the line II in FIG. 1 (c)
  • FIG. 1 (b) is a cross-sectional view of a corrosion-resistant electronic substrate according to another embodiment. It is a graph which shows the physical property of the 2nd coating layer of the corrosion-resistant electronic board
  • FIG. 1 and 2 show the outline of the entire configuration of the corrosion resistant electronic substrate 1
  • FIG. 3 shows the physical properties of the second coating layer 5 in the corrosion resistant electronic substrate 1
  • FIG. 4 shows the corrosion resistant electronic substrate 1 The main portion of the second coating layer 5 in FIG.
  • the corrosion resistant electronic substrate 1 is obtained by forming the first coating layer 4 on the whole or a part of the surface of the substrate main body 3 after constructing the electronic component 2, and then forming the second coating layer 5
  • a conductive metal portion 20 including the two electrodes 21 is coated with the coating layers 4 and 5, wherein the first coating layer 4 has a temperature of -20.degree. C. to 0.degree. Tan ⁇ at 10 Hz is 0.10 or more, and the second coating layer 5 has a distribution of measured free volume radius by positron lifetime annihilation method after curing of 0.32 nm or less (0 is not included) Distribution area of 70% or more.
  • the electronic component 2 is not particularly limited as long as it is a known component built on the corrosion resistant electronic substrate 1, and examples thereof include semiconductor elements such as IC and LSI, resistors, capacitors, inductors, and the like.
  • the substrate main body 3 is not particularly limited as long as it is a known one used for the corrosion resistant electronic substrate 1, and examples thereof include a silicone substrate, a glass substrate, a ceramic substrate, a resin substrate, a film substrate and the like. .
  • the portions of the electrodes 21 of each electronic component 2 are soldered to the conductive metal portion 20 of the circuit pattern formed on the substrate body 3 by soldering or the like. It is done by connecting electrically.
  • the connection method is not particularly limited, and methods known in the art can be used.
  • the first coating layer 4 is formed on the substrate main body 3 so as to cover the conductive metal portion 20 of the substrate main body 3 including the electrodes 21 of the electronic component 2 after the electronic component 2 is constructed on the substrate main body 3 described above. It is provided on the entire surface. Alternatively, the first coating layer 4 is provided on a portion of the substrate body 3 so as to cover the conductive metal portion 20 of the substrate body 3 including the electrodes 21 of the electronic component 2 described above. Therefore, as shown in FIG. 2A, in the case where the conductive metal portion 20 is on the upper surface side of the substrate body 3 on which the electronic component 2 is constructed, and soldering is performed from this upper surface side, this upper surface side Is provided with a first coating layer 4. Further, as shown in FIG.
  • the electrode 21 of the electronic component 2 is penetrated from the upper surface side to the lower surface side of the substrate body 3 constructing the electronic component 2, and the lower surface is soldered by flow soldering.
  • the first coating layer 4 is provided on the lower surface side.
  • the coating layers 4 may be provided on both sides of the substrate body 3.
  • This first coating layer 4 uses a coating composition containing a resin composition in which tan ⁇ at 10 Hz or higher at ⁇ 20 ° C. to 0 ° C. and 10 Hz of DMA after curing and the solvent thereof Can.
  • Styrene acrylonitrile rubber styrene butadiene rubber, ethylene propylene rubber, nitrile rubber, butyl rubber, as a resin composition in which tan ⁇ at -20 ° C. to 0 ° C. and 10 Hz at 10 Hz after curing is made 0.10 or more.
  • solvents such as methyl ethyl ketone (MEK), alcohols such as ethanol, isopropyl alcohol (IPA), etc.
  • the first coating composition may contain, in addition to the components described above, various additives known in the art, such as pigments, dyes, flame retardants, viscosity modifiers, antioxidants, and fillers.
  • additives known in the art, such as pigments, dyes, flame retardants, viscosity modifiers, antioxidants, and fillers.
  • About content of the said additive if it is a range which does not inhibit the effect of this invention, it will not be specifically limited, You may adjust suitably and it may be used.
  • the first coating composition configured in this manner is applied to the whole or a part of the surface of the substrate main body 3 after the electronic component 2 is constructed, thereby applying the first coating layer 4 to the whole or a part of the surface. It can be formed.
  • the method of applying the first coating composition is not particularly limited, and any method known in the art may be used. It can be used. Specific examples of the coating method include brush coating, brush coating, roller coating, spray coating, immersion, dropping and the like. These methods may be performed alone or in combination of two or more.
  • the first coating layer 4 is formed by drying and curing after applying the first coating composition.
  • the method of drying and curing may be appropriately determined according to the type of the first coating composition being used. Specific examples of the curing method include room temperature dry curing and heat curing.
  • the thickness of the first coating layer 4 is 10 ⁇ m to 500 ⁇ m, preferably 20 ⁇ m to 200 ⁇ m. If it is less than 10 ⁇ m, the stress relaxation property of the first coating layer 4 becomes poor, and it becomes difficult to absorb the stress propagation generated by the crack of the flux residue 23. If the thickness is more than 500 ⁇ m, the coating layer is thick, so that it is difficult for the solvent to be removed by the drying and curing, or the curing effect is easily generated due to the partial curing and the difficulty of partial curing due to the heating effect.
  • the electronic substrate 1 in which the first coating layer 4 is formed on the whole or a part of the surface of the substrate body 3 after the electronic component 2 is constructed in this manner is -20 ° C. to 0 ° C. of DMA in a cured state. Even if cracking occurs in the flux residue 23 of the solder 22 under an environment where repeated thermal shock or cold shock is applied by the first coating layer 4 with a 10 Hz tan ⁇ of 0.10 or more, Can absorb stress propagation. As a result, when the second coating layer 5 having a barrier property to a corrosive gas is formed on the first coating layer 4 later, the crack of the second coating layer 5 due to the crack stress propagation of the flux residue 23 is prevented can do.
  • the first coating layer 4 is easily deformed, and the film thickness becomes difficult to control, and as a result, the second coating The formation of layer 5 becomes unstable. Therefore, it is preferable to use a coating composition in which the first coating layer 4 has a tan ⁇ of -20 ° C. to 0 ° C. and 10 Hz of less than 1.0 after curing.
  • the substrate body 3 on which the electronic component 3 is mounted may be plasma cleaned.
  • the plasma cleaning By performing the plasma cleaning, the surface of the substrate body 3 is modified, and the foreign matter is removed, whereby the application performance of the first coating composition is improved.
  • the excess flux residue 23 is reduced, it is possible to reduce the flux residue 23 which is the cause of stress propagation of the crack when repeated thermal shock or cold shock is applied.
  • plasma cleaning known methods such as air, nitrogen gas, and argon gas can be used. From the viewpoint of productivity, atmospheric pressure plasma cleaning using air is preferable.
  • substrate body 3 may receive a damage by plasma cleaning, when performing a plasma cleaning, it implements after judging the applicability.
  • the second coating layer 5 has a distribution area of 0.32 nm or less (not including 0) at 70% or more in the distribution of the measured value of free volume radius by the positron lifetime annihilation method after curing. It is possible to use a corrosive gas shielding coating composition comprising the resin composition and the solvent.
  • One or more of polyurethane resin, silicone resin, fluorine resin, and epoxy resin may be mentioned.
  • these resin compositions are 1 if the distribution area of 0.32 nm or less (not including 0) satisfies 70% or more.
  • the species or a combination of two or more species may be used.
  • acrylic resin what carried out UV curing and electron beam curing of the polyfunctional (meth) acrylic acid ester monomer is mentioned, for example.
  • polyester resin for example, one obtained by diluting and dissolving unsaturated polyester formed by polycondensation of saturated dibasic acid or unsaturated dibasic acid with glycol in a reactive monomer such as styrene, epoxy resin and (meth) A vinyl ester produced by an addition reaction with acrylic acid, in which a reactive monomer such as styrene is diluted and dissolved, is cured with a curing agent.
  • a polyurethane resin for example, one obtained by UV curing of a terminal (NCO) of a urethane prepolymer obtained by reacting a polyisocyanate and a polyester polyol having an average molecular weight of 6000 or less, modified with (meth) acryloyl group Can be mentioned.
  • silicone resins examples include hard coating agents such as organopolysiloxanes.
  • the copolymerization polymer of perfluoroalkyl (meth) acrylates and (meth) acrylates, such as perfluoro hexyl ethyl (meth) acrylate and perfluoro butyl ethyl (meth) acrylate is mentioned, for example.
  • a coating agent what was melt
  • the epoxy resin is, for example, a bisphenol A type epoxy resin, a novolac type epoxy resin, a glycidyl ester type epoxy resin, a glycidyl amine type epoxy resin, and heat-cured using an amine type, an acid anhydride type or a polyamide type as a curing agent. The thing is mentioned.
  • the second coating composition may contain, in addition to the components described above, various additives known in the art, such as pigments, dyes, flame retardants, viscosity modifiers, antioxidants, and fillers.
  • additives known in the art, such as pigments, dyes, flame retardants, viscosity modifiers, antioxidants, and fillers.
  • About content of the said additive if it is a range which does not inhibit the effect of this invention, it will not be specifically limited, You may adjust suitably and it may be used.
  • the second coating composition thus constituted is the first coating layer 4 formed on the whole or a part of the surface of the substrate body 3 after the electronic component 2 is constructed.
  • the second coating layer 5 can be formed on the entire surface or a part of the substrate main body 3 by applying the coating layer 4 on the entire surface or the part of the substrate body 3 so as to cover the coating layer 4. Therefore, in the case where the first coating layer 4 is provided on one side of the upper surface or the lower surface of the substrate main body 3, the first coating layer 4 is provided on the same side so as to be able to cover the first coating layer 4. In the case where the first coating layer 4 is provided on both sides, it is similarly provided on both sides.
  • the method of applying the second coating composition is not particularly limited, and any method known in the art may be used. It can be used. Specific examples of the coating method include brush coating, brush coating, roller coating, spray coating, immersion, dropping and the like. These methods may be performed alone or in combination of two or more.
  • the second coating layer 5 is formed by curing after application of the second coating composition, and in this case, as a curing method, depending on the type of the second coating composition being used. It may be determined appropriately. Specific examples of the curing method include dry curing, room temperature curing, heat curing, infrared curing, ultraviolet curing, electron beam curing and the like.
  • the thickness of the second coating layer is 5 ⁇ m to 200 ⁇ m, preferably 10 ⁇ m to 100 ⁇ m.
  • the thickness is less than 5 ⁇ m, the shielding property of the second coating layer is poor, and it becomes difficult to prevent the corrosion of the electronic substrate 1. If it exceeds 200 ⁇ m, the cure shrinkage stress of the second coating layer becomes large at the time of curing, and peeling at the interface with the first coating layer and cracking of the second coating layer are likely to occur.
  • the second coating layer 4 is further coated to cover the first coating layer 4.
  • the electronic substrate 1 having the coating layer 5 of the second aspect has a distribution area of 0.32 nm or less (not including 0) in the measurement distribution of free volume radius by the positron lifetime annihilation method after curing is 70% or more.
  • the coating layer 5 coats the conductive metal portion including the electrode 21 of the electronic component 2, and as shown in FIG. 4, the gas molecules 6 of the corrosive gas such as hydrogen sulfide gas are the second coating layer 5. It becomes impossible to pass through the free volume portion 50 corresponding to the gap between the constituent molecular chains 51. As a result, the second coating layer 5 can shield corrosive gas such as hydrogen sulfide gas. As a result, the electronic substrate 1 is improved in corrosion resistance to the corrosive gas, and excellent environmental resistance performance can be obtained.
  • the second coating layer 5 has a distribution area of 0.32 nm or less (not including 0) in the measurement distribution of free volume radius by the positron lifetime annihilation method after curing, as described above, as described above
  • the molecular structure is dense and the rigidity becomes high, so the stress relaxation property becomes poor with only the second coating layer 5. Accordingly, in the case of the electronic substrate 1 in which the electronic component 2 is mounted using, for example, the solder 22, the cured flux residue 23 is a thermal shock or cold thermal shock or is susceptible to cracking due to repeated thermal shock or cold shock.
  • the second coating layer 5 is formed after forming the coating layer 4 of Moreover, the first coating layer 4 has a tan ⁇ of -20 ° C. to 0 ° C. and 10 Hz of 0.10 or more in the state after curing, and the cracking of the flux residue 23 due to thermal shock or cold thermal shock Since the function of preventing propagation to the second coating layer 5 is performed, excellent gas barrier properties can be maintained even under a large thermal change environment.
  • the electronic substrate 1 is used in the case where the electronic component 2 is mounted on the substrate main body 3 by flow solder in which a large amount of flux residue 23 is generated, or under a large thermal change environment. In particular, particularly remarkable gas barrier properties can be obtained.
  • Example ⁇ Sample Preparation> As a first coating composition, Seal-glo (rubber-based coating agent resin composition) manufactured by Fuji Chemical Industries, Ltd. is diluted with a thinner (solvent), and the viscosity measured with an E-type viscometer is about 100 to 300 mPa ⁇ s. What was prepared to become was prepared.
  • Seal-glo rubber-based coating agent resin composition manufactured by Fuji Chemical Industries, Ltd. is diluted with a thinner (solvent), and the viscosity measured with an E-type viscometer is about 100 to 300 mPa ⁇ s. What was prepared to become was prepared.
  • HumiSeal (acrylic coating agent resin composition) manufactured by Air-Brown is diluted with a thinner (solvent), and the viscosity measured with an E-type viscometer is about 100 to 300 mPa ⁇ s.
  • a thinner solvent
  • the coating agent is applied onto the release paper using a bar coater (No. 75 manufactured by As One), and dried for 24 hours with a reduced pressure drier (300 torr), so that the film thickness after curing is 100 ⁇ m to 200 ⁇ m.
  • One coating layer and a second coating layer were obtained.
  • ⁇ Measurement of DMA> For the first coating layer, measurement of tan ⁇ after curing was performed at a measurement frequency of 10 Hz in the range of -20 ° C to 0 ° C using a dynamic viscoelasticity measuring device made by UBM (type Rheogel-E4000) .
  • PALS-200A thin film compatible positron annihilation lifetime measuring device
  • Fuji Inback using a 22Na-based positron beam as a positron source, a ⁇ -ray detector Device constants: 243 to 246 ps, 24.
  • Example 1-12 Comparative Example 1-9 ⁇ Preparation of test piece>
  • An OMRON switching power supply S8VK-S substrate was prepared as an electronic substrate.
  • substrate body of an electronic substrate passes through the flux application and the flow solder application process, and flux cleaning is not performed especially.
  • the first coating composition was applied to a substrate body of this electronic substrate using a coating valve (CV-10) manufactured by Musashi Engineering Co., Ltd. to a film thickness of 30 ⁇ m. Then, it was dried in a vacuum drier (300 torr) for 24 hours to form a first coating layer. Thereafter, the second coating composition is again coated on the first coating layer to a thickness of 30 ⁇ m using the above-mentioned valve, and drying is performed in a vacuum dryer (300 torr) for 24 hours, A second coating layer was formed to obtain an electronic substrate coated with two types of coating layers. In addition, the film thickness of the coating layer was adjusted by measuring using a micrometer. The thickness of the first coating layer and the thickness of the second coating layer were both 30 ⁇ m.
  • CV-10 coating valve manufactured by Musashi Engineering Co., Ltd.
  • the electronic substrate on which the coating layer was formed was subjected to 1000 cycles of repeated thermal shock and thermal shock at a low temperature side of ⁇ 40 ° C. ⁇ 30 minutes and a high temperature side of 85 ° C. ⁇ 30 minutes.
  • JIS C0048 sulfide-based gas that conforms to 1999 and allowed to stand for 24 hours in a test chamber comprising an atmosphere (H 2 S, a gas mixture of SO 2).
  • those with a crack in the first and second coating layers on the surface of the electronic substrate and those with a change in the appearance of the metal part on the electronic substrate in the vicinity of the crack were regarded as x.
  • inspection was conducted at 1 to 20 times magnification using a magnifying glass, a loupe, a microscope and the like in addition to visual inspection.

Abstract

Provided are a corrosion-resistant electronic substrate wherein corrosion resistance is enhanced by means of shielding against corrosive gas such as hydrogen sulfide gas, and a corrosive gas-resistant shielding coating composition for forming a coating layer over the corrosion-resistant electronic substrate. A corrosion-resistant electronic substrate 1 comprises a substrate body 3 whereon are mounted a plurality of electronic components 2, after which a first coating layer 4 is formed over the entirety or a part of the surface thereof, followed by a second coating layer 5, so as to coat a conductive metal portion 20 including electrodes 21 of the electronic components 2 with the coating layers 4 and 5. The first coating layer 4 has a tanδ of at least 0.10 at -20°C to 0°C and 10 Hz according to a post-curing DMA. The second coating layer 5, in the context of the distribution of measured values of free volume radius according to positron annihilation lifetime method post-curing, has at least 70% distribution area for radii of 0.32 nm or less (excluding 0).

Description

耐蝕性電子基板およびそれに用いるコーティング組成物Corrosion resistant electronic substrate and coating composition used therefor
 本発明は、基板本体にコーティング組成物をコーティングして耐蝕性を高めた電子基板と、それに用いるコーティング組成物とに関するものである。 The present invention relates to an electronic substrate having a substrate body coated with a coating composition to enhance corrosion resistance, and a coating composition used therefor.
 近年、電源、温調、タイマ、およびPLCなどで使用される電子基板は、結露防止や腐蝕性ガス耐性などの耐環境性能が求められる環境で使用されることが増加している。そこで、このような耐環境性能を得るために、電子基板における基板本体の表面に、水蒸気や腐蝕性ガスを遮蔽することかできるコーティング組成物によるコーティング層を形成することで、耐環境性能の向上を図ることが行われている。 In recent years, electronic substrates used in power supplies, temperature control, timers, PLCs, and the like have been increasingly used in environments where environmental resistance performance such as condensation prevention and corrosive gas resistance are required. Therefore, in order to obtain such environmental resistance performance, environmental resistance performance is improved by forming a coating layer of a coating composition capable of shielding water vapor and corrosive gas on the surface of the substrate body of the electronic substrate. The aim is to
 従来より、このようなコーティング層としては、フレキシブル基板に、有機層およびバリア層を交互に含む多層バリアコーティングを行うことが知られている。この多層バリア層は、液体・気体の浸入を防止できるとともに、柔軟であり、クラックなどの発生を防止できる。 Conventionally, as such a coating layer, it is known to perform multilayer barrier coating including an organic layer and a barrier layer alternately on a flexible substrate. This multilayer barrier layer can prevent the entry of liquid and gas, is flexible, and can prevent the occurrence of cracks and the like.
 この多層バリアコーティングの実現手段としては、無機材料を蒸着によって50~500Åの厚みで形成し、バリア層を形成していた。有機層は、重合可能、架橋性モノマーであり、これを蒸着によって0.1μm~1.0μmで形成していた。また、有機層とバリア層との層間の密着性を向上させるために、有機層を蒸着によって堆積する前に、無機層の表面をプラズマ処理していた。 In order to realize this multilayer barrier coating, an inorganic material is formed by evaporation to a thickness of 50 to 500 Å to form a barrier layer. The organic layer was a polymerizable, crosslinkable monomer, which was formed to a thickness of 0.1 μm to 1.0 μm by vapor deposition. Also, in order to improve the adhesion between the organic layer and the barrier layer, the surface of the inorganic layer is plasma-treated before the organic layer is deposited by vapor deposition.
 このような多層バリアコーティングは、構造的な応力緩和が実現でき、クラック耐性、フレキシビリティが改善されるとされていた(例えば、特許文献1参照)。 Such multilayer barrier coatings can achieve structural stress relaxation and improve crack resistance and flexibility (see, for example, Patent Document 1).
特表2005-528250号公報Japanese Patent Application Publication No. 2005-528250
 しかし、上記従来の多層バリアコーティングは、電子部品が多数搭載された電子基板に対して、有機層やバリア層を蒸着するため、電子部品にダメージを与える可能性が懸念される。 However, since the conventional multilayer barrier coating deposits an organic layer and a barrier layer on an electronic substrate on which a large number of electronic components are mounted, there is a concern that the electronic components may be damaged.
 また、はんだ付け時にフラックスを使用することによってフラックス残渣が発生するので、このフラックス残渣が発生した電子基板上に有機層やバリア層がコーティングされているような場合、温熱衝撃または冷熱衝撃が繰り返して電子基板に加えられると、前記フラックス残渣を起点としたクラックが発生し、このクラックに起因する応力が、これら有機層やバリア層にも伝播することにより、多層バリア層が割れるなどのダメージを受けてしまう。この場合、前記有機層やバリア層の割れを伝わってガス成分や液体成分が割れ内部に浸入し、電子基板を腐蝕させることとなってしまい、導通不良や短絡などの不具合を誘発することとなる。これは、有機層とバリア層との重ね合わせを増しても改善しない。 In addition, since flux residue is generated by using a flux at the time of soldering, when an organic layer or a barrier layer is coated on the electronic substrate on which the flux residue is generated, thermal shock or thermal shock is repeated. When applied to an electronic substrate, cracks originating from the flux residue are generated, and stress caused by the cracks is also transmitted to these organic layers and barrier layers, causing damage such as cracking of the multilayer barrier layer. It will In this case, the gas component or the liquid component penetrates the inside of the crack through the crack of the organic layer or the barrier layer, which causes the electronic substrate to be corroded, leading to a defect such as a conduction failure or a short circuit. . This does not improve even if the superposition of the organic layer and the barrier layer is increased.
 本発明は、係る実情に鑑みてなされたものであって、腐蝕性ガス環境や、繰り返し温熱衝撃または冷熱衝撃が加えられる環境の下であっても、腐蝕性ガスを遮蔽して耐蝕性を高めることができる耐蝕性電子基板と、この耐蝕性電子基板のコーティング層を形成するためのコーティング組成物とを提供することを目的としている。 The present invention has been made in view of the above circumstances, and protects a corrosive gas to enhance corrosion resistance even under a corrosive gas environment or an environment to which repeated thermal shock or cold thermal shock is applied. It is an object of the present invention to provide a corrosion-resistant electronic substrate that can be used, and a coating composition for forming a coating layer of the corrosion-resistant electronic substrate.
 上記課題を解決するための本発明に係る耐蝕性電子基板は、電子部品を構築した後の基板本体の表面全体または一部分に、第一のコーティング層を形成した後に、第二のコーティング層を形成して、当該電子部品の電極を含む導電性金属部分を、前記コーティング層で被覆してなる耐蝕性電子基板であって、前記第一のコーティング層は、硬化後のDMAの-20℃~0℃、10Hzでのtanδが0.10以上であり、かつ、前記第二のコーティング層は、硬化後の陽電子寿命消滅法による自由体積半径の測定値の分布において、0.32nm以下(0は含まない)の分布面積が70%以上となされたものである。 The corrosion-resistant electronic substrate according to the present invention for solving the above-mentioned problems forms a second coating layer after forming a first coating layer on the whole or a part of the surface of the substrate body after the electronic component is constructed. A corrosion-resistant electronic substrate obtained by coating a conductive metal portion including the electrode of the electronic component with the coating layer, wherein the first coating layer is formed of -20 ° C. to 0 of DMA after curing. The second coating layer is 0.32 nm or less (0 is included in the distribution of measured values of free volume radius according to the positron lifetime annihilation method after curing). Distribution area of 70% or more.
 前記耐蝕性電子基板において、前記第一のコーティング層と前記第二のコーティング層が、その界面を介して一体であるものであってもよい。 In the corrosion resistant electronic substrate, the first coating layer and the second coating layer may be integrated via an interface thereof.
 前記耐蝕性電子基板において、前記第一のコーティング層が、スチレン系ゴム、ウレタン系ゴム、シリコーン系ゴム、フッ素系ゴム、オレフィン系エラストマー、スチレン系エラストマー、フッ素系エラストマーの中から選択される何れか1種以上であってもよい。 In the corrosion resistant electronic substrate, any one of the first coating layer is selected from styrene rubber, urethane rubber, silicone rubber, fluorine rubber, olefin elastomer, styrene elastomer and fluorine elastomer. It may be one or more.
 前記耐蝕性電子基板において、前記第二のコーティング層が、アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、シリコーン樹脂、フッ素樹脂、およびエポキシ樹脂の中から選択される1種以上であってもよい。 In the corrosion resistant electronic substrate, the second coating layer may be at least one selected from an acrylic resin, a polyester resin, a polyurethane resin, a silicone resin, a fluorine resin, and an epoxy resin.
 前記耐蝕性電子基板において、前記第一のコーティング層の厚みは、10μm~500μmであり、第二のコーティング層の厚みは5μm~200μmであってもよい。 In the corrosion resistant electronic substrate, the thickness of the first coating layer may be 10 μm to 500 μm, and the thickness of the second coating layer may be 5 μm to 200 μm.
 上記課題を解決するための本発明のコーティング組成物は、前記耐蝕性電子基板における前記第一のコーティング層を形成するためのコーティング組成物であって、前記第一のコーティング層の硬化後のDMAの-20℃~0℃、10Hzでのtanδが0.10以上となる樹脂組成物と、その溶剤とを含むものである。 The coating composition of the present invention for solving the above-mentioned problems is a coating composition for forming the first coating layer in the corrosion resistant electronic substrate, which is DMA after curing of the first coating layer. A resin composition having a tan δ of 0.10 or more at −20 ° C. to 0 ° C. and 10 Hz, and the solvent.
 上記課題を解決するための本発明のコーティング組成物は、前記耐蝕性電子基板における前記第二のコーティング層を形成するためのコーティング組成物であって、前記第二のコーティング層の硬化後の陽電子寿命消滅法による自由体積半径の測定値の分布において、0.32nm以下(0は含まない)の分布面積が70%以上となる樹脂組成物と、その溶剤とを含むものである。 The coating composition of the present invention for solving the above problems is a coating composition for forming the second coating layer in the corrosion-resistant electronic substrate, which comprises a positron after curing of the second coating layer. The distribution of measured values of free volume radius by the life annihilation method includes a resin composition having a distribution area of 0.32 nm or less (not including 0) of 70% or more and a solvent therefor.
 以上述べたように、本発明によると、電子部品を構築した後の基板本体の表面全体または一部分に、硬化後のDMAの-20℃~0℃、10Hzでのtanδが0.10以上である第一のコーティング層を形成した後に、硬化後の陽電子寿命消滅法による自由体積半径の測定値の分布において、0.32nm以下(0は含まない)の分布面積が70%以上となる第二のコーティング層を形成し、当該電子部品の電極を含む導電性金属部分を、前記第一および第二のコーティング層で被覆することで、腐蝕性ガスを遮蔽して電極および導電性金属部分の腐蝕を防止することができる。また、硬化後のDMAの-20℃~0℃、10Hzでのtanδが0.10以上である第一のコーティング層を形成しているので、繰り返しの温熱衝撃または冷熱衝撃が印加される環境下でも、電子基板表面のフラックス残渣の割れや、この割れに起因するコーティング層への割れの伝播を防止して電子基板の腐蝕を防止することができる。 As described above, according to the present invention, tan δ of DMA after curing is −0.10 or more at −20 ° C. to 0 ° C. and 10 Hz over the entire surface or a part of the surface of the substrate main body after the electronic component is constructed. After forming the first coating layer, the distribution area of 0.32 nm or less (not including 0) is 70% or more in the distribution of the measured value of free volume radius by the positron lifetime annihilation method after curing. By forming a coating layer and covering the conductive metal portion including the electrode of the electronic component with the first and second coating layers, the corrosive gas is shielded to etch the electrode and the conductive metal portion. It can be prevented. In addition, since a first coating layer is formed which has a tan δ of 0.10 or more at −20 ° C. to 0 ° C. and 10 Hz after curing, under an environment where repeated thermal shock or cold thermal shock is applied. However, the corrosion of the electronic substrate can be prevented by preventing the cracking of the flux residue on the surface of the electronic substrate and the propagation of the cracking to the coating layer resulting from the cracking.
(a)ないし(c)は本発明に係る耐蝕性電子基板の製造工程における全体構成の概略を示す斜視図である。(A) thru | or (c) are perspective views which show the outline of the whole structure in the manufacturing process of the corrosion-resistant electronic board | substrate which concerns on this invention. (a)は図1(c)におけるI-I線断面図、(b)は他の実施の形態における耐蝕性電子基板の断面図である。FIG. 1 (a) is a cross-sectional view taken along the line II in FIG. 1 (c), and FIG. 1 (b) is a cross-sectional view of a corrosion-resistant electronic substrate according to another embodiment. 本発明に係る耐蝕性電子基板の第二のコーティング層の物性を示すグラフである。It is a graph which shows the physical property of the 2nd coating layer of the corrosion-resistant electronic board | substrate which concerns on this invention. 本発明に係る耐蝕性電子基板の第二のコーティング層の要部を示す概略図である。It is the schematic which shows the principal part of the 2nd coating layer of the corrosion-resistant electronic board | substrate which concerns on this invention.
 以下、本発明の実施の形態について図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1および図2は、耐蝕性電子基板1の全体構成の概略を示し、図3は同耐蝕性電子基板1における第二のコーティング層5の物性を示し、図4は同耐蝕性電子基板1における第二のコーティング層5の要部を示している。 1 and 2 show the outline of the entire configuration of the corrosion resistant electronic substrate 1, FIG. 3 shows the physical properties of the second coating layer 5 in the corrosion resistant electronic substrate 1, and FIG. 4 shows the corrosion resistant electronic substrate 1 The main portion of the second coating layer 5 in FIG.
 耐蝕性電子基板1は、電子部品2を構築した後の基板本体3の表面全体または一部分に、第一のコーティング層4を形成した後に、第二のコーティング層5を形成して、当該電子部品2の電極21を含む導電性金属部分20を、前記コーティング層4、5で被覆してなるものであって、前記第一のコーティング層4は、硬化後のDMAの-20℃~0℃、10Hzでのtanδが0.10以上であり、かつ、前記第二のコーティング層5は、硬化後の陽電子寿命消滅法による自由体積半径の測定値の分布において、0.32nm以下(0は含まない)の分布面積が70%以上となされたものである。 The corrosion resistant electronic substrate 1 is obtained by forming the first coating layer 4 on the whole or a part of the surface of the substrate main body 3 after constructing the electronic component 2, and then forming the second coating layer 5 A conductive metal portion 20 including the two electrodes 21 is coated with the coating layers 4 and 5, wherein the first coating layer 4 has a temperature of -20.degree. C. to 0.degree. Tan δ at 10 Hz is 0.10 or more, and the second coating layer 5 has a distribution of measured free volume radius by positron lifetime annihilation method after curing of 0.32 nm or less (0 is not included) Distribution area of 70% or more.
 電子部品2としては、耐蝕性電子基板1に構築される公知のものであれば、特に限定されるものではなく、例えば、IC、LSI等の半導体素子、抵抗、コンデンサ、インダクタ等が挙げられる。 The electronic component 2 is not particularly limited as long as it is a known component built on the corrosion resistant electronic substrate 1, and examples thereof include semiconductor elements such as IC and LSI, resistors, capacitors, inductors, and the like.
 基板本体3としては、耐蝕性電子基板1に使用される公知のものであれば、特に限定されるものではなく、例えば、シリコーン基板、ガラス基板、セラミックス基板、樹脂基板、フィルム基板等が挙げられる。基板本体3に電子部品2を配置して構築するには、各電子部品2の電極21の部分を、基板本体3に形成された回路パターンの導電性金属部分20に、はんだ付けなどによってはんだ22で電気的に接続することによって行われる。この接続方法としては、特に限定されず、当該技術分野において公知の方法を用いることができる。 The substrate main body 3 is not particularly limited as long as it is a known one used for the corrosion resistant electronic substrate 1, and examples thereof include a silicone substrate, a glass substrate, a ceramic substrate, a resin substrate, a film substrate and the like. . In order to arrange and construct the electronic component 2 on the substrate body 3, the portions of the electrodes 21 of each electronic component 2 are soldered to the conductive metal portion 20 of the circuit pattern formed on the substrate body 3 by soldering or the like. It is done by connecting electrically. The connection method is not particularly limited, and methods known in the art can be used.
 第一のコーティング層4は、前記した基板本体3に電子部品2を構築した後、当該電子部品2の電極21を含む基板本体3の導電性金属部分20を被覆するように、基板本体3の表面全体に設けられる。または、第一のコーティング層4は、前記した電子部品2の電極21を含む基板本体3の導電性金属部分20を被覆するように、基板本体3の一部分に設けられる。したがって、図2(a)に示すように、導電性金属部分20が基板本体3の電子部品2を構築する上面側にあり、この上面側からはんだ付けを行うような場合には、この上面側に第一のコーティング層4が設けられる。また、図2(b)に示すように、電子部品2の電極21を、当該電子部品2を構築する基板本体3の上面側から下面側に貫通させ、この下面側をフローはんだによってはんだ付けを行うような場合には、この下面側に第一のコーティング層4が設けられる。電子部品2電極21を貫通させるといっても基板本体3の上面側にも多少電極21は露出するので、このコーティング層4は、基板本体3の両面側に設けられるものであってもよい。 The first coating layer 4 is formed on the substrate main body 3 so as to cover the conductive metal portion 20 of the substrate main body 3 including the electrodes 21 of the electronic component 2 after the electronic component 2 is constructed on the substrate main body 3 described above. It is provided on the entire surface. Alternatively, the first coating layer 4 is provided on a portion of the substrate body 3 so as to cover the conductive metal portion 20 of the substrate body 3 including the electrodes 21 of the electronic component 2 described above. Therefore, as shown in FIG. 2A, in the case where the conductive metal portion 20 is on the upper surface side of the substrate body 3 on which the electronic component 2 is constructed, and soldering is performed from this upper surface side, this upper surface side Is provided with a first coating layer 4. Further, as shown in FIG. 2B, the electrode 21 of the electronic component 2 is penetrated from the upper surface side to the lower surface side of the substrate body 3 constructing the electronic component 2, and the lower surface is soldered by flow soldering. In such a case, the first coating layer 4 is provided on the lower surface side. Although the electrodes 21 are slightly exposed on the upper surface side of the substrate body 3 even though the electronic component 2 electrodes 21 are penetrated, the coating layers 4 may be provided on both sides of the substrate body 3.
 この第一のコーティング層4は、硬化後のDMAの-20℃~0℃、10Hzでのtanδが0.10以上となされた樹脂組成物と、その溶剤とを含むコーティング組成物を使用することができる。 This first coating layer 4 uses a coating composition containing a resin composition in which tan δ at 10 Hz or higher at −20 ° C. to 0 ° C. and 10 Hz of DMA after curing and the solvent thereof Can.
 硬化後のDMAの-20℃~0℃、10Hzでのtanδが0.10以上となされた樹脂組成物としては、スチレン・アクリロニトリルゴム、スチレン・ブタジエンゴム、エチレン・プロピレンゴム、ニトリルゴム、ブチルゴム、ブタジエンゴム、クロロプレンゴム、アクリルゴム、ウレタン系ゴム、シリコーン系ゴム、フッ素系ゴム、オレフィン系エラストマー、スチレン系エラストマー、ポリエステル系エラストマー、ウレタン系エラストマー、塩化ビニル系エラストマー、フッ素系エラストマー、シリコーン樹脂、シリコーン変性エポキシ樹脂、シリコーン変性アクリル樹脂であり、これらをメチルエチルケトン(MEK)やエタノール、イソプロピルアルコール(IPA)等のアルコール類等の溶剤に溶解させたものが挙げられる。硬化後のDMAで計測されるtanδの要件を満たしていれば、これら樹脂組成物は1種または複数種類を組み合わせて使用するものであってもよい。 Styrene acrylonitrile rubber, styrene butadiene rubber, ethylene propylene rubber, nitrile rubber, butyl rubber, as a resin composition in which tan δ at -20 ° C. to 0 ° C. and 10 Hz at 10 Hz after curing is made 0.10 or more. Butadiene rubber, chloroprene rubber, acrylic rubber, urethane rubber, silicone rubber, fluorine rubber, olefin elastomer, styrene elastomer, polyester elastomer, urethane elastomer, vinyl chloride elastomer, fluorine elastomer, silicone resin, silicone It is a modified epoxy resin, a silicone modified acrylic resin, and these are dissolved in solvents such as methyl ethyl ketone (MEK), alcohols such as ethanol, isopropyl alcohol (IPA), etc.These resin compositions may be used alone or in combination as long as the requirements of tan δ measured by DMA after curing are satisfied.
 第一のコーティング組成物には、前記成分に加えて、当該技術分野において公知の顔料、染料、難燃剤、粘度調整剤、酸化防止剤、フィラー等の各種添加剤が含有されていてもよい。前記添加剤の含有量については、本発明の効果を阻害しない範囲であれば、特に限定されるものではなく、適宜調整して使用してよい。 The first coating composition may contain, in addition to the components described above, various additives known in the art, such as pigments, dyes, flame retardants, viscosity modifiers, antioxidants, and fillers. About content of the said additive, if it is a range which does not inhibit the effect of this invention, it will not be specifically limited, You may adjust suitably and it may be used.
 このようにして構成される第一のコーティング組成物は、電子部品2を構築した後の基板本体3の表面全体または一部分に塗布することによって、当該表面全体または一部分に第一のコーティング層4を形成することができる。 The first coating composition configured in this manner is applied to the whole or a part of the surface of the substrate main body 3 after the electronic component 2 is constructed, thereby applying the first coating layer 4 to the whole or a part of the surface. It can be formed.
 図1に示す実施例では、スプレー塗装の例を示しているが、この際、第一のコーティング組成物を塗布する方法としては、特に限定されるものではなく、当該技術分野において公知の方法を用いることができる。塗布方法の具体例としては、刷毛塗り、ブラシ塗り、ローラ塗り、スプレー塗布、浸漬、滴下等が挙げられる。これらの方法は、単独または2種類以上の方法を組み合わせて行うものであってもよい。 Although the example shown in FIG. 1 shows an example of spray coating, the method of applying the first coating composition is not particularly limited, and any method known in the art may be used. It can be used. Specific examples of the coating method include brush coating, brush coating, roller coating, spray coating, immersion, dropping and the like. These methods may be performed alone or in combination of two or more.
 第一のコーティング層4は、第一のコーティング組成物の塗布後、乾燥硬化させることによって形成される。この際、乾燥硬化方法としては、使用している第一のコーティング組成物の種類に応じて適宜決定すればよい。硬化方法の具体例としては、室温乾燥硬化、加熱硬化が挙げられる。 The first coating layer 4 is formed by drying and curing after applying the first coating composition. At this time, the method of drying and curing may be appropriately determined according to the type of the first coating composition being used. Specific examples of the curing method include room temperature dry curing and heat curing.
 第一のコーティング層4の厚みは、 10μm~500μmであり、好ましくは20μm~200μmである。10μmを下回ると、第一のコーティング層4の応力緩和性が乏しくなり、フラックス残渣23のクラックで発生する応力伝播を吸収することが難しくなる。また、500μmを超えると、コーティング層が厚いことで、乾燥硬化で溶剤が抜け難い、または、加熱効果で部分的に硬化し難い・し易い等で硬化斑が発生し易くなる。 The thickness of the first coating layer 4 is 10 μm to 500 μm, preferably 20 μm to 200 μm. If it is less than 10 μm, the stress relaxation property of the first coating layer 4 becomes poor, and it becomes difficult to absorb the stress propagation generated by the crack of the flux residue 23. If the thickness is more than 500 μm, the coating layer is thick, so that it is difficult for the solvent to be removed by the drying and curing, or the curing effect is easily generated due to the partial curing and the difficulty of partial curing due to the heating effect.
 このようにして電子部品2を構築した後の基板本体3の表面全体または一部分に第一のコーティング層4を形成した電子基板1は、硬化後の状態でのDMAの-20℃~0℃、10Hzのtanδが0.10以上となる第一のコーティング層4によって、繰返しの温熱衝撃または冷熱衝撃が印加される環境下において、はんだ22のフラックス残渣23にクラックが発生しても、前記クラックからの応力伝播を吸収できる。その結果、後に、第一のコーティング層4上に腐蝕性ガスに対するバリア性を有する第二のコーティング層5を形成した際、フラックス残渣23のクラック応力伝播による第二のコーティング層5のクラックを防止することができる。 The electronic substrate 1 in which the first coating layer 4 is formed on the whole or a part of the surface of the substrate body 3 after the electronic component 2 is constructed in this manner is -20 ° C. to 0 ° C. of DMA in a cured state. Even if cracking occurs in the flux residue 23 of the solder 22 under an environment where repeated thermal shock or cold shock is applied by the first coating layer 4 with a 10 Hz tan δ of 0.10 or more, Can absorb stress propagation. As a result, when the second coating layer 5 having a barrier property to a corrosive gas is formed on the first coating layer 4 later, the crack of the second coating layer 5 due to the crack stress propagation of the flux residue 23 is prevented can do.
 ただし、DMAの-20℃~0℃、10Hzのtanδが1.0以上になると、第一のコーティング層4が容易に変形するため、膜厚が制御しにくくなり、その結果、第二のコーティング層5の形成が不安定になってしまう。したがって、第一のコーティング層4は、硬化後のDMAの-20℃~0℃、10Hzのtanδが1.0未満となるコーティング組成物を使用することが好ましい。 However, if the tan δ of -20 ° C. to 0 ° C. and 10 Hz of DMA is 1.0 or more, the first coating layer 4 is easily deformed, and the film thickness becomes difficult to control, and as a result, the second coating The formation of layer 5 becomes unstable. Therefore, it is preferable to use a coating composition in which the first coating layer 4 has a tan δ of -20 ° C. to 0 ° C. and 10 Hz of less than 1.0 after curing.
 第一のコーティング層4を形成する前には、電子部品3が実装された基板本体3をプラズマクリーニングしてもよい。プラズマクリーニングをすることで、基板本体3の表面が改質され、また、異物が除去されることで、第一のコーティング組成物の塗布性能が向上する。また、過剰なフラックス残渣23が減少するため、繰返し温熱衝撃または冷熱衝撃を加えた際に、割れの応力伝播の原因となるフラックス残渣23を減少させることもできる。プラズマクリーニングは、空気、窒素ガス、アルゴンガスなど公知の手法を用いることができる。生産性の観点からは、空気を用いた大気圧プラズマクリーニングが好ましい。なお、基板本体3に実装される電子部品2がプラズマクリーニングによりダメージを受ける場合があるため、プラズマクリーニングを行う場合は、適用可否を判断の上、実施する。 Before forming the first coating layer 4, the substrate body 3 on which the electronic component 3 is mounted may be plasma cleaned. By performing the plasma cleaning, the surface of the substrate body 3 is modified, and the foreign matter is removed, whereby the application performance of the first coating composition is improved. In addition, since the excess flux residue 23 is reduced, it is possible to reduce the flux residue 23 which is the cause of stress propagation of the crack when repeated thermal shock or cold shock is applied. For plasma cleaning, known methods such as air, nitrogen gas, and argon gas can be used. From the viewpoint of productivity, atmospheric pressure plasma cleaning using air is preferable. In addition, since the electronic component 2 mounted in the board | substrate body 3 may receive a damage by plasma cleaning, when performing a plasma cleaning, it implements after judging the applicability.
 第二のコーティング層5は、図3に示すように、硬化後の陽電子寿命消滅法による自由体積半径の測定値の分布において、0.32nm以下(0は含まない)の分布面積が70%以上となされた樹脂組成物と、その溶剤とを含む腐蝕性ガス遮蔽用コーティング組成物を使用することができる。 As shown in FIG. 3, the second coating layer 5 has a distribution area of 0.32 nm or less (not including 0) at 70% or more in the distribution of the measured value of free volume radius by the positron lifetime annihilation method after curing. It is possible to use a corrosive gas shielding coating composition comprising the resin composition and the solvent.
 硬化後の陽電子寿命消滅法による自由体積半径の測定値の分布において、0.32nm以下(0は含まない)の分布面積が70%以上となされた樹脂組成物としては、アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、シリコーン樹脂、フッ素樹脂、およびエポキシ樹脂のいずれか1種以上が挙げられる。硬化後の陽電子寿命消滅法による自由体積半径の測定値の分布において、0.32nm以下(0は含まない)の分布面積が70%以上となる要件を満たしていれば、これら樹脂組成物は1種または複数種類を組み合わせて使用するものであってもよい。 Acrylic resin, polyester resin, and the like as a resin composition in which the distribution area of 0.32 nm or less (not including 0) is 70% or more in the distribution of measured values of free volume radius by positron lifetime annihilation method after curing One or more of polyurethane resin, silicone resin, fluorine resin, and epoxy resin may be mentioned. In the distribution of measured values of free volume radius by positron lifetime annihilation method after curing, these resin compositions are 1 if the distribution area of 0.32 nm or less (not including 0) satisfies 70% or more. The species or a combination of two or more species may be used.
 アクリル樹脂としては、例えば、多官能(メタ)アクリル酸エステルモノマーをUV硬化、電子線硬化したものが挙げられる。 As an acrylic resin, what carried out UV curing and electron beam curing of the polyfunctional (meth) acrylic acid ester monomer is mentioned, for example.
 ポリエステル樹脂としては、例えば、飽和ニ塩基酸や不飽和ニ塩基酸とグリコールとの重縮合により生成した不飽和ポリエステルを、スチレンなどの反応性モノマーに希釈溶解したものや、エポキシ樹脂と(メタ)アクリル酸との付加反応により生成したビニルエステルに、スチレンなどの反応性モノマーを希釈溶解したものを、硬化剤で硬化させたものが挙げられる。 As polyester resin, for example, one obtained by diluting and dissolving unsaturated polyester formed by polycondensation of saturated dibasic acid or unsaturated dibasic acid with glycol in a reactive monomer such as styrene, epoxy resin and (meth) A vinyl ester produced by an addition reaction with acrylic acid, in which a reactive monomer such as styrene is diluted and dissolved, is cured with a curing agent.
 ポリウレタン樹脂としては、例えば、ポリイソシアネートと平均分子量が6000以下のポリエステルポリオールとを反応させて得られるウレタンプレポリマーの末端(NCO)を、(メタ)アクリロイル基で変性したものを、UV硬化したものが挙げられる。 As a polyurethane resin, for example, one obtained by UV curing of a terminal (NCO) of a urethane prepolymer obtained by reacting a polyisocyanate and a polyester polyol having an average molecular weight of 6000 or less, modified with (meth) acryloyl group Can be mentioned.
 シリコーン樹脂としては、例えば、オルガノポリシロキサンなどのハードコート剤が挙げられる。 Examples of silicone resins include hard coating agents such as organopolysiloxanes.
 フッ素樹脂としては、例えば、パーフルオロヘキシルエチル(メタ)アクリレート、パーフルオロブチルエチル(メタ)アクリレート等のパーフルオロアルキル(メタ)アクリレートと(メタ)アクリレートとの共重合ポリマーが挙げられる。コーティング剤としては、前記共重合ポリマー5重量%に対して、酢酸エチル、トルエン等の溶剤95重量%に溶解したものが挙げられる。 As a fluorine resin, the copolymerization polymer of perfluoroalkyl (meth) acrylates and (meth) acrylates, such as perfluoro hexyl ethyl (meth) acrylate and perfluoro butyl ethyl (meth) acrylate, is mentioned, for example. As a coating agent, what was melt | dissolved in 95 weight% of solvent, such as ethyl acetate and toluene, with respect to 5 weight% of said copolymer is mentioned.
 エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ノボラック型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂に、硬化剤としてアミン系、酸無水物系、ポリアミド系を用いて加熱硬化したものが挙げられる。 The epoxy resin is, for example, a bisphenol A type epoxy resin, a novolac type epoxy resin, a glycidyl ester type epoxy resin, a glycidyl amine type epoxy resin, and heat-cured using an amine type, an acid anhydride type or a polyamide type as a curing agent. The thing is mentioned.
 第二のコーティング組成物には、前記成分に加えて、当該技術分野において公知の顔料、染料、難燃剤、粘度調整剤、酸化防止剤、フィラー等の各種添加剤が含有されていてもよい。前記添加剤の含有量については、本発明の効果を阻害しない範囲であれば、特に限定されるものではなく、適宜調整して使用してよい。 The second coating composition may contain, in addition to the components described above, various additives known in the art, such as pigments, dyes, flame retardants, viscosity modifiers, antioxidants, and fillers. About content of the said additive, if it is a range which does not inhibit the effect of this invention, it will not be specifically limited, You may adjust suitably and it may be used.
 このようにして構成される第二のコーティング組成物は、電子部品2を構築した後の基板本体3の表面全体または一部分に、前記した第一のコーティング層4を形成した後に、当該第一のコーティング層4を被覆するように、その上から前記基板本体3の表面全体または一部分に塗布することによって、当該表面全体または一部分に第二のコーティング層5を形成することができる。したがって、基板本体3の上面または下面の何れか片面側に第一のコーティング層4が設けられているような場合は、当該第一のコーティング層4を被覆できるように、同じ片面側に設けられ、両面に第一のコーティング層4が設けられているような場合には、同じように両面に設けられる。 The second coating composition thus constituted is the first coating layer 4 formed on the whole or a part of the surface of the substrate body 3 after the electronic component 2 is constructed. The second coating layer 5 can be formed on the entire surface or a part of the substrate main body 3 by applying the coating layer 4 on the entire surface or the part of the substrate body 3 so as to cover the coating layer 4. Therefore, in the case where the first coating layer 4 is provided on one side of the upper surface or the lower surface of the substrate main body 3, the first coating layer 4 is provided on the same side so as to be able to cover the first coating layer 4. In the case where the first coating layer 4 is provided on both sides, it is similarly provided on both sides.
 図1に示す実施例では、スプレー塗装の例を示しているが、この際、第二のコーティング組成物を塗布する方法としては、特に限定されるものではなく、当該技術分野において公知の方法を用いることができる。塗布方法の具体例としては、刷毛塗り、ブラシ塗り、ローラ塗り、スプレー塗布、浸漬、滴下等が挙げられる。これらの方法は、単独または2種類以上の方法を組み合わせて行うものであってもよい。 Although the example shown in FIG. 1 shows an example of spray coating, the method of applying the second coating composition is not particularly limited, and any method known in the art may be used. It can be used. Specific examples of the coating method include brush coating, brush coating, roller coating, spray coating, immersion, dropping and the like. These methods may be performed alone or in combination of two or more.
 第二のコーティング層5は、第二のコーティング組成物の塗布後、硬化させることによって形成されるが、この際、硬化方法としては、使用している第二のコーティング組成物の種類に応じて適宜決定すればよい。硬化方法の具体例としては、乾燥硬化、室温硬化、加熱硬化、あるいは、赤外線硬化、紫外線硬化、電子線硬化等が挙げられる。 The second coating layer 5 is formed by curing after application of the second coating composition, and in this case, as a curing method, depending on the type of the second coating composition being used. It may be determined appropriately. Specific examples of the curing method include dry curing, room temperature curing, heat curing, infrared curing, ultraviolet curing, electron beam curing and the like.
 第二のコーティング層の厚みは、 5μm~200μmであり、好ましくは10μm~100μmである。5μmを下回ると、第二のコーティング層の腐蝕性ガスの遮蔽性が乏しくなり、電子基板1の腐蝕を防止することが難しくなる。また、200μmを超えると、硬化時に第二のコーティング層の硬化収縮応力が大きくなり、第一のコーティング層との界面での剥離や、第二のコーティング層の割れが発生し易くなる。 The thickness of the second coating layer is 5 μm to 200 μm, preferably 10 μm to 100 μm. When the thickness is less than 5 μm, the shielding property of the second coating layer is poor, and it becomes difficult to prevent the corrosion of the electronic substrate 1. If it exceeds 200 μm, the cure shrinkage stress of the second coating layer becomes large at the time of curing, and peeling at the interface with the first coating layer and cracking of the second coating layer are likely to occur.
 このようにして電子部品2を構築した後の基板本体3の表面全体または一部分に、前記した第一のコーティング層4を形成した後、さらにこの第一のコーティング層4を被覆するように第二のコーティング層5を形成した電子基板1は、硬化後の陽電子寿命消滅法による自由体積半径の測定分布において、0.32nm以下(0は含まない)の分布面積が70%以上となる第二のコーティング層5によって、電子部品2の電極21を含む導電性金属部分を被覆することとなり、図4に示すように、硫化水素ガス等の腐蝕性ガスのガス分子6は、第二のコーティング層5構成する分子鎖51の間隙に当たる自由体積部分50を通過できなくなる。その結果、第二のコーティング層5は、硫化水素ガス等の腐蝕性ガスを遮蔽することができることとなる。これにより、電子基板1は、腐蝕性ガスに対する耐蝕性が向上し、優れた耐環境性能が得られることとなる。 After the first coating layer 4 is formed on the whole or a part of the surface of the substrate body 3 after the electronic component 2 is constructed in this manner, the second coating layer 4 is further coated to cover the first coating layer 4. The electronic substrate 1 having the coating layer 5 of the second aspect has a distribution area of 0.32 nm or less (not including 0) in the measurement distribution of free volume radius by the positron lifetime annihilation method after curing is 70% or more. The coating layer 5 coats the conductive metal portion including the electrode 21 of the electronic component 2, and as shown in FIG. 4, the gas molecules 6 of the corrosive gas such as hydrogen sulfide gas are the second coating layer 5. It becomes impossible to pass through the free volume portion 50 corresponding to the gap between the constituent molecular chains 51. As a result, the second coating layer 5 can shield corrosive gas such as hydrogen sulfide gas. As a result, the electronic substrate 1 is improved in corrosion resistance to the corrosive gas, and excellent environmental resistance performance can be obtained.
 また、第二のコーティング層5は、硬化後の陽電子寿命消滅法による自由体積半径の測定分布において、0.32nm以下(0は含まない)の分布面積が70%以上としているため、前記したように腐蝕性ガスを遮蔽するガスバリア性には優れているものの、分子構造が緻密であり、剛性が高くなるため、当該第二のコーティング層5のみでは、応力緩和性に乏しくなってしまう。したがって、繰り返しの温熱衝撃または冷熱衝撃が加わることによって割れ易くなる、例えば、はんだ22を用いて電子部品2を実装しているような電子基板1の場合、硬化したフラックス残渣23が温熱衝撃または冷熱衝撃によって割れ、その割れが第二のコーティング層5に伝播して同じように割れてしまい、温熱衝撃または冷熱衝撃によってガスバリア性が失われてしまうことが懸念されるが、本発明では、第一のコーティング層4を形成した後に、第二のコーティング層5を形成している。しかも、この第一のコーティング層4は、硬化後の状態でのDMAの-20℃~0℃、10Hzのtanδが0.10以上としており、温熱衝撃または冷熱衝撃によるフラックス残渣23の割れが第二のコーティング層5に伝播するのを防止する機能を果たすようにしているため、熱変化の大きな環境下であっても、優れたガスバリア性を維持することができることとなる。 In addition, the second coating layer 5 has a distribution area of 0.32 nm or less (not including 0) in the measurement distribution of free volume radius by the positron lifetime annihilation method after curing, as described above, as described above Although it is excellent in the gas barrier property which shields the corrosive gas, the molecular structure is dense and the rigidity becomes high, so the stress relaxation property becomes poor with only the second coating layer 5. Accordingly, in the case of the electronic substrate 1 in which the electronic component 2 is mounted using, for example, the solder 22, the cured flux residue 23 is a thermal shock or cold thermal shock or is susceptible to cracking due to repeated thermal shock or cold shock. There is a concern that the gas may be cracked by impact, and the crack may propagate to the second coating layer 5 and be similarly cracked, and the gas barrier properties may be lost by thermal shock or cold thermal shock. The second coating layer 5 is formed after forming the coating layer 4 of Moreover, the first coating layer 4 has a tan δ of -20 ° C. to 0 ° C. and 10 Hz of 0.10 or more in the state after curing, and the cracking of the flux residue 23 due to thermal shock or cold thermal shock Since the function of preventing propagation to the second coating layer 5 is performed, excellent gas barrier properties can be maintained even under a large thermal change environment.
 したがって、電子基板1は、図2(b)に示すように、フラックス残渣23が多く発生するフローはんだによって基板本体3に電子部品2を実装する場合や、熱変化の大きな環境下で使用される場合等に、特に顕著なガスバリア性が得られることとなる。 Therefore, as shown in FIG. 2 (b), the electronic substrate 1 is used in the case where the electronic component 2 is mounted on the substrate main body 3 by flow solder in which a large amount of flux residue 23 is generated, or under a large thermal change environment. In particular, particularly remarkable gas barrier properties can be obtained.
 実施例
<サンプル準備>
 第一のコーティング組成物として、富士化学産業製Seal-glo(ゴム系コーティング剤樹脂組成物)をシンナー(溶剤)で希釈し、E型粘度計で計測した粘度が、100~300mPa・s程度になるように調製したものを用意した。
Example <Sample Preparation>
As a first coating composition, Seal-glo (rubber-based coating agent resin composition) manufactured by Fuji Chemical Industries, Ltd. is diluted with a thinner (solvent), and the viscosity measured with an E-type viscometer is about 100 to 300 mPa · s. What was prepared to become was prepared.
 同じく第二のコーティング組成物として、エア・ブラウン製HumiSeal(アクリル系コーティング剤樹脂組成物)をシンナー(溶剤)で希釈し、E型粘度計で計測した粘度が、100~300mPa・s程度になるように調製したものを用意した。
<物性評価用コーティングサンプルの作製>
 バーコータ―(アズワン製No.75)を用いてコーティング剤を離型紙の上に塗布し、減圧乾燥機(300torr)で24時間乾燥を行うことで、硬化後の膜厚が100μm~200μmである第一のコーティング層および第二のコーティング層を得た。
<DMAの測定>
 第一のコーティング層については、ユービーエム製動的粘弾性測定装置(型式Rheogel-E4000)を用い、 -20℃~0℃の範囲で、計測周波数10Hzで、硬化後のtanδの計測を行った。
<自由体積半径の測定>
 第二のコーティング層については、フジ・インバック社製小型陽電子ビーム発生装置PALS-200A(薄膜対応陽電子消滅寿命測定装置)を用い、陽電子線源として 22Naベースの陽電子ビームを用い、γ線検出器としてBaF2製シンチレーター+光電子増倍管を用い、装置定数:243~246ps,24.55ps/ch、ビーム強度:5keV、測定深さ:0~2μm(推定)、測定温度:室温、測定雰囲気:真空、総カウント数:約5000000カウント、試料前処理:室温で真空脱気の条件で、硬化後の陽電子寿命消滅法による自由体積半径の確認を行い、0.32nm以下(0は含まない)の分布面積を測定した。
<自由体積測定結果からの分布面積の算出>
 前記自由体積半径測定結果から0.32nm以下(0は含まない)の分布面積の算出方法としては、例えば、図3を参照して、分布曲線とベースラインとの交点間を100分割したヒストグラムから、0.32nm以下の面積割合を算出した。
Similarly, as a second coating composition, HumiSeal (acrylic coating agent resin composition) manufactured by Air-Brown is diluted with a thinner (solvent), and the viscosity measured with an E-type viscometer is about 100 to 300 mPa · s. Prepared as prepared.
<Preparation of coating samples for physical property evaluation>
The coating agent is applied onto the release paper using a bar coater (No. 75 manufactured by As One), and dried for 24 hours with a reduced pressure drier (300 torr), so that the film thickness after curing is 100 μm to 200 μm. One coating layer and a second coating layer were obtained.
<Measurement of DMA>
For the first coating layer, measurement of tan δ after curing was performed at a measurement frequency of 10 Hz in the range of -20 ° C to 0 ° C using a dynamic viscoelasticity measuring device made by UBM (type Rheogel-E4000) .
<Measurement of free volume radius>
For the second coating layer, using a compact positron beam generator PALS-200A (thin film compatible positron annihilation lifetime measuring device) manufactured by Fuji Inback, using a 22Na-based positron beam as a positron source, a γ-ray detector Device constants: 243 to 246 ps, 24. 55 ps / ch, beam intensity: 5 keV, measurement depth: 0 to 2 μm (estimated), measurement temperature: room temperature, measurement atmosphere: vacuum Total count: about 5000000 counts Sample pretreatment: Free volume radius confirmed by positron lifetime annihilation method after curing under conditions of vacuum degassing at room temperature, distribution of 0.32 nm or less (not including 0) The area was measured.
<Calculation of distribution area from free volume measurement result>
As a calculation method of the distribution area of 0.32 nm or less (not including 0) from the measurement result of the free volume radius, for example, referring to FIG. 3, a histogram obtained by dividing 100 between intersection points of the distribution curve and the baseline The area ratio of 0.32 nm or less was calculated.
 表1に示す第一のコーティング組成物および第二のコーティング組成物について、それぞれ同様の方法でDAMおよび分布面積を測定した。結果を表1に示す。 With respect to the first coating composition and the second coating composition shown in Table 1, DAM and distribution area were measured in the same manner. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
実施例1-12、比較例1-9
<試験片の調製>
 電子基板としてオムロン製スイッチング電源S8VK-Sの基板を準備した。なお、電子基板の基板本体に対する電子部品の実装はフラックス塗布、フローはんだ塗布工程を経ており、特にフラックス洗浄は行っていない。
Example 1-12, Comparative Example 1-9
<Preparation of test piece>
An OMRON switching power supply S8VK-S substrate was prepared as an electronic substrate. In addition, mounting of the electronic component with respect to the board | substrate body of an electronic substrate passes through the flux application and the flow solder application process, and flux cleaning is not performed especially.
 この電子基板の基板本体に、武蔵エンジニアリング製コーティングバルブ(CV-10)を用い、第一のコーティング組成物を膜厚30μmになるように塗布した。その後、減圧乾燥機(300torr)で24時間乾燥させて第一のコーティング層を形成した。その後、再度前述のバルブを用いて第二のコーティング組成物を30μmとなるように、第一のコーティング層の上に重ね塗りを行い、減圧乾燥機(300torr)で24時間乾燥を行うことで、第二のコーティング層を形成し、二種類のコーティング層が被覆された電子基板を得た。なお、コーティング層の膜厚は、マイクロメーターを用いて測定することによって調整した。第一のコーティング層の膜厚および第二のコーティング層の膜厚は、共に30μmとした。 The first coating composition was applied to a substrate body of this electronic substrate using a coating valve (CV-10) manufactured by Musashi Engineering Co., Ltd. to a film thickness of 30 μm. Then, it was dried in a vacuum drier (300 torr) for 24 hours to form a first coating layer. Thereafter, the second coating composition is again coated on the first coating layer to a thickness of 30 μm using the above-mentioned valve, and drying is performed in a vacuum dryer (300 torr) for 24 hours, A second coating layer was formed to obtain an electronic substrate coated with two types of coating layers. In addition, the film thickness of the coating layer was adjusted by measuring using a micrometer. The thickness of the first coating layer and the thickness of the second coating layer were both 30 μm.
 第一のコーティング層および第二のコーティング層は、表1に示すものを、表2に示す組み合わせで使用した。
<耐環境試験の条件>
 コーティング層を形成した電子基板を、低温側-40℃×30分、高温側85℃×30分で1000サイクルの繰返し冷熱衝撃および温熱衝撃を印加した。
As the first coating layer and the second coating layer, those shown in Table 1 were used in the combinations shown in Table 2.
<Conditions of environmental resistance test>
The electronic substrate on which the coating layer was formed was subjected to 1000 cycles of repeated thermal shock and thermal shock at a low temperature side of −40 ° C. × 30 minutes and a high temperature side of 85 ° C. × 30 minutes.
 その後、JIS C0048:1999に準拠した硫化系ガス(H2S、SO2の混合ガス)雰囲気となる試験槽に24時間静置した。 Thereafter, JIS C0048: sulfide-based gas that conforms to 1999 and allowed to stand for 24 hours in a test chamber comprising an atmosphere (H 2 S, a gas mixture of SO 2).
 静置後、コーティング層表面の外観を目視により検査した。観察箇所としては、主にはんだ、チップ端子、スルーホールなどの銀、および銅成分を含む材質の部位を観察した。
<評価>
 電子基板上の第一、第二のコーティング層にクラックが無く、電子基板上の金属部外観に全く変化が無いものを◎とし、金属部のみ変化のないものを○とした。
After standing, the appearance of the surface of the coating layer was visually inspected. As an observation part, the site | part of the material which mainly contains silver, such as a solder, a chip terminal, and a through hole, and a copper component was observed.
<Evaluation>
Those with no cracks in the first and second coating layers on the electronic substrate and no change in the external appearance of the metal part on the electronic substrate were marked ◎, and those in which only the metal part did not change were marked ○.
 また、電子基板表面の第一、第二のコーティング層にクラックが発生したものや、前記クラックの近傍に電子基板上の金属部外観に変化が有るものを×とした。外観検査法として目視の他、拡大鏡、ルーペ、顕微鏡などを用いて1~20倍に拡大して検査した。 In addition, those with a crack in the first and second coating layers on the surface of the electronic substrate and those with a change in the appearance of the metal part on the electronic substrate in the vicinity of the crack were regarded as x. As an appearance inspection method, inspection was conducted at 1 to 20 times magnification using a magnifying glass, a loupe, a microscope and the like in addition to visual inspection.
 結果を表2に示す。 The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上の結果から、本発明に係る実施例1-12に該当する電子基板は、クラックの発生もなく、その後の動作確認においても良好な結果が確認された。 From the above results, the electronic substrate corresponding to Example 1-12 according to the present invention did not have a crack, and good results were confirmed also in the subsequent operation check.
 なお、本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施例はあらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、特許請求の範囲に属する変形や変更は、全て本発明の範囲内のものである。 The present invention can be practiced in other various forms without departing from the spirit or main features thereof. Therefore, the above-described embodiment is merely illustrative in every point and should not be interpreted in a limited manner. The scope of the present invention is indicated by the claims, and is not limited at all by the text of the specification. Furthermore, all variations and modifications that fall within the scope of the claims fall within the scope of the present invention.
1 耐蝕性電子基板
2 電子部品
20 導電性金属部分
21 電極
22 はんだ
23 フラックス残渣
3 基板本体
4 第一のコーティング層
5 第二のコーティング層
DESCRIPTION OF SYMBOLS 1 Corrosion-resistant electronic substrate 2 Electronic component 20 Conductive metal part 21 Electrode 22 Solder 23 Flux residue 3 Substrate body 4 First coating layer 5 Second coating layer

Claims (7)

  1.  電子部品を構築した後の基板本体の表面全体または一部分に、第一のコーティング層を形成した後に、第二のコーティング層を形成して、当該電子部品の電極を含む導電性金属部分を、前記コーティング層で被覆してなる耐蝕性電子基板であって、
     前記第一のコーティング層は、硬化後のDMAの-20℃~0℃、10Hzでのtanδが0.10以上であり、かつ、
     前記第二のコーティング層は、硬化後の陽電子寿命消滅法による自由体積半径の測定値の分布において、0.32nm以下(0は含まない)の分布面積が70%以上となされたものであることを特徴とする耐蝕性電子基板。
    After forming the first coating layer on the entire surface or a part of the substrate body after constructing the electronic component, the second coating layer is formed to form the conductive metal portion including the electrode of the electronic component; A corrosion-resistant electronic substrate coated with a coating layer,
    The first coating layer has a tan δ of 0.10 or more at -20 ° C. to 0 ° C., 10 Hz of DMA after curing, and
    In the second coating layer, the distribution area of 0.32 nm or less (not including 0) is made 70% or more in the distribution of the measured value of free volume radius by the positron lifetime annihilation method after curing. Corrosion-resistant electronic substrate characterized by
  2.  前記第一のコーティング層と前記第二のコーティング層が、その界面を介して一体である請求項1に記載の耐蝕性電子基板。 The corrosion resistant electronic substrate according to claim 1, wherein the first coating layer and the second coating layer are integrated through the interface.
  3.  前記第一のコーティング層が、スチレン系ゴム、ウレタン系ゴム、シリコーン系ゴム、フッ素系ゴム、オレフィン系エラストマー、スチレン系エラストマー、フッ素系エラストマーの中から選択される何れか1種以上である請求項1に記載の耐蝕性電子基板。 The first coating layer is at least one selected from styrene rubber, urethane rubber, silicone rubber, fluorine rubber, olefin elastomer, styrene elastomer, and fluorine elastomer. The corrosion-resistant electronic substrate according to 1.
  4.  前記第二のコーティング層が、アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、シリコーン樹脂、フッ素樹脂、およびエポキシ樹脂の中から選択される1種以上である請求項1に記載の耐蝕性電子基板。 The corrosion resistant electronic substrate according to claim 1, wherein the second coating layer is at least one selected from an acrylic resin, a polyester resin, a polyurethane resin, a silicone resin, a fluorine resin, and an epoxy resin.
  5.  前記第一のコーティング層の厚みは、10μm~500μmであり、第二のコーティング層の厚みは5μm~200μmである請求項1ないし4の何れか一に記載の耐蝕性電子基板。 5. The corrosion-resistant electronic substrate according to any one of claims 1 to 4, wherein the thickness of the first coating layer is 10 μm to 500 μm, and the thickness of the second coating layer is 5 μm to 200 μm.
  6.  請求項1に記載の耐蝕性電子基板における前記第一のコーティング層を形成するためのコーティング組成物であって、
     前記第一のコーティング層の硬化後のDMAの-20℃~0℃、10Hzでのtanδが0.10以上となる樹脂組成物と、その溶剤とを含むことを特徴とするコーティング組成物。
    A coating composition for forming the first coating layer of the corrosion resistant electronic substrate according to claim 1,
    A coating composition comprising: a resin composition having a tan δ of 0.10 or more at −20 ° C. to 0 ° C. and 10 Hz of DMA after curing of the first coating layer, and a solvent therefor.
  7.  請求項1に記載の耐蝕性電子基板における前記第二のコーティング層を形成するためのコーティング組成物であって、
     前記第二のコーティング層の硬化後の陽電子寿命消滅法による自由体積半径の測定値の分布において、0.32nm以下(0は含まない)の分布面積が70%以上となる樹脂組成物と、その溶剤とを含むことを特徴とするコーティング組成物。
    A coating composition for forming the second coating layer of the corrosion resistant electronic substrate according to claim 1,
    A resin composition in which the distribution area of 0.32 nm or less (not including 0) is 70% or more in the distribution of measured values of free volume radius according to the positron lifetime annihilation method after curing of the second coating layer, and Coating composition characterized by including a solvent.
PCT/JP2018/006335 2017-08-08 2018-02-22 Corrosion-resistant electronic substrate and coating composition used for same WO2019030953A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-153162 2017-08-08
JP2017153162A JP2019033173A (en) 2017-08-08 2017-08-08 Corrosion resistant electronic substrate and coating composition used therefor

Publications (1)

Publication Number Publication Date
WO2019030953A1 true WO2019030953A1 (en) 2019-02-14

Family

ID=65271130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006335 WO2019030953A1 (en) 2017-08-08 2018-02-22 Corrosion-resistant electronic substrate and coating composition used for same

Country Status (3)

Country Link
JP (1) JP2019033173A (en)
TW (1) TWI658766B (en)
WO (1) WO2019030953A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110760245A (en) * 2019-11-26 2020-02-07 徐州新路缘机械科技有限公司 Mechanical paint with good rust-proof effect

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021005932A (en) * 2019-06-26 2021-01-14 三洋テクノソリューションズ鳥取株式会社 Power supply board and manufacturing method for power supply board

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001168493A (en) * 1999-12-07 2001-06-22 Taiyo Yuden Co Ltd Method for manufacturing electronic device, and electronic device
JP2007004085A (en) * 2005-06-27 2007-01-11 Asahi Glass Co Ltd Dimming device and method for manufacturing the same
WO2014175169A1 (en) * 2013-04-23 2014-10-30 三菱瓦斯化学株式会社 Polyamide resin composition, and molded article
JP2015002237A (en) * 2013-06-14 2015-01-05 三菱電機株式会社 Electronic board and control unit including the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2400105B (en) * 2001-12-20 2005-08-31 World Properties Inc Adhesive resin with high damping properties and method of manufacture thereof
JP6128367B2 (en) * 2012-08-28 2017-05-17 東芝ライテック株式会社 LIGHT EMITTING DEVICE AND WIRING BOARD MANUFACTURING METHOD

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001168493A (en) * 1999-12-07 2001-06-22 Taiyo Yuden Co Ltd Method for manufacturing electronic device, and electronic device
JP2007004085A (en) * 2005-06-27 2007-01-11 Asahi Glass Co Ltd Dimming device and method for manufacturing the same
WO2014175169A1 (en) * 2013-04-23 2014-10-30 三菱瓦斯化学株式会社 Polyamide resin composition, and molded article
JP2015002237A (en) * 2013-06-14 2015-01-05 三菱電機株式会社 Electronic board and control unit including the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110760245A (en) * 2019-11-26 2020-02-07 徐州新路缘机械科技有限公司 Mechanical paint with good rust-proof effect

Also Published As

Publication number Publication date
TWI658766B (en) 2019-05-01
TW201911986A (en) 2019-03-16
JP2019033173A (en) 2019-02-28

Similar Documents

Publication Publication Date Title
US8357859B2 (en) Insulating resin sheet laminate and multi-layer printed circuit board including insulating resin sheet laminate
JP2013517382A (en) Method for coating adaptive nano-coating by low-pressure plasma process
US20210310124A1 (en) Coating by ald for suppressing metallic whiskers
CN106987093A (en) Resin combination
TWI500362B (en) Transparent flexible printed wiring board and method of manufacturing the same
JP6485917B2 (en) Conductive structure with metal thin film
WO2019030953A1 (en) Corrosion-resistant electronic substrate and coating composition used for same
JP2016184741A5 (en)
KR20140085341A (en) Roughened cured body, laminated body, printed wiring board and semiconductor device
CN107674378A (en) Resin combination
JP2018125378A (en) Dry film, cured product, printed wiring board, and method for manufacturing cured product
JP5157191B2 (en) Semiconductor device
Brooks et al. Plasma polymerization: A versatile and attractive process for conformal coating
Zhang et al. One‐pot fluorine‐free superhydrophobic surface towards corrosion resistance and water droplet bouncing
JP2009054943A (en) Semiconductor device
Keeping Conformal coatings
KR102504267B1 (en) Flexible Copper Clad Laminate and Method for Manufacturing The Same
KR20060122591A (en) Flexible film for advancing adhesion strength between flexible film and metal layer and flexible metal-laminated film using the same
Shan et al. Characterization of a functional coating film synthesized on the ceramic substrate for electrical insulator application according to coating method
JP2021034474A (en) Electronic substrate, manufacturing method of the electronic substrate, and electronic apparatus
KR102608974B1 (en) Protective coating composition for circuit boards
DE102012103018B4 (en) Composite insulating layer and method of making the same
TW202043390A (en) Powder dispersion, production method for powder dispersion, and production method for resin-including substrate
Montemayor Effect of Silicone Conformal Coating on Surface Insulation Resistance (SIR) For Printed Circuit Board Assemblies.
KR102200637B1 (en) Cured body, method of manufacturing cured body, laminated body, printed wiring board and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18844842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18844842

Country of ref document: EP

Kind code of ref document: A1