WO2019030227A1 - Durchflussmesser und reflektor - Google Patents

Durchflussmesser und reflektor Download PDF

Info

Publication number
WO2019030227A1
WO2019030227A1 PCT/EP2018/071396 EP2018071396W WO2019030227A1 WO 2019030227 A1 WO2019030227 A1 WO 2019030227A1 EP 2018071396 W EP2018071396 W EP 2018071396W WO 2019030227 A1 WO2019030227 A1 WO 2019030227A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflector
measuring channel
flowmeter according
effect
flow meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2018/071396
Other languages
German (de)
English (en)
French (fr)
Inventor
Markus Helfenstein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GWF MessSysteme AG
Original Assignee
GWF MessSysteme AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GWF MessSysteme AG filed Critical GWF MessSysteme AG
Priority to BR112020001743-4A priority Critical patent/BR112020001743B1/pt
Priority to ES18752147T priority patent/ES2897300T3/es
Priority to EP18752147.1A priority patent/EP3665442B1/de
Priority to CN201880050993.XA priority patent/CN111033184A/zh
Priority to RU2020109723A priority patent/RU2764710C2/ru
Priority to PL18752147T priority patent/PL3665442T3/pl
Priority to JP2020505199A priority patent/JP7323507B2/ja
Priority to US16/632,400 priority patent/US11243104B2/en
Priority to IL272268A priority patent/IL272268B/en
Publication of WO2019030227A1 publication Critical patent/WO2019030227A1/de
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1681Antifouling coatings characterised by surface structure, e.g. for roughness effect giving superhydrophobic coatings or Lotus effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters

Definitions

  • the invention relates to a flowmeter for measuring the flow of fluids in a pipeline or the like according to the preamble of claim 1, as well as a reflector suitable for such a flowmeter.
  • Profile body which influences the flow within the measuring range and on which additional reflectors for the measuring signals are provided.
  • EP 2 386 836 B1 A similar solution is shown in EP 2 386 836 B1.
  • the flow guidance within the measuring channel is determined by a housing insert which can be inserted from the front side of the housing and which also carries reflectors for the ultrasonic signals, so that the ultrasound is emitted by one of the ultrasound transducers and transmitted via the reflectors to the other, for example, downstream ultrasound transducer. Transducer is reflected.
  • the signal can also be done in the opposite direction.
  • the document EP 0 890 826 B1 describes a flow meter in which a measuring insert is also attached to a tangentially extending flange in the area of a pipe section of a housing.
  • the ultrasound energy is passed through several on the ground, on the side walls and on the lid of the insert
  • the invention has for its object to provide a flow meter / flow meter and a reflector, which achieve a measurement with improved measurement accuracy and improved signal quality.
  • the preferably flush-mounted reflector has a reflection surface, whose surface structure is designed such that dirt deposits, which could occur despite reduced turbulence and stalls, no
  • a reflector is arranged on the transverse wall remote from the ultrasonic transducers, the
  • the surface structure is preferably bionic.
  • bionic a specially structured surface modeled on biology (bionic), the desired functions such as the deposit resistance, achieved while still ensuring adequate reflection.
  • the surface structure may also be formed on a coating of the reflector.
  • An exemplary embodiment of a bionic surface represents a surface with the sharkskin effect (riblet effect).
  • a surface formed in this way reduces resistance in fluids and prevents deposits and accretions of organisms of any kind (antifouling).
  • the sharkskin effect is u.a. caused by micro-longitudinal grooves on the surface. Ideally, these are in the form of blades and are perpendicular to the surface. But even a simplified manufacturable form as a kind of wave profile (scalloped) brings the desired effect.
  • the ratio between the height of the longitudinal grooves and their distance depends on the flow velocity of the circulating fluid and should be between 0.4 and 0.9, ideally in the range of 0.7, if the
  • Flow rate is 5 m / s.
  • a bionic surface is a surface with a lotus effect, that is, the surface is provided with a superhydrophobic layer on which the contact surface of a fluid only a few percent of the Fluid surface makes. This effect is created by structural bumps in the bionic surface that do not interfere with reflection of the ultrasonic waves.
  • bionic surface is a surface with rice leaf effect, that is, in the flow direction of the fluid different high elevations are placed on the surface. These are arranged transversely to the direction of flow, wherein the one elevations are half as high as the others and, with the same diameter, viewed from the center of a survey to the center of the next survey, spaced by twice the diameter.
  • the side walls of a measuring channel which extend in the direction of a vertical axis (approximately in the transmitting and receiving direction of the ultrasonic signals) bulge out and form an oval shape with transverse walls approximately in the direction of the transverse axis and roughly planar or slightly bulged. It has surprisingly been found that such an oval geometry ensures optimal flow and a concomitant maximum signal quality.
  • bionic surfaces described above are optimized for their function as ultrasonic reflectors.
  • Figure 1 shows an embodiment of a flow meter with a
  • Figure 2 is a schematic representation of a reflector
  • FIG. 3 shows schematically a surface structure with sharkskin effect
  • Figure 4 is a schematic representation of a surface layer
  • Figure 5 is a schematic representation of a reflector surface layer, with a combination of sharkskin and rice leaf effect.
  • FIG. 1 shows a longitudinal section of a flowmeter 1. It can be seen in this illustration, two coupling pieces 2, 4, with two sensors 6 and 8. These are each inserted into two recesses 10 a, 10 b.
  • the coupling surfaces 12 extend flush with the circumferential wall (transverse wall 14 and adjacent regions of side walls 16) of a measuring channel 18, which in this embodiment is formed by a tubular piece 20.
  • a part of a flange 22 thus forms the transverse wall 14.
  • An opposite transverse wall 24 is formed in this embodiment with an outwardly open pocket 26 into which a reflector 28 is inserted.
  • FIG. 2 shows a possible embodiment of the reflector 28 in the
  • the reflector 28 is pressed into the pocket. Therefore, an embodiment of the reflector 28 with a base 30 is provided. In another form of use, the mold may be otherwise made.
  • the base material of the reflector 28 is a material that reflects ultrasound well.
  • a steel-containing or even a polymeric structure can be used, although any other material that reflects ultrasound well would be conceivable.
  • a surface layer 32 is applied on this base material. The surface layer 32 is
  • Figure 3 illustrates schematically how a surface can be formed with the sharkskin effect.
  • a base 34 On a base 34 micro-longitudinal grooves 36 are created. These longitudinal grooves are characterized by a uniform height h and width t. The distance s to each other is also identical over the entire area.
  • These micro-longitudinal grooves 36 can be applied to the base material 34, for example by mechanical processing of the base material 34, or by a very fine casting or injection molding process. Due to the filigree structure, a wave structure 38 of the same dimensions is cost-effectively reduced produced. The reflection and the deposit resistance are unrestricted with grooves in wave structure 38.
  • Figure 4 illustrates schematically the microscopic structure of the structure of a rice leaf.
  • the resulting effect of deposit resistance is due to this structure.
  • individual elevations 40, 42 are applied to the surface.
  • the smaller elevations 42 for example, half the size of the larger 40.
  • the elevations 40, 42 are arranged in rows next to each other, with always a series of high elevations 40 alternates with one with small elevations 42.
  • the elevations are constructed the same, so that the diameter D and the distances P are identical to each other.
  • Figure 5 forms a combination of the two Figures 3 and 4.
  • the wave structure 38 of the sharkskin effect in conjunction with the projections 40, 42, which are responsible for the rice leaf effect to see.
  • the presentation has a uniform height of the surveys. A variant with the differently high elevations described above is not shown.
  • a flow meter with at least two mutually spaced measuring sensors, preferably ultrasonic sensors whose measuring signals is reflected by a deposit-resistant reflector.
  • Flow meter Coupling Coupling piece Sensor Flow meter Coupling Coupling piece Sensor
  • Base surface surface layer base micro-longitudinal grooves wave structure large elevation small elevation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Measuring Volume Flow (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
PCT/EP2018/071396 2017-08-08 2018-08-07 Durchflussmesser und reflektor Ceased WO2019030227A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
BR112020001743-4A BR112020001743B1 (pt) 2017-08-08 2018-08-07 Fluxômetro e refletor
ES18752147T ES2897300T3 (es) 2017-08-08 2018-08-07 Caudalímetro y reflector
EP18752147.1A EP3665442B1 (de) 2017-08-08 2018-08-07 Durchflussmesser
CN201880050993.XA CN111033184A (zh) 2017-08-08 2018-08-07 流量计和反射器
RU2020109723A RU2764710C2 (ru) 2017-08-08 2018-08-07 Расходомер и отражатель
PL18752147T PL3665442T3 (pl) 2017-08-08 2018-08-07 Przepływomierz
JP2020505199A JP7323507B2 (ja) 2017-08-08 2018-08-07 流量計およびリフレクタ
US16/632,400 US11243104B2 (en) 2017-08-08 2018-08-07 Ultrasonic flowmeter having a deposition-resistant reflector formed of a bionic surface
IL272268A IL272268B (en) 2017-08-08 2018-08-07 Flow meter and reflector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017118020.6 2017-08-08
DE102017118020 2017-08-08

Publications (1)

Publication Number Publication Date
WO2019030227A1 true WO2019030227A1 (de) 2019-02-14

Family

ID=63143149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/071396 Ceased WO2019030227A1 (de) 2017-08-08 2018-08-07 Durchflussmesser und reflektor

Country Status (10)

Country Link
US (1) US11243104B2 (enExample)
EP (1) EP3665442B1 (enExample)
JP (1) JP7323507B2 (enExample)
CN (1) CN111033184A (enExample)
BR (1) BR112020001743B1 (enExample)
ES (1) ES2897300T3 (enExample)
IL (1) IL272268B (enExample)
PL (1) PL3665442T3 (enExample)
RU (1) RU2764710C2 (enExample)
WO (1) WO2019030227A1 (enExample)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2020011238A (es) * 2019-10-31 2022-02-10 Neptune Tech Group Inc Elemento de medicion unificado para conjunto de medidor de agua.
EP4204769B1 (de) 2020-10-14 2024-09-04 Gwf Ag Durchflussmesser
CN113075419A (zh) * 2021-03-31 2021-07-06 苏州容启传感器科技有限公司 一种风速风向检测装置
US20230228602A1 (en) * 2022-01-19 2023-07-20 International Environmental Corporation Energy metering system for a fan coil
US20240011807A1 (en) * 2022-07-07 2024-01-11 Badger Meter, Inc. Ultrasonic flow meter including reflectors positioned by injection molding tool

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0392294A1 (de) * 1989-04-13 1990-10-17 Siemens Aktiengesellschaft Durchflussmesseinrichtung für flüssige Medien nach dem Ultraschall-Laufzeitprizip
WO2008025538A1 (en) * 2006-08-29 2008-03-06 Hochschule Bremen Antifouling coating
EP0890826B1 (de) 1997-07-10 2009-11-25 M & FC Holding LLC Ultraschall-Durchflussmesser mit Messeinsatz aus Kunststoff
EP2306160A1 (de) 2009-10-02 2011-04-06 Hydrometer GmbH Messeinsatz sowie Durchflusszähler
CN202693159U (zh) * 2012-07-03 2013-01-23 天津市金凤来仪科技有限公司 一种反射式超声波热量表流量管
US8939034B2 (en) * 2010-12-23 2015-01-27 Endress + Hauser Flowtec Ag Flow measuring device
EP2386836B1 (de) 2010-05-12 2016-01-06 Diehl Metering GmbH Gehäuseanordnung für Ultraschall-Durchflussmesser sowie Ultraschall-Durchflussmesser

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005007241B4 (de) * 2005-02-17 2007-05-31 Hydrometer Gmbh Durchflussmesser
JP4939907B2 (ja) 2006-11-15 2012-05-30 東京計装株式会社 気体用超音波流量計
CN104532238B (zh) * 2013-01-30 2017-02-22 华侨大学 一种基于荷叶表面仿生学的抗粘结刀具的制备方法
US9795989B2 (en) * 2013-03-15 2017-10-24 Hzo, Inc. Combining different types of moisture-resistant materials
US20140318657A1 (en) 2013-04-30 2014-10-30 The Ohio State University Fluid conveying apparatus with low drag, anti-fouling flow surface and methods of making same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0392294A1 (de) * 1989-04-13 1990-10-17 Siemens Aktiengesellschaft Durchflussmesseinrichtung für flüssige Medien nach dem Ultraschall-Laufzeitprizip
EP0890826B1 (de) 1997-07-10 2009-11-25 M & FC Holding LLC Ultraschall-Durchflussmesser mit Messeinsatz aus Kunststoff
WO2008025538A1 (en) * 2006-08-29 2008-03-06 Hochschule Bremen Antifouling coating
EP2306160A1 (de) 2009-10-02 2011-04-06 Hydrometer GmbH Messeinsatz sowie Durchflusszähler
EP2386836B1 (de) 2010-05-12 2016-01-06 Diehl Metering GmbH Gehäuseanordnung für Ultraschall-Durchflussmesser sowie Ultraschall-Durchflussmesser
US8939034B2 (en) * 2010-12-23 2015-01-27 Endress + Hauser Flowtec Ag Flow measuring device
CN202693159U (zh) * 2012-07-03 2013-01-23 天津市金凤来仪科技有限公司 一种反射式超声波热量表流量管

Also Published As

Publication number Publication date
EP3665442B1 (de) 2021-09-01
US20200249060A1 (en) 2020-08-06
JP7323507B2 (ja) 2023-08-08
BR112020001743A2 (pt) 2020-07-21
JP2020529598A (ja) 2020-10-08
US11243104B2 (en) 2022-02-08
RU2764710C2 (ru) 2022-01-19
IL272268A (en) 2020-03-31
ES2897300T3 (es) 2022-02-28
RU2020109723A3 (enExample) 2021-09-10
PL3665442T3 (pl) 2022-01-17
RU2020109723A (ru) 2021-09-10
IL272268B (en) 2022-09-01
EP3665442A1 (de) 2020-06-17
CN111033184A (zh) 2020-04-17
BR112020001743B1 (pt) 2024-03-12

Similar Documents

Publication Publication Date Title
WO2019030227A1 (de) Durchflussmesser und reflektor
DE102008019992B4 (de) Ultraschall-Messanordnung
EP2172657A2 (de) Strömungsrichter für ein Durchflussmessgerät, insbesondere ein Ultraschallmessgerät
DE102005063313A1 (de) Durchflussmesser
EP3677877A1 (de) Messrohr und ultraschall-durchflussmengenmesser
EP3404372A1 (de) Ultraschalldurchflussmessgerät
DE102008055030A1 (de) Messrohr eines Ultraschall-Durchfluss-Messsystems
DE102008013224A1 (de) Messsystem und Verfahren zur Bestimmung und/oder Überwachung eines Durchflusses eines Messmediums durch ein Messrohr
DE102010064119A1 (de) Durchflussmessgerät
DE102010032270B4 (de) Magnetisch-induktives Durchflussmessgerät
EP2863215B1 (de) Sensorvorrichtung zur Erfassung von Eigenschaften fluider Medien
DE202012104853U1 (de) Durchflussmengenmesser zur Bestimmung der Durchflussmenge eines Fluids
DE19944411A1 (de) Ultraschall-Durchflußmesser
DE102010063789A1 (de) Ultraschall-Durchflussmessgerät
DE102005001897C5 (de) Ultraschallmessanordnung für den Einbau an einem Einrohranschlussstück in einer Rohrleitung
DE10235034A1 (de) Durchflußmesser
DE102007045473A1 (de) Vorrichtung zur Bestimmung und/oder Überwachung des Durchflusses eines Messmediums durch ein Messrohr
DE202019003218U1 (de) Messrohr und Ultraschall-Durchflussmengenmesser
DE202018006222U1 (de) Ultraschall-Durchflussmengenmesser
EP4109055A1 (de) Durchflussmengenmesser
DE4341542C2 (de) Durchflussmessvorrichtung
WO2005031369A2 (de) Ultraschallsensor und verfahren zur messung von strömungsgeschwindigkeiten
EP3594634A1 (de) Strömungsmesser
DE102005062628B3 (de) Ultraschallzähler
DE202024106930U1 (de) Durchflussmesser mit der Verwendung von Ultraschall

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18752147

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020505199

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020001743

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018752147

Country of ref document: EP

Effective date: 20200309

ENP Entry into the national phase

Ref document number: 112020001743

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200127