WO2019030227A1 - Durchflussmesser und reflektor - Google Patents
Durchflussmesser und reflektor Download PDFInfo
- Publication number
- WO2019030227A1 WO2019030227A1 PCT/EP2018/071396 EP2018071396W WO2019030227A1 WO 2019030227 A1 WO2019030227 A1 WO 2019030227A1 EP 2018071396 W EP2018071396 W EP 2018071396W WO 2019030227 A1 WO2019030227 A1 WO 2019030227A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reflector
- measuring channel
- flowmeter according
- effect
- flow meter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/66—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
- G01F1/662—Constructional details
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/16—Antifouling paints; Underwater paints
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/16—Antifouling paints; Underwater paints
- C09D5/1681—Antifouling coatings characterised by surface structure, e.g. for roughness effect giving superhydrophobic coatings or Lotus effect
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/66—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/66—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
- G01F1/667—Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
Definitions
- the invention relates to a flowmeter for measuring the flow of fluids in a pipeline or the like according to the preamble of claim 1, as well as a reflector suitable for such a flowmeter.
- Profile body which influences the flow within the measuring range and on which additional reflectors for the measuring signals are provided.
- EP 2 386 836 B1 A similar solution is shown in EP 2 386 836 B1.
- the flow guidance within the measuring channel is determined by a housing insert which can be inserted from the front side of the housing and which also carries reflectors for the ultrasonic signals, so that the ultrasound is emitted by one of the ultrasound transducers and transmitted via the reflectors to the other, for example, downstream ultrasound transducer. Transducer is reflected.
- the signal can also be done in the opposite direction.
- the document EP 0 890 826 B1 describes a flow meter in which a measuring insert is also attached to a tangentially extending flange in the area of a pipe section of a housing.
- the ultrasound energy is passed through several on the ground, on the side walls and on the lid of the insert
- the invention has for its object to provide a flow meter / flow meter and a reflector, which achieve a measurement with improved measurement accuracy and improved signal quality.
- the preferably flush-mounted reflector has a reflection surface, whose surface structure is designed such that dirt deposits, which could occur despite reduced turbulence and stalls, no
- a reflector is arranged on the transverse wall remote from the ultrasonic transducers, the
- the surface structure is preferably bionic.
- bionic a specially structured surface modeled on biology (bionic), the desired functions such as the deposit resistance, achieved while still ensuring adequate reflection.
- the surface structure may also be formed on a coating of the reflector.
- An exemplary embodiment of a bionic surface represents a surface with the sharkskin effect (riblet effect).
- a surface formed in this way reduces resistance in fluids and prevents deposits and accretions of organisms of any kind (antifouling).
- the sharkskin effect is u.a. caused by micro-longitudinal grooves on the surface. Ideally, these are in the form of blades and are perpendicular to the surface. But even a simplified manufacturable form as a kind of wave profile (scalloped) brings the desired effect.
- the ratio between the height of the longitudinal grooves and their distance depends on the flow velocity of the circulating fluid and should be between 0.4 and 0.9, ideally in the range of 0.7, if the
- Flow rate is 5 m / s.
- a bionic surface is a surface with a lotus effect, that is, the surface is provided with a superhydrophobic layer on which the contact surface of a fluid only a few percent of the Fluid surface makes. This effect is created by structural bumps in the bionic surface that do not interfere with reflection of the ultrasonic waves.
- bionic surface is a surface with rice leaf effect, that is, in the flow direction of the fluid different high elevations are placed on the surface. These are arranged transversely to the direction of flow, wherein the one elevations are half as high as the others and, with the same diameter, viewed from the center of a survey to the center of the next survey, spaced by twice the diameter.
- the side walls of a measuring channel which extend in the direction of a vertical axis (approximately in the transmitting and receiving direction of the ultrasonic signals) bulge out and form an oval shape with transverse walls approximately in the direction of the transverse axis and roughly planar or slightly bulged. It has surprisingly been found that such an oval geometry ensures optimal flow and a concomitant maximum signal quality.
- bionic surfaces described above are optimized for their function as ultrasonic reflectors.
- Figure 1 shows an embodiment of a flow meter with a
- Figure 2 is a schematic representation of a reflector
- FIG. 3 shows schematically a surface structure with sharkskin effect
- Figure 4 is a schematic representation of a surface layer
- Figure 5 is a schematic representation of a reflector surface layer, with a combination of sharkskin and rice leaf effect.
- FIG. 1 shows a longitudinal section of a flowmeter 1. It can be seen in this illustration, two coupling pieces 2, 4, with two sensors 6 and 8. These are each inserted into two recesses 10 a, 10 b.
- the coupling surfaces 12 extend flush with the circumferential wall (transverse wall 14 and adjacent regions of side walls 16) of a measuring channel 18, which in this embodiment is formed by a tubular piece 20.
- a part of a flange 22 thus forms the transverse wall 14.
- An opposite transverse wall 24 is formed in this embodiment with an outwardly open pocket 26 into which a reflector 28 is inserted.
- FIG. 2 shows a possible embodiment of the reflector 28 in the
- the reflector 28 is pressed into the pocket. Therefore, an embodiment of the reflector 28 with a base 30 is provided. In another form of use, the mold may be otherwise made.
- the base material of the reflector 28 is a material that reflects ultrasound well.
- a steel-containing or even a polymeric structure can be used, although any other material that reflects ultrasound well would be conceivable.
- a surface layer 32 is applied on this base material. The surface layer 32 is
- Figure 3 illustrates schematically how a surface can be formed with the sharkskin effect.
- a base 34 On a base 34 micro-longitudinal grooves 36 are created. These longitudinal grooves are characterized by a uniform height h and width t. The distance s to each other is also identical over the entire area.
- These micro-longitudinal grooves 36 can be applied to the base material 34, for example by mechanical processing of the base material 34, or by a very fine casting or injection molding process. Due to the filigree structure, a wave structure 38 of the same dimensions is cost-effectively reduced produced. The reflection and the deposit resistance are unrestricted with grooves in wave structure 38.
- Figure 4 illustrates schematically the microscopic structure of the structure of a rice leaf.
- the resulting effect of deposit resistance is due to this structure.
- individual elevations 40, 42 are applied to the surface.
- the smaller elevations 42 for example, half the size of the larger 40.
- the elevations 40, 42 are arranged in rows next to each other, with always a series of high elevations 40 alternates with one with small elevations 42.
- the elevations are constructed the same, so that the diameter D and the distances P are identical to each other.
- Figure 5 forms a combination of the two Figures 3 and 4.
- the wave structure 38 of the sharkskin effect in conjunction with the projections 40, 42, which are responsible for the rice leaf effect to see.
- the presentation has a uniform height of the surveys. A variant with the differently high elevations described above is not shown.
- a flow meter with at least two mutually spaced measuring sensors, preferably ultrasonic sensors whose measuring signals is reflected by a deposit-resistant reflector.
- Flow meter Coupling Coupling piece Sensor Flow meter Coupling Coupling piece Sensor
- Base surface surface layer base micro-longitudinal grooves wave structure large elevation small elevation
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Measuring Volume Flow (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Optical Radar Systems And Details Thereof (AREA)
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
Priority Applications (9)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| BR112020001743-4A BR112020001743B1 (pt) | 2017-08-08 | 2018-08-07 | Fluxômetro e refletor |
| ES18752147T ES2897300T3 (es) | 2017-08-08 | 2018-08-07 | Caudalímetro y reflector |
| EP18752147.1A EP3665442B1 (de) | 2017-08-08 | 2018-08-07 | Durchflussmesser |
| CN201880050993.XA CN111033184A (zh) | 2017-08-08 | 2018-08-07 | 流量计和反射器 |
| RU2020109723A RU2764710C2 (ru) | 2017-08-08 | 2018-08-07 | Расходомер и отражатель |
| PL18752147T PL3665442T3 (pl) | 2017-08-08 | 2018-08-07 | Przepływomierz |
| JP2020505199A JP7323507B2 (ja) | 2017-08-08 | 2018-08-07 | 流量計およびリフレクタ |
| US16/632,400 US11243104B2 (en) | 2017-08-08 | 2018-08-07 | Ultrasonic flowmeter having a deposition-resistant reflector formed of a bionic surface |
| IL272268A IL272268B (en) | 2017-08-08 | 2018-08-07 | Flow meter and reflector |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102017118020.6 | 2017-08-08 | ||
| DE102017118020 | 2017-08-08 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2019030227A1 true WO2019030227A1 (de) | 2019-02-14 |
Family
ID=63143149
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2018/071396 Ceased WO2019030227A1 (de) | 2017-08-08 | 2018-08-07 | Durchflussmesser und reflektor |
Country Status (10)
| Country | Link |
|---|---|
| US (1) | US11243104B2 (enExample) |
| EP (1) | EP3665442B1 (enExample) |
| JP (1) | JP7323507B2 (enExample) |
| CN (1) | CN111033184A (enExample) |
| BR (1) | BR112020001743B1 (enExample) |
| ES (1) | ES2897300T3 (enExample) |
| IL (1) | IL272268B (enExample) |
| PL (1) | PL3665442T3 (enExample) |
| RU (1) | RU2764710C2 (enExample) |
| WO (1) | WO2019030227A1 (enExample) |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| MX2020011238A (es) * | 2019-10-31 | 2022-02-10 | Neptune Tech Group Inc | Elemento de medicion unificado para conjunto de medidor de agua. |
| EP4204769B1 (de) | 2020-10-14 | 2024-09-04 | Gwf Ag | Durchflussmesser |
| CN113075419A (zh) * | 2021-03-31 | 2021-07-06 | 苏州容启传感器科技有限公司 | 一种风速风向检测装置 |
| US20230228602A1 (en) * | 2022-01-19 | 2023-07-20 | International Environmental Corporation | Energy metering system for a fan coil |
| US20240011807A1 (en) * | 2022-07-07 | 2024-01-11 | Badger Meter, Inc. | Ultrasonic flow meter including reflectors positioned by injection molding tool |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0392294A1 (de) * | 1989-04-13 | 1990-10-17 | Siemens Aktiengesellschaft | Durchflussmesseinrichtung für flüssige Medien nach dem Ultraschall-Laufzeitprizip |
| WO2008025538A1 (en) * | 2006-08-29 | 2008-03-06 | Hochschule Bremen | Antifouling coating |
| EP0890826B1 (de) | 1997-07-10 | 2009-11-25 | M & FC Holding LLC | Ultraschall-Durchflussmesser mit Messeinsatz aus Kunststoff |
| EP2306160A1 (de) | 2009-10-02 | 2011-04-06 | Hydrometer GmbH | Messeinsatz sowie Durchflusszähler |
| CN202693159U (zh) * | 2012-07-03 | 2013-01-23 | 天津市金凤来仪科技有限公司 | 一种反射式超声波热量表流量管 |
| US8939034B2 (en) * | 2010-12-23 | 2015-01-27 | Endress + Hauser Flowtec Ag | Flow measuring device |
| EP2386836B1 (de) | 2010-05-12 | 2016-01-06 | Diehl Metering GmbH | Gehäuseanordnung für Ultraschall-Durchflussmesser sowie Ultraschall-Durchflussmesser |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102005007241B4 (de) * | 2005-02-17 | 2007-05-31 | Hydrometer Gmbh | Durchflussmesser |
| JP4939907B2 (ja) | 2006-11-15 | 2012-05-30 | 東京計装株式会社 | 気体用超音波流量計 |
| CN104532238B (zh) * | 2013-01-30 | 2017-02-22 | 华侨大学 | 一种基于荷叶表面仿生学的抗粘结刀具的制备方法 |
| US9795989B2 (en) * | 2013-03-15 | 2017-10-24 | Hzo, Inc. | Combining different types of moisture-resistant materials |
| US20140318657A1 (en) | 2013-04-30 | 2014-10-30 | The Ohio State University | Fluid conveying apparatus with low drag, anti-fouling flow surface and methods of making same |
-
2018
- 2018-08-07 RU RU2020109723A patent/RU2764710C2/ru active
- 2018-08-07 EP EP18752147.1A patent/EP3665442B1/de active Active
- 2018-08-07 JP JP2020505199A patent/JP7323507B2/ja active Active
- 2018-08-07 WO PCT/EP2018/071396 patent/WO2019030227A1/de not_active Ceased
- 2018-08-07 IL IL272268A patent/IL272268B/en unknown
- 2018-08-07 US US16/632,400 patent/US11243104B2/en active Active
- 2018-08-07 BR BR112020001743-4A patent/BR112020001743B1/pt active IP Right Grant
- 2018-08-07 ES ES18752147T patent/ES2897300T3/es active Active
- 2018-08-07 PL PL18752147T patent/PL3665442T3/pl unknown
- 2018-08-07 CN CN201880050993.XA patent/CN111033184A/zh active Pending
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0392294A1 (de) * | 1989-04-13 | 1990-10-17 | Siemens Aktiengesellschaft | Durchflussmesseinrichtung für flüssige Medien nach dem Ultraschall-Laufzeitprizip |
| EP0890826B1 (de) | 1997-07-10 | 2009-11-25 | M & FC Holding LLC | Ultraschall-Durchflussmesser mit Messeinsatz aus Kunststoff |
| WO2008025538A1 (en) * | 2006-08-29 | 2008-03-06 | Hochschule Bremen | Antifouling coating |
| EP2306160A1 (de) | 2009-10-02 | 2011-04-06 | Hydrometer GmbH | Messeinsatz sowie Durchflusszähler |
| EP2386836B1 (de) | 2010-05-12 | 2016-01-06 | Diehl Metering GmbH | Gehäuseanordnung für Ultraschall-Durchflussmesser sowie Ultraschall-Durchflussmesser |
| US8939034B2 (en) * | 2010-12-23 | 2015-01-27 | Endress + Hauser Flowtec Ag | Flow measuring device |
| CN202693159U (zh) * | 2012-07-03 | 2013-01-23 | 天津市金凤来仪科技有限公司 | 一种反射式超声波热量表流量管 |
Also Published As
| Publication number | Publication date |
|---|---|
| EP3665442B1 (de) | 2021-09-01 |
| US20200249060A1 (en) | 2020-08-06 |
| JP7323507B2 (ja) | 2023-08-08 |
| BR112020001743A2 (pt) | 2020-07-21 |
| JP2020529598A (ja) | 2020-10-08 |
| US11243104B2 (en) | 2022-02-08 |
| RU2764710C2 (ru) | 2022-01-19 |
| IL272268A (en) | 2020-03-31 |
| ES2897300T3 (es) | 2022-02-28 |
| RU2020109723A3 (enExample) | 2021-09-10 |
| PL3665442T3 (pl) | 2022-01-17 |
| RU2020109723A (ru) | 2021-09-10 |
| IL272268B (en) | 2022-09-01 |
| EP3665442A1 (de) | 2020-06-17 |
| CN111033184A (zh) | 2020-04-17 |
| BR112020001743B1 (pt) | 2024-03-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2019030227A1 (de) | Durchflussmesser und reflektor | |
| DE102008019992B4 (de) | Ultraschall-Messanordnung | |
| EP2172657A2 (de) | Strömungsrichter für ein Durchflussmessgerät, insbesondere ein Ultraschallmessgerät | |
| DE102005063313A1 (de) | Durchflussmesser | |
| EP3677877A1 (de) | Messrohr und ultraschall-durchflussmengenmesser | |
| EP3404372A1 (de) | Ultraschalldurchflussmessgerät | |
| DE102008055030A1 (de) | Messrohr eines Ultraschall-Durchfluss-Messsystems | |
| DE102008013224A1 (de) | Messsystem und Verfahren zur Bestimmung und/oder Überwachung eines Durchflusses eines Messmediums durch ein Messrohr | |
| DE102010064119A1 (de) | Durchflussmessgerät | |
| DE102010032270B4 (de) | Magnetisch-induktives Durchflussmessgerät | |
| EP2863215B1 (de) | Sensorvorrichtung zur Erfassung von Eigenschaften fluider Medien | |
| DE202012104853U1 (de) | Durchflussmengenmesser zur Bestimmung der Durchflussmenge eines Fluids | |
| DE19944411A1 (de) | Ultraschall-Durchflußmesser | |
| DE102010063789A1 (de) | Ultraschall-Durchflussmessgerät | |
| DE102005001897C5 (de) | Ultraschallmessanordnung für den Einbau an einem Einrohranschlussstück in einer Rohrleitung | |
| DE10235034A1 (de) | Durchflußmesser | |
| DE102007045473A1 (de) | Vorrichtung zur Bestimmung und/oder Überwachung des Durchflusses eines Messmediums durch ein Messrohr | |
| DE202019003218U1 (de) | Messrohr und Ultraschall-Durchflussmengenmesser | |
| DE202018006222U1 (de) | Ultraschall-Durchflussmengenmesser | |
| EP4109055A1 (de) | Durchflussmengenmesser | |
| DE4341542C2 (de) | Durchflussmessvorrichtung | |
| WO2005031369A2 (de) | Ultraschallsensor und verfahren zur messung von strömungsgeschwindigkeiten | |
| EP3594634A1 (de) | Strömungsmesser | |
| DE102005062628B3 (de) | Ultraschallzähler | |
| DE202024106930U1 (de) | Durchflussmesser mit der Verwendung von Ultraschall |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18752147 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2020505199 Country of ref document: JP Kind code of ref document: A |
|
| REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112020001743 Country of ref document: BR |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| ENP | Entry into the national phase |
Ref document number: 2018752147 Country of ref document: EP Effective date: 20200309 |
|
| ENP | Entry into the national phase |
Ref document number: 112020001743 Country of ref document: BR Kind code of ref document: A2 Effective date: 20200127 |