WO2019029527A1 - 随机接入资源的处理方法和装置 - Google Patents

随机接入资源的处理方法和装置 Download PDF

Info

Publication number
WO2019029527A1
WO2019029527A1 PCT/CN2018/099181 CN2018099181W WO2019029527A1 WO 2019029527 A1 WO2019029527 A1 WO 2019029527A1 CN 2018099181 W CN2018099181 W CN 2018099181W WO 2019029527 A1 WO2019029527 A1 WO 2019029527A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
indication information
access resource
user equipment
network side
Prior art date
Application number
PCT/CN2018/099181
Other languages
English (en)
French (fr)
Inventor
陈力
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to ES18844381T priority Critical patent/ES2882651T3/es
Priority to EP18844381.6A priority patent/EP3668223B1/en
Priority to US16/637,983 priority patent/US11825513B2/en
Publication of WO2019029527A1 publication Critical patent/WO2019029527A1/zh
Priority to US18/477,935 priority patent/US20240023158A1/en
Priority to US18/477,957 priority patent/US20240032090A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • the present disclosure relates to the field of computer technologies, and in particular, to a method and an apparatus for processing random access resources.
  • Future generation mobile communication system of the fifth (5 th Generation, 5G) in order to achieve a downlink transmission rate 20Gbps, 10Gbps uplink transmission rate of the target, and high frequency communications technology will be introduced into the mass antennas.
  • High-frequency communication can provide a wider system bandwidth, and the antenna size can be smaller, which is more advantageous for large-scale antenna deployment in base stations (Node B, NB) and user equipment (UE).
  • High-frequency communication has the disadvantages of large path loss, easy interference, and weak link.
  • Large-scale antenna technology can provide large antenna gain. Therefore, the combination of high-frequency communication and large-scale antenna is the future 5G mobile communication system. The inevitable trend.
  • the use of large-scale antenna technology cannot solve all the problems of high-frequency communication, such as link fragility.
  • the beam failure recovery mechanism can quickly switch the beam, switch the communication link from the poorer beam to the better beam, avoid the failure of the wireless link, and effectively improve the robustness of the link.
  • the beam failure recovery mechanism includes the following steps:
  • Step 12 beam failure detection
  • Step 14 new candidate beam identification
  • Step 16 the beam failure recovery request is sent
  • step 18 the UE monitors the beam failure recovery request gNB response.
  • the 5G system supports a beam failure recovery request based on a non-contention physical random access channel (PRACH), and the PRACH used for the beam failure recovery request is orthogonal to the normal PRACH resource, and at least supports the frequency division multiplexing mode. Orthogonal; 5G system supports transmitting a beam failure recovery request based on a Physical Uplink Control Channel (PUCCH).
  • PRACH physical random access channel
  • PUCCH Physical Uplink Control Channel
  • a contention-free RACH and a dedicated contention-based random access PRACH resource and a preamble code are both evolved by an evolved base station (eNB or e).
  • the Node B) is configured in advance and can be sent to the UE through a PDCCH order or a Radio Resource Control (RRC) message.
  • RRC Radio Resource Control
  • the dedicated PRACH resource configured each time can only be used for one RACH access procedure (including multiple retransmissions of msg.1). The next time the access is made, the eNB will configure the PRACH resource for the UE.
  • the network side device fails to send the activation command or the deactivation command of the RACH resource to the UE due to the downlink beam failure, resulting in the network and the UE pair.
  • the configuration of RACH resources is not understood. Further, when the activation command is not successfully sent to the UE, the RACH resource is wasted; when the deactivation command is not successfully sent to the UE, the random access procedure conflict of the UE for beam failure recovery is caused.
  • an embodiment of the present disclosure provides a method for processing a random access resource, including:
  • the embodiment of the present disclosure further provides a method for processing a random access resource, including:
  • first indication information Sending, to the user equipment, first indication information, where the first indication information is used to indicate whether a preset random access resource is available;
  • an embodiment of the present disclosure provides a processing apparatus for a random access resource, including:
  • a first receiving unit configured to receive first indication information from a network side device, where the first indication information is used to indicate whether a preset random access resource is available;
  • the first sending unit is configured to send the first confirmation information to the network side device.
  • an embodiment of the present disclosure provides a processing device for a random access resource, including:
  • a first sending unit configured to send first indication information to the user equipment, where the first indication information is used to indicate whether a preset random access resource is available;
  • the first receiving unit is configured to receive first confirmation information from the user equipment.
  • an embodiment of the present disclosure provides a user equipment, including: a memory, a processor, and a processing program of a random access resource stored on the memory and operable on the processor, the random The step of processing the random access resource as described above when the processing program of the access resource is executed by the processor.
  • an embodiment of the present disclosure provides a computer readable storage medium, where the computer readable storage medium stores a processing program of a random access resource, and the processing program of the random access resource is executed by a processor. The steps of the processing method of the random access resource as described above are implemented.
  • an embodiment of the present disclosure provides a network side device, including: a memory, a processor, and a processing program of a random access resource stored on the memory and operable on the processor, The step of processing the random access resource as described above when the processor of the random access resource is executed by the processor.
  • an embodiment of the present disclosure provides a computer readable storage medium, where the computer readable storage medium stores a processing program of a random access resource, and the processing program of the random access resource is executed by a processor. The steps of the processing method of the random access resource as described above are implemented.
  • FIG. 1 is a schematic flowchart of a beam failure recovery mechanism
  • FIG. 3 is a schematic flowchart of a method for processing a random access resource according to Embodiment 1 of the present disclosure
  • FIG. 4 is a schematic flowchart of a method for processing a random access resource according to Embodiment 2 of the present disclosure
  • FIG. 5 is a schematic flowchart of a method for processing a random access resource according to Embodiment 3 of the present disclosure
  • FIG. 6 is a schematic flowchart of a method for processing a random access resource according to Embodiment 4 of the present disclosure
  • FIG. 7 is a schematic flowchart of a method for processing a random access resource according to Embodiment 5 of the present disclosure.
  • FIG. 8 is a schematic flowchart of a method for processing a random access resource according to Embodiment 6 of the present disclosure
  • FIG. 9 is a schematic flowchart of a method for processing a random access resource according to Embodiment 7 of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a processing apparatus for a random access resource according to Embodiment 8 of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a processing apparatus for a random access resource according to Embodiment 9 of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a processing apparatus for a random access resource according to Embodiment 10 of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a user equipment according to Embodiment 11 of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a network side device according to Embodiment 13 of the present disclosure.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution Advanced
  • NR New Radio
  • a user equipment which may also be called a mobile terminal, a mobile user equipment, or the like, may communicate with one or more core networks via a radio access network (for example, a Radio Access Network, RAN).
  • the user equipment may be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal, for example, a portable, pocket, handheld, computer built-in or in-vehicle mobile device,
  • the wireless access network exchanges languages and/or data.
  • the base station may be a Base Transceiver Station (BTS) in GSM or CDMA, or may be a base station (Node B) in WCDMA, or may be an eNB in LTE and a 5G base station (gNB), and the disclosure is not limited.
  • BTS Base Transceiver Station
  • Node B base station
  • gNB 5G base station
  • the following embodiments are described by taking gNB as an example.
  • Step 22 The network side device allocates a random access resource RACH to the user equipment UE, and informs the UE.
  • Step 24 The network side device sends indication information to the UE to notify the UE whether the allocated random access resource is available.
  • Step 26 The UE feeds back the confirmation information to notify the network side device that the indication information has been received.
  • Step 28 When the UE fails to generate a beam, the request for beam failure recovery is initiated to the network side based on the random access resource.
  • Step 210 The network side device responds to the request initiated by the UE, and performs the beam failure recovery mechanism shown in FIG. 1.
  • the random access resource may also be a predefined random access resource.
  • FIG. 3 is a schematic flowchart of a method for processing a random access resource according to Embodiment 1 of the present disclosure. Referring to FIG. 3, the method may specifically include the following steps:
  • Step 32 Receive first indication information from a network side device, where the first indication information is used to indicate whether a preset random access resource is available.
  • the preset random access resource may be an example: the network side device is a random access resource allocated by the UE.
  • the allocated random access resources include: time domain random access resources, frequency domain random access resources, allocation of preamble preamble codes, bandwidth part BWPs constituting system bandwidth, beam resources, and synchronization signal blocks associated with beam resources ( At least one of a Synchronization Signal Block (SS Block)/Channel State Information Reference Signal (CSI-RS).
  • SS Block Synchronization Signal Block
  • CSI-RS Channel State Information Reference Signal
  • the network side device can allocate a random access resource to the UE based on the ID of the candidate beam. For example, based on the ID of the candidate beam, the time domain random access resource and the frequency domain random access resource associated with the ID are allocated, and then, based on the default rule, combined with the default bandwidth portion BWP of the system bandwidth and the random connection of the air domain.
  • the incoming resources form a random access resource.
  • Step 34 Send the first confirmation information to the network side device, where the first confirmation information is used to indicate that the first indication information has been received.
  • the UE feeds back the Uplink Control Information (UCI) information of the first acknowledgment information to the network side device by using the uplink physical control channel (PUCCH); or feeds back the bearer to the network side device by using the radio resource control RRC.
  • the RRC message with the first acknowledgment information; or the first acknowledgment information carried by the network side device is fed back to the network side device by a control element (Control Element, CE) of a medium access control (MAC) layer.
  • Control Element, CE Control Element of a medium access control (MAC) layer.
  • the network side device may also receive the first confirmation information by using a receiving manner corresponding to the feedback manner.
  • the UE after receiving the first indication information sent by the network side device, the UE sends the first confirmation information to the network side device according to the feedback mechanism, to notify the network side device that the first indication information has been received.
  • the "interpretation" of the UE and the network side device to whether the allocated random access resources are available is consistent. Avoiding the problem that the two parties have different understandings about whether the allocated random access resources are available, resulting in wasted resources and failure to perform beam failure recovery normally.
  • the indication information sent by the network side device is not received by the UE due to the failure of the downlink beam. Therefore, the two sides have different understandings of the random access resource A.
  • the UE "understands" that the random access resource A is unavailable, and the network side "understands” that the random access resource A is available to the UE. Based on this situation, when the UE fails to generate a beam, since the UE considers that the random access resource A is unavailable, the request for beam failure recovery cannot be initiated to the network side device based on the random access resource A.
  • the network side device considers that the random access resource A is available to the UE, and therefore does not indicate to the UE that the random access resource A is available, and does not allocate the random access resource A to other UEs, resulting in randomness. Access to resource A is wasted.
  • step 32 may specifically include:
  • the activation indication information is used to indicate that the allocated random access resource is available. Or receiving the deactivation indication information from the network side device, where the deactivation indication information is used to indicate that the allocated or activated random access resource is unavailable.
  • the UE may send a beam failure recovery request based on the allocated random access resources when the trigger beam failure recovery.
  • the allocated random access resources may be continuously in the process of activation-deactivation-activation-deactivation based on the first indication information sent by the network side device.
  • the embodiment of the present disclosure adds a feedback mechanism to the downlink indication information, so that when the UE receives the first indication information sent by the network side device, the first confirmation information is fed back to the network side device, so that the network side device and the user side device It is possible to clarify whether the allocated random access resources are available, and thus can reasonably utilize the random access resources and ensure the normal operation of the beam failure recovery.
  • FIG. 4 is a schematic flowchart of a method for processing a random access resource according to Embodiment 2 of the present disclosure. Referring to FIG. 4, the method may specifically include the following steps:
  • Step 42 Receive allocation information from the network side device, where the allocation information is used to indicate a random access resource that is allocated by the network side device according to the allocation request.
  • Step 44 Receive first indication information from a network side device, where the first indication information is used to indicate whether an allocated random access resource is available.
  • Step 46 Send the first confirmation information to the network side device, where the first confirmation information is used to indicate that the first indication information has been received.
  • step 44 and step 46 in this embodiment respectively correspond to step 32 and step 34 in the embodiment 1, and therefore, details are not described herein again. For similarities, refer to the related description in the embodiment 1. .
  • the manner in which the UE acquires the random access resource may be classified into the following two schemes:
  • Solution 1 The UE sends an allocation request to the network side device to request the network side device to allocate random access resources.
  • the network side device allocates a random access resource to the UE based on the allocation request, and informs the UE of the allocated random access resource in the form of the allocation information.
  • Solution 2 The network side device actively allocates random access resources to the UE, and informs the UE in the form of allocation information.
  • the UE may selectively return the confirmation information to the network side device to notify the network side device that the allocation information has been received.
  • the network side device allocates the random access resource to the UE, it also informs the UE whether the allocated random access resource is available, for example, whether the indication information of whether the information is available is carried in the allocation information, or Whether the allocated random access resources are available, for example, tentatively initiating a beam failure recovery request.
  • the embodiments of the present disclosure may include the following two solutions:
  • the UE If the UE learns that the allocated random access resource is in the available state, the UE initiates a beam failure recovery request to the network side based on the random access resource when the triggering beam fails.
  • the UE learns that the allocated random access resource is in an unavailable state, it can be used after receiving the activation indication information sent by the network side device; then, feedback confirmation information; when the trigger beam fails, the UE is based on random
  • the access resource initiates a request for beam failure recovery to the network side device.
  • the conditions for trigger beam failure are as follows:
  • the trigger beam fails
  • the trigger beam fails
  • the trigger beam fails.
  • the embodiment of the present disclosure flexibly allocates random access resources by using a scheme for allocating random access resources between the network side and the UE side. Moreover, the embodiment of the present disclosure provides an effect of determining whether the triggering beam fails, to accurately determine whether the UE has a beam failure, and avoiding a situation in which a beam failure recovery mechanism is performed without a beam failure, thereby further preventing the waste of resources.
  • FIG. 5 is a schematic flowchart of a method for processing a random access resource according to Embodiment 3 of the present disclosure. Referring to FIG. 5, the method may specifically include the following steps:
  • Step 52 The UE receives allocation information from the network side device, where the allocation information is used to indicate the allocated random access resource.
  • Step 54 Receive second indication information from the network side device, where the second indication information is used to indicate that the allocated random access resource is released.
  • the manner of receiving the second indication information may be that the second indication information of the bearer is received by the control element CE of the medium access control MAC layer.
  • Step 56 Send second confirmation information to the network side device, where the second confirmation information is used to indicate that the second indication information has been received.
  • the method for sending the second acknowledgment information may be: feeding back the uplink control information UCI information carrying the second acknowledgment information to the network side device by using the uplink physical control channel PUCCH; or, by using the radio resource control RRC to the network
  • the side device feeds back the RRC message carrying the second acknowledgment information; or the control element CE of the medium access control MAC layer feeds back the second acknowledgment information of the bearer to the network side device.
  • step 52 the scheme in which the UE obtains the allocated random access resource is similar to that in the second embodiment, and therefore, details are not described herein again. For similarities, please refer to the relevant statement in Example 2.
  • the network side device may allocate the released random access resources to other UEs to achieve reasonable scheduling of random access resources and improve the efficiency of random access resources.
  • FIG. 6 is a schematic flowchart of a method for processing a random access resource according to Embodiment 4 of the present disclosure. Referring to FIG. 6, the method may specifically include the following steps:
  • Step 62 The network side device sends the first indication information to the user equipment, where the first indication information is used to indicate whether the preset random access resource is available.
  • the preset random access resource may be a random access resource allocated by the network side device for the UE, or may be a predefined random access resource.
  • step 62 can be:
  • the condition for sending the deactivation indication information may be: when determining that the allocated random access resource is in an available state, or after completing the response beam failure recovery request, and the allocated random access resource is available. Status, send deactivation indication information.
  • the condition for sending the activation indication information may be: sending the activation indication information after determining that the allocated random access resource is in an unavailable state.
  • the manner of sending the first indication information to the user equipment may include the following:
  • the control element CE of the medium access control MAC sends the first indication information of the bearer to the user equipment.
  • the allocated random access resources include: a time domain random access resource, a frequency domain random access resource, a preamble preamble code allocation, a bandwidth part BWP that constitutes a system bandwidth, a beam resource, and a synchronization signal associated with the beam resource. At least one of the block SS Block/channel state information reference signal CSI-RS.
  • the network side device can allocate a random access resource to the UE based on the ID of the candidate beam. For example, based on the ID of the candidate beam, allocate the time domain random access resource and the frequency domain random access resource corresponding to the ID, and then, based on the default rule, combine the default bandwidth part BWP and the airspace random access that make up the system bandwidth. Resources constitute random access resources.
  • Step 64 Receive first confirmation information from the user equipment, where the first confirmation information is used to indicate that the receiver of the first indication information has received the first indication information.
  • the embodiment of the present disclosure adds a feedback mechanism to the downlink indication information to return the confirmation information of the received indication information to the network side when receiving the indication information on the UE side. It is avoided that the "understood" difference between the two is that the allocated random access resources are available, resulting in waste of resources, or "understanding” the conflict and thus failing to perform beam failure recovery normally.
  • FIG. 7 is a schematic flowchart of a method for processing a random access resource according to Embodiment 5 of the present disclosure. Referring to FIG. 7, the method may specifically include the following steps:
  • Step 72 The network side device allocates available random access resources to the UE.
  • the step 72 may specifically include two implementation manners:
  • the first type the network side device allocates a random access resource to the UE after receiving the allocation request sent by the UE, where the allocation request is used to request to allocate the random access resource;
  • the network side device actively allocates random access resources to the UE.
  • the allocation information is sent to the UE, where the allocated random access resource is used by the user equipment to initiate a second beam failure recovery request.
  • Step 74 If the UE triggers a beam failure condition, the UE sends a beam failure recovery request to the network side device by using the allocated random access resource.
  • Step 76 The network side device responds to the beam failure recovery request.
  • step 76 may respond to a beam failure recovery request by performing a beam failure recovery mechanism
  • the beam failure recovery mechanism is used to switch a communication link from a failed beam to an available beam.
  • Step 78 Send second indication information to the UE, where the second indication information is used to indicate that the allocated random access resource is released.
  • condition for allowing the second indication information to be sent is determined by the network side, and can be exemplified as follows:
  • the method for sending the second indication information to the user equipment may be:
  • the UE may receive the corresponding second indication information by using a control element CE of the medium access control MAC layer.
  • Step 710 The UE sends the second acknowledgement information to the network side device, where the second acknowledgement information is used to indicate that the sender of the second acknowledgement information has received the second indication information.
  • the UE may send the second acknowledgement information of the bearer to the network side device by using the control element CE of the medium access control MAC layer, and correspondingly, the network side device receives the corresponding control element by the control element CE of the medium access control MAC layer.
  • the second confirmation information may be sent to the network side device by using the control element CE of the medium access control MAC layer, and correspondingly, the network side device receives the corresponding control element by the control element CE of the medium access control MAC layer.
  • the network side device allocates available random access resources to the UE, so that when the UE fails to generate a beam, the beam failure recovery may be initiated to the network side device based on the available random access resources to complete the beam as soon as possible. Failure to recover.
  • the network side device in the embodiment of the present disclosure may also decide whether to release the allocated random access resources based on actual conditions, and allocate the allocated random access resources to other UEs, thereby further improving resource utilization rate. purpose.
  • FIG. 8 is a schematic flowchart of a method for processing a random access resource according to Embodiment 6 of the present disclosure. Referring to FIG. 8, the method may specifically include the following steps:
  • Step 82 The network side device allocates a random access resource to the UE.
  • the random access resource allocated by the network side device is an inactive random access resource
  • step 82 is similar to the implementation of step 72 in Embodiment 7, and therefore, details are not described herein again.
  • Step 84 The network side device sends first indication information to the UE, where the first indication information is used to indicate whether the allocated random access resource is available.
  • the first indication information includes: activation indication information or deactivation indication information, where the activation indication information is used to activate the allocated random access resources, so that the allocated random access resources are available; the deactivation indication information is used for deactivation. A random access resource that has been allocated or activated so that the allocated random access resource is unavailable.
  • the network-side device can freely decide to activate the allocated random access resources for the UE, and can also deactivate the available allocated random access resources. And assign it to other UEs for use.
  • Step 86 The UE feeds back the first acknowledgement information to the network side device, to notify the network side device that the UE has received the first indication information.
  • Step 88 If the first indication information is the activation indication information, when the beam failure condition is triggered, the UE may initiate a beam failure recovery request to the network side device based on the allocated random access resource.
  • Step 810 The network side device performs a beam failure recovery mechanism to respond to a request for response beam failure recovery sent by the UE.
  • Step 812 The network side device may selectively decide to release the allocated random access resources, or cycle the deactivation-activation process again;
  • Step 814 When the beam failure condition is triggered again, the UE initiates a beam failure recovery request again.
  • Step 816 The network side device responds to the request for beam failure recovery again.
  • Step 818 When the predetermined condition is met, the network side device sends the second indication information to the UE, where the second indication information is used to indicate that the allocated random access resource is released.
  • Step 820 The UE sends the second acknowledgement information to notify the network side device that the second indication information has been received.
  • the network side device may perform step 818 at any feasible time point in step 84-816 by itself. For example, after step 84 is completed, the UE may be directly informed that the allocated random access resource is released; or, after completing the beam failure recovery corresponding to step 810 or step 816, the allocated random access resource is released.
  • the embodiment of the present disclosure is different from the embodiment 5 in that the network side device allocates an inactive random access resource to the UE, and needs to be used to initiate a beam failure recovery request after obtaining further activation of the network side device. Further, the flexibility of allocating random access resources of the network side device is further increased.
  • FIG. 9 is a schematic flowchart of a method for processing a random access resource according to Embodiment 7 of the present disclosure. Referring to FIG. 9, the method further includes the following steps on the basis of Embodiment 1:
  • Step 92 Send first indication information to the UE at the first moment, where the first indication information is used to indicate whether a preset random access resource is available.
  • Step 94 If the confirmation information is not received within the predetermined time, send the first indication information to the UE again at the second time;
  • the confirmation information is used to indicate that the UE has received the indication information.
  • step 94 may be:
  • the first beam is a beam that is not used by the currently used beam that sends the first indication information.
  • the embodiment of the present disclosure adds a remedial measure on the basis of the embodiment 1, so that the network side device sends the first indication information again when the first confirmation information is not received.
  • the first indication information cannot be normally transmitted to the UE due to an accident or an extreme situation, or the first acknowledgement information cannot be normally transmitted to the network side device, so as to further prevent the allocated random access resource from being wasted and the beam failure recovery. The purpose of not being able to proceed normally.
  • FIG. 10 is a schematic flowchart of a processing apparatus for a random access resource according to Embodiment 8 of the present disclosure.
  • the apparatus may include: a first receiving unit 101 and a first sending unit 102, where:
  • the first receiving unit 101 is configured to receive first indication information from the network side device, where the first indication information is used to indicate whether a preset random access resource is available;
  • the first sending unit 102 is configured to send first acknowledgement information to the network side device, where the first acknowledgement information is used to indicate that the first indication information has been received.
  • the preset random access resource may be a random access resource allocated by the network side device to the UE, and the allocated random access resources include: a time domain random access resource, a frequency domain random access resource, and a preamble code allocation. And at least one of a bandwidth portion BWP, a beam resource, and a synchronization signal block SS Block/channel state information reference signal CSI-RS that are associated with the beam resource.
  • Embodiment 8 of the present disclosure is:
  • the first receiving unit 101 is configured to receive the activation indication information from the network side device, where the activation indication information is used to indicate that the allocated random access resource is available, or receive the deactivation indication information from the network side device, where The deactivation indication information is used to indicate that the allocated or activated random access resources are unavailable.
  • the fifth sending unit After receiving the activation indication information, if the trigger beam fails to recover, the fifth sending unit (not shown) transmits a beam failure recovery request based on the allocated random access resources.
  • the allocated random access resource is unavailable, and needs to be used after receiving the activation indication information.
  • the first sending unit 102 is configured to: feed back, by using the uplink physical control channel, the PUCCH, the uplink control information (UCI) information that carries the first acknowledgment information to the network side device; or The RRC message of the first acknowledgment information; or the first acknowledgment information carried by the MAC layer control element CE to the network side device by the medium access control.
  • UCI uplink control information
  • the network side device can receive the first confirmation information fed back by the first sending unit 102 in the same manner.
  • a second embodiment of Embodiment 8 of the present disclosure is:
  • the processing apparatus for the random access resource further includes: a second receiving unit, a second sending unit, and a third receiving unit, where:
  • a second receiving unit configured to receive allocation information sent by the network side device, where the allocation information is used to indicate the allocated random access resource
  • the second sending unit is configured to send the third acknowledgement information to the network side device to notify the network side that the allocation information has been received.
  • a second sending unit configured to send an allocation request to the network side device, where the allocation request is used to request to allocate a random access resource, and send the acknowledgement information to the network side after receiving the feedback information of the network side device;
  • the second receiving unit is configured to receive the allocation information sent by the network side device, where the allocation information is used to indicate the random access resource allocated according to the allocation request of the network side device.
  • a third sending unit configured to: if it is determined that the random access resource allocated by the network side device is in an available state, based on the allocation information, send a beam failure recovery to the network side device based on the allocated random access resource when the trigger beam fails to recover request.
  • the network side device performs a beam failure recovery mechanism in response to the beam failure recovery request.
  • the third embodiment of Embodiment 8 of the present disclosure is:
  • the processing device for the random access resource further includes:
  • a fourth receiving unit configured to receive second indication information that is sent by the network side device, where the second indication information is used to indicate that the allocated random access resource is released;
  • a fourth sending unit configured to send the second confirmation information to the network side device, where the second confirmation information is used to indicate that the second indication information has been received.
  • the fourth receiving unit may receive the second indication information sent by the network side device by using the control element CE of the medium access control MAC layer.
  • the fourth sending unit may feed back, by using the uplink physical control channel PUCCH, the uplink control information UCI information that carries the second acknowledgment information to the network side device; or, by using the RRC control, the network side device feeds back the second acknowledgment The RRC message of the information; or the control element CE of the MAC layer through the medium access control feeds back the second confirmation information to the network side device.
  • the embodiment of the present disclosure adds a feedback mechanism to the downlink indication information, so that when the UE receives the indication information sent by the network side device, the network side device feeds back the confirmation information of the indication information, so that the network side device and the user side
  • the device can clarify whether the allocated random access resources are available, and can reasonably utilize the random access resources and ensure the normal recovery of the beam failure.
  • FIG. 11 is a schematic structural diagram of a device for processing a random access resource according to Embodiment 9 of the present disclosure.
  • the device may include: a first sending unit 111 and a first receiving unit 112, where:
  • the first sending unit 111 is configured to send first indication information to the UE, where the first indication information is used to indicate whether a preset random access resource is available;
  • the first receiving unit 112 is configured to receive first acknowledgement information sent by the UE, where the first acknowledgement information is used to indicate that the UE has received the first indication information.
  • the first embodiment of embodiment 9 can be:
  • the first sending unit 111 sends deactivation indication information to the UE, where the deactivation indication information is used to indicate that the allocated or activated random access resource is unavailable, or send activation indication information to the UE, where the activation indication information is used. Indicates that the allocated random access resources are available.
  • the condition for sending the activation indication information to the UE may be:
  • the condition for sending a deactivation indication to the UE may be:
  • the first sending unit 112 is configured to send the downlink control signal DCI information carrying the first indication information to the UE by using the downlink physical control channel PDCCH; or send the RRC message carrying the first indication information to the UE by using the radio resource control RRC; Alternatively, the control element CE of the medium access control MAC sends the first indication information to the UE.
  • the UE can receive the first indication information by using a corresponding receiving manner.
  • the UE sends the first acknowledgement information to the network side device through the control element CE of the medium access control MAC layer, and the network side receives the first acknowledgement information of the bearer by the control element CE of the medium access control MAC layer.
  • the second embodiment of embodiment 9 can be:
  • the method further includes:
  • a second sending unit configured to send, to the UE, allocation information, where the allocation information is used to indicate the allocated random access resource.
  • the allocated random access resources may be directly available or may be available for subsequent activation steps.
  • the condition for sending the allocation information to the UE may be:
  • the allocation information is transmitted, and the allocated random access resource is used to initiate a second beam failure recovery request.
  • the device further includes: a response unit, configured to respond to the first beam failure recovery request, specifically:
  • the beam failure recovery mechanism is used to switch a communication link from a failed beam to an available beam.
  • the third embodiment of embodiment 9 can be:
  • the method further includes:
  • a second receiving unit configured to receive an allocation request sent by the UE, where the allocation request is used to request to allocate a random access resource
  • a third sending unit configured to send, to the UE, allocation information, where the allocation information is used to indicate a random access resource that is allocated based on the allocation request.
  • the allocated random access resources include: a time domain random access resource, a frequency domain random access resource, a preamble preamble code allocation, a bandwidth part BWP that constitutes a system bandwidth, a beam resource, and a beam. At least one of the resource-associated synchronization signal block SS Block/channel state information reference signal CSI-RS.
  • the fourth embodiment of embodiment 9 can be:
  • the method further includes:
  • a fourth sending unit configured to send second indication information to the UE, where the second indication information is used to indicate that the allocated random access resource is released;
  • a third receiving unit configured to receive second acknowledgement information sent by the UE, where the second acknowledgement information is used to indicate that the UE has received the second indication information.
  • the condition that the fourth sending unit sends the second indication information may be:
  • the manner of sending the second indication information may be that the second indication information is sent to the UE by the control element CE of the medium access control MAC layer.
  • the UE receives the second indication information of the bearer by the control element CE of the medium access control MAC layer.
  • the embodiment of the present disclosure adds a feedback mechanism to the downlink indication information, so that when the indication information is received by the UE, the acknowledgment information of the indication information is returned to the network side, so that both the network side device and the user side device can clearly Whether the allocated random access resources are available, and the random access resources can be reasonably utilized, and the beam failure recovery is normally performed.
  • FIG. 12 is a schematic flowchart of a processing apparatus for a random access resource according to Embodiment 10 of the present disclosure.
  • the apparatus further defines a first sending unit 111 according to Embodiment 9, and the first sending unit 111
  • the method may include: a first communication unit 121 and a second communication unit 122, wherein:
  • the first communication unit 121 is configured to send first indication information to the user equipment at a first moment
  • the second communication unit 122 is configured to: if the confirmation information is not received within the predetermined time, send the first indication information to the user equipment again at the second moment;
  • the first acknowledgement information is used to indicate that the UE has received the indication information.
  • the manner in which the second communication unit 122 sends the first indication information again may be:
  • the first beam is a beam that is not used by the currently used beam that sends the first indication information.
  • the embodiment of the present disclosure adds a remedial measure on the basis of the embodiment 9, so that the network side device sends the indication information again when the confirmation information is not received.
  • the first indication information caused by the accident or the extreme situation cannot be normally transmitted to the UE, or the first acknowledgement information cannot be normally transmitted to the network side device, further avoiding the waste of the allocated random access resources and beam failure recovery. The problem could not be performed normally.
  • FIG. 13 is a schematic structural diagram of a user equipment according to an embodiment of the present disclosure.
  • the user equipment 130 shown in FIG. 13 includes at least one processor 131, a memory 132, at least one network interface 134, and a user interface 133.
  • the various components in user device 130 are coupled together by a bus system 135.
  • the bus system 135 is used to implement connection communication between these components.
  • the bus system 135 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • various buses are labeled as bus system 135 in FIG.
  • the user interface 133 may include a display, a keyboard, a pointing device (eg, a mouse, a trackball), a touchpad, or a touch screen.
  • a pointing device eg, a mouse, a trackball
  • a touchpad e.g., a touch screen
  • the memory 132 in an embodiment of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SDRAM Synchronous Linked Dynamic Random Access Memory
  • DRRAM direct memory bus random access memory
  • memory 132 stores elements, executable modules or data structures, or a subset thereof, or their extended set: operating system 1321 and application 1322.
  • the operating system 1321 includes various system programs, such as a framework layer, a core library layer, a driver layer, and the like, for implementing various basic services and processing hardware-based tasks.
  • the application 1322 includes various applications, such as a media player (Media Player), a browser, and the like, for implementing various application services.
  • a program implementing the method of the embodiments of the present disclosure may be included in the application 1322.
  • the user equipment 130 further includes: a computer program stored on the memory 132 and operable on the processor 131.
  • a computer program stored on the memory 132 and operable on the processor 131.
  • Processor 131 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 131 or an instruction in a form of software.
  • the processor 131 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or the like. Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the embodiments of the present disclosure may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software modules can be located in a conventional computer readable storage medium of the art, such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the computer readable storage medium is located in memory 132, and processor 131 reads the information in memory 132 in conjunction with its hardware to perform the steps of the above method.
  • the computer readable storage medium stores a computer program, and when the computer program is executed by the processor 131, the steps of the processing method embodiment of the random access resource are implemented.
  • the embodiments described in the embodiments of the present disclosure may be implemented in hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processing (DSP), Digital Signal Processing Equipment (DSP Device, DSPD), programmable Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), general purpose processor, controller, microcontroller, microprocessor, other for performing the functions described in this disclosure In an electronic unit or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device Digital Signal Processing Equipment
  • PLD programmable Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • the techniques described in the embodiments of the present disclosure may be implemented by modules (eg, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • the software code can be stored in memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the first indication information is used to indicate whether the random access resource allocated by the network side device is useful; correspondingly, before receiving the first indication information from the network side device, the method further includes:
  • the network side device Receiving, by the network side device, the allocation information, where the allocation information is used to indicate the random access resource that the network side device has allocated; or sending an allocation request to the network side device, where the allocation request is used for the request
  • the network side device allocates a random access resource
  • the allocated random access resources include: a time domain random access resource, a frequency domain random access resource, a preamble preamble code allocation, a bandwidth part BWP that constitutes a system bandwidth, a beam resource, and a beam resource. At least one of the synchronization signal block SS Block/channel state information reference signal CSI-RS.
  • the trigger beam failure recovery Before receiving the allocation information, if it is determined that the allocated random access resource is in an available state, when the trigger beam failure recovery, sending a beam failure recovery to the network side device based on the allocated random access resource request.
  • the step of receiving the second indication information includes:
  • the second indication information from the network side device is received by the control element CE of the medium access control MAC layer.
  • the step of sending the second confirmation information includes:
  • Uplinking the uplink control information UCI information carrying the second acknowledgment information to the network side device by using the uplink physical control channel PUCCH; or feeding back the second acknowledgment information to the network side device by using the radio resource control RRC The RRC message is received; or the second acknowledgement information carried by the network side device is fed back to the network side device by the control element CE of the medium access control MAC layer.
  • the receiving the first indication information from the network side device includes: receiving the activation indication information from the network side device, where the activation indication information is used to indicate that the allocated random access resource is available.
  • the beam failure recovery request is sent based on the allocated random access resource when the trigger beam fails to recover.
  • the receiving the first indication information includes: receiving the deactivation indication information, where the deactivation indication information is used to indicate that the allocated or activated random access resource is unavailable.
  • Receiving the first indication information includes: receiving, by the control element CE of the medium access control MAC layer, the first indication information of the bearer.
  • the sending the first acknowledgment information includes: feeding back the uplink control information UCI information carrying the first acknowledgment information to the network side device by using the uplink physical control channel PUCCH; or, by using the radio resource control RRC, to the network side device
  • the RRC message carrying the first acknowledgment information is fed back; or the first acknowledgment information carried by the network side device is fed back to the network side device by the control element CE of the medium access control MAC layer.
  • the user equipment 130 can implement various processes implemented by the user equipment in the foregoing embodiment. To avoid repetition, details are not described herein again.
  • the acknowledgment information of the indication information is sent back to the network side device, so that both the network side device and the user side device can be clear. Whether the allocated random access resources are available, and the random access resources can be reasonably utilized, and the beam failure recovery is normally performed.
  • an embodiment of the present disclosure provides a computer readable storage medium, where the processing program of a random access resource is stored, and the processing program of the random access resource is executed by a processor.
  • the steps of the method for processing a random access resource according to any one of Embodiment 1 to Embodiment 3 are implemented.
  • FIG. 14 is a schematic structural diagram of a network side device according to an embodiment of the present disclosure, which can implement details of a method for processing a random access resource in the fourth embodiment to the seventh embodiment, and achieve the same effect.
  • the network side device 1400 may include a processor 1401, a transceiver 1402, a memory 1403, a user interface 1404, and a bus interface 1406, where:
  • the network side device 1400 further includes: a computer program stored on the memory 1403 and executable on the processor 1401. When the computer program is executed by the processor 1401, the following steps are implemented:
  • first indication information Sending, to the user equipment, first indication information, where the first indication information is used to indicate whether a preset random access resource is available;
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1401 and various circuits of memory represented by memory 1403.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 1402 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 1404 may also be an interface capable of externally and/or indirectly requiring a device, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 1401 is responsible for managing the bus architecture and general processing, and the memory 1403 can store data used by the processor 1401 in performing operations.
  • the first indication information is used to indicate whether the allocated random access resource is available, and correspondingly, before the first indication information is sent, the random access resource is allocated to the user equipment; and the allocation information is sent to the user equipment,
  • the allocation information is used to indicate the allocated random access resources.
  • the sending the allocation information includes: sending, in response to the first beam failure recovery request, allocation information to the user equipment, where the allocated random access resource is used by the user equipment to initiate a second beam failure. Restore the request.
  • the responding to the first beam failure recovery request includes: receiving a first beam failure recovery request; performing a beam failure recovery mechanism; wherein the beam failure recovery mechanism is used to switch the communication link from the failed beam to the available Beam.
  • the allocated random access resources include: a time domain random access resource, a frequency domain random access resource, a preamble preamble code allocation, a bandwidth part BWP that constitutes a system bandwidth, a beam resource, and a beam resource. At least one of the synchronization signal block SS Block/channel state information reference signal CSI-RS.
  • the second indication information is sent to the user equipment, where the second indication information is used to indicate that the preset random access resource is released; and the second confirmation information from the user equipment is received.
  • the sending the second indication information includes: sending the second indication information to the user equipment when determining that the beam is in an idle state; or sending the second indication information to the user equipment after completing the response beam failure recovery request; or When it is determined that the allocated random access resource is in an unavailable state, the second indication information is sent to the user equipment.
  • the second indication information of the bearer may be sent to the user equipment by the control element CE of the medium access control MAC layer.
  • the receiving the second confirmation information includes: receiving, by the control element CE of the medium access control MAC layer, the second confirmation information from the user equipment.
  • the sending the first indication information includes: sending the deactivation indication information to the user equipment, where the deactivation indication information is used to indicate that the allocated or activated random access resource is unavailable.
  • the sending the deactivation indication information includes: allowing the sending of the deactivation indication information when determining that the allocated random access resource is in an available state; or after completing the response beam failure recovery request and the allocated The random access resource is in an available state, allowing the deactivation indication to be sent.
  • the sending the first indication information includes: sending the activation indication information, where the activation indication information is used to indicate that the allocated random access resource is available.
  • the sending the activation indication information includes: allowing the transmission of the activation indication information when determining that the allocated random access resource is in an unavailable state.
  • the sending the first indication information includes: transmitting the downlink control signal DCI information carrying the first indication information by using the downlink physical control channel PDCCH; or transmitting the RRC message carrying the first indication information by using the radio resource control RRC; or
  • the first indication information of the bearer is sent by the control element CE of the media access control MAC.
  • the receiving the first confirmation information includes: receiving, by the control element CE of the medium access control MAC layer, the first acknowledgement information of the bearer.
  • the transmitting the indication information again includes: transmitting the indication information by using a first beam, where the first beam is a beam that is not used by the currently used beam that sends the indication information.
  • the paging message is sent to the terminal, and if there is a data transmission indication indicating the transmission in the paging message, the downlink data packet is sent to the terminal.
  • the downlink data packet can be directly transmitted, so that the downlink data packet can be transmitted after the RRC connection is established after receiving the paging message as in the prior art, thereby reducing the transmission.
  • the delay of the downstream packet is not limited to the packet.
  • an embodiment of the present disclosure provides a computer readable storage medium, where the processing program of a random access resource is stored, and the processing program of the random access resource is processed by a processor.
  • the steps of the method for processing the random access resource according to any one of Embodiment 4 to Embodiment 7 are implemented.
  • embodiments of the present disclosure can be provided as a method, system, or computer program product. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware aspects. Moreover, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • a computing device includes one or more processors (CPUs), input/output interfaces, network interfaces, and memory.
  • processors CPUs
  • input/output interfaces network interfaces
  • memory volatile and non-volatile memory
  • the memory may include non-persistent memory, random access memory (RAM), and/or non-volatile memory in a computer readable medium, such as read only memory (ROM) or flash memory.
  • RAM random access memory
  • ROM read only memory
  • Memory is an example of a computer readable medium.
  • Computer readable media includes both permanent and non-persistent, removable and non-removable media.
  • Information storage can be implemented by any method or technology.
  • the information can be computer readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory. (ROM), electrically erasable programmable read only memory (EEPROM), flash memory or other memory technology, compact disk read only memory (CD-ROM), digital versatile disk (DVD) or other optical storage, Magnetic tape cartridges, magnetic tape storage or other magnetic storage devices or any other non-transportable media can be used to store information that can be accessed by a computing device.
  • computer readable media does not include temporary storage of computer readable media, such as modulated data signals and carrier waves.
  • embodiments of the present disclosure may be provided as a method, system, or computer program product. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment or a combination of software and hardware aspects. Moreover, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开揭露了一种随机接入资源的处理方法和装置,该方法包括:接收来自网络侧设备的第一指示信息,所述第一指示信息用于指示预设的随机接入资源是否可用;向所述网络侧设备发送第一确认信息。

Description

随机接入资源的处理方法和装置
相关申请的交叉引用
本公开主张在2017年8月11日在中国提交的中国专利申请号No.201710687886.5的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及计算机技术领域,尤其涉及一种随机接入资源的处理方法和装置。
背景技术
未来第五代移动通信系统(5 th Generation,5G)中,为达到下行链路传输速率20Gbps,上行链路传输速率10Gbps的目标,高频通信和大规模天线技术将会被引入。高频通信可提供更宽的系统带宽,天线尺寸也可以更小,更加有利于大规模天线在基站(Node B,NB)和用户设备(User Equipment,UE)中部署。高频通信存在路径损耗较大、容易受干扰、链路较脆弱的缺点,而大规模天线技术可提供较大天线增益,因此,高频通信与大规模天线的结合是未来5G移动通信系统的必然趋势。然而,采用大规模天线技术不能解决全部高频通信的问题,如链路的脆弱性。当高频通信中遇到遮挡时,波束失败恢复机制可快速切换波束,将通信链路从较差的波束切换至较佳的波束,避免无线链路失败,有效提高链路的健壮性。
参见图1,波束失败恢复机制包括以下步骤:
步骤12,波束失败检测;
步骤14,新的候选波束识别;
步骤16,波束失败恢复请求发送;
步骤18,UE监测波束失败恢复请求gNB响应。
另外,5G系统支持基于非竞争物理随机接入信道(Physical Random Access Channel,PRACH)发送波束失败恢复请求,用于波束失败恢复请求发送的PRACH与普通PRACH资源正交,至少支持频分复用方式正交;5G 系统支持基于物理上行控制信信道(Physical Uplink Control Channel,PUCCH)发送波束失败恢复请求。
在LTE系统中,非竞争的随机接入资源(Contention-free RACH)和专有(dedicated)的基于竞争的随机接入的PRACH资源和preamble码均由演进型基站(evolutional Node B,eNB或e-Node B)提前配置,可以通过PDCCH order或者无线资源控制(Radio Resource Control,RRC)消息发送给UE。每次配置的专有PRACH资源只能用于一次RACH接入过程(包括msg.1的多次重传)。下次再做接入时,eNB会再为UE配置PRACH资源。
目前,在用于波束失败恢复的RACH资源激活/去激活过程中,由于下行波束失败,会出现网络侧设备无法将RACH资源的激活命令或去激活命令发送给UE的情况,导致网络和UE对RACH资源的配置理解不一样。进一步地,当激活命令未成功发送到UE,会造成RACH资源的浪费;当去激活命令未成功发送到UE,会造成UE进行波束失败恢复的随机接入过程冲突。
发明内容
第一方面,本公开实施例提供一种随机接入资源的处理方法,包括:
接收来自网络侧设备的第一指示信息,所述第一指示信息用于指示预设的随机接入资源是否可用;
向所述网络侧设备发送第一确认信息。
第二方面,本公开实施例还提供一种随机接入资源的处理方法,包括:
向用户设备发送第一指示信息,所述第一指示信息用于指示预设的随机接入资源是否可用;
接收来自所述用户设备的第一确认信息。
第三方面,本公开实施例提供一种随机接入资源的处理装置,包括:
第一接收单元,用于接收来自网络侧设备的第一指示信息,所述第一指示信息用于指示预设的随机接入资源是否可用;
第一发送单元,用于向所述网络侧设备发送第一确认信息。
第四方面,本公开实施例提供一种随机接入资源的处理装置,包括:
第一发送单元,用于向用户设备发送第一指示信息,所述第一指示信息 用于指示预设的随机接入资源是否可用;
第一接收单元,用于接收来自所述用户设备的第一确认信息。
第五方面,本公开实施例提供一种用户设备,其中,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的随机接入资源的处理程序,所述随机接入资源的处理程序被所述处理器执行时实现如上述的随机接入资源的处理方法的步骤。
第六方面,本公开实施例提供一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有随机接入资源的处理程序,所述随机接入资源的处理程序被处理器执行时实现如上述的随机接入资源的处理方法的步骤。
第七方面,本公开实施例提供一种网络侧设备,其中,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的随机接入资源的处理程序,所述随机接入资源的处理程序被所述处理器执行时实现如上述的随机接入资源的处理方法的步骤。
第八方面,本公开实施例提一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有随机接入资源的处理程序,所述随机接入资源的处理程序被处理器执行时实现如上述的随机接入资源的处理方法的步骤。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为波束失败恢复机制的流程示意图;
图2为本公开实施例的应用场景图;
图3为本公开实施例1提供的随机接入资源的处理方法的流程示意图;
图4为本公开实施例2提供的随机接入资源的处理方法的流程示意图;
图5为本公开实施例3提供的随机接入资源的处理方法的流程示意图;
图6为本公开实施例4提供的随机接入资源的处理方法的流程示意图;
图7为本公开实施例5提供的随机接入资源的处理方法的流程示意图;
图8为本公开实施例6提供的随机接入资源的处理方法的流程示意图;
图9为本公开实施例7提供的随机接入资源的处理方法的流程示意图;
图10为本公开实施例8提供的随机接入资源的处理装置的结构示意图;
图11为本公开实施例9提供的随机接入资源的处理装置的结构示意图;
图12为本公开实施例10提供的随机接入资源的处理装置的结构示意图;
图13为本公开实施例11提供的用户设备的结构示意图;
图14为本公开实施例13提供的网络侧设备的结构示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合本公开具体实施例及相应的附图对本公开技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开的技术方案,可以应用于各种通信系统,例如:全球移动通讯系统(Global System of Mobile communication,GSM),码分多址(Code Division Multiple Access,CDMA)系统,宽带码分多址(Wideband Code Division Multiple Access,WCDMA),通用分组无线业务(General Packet Radio Service,GPRS),长期演进(Long Term Evolution,LTE)/增强长期演进(Long Term Evolution Advanced,LTE-A),New Radio(NR)等。
用户端(User Equipment,UE),也可称之为移动终端(Mobile Terminal)、移动用户设备等,可以经无线接入网(例如,Radio Access Network,RAN)与一个或多个核心网进行通信,用户设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。
基站,可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(Node B),还可以是LTE中的eNB及5G基站(gNB),本公开并不限定,但为描述方便,下述实施例以gNB为例进行说明。
参见图2,下面对本公开实施例的应用场景进行示例性地说明:
步骤22:网络侧设备为用户设备UE分配随机接入资源RACH,并告知UE;
步骤24:网络侧设备向UE发送指示信息,以告知UE分配的随机接入资源是否可用;
步骤26:UE反馈确认信息,以告知网络侧设备已收到指示信息;
步骤28:在UE发生波束失败时,基于随机接入资源向网络侧发起波束失败恢复的请求;
步骤210:网络侧设备响应UE发起的请求,并执行图1所示的波束失败恢复机制。
其中,不难理解的是随机接入资源也可以为预定义的随机接入资源。
以下结合附图,详细说明本公开各实施例提供的技术方案。
实施例1
图3为本公开实施例1提供的随机接入资源的处理方法的流程示意图,参见图3,该方法具体可以包括如下步骤:
步骤32、接收来自网络侧设备的第一指示信息,所述第一指示信息用于指示预设的随机接入资源是否可用;
其中,预设的随机接入资源可以举例为:网络侧设备为UE已分配的随机接入资源。已分配的随机接入资源包括:时域随机接入资源、频域随机接入资源、前导preamble码的分配、组成系统带宽的带宽部分BWP、波束资源、与波束资源相关联的同步信号块(Synchronization Signal Block,SS Block)/信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)中的至少一个。
不难理解的是,网络侧设备可以基于候选波束的ID为UE分配随机接入资源。例如:基于候选波束的ID,分配与ID相关联的时域随机接入资源和频域随机接入资源,然后,基于默认的规则,结合默认的组成系统带宽的带宽部分BWP和空域的随机接入资源组成随机接入资源。
步骤34、向所述网络侧设备发送第一确认信息,所述第一确认信息用于表示已收到所述第一指示信息。
需要说明的是,发送第一确认信息的方式举例如下:
UE通过上行物理控制信道PUCCH向所述网络侧设备反馈承载有所述第一确认信息的上行控制信息(Uplink Control Information,UCI)信息;或者,通过无线资源控制RRC向所述网络侧设备反馈承载有所述第一确认信息的RRC消息;或者,通过介质访问控制(Medium Access Control,MAC)层的控制元素(Control Element,CE)向所述网络侧设备反馈承载的所述第一确认信息。
相应地,网络侧设备也可通过与上述反馈方式对应的接收方式接收第一确认信息。
结合图2,需要说明的是,UE在接收到网络侧设备发送的第一指示信息后,基于反馈机制,向网络侧设备发送第一确认信息,以告知网络侧设备已收到第一指示信息,使得UE和网络侧设备对已分配的随机接入资源是否可用的“理解”保持一致。避免出现因为双方对已分配的随机接入资源是否可用的“理解”不同,导致资源浪费、以及无法正常进行波束失败恢复的问题。
例如:对于随机接入资源A,由于下行波束失败导致网络侧设备下发的指示信息没有被UE接收,因此,两者对随机接入资源A的“理解”不同。UE“理解”的是随机接入资源A不可用,网络侧“理解”的是随机接入资源A对UE可用。基于此情况,当UE发生波束失败时,由于UE认为随机接入资源A不可用,因此,无法基于随机接入资源A向网络侧设备发起波束失败恢复的请求。同时,由于网络侧设备认为随机接入资源A对UE是可用的,因此,不会再向UE指示随机接入资源A可用,也不会将随机接入资源A分配给其他UE使用,导致随机接入资源A被浪费。
进一步地,步骤32可以具体包括:
接收来自网络侧设备的激活指示信息,所述激活指示信息用于指示已分配的随机接入资源可用。或者,接收来自网络侧设备的去激活指示信息,所述去激活指示信息用于指示已分配或者已激活的随机接入资源不可用。
当接收到激活指示信息后,则在触发波束失败恢复时UE可基于所述已分配的随机接入资源发送波束失败恢复请求。
不难理解的是,分配的随机接入资源可能基于网络侧设备发送的第一指 示信息不断处于激活-去激活-激活-去激活的循环过程。
可见,本公开实施例通过对下行的指示信息增设反馈机制,以在UE接收到网络侧设备发送的第一指示信息时,向网络侧设备反馈第一确认信息,使得网络侧设备与用户侧设备均能够明确已分配的随机接入资源是否可用,进而能够合理利用随机接入资源,并保证波束失败恢复的正常进行。
实施例2
图4为本公开实施例2提供的随机接入资源的处理方法的流程示意图,参见图4,该方法具体可以包括如下步骤:
步骤42、接收来自所述网络侧设备的分配信息,所述分配信息用于表示所述网络侧设备基于所述分配请求分配的随机接入资源;
步骤44、接收来自网络侧设备的第一指示信息,所述第一指示信息用于指示已分配的随机接入资源是否可用;
步骤46、向所述网络侧设备发送第一确认信息,所述第一确认信息用于表示已收到所述第一指示信息。
需要说明的是,本实施例中的步骤44和步骤46分别与实施例1中的步骤32和步骤34相对应,故,此处不再赘述,相似之处请参见实施例1中的相关描述。
本实施例中,UE获取随机接入资源的方式可以分为如下两种方案:
方案一、UE主动向网络侧设备发送分配请求,以请求网络侧设备分配随机接入资源。网络侧设备基于分配请求为UE分配随机接入资源,并通过分配信息的形式告知UE已分配的随机接入资源。
方案二、网络侧设备主动为UE分配随机接入资源,并以分配信息的形式告知UE。
不难理解的是,在上述两种方案中,UE在接收到分配信息后,可选择性地向网络侧设备返回确认信息,以告知网络侧设备已收到分配信息。
另外,网络侧设备在为UE分配随机接入资源后,还会告知UE分配的随机接入资源的是否可用,例如:将是否可用的指示信息携带在分配信息中,或者,由UE自行检测已分配的随机接入资源是否可用,例如:尝试性地发起波束失败恢复请求。基于分配的随机接入资源的状态,本公开实施例可以 包括以下两种方案:
方案一、若UE得知分配的随机接入资源为可用状态,则在触发波束失败时,UE基于随机接入资源向网络侧发起波束失败恢复的请求。
方案二、若UE得知分配的随机接入资源为不可用状态,则在收到网络侧设备发送的激活指示信息后才可使用;然后,反馈确认信息;在触发波束失败时,UE基于随机接入资源向网络侧设备发起波束失败恢复的请求。
其中,触发波束失败的条件举例如下:
1、当波束失败的次数达到第一预定阈值时,触发波束失败;
2、当一定时间内,波束失败的次数到达第二预定阈值时,触发波束失败;
3、当波束失败的时长达到第三预定阈值时,触发波束失败。
可见,本公开实施例在实施例1的基础上,通过网络侧和UE侧之间关于分配随机接入资源的方案,灵活地分配随机接入资源。而且,本公开实施例通过设置判定触发波束失败的条件,以准确判定UE是否发生波束失败,避免出现未发生波束失败而执行了波束失败恢复机制的情况,达到进一步地避免资源被浪费的效果。
实施例3
图5为本公开实施例3提供的随机接入资源的处理方法的流程示意图,参见图5,该方法具体可以包括如下步骤:
步骤52、UE接收来自所述网络侧设备的分配信息,所述分配信息用于表示分配的随机接入资源;
步骤54、接收来自所述网络侧设备的第二指示信息,所述第二指示信息用于指示所述已分配的随机接入资源被释放;
其中,接收第二指示信息的方式可以为通过介质访问控制MAC层的控制元素CE接收承载的所述第二指示信息。
步骤56、向所述网络侧设备发送第二确认信息,所述第二确认信息用于表示已收到所述第二指示信息。
其中,发送第二确认信息的方式可以为通过上行物理控制信道PUCCH向所述网络侧设备反馈承载有所述第二确认信息的上行控制信息UCI信息;或者,通过无线资源控制RRC向所述网络侧设备反馈承载有所述第二确认信 息的RRC消息;或者,通过介质访问控制MAC层的控制元素CE向所述网络侧设备反馈承载的所述第二确认信息。
需要说明的是,步骤52和实施例2中UE获取到分配的随机接入资源的方案相似,故,此处不再赘述。相似之处,请参见实施例2中的相关陈述。
可见,本公开实施例在网络侧为UE侧分配随机接入资源之后,还会将分配的随机接入资源释放,释放之后的随机接入资源对UE不可用。网络侧设备可将释放后的随机接入资源分配给其他UE侧,以达到合理安排随机接入资源、提高随机接入资源使用效率的目的。
实施例4
图6为本公开实施例4提供的随机接入资源的处理方法的流程示意图,参见图6,该方法可以具体包括如下步骤:
步骤62、网络侧设备向用户设备发送第一指示信息,所述第一指示信息用于指示预设的随机接入资源是否可用;
其中,预设的随机接入资源可以为网络侧设备为UE分配的随机接入资源也可以为预定义的随机接入资源。下面以网络侧设备为UE分配的随机接入资源为例进行说明:
步骤62的一种实现方式可以为:
向所述用户设备发送激活指示信息,所述激活指示信息用于指示已分配的随机接入资源可用,或者,向所述用户设备发送去激活指示信息,所述去激活指示信息用于指示已分配或者已激活的随机接入资源不可用。
其中,发送去激活指示信息的条件可以为:在确定所述已分配的随机接入资源处于可用状态时,或者,在完成响应波束失败恢复请求后且所述已分配的随机接入资源处于可用状态,发送去激活指示信息。
发送激活指示信息的条件可以为:在确定所述已分配的随机接入资源处于不可用状态,发送激活指示信息。
另外,向所述用户设备发送第一指示信息的方式可以包括如下几种:
通过下行物理控制信道PDCCH向所述用户设备发送承载有第一指示信息的下行控制信DCI信息;或者,通过无线资源控制RRC向所述用户设备发送承载有第一指示信息的RRC消息;或者,通过媒体存取控制MAC的控 制元素CE向所述用户设备发送承载的第一指示信息。
其中,已分配的随机接入资源包括:时域随机接入资源、频域随机接入资源、前导preamble码的分配、组成系统带宽的带宽部分BWP、波束资源、与波束资源相关联的同步信号块SS Block/信道状态信息参考信号CSI-RS中的至少一个。
不难理解的是,网络侧设备可以基于候选波束的ID为UE分配随机接入资源。例如:基于候选波束的ID,分配与ID对应的时域随机接入资源和频域随机接入资源,然后,基于默认的规则,结合默认的组成系统带宽的带宽部分BWP和空域的随机接入资源组成随机接入资源。
步骤64、接收来自所述用户设备的第一确认信息,所述第一确认信息用于表示所述第一指示信息的接收方已收到所述第一指示信息。
需要说明的是,本公开实施例与实施例1相对应,故,此处不再赘述,相似之处,请参见实施例1中的相关描述。
可见,本公开实施例通过对下行的指示信息增设反馈机制,以在UE侧接收到指示信息时,向网络侧返回收到指示信息的确认信息。避免出现由于两者对已分配的随机接入资源是否可用的“理解”不同,导致资源浪费,或者,“理解”冲突从而无法正常进行波束失败恢复的问题。
实施例5
图7为本公开实施例5提供的随机接入资源的处理方法的流程示意图,参见图7,该方法可以具体包括如下步骤:
步骤72、网络侧设备为UE分配可用的随机接入资源;
其中,步骤72具体可以包括两种实现方式:
第一种、网络侧设备在接收到UE发送的分配请求后,为UE分配随机接入资源,其中,分配请求用于请求分配随机接入资源;
第二种、网络侧设备主动为UE分配随机接入资源。例如:
在网络侧设备响应UE发起的第一次波束失败恢复请求时,向UE发送分配信息,所述已分配的随机接入资源用于所述用户设备发起第二次波束失败恢复请求。
步骤74、如果UE触发波束失败条件,则UE使用分配的随机接入资源 向网络侧设备发送波束失败恢复请求。
步骤76、网络侧设备响应波束失败恢复请求;
需要说明的是,结合图1,步骤76可以通过执行波束失败恢复机制来响应波束失败恢复请求;
其中,所述波束失败恢复机制用于将通信链路从失败的波束切换至可用的波束。
步骤78、向UE发送第二指示信息,所述第二指示信息用于指示所述已分配的随机接入资源被释放。
需要说明的是,允许发送第二指示信息的条件为网络侧决定,可以举例如下:
确定波束处于空闲状态,或者,完成响应波束失败恢复请求后,或者,确定所述已分配的随机接入资源处于不可用状态时。
向所述用户设备发送第二指示信息的方式可以为:
通过介质访问控制MAC层的控制元素CE向所述用户设备发送承载的所述第二指示信息;
相应地,UE可通过介质访问控制MAC层的控制元素CE接收对应的所述第二指示信息。
步骤710、UE向网络侧设备发送第二确认信息,所述第二确认信息用于表示所述第二确认信息的发送方已收到所述第二指示信息。
需要说明的是,UE可通过介质访问控制MAC层的控制元素CE向网络侧设备发送承载的所述第二确认信息,相应地,网络侧设备通过介质访问控制MAC层的控制元素CE接收对应的所述第二确认信息。
可见,本公开实施例中网络侧设备为UE分配可用的随机接入资源,以在UE发生波束失败时,可直接基于可用的随机接入资源向网络侧设备发起波束失败恢复,以尽快完成波束失败恢复。而且,本公开实施例中网络侧设备还可基于实际情况自行决定是否释放已分配的随机接入资源,并将已分配的随机接入资源分配给其他UE,进而达到进一步地提高资源使用率的目的。
实施例6
图8为本公开实施例6提供的随机接入资源的处理方法的流程示意图, 参见图8,该方法可以具体包括如下步骤:
步骤82、网络侧设备为UE分配随机接入资源。
其中,网络侧设备分配的随机接入资源为未激活的随机接入资源;
步骤82的实现方式与实施例7中步骤72的实现方式相似,故,此处不再赘述。
步骤84、网络侧设备向UE发送第一指示信息,第一指示信息用于指示已分配的随机接入资源是否可用;
其中,第一指示信息包括:激活指示信息或者去激活指示信息,激活指示信息用于激活已分配的随机接入资源,以使已分配的随机接入资源可用;去激活指示信息用于去激活已分配或者已激活的随机接入资源,以使已分配的随机接入资源不可用。
不难理解的是,激活-去激活可以是一个不断变化的过程,网络侧设备可自由决定激活已分配的随机接入资源给UE用,也可去激活可用的已分配的随机接入资源,并将其分配给其他UE使用。
步骤86、UE向网络侧设备反馈第一确认信息,以告知网络侧设备UE已收到第一指示信息;
步骤88、若第一指示信息为激活指示信息,则在触发波束失败条件时,UE可基于已分配的随机接入资源向网络侧设备发起波束失败恢复的请求;
步骤810、网络侧设备执行波束失败恢复机制,以响应UE发送的响应波束失败恢复的请求;
步骤812、网络侧设备可选择性地决定释放已分配的随机接入资源,或者,再次循环去激活-激活的过程;
步骤814、当再次触发波束失败条件时,UE再次发起波束失败恢复的请求;
步骤816、网络侧设备再次响应波束失败恢复的请求;
步骤818、当满足预定条件时,网络侧设备向UE发送第二指示信息,第二指示信息用于指示释放已分配的随机接入资源;
步骤820、UE发送第二确认信息,以告知网络侧设备已收到第二指示信息。
其中,网络侧设备可自行决定在步骤84-步骤816中的任一可行时间点执行步骤818。例如:完成步骤84后,即可直接告知UE已分配随机接入资源被释放;或者,在完成步骤810或步骤816对应的波束失败恢复后,释放已分配随机接入资源。
可见,本公开实施例与实施例5的不同之处在于,网络侧设备为UE分配未激活的随机接入资源,需要在得到网络侧设备的进一步地激活之后,方可用于发起波束失败恢复请求,进一步地增加了网络侧设备的分配随机接入资源的灵活性。
实施例7
图9为本公开实施例7提供的随机接入资源的处理方法的流程示意图,参见图9,该方法在实施例1的基础上,进一步地包括如下步骤:
步骤92、在第一时刻向UE发送第一指示信息,所述第一指示信息用于指示预设的随机接入资源是否可用;
步骤94、若在预定时间内未接收到确认信息,则在第二时刻再次向UE发送所述第一指示信息;
其中,所述确认信息用于表示UE已收到所述指示信息。
其中,步骤94的一种实现方式可以为:
使用第一波束向所述用户设备发送所述第一指示信息;
其中,所述第一波束为当前使用的发送所述第一指示信息的波束之外的波束。
本公开实施例与实施例1相对应,故,相似之处此处不再赘述。
另外,本公开实施例在实施例1的基础上,增设补救措施,以在未收到第一确认信息时,网络侧设备再次发送第一指示信息。避免由于意外或者极端情况导致第一指示信息无法正常传送至UE,或者,第一确认信息无法正常传送至网络侧设备的缺陷,达到进一步地避免已分配的随机接入资源被浪费、波束失败恢复无法正常进行的目的。
对于上述方法实施方式,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本公开实施方式并不受所描述的动作顺序的限制,因为依据本公开实施方式,某些步骤可以采用其他顺序或者同 时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施方式均属于可选实施方式,所涉及的动作并不一定是本公开实施方式所必须的。
实施例8
图10为本公开实施例8提供的随机接入资源的处理装置的流程示意图,参见图10,该装置可以包括:第一接收单元101和第一发送单元102,其中:
第一接收单元101,用于接收来自网络侧设备的第一指示信息,所述第一指示信息用于指示预设的随机接入资源是否可用;
第一发送单元102,用于向所述网络侧设备发送第一确认信息,所述第一确认信息用于表示已收到所述第一指示信息。
其中,预设的随机接入资源可以为网络侧设备为UE分配的随机接入资源,分配的随机接入资源包括:时域随机接入资源、频域随机接入资源、前导preamble码的分配、组成系统带宽的带宽部分BWP、波束资源、与波束资源相关联的同步信号块SS Block/信道状态信息参考信号CSI-RS中的至少一个。
本公开实施例8的第一种实现方式为:
第一接收单元101,具体用于接收来自网络侧设备的激活指示信息,所述激活指示信息用于指示已分配的随机接入资源可用,或者,接收来自网络侧设备的去激活指示信息,所述去激活指示信息用于指示已分配或者已激活的随机接入资源不可用。
在接收到激活指示信息后,若触发波束失败恢复,第五发送单元(图中未示出)基于所述已分配的随机接入资源发送波束失败恢复请求。
若接收到的是去激活指示信息,则已分配的随机接入资源不可用,需要在接收到激活指示信息后,方可使用。
第一发送单元102,具体用于通过上行物理控制信道PUCCH向网络侧设备反馈承载有所述第一确认信息的上行控制信息UCI信息;或者,通过无线资源控制RRC向网络侧设备反馈承载有所述第一确认信息的RRC消息;或者,通过介质访问控制MAC层控制元素CE向网络侧设备的反馈承载的所述第一确认信息。
相应地,网络侧设备可对应采用相同方式接收第一发送单元102反馈的 第一确认信息。
本公开实施例8的第二种实施方式为:
在第一种实施方式的基础上,随机接入资源的处理装置还包括:第二接收单元、第二发送单元和第三接收单元,其中:
第二接收单元,用于接收网络侧设备发送的分配信息,所述分配信息用于指示已分配的随机接入资源;
第二发送单元,用于向网络侧设备发送第三确认信息,以告知网络侧已收到分配信息。
或者,
第二发送单元,用于向网络侧设备发送分配请求,所述分配请求用于请求分配随机接入资源,并在接收到网络侧设备的反馈信息后向网络侧发送确认信息;
第二接收单元,用于接收网络侧设备发送的分配信息,所述分配信息用于表示基于网络侧设备所述分配请求分配的随机接入资源。
第三发送单元,用于基于分配信息若确定网络侧设备分配的随机接入资源处于可用状态,则在触发波束失败恢复时基于所述已分配的随机接入资源向网络侧设备发送波束失败恢复请求。
相应地,网络侧设备执行波束失败恢复机制,以响应波束失败恢复请求。
本公开实施例8的第三种实施方式为:
在第二种实施方式的基础上,随机接入资源的处理装置还包括:
第四接收单元,用于接收网络侧设备发送的第二指示信息,所述第二指示信息用于指示所述已分配的随机接入资源被释放;
第四发送单元,用于向网络侧设备发送第二确认信息,所述第二确认信息用于表示已收到所述第二指示信息。
其中,第四接收单元可通过介质访问控制MAC层的控制元素CE接收网络侧设备发送的第二指示信息。
第四发送单元可通过上行物理控制信道PUCCH向网络侧设备反馈承载有所述第二确认信息的上行控制信息UCI信息;或者,通过无线资源控制RRC向网络侧设备反馈承载有所述第二确认信息的RRC消息;或者,通过介质访 问控制MAC层的控制元素CE向网络侧设备反馈所述第二确认信息。
可见,本公开实施例通过对下行的指示信息增设反馈机制,以在UE接收到网络侧设备发送的指示信息时,向网络侧设备反馈收到指示信息的确认信息,使得网络侧设备与用户侧设备均能够明确已分配的随机接入资源是否可用,进而能够合理利用随机接入资源,并保证波束失败恢复的正常进行。
实施例9
图11为本公开实施例9提供的随机接入资源的处理装置的结构示意图,参见图11,该装置可以包括:第一发送单元111和第一接收单元112,其中:
第一发送单元111,用于向UE发送第一指示信息,所述第一指示信息用于指示预设的随机接入资源是否可用;
第一接收单元112,用于接收UE发送的第一确认信息,所述第一确认信息用于表示UE已收到所述第一指示信息。
实施例9的第一种实施方式可以为:
第一发送单元111向UE发送去激活指示信息,所述去激活指示信息用于指示已分配或者已激活的随机接入资源不可用,或者,向UE发送激活指示信息,所述激活指示信息用于指示已分配的随机接入资源可用。
其中,向UE发送激活指示信息的条件可以为:
在确定所述已分配的随机接入资源处于可用状态时,或者,在完成响应波束失败恢复请求后且所述已分配的随机接入资源处于可用状态。
向UE发送去激活指示的条件可以为:
确定所述已分配的随机接入资源处于不可用状态,允许发送激活指示信息。
第一发送单元112,用于通过下行物理控制信道PDCCH向UE发送承载有第一指示信息的下行控制信DCI信息;或者,通过无线资源控制RRC向UE发送承载有第一指示信息的RRC消息;或者,通过媒体存取控制MAC的控制元素CE向UE发送第一指示信息。
相应地,UE可通过对应的接收方式接收第一指示信息。例如:UE通过介质访问控制MAC层的控制元素CE向网络侧设备发送第一确认信息,网络侧通过介质访问控制MAC层的控制元素CE接收承载的所述第一确认信息。
实施例9的第二种实施方式可以为:
在上一种实施方式的基础上,还包括:
第二发送单元,用于向UE发送分配信息,所述分配信息用于指示已分配的随机接入资源。分配的随机接入资源可以为直接可用的,也可以为需要后续激活步骤才可用。
其中,向UE发送分配信息的条件可以为:
在响应第一次波束失败恢复请求时,发送分配信息,所述已分配的随机接入资源用于发起第二次波束失败恢复请求。
相应地,装置还包括:响应单元,用于响应第一次波束失败恢复请求,具体可以为:
在接收到UE发送的第一次波束失败恢复请求时,执行波束失败恢复机制;
其中,所述波束失败恢复机制用于将通信链路从失败的波束切换至可用的波束。
实施例9的第三种实施方式可以为:
在第一种实施方式的基础上,还包括:
第二接收单元,用于接收UE发送的分配请求,所述分配请求用于请求分配随机接入资源;
第三发送单元,用于向UE发送分配信息,所述分配信息用于表示基于所述分配请求分配的随机接入资源。
在上述三种实施方式中,已分配的随机接入资源包括:时域随机接入资源、频域随机接入资源、前导preamble码的分配、组成系统带宽的带宽部分BWP、波束资源、与波束资源相关联的同步信号块SS Block/信道状态信息参考信号CSI-RS中的至少一个。
实施例9的第四种实施方式可以为:
在上述三种实施方式中的任一实施方式的基础上,还包括:
第四发送单元,用于向UE发送第二指示信息,所述第二指示信息用于指示所述已分配的随机接入资源被释放;
第三接收单元,用于接收UE发送的第二确认信息,所述第二确认信息 用于表示UE已收到所述第二指示信息。
其中,第四发送单元发送第二指示信息的条件可以为:
在确定波束处于空闲状态时,或者,在完成响应波束失败恢复请求后,或者,在确定所述已分配的随机接入资源处于不可用状态时。
发送第二指示信息的方式可以为通过介质访问控制MAC层的控制元素CE向UE发送第二指示信息。
相应地,UE通过介质访问控制MAC层的控制元素CE接收承载的第二指示信息。
可见,本公开实施例通过对下行的指示信息增设反馈机制,以在UE侧接收到指示信息时,向网络侧返回收到指示信息的确认信息,使得网络侧设备与用户侧设备均能够明确已分配的随机接入资源是否可用,进而能够合理利用随机接入资源,并保证波束失败恢复的正常进行。
实施例10
图12为本公开实施例10提供的随机接入资源的处理装置的流程示意图,参见图12,该装置在实施例9的基础上对第一发送单元111进行进一步地限定,第一发送单元111可以包括:第一通信单元121和第二通信单元122,其中:
第一通信单元121,用于在第一时刻向所述用户设备发送第一指示信息;
第二通信单元122,用于若在预定时间内未接收到确认信息,则在第二时刻再次向所述用户设备发送所述第一指示信息;
其中,所述第一确认信息用于表示UE已收到所述指示信息。
第二通信单元122再次发送第一指示信息的方式可以为:
使用第一波束向所述用户设备发送所述第一指示信息;
其中,所述第一波束为当前使用的发送所述第一指示信息的波束之外的波束。
可见,本公开实施例在实施例9的基础上,增设补救措施,以在未收到确认信息时,网络侧设备再次发送指示信息。避免由于意外或者极端情况导致的第一指示信息无法正常传送至UE,或者,第一确认信息无法正常传送至网络侧设备的缺陷,进一步地避免已分配的随机接入资源被浪费、波束失败 恢复无法正常进行的问题。
对于上述装置实施方式而言,由于其与方法实施方式基本相似,所以描述的比较简单,相关之处参见方法实施方式的部分说明即可。应当注意的是,在本公开的装置的各个部件中,根据其要实现的功能而对其中的部件进行了逻辑划分,但是,本公开不受限于此,可以根据需要对各个部件进行重新划分或者组合。
实施例11
图13是本公开一个实施例的用户设备的结构示意图。图13所示的用户设备130包括:至少一个处理器131、存储器132、至少一个网络接口134和用户接口133。用户设备130中的各个组件通过总线系统135耦合在一起。可理解,总线系统135用于实现这些组件之间的连接通信。总线系统135除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图13中将各种总线都标为总线系统135。
其中,用户接口133可以包括显示器、键盘、点击设备(例如,鼠标、轨迹球(trackball))、触感板或者触摸屏等。
可以理解,本公开实施例中的存储器132可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(SynchLink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本公开实施例描述的系统和方法的存储器132旨在包括但不限于这些和任意其它适合类 型的存储器。
在一些实施方式中,存储器132存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统1321和应用程序1322。
其中,操作系统1321,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序1322,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例方法的程序可以包含在应用程序1322中。
在本公开实施例中,用户设备130还包括:存储在存储器132上并可在处理器131上运行的计算机程序,计算机程序被处理器131执行时实现如下步骤:
接收来自网络侧设备的第一指示信息,所述第一指示信息用于指示预设的随机接入资源是否可用;
向所述网络侧设备发送第一确认信息。
上述本公开实施例揭示的方法可以应用于处理器131中,或者由处理器131实现。处理器131可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器131中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器131可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的计算机可读存储介质中。该计算机可读存储介质位于存储器132,处理器131读取存储器132中的信息,结合其硬件完 成上述方法的步骤。具体地,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器131执行时实现如上述随机接入资源的处理方法实施例的各步骤。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
可选的,计算机程序被处理器131执行时还可实现如下步骤:
所述第一指示信息用于指示所述网络侧设备已分配的随机接入资源是否有用;相应地,在接收来自网络侧设备的第一指示信息之前,还包括:
接收来自所述网络侧设备的分配信息,所述分配信息用于指示所述网络侧设备已分配的随机接入资源;或者,向所述网络侧设备发送分配请求,所述分配请求用于请求所述网络侧设备分配随机接入资源;
接收来自所述网络侧设备的分配信息,所述分配信息用于表示所述网络侧设备基于所述分配请求分配的随机接入资源。
其中,所述已分配的随机接入资源包括:时域随机接入资源、频域随机接入资源、前导preamble码的分配、组成系统带宽的带宽部分BWP、波束资源、与波束资源相关联的同步信号块SS Block/信道状态信息参考信号CSI-RS中的至少一个。
在接收分配信息之后之前,若确定所述已分配的随机接入资源处于可用状态,则在触发波束失败恢复时,基于所述已分配的随机接入资源向所述网络侧设备发送波束失败恢复请求。
在接收来自网络侧设备的第一指示信息之后,接收来自网络侧设备的第 二指示信息,所述第二指示信息用于指示所述预设的随机接入资源被释放;
向所述网络侧设备发送第二确认信息。
其中,所述接收第二指示信息的步骤包括:
通过介质访问控制MAC层的控制元素CE接收来自网络侧设备的所述第二指示信息。
所述发送第二确认信息的步骤包括:
通过上行物理控制信道PUCCH向所述网络侧设备反馈承载有所述第二确认信息的上行控制信息UCI信息;或者,通过无线资源控制RRC向所述网络侧设备反馈承载有所述第二确认信息的RRC消息;或者,通过介质访问控制MAC层的控制元素CE向所述网络侧设备反馈承载的所述第二确认信息。
其中,接收来自网络侧设备的第一指示信息包括:接收来自网络侧设备的激活指示信息,所述激活指示信息用于指示已分配的随机接入资源可用。
若接收到激活指示信息,则在触发波束失败恢复时基于所述已分配的随机接入资源发送波束失败恢复请求。
其中,接收第一指示信息包括:接收去激活指示信息,所述去激活指示信息用于指示已分配或者已激活的随机接入资源不可用。
接收第一指示信息包括:通过介质访问控制MAC层的控制元素CE接收承载的所述第一指示信息。
其中,发送第一确认信息包括:通过上行物理控制信道PUCCH向所述网络侧设备反馈承载有所述第一确认信息的上行控制信息UCI信息;或者,通过无线资源控制RRC向所述网络侧设备反馈承载有所述第一确认信息的RRC消息;或者,通过介质访问控制MAC层的控制元素CE向所述网络侧设备反馈承载的所述第一确认信息。
用户设备130能够实现前述实施例中用户设备实现的各个过程,为避免重复,这里不再赘述。
可见,本公开实施例通过增设反馈机制,以在用户设备接收到网络侧设备发送的指示信息时,向网络侧设备反馈收到指示信息的确认信息,使得网络侧设备与用户侧设备均能够明确已分配的随机接入资源是否可用,进而能够合理利用随机接入资源,并保证波束失败恢复的正常进行。
实施例12
基于相同的发明创造,本公开实施例提供一种计算机可读存储介质,所述计算机可读存储介质上存储有随机接入资源的处理程序,所述随机接入资源的处理程序被处理器执行时实现如实施例1-实施例3中任一实施例所述的随机接入资源的处理方法的步骤。
实施例13
请参阅图14,图14是本公开实施例应用的网络侧设备的结构示意图,能够实现第4实施例至第7实施例中随机接入资源的处理方法的细节,并达到相同的效果。如图14所示,网络侧设备1400可以包括:处理器1401、收发机1402、存储器1403、用户接口1404和总线接口1406,其中:
在本公开实施例中,网络侧设备1400还包括:存储在存储器上1403并可在处理器1401上运行的计算机程序,计算机程序被处理器1401、执行时实现如下步骤:
向用户设备发送第一指示信息,所述第一指示信息用于指示预设的随机接入资源是否可用;
接收来自所述用户设备的第一确认信息。
在图14中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1401代表的一个或多个处理器和存储器1403代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1402可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口1404还可以是能够外接和/或内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1401负责管理总线架构和通常的处理,存储器1403可以存储处理器1401在执行操作时所使用的数据。
可选的,计算机程序被处理器1403执行时还可实现如下步骤:
第一指示信息用于指示已分配的随机接入资源是否可用,相应地,在发 送第一指示信息之前,为所述用户设备分配随机接入资源;向所述用户设备发送分配信息,所述分配信息用于指示已分配的随机接入资源。其中,所述发送分配信息包括:在响应第一次波束失败恢复请求时,向所述用户设备发送分配信息,所述已分配的随机接入资源用于所述用户设备发起第二次波束失败恢复请求。其中,所述响应第一次波束失败恢复请求包括:接收第一次波束失败恢复请求;执行波束失败恢复机制;其中,所述波束失败恢复机制用于将通信链路从失败的波束切换至可用的波束。
或者,在发送第一指示信息之前,接收来自所述用户设备的分配请求,所述分配请求用于请求分配随机接入资源;向所述用户设备发送分配信息,所述分配信息用于表示基于所述分配请求分配的随机接入资源。
其中,所述已分配的随机接入资源包括:时域随机接入资源、频域随机接入资源、前导preamble码的分配、组成系统带宽的带宽部分BWP、波束资源、与波束资源相关联的同步信号块SS Block/信道状态信息参考信号CSI-RS中的至少一个。
在发送分配信息之后,向所述用户设备发送第二指示信息,所述第二指示信息用于指示所述预设的随机接入资源被释放;接收来自所述用户设备的第二确认信息。其中,所述发送第二指示信息包括:在确定波束处于空闲状态时,向用户设备发送第二指示信息;或者,在完成响应波束失败恢复请求后,向用户设备发送第二指示信息;或者,在确定所述已分配的随机接入资源处于不可用状态时,向用户设备发送第二指示信息。可通过介质访问控制MAC层的控制元素CE向所述用户设备发送承载的所述第二指示信息。其中,所述接收第二确认信息包括:通过介质访问控制MAC层的控制元素CE接收来自所述用户设备的所述第二确认信息。
其中,发送第一指示信息包括:向用户设备发送去激活指示信息,所述去激活指示信息用于指示已分配或者已激活的随机接入资源不可用。
其中,所述发送去激活指示信息包括:在确定所述已分配的随机接入资源处于可用状态时,允许发送去激活指示信息;或者,在完成响应波束失败恢复请求后且所述已分配的随机接入资源处于可用状态,允许发送去激活指示信息。
其中,所述发送第一指示信息包括:发送激活指示信息,所述激活指示信息用于指示已分配的随机接入资源可用。其中,所述发送激活指示信息包括:在确定所述已分配的随机接入资源处于不可用状态,允许发送激活指示信息。
其中,所述发送第一指示信息包括:通过下行物理控制信道PDCCH发送承载有第一指示信息的下行控制信DCI信息;或者,通过无线资源控制RRC发送承载有第一指示信息的RRC消息;或者,通过媒体存取控制MAC的控制元素CE发送承载的第一指示信息。
其中,所述接收第一确认信息包括:通过介质访问控制MAC层的控制元素CE接收承载的所述第一确认信息。
其中,再次发送所述指示信息包括:使用第一波束发送所述指示信息;其中,所述第一波束为当前使用的发送所述指示信息的波束之外的波束。
本公开实施例的网络侧设备中,向终端发送寻呼消息,若所述寻呼消息中存在指示发送的数据发送指示时,向所述终端发送下行数据包。这样可以实现在发送完寻呼消息时,就可以直接进行下行数据包的传输,从而不需要像现有技术一样在接收到寻呼消息后建立RRC连接才可以传输下行数据包,进而可以降低传输下行数据包的时延。
实施例14
基于相同的发明创造,本公开实施例提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有随机接入资源的处理程序,所述随机接入资源的处理程序被处理器执行时实现如实施例4-实施例7中任一实施例所述的随机接入资源的处理方法的步骤。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图 和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的分配中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本领域技术人员应明白,本公开的实施例可提供为方法、系统或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
以上所述仅为本公开的实施例而已,并不用于限制本公开。对于本领域技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本公开的权利要求范围之内。

Claims (66)

  1. 一种随机接入资源的处理方法,包括:
    接收来自网络侧设备的第一指示信息,所述第一指示信息用于指示预设的随机接入资源是否可用;
    向所述网络侧设备发送第一确认信息。
  2. 根据权利要求1所述的方法,其中,所述第一指示信息用于指示所述网络侧设备已分配的随机接入资源是否有用;
    在接收来自网络侧设备的第一指示信息之前,还包括:
    接收来自所述网络侧设备的分配信息,所述分配信息用于指示所述网络侧设备已分配的随机接入资源。
  3. 根据权利要求2所述的方法,其中,在接收来自网络侧设备的第一指示信息之前,还包括:
    向所述网络侧设备发送分配请求,所述分配请求用于请求所述网络侧设备分配随机接入资源;
    接收来自所述网络侧设备的分配信息,所述分配信息用于表示所述网络侧设备基于所述分配请求分配的随机接入资源。
  4. 根据权利要求2所述的方法,其中,所述已分配的随机接入资源包括:时域随机接入资源、频域随机接入资源、前导preamble码的分配、组成系统带宽的带宽部分BWP、波束资源、与波束资源相关联的同步信号块SS Block/信道状态信息参考信号CSI-RS中的至少一个。
  5. 根据权利要求2或3所述的方法,其中,在接收来自所述网络侧设备的分配信息之后,还包括:
    若确定所述已分配的随机接入资源处于可用状态,则在触发波束失败恢复时,基于所述已分配的随机接入资源向所述网络侧设备发送波束失败恢复请求。
  6. 根据权利要求1-5任一项所述的方法,其中,在接收来自网络侧设备的第一指示信息之后,还包括:
    接收来自网络侧设备的第二指示信息,所述第二指示信息用于指示所述 预设的随机接入资源被释放;
    向所述网络侧设备发送第二确认信息。
  7. 根据权利要求6所述的方法,其中,所述接收来自网络侧设备的第二指示信息的步骤,包括:
    通过介质访问控制MAC层的控制元素CE接收来自网络侧设备的所述第二指示信息。
  8. 根据权利要求6所述的方法,其中,所述向所述网络侧设备发送第二确认信息的包括:
    通过上行物理控制信道PUCCH向所述网络侧设备反馈承载有所述第二确认信息的上行控制信息UCI;
    或者,
    通过无线资源控制RRC向所述网络侧设备反馈承载有所述第二确认信息的RRC消息;
    或者,
    通过介质访问控制MAC层的控制元素CE向所述网络侧设备反馈承载的所述第二确认信息。
  9. 根据权利要求2-8任一项所述的方法,其中,所述接收来自网络侧设备的第一指示信息包括:
    接收来自网络侧设备的激活指示信息,所述激活指示信息用于指示已分配的随机接入资源可用。
  10. 根据权利要求9所述的方法,其中,在接收来自网络侧设备的激活指示信息之后,还包括:
    在触发波束失败恢复时,基于所述已分配的随机接入资源向所述网络侧设备发送波束失败恢复请求。
  11. 根据权利要求9所述的方法,其中,所述接收来自网络侧设备的第一指示信息包括:
    接收来自网络侧设备的去激活指示信息,所述去激活指示信息用于指示已分配或者已激活的随机接入资源不可用。
  12. 根据权利要求1-11任一项所述的方法,其中,所述接收来自网络侧 设备的第一指示信息包括:
    通过MAC层CE接收来自网络侧设备的所述第一指示信息。
  13. 根据权利要求1-12任一项所述的方法,其中,所述向所述网络侧设备发送第一确认信息包括:
    通过PUCCH向所述网络侧设备反馈承载有所述第一确认信息的UCI;
    或者,
    通过RRC向所述网络侧设备反馈承载有所述第一确认信息的RRC消息;
    或者,
    通过MAC层的CE向所述网络侧设备反馈承载的所述第一确认信息。
  14. 一种随机接入资源的处理方法,包括:
    向用户设备发送第一指示信息,所述第一指示信息用于指示预设的随机接入资源是否可用;
    接收来自所述用户设备的第一确认信息。
  15. 根据权利要求14所述的方法,其中,所述第一指示信息用于指示已分配的随机接入资源是否可用;
    在向用户设备发送第一指示信息之前,还包括:
    为所述用户设备分配随机接入资源;
    向所述用户设备发送分配信息,所述分配信息用于指示已分配的随机接入资源。
  16. 根据权利要求15所述的方法,其中,所述向所述用户设备发送分配信息包括:
    在响应第一次波束失败恢复请求时,向所述用户设备发送分配信息,所述已分配的随机接入资源用于所述用户设备发起第二次波束失败恢复请求。
  17. 根据权利要求16所述的方法,其中,所述响应第一次波束失败恢复请求包括:
    接收来自所述用户设备的第一次波束失败恢复请求;
    执行波束失败恢复机制;
    其中,所述波束失败恢复机制用于将通信链路从失败的波束切换至可用的波束。
  18. 根据权利要求15所述的方法,其中,在向用户设备发送第一指示信息之前,还包括:
    接收来自所述用户设备的分配请求,所述分配请求用于请求分配随机接入资源;
    向所述用户设备发送分配信息,所述分配信息用于表示基于所述分配请求分配的随机接入资源。
  19. 根据权利要求15所述的方法,其中,所述已分配的随机接入资源包括:时域随机接入资源、频域随机接入资源、前导preamble码的分配、组成系统带宽的带宽部分BWP、波束资源、与波束资源相关联的同步信号块SS Block/信道状态信息参考信号CSI-RS中的至少一个。
  20. 根据权利要求15-18任一项所述的方法,其中,在向所述用户设备发送分配信息之后还包括:
    向所述用户设备发送第二指示信息,所述第二指示信息用于指示所述预设的随机接入资源被释放;
    接收来自所述用户设备的第二确认信息。
  21. 根据权利要求20所述的方法,其中,所述向所述用户设备发送第二指示信息包括:
    在确定波束处于空闲状态时,向用户设备发送第二指示信息;
    或者,
    在完成响应波束失败恢复请求后,向用户设备发送第二指示信息;
    或者,
    在确定所述已分配的随机接入资源处于不可用状态时,向用户设备发送第二指示信息。
  22. 根据权利要求20所述的方法,其中,所述向所述用户设备发送第二指示信息包括:
    通过介质访问控制MAC层的控制元素CE向所述用户设备发送承载的所述第二指示信息。
  23. 根据权利要求20所述的方法,其中,所述接收来自所述用户设备的第二确认信息包括:
    通过MAC层CE接收来自所述用户设备的所述第二确认信息。
  24. 根据权利要求14-23任一项所述的方法,其中,所述向用户设备发送第一指示信息包括:
    向用户设备发送激活指示信息,所述激活指示信息用于指示已分配的随机接入资源可用。
  25. 根据权利要求24所述的方法,其中,所述向用户设备发送激活指示信息包括:
    在确定所述已分配的随机接入资源处于不可用状态,向所述用户设备发送激活指示信息。
  26. 根据权利要求24所述的方法,其中,所述向用户设备发送第一指示信息包括:
    向用户设备发送去激活指示信息,所述去激活指示信息用于指示已分配或者已激活的随机接入资源不可用。
  27. 根据权利要求26所述的方法,其中,所述向用户设备发送去激活指示信息包括:
    在确定所述已分配的随机接入资源处于可用状态时,向用户设备发送去激活指示信息;
    或者,
    在完成响应波束失败恢复请求后且所述已分配的随机接入资源处于可用状态,向用户设备发送去激活指示信息。
  28. 根据权利要求14-27任一项所述的方法,其中,所述向用户设备发送第一指示信息包括:
    通过下行物理控制信道PDCCH向用户设备发送承载有第一指示信息的下行控制信DCI信息;
    或者,
    通过无线资源控制RRC向用户设备发送承载有第一指示信息的RRC消息;
    或者,
    通过媒体存取控制MAC的控制元素CE向用户设备发送承载的第一指示 信息。
  29. 根据权利要求14-28任一项所述的方法,其中,向用户设备发送第一指示信息,包括:
    在第一时刻向所述用户设备发送第一指示信息;
    若在预定时间内未接收到确认信息,则在第二时刻再次向所述用户设备发送所述第一指示信息。
  30. 根据权利要求29所述的方法,其中,所述在第二时刻再次向所述用户设备发送所述第一指示信息包括:
    使用第一波束向所述用户设备发送所述第一指示信息;
    其中,所述第一波束为当前使用的发送所述第一指示信息的波束之外的波束。
  31. 根据权利要求14-30任一项所述的方法,其中,所述接收来自所述用户设备的第一确认信息包括:
    通过MAC层的CE接收来自所述用户设备的所述第一确认信息。
  32. 一种随机接入资源的处理装置,包括:
    第一接收单元,用于接收来自网络侧设备的第一指示信息,所述第一指示信息用于指示预设的随机接入资源是否可用;
    第一发送单元,用于向所述网络侧设备发送第一确认信息。
  33. 根据权利要求32所述的装置,其中,所述第一指示信息用于指示所述网络侧设备已分配的随机接入资源是否有用;
    相应地,还包括:
    第二接收单元,用于接收分配信息,所述分配信息用于指示已分配的随机接入资源。
  34. 根据权利要求32所述的装置,还包括:
    第二发送单元,用于向所述网络侧设备发送分配请求,所述分配请求用于请求所述网络侧设备分配随机接入资源;
    第三接收单元,用于接收来自所述网络侧设备的分配信息,所述分配信息用于表示所述网络侧设备基于所述分配请求分配的随机接入资源。
  35. 根据权利要求33所述的装置,其中,所述已分配的随机接入资源包 括:时域随机接入资源、频域随机接入资源、前导preamble码的分配、组成系统带宽的带宽部分BWP、波束资源、与波束资源相关联的同步信号块SS Block/信道状态信息参考信号CSI-RS中的至少一个。
  36. 根据权利要求33或34所述的装置,还包括:
    第三发送单元,用于若确定所述已分配的随机接入资源处于可用状态,则在触发波束失败恢复时,基于所述已分配的随机接入资源向所述网络侧设备发送波束失败恢复请求。
  37. 根据权利要求32-36任一项所述的装置,还包括:
    第四接收单元,用于接收来自网络侧设备的第二指示信息,所述第二指示信息用于指示所述预设的随机接入资源被释放;
    第四发送单元,用于向所述网络侧设备发送第二确认信息。
  38. 根据权利要求37所述的装置,其中,所述第四接收单元,用于通过介质访问控制MAC层的控制元素CE接收来自网络侧设备的所述第二指示信息。
  39. 根据权利要求37所述的装置,其中,所述第四发送单元,用于通过上行物理控制信道PUCCH向所述网络侧设备反馈承载有所述第二确认信息的UCI;或者,通过RRC向所述网络侧设备反馈承载有所述第二确认信息的RRC消息;或者,通过MAC层CE向所述网络侧设备反馈承载的所述第二确认信息。
  40. 根据权利要求33所述的装置,其中,所述第一接收单元,用于接收来自网络侧设备的激活指示信息,所述激活指示信息用于指示已分配的随机接入资源可用。
  41. 根据权利要求40所述的装置,还包括:
    第五发送单元,用于在触发波束失败恢复时,基于所述已分配的随机接入资源向所述网络侧设备发送波束失败恢复请求。
  42. 根据权利要求40所述的装置,其中,所述第一接收单元,用于接收来自网络侧设备的去激活指示信息,所述去激活指示信息用于指示已分配或者已激活的随机接入资源不可用。
  43. 根据权利要求32-42任一项所述的装置,其中,所述第一接收单元, 用于通过MAC层CE接收来自网络侧设备的所述第一指示信息。
  44. 根据权利要求32-43任一项所述的装置,其中,所述第一发送单元,用于通过PUCCH向所述网络侧设备反馈承载有所述第一确认信息的上行控制信息UCI信息;或者,通过无线资源控制RRC向所述网络侧设备反馈承载有所述第一确认信息的RRC消息;或者,通过介质访问控制MAC层的控制元素CE向所述网络侧设备反馈承载的所述第一确认信息。
  45. 一种随机接入资源的处理装置,包括:
    第一发送单元,用于向用户设备发送第一指示信息,所述第一指示信息用于指示预设的随机接入资源是否可用;
    第一接收单元,用于接收来自所述用户设备的第一确认信息。
  46. 根据权利要求45所述的装置,其中,所述第一指示信息用于指示已分配的随机接入资源是否可用;
    相应地,还包括:
    第二发送单元,用于为所述用户设备分配随机接入资源,向所述用户设备发送分配信息,所述分配信息用于指示已分配的随机接入资源。
  47. 根据权利要求46所述的装置,其中,所述第二发送单元,用于在响应第一次波束失败恢复请求时,向所述用户设备发送分配信息,所述已分配的随机接入资源用于所述用户设备发起第二次波束失败恢复请求。
  48. 根据权利要求47所述的装置,还包括:
    响应单元,用于接收来自所述用户设备的第一次波束失败恢复请求;执行波束失败恢复机制;
    其中,所述波束失败恢复机制用于将通信链路从失败的波束切换至可用的波束。
  49. 根据权利要求46所述的装置,还包括:
    第二接收单元,用于接收来自所述用户设备的分配请求,所述分配请求用于请求分配随机接入资源;
    第三发送单元,用于向所述用户设备发送分配信息,所述分配信息用于表示基于所述分配请求分配的随机接入资源。
  50. 根据权利要求46所述的装置,其中,所述已分配的随机接入资源包 括:时域随机接入资源、频域随机接入资源、前导preamble码的分配、组成系统带宽的带宽部分BWP、波束资源、与波束资源相关联的同步信号块SS Block/信道状态信息参考信号CSI-RS中的至少一个。
  51. 根据权利要求46-50任一项所述的装置,还包括:
    第四发送单元,用于向所述用户设备发送第二指示信息,所述第二指示信息用于指示所述预设的随机接入资源被释放;
    第三接收单元,用于接收来自所述用户设备的第二确认信息。
  52. 根据权利要求51所述的装置,其中,所述第四发送单元,用于在确定波束处于空闲状态时,向用户设备发送第二指示信息;或者,在完成响应波束失败恢复请求后,向用户设备发送第二指示信息;或者,在确定所述已分配的随机接入资源处于不可用状态时,向用户设备发送第二指示信息。
  53. 根据权利要求51所述的装置,其中,所述第四发送单元,用于通过介质访问控制MAC层的控制元素CE向所述用户设备发送承载的所述第二指示信息。
  54. 根据权利要求51所述的装置,其中,所述第三接收单元,用于通过MAC层CE接收来自所述用户设备的所述第二确认信息。
  55. 根据权利要求45-55任一项所述的装置,其中,所述第一发送单元,用于向用户设备发送激活指示信息,所述激活指示信息用于指示已分配的随机接入资源可用。
  56. 根据权利要求55所述的装置,其中,所述第一发送单元,用于在确定所述已分配的随机接入资源处于不可用状态,向所述用户设备发送激活指示信息。
  57. 根据权利要求55所述的装置,其中,所述第一发送单元,用于向用户设备发送去激活指示信息,所述去激活指示信息用于指示已分配或者已激活的随机接入资源不可用。
  58. 根据权利要求57所述的装置,其中,所述第一发送单元,用于在确定所述已分配的随机接入资源处于可用状态时,向用户设备发送去激活指示信息;或者,在完成响应波束失败恢复请求后且所述已分配的随机接入资源处于可用状态,向用户设备发送去激活指示信息。
  59. 根据权利要求45-58任一项所述的装置,其中,所述第一发送单元,用于通过下行物理控制信道PDCCH向用户设备发送承载有第一指示信息的下行控制信DCI信息;或者,通过无线资源控制RRC向用户设备发送承载有第一指示信息的RRC消息;或者,通过媒体存取控制MAC的控制元素CE向用户设备发送承载的第一指示信息。
  60. 根据权利要求45-59任一项所述的装置,其中,所述第一发送单元,用于在第一时刻向所述用户设备发送第一指示信息;若在预定时间内未接收到确认信息,则在第二时刻再次向所述用户设备发送所述第一指示信息。
  61. 根据权利要求60所述的装置,其中,所述第一发送单元,用于使用第一波束向所述用户设备发送所述第一指示信息;其中,所述第一波束为当前使用的发送所述第一指示信息的波束之外的波束。
  62. 根据权利要求45-62任一项所述的装置,其中,所述第一接收单元,用于通过MAC层CE接收来自所述用户设备的所述第一确认信息。
  63. 一种用户设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的随机接入资源的处理程序,所述随机接入资源的处理程序被所述处理器执行时实现如权利要求1至13中任一项所述的随机接入资源的处理方法的步骤。
  64. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有随机接入资源的处理程序,所述随机接入资源的处理程序被处理器执行时实现如权利要求1至13中任一项所述的随机接入资源的处理方法的步骤。
  65. 一种网络侧设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的随机接入资源的处理程序,所述随机接入资源的处理程序被所述处理器执行时实现如权利要求14至31中任一项所述的随机接入资源的处理方法的步骤。
  66. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有随机接入资源的处理程序,所述随机接入资源的处理程序被处理器执行时实现如权利要求14至31中任一项所述的随机接入资源的处理方法的步骤。
PCT/CN2018/099181 2017-08-11 2018-08-07 随机接入资源的处理方法和装置 WO2019029527A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES18844381T ES2882651T3 (es) 2017-08-11 2018-08-07 Método y dispositivo de procesamiento de recursos de acceso aleatorio
EP18844381.6A EP3668223B1 (en) 2017-08-11 2018-08-07 Random access resource processing method and device
US16/637,983 US11825513B2 (en) 2017-08-11 2018-08-07 Random access resource processing method and device
US18/477,935 US20240023158A1 (en) 2017-08-11 2023-09-29 Random access resource processing method and device
US18/477,957 US20240032090A1 (en) 2017-08-11 2023-09-29 Random access resource processing method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710687886.5 2017-08-11
CN201710687886.5A CN109392150B (zh) 2017-08-11 2017-08-11 一种随机接入资源的处理方法和装置

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US16/637,983 A-371-Of-International US11825513B2 (en) 2017-08-11 2018-08-07 Random access resource processing method and device
US18/477,935 Continuation US20240023158A1 (en) 2017-08-11 2023-09-29 Random access resource processing method and device
US18/477,957 Continuation US20240032090A1 (en) 2017-08-11 2023-09-29 Random access resource processing method and device

Publications (1)

Publication Number Publication Date
WO2019029527A1 true WO2019029527A1 (zh) 2019-02-14

Family

ID=65273370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099181 WO2019029527A1 (zh) 2017-08-11 2018-08-07 随机接入资源的处理方法和装置

Country Status (5)

Country Link
US (3) US11825513B2 (zh)
EP (1) EP3668223B1 (zh)
CN (1) CN109392150B (zh)
ES (1) ES2882651T3 (zh)
WO (1) WO2019029527A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112788762A (zh) * 2019-11-05 2021-05-11 诺基亚技术有限公司 随机接入信道时机和ss/pbch块关联的增强

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112020005786A2 (pt) * 2017-09-29 2020-09-24 Ntt Docomo, Inc. aparelho de usuário e aparelho de estação base
CN111466128B (zh) * 2018-01-04 2023-08-08 富士通株式会社 波束失败恢复的配置方法、装置及通信系统
CN110139391B (zh) * 2018-02-09 2021-02-02 维沃移动通信有限公司 波束失败事件处理方法、装置及终端设备
CN110536419B (zh) * 2018-05-23 2023-04-18 中兴通讯股份有限公司 一种波束恢复方法和装置
US11483054B2 (en) * 2019-02-15 2022-10-25 Hannibal Ip Llc Method and apparatus for SCell beam failure recovery configuration
CN111866959B (zh) * 2019-04-30 2023-12-08 华为技术有限公司 波束失败上报的方法和装置
CN112399453B (zh) * 2019-08-12 2022-10-18 大唐移动通信设备有限公司 一种小区接入失败后的处理方法和装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1897723A (zh) * 2005-07-12 2007-01-17 华为技术有限公司 一种集群系统上行组呼请求的呼出方法
CN102440057A (zh) * 2009-04-23 2012-05-02 交互数字专利控股公司 用于在多载波无线通信中随机接入的方法和设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101925698B1 (ko) * 2014-03-25 2018-12-05 텔레폰악티에볼라겟엘엠에릭슨(펍) 빔 기반의 물리적 랜덤 액세스를 위한 시스템 및 방법
WO2017024468A1 (zh) * 2015-08-10 2017-02-16 华为技术有限公司 一种随机接入方法及装置
EP3335494A4 (en) * 2015-08-11 2018-08-01 Telefonaktiebolaget LM Ericsson (PUBL) Recovery from beam failure
EP4123914A1 (en) * 2017-03-23 2023-01-25 Sharp Kabushiki Kaisha Terminal apparatus, base station apparatus, communication method, and integrated circuit
DE112018000246T5 (de) * 2017-03-23 2019-09-12 Intel IP Corporation Funkverbindungsüberwachung, strahlwiederherstellung undfunkverbindungsfehlerbehandlung
US10813097B2 (en) * 2017-06-14 2020-10-20 Qualcomm Incorporated System and method for transmitting beam failure recovery request
US10411784B2 (en) * 2017-08-09 2019-09-10 Futurewei Technologies, Inc. Apparatus and method for beam failure recovery
US10743321B2 (en) * 2018-02-23 2020-08-11 Mediatek Inc Default beam for uplink transmission after beam failure recovery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1897723A (zh) * 2005-07-12 2007-01-17 华为技术有限公司 一种集群系统上行组呼请求的呼出方法
CN102440057A (zh) * 2009-04-23 2012-05-02 交互数字专利控股公司 用于在多载波无线通信中随机接入的方法和设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
See also references of EP3668223A4 *
VIVO: "Discussion on Beam Recovery", 3GPP TSG RAN WG1 MEETING #88BIS R1-1704489, 25 March 2017 (2017-03-25), XP051242633 *
VIVO: "Random Access in NR", 3GPP TSG-RAN WG2 MEETING #98 R2-1704579, XP051264471 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112788762A (zh) * 2019-11-05 2021-05-11 诺基亚技术有限公司 随机接入信道时机和ss/pbch块关联的增强
CN112788762B (zh) * 2019-11-05 2024-04-26 诺基亚技术有限公司 随机接入信道时机和ss/pbch块关联的增强

Also Published As

Publication number Publication date
US20200214035A1 (en) 2020-07-02
EP3668223B1 (en) 2021-07-07
US20240032090A1 (en) 2024-01-25
EP3668223A4 (en) 2020-07-01
ES2882651T3 (es) 2021-12-02
US11825513B2 (en) 2023-11-21
CN109392150B (zh) 2019-11-15
US20240023158A1 (en) 2024-01-18
CN109392150A (zh) 2019-02-26
EP3668223A1 (en) 2020-06-17

Similar Documents

Publication Publication Date Title
WO2019029527A1 (zh) 随机接入资源的处理方法和装置
US11553528B2 (en) Method of configuring random access resource, terminal, and network node
WO2018224013A1 (zh) 波束失败处理方法、终端及网络设备
US11665724B2 (en) System information transmission method, terminal and network device
US11039302B2 (en) Base station, user equipment, and associated method
US11051333B2 (en) Data transmission method, network device, and terminal device
JP7170120B2 (ja) ビーム失敗回復のための方法及び端末装置
JP7353468B2 (ja) Pucch伝送方法、端末機器及びネットワーク機器
US20210029745A1 (en) Method operating on user equipment and user equipment
US20200178305A1 (en) System information transmission method, terminal and network device
CN110290530B (zh) 无线通信的方法、源节点和目标节点
KR102552623B1 (ko) 빔 페일 회복을 위한 방법, 단말 기기 및 네트워크측 기기
WO2019157939A1 (zh) 参考信号发送和接收方法及装置
WO2019024714A1 (zh) 数据传输方法及终端
WO2021238944A1 (zh) 波束指示方法、网络侧设备和终端
WO2014067487A1 (zh) 避免d2d传输干扰的处理方法、用户设备和基站
US11178682B2 (en) Method for requesting uplink transmission resource, terminal, and network device
WO2021088782A1 (zh) 传输的方法和设备
JP7512312B2 (ja) データ伝送方法、端末機器、ネットワーク機器及び記憶媒体
JP6992173B2 (ja) 送信方法、端末デバイス、およびネットワークデバイス
JP2022550737A (ja) 無線通信方法、装置及びシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18844381

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018844381

Country of ref document: EP

Effective date: 20200311