WO2019029517A1 - 指示上行传输的方法及装置 - Google Patents

指示上行传输的方法及装置 Download PDF

Info

Publication number
WO2019029517A1
WO2019029517A1 PCT/CN2018/099140 CN2018099140W WO2019029517A1 WO 2019029517 A1 WO2019029517 A1 WO 2019029517A1 CN 2018099140 W CN2018099140 W CN 2018099140W WO 2019029517 A1 WO2019029517 A1 WO 2019029517A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs resource
indication information
resource block
indicate
resource set
Prior art date
Application number
PCT/CN2018/099140
Other languages
English (en)
French (fr)
Inventor
孙鹏
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2019029517A1 publication Critical patent/WO2019029517A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present disclosure relates to the field of wireless communications technologies, and in particular, to a method and apparatus for indicating uplink transmission.
  • the frequency band below 6 GHz is mainly used as the working frequency band, and the spectrum resource tension is becoming increasingly serious, which greatly limits the support for high data rate services.
  • a frequency band of 6 GHz or higher will be used as the operating frequency band. Since the high frequency band has a relatively rich idle frequency resource, it can provide greater throughput for data transmission.
  • the 3rd generation partnership project (3GPP) has completed the modeling of high-frequency channels. The wavelength of high-frequency signals is short. Compared with the low-band, more antennas can be placed on the same size antenna panel. Array elements use beamforming techniques to form beams with stronger directivity and narrower lobes. Therefore, combining large-scale antennas with high-frequency communications has become a trend in future communication technologies.
  • a network device for example, a base station
  • UE user equipment
  • a frequency band above 6 GHz since the path loss of the high-band signal is large, if the signal is still transmitted in an omnidirectional manner, the coverage of the signal is very small. Therefore, beamforming technology is required to transmit signals using the directional beam. .
  • uplink beam training and downlink beam training are performed to select an appropriate beam for subsequent data transmission.
  • the probe signal can be used for uplink beam training, because each of the Sounding Reference Signal (SRS) resources (also referred to as channel sounding reference signals) resources (ie, time domain resources for transmitting SRS and The frequency domain resource) corresponds to the transmit beam of one UE. Therefore, in the uplink beam training process, the user equipment can only use one transmit beam to transmit the SRS signal on the SRS resource at a time, so that the delay is large in the process of completing the uplink beam training, so that the efficiency of the uplink beam training is low.
  • SRS Sounding Reference Signal
  • a method for indicating an uplink transmission comprising:
  • first indication information is used to indicate a mapping relationship between multiple parts of the SRS resource configured for the UE and multiple beams; wherein different parts correspond to different beams, and multiple beams in the mapping relationship are allowed. Also used for transmission;
  • the method further includes:
  • the second configuration information is used to configure the SRS resource set for the UE, where the SRS resource set is composed of multiple SRS resource blocks, where the first indication information is used to indicate that multiple SRSs in the SRS resource set are configured for the UE. a mapping relationship between a resource block and multiple beams;
  • the third configuration information is used to configure the SRS resource set for the UE, where the SRS resource set is composed of multiple SRS resource blocks, where the at least one SRS resource block is an SRS resource block of the multi-antenna port, the first indication
  • the information is used to indicate that the mapping relationship between the antenna port corresponding to the SRS resource block and/or the SRS resource block in the SRS resource set and the multiple beams is configured for the UE.
  • the method further includes:
  • Second indication information is used to indicate a beam that allows the UE to simultaneously transmit data
  • the foregoing SRS resource configured for the UE is an SRS resource block of the multi-antenna port
  • the second indication information is used to indicate multiple antenna ports corresponding to the SRS resource block.
  • the SRS resource configured for the UE is an SRS resource set, the SRS resource set is composed of multiple SRS resource blocks, and the second indication information is used to indicate multiple SRS resource blocks in the SRS resource set.
  • the SRS resource configured for the UE is an SRS resource set, and the SRS resource set is composed of multiple SRS resource blocks, where at least one SRS resource block is an SRS resource block of a multi-antenna port, and the second indication information is used to indicate the SRS resource set.
  • a method for indicating an uplink transmission comprising:
  • the first indication information is used to indicate a mapping relationship between multiple parts of the SRS resource configured for the UE and multiple beams; wherein different parts correspond to different beams, and multiple beams in the mapping relationship are allowed. Also used for transmission;
  • the method further includes:
  • the first configuration information is used to configure an SRS resource block of the multi-antenna port for the UE, where the first indication information is specifically used to indicate a mapping relationship between multiple antenna ports corresponding to the SRS resource block and multiple beams;
  • the second configuration information is used to configure the SRS resource set for the UE, where the SRS resource set is composed of multiple SRS resource blocks, where the first indication information is used to indicate that multiple SRS resource blocks in the SRS resource set are configured for the UE. Mapping relationship with multiple beams;
  • the third configuration information is used to configure the SRS resource set for the UE, where the SRS resource set is composed of multiple SRS resource blocks, where at least one SRS resource block is an SRS resource block of the multi-antenna port, and the first indication information is used by the SRS resource block.
  • mapping by the UE, the mapping relationship between the antenna port corresponding to the SRS resource block and/or the SRS resource block in the SRS resource set and the multiple beams;
  • the method further includes:
  • the method further includes:
  • the SRS resource configured for the UE is an SRS resource block of the multi-antenna port, and the second indication information is used to indicate multiple antenna ports corresponding to the SRS resource block;
  • the SRS resource configured for the UE is an SRS resource set, the SRS resource set is composed of multiple SRS resource blocks, and the second indication information is used to indicate multiple resource blocks in the SRS resource set.
  • the SRS resource configured for the UE is an SRS resource set, and the SRS resource set is composed of multiple SRS resource blocks, where at least one SRS resource block is an SRS resource block of a multi-antenna port, and second indication information is used to indicate SRS in the SRS resource set.
  • a network device comprising:
  • a processing unit configured to generate first indication information, where the first indication information is used to indicate a mapping relationship between multiple parts of the SRS resource configured by the UE and multiple beams; wherein different parts correspond to different beams, and the mapping relationship is Multiple beams are allowed to be used for transmission at the same time;
  • a sending unit configured to send the first indication information to the UE.
  • the sending unit is further configured to send the first configuration information to the UE, where the first configuration information is used to configure the SRS resource block of the multi-antenna port for the UE, the first indication information And a mapping relationship between multiple antenna ports corresponding to the SRS resource block and multiple beams; or
  • the second configuration information is used to configure the SRS resource set for the UE, where the SRS resource set is composed of multiple SRS resource blocks, where the first indication information is used to indicate that multiple SRSs in the SRS resource set are configured for the UE. a mapping relationship between a resource block and multiple beams;
  • the third configuration information is used to configure the SRS resource set for the UE, where the SRS resource set is composed of multiple SRS resource blocks, where the at least one SRS resource block is an SRS resource block of the multi-antenna port, the first indication
  • the information is used to indicate that the mapping relationship between the antenna port corresponding to the SRS resource block and/or the SRS resource block in the SRS resource set and the multiple beams is configured for the UE.
  • the processing unit is further configured to generate second indication information, where the second indication information is used to indicate a beam that allows the UE to simultaneously transmit data;
  • the sending unit is further configured to send fourth configuration information to the UE, where the fourth configuration information is used to configure a data transmission resource for the UE, and send the second indication information to the UE.
  • the SRS resource configured for the UE is an SRS resource block of the multi-antenna port
  • the second indication information is specifically used to indicate multiple antenna ports corresponding to the SRS resource block.
  • the SRS resource configured for the UE is an SRS resource set, and the SRS resource set is composed of multiple SRS resource blocks, where the second indication information is specifically used to indicate multiple SRS resource blocks in the SRS resource set.
  • the SRS resource configured for the UE is an SRS resource set, and the SRS resource set is composed of multiple SRS resource blocks, where the at least one SRS resource block is an SRS resource block of the multi-antenna port, and the second indication information is specifically used to indicate the SRS resource set.
  • a UE in a fourth aspect, includes:
  • a receiving unit configured to receive first indication information, where the first indication information is used to indicate a mapping relationship between multiple parts of the SRS resource configured by the UE and multiple beams; wherein different parts correspond to different beams, and the mapping relationship is Multiple beams are allowed to be used for transmission at the same time; and SRS is transmitted on the SRS resource according to the first indication information.
  • the receiving unit is further configured to receive the first configuration information, where the first configuration information is used to configure the SRS resource block of the multi-antenna port for the UE, where the first indication information is used. And indicating a mapping relationship between multiple antenna ports corresponding to the SRS resource block and multiple beams;
  • a processing unit configured to determine, according to the first configuration information, an SRS resource configured for the UE;
  • the receiving unit is further configured to receive the second configuration information, where the second configuration information is used to configure the SRS resource set for the UE, where the SRS resource set is composed of multiple SRS resource blocks, where the first indication information is used to indicate that the SRS resource set is configured for the UE. a mapping relationship between multiple SRS resource blocks and multiple beams;
  • a processing unit configured to determine, according to the second configuration information, an SRS resource configured for the UE;
  • the receiving unit is further configured to receive third configuration information, where the third configuration information is used to configure an SRS resource set for the UE, where the SRS resource set is composed of multiple SRS resource blocks, where at least one SRS resource block is an SRS resource block of multiple antenna ports.
  • the first indication information is used to indicate that the mapping relationship between the antenna port corresponding to the SRS resource block and/or the SRS resource block in the SRS resource set and the multiple beams is configured for the UE;
  • a processing unit configured to determine, according to the second configuration information, an SRS resource configured for the UE.
  • the receiving unit is further configured to receive fourth configuration information, where the fourth configuration information is used to configure a data transmission resource for the UE, and receive the second indication information, the second indication The information is used to indicate a beam that allows the UE to simultaneously transmit data;
  • the processing unit is further configured to determine, according to the fourth configuration information, a data transmission resource configured for the UE, and determine, according to the second indication information, a beam that allows the UE to simultaneously transmit data.
  • the SRS resource configured for the UE is an SRS resource block of the multi-antenna port
  • the second indication information is used to indicate multiple antenna ports corresponding to the SRS resource block.
  • the SRS resource configured for the UE is an SRS resource set, the SRS resource set is composed of multiple SRS resource blocks, and the second indication information is used to indicate multiple SRS resource blocks in the SRS resource set.
  • the SRS resource configured for the UE is an SRS resource set, and the SRS resource set is composed of multiple SRS resource blocks, where at least one SRS resource block is an SRS resource block of a multi-antenna port, and second indication information is used to indicate SRS in the SRS resource set.
  • the foregoing second indication information is used to indicate multiple antenna ports corresponding to one SRS resource block;
  • the second indication information is used to indicate multiple SRS resource blocks in one SRS resource set;
  • the second indication information is used to indicate an SRS resource block and/or an SRS resource set.
  • a network device comprising: a processor, a transceiver, and a memory.
  • the memory is configured to store a computer execution instruction, and when the network device is in operation, the processor executes a memory stored computer execution instruction to cause the network device to perform the indication as described in the first aspect or any one of the optional implementation manners described above. The method of transmission.
  • a computer readable storage medium storing one or more programs, the one or more programs including computer execution instructions, when a processor of the network device executes the computer to execute an instruction, The network device performs the method for indicating uplink transmission as described in the foregoing first aspect or any optional implementation manner thereof.
  • a computer program product comprising computer instructions, when executed on a processor, causes the processor to perform an indication of uplink in the first aspect or any one of the alternative implementations described above The method of transmission.
  • a UE comprising: a processor, a transceiver, and a memory.
  • the memory is configured to store a computer-executed instruction, and when the UE is in operation, the processor executes a memory-stored computer-executed instruction to cause the UE to perform the uplink transmission as described in the second aspect or any one of the optional implementation manners described above. method.
  • a ninth aspect a computer readable storage medium having one or more programs stored therein, the one or more programs including computer execution instructions, when a processor of the UE executes the computer execution instructions, The UE performs the method for indicating uplink transmission as described in the foregoing second aspect or any optional implementation manner thereof.
  • a computer program product comprising computer instructions, when the computer program product is run on a processor, causes the processor to perform an indication of uplink in the second aspect or any one of the alternative implementations described above The method of transmission.
  • FIG. 1 is a system architecture diagram of a wireless communication system according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a base station according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a mobile phone according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of an antenna transmit beam according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram 1 of a method for indicating uplink transmission according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of a SRS resource pilot pattern of a 2-antenna port according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram 2 of a method for indicating uplink transmission according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram 3 of a method for indicating uplink transmission according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a UE according to an embodiment of the present disclosure.
  • the words “exemplary” or “such as” are used to mean an example, illustration, or illustration. Any embodiment or design described as “exemplary” or “such as” in the embodiments of the disclosure should not be construed as a better or more advantageous than other embodiments or designs. Rather, the use of the words “exemplary” or “such as” is intended to present the concepts in a particular manner.
  • first and second in the embodiments of the present disclosure are used to distinguish different objects, and are not used to describe a specific order.
  • first configuration information and the second configuration information are used to distinguish different configuration information, rather than a specific order for describing different configuration information.
  • a plurality means two or more unless otherwise stated.
  • multiple beams refer to two or more beams.
  • the technical solution provided by the present application can be applied to various communication systems, for example, a 5G communication system, a future evolution system, or a plurality of communication fusion systems, and the like.
  • M2M machine to machine
  • D2D device to device
  • eMBB enhanced mobile broadband
  • uRLLC ultra reliable & low latency communication
  • mMTC massive machine type communication
  • the embodiment of the present application can be applied to communication between a network device and a user equipment in a 5G communication system.
  • the probe pilot signal may be used for uplink beam training.
  • the UE can only use one beam to send the SRS signal to the network device on the SRS resource at a time, so that In the process of completing the uplink beam training, multiple SRSs need to be sent, so that the efficiency of the uplink beam training is low.
  • an embodiment of the present disclosure provides a method for indicating an uplink transmission, where the method may generate first indication information indicating a mapping relationship between a plurality of parts and multiple beams in an SRS resource configured for a UE, and The first indication information is sent to the UE, and therefore, when the SRS is sent by the UE on the SRS resource allocated to the UE, the UE may select at least two of the multiple beams involved in the mapping relationship according to the first indication information, where the SRS is used.
  • the SRS is transmitted on the part corresponding to the at least two beams, so that the SRS can be simultaneously transmitted by using at least two beams, the delay of the uplink beam training process is reduced, and the efficiency of the uplink beam training is improved.
  • the fourth configuration information for configuring the data transmission resource for the UE may be sent to the UE, and the beam for indicating that the UE is allowed to simultaneously transmit the data may be generated.
  • the second indication information is sent to the UE, and the second indication information is sent to the UE. Therefore, the base station needs the UE to perform multi-stream parallel transmission (that is, the base station needs the UE to simultaneously transmit data to multiple beams), or the UE needs multiple streams and parallel transmissions.
  • the UE may select at least two beams in the beam for which the base station is allowed to simultaneously transmit data, and transmit data on the data transmission resource configured by the base station for the base station. This enables multi-stream parallel transmission in the data transfer phase.
  • the network device may separately configure SRS resources and beams for multiple terminals in the coverage of the network device, in order to more clearly describe the embodiment of the present disclosure.
  • an exemplary description is made by using a network device to configure SRS resources and beams for one user equipment in the coverage of the network device.
  • the method for indicating uplink transmission provided by the embodiment of the present disclosure may be applied to a wireless communication system.
  • the wireless communication system shown in FIG. 1 is a schematic diagram of a system architecture of a wireless communication system according to an embodiment of the present disclosure.
  • the wireless communication system includes a user equipment and a network equipment.
  • the connection between the user equipment and the network device may be a wireless connection.
  • the network device in the embodiment of the present disclosure may be a base transceiver station (BTS) in a global system for mobile communication (GSM) or a code division multiple access (CDMA) network.
  • the NB (NodeB) in the wideband code division multiple access (WCDMA), or the eNB or the eNodeB (Evolved Node B) in the Long Term Evolution (LTE).
  • the network device may also be a wireless controller in a cloud radio access network (CRAN) scenario.
  • the network device may also be a network device in a 5G communication system or a network device in a future evolved network.
  • the network device shown in FIG. 1 may be a base station, and various components of the base station in the embodiment of the present disclosure are described in detail below with reference to FIG. 2 .
  • the base station may include: a radio remote unit (RRU), a baseband unit (BBU), and an antenna.
  • RRU radio remote unit
  • BBU baseband unit
  • the RRU and the BBU may be connected by using an optical fiber, and the RRU passes through the same
  • the shaft cable and the power splitter (or coupler) are connected to the antenna.
  • one BBU can connect multiple RRUs.
  • the RRU may include four modules: a digital intermediate frequency module, a transceiver module, a power amplifier module, and a filtering module.
  • the digital intermediate frequency module is used for modulation and demodulation of optical transmission, digital up-conversion, digital-to-analog conversion, etc.; the transceiver module completes the conversion of the intermediate frequency signal to the radio frequency signal; and after the amplification of the power amplifier module and the filtering of the filtering module, the RF signal is transmitted through the antenna.
  • a digital intermediate frequency module is used for modulation and demodulation of optical transmission, digital up-conversion, digital-to-analog conversion, etc.
  • the transceiver module completes the conversion of the intermediate frequency signal to the radio frequency signal
  • the RF signal is transmitted through the antenna.
  • the BBU is used to complete the baseband processing functions (such as encoding, multiplexing, modulation, and spreading) of the Uu interface (ie, the interface between the user equipment and the base station), and between the radio network controller (RNC) and the base station.
  • the user equipment in the embodiment of the present disclosure may be a personal communication service (PCS) telephone, a cordless telephone, a Session Initiation Protocol (SIP) telephone, a Wireless Local Loop (WLL) station,
  • PCS personal communication service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • a device such as a personal digital assistant (PDA)
  • the user equipment may also be a mobile phone, a mobile station (MS), a mobile terminal, a notebook computer, etc., and the user equipment can be wirelessly accessed.
  • a radio access network (RAN) communicates with one or more core networks.
  • the user equipment may be a mobile phone (or "cellular" phone) or a computer with a mobile terminal, etc., for example, the user equipment may also be Portable, pocket, handheld, computer built-in or in-vehicle mobile devices that exchange voice and/or data with a wireless access network.
  • the wireless terminal can also be a handheld device with wireless communication capabilities, a computing device or other processing device connected to the wireless modem, an in-vehicle device, a wearable device, a user device in a future 5G network, or a user device in a future evolving network, and the like.
  • the above is merely an example, and the actual application is not limited thereto.
  • the user equipment shown in FIG. 1 may be a mobile phone.
  • the mobile phone may include: a processor 11, a radio frequency (RF) circuit 12, a power source 13, a memory 14, an input unit 15, a display unit 16, an audio circuit 17, and the like.
  • RF radio frequency
  • FIG. 3 the structure of the mobile phone shown in FIG. 3 does not constitute a limitation to the mobile phone, and may include more or less components such as those shown in FIG. 3, or may be combined as shown in FIG. Some of the components may be different from the components shown in Figure 3.
  • the processor 11 is the control center of the handset, which connects various portions of the entire handset using various interfaces and lines, by executing or executing software programs and/or modules stored in the memory 14, and recalling data stored in the memory 14, executing The phone's various functions and processing data, so that the overall monitoring of the phone.
  • the processor 11 may include one or more processing units; optionally, the processor 11 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, and an application. Etc.
  • the modem processor primarily handles wireless communications. It can be understood that the above modem processor may not be integrated into the processor 11.
  • the RF circuit 12 can be used for transmitting and receiving information or for receiving and transmitting signals during a call. Specifically, the downlink information of the base station is received and processed by the processor 11; in addition, the uplink data is sent to the base station.
  • RF circuits include, but are not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier (LNA), a duplexer, and the like.
  • RF circuitry 12 can also communicate with the network and other devices via wireless communication.
  • the power source 13 can be a battery.
  • the power source 13 can be logically connected to the processor 11 through the power management system, thereby implementing functions such as managing charging, discharging, and power management through the power management system.
  • the memory 14 can be used to store software programs and modules, and the processor 11 executes various functional applications and data processing of the mobile phone by running software programs and modules stored in the memory 14.
  • the memory 14 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to Data created by the use of the mobile phone (such as audio data, image data, phone book, etc.).
  • memory 14 may include high speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the input unit 15 can be used to receive input numeric or character information and to generate key signal inputs related to user settings and function control of the handset.
  • the input unit 15 may include a touch screen 151 and other input devices 152.
  • the touch screen 151 also referred to as a touch panel, can collect touch operations on or near the user (such as the operation of the user using any suitable object or accessory on the touch screen 151 or near the touch screen 151 using a finger, a stylus, etc.), and according to The preset program drives the corresponding connection device.
  • the touch screen 151 may include two parts of a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 11 is provided and can receive commands from the processor 11 and execute them.
  • the touch screen 151 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • Other input devices 152 may include, but are not limited to, one or more of a physical keyboard, function keys (such as volume control buttons, power switch buttons, etc.), trackballs, mice, joysticks, and the like.
  • the display unit 16 can be used to display information input by the user or information provided to the user as well as various menus of the mobile phone.
  • the display unit 16 may include a display panel 161.
  • the display panel 161 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the touch screen 151 may cover the display panel 161, and when the touch screen 151 detects a touch operation thereon or nearby, it is transmitted to the processor 11 to determine the type of the touch event, and then the processor 11 displays the panel according to the type of the touch event.
  • a corresponding visual output is provided on the 161.
  • the touch screen 151 and the display panel 161 are two separate components to implement the input and output functions of the mobile phone, in some embodiments, the touch screen 151 can be integrated with the display panel 161 to implement the input of the mobile phone. And output function.
  • the audio circuit 17, the speaker 171 and the microphone 172 are used to provide an audio interface between the user and the handset.
  • the audio circuit 17 can transmit the converted electrical data of the received audio data to the speaker 171, and convert it into a sound signal output by the speaker 171; on the other hand, the microphone 172 converts the collected sound signal into an electrical signal, and the audio circuit 17 After receiving, it is converted into audio data, and the audio data is output to the RF circuit 12 for transmission to, for example, another mobile phone, or the audio data is output to the memory 14 for further processing.
  • the foregoing mobile phone may further include a wireless fidelity (WiFi) module, a Bluetooth module, and the like, and details are not described herein.
  • WiFi wireless fidelity
  • Bluetooth Bluetooth
  • the base station and the UE in the embodiments of the present disclosure may be devices supporting multiple-input multiple-output (MIMO) technology, and the MIMO technology refers to using multiple transmit antennas and receive antennas respectively at the transmitting end and the receiving end.
  • MIMO technology refers to using multiple transmit antennas and receive antennas respectively at the transmitting end and the receiving end.
  • the signal is transmitted and received through multiple antennas at the transmitting end and the receiving end, thereby improving communication quality. It can make full use of space resources and realize multiple transmission and reception through multiple antennas, which can double the system channel capacity without increasing spectrum resources and antenna transmission power.
  • the antennas of the base station and the UE in the embodiments of the present disclosure may include multiple antenna panels, and multiple array elements may be disposed on each antenna panel, and beamforming technology may be used to transmit the directionality through the array elements in the antenna (ie, have certain Beam of directionality and lobe width).
  • FIG. 4 a schematic diagram of a beam for transmitting an antenna may be used.
  • FIG. 4 is such that the antenna may include two antenna panels.
  • Each antenna panel may transmit five different beams, that is, the antenna. It can be explained by taking 10 different beams (showing the 10 beams respectively as beam 1 to beam 10 in FIG. 4) as an example.
  • SRS is a type of uplink reference signal (also referred to as an uplink pilot signal) that is a known signal provided by the UE to the base station for channel estimation.
  • the SRS resources refer to a pseudo-random sequence used by the SRS, a frequency domain resource that transmits the SRS, a time domain resource, and a code domain resource.
  • the SRS resources involved in the embodiments of the present disclosure are described by taking the frequency domain resource and the time domain resource of the SRS as an example.
  • the SRS resource block refers to the most basic configuration unit of the SRS resource. That is, when the base station configures the SRS resource for the UE, at least one SRS resource block is configured.
  • the antenna port mentioned in the embodiment of the present disclosure refers to a logical port supported by the antenna for transmission, which has no one-to-one correspondence with the physical antenna port, but has a certain correspondence with the reference signal. Some or some of the antenna ports may be used to transmit a certain type of reference signal. For example, multiple antenna ports may be used to transmit the SRS in the embodiment of the present disclosure.
  • the method for indicating uplink transmission provided by the embodiment of the present disclosure may be applied to an uplink beam training process and a data transmission process.
  • a network device is used as a base station as an example for exemplary description.
  • the SRS resources configured by the base station for the UE include three different situations.
  • the first case is that the SRS resource configured by the base station for the UE is an SRS resource block of the multi-antenna port;
  • the second case is that the SRS resource configured by the base station for the UE is an SRS resource set, and the SRS resource set is composed of multiple SRSs.
  • the third case is: the SRS resource configured by the base station for the UE is an SRS resource set, and the SRS resource set is composed of multiple SRS resource blocks, where at least one SRS resource block is an SRS resource block of a multi-antenna port.
  • the first case is a first case:
  • the method for indicating uplink transmission includes the following steps S101-S115.
  • the UE sends beam information to the base station.
  • the base station receives the beam information.
  • the base station determines, according to the beam information, a beam that the UE can use for uplink beam training.
  • the beam that can be used for uplink beam training is a transmit beam of the UE.
  • the method for indicating uplink transmission provided by the embodiment of the present disclosure may be applied to multiple network scenarios.
  • the method can be applied to a scenario of a symmetric network, for example, to a network using time division duplexing (TDD) technology; the method can also be applied to a scenario of an asymmetric network, for example, to adopt A network of frequency division duplexing (FDD) technology.
  • TDD time division duplexing
  • FDD frequency division duplexing
  • Scenario 1 A scenario applied to a symmetric network.
  • the receiving beams of the base station and the UE are in one-to-one correspondence with the transmitting beam.
  • the UE includes 10 transmitting beams, which may be the transmitting beam 1 to the transmitting beam 10.
  • the UE also includes 10 receiving beams, which may be the receiving beam 1 and Receive beam 10.
  • the above S101 and S102 are performed during the downlink beam training.
  • the UE receives the SRS sent by the multiple transmit beams of the base station, selects at least one of the multiple beams, and determines a transmit beam of the UE corresponding to the transmit beam of the base station, The information of the transmit beam of the UE is fed back to the base station.
  • the UE uses the receive beam of the UE to receive the transmit beam of the base station, and the UE determines that the signal quality of the SRS received by some receive beams (for example, the receive beam 1 and the receive beam 2) is good, the UE considers the receive beam 1 The signal quality of the transmit beam 1 and the transmit beam 2 corresponding to the receive beam 2 when transmitting the SRS is also good, and the UE can transmit the information of the transmit beam 1 and the transmit beam 2 (specifically, the index and the transmit beam of the transmit beam 1) The index of 2) is fed back to the base station.
  • some receive beams for example, the receive beam 1 and the receive beam 2
  • the UE considers the receive beam 1
  • the signal quality of the transmit beam 1 and the transmit beam 2 corresponding to the receive beam 2 when transmitting the SRS is also good, and the UE can transmit the information of the transmit beam 1 and the transmit beam 2 (specifically, the index and the transmit beam of the transmit beam 1) The index of 2) is fed back to the base station.
  • the base station can know that the signal quality of the transmit beam 1 and the transmit beam 2 of the UE is good, and then the UE can be instructed to perform uplink beam training based on the transmit beam 1 and the transmit beam 2 by the following methods S103-S109.
  • Scene 2 A scenario applied to an asymmetric network.
  • the UE can report the information of the transmit beam to the base station, so that the base station performs the foregoing S102.
  • the base station may receive information (eg, an identifier of a beam) of a transmit beam that is reported by the UE for performing uplink beam training, so that the base station can learn the beam for performing uplink beam training.
  • the UE is instructed to perform uplink beam training based on the transmit beam of the UE indicated by the base station by the method of S103-S109 described below.
  • the identifier of the beam may be a SRS Resource Index (SRI) SRI or a Channel Status Information Reference Signal Resource Index (CRI).
  • SRI SRS Resource Index
  • CRI Channel Status Information Reference Signal Resource Index
  • the SRI can be used to indicate the transmit beam of the UE
  • the CRI is used to indicate the transmit beam of the base station. Therefore, the general base station uses the SRI to indicate the transmit beam of the UE to the UE.
  • the UE may determine the transmit beam of the corresponding UE according to the transmit beam indicated by the base station, and therefore, in the foregoing scenario 1, the scenario may also be adopted.
  • the CRI indicates to the UE the transmit beam of the UE.
  • the beams involved in the following content in the embodiments of the present disclosure all refer to the transmit beam of the UE.
  • the base station sends the first configuration information to the UE.
  • the UE receives the first configuration information.
  • the UE determines, according to the first configuration information, an SRS resource configured by the base station.
  • the first configuration information is used to configure an SRS resource block of the multi-antenna port for the UE.
  • the base station may determine, according to the received beam information sent by the UE, a beam that the UE can use for uplink beam training, and then the base station may configure the UE according to the number of beams that the UE can use for uplink beam training.
  • SRS resource block for multiple antenna ports For example, if the base station determines that the number of transmit beams that the UE can use for uplink beam training is two, the base station may configure the SRS resource block of the two antenna ports for the UE.
  • the base station generates first indication information.
  • the base station sends the first indication information to the UE.
  • the UE receives the first indication information.
  • the first indication information is used to indicate a mapping relationship between multiple parts of the SRS resource configured for the UE and multiple beams.
  • the different parts correspond to different beams, and multiple beams in the mapping relationship are allowed to be used simultaneously. For transmission.
  • the SRS resource may be divided into multiple parts, and the base station may configure a correspondence between each part of the multiple parts and the beam, or may configure some parts of the multiple parts and the beam. Correspondence relationship. Each part can correspond to one beam.
  • a base station configures a mapping relationship between multiple parts of an SRS resource and multiple beams, a corresponding beam is configured for each part as an example.
  • the SRS resource configured for the UE is an SRS resource block of the multi-antenna port
  • the different parts of the SRS resources configured for the UE are resources of different antenna ports, respectively, and the foregoing first indication information may be specifically used to indicate the SRS resource.
  • the base station configures the SRS resource block of the 2 antenna port for the UE as an example, and the base station can indicate the mapping relationship between the two beams and the two antenna ports, and the two beams are the beam 1 and the beam 2, and the two antennas are used.
  • the port is antenna port 1 and antenna port 2.
  • the base station can configure beam 1 corresponding to antenna port 1 and beam 2 corresponding to antenna port 2.
  • the beam in the mapping relationship may be indicated by an identifier of the beam, and the antenna port in the mapping relationship may be indicated by a port identifier.
  • CRI1 may be used to indicate the beam 1 in the above example
  • CRI2 is used to indicate the beam 2 in the above example
  • port1 is used to indicate the antenna port 1
  • port 2 is used to indicate the antenna port 2
  • the mapping relationship between the antenna port and the beam may be As shown in Table 1.
  • the resource configured for the UE is an SRS resource block of a multi-antenna port. It can be understood that the SRS resource block configured for the UE can be mapped to multiple antenna ports.
  • the resource configured by the UE is a SRS resource block of a 2-antenna port. If the two-day port is the antenna port 1 and the antenna port 2 of the UE, the SRS resource is mapped to the antenna port 1 And the SRS resource pilot pattern of antenna port 2 can be as shown in FIG. 6.
  • the UE sends an SRS on the SRS resource configured by the base station according to the first indication information.
  • the base station receives the SRS.
  • the base station sends the first indication information to the UE, and correspondingly, the UE receives the first indication information, and then the UE may send the SRS on the SRS resource configured by the base station.
  • the sending, by the UE, the SRS on the SRS resource configured by the base station may be: the UE may select at least one of the multiple beams in the mapping relationship indicated by the first indication message, and corresponding to the at least one beam.
  • the SRS is sent on the resources of the antenna port.
  • the UE when the UE selects at least two beams in the multiple beams in the foregoing mapping relationship, and sends the SRS on the resources of the antenna ports corresponding to the at least two beams, the UE may implement the uplink beam training process.
  • the UE simultaneously transmits the SRS to the base station by using multiple beams, thereby improving the efficiency of the uplink beam training.
  • the base station determines the target beam according to the SRS sent by the UE.
  • the base station sends the information about the target beam to the UE.
  • the UE receives the information of the target beam.
  • the base station may determine the target beam in the two beams, and send the information of the target beam (which may be the identifier of the beam) to the base station. For example, the UE may select, as the target beam, a beam with a better signal quality of the transmitted SRS among the at least two beams.
  • the target beam is a beam for transmitting data selected by a beam training process.
  • the target beam may be used to send data to the UE.
  • the target beam may be used to send data on a data transmission resource configured by the base station for the UE.
  • the embodiment of the present disclosure further includes the following step S110. -S115, this process can be implemented based on the above S103-S106, and has no dependencies with other steps.
  • the base station sends the second indication information to the UE.
  • the UE receives the second indication information.
  • the UE determines, according to the second indication information, a beam that allows the data to be simultaneously transmitted.
  • the second indication information is used to indicate a beam that allows the UE to simultaneously transmit data.
  • the second indication information is specifically used to indicate the multiple antenna ports corresponding to the SRS resource block, so that the UE may adopt the foregoing mapping relationship when the second indication information is received, that is, the antenna port and the beam indicated by the base station.
  • the mapping relationship determines that the beam corresponding to the plurality of antenna ports is a beam that allows data to be simultaneously transmitted.
  • the second indication information may carry the identifier of the SRS resource block and the port identifiers of the multiple antenna ports corresponding to the SRS resource block to indicate multiple antenna ports corresponding to the SRS resource block; the second indication The information may also carry an identifier of the SRS resource block to indicate all antenna ports in the SRS resource block.
  • the foregoing second indication information is specifically used to indicate multiple antenna ports corresponding to one SRS resource block.
  • the number of the identifiers of the SRS resources in the second indication information may be one of the number of identifiers of the SRS resource blocks carried in the second indication information by using a network configuration or a pre-agreed rule.
  • the base station sends fourth configuration information to the UE.
  • the UE receives the fourth configuration information.
  • the UE determines, according to the fourth configuration information, a data transmission resource configured by the base station.
  • the fourth configuration information is used to configure a data transmission resource for the UE.
  • the embodiment of the present disclosure does not limit the execution sequence of the foregoing S110-S111 and the foregoing S112-S113.
  • the foregoing S110-S111 may be executed first, and then the foregoing S112-S113 may be executed; In the above S112-S113, the above S110-S111 is performed; and the above S110-S111 and the above S112-S113 may be simultaneously executed.
  • the UE selects at least two beams from the beams allowed for simultaneous transmission.
  • the UE uses the at least two beams to send data to the base station on the data transmission resource configured by the base station; correspondingly, the base station receives the data.
  • the base station in the embodiment of the present disclosure may send fourth configuration information for configuring a data transmission resource for the UE to the UE, and may generate second indication information for indicating a beam that allows the UE to simultaneously transmit data. And transmitting the second indication information to the UE, so in the case that the base station needs the UE to perform multi-stream parallel transmission (that is, the base station needs the UE to simultaneously transmit data to multiple beams), or the UE needs multiple streams and parallel transmission, the UE may At least two of the beams for which the base station is permitted to simultaneously transmit data are selected to transmit data on the data transmission resources configured by the base station for the base station.
  • some method steps in the embodiment of the present disclosure may be combined.
  • the foregoing S103 and S105 may be combined into one method step, that is, the first configuration information and the first indication information are carried in the same information and sent to UE.
  • the second case is a first case
  • the method for indicating uplink transmission may include the following steps S201-S215.
  • the UE sends beam information to the base station.
  • the base station receives the beam information.
  • the base station determines, according to the beam information, a beam that the UE can use for uplink beam training.
  • the base station sends the second configuration information to the UE.
  • the UE receives the second configuration information.
  • the UE determines, according to the second configuration information, an SRS resource configured by the base station.
  • the second configuration information is used to configure an SRS resource group (Set) for the UE, where the SRS resource set is composed of multiple SRS resource blocks.
  • the base station sends the second configuration information to the UE, and correspondingly, the UE receives the second configuration information, and determines, according to the second configuration information, that the SRS resource configured by the base station is an SRS resource set, and the SRS resource A collection consists of multiple SRS resource blocks.
  • the base station may determine, according to the received beam information sent by the UE, a beam that the UE can use for uplink beam training, and then the base station may configure multiple SRSs for the UE according to the number of beams that the UE can use for uplink beam training.
  • a collection of SRS resources consisting of resource blocks. For example, if the base station determines that the number of beams that the UE can use for uplink beam training is two, the base station may configure the SRS resource set composed of two SRS resource blocks for the UE.
  • the base station generates first indication information.
  • the base station sends the first indication information to the UE.
  • the UE receives the first indication information.
  • the first indication information is used to indicate a mapping relationship between multiple parts of the SRS resource configured for the UE and multiple beams.
  • the different parts correspond to different beams, and multiple beams in the mapping relationship are allowed to be used simultaneously. For transmission.
  • the SRS resource configured for the UE is an SRS resource set that is composed of multiple SRS resource blocks
  • different parts of the SRS resources configured for the UE are respectively different SRS resource blocks
  • the foregoing first indication information may be specifically used for Indicates a mapping relationship between multiple SRS resource blocks in the SRS resource set and multiple beams.
  • the base station configures a resource set composed of two SRS resource blocks for the UE as an example, and the base station may indicate a mapping relationship between the two beams and two SRS resource blocks, and the two beams are assumed to be beam 1 and beam 2
  • the two SRS resource blocks are SRS resource block 1 and SRS resource block 2, and the base station can configure beam 1 corresponding to SRS resource block 1 and beam 2 corresponding to SRS resource block 2.
  • the beam in the foregoing mapping relationship may be indicated by an identifier of the beam
  • the SRS resource block in the mapping relationship may be indicated by an SRS resource block identifier
  • CRI1 may be used to indicate the beam 1 in the above example
  • CRI2 is used to indicate the beam 2 in the above example
  • S1 is used to indicate the SRS resource block 1
  • S2 is used to indicate the SRS resource block 2
  • the mapping relationship can be as shown in Table 2.
  • the UE sends an SRS on the SRS resource configured by the base station according to the first indication information.
  • the base station receives the SRS.
  • the base station sends the first indication information to the UE, and correspondingly, the UE receives the first indication information, and then the UE may send the SRS on the SRS resource configured by the base station.
  • the sending, by the UE, the SRS on the SRS resource configured by the base station is: the at least one of the multiple beams in the mapping relationship indicated by the first indication message, and the SRS resource corresponding to the at least one beam. SRS is sent on the block.
  • the UE when the UE selects at least two beams in the multiple beams in the foregoing mapping relationship, and sends the SRS on the SRS resource blocks corresponding to the at least two beams, the UE may be implemented in the uplink beam training process. Multiple beams simultaneously transmit SRS to the base station, thereby improving the efficiency of uplink beam training.
  • the base station determines the target beam according to the SRS sent by the UE.
  • the base station sends the information about the target beam to the UE.
  • the UE receives the information of the target beam.
  • the target beam may be used to send data to the UE.
  • the target beam may be used to send data on a data transmission resource configured by the base station for the UE.
  • the embodiment of the present disclosure further includes the following step S210. -S215.
  • the base station sends the second indication information to the UE.
  • the UE receives the second indication information.
  • the UE determines, according to the second indication information, a beam that allows the data to be simultaneously transmitted.
  • the second indication information is used to indicate a beam that allows the UE to simultaneously transmit data.
  • the second indication information is specifically used to indicate a plurality of SRS resource blocks in the SRS resource set, so that the UE may adopt the foregoing mapping relationship when the second indication information is received, that is, the SRS resource block and the beam indicated by the base station.
  • the mapping relationship determines that the beam corresponding to the plurality of SRS resource blocks is a beam that allows simultaneous transmission of data.
  • the second indication information may carry the identifier of the SRS resource set and the identifier of the multiple SRS resource blocks in the SRS resource set, to indicate the SRS resource block corresponding to the SRS resource set; the second indication information An identifier of the SRS resource set may also be carried in to indicate all SRS resource blocks in the SRS resource set.
  • the foregoing second indication information is specifically used to indicate multiple SRS resource blocks in one SRS resource set.
  • the number of identifiers of the SRS resource set in the second indication information may be one of the number of identifiers of the SRS resource set carried in the second indication information by using a network configuration or a pre-agreed rule.
  • the base station sends fourth configuration information to the UE.
  • the UE receives the fourth configuration information.
  • the UE determines, according to the fourth configuration information, a data transmission resource configured by the base station.
  • the fourth configuration information is used to configure a data transmission resource for the UE.
  • the embodiment of the present disclosure does not limit the execution sequence of the foregoing S210-S211 and the foregoing S212-S213.
  • the foregoing S210-S211 may be performed first, and then the foregoing S212-S213 may be performed; In the above S212-S213, the above S210-S211 is performed; and the above S210-S211 and the above S212-S213 may be simultaneously executed.
  • the UE selects at least two beams from beams allowed for simultaneous transmission.
  • the UE uses the at least two beams to send data to the base station on the data transmission resource configured by the base station; correspondingly, the base station receives the data.
  • the base station in the embodiment of the present disclosure may send fourth configuration information for configuring a data transmission resource for the UE to the UE, and may generate second indication information for indicating a beam that allows the UE to simultaneously transmit data. And transmitting the second indication information to the UE, so in the case that the base station needs the UE to perform multi-stream parallel transmission (that is, the base station needs the UE to simultaneously transmit data to multiple beams), or the UE needs multiple streams and parallel transmission, the UE may At least two of the beams for which the base station is permitted to simultaneously transmit data are selected to transmit data on the data transmission resources configured by the base station for the base station.
  • the third case is a first case.
  • the method for indicating uplink transmission may include the following steps S301-S315.
  • the UE sends beam information to the base station.
  • the base station receives the beam information.
  • the base station determines, according to the beam information, a beam that the UE can use for uplink beam training.
  • the base station sends third configuration information to the UE.
  • the UE receives the third configuration information.
  • the UE determines, according to the third configuration information, an SRS resource configured by the base station.
  • the third configuration information is used to configure an SRS resource set for the UE, where the SRS resource set is composed of multiple SRS resource blocks, where at least one SRS resource block is an SRS resource block of multiple antenna ports.
  • the base station sends the third configuration information to the UE, and correspondingly, the UE receives the third configuration information, and determines, according to the third configuration information, that the SRS resource configured by the base station is an SRS resource set, and the SRS resource The set is composed of a plurality of SRS resource blocks, wherein at least one of the SRS resource blocks is an SRS resource block of a multi-antenna port.
  • the base station may determine, according to the received beam information sent by the UE, a beam that the UE can use for uplink beam training, and then the base station may configure multiple SRSs for the UE according to the number of beams that the UE can use for uplink beam training.
  • a collection of SRS resources consisting of resource blocks. For example, if the base station determines that the number of beams that the UE can use for uplink beam training is four, the base station may configure, for the UE, an SRS resource set composed of three SRS resource blocks, where one SRS resource block is a 2-antenna port. SRS resource block.
  • the base station generates first indication information.
  • the base station sends the first indication information to the UE.
  • the UE receives the first indication information.
  • the first indication information is used to indicate a mapping relationship between multiple parts of the SRS resource configured for the UE and multiple beams.
  • the different parts correspond to different beams, and multiple beams in the mapping relationship are allowed to be used simultaneously. For transmission.
  • the foregoing first indication information may be specifically used to indicate the SRS resource set.
  • the beam in the mapping relationship may be indicated by the identifier of the beam
  • the SRS resource block in the mapping relationship may be indicated by an SRS resource block identifier
  • the antenna port in the mapping relationship may be indicated by an antenna port identifier
  • the SRS resource set consisting of three SRS resource blocks is configured by the base station for the UE, and one SRS resource block is an SRS resource block of the two antenna ports.
  • the base station can indicate four beams and three SRS resource blocks.
  • the mapping relationship assumes that the four beams are beam 1, beam 2, beam 3, and beam 4, and the three SRS resource blocks are SRS resource block 1, SRS resource block 2, and SRS resource block 3, and SRS resource block 3 is 2 SRS resource blocks of antenna ports (antenna port 1 and antenna port 2 respectively), the base station may configure beam 1 corresponding to SRS resource block 1, beam 2 corresponds to SRS resource block 2, beam 3 and beam 4 correspond to SRS resource block 3 ( Specifically, the beam 3 can be configured to correspond to the antenna port 1 corresponding to the SRS resource block 3, and the configuration beam 4 corresponds to the antenna port 2 corresponding to the SRS resource block 3.
  • CRI1 may be used to indicate beam 1 in the above example
  • CRI2 is used to indicate beam 2 in the above example
  • CRI3 is used to indicate beam 3 in the above example
  • CRI4 is used to indicate beam 4 in the above example
  • S1 is used to indicate the above SRS.
  • the SRS resource block 2 is indicated by S2
  • the SRS resource block 3 is indicated by S3
  • the antenna port 1 corresponding to the SRS resource block 3 is indicated by port1
  • the antenna port 2 corresponding to the SRS resource block 3 is indicated by port2
  • the SRS is used.
  • the mapping relationship between resource block 1 and resource block 2 and beam 1 and beam 2 and the mapping relationship between antenna port 1 and antenna port 2 corresponding to SRS resource block 3 and beam 3 and beam 4 can be as shown in Tables 3 and 4.
  • the UE sends an SRS on the SRS resource configured by the base station according to the first indication information.
  • the base station receives the SRS.
  • the base station sends the first indication information to the UE, and correspondingly, the UE receives the first indication information, and then the UE may send the SRS on the SRS resource configured by the base station.
  • the sending, by the UE, the SRS on the SRS resource configured by the base station is: the at least one of the multiple beams in the mapping relationship indicated by the first indication message, and the SRS resource corresponding to the at least one beam.
  • the SRS is sent on the resources of the block and/or antenna port.
  • the uplink when the UE selects at least two beams in the multiple beams in the foregoing mapping relationship, and sends the SRS on the resources of the SRS resource block and/or the antenna port corresponding to the at least two beams, the uplink may be uplinked.
  • the UE uses multiple beams to simultaneously transmit SRS to the base station, thereby improving the efficiency of the uplink beam training.
  • the base station determines the target beam according to the SRS sent by the UE.
  • the base station sends the information about the target beam to the UE.
  • the UE receives the information of the target beam.
  • the target beam may be used to send data to the UE.
  • the target beam may be used to send data on a data transmission resource configured by the base station for the UE.
  • the embodiment of the present disclosure further includes the following step S310. -S315.
  • the base station sends the second indication information to the UE.
  • the UE receives the second indication information.
  • the UE determines, according to the second indication information, a beam that allows the data to be simultaneously transmitted.
  • the second indication information is used to indicate a beam that allows the UE to simultaneously transmit data.
  • the second indication information is specifically used to indicate an SRS resource block and/or an antenna port corresponding to the SRS resource block in the SRS resource set, so that the UE may adopt the foregoing mapping relationship when receiving the second indication information. Determining a mapping relationship between an SRS resource block and/or an antenna port corresponding to the SRS resource block and a plurality of beams in the SRS resource set indicated by the base station) determining an antenna port corresponding to the SRS resource block and/or the SRS resource block in the SRS resource set The corresponding beam is a beam that allows simultaneous transmission of data.
  • the second indication information may carry an identifier of the SRS resource set, an identifier of multiple SRS resource blocks in the SRS resource set, and an identifier of an antenna port corresponding to the multiple SRS resource blocks, to indicate an SRS.
  • An SRS resource block and/or an SRS resource block corresponding to the SRS resource block; the second indication information may further carry an identifier of the SRS resource set to indicate all SRS resource blocks and all SRS resource blocks in the SRS resource set. Corresponding to all antenna ports.
  • the SRS resource configured by the base station for the UE is an SRS resource set composed of three SRS resource blocks, and the mapping relationship of each part in the SRS resource set is as shown in Tables 3 and 4 above.
  • the base station may carry S1, S2, and S3 in the second indication information; or may carry S1, S2, S3, and port1 and port2 in the second indication information;
  • the identifier of the SRS resource set may be directly carried in the second indication information.
  • the base station when the base station indicates the beams CRI1, CRI2, and CRI3 in the foregoing Tables 3 and 4, the base station may carry S1, S2, S3, and port1 in the second indication information; the base station may also be in the second indication.
  • the information carries S1, S2, and port1.
  • the foregoing second indication information is specifically used to indicate an SRS resource block and/or an antenna port corresponding to the SRS resource block in one SRS resource set.
  • the number of identifiers of the SRS resource set in the second indication information may be one of the number of identifiers of the SRS resource set carried in the second indication information by using a network configuration or a pre-agreed rule.
  • the base station sends fourth configuration information to the UE.
  • the UE receives the fourth configuration information.
  • the UE determines, according to the fourth configuration information, a data transmission resource configured by the base station.
  • the fourth configuration information is used to configure a data transmission resource for the UE.
  • the embodiment of the present disclosure does not limit the execution sequence of the foregoing S310-S311 and the foregoing S312-S313.
  • the foregoing S310-S311 may be performed first, and then the foregoing S312-S313 may be performed; In the above S312-S313, the above S310-S311 is performed; and the above S310-S311 and the above S312-S313 may be simultaneously executed.
  • the UE selects at least two beams from the beams allowed for simultaneous transmission.
  • the UE uses the at least two beams to send data to the base station on the data transmission resource configured by the base station; correspondingly, the base station receives the data.
  • the base station may send, to the UE, fourth configuration information for configuring a data transmission resource for the UE, and may generate second indication information for indicating a beam for allowing the UE to simultaneously transmit data. And transmitting the second indication information to the UE, so in the case that the base station needs the UE to perform multi-stream parallel transmission (that is, the base station needs the UE to simultaneously transmit data to multiple beams), or the UE needs multiple streams and parallel transmission, the UE may At least two of the beams for which the base station is permitted to simultaneously transmit data are selected to transmit data on the data transmission resources configured by the base station for the base station.
  • the embodiments of the present disclosure may divide the function modules of the network device and the UE according to the foregoing method embodiments.
  • each function module/unit may be divided according to each function, or two or more functions may be integrated into one processing module. / in the unit.
  • the above integrated modules/units can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the modules in the embodiments of the present disclosure is schematic, and only one logical function is divided, and the actual implementation may have another division manner.
  • FIG. 9 a schematic structural diagram of an access network device network device according to an embodiment of the present disclosure is shown in FIG. 9.
  • the access network device network device is shown in FIG.
  • the processing unit 21 and the transmitting unit 22 are included.
  • the processing unit 21 is configured to support the access network device network device to perform S102, S105, S108, S202, S205, S208, S302, S305, and S108 performed by the base station in the foregoing method embodiment.
  • the sending unit 22 is configured to support the access network device network device to perform S103, S106, S109, S110, S112, S203, S206, S209, S210, S203, S303, S306, S309, S212, S303, S306, S309, which are executed by the base station in the foregoing method embodiment. S310 and S312.
  • the processing unit 21 and the transmitting unit 22 described above can also be used to perform other processes of the techniques described herein.
  • the network device may further include a receiving unit, where the receiving unit may be configured to support the access network device network device to perform S101, S107, S115, S201, S207, S215, S301 performed by the base station in the foregoing method embodiment. S307 and S315.
  • the receiving unit may be integrated with the sending unit in a transceiver unit/transceiver.
  • the processing unit 21 may be a processor or a controller in a network device, and the processor or controller may be a baseband processing unit in the base station as shown in FIG. 2, and the processor or controller may implement or execute Various exemplary logical blocks, units and circuits are described in connection with the present disclosure.
  • the processor or controller may be a central processing unit (CPU), a general purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), and an on-site A field programmable gate array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, units and circuits described in the above disclosure.
  • the processor may also be a combination of computing functions, such as one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the transmitting unit 22 may be a transceiver, a transceiver circuit, or a communication interface in the network device.
  • the transceiver, the transceiver circuit, or the communication interface may be the antenna in the base station shown in FIG. 2.
  • the network device may further include a storage unit, where the storage unit may be a memory or the like in the network device.
  • the memory may include a volatile memory such as a random-access memory (RAM); the memory may also include a non-volatile memory such as a read-only memory (read) -only memory, ROM), flash memory, hard disk drive (HDD) or solid-state drive (SSD); the memory may also include a combination of the above types of memory.
  • the above network device may further include a bus, and the bus may be divided into an address bus, a data bus, a control bus, and the like.
  • An embodiment of the present disclosure provides a computer readable storage medium having one or more programs stored therein, the one or more programs including computer execution instructions, when a processor of the network device executes the computer to execute an instruction, The network device performs the method for indicating uplink transmission performed by the base station in the foregoing method embodiment.
  • Embodiments of the present disclosure provide a computer program product comprising computer instructions that, when executed on a processor, cause the processor to perform a method of indicating an uplink transmission performed by a base station in the above method embodiments.
  • the structure of the UE provided by the embodiment of the present disclosure is as shown in FIG. 10 .
  • the UE includes: a receiving unit 31 and a processing unit 32.
  • the receiving unit 31 is configured to support the UE to perform S103, S106, S109, S110, S112, S203, S206, S209, S210, S212, S303, S306, S309, S310, and S312 in the foregoing method embodiments.
  • the processing unit 32 is configured to support the UE to perform S104, S111, S113, S114, S204, S211, S213, S214, S304, S311, S313, and S314 in the foregoing method embodiments.
  • the receiving unit 31 and processing unit 32 described above can also be used to perform other processes of the techniques described herein.
  • the foregoing UE may further include a sending unit, where the receiving unit may be configured to support the UE to perform S101, S107, S115, S201, S207, S215, S301, S307, and S315 performed by the UE in the foregoing method embodiment.
  • the receiving unit may be integrated with the sending unit in a transceiver unit/transceiver.
  • the processing unit 31 may be a processor or a controller in the UE, and the processor or controller may be the processor 11 in the mobile phone as shown in FIG. 3, and the processor or controller may implement or perform the combination.
  • the processor or controller may be a central processing unit (CPU), a general purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), and an on-site A field programmable gate array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, such as one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the receiving unit 32 may be a transceiver, a transceiver circuit or a communication interface in the UE, and the transceiver, the transceiver circuit or the communication interface, etc. may be the RF circuit in the mobile phone as shown in FIG. 3 described above.
  • the UE provided by the embodiment of the present disclosure may further include a storage unit, where the storage unit may be a memory or the like in the UE.
  • the memory may be the memory 14 in the handset shown in FIG. 3 above.
  • the memory may include volatile memory, such as random access memory; the memory may also include non-volatile memory, such as read only memory, flash memory, hard disk or solid state hard disk; the memory may also include a memory of the kind described above combination.
  • the UE may further include a bus, and the bus may be divided into an address bus, a data bus, a control bus, and the like.
  • An embodiment of the present disclosure provides a computer readable storage medium having one or more programs stored therein, the one or more programs including computer execution instructions, when a processor of the UE executes the computer to execute an instruction, The UE performs the method for indicating uplink transmission performed by the UE in the foregoing method embodiment.
  • An embodiment of the present disclosure provides a computer program product comprising computer instructions that, when executed on a processor, cause the processor to perform a method of indicating uplink transmission performed by a UE in the method embodiment.
  • embodiments of the present disclosure can be provided as a method, system, or computer program product.
  • embodiments of the present disclosure can take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware aspects.
  • embodiments of the present disclosure may employ computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage) in one or more of the computer-usable program code(s). And so on) the form of the computer program product implemented.
  • Embodiments of the present disclosure are described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (system), and computer program products according to embodiments of the present disclosure. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种指示上行传输的方法及装置,该方法包括:生成第一指示信息,并向用户设备UE发送第一指示信息。该第一指示信息用于指示为UE配置的探测导频信号SRS资源中的多个部分与多个波束的映射关系;其中,不同的部分对应不同的波束,映射关系中的多个波束允许同时用于传输。

Description

指示上行传输的方法及装置
相关申请的交叉引用
本申请主张在2017年8月8日在中国提交的中国专利申请号No.201710672894.2的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及无线通信技术领域,特别涉及一种指示上行传输的方法及装置。
背景技术
相关技术中的第四代(4th-generation,4G)移动通信系统中,主要使用6GHz以下频段作为工作频段,频谱资源紧张现象日趋严重,极大地限制了对高数据速率业务的支持。4G以后的下一代通信系统研究中,将使用6GHz以上的频段作为工作频段。由于高频段具有较为丰富的空闲频率资源,因此可以为数据传输提供更大的吞吐量。第三代合作伙伴计划(3rd generation partnership project,3GPP)已经完成了高频信道建模工作,高频信号的波长短,同低频段相比,能够在同样大小的天线面板上布置更多的天线阵元,利用波束赋形技术形成指向性更强、波瓣更窄的波束。因此,将大规模天线和高频通信相结合,成为未来通信技术的趋势。
移动通信系统中,在使用6GHz以下的频段时,无需采用波束成型技术,网络设备(例如:基站)或用户设备(user equipment,UE)简单地以全向的方式进行传送。而使用6GHz以上的频段时,由于高频段信号的路径损耗较大,若仍以全向方式传输信号,则信号的覆盖范围非常小,因此,须采用波束成型技术,利用方向性波束来传输信号。通常在基站与用户设备初始接入流程之后基站与用户设备之间传输数据之前,进行上行波束训练和下行的波束训练以选择合适的波束进行后续的数据发送。
相关技术中,可以采用探测导频信号来进行上行波束训练,由于每个探测导频信号(Sounding Reference Signal,SRS)(也可称为信道探测参考信号) 资源(即发送SRS的时域资源和频域资源)对应一个UE的发送波束。因此在上行波束训练过程中用户设备每次只能采用一个发送波束在SRS资源上发送SRS信号,这样在完成上行波束训练的过程中时延较大,使得上行波束训练的效率较低。
发明内容
第一方面,提供一种指示上行传输的方法,该方法包括:
生成第一指示信息,第一指示信息用于指示为UE配置的SRS资源中的多个部分与多个波束的映射关系;其中,不同的部分对应不同的波束,映射关系中的多个波束允许同时用于传输;
向UE发送第一指示信息。
在第一方面的第一种可选的实现方式中,该方法还包括:
向UE发送第一配置信息,第一配置信息用于为UE配置多天线端口的SRS资源块,第一指示信息用于指示SRS资源块对应的多个天线端口与多个波束的映射关系;
或者,
向UE发送第二配置信息,第二配置信息用于为UE配置SRS资源集合,SRS资源集合由多个SRS资源块组成,第一指示信息用于指示为UE配置SRS资源集合中的多个SRS资源块与多个波束的映射关系;
或者,
向UE发送第三配置信息,第三配置信息用于为UE配置SRS资源集合,SRS资源集合由多个SRS资源块组成,其中至少一个SRS资源块为多天线端口的SRS资源块,第一指示信息用于指示为UE配置SRS资源集合中的SRS资源块和/或SRS资源块对应的天线端口与多个波束的映射关系。
在第一方面的第二种可选的实现方式中,该方法还包括:
向UE发送第四配置信息,第四配置信息用于为UE配置数据传输资源;
生成第二指示信息,第二指示信息用于指示允许UE同时传输数据的波束;
向UE发送第二指示信息。
在第一方面的第三种可选的实现方式中,上述为UE配置的SRS资源为多天线端口的SRS资源块,第二指示信息用于指示SRS资源块对应的多个天线端口;
或者,
上述为UE配置的SRS资源为SRS资源集合,SRS资源集合由多个SRS资源块组成,第二指示信息用于指示SRS资源集合中的多个SRS资源块;
或者,
上述为UE配置的SRS资源为SRS资源集合,SRS资源集合由多个SRS资源块组成,其中至少一个SRS资源块为多天线端口的SRS资源块,第二指示信息用于指示SRS资源集合中的SRS资源块和/或SRS资源块对应的天线端口。
第二方面,提供一种指示上行传输的方法,该方法包括:
接收第一指示信息,第一指示信息用于指示为UE配置的SRS资源中的多个部分与多个波束的映射关系;其中,不同的部分对应不同的波束,映射关系中的多个波束允许同时用于传输;
根据第一指示信息,在SRS资源上发送SRS。
在第二方面的第一种可选的实现方式中,该方法还包括:
接收第一配置信息,第一配置信息用于为UE配置多天线端口的SRS资源块,第一指示信息具体用于指示SRS资源块对应的多个天线端口与多个波束的映射关系;
根据第一配置信息,确定为UE配置的SRS资源;
或者,
接收第二配置信息,第二配置信息用于为UE配置SRS资源集合,SRS资源集合由多个SRS资源块组成,第一指示信息用于指示为UE配置SRS资源集合中的多个SRS资源块与多个波束的映射关系;
根据第二配置信息,确定为UE配置的SRS资源;
或者,
接收第三配置信息,第三配置信息用于为UE配置SRS资源集合,SRS资源集合由多个SRS资源块组成,其中至少一个SRS资源块为多天线端口的 SRS资源块,第一指示信息用于指示为UE配置SRS资源集合中的SRS资源块和/或SRS资源块对应的天线端口与多个波束的映射关系;
根据第二配置信息,确定为UE配置的SRS资源。
在第二方面的第二种可选的实现方式中,该方法还包括:
接收第四配置信息,第四配置信息用于为UE配置数据传输资源;
根据第四配置信息,确定为UE配置的数据传输资源;
接收第二指示信息,第二指示信息用于指示允许UE同时传输数据的波束;
根据第二指示信息,确定允许UE同时传输数据的波束。
在第二方面的第三种可选的实现方式中,该方法还包括:
为UE配置的SRS资源为多天线端口的SRS资源块,第二指示信息用于指示SRS资源块对应的多个天线端口;
或者,
为UE配置的SRS资源为SRS资源集合,SRS资源集合由多个SRS资源块组成,第二指示信息用于指示SRS资源集合中的多个资源块;
或者,
为UE配置的SRS资源为SRS资源集合,SRS资源集合由多个SRS资源块组成,其中至少一个SRS资源块为多天线端口的SRS资源块,第二指示信息用于指示SRS资源集合中的SRS资源块和/或SRS资源块对应的天线端口。
第三方面、提供一种网络设备,该设备包括:
处理单元,用于生成第一指示信息,第一指示信息用于指示为UE配置的SRS资源中的多个部分与多个波束的映射关系;其中,不同的部分对应不同的波束,映射关系中的多个波束允许同时用于传输;
发送单元,用于向UE发送第一指示信息。
在第三方面的第一种可选的实现方式中,发送单元,还用于向UE发送第一配置信息,第一配置信息用于为UE配置多天线端口的SRS资源块,第一指示信息用于指示SRS资源块对应的多个天线端口与多个波束的映射关系;或者,
向UE发送第二配置信息,第二配置信息用于为UE配置SRS资源集合, SRS资源集合由多个SRS资源块组成,第一指示信息用于指示为UE配置SRS资源集合中的多个SRS资源块与多个波束的映射关系;
或者,
向UE发送第三配置信息,第三配置信息用于为UE配置SRS资源集合,SRS资源集合由多个SRS资源块组成,其中至少一个SRS资源块为多天线端口的SRS资源块,第一指示信息用于指示为UE配置SRS资源集合中的SRS资源块和/或SRS资源块对应的天线端口与多个波束的映射关系。
在第三方面的第二种可选的实现方式中,处理单元,还用于生成第二指示信息,第二指示信息用于指示允许UE同时传输数据的波束;
发送单元,还用于向UE发送第四配置信息,第四配置信息用于为UE配置数据传输资源;以及向UE发送第二指示信息。
在第三方面的第三种可选的实现方式中,为UE配置的SRS资源为多天线端口的SRS资源块,第二指示信息具体用于指示SRS资源块对应的多个天线端口;
或者,
为UE配置的SRS资源为SRS资源集合,SRS资源集合由多个SRS资源块组成,第二指示信息具体用于指示SRS资源集合中的多个SRS资源块;
或者,
为UE配置的SRS资源为SRS资源集合,SRS资源集合由多个SRS资源块组成,其中至少一个SRS资源块为多天线端口的SRS资源块,第二指示信息具体用于指示SRS资源集合中的SRS资源块和/或SRS资源块对应的天线端口。
第四方面,提供一种UE,该UE包括:
接收单元,用于接收第一指示信息,第一指示信息用于指示为UE配置的SRS资源中的多个部分与多个波束的映射关系;其中,不同的部分对应不同的波束,映射关系中的多个波束允许同时用于传输;以及根据第一指示信息,在SRS资源上发送SRS。
在第四方面的第一种可选的实现方式中,接收单元,还用于接收第一配置信息,第一配置信息用于为UE配置多天线端口的SRS资源块,第一指示 信息用于指示SRS资源块对应的多个天线端口与多个波束的映射关系;
处理单元,用于根据第一配置信息,确定为UE配置的SRS资源;
或者,
接收单元,还用于接收第二配置信息,第二配置信息用于为UE配置SRS资源集合,SRS资源集合由多个SRS资源块组成,第一指示信息用于指示为UE配置SRS资源集合中的多个SRS资源块与多个波束的映射关系;
处理单元,用于根据第二配置信息,确定为UE配置的SRS资源;
或者,
接收单元,还用于接收第三配置信息,第三配置信息用于为UE配置SRS资源集合,SRS资源集合由多个SRS资源块组成,其中至少一个SRS资源块为多天线端口的SRS资源块,第一指示信息用于指示为UE配置SRS资源集合中的SRS资源块和/或SRS资源块对应的天线端口与多个波束的映射关系;
处理单元,用于根据第二配置信息,确定为UE配置的SRS资源。
在第四方面的第二种可选的实现方式中,接收单元,还用于接收第四配置信息,第四配置信息用于为UE配置数据传输资源;以及接收第二指示信息,第二指示信息用于指示允许UE同时传输数据的波束;
处理单元,还用于根据第四配置信息,确定为UE配置的数据传输资源;以及根据第二指示信息,确定允许UE同时传输数据的波束。
在第四方面的第三种可选的实现方式中,为UE配置的SRS资源为多天线端口的SRS资源块,第二指示信息用于指示SRS资源块对应的多个天线端口;
或者,
为UE配置的SRS资源为SRS资源集合,SRS资源集合由多个SRS资源块组成,第二指示信息用于指示SRS资源集合中的多个SRS资源块;
或者,
为UE配置的SRS资源为SRS资源集合,SRS资源集合由多个SRS资源块组成,其中至少一个SRS资源块为多天线端口的SRS资源块,第二指示信息用于指示SRS资源集合中的SRS资源块和/或SRS资源块对应的天线端口。
在上述第一方面至第四方面中,在为UE配置的SRS资源为多天线端口 的SRS资源块的情况下,上述第二指示信息用于指示一个SRS资源块对应的多个天线端口;在为UE配置的SRS资源为由多个SRS资源块组成的SRS资源集合的情况下,第二指示信息用于指示一个SRS资源集合中的多个SRS资源块;在为UE配置的SRS资源为由多个SRS资源块组成的SRS资源集合,且其中至少一个SRS资源块为多天线端口的SRS资源块的情况下,上述第二指示信息用于指示一个SRS资源集合中的SRS资源块和/或SRS资源块对应的天线端口。第五方面,提供一种网络设备,该网络设备包括:处理器、收发器和存储器。存储器用于存储计算机执行指令,当该网络设备运行时,处理器执行存储器存储的计算机执行指令,以使该网络设备执行上述第一方面或其任意一种可选的实现方式所述的指示上行传输的方法。
第六方面,提供一种计算机可读存储介质,计算机可读存储介质中存储有一个或多个程序,一个或多个程序包括计算机执行指令,当网络设备的处理器执行该计算机执行指令时,该网络设备执行上述第一方面或其任意一种可选的实现方式所述的指示上行传输的方法。
第七方面,提供一种包括计算机指令的计算机程序产品,当该计算机程序产品在处理器上运行时,使得该处理器执行上述第一方面或其任意一种可选的实现方式中的指示上行传输的方法。
第八方面,提供一种UE,该UE包括:处理器、收发器和存储器。存储器用于存储计算机执行指令,当该UE运行时,处理器执行存储器存储的计算机执行指令,以使该UE执行上述第二方面或其任意一种可选的实现方式所述的指示上行传输的方法。
第九方面,提供一种计算机可读存储介质,计算机可读存储介质中存储有一个或多个程序,一个或多个程序包括计算机执行指令,当UE的处理器执行该计算机执行指令时,该UE执行上述第二方面或其任意一种可选的实现方式所述的指示上行传输的方法。
第十方面,提供一种包括计算机指令的计算机程序产品,当该计算机程序产品在处理器上运行时,使得该处理器执行上述第二方面或其任意一种可选的实现方式中的指示上行传输的方法。
附图说明
图1为本公开实施例提供的一种无线通信系统的系统架构图;
图2为本公开实施例提供的一种基站的结构示意图;
图3为本公开实施例提供的一种手机的结构示意图;
图4为本公开实施例提供的一种天线发送波束的示意图;
图5为本公开实施例提供的一种指示上行传输的方法示意图一;
图6为本公开实施例提供的一种2天线端口的SRS资源导频图样的示意图;
图7为本公开实施例提供的一种指示上行传输的方法示意图二;
图8为本公开实施例提供的一种指示上行传输的方法示意图三;
图9为本公开实施例提供的一种网络设备的结构示意图;
图10为本公开实施例提供的一种UE的结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行详细地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。
在本公开实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本公开实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更好或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。本文中符号“/”表示关联对象是或者的关系,例如A/B表示A或者B。
本公开实施例中的术语“第一”和“第二”等是用于区别不同对象,而不是用于描述特定顺序。例如,第一配置信息和第二配置信息是用于区别不同配置信息,而不是用于描述不同配置信息的特定顺序。
在本公开的描述中,除非另有说明,“多个”的含义是指两个或两个以上。 例如,多个波束是指两个或两个以上的波束。
本申请提供的技术方案可以应用于各种通信系统,例如,5G通信系统,未来演进系统或者多种通信融合系统等等。可以包括多种应用场景,例如,机器对机器(machine to machine,M2M)、设备到设备(Device to Device,D2D)、宏微通信、增强型移动宽带(enhance mobile broadband,eMBB)、超高可靠性与超低时延通信(ultra reliable&low latency communication,uRLLC)以及海量机器类通信(massive machine type communication,mMTC)等场景。例如:本申请实施例可以应用于与5G通信系统中的网络设备与用户设备之间的通信。
相关技术中,在终端发送上行数据之前,可以采用探测导频信号来进行上行波束训练,在上行波束训练过程中UE每次只能采用一个波束在SRS资源上向网络设备发送SRS信号,这样在完成上行波束训练的过程中需要发送较多次SRS,使得上行波束训练的效率较低。
为了解决上述问题,本公开实施例提供一种指示上行传输的方法,该方法可以生成用于指示为UE配置的SRS资源中的多个部分与多个波束的映射关系的第一指示信息,并将该第一指示信息发送至UE,因此UE在为其分配的SRS资源上发送SRS时,可以根据该第一指示信息选择上述映射关系涉及的多个波束中的至少两个波束,在该SRS资源中与该至少两个波束对应的部分上发送SRS,从而可以实现同时采用至少两个波束传输SRS,减少上行波束训练过程的时延,提高上行波束训练的效率。
进一步的,本公开实施例提供的指示上行传输的方法中,由于可以向UE发送用于为UE配置数据传输资源的第四配置信息,并且可以生成用于指示允许UE同时传输数据的波束的第二指示信息,并向UE发送该第二指示信息,因此在基站需要UE做多流并行传输(即基站需要UE同时采用多个波束向其发送数据)、或者UE需要多流并行传输等情况下,UE可以在基站为其指示的允许同时传输数据的波束中选择至少两个波束在基站为其配置的数据传输资源上传输数据。从而可以在数据传输阶段实现多流并行传输。
需要说明的是,本公开实施例提供的指示上行传输的方法中,网络设备可以为该网络设备的覆盖范围内的多个终端分别配置SRS资源和波束,为了 更加清楚地描述本公开实施例的技术方案,本公开实施例中仅以网络设备为该网络设备的覆盖范围内的一个用户设备配置SRS资源和波束为例进行示例性的描述。
本公开实施例提供的指示上行传输的方法,可以应用于无线通信系统。示例性的,如图1所示的无线通信系统为本公开实施例提供的一种无线通信系统的系统架构示意图。在图1中,该无线通信系统包括用户设备和网络设备。在实际应用中上述用户设备与网络设备之间的连接可以为无线连接。
本公开实施例中的网络设备可以是全球移动通信系统(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)网络中的基站收发信台(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)中的NB(NodeB),还可以是长期演进(Long Term Evolution,LTE)中的eNB或eNodeB(Evolved Node B)。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。网络设备还可以是5G通信系统中的网络设备或未来演进网络中的网络设备。
示例性的,在本公开实施例中,图1所示的网络设备可以为基站,下面结合图2对本公开实施例中的基站的各个构成部件进行详细的说明。如图2所示,基站可以包括:射频拉远单元(radio remote unit,RRU)、基带处理单元(building base band unit,BBU)和天线,RRU和BBU之间可以用光纤连接,RRU再通过同轴电缆及功分器(或者耦合器)连接至天线,通常,一个BBU可以连接多个RRU。
其中,RRU可以包括4个模块:数字中频模块、收发信机模块、功放模块和滤波模块。数字中频模块用于光传输的调制解调、数字上下变频、数模转换等;收发信机模块完成中频信号到射频信号的变换;再经过功放模块放大以及滤波模块滤波后,将射频信号通过天线发射出去。
BBU用于完成Uu接口(即用户设备与基站之间的接口)的基带处理功能(例如编码、复用、调制和扩频等)、无线网络控制器(radio network controller,RNC)和基站之间的逻辑接口的接口功能、信令处理、本地和远程操作维护功能,以及基站系统的工作状态监控和告警信息上报功能等。
本公开实施例中的用户设备可以为个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备,用户设备也可以为可以是手机、移动台(mobile station,MS),移动终端(mobile terminal),笔记本电脑等,该用户设备可以经无线接入网(radio access network,RAN)与一个或多个核心网进行通信,例如,用户设备可以是移动电话(或称为“蜂窝”电话)或具有移动终端的计算机等,例如,用户设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语音和/或数据。无线终端还可以为有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的用户设备或者未来演进的网络中的用户设备等。上述仅仅是一种示例,实际应用中不限于此。
示例性的,在本公开实施例中,图1所示的用户设备可以为手机,下面结合图3对本公开实施例中的手机的各个构成部件进行详细的说明。如图3所示,手机可以包括:处理器11,射频(radio frequency,RF)电路12、电源13、存储器14、输入单元15、显示单元16、音频电路17等部件。本领域技术人员可以理解,图3中示出的手机的结构并不构成对手机的限定,其可以包括比如图3所示的部件更多或更少的部件,或者可以组合如图3所示的部件中的某些部件,或者可以与如图3所示的部件布置不同。
处理器11是手机的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器14内的软件程序和/或模块,以及调用存储在存储器14内的数据,执行手机的各种功能和处理数据,从而对手机进行整体监控。可选的,处理器11可包括一个或多个处理单元;可选的,处理器11可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器11中。
RF电路12可用于收发信息或者用于通话过程中信号的接收和发送,特别地,将基站的下行信息接收后,给处理器11处理;另外,将上行的数据发 送给基站。通常,RF电路包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(low noise amplifier,LNA)、双工器等。此外,RF电路12还可以通过无线通信与网络和其他设备通信。
电源13可以为电池。可选的,电源13可以通过电源管理系统与处理器11逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
存储器14可用于存储软件程序以及模块,处理器11通过运行存储在存储器14的软件程序以及模块,从而执行手机的各种功能应用以及数据处理。存储器14可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、图像数据、电话本等)等。此外,存储器14可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元15可用于接收输入的数字或字符信息,以及产生与手机的用户设置以及功能控制有关的键信号输入。具体地,输入单元15可包括触摸屏151以及其他输入设备152。触摸屏151,也称为触摸面板,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触摸屏151上或在触摸屏151附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触摸屏151可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器11,并能接收处理器11发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触摸屏151。其他输入设备152可以包括但不限于物理键盘、功能键(比如音量控制按键、电源开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元16可用于显示由用户输入的信息或提供给用户的信息以及手机的各种菜单。显示单元16可包括显示面板161,可选的,可以采用液晶显 示器(liquid crystal display,LCD)、有机发光二极管(organic light-emitting diode,OLED)等形式来配置显示面板161。进一步的,触摸屏151可覆盖显示面板161,当触摸屏151检测到在其上或附近的触摸操作后,传送给处理器11以确定触摸事件的类型,随后处理器11根据触摸事件的类型在显示面板161上提供相应的视觉输出。虽然在图3中,触摸屏151与显示面板161是作为两个独立的部件来实现手机的输入和输出功能,但是在某些实施例中,可以将触摸屏151与显示面板161集成而实现手机的输入和输出功能。
音频电路17、扬声器171和麦克风172,用于提供用户与手机之间的音频接口。音频电路17可将接收到的音频数据转换后的电信号,传输到扬声器171,由扬声器171转换为声音信号输出;另一方面,麦克风172将收集的声音信号转换为电信号,由音频电路17接收后转换为音频数据,再将音频数据输出至RF电路12以发送给比如另一手机,或者将音频数据输出至存储器14以便进一步处理。
可选的,上述手机还可以包括无线保真(wireless fidelity,WiFi)模块、蓝牙模块等,在此不再赘述。
本公开实施例中的基站和UE可以为支持多输入多输出(multiple-input multiple-output,MIMO)技术的设备,MIMO技术是指在发射端和接收端分别使用多个发射天线和接收天线,使信号通过发射端与接收端的多个天线传送和接收,从而改善通信质量。它能充分利用空间资源,通过多个天线实现多发多收,在不增加频谱资源和天线发射功率的情况下,可以成倍的提高系统信道容量。
本公开实施例中的基站和UE的天线中可以包括多个天线面板,每个天线面板上可以设置多个阵元,采用波束赋性技术可以通过天线中的阵元发送具有指向性(即具有一定方向性和波瓣宽度)的波束。示例性的,如图4所示可以为天线发送波束的示意图,其中,图4是以该天线可以该天线包括两个天线面板每个天线面板中的可以发送5个不同的波束,即该天线可以发送10个不同的波束(在图4中表示分别将该10个波束表示为波束1至波束10)为例进行说明的。
首先对本公开实施例中可能涉及到的一些概念进行介绍。
SRS:SRS是上行参考信号(也称为上行导频信号)的一种,其是由UE提供给基站用于信道估计的一种已知信号。
SRS资源:通常SRS资源是指SRS所采用的伪随机序列、发送SRS的频域资源、时域资源和码域资源等。本公开实施例中所涉及的SRS资源以发送SRS的频域资源和时域资源为例进行说明。
SRS资源块:本公开实施例中,SRS资源块是指SRS资源的最基本配置单元。即基站为UE配置SRS资源时,至少配置一个SRS资源块。
天线端口:本公开实施例中提到的天线端口是指天线支持的用于传输的逻辑端口,其与物理的天线端口并没有一一对应的关系,而是与参考信号具有一定的对应关系。可以采用某个或某些天线端口用于传输某一类的参考信号,例如,本公开实施例中可以采用多个天线端口传输SRS。
下面对本公开实施例提供的指示上行传输的方法和装置进行示例性的说明。
本公开实施例提供的指示上行传输的方法可以应用于上行波束训练过程和数据发送过程。
需要说明的是,下面在本公开实施例中均以网络设备为基站为例进行示例性的说明。
本公开实施例中,基站为UE配置的SRS资源包括三种不同的情况。其中,第一种情况为:基站为UE配置的SRS资源为多天线端口的SRS资源块;第二种情况为:基站为UE配置的SRS资源为SRS资源集合,该SRS资源集合由多个SRS资源块组成;第三种情况为:基站为UE配置的SRS资源为SRS资源集合,该SRS资源集合由多个SRS资源块组成,其中至少一个SRS资源块为多天线端口的SRS资源块。
由于在上述三种不同情况下本公开实施例提供的指示上行传输的方法的流程有所不同,因此为了更加清楚的说明本公开实施例提供的指示上行传输的方法,下面的实施例中将在上述三种情况下分别进行示例性的说明。
第一种情况:
如图5所示,本公开实施例提供的指示上行传输的方法包括以下步骤S101-S115。
S101、UE向基站发送波束信息;相应的,基站接收该波束信息。
S102、基站根据该波束信息确定UE可用于上行波束训练的波束。
其中,上述可用于上行波束训练的波束为UE的发送波束。
本公开实施例提供的指示上行传输的方法可以应用于多种网络场景。
可选的,该方法可以应用于对称性网络的场景,例如应用于采用时分双工(time division duplexing,TDD)技术的网络;该方法还可以应用于非对称性网络的场景,例如应用于采用频分双工(frequency division duplexing,FDD)技术的网络。
场景1、应用于对称性网络的场景。
基站和UE的接收波束均与发送波束一一对应,例如,UE包括10个发送波束,可以为发送波束1至发送波束10,则UE相应的也包括10个接收波束,可以为接收波束1和接收波束10。
在场景1中,在下行波束训练过程中执行上述S101和S102。示例性的,在下行波束训练过程中,UE接收基站的多个发送波束发送的SRS,在该多个波束中选择至少一个波束,并确定与该基站的发送波束对应的UE的发送波束,将该UE的发送波束的信息反馈给基站。例如,在UE采用UE的接收波束接收基站的发送波束时,UE确定某些接收波束(例如,接收波束1和接收波束2)接收到的SRS的信号质量较好时,UE则认为与接收波束1和接收波束2对应的发送波束1和发送波束2发送SRS时的信号质量也较好,UE可以将该发送波束1和发送波束2的信息(具体的可以为发送波束1的索引和发送波束2的索引)反馈给基站。从而基站可以知道UE的发送波束1和发送波束2发送信号时的信号质量较好,然后可以通过下述S103-S109的方法指示UE基于发送波束1和发送波束2进行上行波束训练。
场景2、应用于非对称性网络的场景。
首先,UE可以将其的发送波束的信息上报给基站,从而基站相应的执行上述S102。例如,基站可以接收UE上报的用于进行上行波束训练的发送波束的信息(例如波束的标识),以使得基站可以获知用于进行上行波束训练的波束。然后通过下述S103-S109的方法指示UE基于基站指示的UE的发送波束进行上行波束训练。
可选的,波束的标识可以为探测导频信号资源索引(SRS Resource Index,SRI)SRI或信道状态信号导频信号资源索引(Channel status information Reference Signal Resource Index,CRI)。
通常,SRI可以用于指示UE的发送波束,CRI用于指示基站的发送波束,因此一般基站会采用SRI向UE指示UE的发送波束。本公开实施例中,由于在上述场景1中,当基站采用CRI指示基站的发送波束时,UE可以根据基站指示的发送波束确定对应的UE的发送波束,因此在上述场景1中,也可以采用CRI向UE指示UE的发送波束。
需要说明的是,本公开实施例中下面的内容所涉及到的波束均是指UE的发送波束。
S103、基站向UE发送第一配置信息;相应的,UE接收该第一配置信息。
S104、UE根据该第一配置信息,确定基站为其配置的SRS资源。
其中,该第一配置信息用于为UE配置多天线端口的SRS资源块。
可选的,本公开实施例中,基站可以根据接收到的UE发送的波束信息,确定UE可用于上行波束训练的波束,然后基站可以根据UE可用于上行波束训练的波束的个数为UE配置多天线端口的SRS资源块。例如,若基站确定UE可用于上行波束训练的发送波束的个数为2个,则基站可以为UE配置2天线端口的SRS资源块。
S105、基站生成第一指示信息。
S106、基站向UE发送该第一指示信息;相应的,UE接收该第一指示信息。
其中,该第一指示信息用于指示为UE配置的SRS资源中的多个部分与多个波束的映射关系;其中,不同的部分对应不同的波束,该映射关系中的多个波束允许同时用于传输。
需要说明的是,本公开实施例中,SRS资源可以划分为多个部分,基站可以配置多个部分中每个部分与波束的对应关系,也可以配置该多个部分中的一些部分与波束的对应关系。其中,每个部分可以对应一个波束。在本公开的下述实施例中,均是以基站在配置SRS资源中的多个部分与多个波束的映射关系时,为每一个部分均配置了对应的波束为例进行说明的。
在为UE配置的SRS资源为多天线端口的SRS资源块的情况下,为UE配置的SRS资源中的不同部分分别为不同天线端口的资源,因此上述第一指示信息具体可以用于指示SRS资源块对应的多个天线端口与多个波束的映射关系。
示例性的,以基站为UE配置2天线端口的SRS资源块为例,基站可以指示2个波束与2个天线端口的映射关系,假设该两个波束为波束1和波束2,该2个天线端口为天线端口1和天线端口2,则基站可以配置波束1对应天线端口1,波束2对应天线端口2。
可选的,上述映射关系中的波束可以用波束的标识指示,上述映射关系中的天线端口可以用端口标识来指示。
示例性的,可以采用CRI1指示上述示例中的波束1,采用CRI2指示上述示例中的波束2,采用port1指示上述天线端口1,采用port2指示上述天线端口2,则天线端口与波束的映射关系可以如表1所示。
表1
天线端口 波束
port1 CRI1
port2 CRI2
其中,上述为UE配置的资源为多天线端口的SRS资源块,可以理解为将为UE配置的SRS资源块可以映射到多个天线端口。
示例性的,以上述为UE配置的资源为一个2天线端口的SRS资源块为例,假设该两天端口为UE的天线端口1和天线端口2,则将上述SRS资源映射到该天线端口1和天线端口2的SRS资源导频图样可以如图6所示。
S107、UE根据该第一指示信息,在基站为其配置的SRS资源上发送SRS;相应的,基站接收SRS。
本公开实施例中,基站向UE发送该第一指示信息,相应的,UE接收该第一指示信息,然后UE可以在基站为其配置的SRS资源上发送SRS。
其中,上述UE在基站为其配置的SRS资源上发送SRS可以理解为:UE可以在第一指示消息中指示的映射关系中的多个波束中选择至少一个波束,并在该至少一个波束对应的天线端口的资源上发送SRS。
本公开实施例中,当UE在上述映射关系中的多个波束中选择至少两个波束,并在该至少两个波束对应的天线端口的资源上发送SRS时,可以在上行波束训练过程中实现UE用多个波束同时向基站发送SRS,从而可以提高上行波束训练的效率。
S108、基站根据UE发送的SRS,确定目标波束。
S109、基站向UE发送该目标波束的信息;相应的,UE接收目标波束的信息。
示例性的,若上述S108中UE采用了两个波束向基站发送SRS,则基站可以在该两个波束中确定目标波束,并将该目标波束的信息(可以为波束的标识)发送至基站。例如,UE可以在上述至少两个波束中选择发送的SRS的信号质量较好的波束作为目标波束。
其中,上述目标波束即为通过波束训练过程选择的用于传输数据的波束。
本公开实施例中通过上述S101-S109实现上行波束训练的过程之后,在UE发送上行数据时,可以采用该目标波束向UE发送数据。具体的,可以采用该目标波束在基站为UE配置的数据传输资源上发送数据。
可选的,在基站需要UE做多流并行传输(即基站需要UE同时采用多个波束向其发送数据)、或者UE需要多流并行传输等情况下,本公开实施例还包括下述步骤S110-S115,这一过程可以基于上述S103-S106实现,与其他其他步骤无依赖关系。
S110、基站向UE发送第二指示信息;相应的,UE接收该第二指示信息。
S111、UE根据该第二指示信息,确定允许其同时传输数据的波束。
其中,该第二指示信息用于指示允许UE同时传输数据的波束。具体的,第二指示信息具体用于指示上述SRS资源块对应的多个天线端口,以使得UE在接收到该第二指示信息时,可以采用上述映射关系(即基站指示的天线端口与波束的映射关系)确定与该多个天线端口对应的波束为允许同时传输数据的波束。
可选的,该第二指示信息中可以携带该SRS资源块的标识和该SRS资源块对应的多个天线端口的端口标识,以指示该SRS资源块对应的多个天线端口;该第二指示信息中还可以携带该SRS资源块的标识,以指示该SRS资源 块中所有的天线端口。
可选的,上述第二指示信息具体用于指示一个SRS资源块对应的多个天线端口。该第二指示信息中的SRS资源的标识的数量,可以通过网络配置或者预先约定的规则,限定在一个第二指示信息中携带的SRS资源块的标识的数量为一个。
S112、基站向UE发送第四配置信息;相应的,UE接收该第四配置信息。
S113、UE根据该第四配置信息,确定基站为其配置的数据传输资源。
其中,该第四配置信息用于为UE配置数据传输资源。
需要说明的是,本公开实施例不限定上述S110-S111与上述S112-S113的执行顺序,即本公开实施例中,可以先执行上述S110-S111,后执行上述S112-S113;也可以先执行上述S112-S113,后执行上述S110-S111;还可以同时执行上述S110-S111与上述S112-S113。
S114、UE从允许用于同时传输的波束中选择至少两个波束。
S115、UE采用该至少两个波束在基站为其配置的数据传输资源上向基站发送数据;相应的,基站接收数据。
上述S109-S115的过程中,本公开实施例中基站可以向UE发送用于为UE配置数据传输资源的第四配置信息,并且可以生成用于指示允许UE同时传输数据的波束的第二指示信息,并向UE发送该第二指示信息,因此在基站需要UE做多流并行传输(即基站需要UE同时采用多个波束向其发送数据)、或者UE需要多流并行传输等情况下,UE可以在基站为其指示的允许同时传输数据的波束中选择至少两个波束在基站为其配置的数据传输资源上传输数据。
可选的,本公开实施例中的部分方法步骤之间可以合并,例如上述S103和S105可以合并为一个方法步骤,即将上述第一配置信息和上述第一指示信息携带在同一个信息中发送给UE。
第二种情况:
如图7所示,本公开实施例提供的指示上行传输的方法可以包括以下步骤S201-S215。
S201、UE向基站发送波束信息;相应的,基站接收该波束信息。
S202、基站根据该波束信息确定UE可用于上行波束训练的波束。
对于S201和S202的描述,具体可以参照上述对S101和S102的相关描述,此处不再赘述。
S203、基站向UE发送第二配置信息;相应的,UE接收该第二配置信息。
S204、UE根据该第二配置信息,确定基站为其配置的SRS资源。
其中,该第二配置信息用于为UE配置SRS资源集合(SRS resource Group/Set),该SRS资源集合由多个SRS资源块组成。
本公开实施例中,基站向UE发送第二配置信息,相应的,UE接收该第二配置信息,并根据该第二配置信息确定基站为其配置的SRS资源为SRS资源集合,且该SRS资源集合由多个SRS资源块组成。
本公开实施例中,基站可以根据接收到的UE发送的波束信息,确定UE可用于上行波束训练的波束,然后基站可以根据UE可用于上行波束训练的波束的个数为UE配置由多个SRS资源块组成的SRS资源集合。例如,若基站确定UE可用于上行波束训练的波束的个数为2个,则基站可以为UE配置由2个SRS资源块组成的SRS资源集合。
S205、基站生成第一指示信息。
S206、基站向UE发送该第一指示信息;相应的,UE接收该第一指示信息。
其中,该第一指示信息用于指示为UE配置的SRS资源中的多个部分与多个波束的映射关系;其中,不同的部分对应不同的波束,该映射关系中的多个波束允许同时用于传输。
在为UE配置的SRS资源为由多个SRS资源块组成的SRS资源集合的情况下,为UE配置的SRS资源中的不同部分分别为不同SRS资源块,因此上述第一指示信息具体可以用于指示SRS资源集合中的多个SRS资源块与多个波束的映射关系。
示例性的,以基站为UE配置由2个SRS资源块组成的资源集合为例,基站可以指示该2个波束与2个SRS资源块的映射关系,假设该两个波束为波束1和波束2,该2个SRS资源块为SRS资源块1和SRS资源块2,则基站可以配置波束1对应SRS资源块1,波束2对应SRS资源块2。
可选的,上述映射关系中的波束可以用波束的标识指示,上述映射关系中的SRS资源块可以用SRS资源块标识来指示。
示例性的,可以采用CRI1指示上述示例中的波束1,采用CRI2指示上述示例中的波束2,采用S1指示上述SRS资源块1,采用S2指示上述SRS资源块2,则SRS资源块与波束的映射关系可以如表2所示。
表2
SRS资源块 波束
S1 CRI1
S2 CRI2
S207、UE根据该第一指示信息,在基站为其配置的SRS资源上发送SRS;相应的,基站接收SRS。
本公开实施例中,基站向UE发送该第一指示信息,相应的,UE接收该第一指示信息,然后UE可以在基站为其配置的SRS资源上发送SRS。
其中,上述UE在基站为其配置的SRS资源上发送SRS可以理解为:在第一指示消息中指示的映射关系中的多个波束中选择至少一个波束,并在该至少一个波束对应的SRS资源块上发送SRS。
本公开实施例中,当UE在上述映射关系中的多个波束中选择至少两个波束,并在至少两个波束对应的SRS资源块上发送SRS时,可以在上行波束训练过程中实现UE用多个波束同时向基站发送SRS,从而可以提高上行波束训练的效率。
S208、基站根据UE发送的SRS,确定目标波束。
S209、基站向UE发送该目标波束的信息;相应的,UE接收目标波束的信息。
对于S208和S209的描述具体可以参见上述关于S108和S109的相关描述,此处不再赘述。
本公开实施例中通过上述S201-S209实现上行波束训练的过程之后,在UE发送上行数据时,可以采用该目标波束向UE发送数据。具体的,可以采用该目标波束在基站为UE配置的数据传输资源上发送数据。
可选的,在基站需要UE做多流并行传输(即基站需要UE同时采用多个波束向其发送数据)、或者UE需要多流并行传输等情况下,本公开实施例还 包括下述步骤S210-S215。
S210、基站向UE发送第二指示信息;相应的,UE接收该第二指示信息。
S211、UE根据该第二指示信息,确定允许其同时传输数据的波束。
其中,该第二指示信息用于指示允许UE同时传输数据的波束。具体的,第二指示信息具体用于指示SRS资源集合中的多个SRS资源块,以使得UE在接收到该第二指示信息时,可以采用上述映射关系(即基站指示的SRS资源块与波束的映射关系)确定与该多个SRS资源块对应的波束为允许同时传输数据的波束。
可选的,该第二指示信息中可以携带该SRS资源集合的标识和该SRS资源集合中的多个SRS资源块的标识,以指示该SRS资源集合对应的SRS资源块;该第二指示信息中还可以携带该SRS资源集合的标识,以指示该SRS资源集合中的所有SRS资源块。
可选的,上述第二指示信息具体用于指示一个SRS资源集合中的多个SRS资源块。该第二指示信息中的SRS资源集合的标识的数量,可以通过网络配置或者预先约定的规则,限定在一个第二指示信息中携带的SRS资源集合的标识的数量为一个。
S212、基站向UE发送第四配置信息;相应的,UE接收该第四配置信息。
S213、UE根据该第四配置信息,确定基站为其配置的数据传输资源。
其中,该第四配置信息用于为UE配置数据传输资源。
需要说明的是,本公开实施例不限定上述S210-S211与上述S212-S213的执行顺序,即本公开实施例中,可以先执行上述S210-S211,后执行上述S212-S213;也可以先执行上述S212-S213,后执行上述S210-S211;还可以同时执行上述S210-S211与上述S212-S213。
S214、UE从允许用于同时传输的波束中选择至少两个波束,
S215、UE采用该至少两个波束在基站为其配置的数据传输资源上向基站发送数据;相应的,基站接收数据。
上述S210-S215的过程中,本公开实施例中基站可以向UE发送用于为UE配置数据传输资源的第四配置信息,并且可以生成用于指示允许UE同时传输数据的波束的第二指示信息,并向UE发送该第二指示信息,因此在基 站需要UE做多流并行传输(即基站需要UE同时采用多个波束向其发送数据)、或者UE需要多流并行传输等情况下,UE可以在基站为其指示的允许同时传输数据的波束中选择至少两个波束在基站为其配置的数据传输资源上传输数据。
第三种情况:
如图8所示,本公开实施例提供的指示上行传输的方法可以包括以下步骤S301-S315。
S301、UE向基站发送波束信息;相应的,基站接收该波束信息。
S302、基站根据该波束信息确定UE可用于上行波束训练的波束。
对于S301和S302的描述,具体可以参照上述对S101和S102的相关描述,此处不再赘述。
S303、基站向UE发送第三配置信息;相应的,UE接收该第三配置信息。
S304、UE根据该第三配置信息,确定基站为其配置的SRS资源。
其中,该第三配置信息用于为UE配置SRS资源集合,该SRS资源集合由多个SRS资源块组成,其中至少一个SRS资源块为多天线端口的SRS资源块。
本公开实施例中,基站向UE发送第三配置信息,相应的,UE接收该第三配置信息,并根据该第三配置信息确定基站为其配置的SRS资源为SRS资源集合,且该SRS资源集合由多个SRS资源块组成,其中至少一个SRS资源块为多天线端口的SRS资源块。
本公开实施例中,基站可以根据接收到的UE发送的波束信息,确定UE可用于上行波束训练的波束,然后基站可以根据UE可用于上行波束训练的波束的个数为UE配置由多个SRS资源块组成的SRS资源集合。例如,若基站确定UE可用于上行波束训练的波束的个数为4个时,则基站可以为UE配置由3个SRS资源块组成的SRS资源集合,其中有一个SRS资源块为2天线端口的SRS资源块。
S305、基站生成第一指示信息。
S306、基站向UE发送该第一指示信息;相应的,UE接收该第一指示信息。
其中,该第一指示信息用于指示为UE配置的SRS资源中的多个部分与多个波束的映射关系;其中,不同的部分对应不同的波束,该映射关系中的多个波束允许同时用于传输。
在为UE配置的SRS资源为由多个资源块组成的SRS资源集合,且其中至少一个SRS资源块为多天线端口的SRS资源块时,上述第一指示信息具体可以用于指示该SRS资源集合中的SRS资源块和/或SRS资源块对应的天线端口与多个波束的映射关系。
可选的,上述映射关系中的波束可以用波束的标识指示,上述映射关系中的SRS资源块可以用SRS资源块标识来指示,上述映射关系中的天线端口可以用天线端口标识来指示。
示例性的,以基站为UE配置由3个SRS资源块组成的SRS资源集合,其中有一个SRS资源块为2天线端口的SRS资源块为例,基站可以指示4个波束与3个SRS资源块的映射关系,假设该4个波束为波束1、波束2、波束3和波束4,该3个SRS资源块为SRS资源块1、SRS资源块2和SRS资源块3,且SRS资源块3为2天线端口(分别为天线端口1和天线端口2)的SRS资源块,则基站可以配置波束1对应SRS资源块1,波束2对应SRS资源块2,波束3和波束4对应SRS资源块3(具体的,可以配置波束3对应SRS资源块3对应的天线端口1,配置波束4对应SRS资源块3对应的天线端口2)。
示例性的,可以采用CRI1指示上述示例中的波束1,采用CRI2指示上述示例中的波束2,采用CRI3指示上述示例中的波束3,采用CRI4指示上述示例中的波束4,采用S1指示上述SRS资源块1,采用S2指示上述SRS资源块2,采用S3指示上述SRS资源块3,采用port1指示SRS资源块3对应的天线端口1,采用port2指示SRS资源块3对应的天线端口2,则SRS资源块1和资源块2与波束1和波束2的映射关系以及SRS资源块3对应的天线端口1和天线端口2与波束3和波束4的映射关系可以如表3和表4所示。
表3
SRS资源块 波束
S1 CRI1
S2 CRI2
S3 CRI3和CRI4
表4
S3对应的天线端口 波束
port1 CRI3
port2 CRI4
S307、UE根据该第一指示信息,在基站为其配置的SRS资源上发送SRS;相应的,基站接收SRS。
本公开实施例中,基站向UE发送该第一指示信息,相应的,UE接收该第一指示信息,然后UE可以在基站为其配置的SRS资源上发送SRS。
其中,上述UE在基站为其配置的SRS资源上发送SRS可以理解为:在第一指示消息中指示的映射关系中的多个波束中选择至少一个波束,并在该至少一个波束对应的SRS资源块和/或天线端口的资源上发送SRS。
本公开实施例中,当UE在上述映射关系中的多个波束中选择至少两个波束,并在至少两个波束对应的SRS资源块和/或天线端口的资源上发送SRS时,可以在上行波束训练过程中实现UE用多个波束同时向基站发送SRS,从而可以提高上行波束训练的效率。
S308、基站根据UE发送的SRS,确定目标波束。
S309、基站向UE发送该目标波束的信息;相应的,UE接收目标波束的信息。
对于S308和S309的描述具体可以参见上述关于S108和S109的相关描述,此处不再赘述。
本公开实施例中通过上述S301-S309实现上行波束训练的过程之后,在UE发送上行数据时,可以采用该目标波束向UE发送数据。具体的,可以采用该目标波束在基站为UE配置的数据传输资源上发送数据。
可选的,在基站需要UE做多流并行传输(即基站需要UE同时采用多个波束向其发送数据)、或者UE需要多流并行传输等情况下,本公开实施例还包括下述步骤S310-S315。
S310、基站向UE发送第二指示信息;相应的,UE接收该第二指示信息。
S311、UE根据该第二指示信息,确定允许其同时传输数据的波束。
其中,该第二指示信息用于指示允许UE同时传输数据的波束。具体的, 第二指示信息具体用于指示SRS资源集合中的SRS资源块和/或SRS资源块对应的天线端口,以使得UE在接收到该第二指示信息时,可以采用上述映射关系(即基站指示的SRS资源集合中的SRS资源块和/或SRS资源块对应的天线端口与多个波束的映射关系)确定与该SRS资源集合中的SRS资源块和/或SRS资源块对应的天线端口对应的波束为允许同时传输数据的波束。
可选的,该第二指示信息中可以携带该SRS资源集合的标识、该SRS资源集合中的多个SRS资源块的标识、以及该多个SRS资源块对应的天线端口的标识,以指示SRS资源集合中的SRS资源块和/或SRS资源块对应的天线端口;该第二指示信息中还可以携带该SRS资源集合的标识,以指示SRS资源集合中的所有SRS资源块以及所有SRS资源块对应的所有天线端口。
示例性的,以基站为UE配置的SRS资源为3个SRS资源块组成的SRS资源集合,且该SRS资源集合中各个部分的映射关系如上述表3和表4所示为例。在基站指示波束CRI1、CRI2、CRI3和CRI4时,基站可以在该第二指示信息中携带S1、S2和S3;也可以在该第二指示信息中携带S1、S2、S3以及port1和port2;还可以通过在该第二指示信息中直接携带该SRS资源集合的标识。
又示例性的,在基站指示上述表3和表4中的波束CRI1、CRI2和CRI3时,基站可以在该第二指示信息中携带S1、S2、S3以及port1;基站还可以在该第二指示信息中携带S1、S2和port1。
可选的,上述第二指示信息具体用于指示一个SRS资源集合中的SRS资源块和/或SRS资源块对应的天线端口。该第二指示信息中的SRS资源集合的标识的数量,可以通过网络配置或者预先约定的规则,限定在一个第二指示信息中携带的SRS资源集合的标识的数量为一个。
S312、基站向UE发送第四配置信息;相应的,UE接收该第四配置信息。
S313、UE根据该第四配置信息,确定基站为其配置的数据传输资源。
其中,该第四配置信息用于为UE配置数据传输资源。
需要说明的是,本公开实施例不限定上述S310-S311与上述S312-S313的执行顺序,即本公开实施例中,可以先执行上述S310-S311,后执行上述S312-S313;也可以先执行上述S312-S313,后执行上述S310-S311;还可以 同时执行上述S310-S311与上述S312-S313。
S314、UE从允许用于同时传输的波束中选择至少两个波束。
S315、UE采用该至少两个波束在基站为其配置的数据传输资源上向基站发送数据;相应的,基站接收数据。
上述S310-S315的过程中,本公开实施例中基站可以向UE发送用于为UE配置数据传输资源的第四配置信息,并且可以生成用于指示允许UE同时传输数据的波束的第二指示信息,并向UE发送该第二指示信息,因此在基站需要UE做多流并行传输(即基站需要UE同时采用多个波束向其发送数据)、或者UE需要多流并行传输等情况下,UE可以在基站为其指示的允许同时传输数据的波束中选择至少两个波束在基站为其配置的数据传输资源上传输数据。
本公开实施例可以根据上述方法实施例对网络设备和UE进行功能模块的划分,例如,可以对应各个功能划分各个功能模块/单元,也可以将两个或两个以上的功能集成在一个处理模块/单元中。上述集成的模块/单元既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本公开实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
示例性的,在采用对应各个功能划分各个功能单元的情况下,本公开实施例提供的接入网设备网络设备的结构示意图如图9所示,在图9中,该接入网设备网络设备包括:处理单元21和发送单元22。
其中,上述处理单元21用于支持接入网设备网络设备执行上述方法实施例中基站所执行的S102、S105、S108、S202、S205、S208、S302、S305和S108。
上述发送单元22,用于支持接入网设备网络设备执行上述方法实施例中基站所执行的S103、S106、S109、S110、S112、S203、S206、S209、S210、S212、S303、S306、S309、S310和S312。
上述处理单元21和发送单元22还可以用于执行本文所描述的技术的其它过程。
可选的,上述网络设备还可以包括接收单元,该接收单元可以用于支持 接入网设备网络设备执行上述方法实施例中基站所执行的S101、S107、S115、S201、S207、S215、S301、S307和S315。
可选的,上述接收单元可以与上述发送单元集成在一个收发单元/收发器中。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能单元的功能描述,在此不再赘述。
其中,上述处理单元21可以是网络设备中的处理器或控制器,该处理器或控制器可以为上述如图2所示的基站中的基带处理单元,该处理器或控制器可以实现或执行结合本公开公开内容所描述的各种示例性的逻辑方框,单元和电路。该处理器或控制器可以是中央处理器(central processing unit,CPU),通用处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application-specific integrated circuit,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行上述公开内容所描述的各种示例性的逻辑方框,单元和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等。
上述发送单元22可以是网络设备中的收发器、收发电路或通信接口等,该收发器、收发电路或通信接口等可以为上述如图2所示的基站中的天线。
可选的,本公开实施例提供的网络设备还可以包括存储单元,该存储单元可以是网络设备中的存储器等。该存储器可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);该存储器也可以包括非易失性存储器(non-volatile memory),例如只读存储器(read-only memory,ROM),快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);该存储器还可以包括上述种类的存储器的组合。
上述网络设备还可以包括总线,总线可以分为地址总线、数据总线、控制总线等。
本公开实施例提供一种计算机可读存储介质,计算机可读存储介质中存储有一个或多个程序,一个或多个程序包括计算机执行指令,当网络设备的 处理器执行该计算机执行指令时,该网络设备执行上述方法实施例中基站执行的指示上行传输的方法。
本公开实施例提供一种包括计算机指令的计算机程序产品,当该计算机程序产品在处理器上运行时,使得该处理器执行上述方法实施例中基站执行的指示上行传输的方法。
示例性的,在采用对应各个功能划分各个功能单元的情况下,本公开实施例提供的UE的结构示意图如图10所示,在图10中,该UE包括:接收单元31和处理单元32。
上述接收单元31用于支持UE执行上述方法实施例中的S103、S106、S109、S110、S112、S203、S206、S209、S210、S212、S303、S306、S309、S310和S312。
上述处理单元32用于支持UE执行上述方法实施例中的S104、S111、S113、S114、S204、S211、S213、S214、S304、S311、S313、S314。
上述接收单元31和处理单元32还可以用于执行本文所描述的技术的其它过程。
可选的,上述UE还可以包括发送单元,该接收单元可以用于支持UE执行上述方法实施例中UE所执行的S101、S107、S115、S201、S207、S215、S301、S307和S315。
可选的,上述接收单元可以与上述发送单元集成在一个收发单元/收发器中。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功单元的功能描述,在此不再赘述。
其中,上述处理单元31可以是UE中的处理器或控制器,该处理器或控制器可以为上述如图3所示的手机中的处理器11,该处理器或控制器可以实现或执行结合本公开公开内容所描述的各种示例性的逻辑方框,模块和电路。该处理器或控制器可以是中央处理器(central processing unit,CPU),通用处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application-specific integrated circuit,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、 硬件部件或者其任意组合。其可以实现或执行结合本公开公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等。
接收单元32可以是UE中的收发器、收发电路或通信接口等,该收发器、收发电路或通信接口等可以为上述如图3所示的手机中的RF电路。
可选的,本公开实施例提供的UE还可以包括存储单元,该存储单元可以是UE中的存储器等。示例性的。该存储器可以为上述图3所示的手机中的存储器14。该存储器可以包括易失性存储器,例如随机存取存储器;该存储器也可以包括非易失性存储器,例如只读存储器,快闪存储器,硬盘或固态硬盘;该存储器还可以包括上述种类的存储器的组合。
上述UE还可以包括总线,总线可以分为地址总线、数据总线、控制总线等。
本公开实施例提供一种计算机可读存储介质,计算机可读存储介质中存储有一个或多个程序,一个或多个程序包括计算机执行指令,当UE的处理器执行该计算机执行指令时,该UE执行上述方法实施例中UE执行的指示上行传输的方法。
本公开实施例提供一种包括计算机指令的计算机程序产品,当该计算机程序产品在处理器上运行时,使得该处理器执行上述方法实施例中UE执行的指示上行传输的方法。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块/单元的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块/单元,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本领域上的技术人员应明白,本公开实施例可提供为方法、系统、或计算机程序产品。因此,本公开实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但 不限于磁盘存储器、只读光盘(Compact Disc Read-Only Memory,CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开实施例是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之上,则本申请也意图包含这些改动和变型在上。

Claims (24)

  1. 一种指示上行传输的方法,包括:
    生成第一指示信息,所述第一指示信息用于指示为用户设备UE配置的探测导频信号SRS资源中的多个部分与多个波束的映射关系;其中,不同的部分对应不同的波束,所述映射关系中的多个波束允许同时用于传输;
    向所述UE发送所述第一指示信息。
  2. 根据权利要求1所述的方法,还包括:
    向所述UE发送第一配置信息,所述第一配置信息用于为所述UE配置多天线端口的SRS资源块,所述第一指示信息用于指示SRS资源块对应的多个天线端口与多个波束的映射关系;
    或者,
    向所述UE发送第二配置信息,所述第二配置信息用于为所述UE配置SRS资源集合,所述SRS资源集合由多个SRS资源块组成,所述第一指示信息用于指示为所述UE配置SRS资源集合中的多个SRS资源块与多个波束的映射关系;
    或者,
    向所述UE发送第三配置信息,所述第三配置信息用于为所述UE配置SRS资源集合,所述SRS资源集合由多个SRS资源块组成,其中至少一个SRS资源块为多天线端口的SRS资源块,所述第一指示信息用于指示为所述UE配置SRS资源集合中的SRS资源块和/或SRS资源块对应的天线端口与多个波束的映射关系。
  3. 根据权利要求1或2所述的方法,还包括:
    向所述UE发送第四配置信息,所述第四配置信息用于为所述UE配置数据传输资源;
    生成第二指示信息,所述第二指示信息用于指示允许所述UE同时传输数据的波束;
    向所述UE发送所述第二指示信息。
  4. 根据权利要求3所述的方法,其中,
    为所述UE配置的SRS资源为多天线端口的SRS资源块,所述第二指示信息用于指示所述SRS资源块对应的多个天线端口;
    或者,
    为所述UE配置的SRS资源为SRS资源集合,所述SRS资源集合由多个SRS资源块组成,所述第二指示信息用于指示所述SRS资源集合中的多个SRS资源块;
    或者,
    为所述UE配置的SRS资源为SRS资源集合,所述SRS资源集合由多个SRS资源块组成,其中至少一个SRS资源块为多天线端口的SRS资源块,所述第二指示信息用于指示所述SRS资源集合中的SRS资源块和/或SRS资源块对应的天线端口。
  5. 根据权利要求4所述的方法,其中,
    为所述UE配置的SRS资源为多天线端口的SRS资源块,所述第二指示信息用于指示一个SRS资源块对应的多个天线端口;
    或者;
    为所述UE配置的SRS资源为SRS资源集合,所述SRS资源集合由多个SRS资源块组成,所述第二指示信息用于指示一个SRS资源集合中的多个SRS资源块;
    或者;
    为所述UE配置的SRS资源为SRS资源集合,所述SRS资源集合由多个SRS资源块组成,其中至少一个SRS资源块为多天线端口的SRS资源块,所述第二指示信息用于指示一个SRS资源集合中的SRS资源块和/或SRS资源块对应的天线端口。
  6. 一种指示上行传输的方法,包括:
    接收第一指示信息,所述第一指示信息用于指示为用户设备UE配置的SRS资源中的多个部分与多个波束的映射关系;其中,不同的部分对应不同的波束,所述映射关系中的多个波束允许同时用于传输;
    根据所述第一指示信息,在所述SRS资源上发送SRS。
  7. 根据权利要求6所述的方法,还包括:
    接收第一配置信息,所述第一配置信息用于为所述UE配置多天线端口的SRS资源块,所述第一指示信息用于指示SRS资源块对应的多个天线端口与多个波束的映射关系;
    根据所述第一配置信息,确定为所述UE配置的SRS资源;
    或者,
    接收第二配置信息,所述第二配置信息用于为所述UE配置SRS资源集合,所述SRS资源集合由多个SRS资源块组成,所述第一指示信息用于指示为所述UE配置SRS资源集合中的多个SRS资源块与多个波束的映射关系;
    根据所述第二配置信息,确定为所述UE配置的SRS资源;
    或者,
    接收第三配置信息,所述第三配置信息用于为所述UE配置SRS资源集合,所述SRS资源集合由多个SRS资源块组成,其中至少一个SRS资源块为多天线端口的SRS资源块,所述第一指示信息用于指示为所述UE配置SRS资源集合中的SRS资源块和/或SRS资源块对应的天线端口与多个波束的映射关系;
    根据所述第二配置信息,确定为所述UE配置的SRS资源。
  8. 根据权利要求6或7所述的方法,还包括:
    接收第四配置信息,所述第四配置信息用于为所述UE配置数据传输资源;
    根据所述第四配置信息,确定为所述UE配置的数据传输资源;
    接收第二指示信息,所述第二指示信息用于指示允许所述UE同时传输数据的波束;
    根据所述第二指示信息,确定允许所述UE同时传输数据的波束。
  9. 根据权利要求8所述的方法,还包括:
    为所述UE配置的SRS资源为多天线端口的SRS资源块,所述第二指示信息用于指示所述SRS资源块对应的多个天线端口;
    或者,
    为所述UE配置的SRS资源为SRS资源集合,所述SRS资源集合由多个SRS资源块组成,所述第二指示信息用于指示所述SRS资源集合中的多个 SRS资源块;
    或者,
    为所述UE配置的SRS资源为SRS资源集合,所述SRS资源集合由多个SRS资源块组成,其中至少一个SRS资源块为多天线端口的SRS资源块,所述第二指示信息用于指示所述SRS资源集合中的SRS资源块和/或SRS资源块对应的天线端口。
  10. 根据权利要求9所述的方法,其中,
    为所述UE配置的SRS资源为多天线端口的SRS资源块,所述第二指示信息用于指示一个SRS资源块对应的多个天线端口;
    或者;
    为所述UE配置的SRS资源为SRS资源集合,所述SRS资源集合由多个SRS资源块组成,所述第二指示信息用于指示一个SRS资源集合中的多个SRS资源块;
    或者;
    为所述UE配置的SRS资源为SRS资源集合,所述SRS资源集合由多个SRS资源块组成,其中至少一个SRS资源块为多天线端口的SRS资源块,所述第二指示信息用于指示一个SRS资源集合中的SRS资源块和/或SRS资源块对应的天线端口。
  11. 一种网络设备,包括:
    处理单元,用于生成第一指示信息,所述第一指示信息用于指示为用户设备UE配置的SRS资源中的多个部分与多个波束的映射关系;其中,不同的部分对应不同的波束,所述映射关系中的多个波束允许同时用于传输;
    发送单元,用于向所述UE发送所述第一指示信息。
  12. 根据权利要求10所述的设备,其中,
    所述发送单元,还用于向所述UE发送第一配置信息,所述第一配置信息用于为所述UE配置多天线端口的SRS资源块,所述第一指示信息用于指示SRS资源块对应的多个天线端口与多个波束的映射关系;或者,
    向所述UE发送第二配置信息,所述第二配置信息用于为所述UE配置SRS资源集合,所述SRS资源集合由多个SRS资源块组成,所述第一指示信 息用于指示为所述UE配置SRS资源集合中的多个SRS资源块与多个波束的映射关系;
    或者,
    向所述UE发送第三配置信息,所述第三配置信息用于为所述UE配置SRS资源集合,所述SRS资源集合由多个SRS资源块组成,其中至少一个SRS资源块为多天线端口的SRS资源块,所述第一指示信息用于指示为所述UE配置SRS资源集合中的SRS资源块和/或SRS资源块对应的天线端口与多个波束的映射关系。
  13. 根据权利要求11或12所述的设备,其中,
    所述处理单元,还用于生成第二指示信息,所述第二指示信息用于指示允许所述UE同时传输数据的波束;
    所述发送单元,还用于向所述UE发送第四配置信息,所述第四配置信息用于为所述UE配置数据传输资源;以及向所述UE发送所述第二指示信息。
  14. 根据权利要求13所述的设备,其中,
    为所述UE配置的SRS资源为多天线端口的SRS资源块,所述第二指示信息用于指示所述SRS资源块对应的多个天线端口;
    或者,
    为所述UE配置的SRS资源为SRS资源集合,所述SRS资源集合由多个SRS资源块组成,所述第二指示信息用于指示所述SRS资源集合中的多个SRS资源块;
    或者,
    为所述UE配置的SRS资源为SRS资源集合,所述SRS资源集合由多个SRS资源块组成,其中至少一个SRS资源块为多天线端口的SRS资源块,所述第二指示信息用于指示所述SRS资源集合中的SRS资源块和/或SRS资源块对应的天线端口。
  15. 根据权利要求14所述的网络设备,其中,
    为所述UE配置的SRS资源为多天线端口的SRS资源块,所述第二指示信息用于指示一个SRS资源块对应的多个天线端口;
    或者;
    为所述UE配置的SRS资源为SRS资源集合,所述SRS资源集合由多个SRS资源块组成,所述第二指示信息用于指示一个SRS资源集合中的多个SRS资源块;
    或者;
    为所述UE配置的SRS资源为SRS资源集合,所述SRS资源集合由多个SRS资源块组成,其中至少一个SRS资源块为多天线端口的SRS资源块,所述第二指示信息用于指示一个SRS资源集合中的SRS资源块和/或SRS资源块对应的天线端口。
  16. 一种用户设备UE,包括:
    接收单元,用于接收第一指示信息,所述第一指示信息用于指示为UE配置的SRS资源中的多个部分与多个波束的映射关系;其中,不同的部分对应不同的波束,所述映射关系中的多个波束允许同时用于传输;以及根据所述第一指示信息,在所述SRS资源上发送SRS。
  17. 根据权利要求16所述的UE,还包括处理单元;
    所述接收单元,还用于接收第一配置信息,所述第一配置信息用于为所述UE配置多天线端口的SRS资源块,所述第一指示信息用于指示SRS资源块对应的多个天线端口与多个波束的映射关系;
    所述处理单元,用于根据所述第一配置信息,确定为所述UE配置的SRS资源;
    或者,
    所述接收单元,还用于接收第二配置信息,所述第二配置信息用于为所述UE配置SRS资源集合,所述SRS资源集合由多个SRS资源块组成,所述第一指示信息用于指示为所述UE配置SRS资源集合中的多个SRS资源块与多个波束的映射关系;
    所述处理单元,用于根据所述第二配置信息,确定为所述UE配置的SRS资源;
    或者,
    所述接收单元,还用于接收第三配置信息,所述第三配置信息用于为所述UE配置SRS资源集合,所述SRS资源集合由多个SRS资源块组成,其中 至少一个SRS资源块为多天线端口的SRS资源块,所述第一指示信息用于指示为所述UE配置SRS资源集合中的SRS资源块和/或SRS资源块对应的天线端口与多个波束的映射关系;
    所述处理单元,用于根据所述第二配置信息,确定为所述UE配置的SRS资源。
  18. 根据权利要求16或17所述的UE,其中,
    所述接收单元,还用于接收第四配置信息,所述第四配置信息用于为所述UE配置数据传输资源;以及接收第二指示信息,所述第二指示信息用于指示允许所述UE同时传输数据的波束;
    所述处理单元,还用于根据所述第四配置信息,确定为所述UE配置的数据传输资源;以及根据所述第二指示信息,确定允许所述UE同时传输数据的波束。
  19. 根据权利要求18所述的UE,其中,
    为所述UE配置的SRS资源为多天线端口的SRS资源块,所述第二指示信息用于指示所述SRS资源块对应的多个天线端口;
    或者,
    为所述UE配置的SRS资源为SRS资源集合,所述SRS资源集合由多个SRS资源块组成,所述第二指示信息用于指示所述SRS资源集合中的多个SRS资源块;
    或者,
    为所述UE配置的SRS资源为SRS资源集合,所述SRS资源集合由多个SRS资源块组成,其中至少一个SRS资源块为多天线端口的SRS资源块,所述第二指示信息用于指示所述SRS资源集合中的SRS资源块和/或SRS资源块对应的天线端口。
  20. 根据权利要求19所述的UE,其中,
    为所述UE配置的SRS资源为多天线端口的SRS资源块,所述第二指示信息用于指示一个SRS资源块对应的多个天线端口;
    或者;
    为所述UE配置的SRS资源为SRS资源集合,所述SRS资源集合由多个 SRS资源块组成,所述第二指示信息用于指示一个SRS资源集合中的多个SRS资源块;
    或者;
    为所述UE配置的SRS资源为SRS资源集合,所述SRS资源集合由多个SRS资源块组成,其中至少一个SRS资源块为多天线端口的SRS资源块,所述第二指示信息用于指示一个SRS资源集合中的SRS资源块和/或SRS资源块对应的天线端口。
  21. 一种网络设备,包括处理器、存储器以及存储于所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1至5任一项所述的指示上行传输的方法的步骤。
  22. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至5中任一项所述的指示上行传输的方法的步骤。
  23. 一种用户设备UE,包括处理器、存储器以及存储于所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求6至10任一项所述的指示上行传输的方法的步骤。
  24. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求6至10中任一项所述的指示上行传输的方法的步骤。
PCT/CN2018/099140 2017-08-08 2018-08-07 指示上行传输的方法及装置 WO2019029517A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710672894.2A CN109392110B (zh) 2017-08-08 2017-08-08 一种指示上行传输的方法及装置
CN201710672894.2 2017-08-08

Publications (1)

Publication Number Publication Date
WO2019029517A1 true WO2019029517A1 (zh) 2019-02-14

Family

ID=65273189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099140 WO2019029517A1 (zh) 2017-08-08 2018-08-07 指示上行传输的方法及装置

Country Status (2)

Country Link
CN (1) CN109392110B (zh)
WO (1) WO2019029517A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3930241A4 (en) * 2019-02-20 2022-05-18 Vivo Mobile Communication Co., Ltd. DEVICE AND METHOD FOR CONFIGURING RESOURCES
WO2022109934A1 (zh) * 2020-11-26 2022-06-02 北京小米移动软件有限公司 一种信号传输方法及装置
CN114651510A (zh) * 2020-10-19 2022-06-21 北京小米移动软件有限公司 Pusch指示方法和装置、pusch发送方法和装置
US20230308215A1 (en) * 2022-03-24 2023-09-28 Qualcomm Incorporated Interference mitigation by pseudo-random muting for sounding reference signals

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240042251A (ko) * 2019-03-29 2024-04-01 지티이 코포레이션 그룹 식별자를 사용한 구성 시스템 및 방법
CN114982266A (zh) * 2020-11-20 2022-08-30 北京小米移动软件有限公司 波束指示方法、装置及通信设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015143898A1 (zh) * 2014-03-28 2015-10-01 华为技术有限公司 波束选择方法及基站
CN105103261A (zh) * 2013-02-27 2015-11-25 三星电子株式会社 在波束形成的大规模mimo系统中的信道探测的方法和装置
CN105940699A (zh) * 2014-02-07 2016-09-14 株式会社Ntt都科摩 用户装置、基站以及通信方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9847862B2 (en) * 2015-03-14 2017-12-19 Qualcomm Incorporated Reciprocal channel sounding reference signal multiplexing
CN106953669B (zh) * 2016-01-05 2020-01-21 中兴通讯股份有限公司 一种双流波束赋形的方法、装置及基站

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105103261A (zh) * 2013-02-27 2015-11-25 三星电子株式会社 在波束形成的大规模mimo系统中的信道探测的方法和装置
CN105940699A (zh) * 2014-02-07 2016-09-14 株式会社Ntt都科摩 用户装置、基站以及通信方法
WO2015143898A1 (zh) * 2014-03-28 2015-10-01 华为技术有限公司 波束选择方法及基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Diversity Transmission for UL", 3GPP TSG RAN WG1 NR AD-HOC#2, RI-1710645, 30 June 2017 (2017-06-30), XP051299852 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3930241A4 (en) * 2019-02-20 2022-05-18 Vivo Mobile Communication Co., Ltd. DEVICE AND METHOD FOR CONFIGURING RESOURCES
US11973710B2 (en) 2019-02-20 2024-04-30 Vivo Mobile Communication Co., Ltd. Resource configuration method and device
CN114651510A (zh) * 2020-10-19 2022-06-21 北京小米移动软件有限公司 Pusch指示方法和装置、pusch发送方法和装置
CN114651510B (zh) * 2020-10-19 2023-10-31 北京小米移动软件有限公司 Pusch指示方法和装置、pusch发送方法和装置
WO2022109934A1 (zh) * 2020-11-26 2022-06-02 北京小米移动软件有限公司 一种信号传输方法及装置
US20230308215A1 (en) * 2022-03-24 2023-09-28 Qualcomm Incorporated Interference mitigation by pseudo-random muting for sounding reference signals
US11968044B2 (en) * 2022-03-24 2024-04-23 Qualcom Incorporated Interference mitigation by pseudo-random muting for sounding reference signals

Also Published As

Publication number Publication date
CN109392110B (zh) 2020-05-26
CN109392110A (zh) 2019-02-26

Similar Documents

Publication Publication Date Title
WO2019029517A1 (zh) 指示上行传输的方法及装置
WO2020143526A1 (zh) 上行信道的配置方法、传输方法、网络侧设备及终端
WO2018228429A1 (zh) 一种测量上报的方法及设备
JP5980988B2 (ja) Lteデータおよびdsda音声の同時実施
CN105898792B (zh) 在节点b中使用的方法、节点b以及装置
JP7179160B2 (ja) 情報伝送方法、ネットワークデバイス、及び端末
CN111615195B (zh) 确定波束信息的方法及装置、通信设备
JP2021536178A (ja) アップリンク情報の送信方法及び端末
WO2019193727A1 (ja) ユーザ装置
CN105263139A (zh) 在多个频带上进行通信的方法、设备和系统
WO2021179184A1 (zh) 一种确定上行传输参数的方法及终端设备
WO2019091273A1 (zh) 波束历史信息传输方法、终端及网络设备
WO2018103584A1 (zh) 一种小区确定的方法、相关设备以及系统
US10411851B2 (en) Wireless communication method, device and system
EP3190844B1 (en) D2d signal frequency hopping method and base station
RU2765657C1 (ru) Пользовательское устройство и базовая станция
JP2021530175A (ja) 物理ランダムアクセスチャネルの電力制御方法及び端末
WO2018059508A1 (zh) 一种上报信道质量信息的方法、装置及系统
WO2018149346A1 (zh) 确定和用于确定doa的方法以及接入网设备和终端
WO2018137512A1 (zh) 前导资源分组方法、前导选择方法,网络设备及终端设备
CN113225812B (zh) 一种确定波束信息的方法、终端及网络设备
WO2019020080A1 (zh) 一种通信方法及其装置
WO2022151502A1 (zh) 配置srs传输资源的方法、终端设备及网络设备
WO2019029411A1 (zh) 波束指示的处理方法、移动终端及网络侧设备
WO2022133727A1 (zh) Pusch重复传输方法及终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18844961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18844961

Country of ref document: EP

Kind code of ref document: A1