WO2019029360A1 - 通信方法及通信装置 - Google Patents

通信方法及通信装置 Download PDF

Info

Publication number
WO2019029360A1
WO2019029360A1 PCT/CN2018/096984 CN2018096984W WO2019029360A1 WO 2019029360 A1 WO2019029360 A1 WO 2019029360A1 CN 2018096984 W CN2018096984 W CN 2018096984W WO 2019029360 A1 WO2019029360 A1 WO 2019029360A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency resource
resource group
terminal device
downlink signal
group
Prior art date
Application number
PCT/CN2018/096984
Other languages
English (en)
French (fr)
Inventor
管鹏
张希
孙颖
余子明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18843842.8A priority Critical patent/EP3657839B1/en
Publication of WO2019029360A1 publication Critical patent/WO2019029360A1/zh
Priority to US16/784,306 priority patent/US11316579B2/en
Priority to US17/716,323 priority patent/US11923948B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • the present application relates to the field of communications technologies, and in particular, to the configuration of frequency resources.
  • the network device adopts frequency resource aggregation technology, which can allow multiple frequency resources to be used for one terminal device, which greatly increases the bandwidth and thus increases the transmission rate.
  • a quasi-co-location (QCL) relationship refers to one or more identical or similar communication characteristics between multiple resources.
  • At least one parameter between the two antenna ports may have a QCL relationship with respect to delay spread, Doppler spread, Doppler shift, average delay, and spatial domain parameters.
  • a spatial domain parameter as shown in FIG. 1a, a distribution of received power at an angle of arrival (AOA), the distribution of received power between multiple frequency resources is similar in the angle of arrival, It is considered that there is a spatial Q10 relationship between these two frequency resources.
  • AOA angle of arrival
  • the communication characteristics of one frequency resource can be considered to serve the communication of multiple frequency resources, thereby saving the delay and overhead caused by the management of each frequency resource.
  • there is no spatial QCL relationship on adjacent multiple frequency resources as shown in FIG.
  • the present application provides a communication method and apparatus for determining a quasi-homologous relationship between frequency resources, thereby performing frequency resource configuration according to the quasi-homologous relationship.
  • An aspect of the present application provides a communication method, including: configuring, by a network device, at least one frequency resource group, wherein each frequency resource group includes one or more frequency resources; and the network device uses the at least one frequency resource
  • the indication information of the group is sent to the terminal device; the network device sends the downlink signal on the frequency resource corresponding to the at least one frequency resource group by using at least one beam; and the network device receives the indication from the terminal device Whether the plurality of frequency resources of the at least one frequency resource group have information of a quasi-colocated QCL relationship.
  • the frequency resource grouping specific to each terminal device is implemented by the information interaction between the network device and the terminal device, so that the frequency resource in each frequency resource group is QCL for one terminal device, thereby The network device can use the frequency resource grouping to serve the terminal device.
  • the method before the network device configures at least one frequency resource group, the method further includes: the network device acquiring information of one or more frequency resources supported by the terminal device. In this implementation manner, the network device obtains the frequency resource aggregation capability of the terminal device before configuring the frequency resource group, so that the frequency resource group can be configured in a targeted manner to improve the efficiency of the frequency resource configuration.
  • the method further includes: the network device notifying the terminal device of the updated frequency resource group.
  • the terminal device needs to be notified, and the terminal device re-determines the QCL relationship of the frequency resources in each frequency resource group. After the terminal device reports the QCL relationship, the frequency resource group originally configured by the network device needs to be updated, and the updated frequency resource group information is also notified to the terminal device.
  • the method further includes: configuring, by the network device, a primary frequency resource for the terminal device.
  • the network device determines whether it is necessary to reconfigure the primary frequency resource for the terminal device according to the beam quality of the frequency resource reported by the terminal device.
  • a communication method including: a terminal device receiving indication information of at least one frequency resource group from a network device, each frequency resource group including one or more frequency resources; At least one beam receives a downlink signal from a network device, the downlink signal is sent on a frequency resource corresponding to the at least one frequency resource group; the terminal device measures the downlink signal; and the terminal device reports the Whether the plurality of frequency resources in the at least one frequency resource group have indication information of the QCL relationship.
  • the frequency resource grouping specific to each terminal device is implemented by the information interaction between the network device and the terminal device, so that the frequency resource in each frequency resource group is QCL for one terminal device, thereby The network device can use the frequency resource grouping to serve the terminal device.
  • the method before the terminal device receives the indication information of the at least one frequency resource group from the network device, the method further includes: the terminal device transmitting information of one or more frequency resources that it supports To the network device.
  • the terminal device before the network device configures the frequency resource group, the terminal device reports its own frequency resource aggregation capability, so that the frequency resource group can be configured in a targeted manner to improve the efficiency of frequency resource configuration.
  • the terminal device measures the downlink signal, where the terminal device measures at least one of the following information of the downlink signal: beam indication information, and downlink of the at least one frequency resource association The quality information of the signal and the large-scale characteristics of the channel of the antenna port.
  • the method further includes: the terminal device receiving the updated frequency resource group notified by the network device.
  • the terminal device receives the updated frequency resource group notified by the network device.
  • the terminal device needs to be notified, and the terminal device re-determines the QCL relationship of the frequency resources in each frequency resource group. After the terminal device reports the QCL relationship, the frequency resource group originally configured by the network device needs to be updated, and the updated frequency resource group information is also notified to the terminal device.
  • the method further includes: the terminal device acquiring, according to the indication information of whether the plurality of frequency resources in the at least one frequency resource group have a QCL relationship, in each frequency resource group The synchronization information corresponding to one of the frequency resources; wherein the synchronization information includes uplink synchronization information and/or downlink synchronization information.
  • the synchronization information includes uplink synchronization information and/or downlink synchronization information.
  • the method further includes: the terminal device receiving, according to the indication information that the primary frequency resource and the multiple secondary frequency resources have a QCL relationship, receiving the activation from the network device After the indication of the secondary frequency resource, the secondary frequency resource is activated for data transmission.
  • the secondary frequency resource can be directly used for data transmission, and does not need to wait for 8 subframes after receiving the activation indication, thereby improving Utilization of frequency resources.
  • the present application also provides a communication device, which can implement the above communication method.
  • the communication device can be a chip (such as a baseband chip, or a communication chip, etc.) or a network device.
  • the above method can be implemented by software, hardware, or by executing corresponding software by hardware.
  • the structure of the communication device includes a processor and a memory; the processor is configured to support the device to perform a corresponding function in the foregoing communication method.
  • the memory is for coupling with a processor that holds the necessary programs (instructions) and/or data for the device.
  • the communication device may further include a communication interface for supporting communication between the device and other network elements.
  • the communication device may include a processing unit, a sending unit, and a receiving unit.
  • the processing unit is configured to configure at least one frequency resource group, where each frequency resource group includes one or more frequency resources
  • the sending unit is configured to send indication information of the at least one frequency resource group to the terminal
  • the transmitting unit is further configured to send a downlink signal on the frequency resource corresponding to the at least one frequency resource group by using at least one beam
  • the receiving unit is configured to receive, by the terminal device, the Whether the plurality of frequency resources of the at least one frequency resource group have information of a quasi-colocated QCL relationship.
  • the receiving unit is further configured to acquire information about one or more frequency resources supported by the terminal device.
  • the sending unit is further configured to notify the terminal device of the updated frequency resource group.
  • the processing unit is further configured to configure a primary frequency resource for the terminal device.
  • the transmitting unit may be an output unit such as an output circuit or a communication interface; the receiving unit may be an input unit such as an input circuit or a communication interface.
  • the transmitting unit may be a transmitter or a transmitter; the receiving unit may be a receiver or a receiver.
  • the communication device may be a chip (such as a baseband chip, or a communication chip, etc.) or a terminal device, and the foregoing method may be implemented by software, hardware, or by executing corresponding software through hardware.
  • the structure of the communication device includes a processor and a memory; the processor is configured to support the device to perform a corresponding function in the foregoing communication method.
  • the memory is for coupling with a processor that holds the programs (instructions) and data necessary for the device.
  • the communication device may further include a communication interface for supporting communication between the device and other network elements.
  • the communication device may include a receiving unit, a processing unit, and a sending unit.
  • the processing unit is configured to implement the measurement function in the foregoing method
  • the receiving unit and the sending unit are respectively configured to implement the receiving and transmitting functions in the foregoing method.
  • the receiving unit is configured to receive indication information of at least one frequency resource group from a network device, each frequency resource group includes one or more frequency resources; and the receiving unit is further configured to receive, by using at least one beam, a network.
  • the processing unit is configured to measure the downlink signal; and the sending unit is configured to report the downlink signal Whether the plurality of frequency resources in the at least one frequency resource group have indication information of the QCL relationship.
  • the sending unit is further configured to send information about one or more frequency resources that it supports to the network device.
  • the processing unit is specifically configured to: measure at least one of the following information of the downlink signal: beam indication information, quality information of a downlink signal associated with the at least one frequency resource, and a channel large-scale characteristic of an antenna port.
  • the receiving unit is further configured to receive the updated frequency resource group notified by the network device.
  • the receiving unit is further configured to acquire synchronization information corresponding to one of the frequency resources in each frequency resource group according to the indication information that the plurality of frequency resources in the at least one frequency resource group have a QCL relationship;
  • the synchronization information includes uplink synchronization information and/or downlink synchronization information.
  • the processing unit is further configured to: after receiving the indication that the secondary frequency resource is activated from the network device, according to the indication information that the primary frequency resource and the multiple secondary frequency resources have a QCL relationship, activate the location The auxiliary frequency resource is used for data transmission.
  • the receiving unit may be an input unit such as an input circuit or a communication interface; the transmitting unit may be an output unit such as an output circuit or a communication interface.
  • the receiving unit may be a receiver (which may also be referred to as a receiver); the transmitting unit may be a transmitter (which may also be referred to as a transmitter).
  • the frequency resource is a carrier component CC or a bandwidth portion BP.
  • the indication information of the at least one frequency resource group specifically includes at least one of: an identifier of the at least one frequency resource group, and each frequency resource group includes Identification of one or more frequency resources.
  • the one or more frequency resources of the at least one frequency resource group have indication information of a QCL relationship, and specifically includes at least one of the following information: the at least one frequency An identifier of the resource group, an identifier of the one or more frequency resources, the beam indication information, quality information of a downlink signal associated with the at least one frequency resource, a channel large-scale characteristic of an antenna port, and the at least one frequency resource Relevance information.
  • the downlink signal is a synchronization signal block or a channel state information downlink signal.
  • whether the multiple frequency resources of the at least one frequency resource group have the indication information of the QCL relationship is further used to indicate whether the one or more beams have a QCL relationship.
  • the indication information that the one or more beams are beams that transmit or receive multiple frequency resources of the at least one frequency resource group.
  • Yet another aspect of the present application provides a computer readable storage medium having stored therein instructions that, when executed on a computer, cause the computer to perform the methods described in the above aspects.
  • Yet another aspect of the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the methods described in the various aspects above.
  • a beam is used for communication between the network device and the terminal device in the fifth generation new generation (5G NR) communication system, and the beam is characterized by the energy of the signal. Focus on one direction.
  • Network equipment and terminal equipment can use beamforming technology to generate beams.
  • the beamforming technology is specifically digital beamforming technology, analog beamforming technology and hybrid beamforming technology.
  • This beam communication method can effectively enhance the anti-interference ability of signals. Higher transfer rates and efficiencies.
  • the complex channel environment between the network device and the terminal device may result in failure to communicate normally. Therefore, it is necessary to quickly and accurately detect the failure of the beam. How to detect the beam failure is a hot research topic.
  • a technical problem to be solved by another embodiment of the present invention is to provide a communication method capable of quickly detecting a beam failure situation.
  • the present application provides a method for communication, including: configuring, by a network device, at least one frequency resource group, each frequency resource group including at least two frequency resources; and transmitting, by the network device, configuration information of the at least one frequency resource group to The terminal device, the configuration information includes information indicating that a frequency resource in each frequency resource group has a quasi-co-location (QCL) relationship, and the network device uses at least one beam corresponding to the at least one frequency resource group.
  • QCL quasi-co-location
  • the frequency resource represents a resource used for transmitting data in the frequency domain.
  • the frequency resource may be a carrier component (CC) or a bandwidth part (BP).
  • the QCL relationship indicates that there are at least one identical or similar communication feature between the plurality of antenna ports.
  • the QCL relationship between the carrier component 1 and the carrier component 2 refers to the antenna port transmitting the carrier component 1 and the antenna port transmitting the carrier component 2.
  • the QCL relationship between the beam 1 and the beam 2 means that there is a QCL relationship between the antenna port of the downlink signal corresponding to the transmission beam 1 and the antenna port of the downlink signal corresponding to the transmission beam 2.
  • the network device may use the at least one beam to transmit one or more downlink signals on each frequency resource in the frequency resource group, where the downlink signals include, but are not limited to, channel state information-reference signal (CSI-RS) and At least one of a sync block (SS block).
  • the configuration information may be sent by a radio resource control (RRC) message, a media access control-control element (MAC-CE) message, or a downlink control information (DCI) message.
  • RRC radio resource control
  • MAC-CE media access control-control element
  • DCI downlink control information
  • the network device sends configuration information indicating that the frequency resource group has a QCL relationship to the terminal device, and sends a downlink signal on the frequency resource group, so that the terminal device may be in multiple according to the QCL relationship of the frequency resource group.
  • the downlink signal is measured on the frequency resource with QCL relationship, thereby obtaining more measurement opportunities, and the beam detection accuracy and the detection time can be effectively improved compared with the single-carrier beam detection.
  • the configuration information further includes: at least one of a first phase count value of the frequency resource group and a first phase time window time window, and/or a first phase count of each frequency resource in the frequency resource group At least one of a value and a first phase time window.
  • the configuration information further includes: at least one of a second phase count value of the frequency resource group and a second phase time window; and/or a second phase count value of each frequency resource in the frequency resource group and At least one of the second phase time windows.
  • the first phase count value is a count value set in a beam detection phase
  • the second phase count value is a count value set in a beam recovery phase.
  • the first phase time window and the second phase time window are one time interval
  • the first phase time window is a time window set in the beam detection phase
  • the second phase time window is a time window set in the beam recovery phase.
  • the configuration information further includes a timing duration of the frequency resource group and a timing duration of each frequency resource in the frequency resource group.
  • the configuration information further includes: an identifier of the frequency resource group, an identifier of the reference frequency resource in the frequency resource group, an identifier of each frequency resource in the frequency resource group, and a mapping relationship between the frequency resource and the beam in the frequency resource group. And beam indication information of at least one beam associated with each frequency resource in the frequency resource group.
  • the reference frequency resource is a frequency resource in the frequency resource group.
  • the reference carrier component is a primary carrier component in the carrier component group; if there is no primary carrier component in the carrier component group, The network device specifies a secondary carrier component as a reference carrier component.
  • Each frequency resource in the frequency resource group is associated with at least one beam, and at least two frequency resources in the frequency resource group have a QCL relationship, and any one of the beams associated with the frequency resource has a QCL relationship with any one of the other frequency resources.
  • the frequency resource group includes frequency resource 1 and frequency resource 2, frequency resource 1 associates beam 11 and beam 12, frequency resource 2 associates beam 21 and beam 22, and frequency resource 1 and frequency resource 2 have QCL relationship indicating beam 11 and beam 21 There is a QCL relationship, or beam 11 and beam 22 have a QCL relationship, or beam 12 and beam 21 have a QCL relationship, or beam 12 and beam 22 have a QCL relationship.
  • the beam indication information is used to indicate the identifier of the beam, and the different beams have different beam indication information
  • the beam indication information includes a beam number, a downlink signal resource number, an absolute index of the beam, a relative index of the beam, a logical index of the beam, and a beam corresponding
  • the downlink signal includes a channel shape A downlink information signal (channel state information reference signal, CSI-RS), cell-specific reference signal (cell specific reference signal, CS-RS), UE-specific reference signal (user equipment specific reference signal, US-RS) of any one.
  • the network device may further allocate a QCL identifier to the beam with a QCL relationship among the beams associated with the frequency resource group to indicate a beam having a QCL relationship in the frequency resource group.
  • the configuration information further includes: at least one of an antenna port number, a time-frequency resource location, and a period of the downlink signal on each frequency resource in the frequency resource group.
  • the configurations of the downlink signals on different frequency resources may be the same, and may be different.
  • the periods of the downlink signals on different frequency resources are different.
  • all beams associated with a frequency resource group have a QCL relationship.
  • the configuration information further includes: QCL information of a beam having a QCL relationship among the beams associated with the frequency resource group and a QCL identifier of a beam having a QCL relationship among the beams associated with the frequency resource group.
  • the present application provides a communication method, including: receiving, by a terminal device, configuration information of at least one frequency resource group from a network device, and receiving, by using at least one beam, a downlink resource on a frequency resource corresponding to the at least one frequency resource group. a signal; wherein each frequency resource group includes at least two frequency resources, each frequency resource is associated with at least one beam, and the configuration information includes information indicating that the frequency resources in each frequency resource group have a quasi-homolog QCL relationship; the terminal device monitors the downlink signal.
  • the configuration information includes at least one of a first phase count value N1 and a first phase time window W1 associated with the frequency resource group, the frequency resource group being any one of the at least one frequency resource;
  • the terminal device monitors the downlink signal, and specifically includes:
  • the N1 secondary beam quality difference is continuously detected, it is determined that the beam associated with the frequency resource group fails;
  • Each frequency resource in the frequency resource group is configured with a downlink signal
  • the terminal device monitors the beam by monitoring all downlink signals corresponding to the frequency resource group, and the downlink signal includes a CSI-RS or an SS block.
  • the physical layer of the terminal device measures the signal quality parameter of the downlink signal, and determines the beam quality difference if the signal quality parameter is greater than the first threshold; and determines that the beam quality is good if the signal quality parameter is less than the second threshold.
  • a beam failure associated with a frequency resource group indicates that one or more beams within the frequency resource group have failed.
  • the beam failure associated with the frequency resource group is specifically a beam failure with a QCL relationship among the beams associated with the frequency resource group.
  • the frequency resource group is associated with at least one of a second phase count value N2 and a second phase time window W2.
  • the method further includes:
  • the N2 secondary beam quality is continuously detected, it is determined that the beam recovery associated with the frequency resource group is successful; or
  • the beam recovery associated with the frequency resource group is determined to be successful
  • the terminal device When receiving the beam recovery response from the network device, the terminal device determines that the beam recovery associated with the frequency resource group is successful, wherein the beam recovery response carries beam indication information.
  • the configuration information further includes: a timing duration T1 associated with the frequency resource group; the method further includes: in the case of a beam failure of the frequency resource group, starting a timing operation with a timing duration of T1; When the beam recovery associated with the resource group is successful, the timing operation with the timing duration of T1 is stopped; when the timing operation is timed out, the beam associated with the frequency resource group is determined to fail.
  • the configuration information includes at least one of a first phase count value N1 and a time window W1 associated with a reference frequency resource and an identifier of the reference frequency resource, where the reference frequency resource is located in at least one frequency resource group In any of the frequency resource groups;
  • the terminal device monitors the downlink signal, and specifically includes:
  • the configuration information further includes at least one of a second phase count value N2 and a second phase time window W associated with the reference frequency resource.
  • the method further includes:
  • the terminal device receives the beam recovery response sent by the network device, and determines that the beam recovery associated with the reference frequency resource is successful, and the beam recovery response carries the beam indication information.
  • the configuration information further includes: a timing duration T1 of the reference frequency resource association, the method further comprising: starting a timing operation with a timing duration T1 if the reference frequency resource associated beam fails And if the beam recovery associated with the reference frequency resource is successful, stopping the timing operation of the timing duration T1; if the timing operation is timed out, determining that the beam recovery associated with the reference frequency resource fails.
  • the configuration information further includes at least one of a first phase count value and a first phase time window of each frequency resource in the frequency resource group, and each frequency resource in the frequency resource group. At least one of a second phase count value and a second phase time window.
  • the configuration information also includes the timing duration of each frequency resource of the frequency resource group.
  • the configuration information further includes:
  • the identifier of the frequency resource group, the identifier of the reference frequency resource in the frequency resource group, the identifier of each frequency resource in the frequency resource group, the mapping relationship between the frequency resource and the beam in the frequency resource group, and at least one associated with each frequency resource in the frequency resource group includes at least one of a beam number and a downlink signal resource number.
  • the configuration information further includes: at least one of an antenna port number, a time-frequency resource location, and a period of a downlink signal on each frequency resource in the frequency resource group.
  • the configuration information further includes: QCL information of a beam having a QCL relationship among the beams associated with the frequency resource group and a QCL indication of a beam having a QCL relationship among the beams associated with the frequency resource group symbol.
  • the present application provides a communication method, including: receiving configuration information of at least one frequency resource group, and receiving, by using at least one beam, a downlink signal on a frequency resource corresponding to the at least one frequency resource group;
  • Each frequency resource group includes at least two frequency resources, and the configuration information includes an identifier of each frequency resource group and an identifier of each frequency resource; detecting, according to the downlink signal, a beam failure associated with the first frequency resource in the frequency resource group
  • the beam recovery request is sent on the second frequency resource in the frequency resource group, and the frequency resource group is any one of the at least one frequency resource group.
  • the configuration information includes: a relationship between a beam in the frequency resource group and a transmission resource corresponding to the plurality of frequency resources, where the transmission resource is a resource used to send a beam restoration request on the frequency resource.
  • the foregoing association relationship may be pre-stored or pre-configured, and no configuration information is required for indication.
  • the beam recovery request is sent on the second frequency resource of the frequency resource group, specifically:
  • a beam recovery request is sent on a transmission resource associated with the downlink signal of the first or second frequency resource.
  • the association relationship includes: an association relationship between the transmission resource and at least one of the following information: an identifier of the downlink signal, an identifier of the downlink signal group, a frequency resource identifier, an identifier of the frequency resource group, an antenna port identifier, and Antenna port group identification.
  • association is specifically:
  • k is the index of the downlink signal of the frequency resource
  • n is the index of the frequency resource
  • r n is the index of the transmission resource on the frequency resource.
  • the downlink signal is any one of a CSI-RS and a synchronization signal block (SS block).
  • SS block synchronization signal block
  • a communication device having the functionality to implement the behavior of a network device in the above method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the network device may be a chip (such as a baseband chip, or a communication chip, etc.) or a transmitting device (such as a network device, a baseband single board, etc.).
  • the above method can be implemented by software, hardware, or by executing corresponding software by hardware.
  • the apparatus includes: a processing unit and a sending unit; the processing unit is configured to configure at least one frequency resource group; wherein each frequency resource group includes at least two frequency resources, each frequency resource is associated with at least one a transmitting unit, configured to send configuration information of the at least one frequency resource group to the terminal device, where the configuration information includes information that the frequency resource in each frequency resource group has a quasi-co-located QCL relationship; And transmitting, by using at least one beam, a downlink signal on a frequency resource corresponding to the at least one frequency resource group.
  • the specific content of the configuration information may refer to the implementation method of the first aspect, and details are not described herein again.
  • the apparatus includes: a transceiver, a memory, and a processor; wherein the memory stores a set of program codes, and the processor is configured to invoke program code stored in the memory to perform the following operations:
  • each frequency resource group includes at least two frequency resources, each frequency resource being associated with at least one beam;
  • a transceiver configured to send configuration information of the at least one frequency resource group to the terminal device, where the configuration information includes information that the frequency resource in each frequency resource group has a quasi-co-located QCL relationship;
  • the transceiver is further configured to send the downlink signal on the frequency resource corresponding to the at least one frequency resource group by using at least one beam.
  • the specific content of the configuration information may refer to the implementation method of the first aspect, and details are not described herein again.
  • a communication device having the function of implementing the behavior of a terminal device in the above method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the terminal device may be a chip (such as a baseband chip, or a communication chip, etc.) or a transmitting device (such as a network device, a baseband single board, etc.).
  • the above method can be implemented by software, hardware, or by executing corresponding software by hardware.
  • the apparatus includes: a receiving unit and a processing unit; a receiving unit, configured to receive configuration information of at least one frequency resource group from the network device, and by indicating a beam in the at least one frequency resource group Receiving a downlink signal on the corresponding frequency resource; wherein each frequency resource group includes at least two frequency resources, the configuration information indicates that the frequency resource in each frequency resource has a quasi-co-located QCL relationship; and the processing unit is configured to monitor the Downstream signal.
  • the apparatus includes: a transceiver, a memory, and a processor; wherein
  • the transceiver is configured to receive configuration information of at least one frequency resource group from a network device, and receive a downlink signal by indicating a beam on a frequency resource corresponding to the at least one frequency resource group; wherein each frequency resource group The at least two frequency resources are included, and the configuration information indicates that the frequency resources in each frequency resource have a quasi-homogonal QCL relationship.
  • the program stores a set of program codes
  • the processor is configured to call the program code stored in the memory to perform the following operations:
  • the downlink signal is monitored.
  • a communication device having the function of implementing the behavior of a terminal device in the above method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the terminal device may be a chip (such as a baseband chip, or a communication chip, etc.) or a transmitting device (such as a network device, a baseband single board, etc.).
  • the above method can be implemented by software, hardware, or by executing corresponding software by hardware.
  • the apparatus includes: a receiving unit, a processing unit, and a sending unit; the receiving unit is configured to receive configuration information of at least one frequency resource group, and the at least one frequency resource by using at least one beam Receiving a downlink signal on the corresponding frequency resource, where each frequency resource group includes at least two frequency resources, each frequency resource corresponding to at least one beam, and the configuration information includes an identifier of each frequency resource group and each frequency resource
  • the processing unit is configured to: when the downlink signal detects that the beam associated with the first frequency resource in the frequency resource group fails, send a beam recovery request on the second frequency resource in the frequency resource group.
  • the receiving unit For a specific implementation of the receiving unit, the processing unit, and the sending unit, refer to the implementation manner of the third aspect, and details are not described herein again.
  • the apparatus includes: a transceiver, a memory, and a processor; wherein
  • the transceiver is configured to receive configuration information of at least one frequency resource group, and receive downlink signals on frequency resources corresponding to the at least one frequency resource group by using at least one beam; where each frequency resource group includes at least two a frequency resource, each frequency resource corresponding to at least one beam, the configuration information including an identifier of each frequency resource group and an identifier of each frequency resource.
  • the program stores a set of program codes
  • the processor is configured to call the program code stored in the memory to perform the following operations:
  • the beam recovery request is sent on the second frequency resource in the frequency resource group.
  • the principle and the beneficial effects of the device can be referred to the method embodiments of the foregoing possible terminal devices and the beneficial effects thereof. Therefore, the implementation of the device can refer to the implementation of the method, and the repetition is not Let me repeat.
  • Yet another aspect of the present application is directed to a computer readable storage medium having instructions stored therein that, when executed on a computer, cause the computer to perform the methods described in the various aspects above.
  • Yet another aspect of the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the methods described in the various aspects above.
  • Figure 1a is a schematic diagram showing the distribution of received power at an angle of arrival
  • Figure 1b is a schematic diagram showing another distribution of received power at an angle of arrival
  • FIG. 2 is a schematic diagram of a communication system according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an interaction process of a communication method according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram showing an example of a synchronization signal structure and a transmission method
  • FIG. 5a is a schematic diagram of transmission of an SS block on a multi-carrier according to an example
  • FIG. 5b is a schematic diagram of transmission of an SS block on another multi-carrier according to an example
  • FIG. 5c is a schematic diagram of another example of transmitting a SS block on a multi-carrier
  • FIG. 6 is a schematic diagram of another example of transmitting a SS block on a multi-carrier
  • FIG. 7 is a schematic flowchart of interaction of another communication method according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a simplified terminal device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a simplified network device according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of carrier aggregation provided by an embodiment of the present invention.
  • FIG. 11 is a schematic flowchart of a method for communication according to an embodiment of the present invention.
  • FIG. 11b is a schematic structural diagram of a carrier component according to an embodiment of the present disclosure.
  • FIG. 11c is another schematic structural diagram of a carrier component according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic flowchart of another method for communication according to an embodiment of the present invention.
  • FIG. 12b is another schematic structural diagram of a carrier component according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a device for communication according to an embodiment of the present invention.
  • FIG. 14 is another schematic structural diagram of an apparatus for communication according to an embodiment of the present invention.
  • 15 is another schematic structural diagram of an apparatus for communication according to an embodiment of the present invention.
  • 16 is another schematic structural diagram of an apparatus for communication according to an embodiment of the present invention.
  • FIG 17 is another schematic structural diagram of an apparatus for communication according to an embodiment of the present invention.
  • FIG. 18 is another schematic structural diagram of an apparatus for communication according to an embodiment of the present invention.
  • FIG. 2 shows a schematic diagram of a communication system.
  • the communication system may include at least one network device 100 (only one shown) and one or more terminal devices 200 connected to the network device 100.
  • Network device 100 can be a device that can communicate with terminal device 200.
  • the network device 100 can be any device having a wireless transceiving function. Including but not limited to: a base station (eg, a base station NodeB, an evolved base station eNodeB, a base station in a fifth generation (5G) communication system, a base station or network device in a future communication system, an access node in a WiFi system , wireless relay node, wireless backhaul node, etc.
  • the network device 100 may also be a wireless controller in a cloud radio access network (CRAN) scenario.
  • CRAN cloud radio access network
  • the network device 100 may also be a network device in a 5G network or a network device in a future evolved network; it may also be a wearable device or an in-vehicle device or the like.
  • the network device 100 may also be a small station, a transmission reference point (TRP) or the like. Of course, no application is not limited to this.
  • the terminal device 200 is a device with wireless transceiving function that can be deployed on land, including indoor or outdoor, handheld, wearable or on-board; it can also be deployed on the water surface (such as a ship, etc.); it can also be deployed in the air (for example, an airplane, Balloons and satellites, etc.).
  • the terminal device may be a mobile phone, a tablet (Pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, and industrial control ( Wireless terminal in industrial control, wireless terminal in self driving, wireless terminal in remote medical, wireless terminal in smart grid, transportation safety A wireless terminal, a wireless terminal in a smart city, a wireless terminal in a smart home, and the like.
  • a terminal device may also be referred to as a user equipment (UE), an access terminal device, a UE unit, a UE station, a mobile station, a mobile station, a remote station, a remote terminal device, a mobile device, a UE terminal device, a terminal device, Wireless communication device, UE proxy or UE device, and the like.
  • UE user equipment
  • system and “network” in the embodiments of the present invention may be used interchangeably.
  • Multiple means two or more, and in view of this, "a plurality” may also be understood as “at least two” in the embodiment of the present invention.
  • the character "/” unless otherwise specified, generally indicates that the contextual object is an "or" relationship.
  • FIG. 3 is a schematic diagram of an interaction process of a communication method according to an embodiment of the present invention, where the method may include the following steps:
  • the network device configures at least one frequency resource group, where each frequency resource group includes one or more frequency resources.
  • the network device sends the indication information of the at least one frequency resource group to the terminal device.
  • the terminal device receives indication information from at least one frequency resource group of the network device.
  • the network device sends, by using at least one beam, a downlink signal on a frequency resource corresponding to the at least one frequency resource group.
  • the terminal device receives a downlink signal from the network device by using at least one beam, where the downlink signal is sent on a frequency resource corresponding to the at least one frequency resource group.
  • the terminal device measures the downlink signal.
  • the terminal device reports, by the terminal device, whether the plurality of frequency resources in the at least one frequency resource group have indication information of a QCL relationship.
  • the network device receives, from the terminal device, information indicating whether the plurality of frequency resources of the at least one frequency resource group have a QCL relationship.
  • the communication device involved in the present application may include a first communication device and a second communication device, and may be more communication devices. As shown in FIG. 3, the first communication device is a network device, and the second communication device is a terminal. device.
  • the frequency resource may be a carrier component (CC, hereinafter referred to as "carrier”) or a bandwidth part (BP).
  • carrier carrier component
  • BP bandwidth part
  • the bandwidth part refers to a part of the bandwidth of one carrier, and one carrier can be divided into a plurality of bandwidth parts, and the multiple bandwidth parts form a group of bandwidth parts, that is, one carrier can be regarded as one or more bandwidth part groups.
  • the QCL relationship referred to in this application refers to the QCL relationship between antenna ports.
  • the QCL relationship between the antenna ports may specifically include: a QCL relationship between the carrier components, a QCL relationship between the beams, and a QCL relationship between the bandwidth portions.
  • one carrier and another carrier have a QCL relationship means that there is a QCL relationship between an antenna port that transmits one carrier and an antenna port that transmits another carrier.
  • One bandwidth portion and another bandwidth portion have a QCL relationship, which means that the antenna port that transmits one bandwidth portion and the antenna port that transmits another bandwidth portion have a QCL relationship.
  • a QCL relationship between one beam and another beam means, for example, that there is a QCL relationship between an antenna port that transmits one downlink signal and an antenna port that transmits another downlink signal.
  • the scenario of this example uses the downlink signal identification and the antenna port identification to indicate beam information.
  • beam 1 is indicated by CSI-RS resource #1
  • beam 2 is indicated by CSI-RS resource #2.
  • Beam 1 and beam 2 have a QCL relationship, essentially the antenna ports of CSI-RS resource #1 and CSI-RS resource #2 have a QCL relationship.
  • the network device uses the frequency resource aggregation technology to first configure one or more frequency resource groups, and assumes that multiple frequency resources in the frequency resource group have a QCL relationship.
  • the network device can configure the frequency resource group according to its own judgment. For example, the network device assumes that the QCL relationship may always be established on frequency resources with small frequency differences, and configures multiple frequency resources with different frequency differences as one frequency resource group.
  • the network device may not pre-configure the frequency resource group having the assumed QCL relationship, but the terminal device configures the frequency resource group, and determines the frequency resource according to the measurement of the downlink signal. If the hypothesis of the group is established, the indication information of the configured frequency resource group is reported to the network device. At this time, multiple frequency resources in the configured frequency resource group are determined to have a QCL relationship.
  • the network device and the terminal device may also perform the action of configuring the frequency resource group without using the default negotiated frequency resource group.
  • the method may further include the step of: sending, by the terminal device, information about one or more frequency resources that it supports to the network device.
  • the network device acquires information of one or more frequency resources supported by the terminal device. That is, the terminal device reports the ability to aggregate frequency resources. For example, the terminal device reports that it can support ⁇ frequency resource 1, frequency resource 2, frequency resource 7, frequency resource 8, frequency resource 9 ⁇ .
  • the network device may also support which frequency resources are supported by the terminal device. If the terminal device does not support some frequency resources in the frequency resource group divided by the network device, the terminal device may not send the frequency resources.
  • the downlink signal is measured.
  • the network device After configuring the frequency resource group, the network device sends the indication information of the frequency resource group to the terminal device.
  • the indication information of the at least one frequency resource group specifically includes at least one of the following: an identifier of the at least one frequency resource group, and an identifier of one or more frequency resources included in each frequency resource group.
  • the multiple CCs are divided into two CC groups, namely CCG ⁇ CC 1, CC2 ⁇ and CCG2 ⁇ CC3, CC5, CC 6 ⁇ , and the network device sends the indication information of the two CC groups to the terminal device.
  • the indication information of the CC group is CC1 and CC2, and CCG2 includes CC3, CC5 and CC6.
  • the network device After the network device configures the frequency resource group and sends the indication information of the frequency resource group to the terminal device, the network device sends the downlink signal on the frequency resource corresponding to the configured one or more frequency resource groups by using at least one beam.
  • the downlink signal may be a synchronization signal block (SS block) or a channel status information-reference signal (CSI-RS).
  • the synchronization signal includes a primary synchronization signal (PSS) and a secondary synchronization signal (SSS). As shown in FIG. 4, the synchronization signal structure and the transmission mode are schematic, and the synchronization signal is transmitted and bound by a physical broadcast channel (PBCH), which is called an SS block.
  • PBCH physical broadcast channel
  • the SS block can support up to 64 beam directions, and they are distinguished by a SS block time index, that is, different SS block time indexes indicate different beams.
  • the SS block can be periodically transmitted in cycles of ⁇ 20, 40, 80, 160 ⁇ milliseconds, and all beam directions need to be swept in one cycle.
  • the terminal device After receiving the downlink signal sent by the network device through one or more receiving beams, the terminal device measures the downlink signal.
  • the step S104 further includes the following steps: the terminal device measures at least one of the following information of the downlink signal: beam indication information, quality information of a downlink signal associated with the at least one frequency resource, and a large-scale characteristic of a channel of the antenna port .
  • the beam directions of the one or more receiving beams are all the same or partially the same.
  • the beam indication information may be embodied in at least one of the following: an absolute index of the beam, a relative index of the beam, a logical index of the beam, an index of the antenna port corresponding to the beam, an index of the antenna port group corresponding to the beam, and a downlink corresponding to the beam.
  • the measurement beam indication information described herein specifically refers to that some beam identifications are obtained by measurement, and some beam identifications are obtained by other methods.
  • the time index (6-bit representation) of the downlink synchronization signal block wherein 3 bits are carried in a physical broadcast channel (PBCH), and the other 3 bits can be demodulated reference signals (DMRS) of the PBCH.
  • PBCH physical broadcast channel
  • DMRS demodulated reference signals
  • the mask is embodied.
  • 3 bits are obtained by measuring the DRMS of the PBCH, and the other 3 bits are obtained by decoding the PBCH.
  • the quality information of the downlink signal includes a signal-to-noise ratio (signal-to-(interference and noise) ratio, SINR/SNR), a downlink signal receiving power (RSRP), and a downlink signal receiving quality (reference signal received quality). , RSRQ), one or more of a received signal strength indicator (RSSI) and channel quality information (CSI).
  • SINR/SNR signal-to-noise ratio
  • RSRP downlink signal receiving power
  • RSRQ downlink signal receiving quality
  • RSRQ received signal strength indicator
  • CSI channel quality information
  • the terminal device reports whether the plurality of frequency resources in the at least one frequency resource group have indication information of a QCL relationship.
  • the one or more frequency resources of the at least one frequency resource group have indication information of a QCL relationship, and specifically include at least one of the following: an identifier of the at least one frequency resource group, the one or more The identifier of the frequency resource, the beam indication information, the quality information of the downlink signal associated with the at least one frequency resource, the channel large-scale characteristic of the antenna port, and the correlation information of the at least one frequency resource.
  • the network device needs to determine, according to the indication information, whether multiple frequency resources in the at least one frequency resource group have a QCL relationship.
  • the indication message may be a specific value.
  • the terminal device determines whether multiple frequency resources in the at least one frequency resource group have a QCL relationship, and the network device directly receives the determination result.
  • the quality information of the downlink signal associated with the frequency resource may be obtained by measuring the quality of the downlink signal received on the frequency resource.
  • the large-scale characteristics of the channel of the antenna port include: delay spread, average delay, Doppler spread, Doppler shift, average gain, terminal device receive beam number, transmit/receive channel correlation, receive angle of arrival, receiver The spatial correlation of the antenna, the angel-of-arrival (AoA), the average angle of arrival, and the extension of the AoA.
  • Type 1 Average gain QCL. If the two antenna ports are about the average gain QCL, generally the two antenna ports should be at the same transmission point to ensure that they experience the same path loss.
  • Type 2 Demodulation parameters QCL, ie delay spread, Doppler spread, Doppler shift, average delay. If the two antenna ports are related to the above four parameters QCL, generally the two antenna ports should be located on the same antenna panel or be played by the same RF chain to ensure the movement they experience. The speed and phase offset are the same.
  • Type 3 Spatial domain parameter QCL (spatial QCL), that is, whether the beams are oriented in the same direction. If the two antenna ports are related to the receiving side airspace parameter QCL (Rx spatial QCL), generally the signals from the two antenna ports can be received by the terminal device with one receiving beam.
  • spatial QCL spatial QCL
  • the correlation information of the at least one frequency resource may refer to a correlation between the frequency resource and a reference frequency resource in the frequency resource group. If the correlation between the plurality of frequency resources in the frequency resource group and the reference frequency resource is high, the plurality of frequency resources have a QCL relationship with the reference frequency resource. Specifically, in the group including the primary frequency resource, the reference frequency resource is the primary frequency resource. In a group that does not include a primary frequency resource, the network device can specify a certain frequency resource as the reference frequency resource of the group.
  • the network device uses the beam to transmit the downlink signal on the frequency resource, and several cases may be considered. According to the actual situation, the content of the indication information reported by the terminal device may be different. Take SS block transmission on multi-carrier and airspace QCL determination as an example:
  • the network device transmits an SS block on each carrier within each carrier group.
  • the results measured by the terminal device are also different depending on whether the directions of the beams transmitted on each carrier are all the same, partially identical, or completely different.
  • a transmission diagram of an SS block on a multi-carrier is used.
  • Each carrier transmits an SS block in multiple beam directions, and a beam indication corresponding to a beam indication (ie, SS block time index) on each carrier is the same.
  • the network device transmits a synchronization signal at a time-frequency resource location of the synchronization signal.
  • the terminal device measures each SS block received on each carrier, and the content measured and reported by the terminal device may be in the following manners:
  • the first type the terminal device reports the related content after measuring the downlink signal, and the network device determines whether the QCL is between the carriers according to the related content reported by the terminal device. For example, ⁇ carrier number #1, beam information SS block time index #1, beam quality 8 dB, airspace parameter AoA 20 degrees; beam information SS block time index #2, beam quality 10 dB, airspace parameter AoA 25 degrees; ... ⁇ ; ⁇ carrier number #2, beam information SS block time index #1, beam quality 8 dB, airspace parameter AoA 20 degrees; beam information SS block time index #2, beam quality 10 dB, airspace parameter AoA 25 degrees; The network device can obtain the spatial QCL between the two carriers by comparing the beam quality information and the spatial domain parameters of the corresponding directions on the two carriers reported by the terminal device. If the beam quality information or the spatial domain parameter of one of the two carriers is different, the two carriers may not have a spatial QCL relationship.
  • the reference carrier is the primary carrier
  • the carrier number #1 and the primary carrier are located in one carrier group, and the network device compares the spatial parameters of the corresponding direction on the carrier with the correlation with the primary carrier, if the correlation exceeds the setting. By setting the threshold, it can be concluded that the carrier number #1 and the primary carrier are spatial QCL.
  • the terminal device determines whether there is a QCL relationship between the carriers, and sends the indication information of the QCL to the network device. For example, ⁇ carrier number #1, beam information SS block time index #2, beam quality 10 dB ⁇ ; ⁇ carrier number #2, beam information SS block time index #2, beam quality 10 dB ⁇ ; ⁇ 1 bit information indicates carrier #1 And #2 is the spatial QCL ⁇ .
  • the terminal device determines whether the two carriers have a QCL relationship according to the measurement information, and then reports to the network device whether the two carriers have a QCL relationship, and the indication information is 1-bit information.
  • the network device can obtain a spatial QCL between the two carriers through 1-bit information.
  • the fourth type after measuring the downlink signal, the terminal device finds that the beam information and the beam quality of the two or more carriers are the same, and only one group of information can be reported. For example, ⁇ carrier number group #1, beam information SS block time index #2, beam quality 10 dB ⁇ . Since the beam information and the beam quality measured by the two carriers are completely consistent, that is, the QCL relationship is established, the terminal device can also report only one set of quantities to reduce the overhead. The network device can obtain the spatial QCL between the two carriers by reporting. If the QCL relationship does not hold, the network device will get two different sets of reports.
  • the terminal device feeds back whether there is a QCL relationship between the two, which can be in the following forms:
  • a form of a table can be used, as shown in Table 1.
  • the terminal device can feed back using a bitmap.
  • the first frequency resource in the group is a reference frequency resource.
  • the terminal device uses 4 bits (1, 1, 0, 0) to indicate that the first and second frequency resources in the group have a QCL relationship with the reference frequency resource, and the third frequency resource and the fourth frequency in the group. There is no QCL relationship between resources and reference frequency resources.
  • the terminal device may also use N-1 bits (1, 0, 0) to represent the QCL relationship of other frequency resources in the group other than the reference frequency resource and the reference frequency resource.
  • the SS block is transmitted in multiple beam directions on each carrier, and the multiple beam directions are only partially identical.
  • the beam marked by the dotted line is the beam direction that is transmitted on carrier 1 and not transmitted on carrier 2.
  • the beam direction corresponding to the SS block time index #2 on the carrier 2 and the beam direction corresponding to the SS block time index #2 on the carrier 1 are different, and the terminal device is required to be distinguished according to the carrier number feedback.
  • the terminal device can measure whether the carrier has a QCL relationship according to the received signal of the partial beam.
  • FIG. 5c another schematic diagram of transmitting the SS block on the multi-carrier
  • the SS block is sent in multiple beam directions on each carrier, and the multiple beam directions are different.
  • the beam identified by the dotted line is the beam direction that is transmitted on carrier 1 and not transmitted on carrier 2.
  • This situation indicates that the network device must use different RF links on these two carriers.
  • the beam direction corresponding to the SS block time index #2 on the carrier 2 and the beam direction corresponding to the SS block time index #2 on the carrier 1 are different, and the terminal device is required to distinguish according to the carrier number feedback.
  • the terminal device Since the network device does not use the same direction beam when transmitting the downlink signal, the terminal device cannot determine whether the two carriers have a QCL relationship according to the measurement result, or the network device cannot determine the two according to the content reported by the terminal device. Whether the carrier has a QCL relationship. The terminal device can correct the QCL relationship in subsequent beam measurements.
  • the network device transmits a downlink signal on one carrier in each carrier group.
  • FIG. 6 is a schematic diagram of transmission of another multi-carrier uplink and downlink signal.
  • Carrier 1 and carrier 2 belong to one carrier group.
  • the network device only transmits the SS block on carrier 1.
  • the transmitted beam has multiple directions, and different directions are represented by different SS block time indexes.
  • the terminal device can report only ⁇ carrier group number, beam indication information, beam quality ⁇ .
  • the carrier number, the QCL hypothesis between different carriers, or the correlation between spatial parameters may not be reported.
  • the terminal device can only assume that the carriers in one carrier group have a spatial QCL relationship.
  • the terminal device can confirm at a later stage whether the spatial QCL relationship for each carrier in the group is established.
  • the network device After determining the QCL relationship of the frequency resource according to the indication information of the QCL relationship of the terminal device, the network device updates the pre-configured frequency resource group, and sends the updated frequency resource group to the terminal device. Therefore, optionally, after step S105, the method may further include the step of: the network device notifying the terminal device of the updated frequency resource group.
  • the terminal device receives the updated frequency resource group notified by the network device.
  • the network device pre-configured carrier groups are: ⁇ carrier group #1: carrier 1, carrier 2 ⁇ ; ⁇ carrier group #2: carrier 7, carrier 8 ⁇ .
  • the network device may reconfigure the carrier group as: ⁇ carrier group #1: carrier 1, carrier 2 ⁇ ; ⁇ carrier group #2: Carrier 7 ⁇ ; ⁇ Carrier Group #3: Carrier 8 ⁇ , and notifies the terminal device of the updated frequency resource group information.
  • the configuration signaling of the foregoing network device and the reporting signaling of the terminal device may be transmitted by using radio resource control (RRC) signaling carried by the data channel, or by using a media access control control element ( Media access control-control element (MAC-CE) signaling or downlink control information (DCI) signaling.
  • RRC radio resource control
  • MAC-CE Media access control-control element
  • DCI downlink control information
  • the channel used may also be a broadcast channel or a control channel. This is not limited here.
  • the frequency resource grouping for each terminal device is realized by the information interaction between the network device and the terminal device, so that the frequency resource in each frequency resource group is QCL for one terminal device, thereby The network device can use the frequency resource grouping to serve the terminal device.
  • the terminal device may move, the direction in which the terminal device receives the beam may change, and the QCL relationship of the frequency resource of the terminal device needs to be maintained and updated.
  • the network device can transmit a synchronization signal to determine a QCL relationship for the frequency resource of the terminal device.
  • the network device may send a CSI-RS to update the QCL relationship, and of course, may also send other downlink signals.
  • the synchronization signal is sent periodically, and the CSI-RS may be sent periodically, aperiodically or semi-statically.
  • the method may further include the step of: the network device notifying the terminal device of the updated frequency resource group.
  • the terminal device receives the updated frequency resource group notified by the network device.
  • the determining process of the terminal device for the frequency resource included in the updated frequency resource group has the same QLC relationship as the foregoing embodiment, except that the downlink signal received by the terminal device may also be a CSI-RS. I will not repeat them here.
  • the terminal device may further re-confirm whether the frequency resource included in the frequency resource group has a QCL relationship.
  • the indicator information reported by the terminal device may be a CSI-RS resource number, a CSI-RS resource configuration number, or a CSI-RS port number, or the foregoing The combination of numbers.
  • the method further includes the step of: the network device transmitting the carrier resource identifier and the beam identifier to the terminal device.
  • the network device transmitting the carrier resource identifier and the beam identifier to the terminal device. For example, ⁇ carrier identification #1, beam identification #1, ... beam identification #N ⁇ is used to instruct the terminal device to receive using the reception beam direction corresponding to beam #1 to beam #N on carrier #1.
  • the network device and the terminal device can maintain multiple beam pair links (BPL) scenarios.
  • BPL beam pair links
  • one beam pair may have a spatial QCL relationship (eg, the beam pair experiences line-of-sight (LOS)), while another beam pair may not have a spatial QCL relationship ( For example, the beam pair experiences a non-line-of-sight (NLOS).
  • the plurality of frequency resources of the at least one frequency resource group have indication information of a QCL relationship, and further include indication information that the one or more beams have a QCL relationship.
  • the beam pairs and carriers maintained between the network device and the terminal device may have the following forms:
  • ⁇ carrier group #1 carrier 1, carrier 2; beam pair 1; spatial QCL hypothesis is established ⁇
  • ⁇ carrier group #1 carrier 1, carrier 2; beam pair 2; spatial QCL hypothesis does not hold ⁇ . This form directly gives an indication of whether the beam pair has a QCL relationship.
  • Another form is: ⁇ carrier 1, beam pair 1, CSI-RS resource #1; beam pair 2, CSI-RS resource #2 ⁇ ; ⁇ carrier 2, beam pair 1, CSI-RS resource #2; beam pair 2, CSI-RS resource #3 ⁇ .
  • This form can determine whether the beam pair has a QCL relationship by comparing whether the antenna port corresponding to the CSI-RS resource of each beam pair has a QCL relationship. For example, the antenna ports corresponding to the CSI-RS resource #1 and the CSI-RS resource #2 have a QCL relationship, and the beam pair 1 has a QCL relationship; and the antenna corresponding to the CSI-RS resource #2 and the CSI-RS resource #3 The port has a QCL relationship, and beam pair 2 does not have a QCL relationship.
  • the frequency resource grouping for each terminal device is realized by the information interaction between the network device and the terminal device, so that the frequency resource in each frequency resource group is for one terminal device. It is said to be QCL, so that the network device can use the frequency resource grouping to serve the terminal device.
  • the above embodiment mainly describes how to determine the QCL relationship of frequency resources through information interaction between the network device and the terminal device.
  • the following embodiment focuses on determining the QCL relationship of the frequency resource, that is, how to utilize the QCL relationship of the frequency resource after determining the frequency resource group.
  • FIG. 7 is a schematic diagram of an interaction process of another communication method according to an embodiment of the present invention.
  • the following steps may be included:
  • step A the network device sends a downlink signal, such as a synchronization signal.
  • the network device can transmit the downlink signal in multiple beam directions in a scanning manner. This is to maintain coverage in a beam-based communication system.
  • step B the terminal device is powered on, detects energy of each frequency point, and selects a frequency point that meets the condition to initiate access.
  • the carrier corresponding to the access frequency point is the primary carrier.
  • the terminal device can measure energy in multiple beam directions in a scanning manner. In a beam-based communication system, it is necessary to consider the change in the direction in which the terminal device receives the beam.
  • the terminal device may choose to camp in a receiving beam direction for a period of time, for example, not less than a period of the SS block transmission period, to detect energy in all directions sent by the base station. If the access condition is not met, the terminal device switches the receive beam direction and repeats the above detection process.
  • the terminal device can simultaneously support the use of N receiving beam directions, the terminal device can choose to stay in the direction of no more than N receiving beams at the same time, for example, not less than the SS block sending period. For a period of time, to detect the energy in all directions sent by the base station. If the condition is not met, the terminal device switches no more than N receive beam directions, and the above detection process is repeated. This speeds up the access process.
  • the network device configures at least one frequency resource group, where each frequency resource group includes one or more frequency resources.
  • the network device sends the indication information of the at least one frequency resource group to the terminal device.
  • the terminal device receives indication information from at least one frequency resource group of the network device.
  • the network device sends, by using at least one beam, a downlink signal on a frequency resource corresponding to the at least one frequency resource group.
  • the terminal device receives a downlink signal from the network device by using at least one beam, where the downlink signal is sent on a frequency resource corresponding to the at least one frequency resource group.
  • the terminal device measures the downlink signal.
  • the terminal device reports whether the multiple frequency resources in the at least one frequency resource group have indication information of a QCL relationship.
  • the network device receives information from the terminal device indicating whether a plurality of frequency resources of the at least one frequency resource group have a QCL relationship.
  • the determination process of the above steps S201 to S205 regarding whether the frequency resource has a QCL relationship may refer to the foregoing embodiment.
  • the network device configures a primary frequency resource for the terminal device.
  • the network device can reconfigure the frequency resource with the strongest measured signal as the main frequency resource according to the beam quality information, because the indication information of the QCL relationship reported by the terminal device includes the beam quality and the like. And the network device notifies the terminal device of the reconfigured primary frequency resource.
  • the network device notifies the terminal device to activate using other frequency resources, that is, the network device sends an activation command to the terminal device.
  • the terminal device acquires synchronization information corresponding to one of the frequency resources in each frequency resource group according to the indication information of whether the plurality of frequency resources in the at least one frequency resource group have a QCL relationship.
  • the terminal device initiates a random access procedure on the frequency resource that needs to be activated, and obtains synchronization information, where the synchronization information includes uplink synchronization information and/or downlink synchronization information, such as a time advance (TA).
  • TA time advance
  • the terminal device When acquiring the synchronization information, since the frequency resource group is determined in advance, and the plurality of frequency resources in the frequency resource group have a QCL relationship, the terminal device only needs to acquire the synchronization required for synchronizing one of the frequency resources in each frequency resource group. Synchronization information, because the synchronization information between frequency resources with QCL relationship is the same, no further measurement is needed. In particular, for other frequency resources having a QCL relationship with the primary frequency resource, the random access procedure can be omitted. In this way, the network device can save the signaling overhead of sending synchronization information to a certain extent.
  • the terminal device may only need to acquire one of the frequency resources in each frequency resource group.
  • the synchronization information required for synchronization can reduce the signaling overhead of transmitting synchronization information to a certain extent.
  • the terminal device activates the secondary frequency resource to perform data after receiving an indication that the secondary frequency resource is activated by the network device according to the indication information that the primary frequency resource has a QCL relationship with the multiple secondary frequency resources. transmission.
  • the secondary frequency resource is activated and can be used for data transmission.
  • the network device sends an indication of activating the secondary frequency resource in the subframe n.
  • the secondary frequency resource may be used for data transmission after k subframes, where 0 ⁇ k ⁇ 8, and no need to wait for 8 after receiving the activation indication. The time of the sub-frames. Thereby, the utilization of frequency resources can be improved.
  • the frequency resource grouping for each terminal device is realized by the information interaction between the network device and the terminal device, so that the frequency resource in each frequency resource group is for one terminal device.
  • Said to be QCL so that the network device can use the frequency resource grouping to serve the terminal device; for the frequency resource group having the QCL relationship, only the uplink and downlink synchronization information of one frequency resource in the frequency resource group can be measured, to some extent
  • the signaling overhead of transmitting uplink and downlink synchronization information of the network device is saved; for other secondary frequency resources having a QCL relationship with the primary frequency resource, the secondary frequency resource can be directly used for data transmission, and does not need to wait for 8 sub-subjects after receiving the activation indication.
  • the time of the frame which can improve the utilization of frequency resources.
  • the embodiment of the present application may perform the division of the function module on the terminal device or the network device according to the foregoing method.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner. The following is an example of dividing each functional module by using corresponding functions.
  • FIG. 8 shows a simplified schematic diagram of the structure of a terminal device.
  • the terminal device uses a mobile phone as an example.
  • the terminal device includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used for processing communication protocols and communication data, and controlling terminal devices, executing software programs, processing data of software programs, and the like.
  • Memory is primarily used to store software programs and data.
  • the RF circuit is mainly used for the conversion of the baseband signal and the RF signal and the processing of the RF signal.
  • the antenna is mainly used to transmit and receive RF signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are primarily used to receive user input data and output data to the user. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When the data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • the memory may also be referred to as a storage medium or a storage device or the like.
  • the memory may be independent of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • an antenna and a radio frequency circuit having a transceiving function can be regarded as a receiving unit and a transmitting unit (also collectively referred to as a transceiving unit) of the terminal device, and a processor having a processing function is regarded as a processing unit of the terminal device.
  • the terminal device includes a receiving unit 8001, a processing unit 8002, and a transmitting unit 8003.
  • the receiving unit 8001 may also be referred to as a receiver, a receiver, a receiving circuit, etc.
  • the transmitting unit 8003 may also be referred to as a transmitter, a transmitter, a transmitter, a transmitting circuit, or the like.
  • the processing unit may also be referred to as a processor, a processing board, a processing module, a processing device, and the like.
  • the receiving unit 8001 is configured to perform steps S102 and S103 of the embodiment shown in FIG. 3
  • the processing unit 8002 is configured to perform the step S104 of the embodiment shown in FIG. 3
  • the transmitting unit 8003 is configured to perform Step S105 of the embodiment shown in FIG.
  • the receiving unit 8001 is configured to perform the steps S202, S203, and S207 of the embodiment shown in FIG. 7, and the processing unit 8002 is configured to perform the steps S204 and S209 of the embodiment shown in FIG. 7, and send Unit 8003 is for performing the steps S205 and S208 of the embodiment shown in FIG.
  • FIG. 9 shows a simplified schematic diagram of the structure of a network device.
  • the network device includes a radio frequency signal transceiving and converting portion and a processing unit 9003.
  • the radio frequency signal transceiving and converting portion further includes a receiving unit 9001 portion and a transmitting unit 9002 portion (also collectively referred to as a transceiving unit).
  • the RF signal transmission and reception and conversion part is mainly used for transmitting and receiving RF signals and converting RF signals and baseband signals; the 9003 part is mainly used for baseband processing and control of network equipment.
  • the receiving unit 9001 may also be referred to as a receiver, a receiver, a receiving circuit, etc.
  • the transmitting unit 9002 may also be referred to as a transmitter, a transmitter, a transmitter, a transmitting circuit, or the like.
  • the 9003 portion is typically a control center for a network device, and may generally be referred to as a processing unit for controlling the network device to perform the steps performed by the network device described above with respect to FIG. 3 or FIG. For details, please refer to the description of the relevant part above.
  • the 9003 portion may include one or more boards, each of which may include one or more processors and one or more memories for reading and executing programs in the memory to implement baseband processing functions and to network devices control. If multiple boards exist, the boards can be interconnected to increase processing power. As an optional implementation manner, multiple boards share one or more processors, or multiple boards share one or more memories, or multiple boards share one or more processes at the same time. Device.
  • the processing unit 9003 is configured to perform the S101 step of the embodiment shown in FIG. 3, the transmitting unit 9002 is configured to perform the steps S102 and S103 of the embodiment shown in FIG. 3, and the receiving unit 9001 is configured to execute the map. Step S105 of the illustrated embodiment.
  • the processing unit 9003 is configured to perform the steps S201 and S206 of the embodiment shown in FIG. 7, and the sending unit 9002 is configured to perform the steps S202, S203, and S207 of the embodiment shown in FIG. 7, and receive Unit 9001 is used to perform the steps S205 and S208 of the embodiment shown in FIG.
  • SoC system-on-chip
  • all or part of the functions of the 9001 part, the 9002 part, and the 9003 part can be implemented by the SoC technology.
  • a base station function chip which integrates a processor, a memory, an antenna interface and the like.
  • the program of the base station related function is stored in the memory, and the program is executed by the processor to implement the related functions of the base station.
  • the base station function chip can also read the memory external to the chip to implement related functions of the base station.
  • the present invention also provides a second embodiment for solving different technical problems.
  • a beam is used for communication between the network device and the terminal device, and the beam is characterized in that the energy of the signal is concentrated.
  • Network equipment and terminal equipment can use beamforming technology to generate beams.
  • the beamforming technology is specifically digital beamforming technology, analog beamforming technology and hybrid beamforming technology. This beam communication method can effectively enhance the anti-interference ability of signals. Higher transfer rates and efficiencies.
  • the complex channel environment between the network device and the terminal device may result in failure to communicate normally. Therefore, it is necessary to quickly and accurately detect the failure of the beam. How to detect the beam failure is a hot research topic.
  • a technical problem to be solved by the second embodiment of the present invention is to provide a communication method capable of quickly detecting a situation in which a beam fails.
  • a radio frame (RF) of a channel is a unit, and one radio frame includes 10 subframes, each subframe has a length of 1 millisecond (ms), and each subframe includes two subframes. Slots, each slot having a length of 0.5 milliseconds. The number of symbols included in each slot is related to the cyclic prefix (CP) length in the subframe. If the cyclic prefix is a normal cyclic prefix (normal CP), each slot contains 7 symbols, and each subframe contains 14 Symbol; if the cyclic prefix is an extended cyclic prefix (extended CP), each slot includes 6 symbols, and each subframe includes 12 symbols.
  • a resource element (RE) is the smallest unit in the time-frequency domain, uniquely identified by an index pair (k, l), k is a subcarrier index, and l is a symbol index.
  • a communication system in a Long Term Evolution (LTE) communication system, data is simultaneously transmitted on multiple carriers to increase system bandwidth, thereby increasing data transmission rate.
  • LTE Long Term Evolution
  • FIG. 10 which is a carrier aggregation (CA) mode in a long term evolution communication system
  • a carrier aggregation mode a communication system can aggregate multiple carrier components in a band, or in-band.
  • a discontinuous carrier is aggregated, or a plurality of discontinuous carrier components outside the band are aggregated.
  • the terminal device simultaneously connects the primary cell and the secondary cell, and the terminal device simultaneously performs uplink transmission and downlink transmission by using the primary cell and the secondary cell.
  • the primary cell corresponds to a primary carrier component
  • the secondary cell corresponds to a secondary carrier component.
  • the terminal device monitors the link quality at the physical layer to determine the out-of-synchronization state or the synchronization state, and reports the result to the upper layer.
  • the monitoring method is: the physical layer measurement link quality of the terminal device is less than the first threshold. In the case, an out of sync is sent to the upper layer; when the physical layer of the terminal device measures the link quality to be greater than the second threshold, an in sync is sent to the upper layer.
  • the upper layer of the terminal device continuously receives N out-of-synchronization indications, it determines that the link fails, and sends a link recovery request to the network device, and the terminal device starts a timer with a timing of T1. If the timer expires, it is determined that the link recovery failed. In T1, if the terminal device continuously receives M synchronization indications, the terminal device judges that the link is restored while stopping the timer.
  • the link detection method in the long-term evolution communication system is applied to beam detection, the judgment process usually takes a long time, increasing the delay of communication.
  • the network device sends configuration information indicating that the frequency resource group has a QCL relationship to the terminal device, and sends a downlink signal on the frequency resource group, so that the terminal device can be based on the QCL of the frequency resource group.
  • the relationship is measured by using downlink signals on multiple frequency resources with QCL relationship to obtain more measurement opportunities. Compared with single-carrier beam detection, beam detection accuracy and detection time can be effectively improved.
  • FIG. 11a is a method for communication according to an embodiment of the present invention, where the method includes but is not limited to the following steps:
  • the network device configures at least one frequency resource group.
  • the frequency resource represents a resource for transmitting data in the frequency domain, and each frequency resource group includes at least two frequency resources, and the frequency resource may be a carrier component (CC) or a bandwidth part (BP), and the network
  • the device determines the frequency resource with the QCL relationship according to the measurement parameter of the frequency resource reported by the terminal device, and compiles the frequency resource with the QCL relationship into at least one frequency resource group.
  • Measurement parameters include delay spread, average delay, Doppler spread, average gain, terminal device receive beam number, transmit receive channel correlation, angel of arrival (AOA), spatial correlation of receive antenna, primary angle of arrival At least one of the average angles of arrival.
  • the QCL relationship indicates that there are at least one identical or similar communication feature between the plurality of antenna ports.
  • the QCL relationship between the carrier component 1 and the carrier component 2 refers to the antenna port transmitting the carrier component 1 and the antenna port transmitting the carrier component 2.
  • There is a QCL relationship between them; for example, a QCL relationship between the beam 1 and the beam 2 means that there is a QCL relationship between the antenna port of the downlink signal corresponding to the beam 1 and the antenna port of the downlink signal corresponding to the transmission beam 2.
  • the frequency resource is a carrier component
  • one frequency resource group includes two carrier components, which are carrier component 1 and carrier component 2, respectively, and carrier component 1 and carrier component 2 have a QCL relationship
  • the network device reports according to the terminal device.
  • the measurement parameters determine that the distribution of the received power of the carrier component 1 and the carrier component 2 is similar between the angles of arrival, and the network device determines that the carrier component 1 and the carrier component 2 have a QCL relationship on the spatial domain parameter, that is, the carrier component 1 and the carrier component 2 have Airspace QCL relationship.
  • the carrier component 1 and the carrier component 2 may be adjacent carrier components or non-adjacent carrier components.
  • the network device sends the configuration information of the at least one frequency resource group to the terminal device, where the terminal device receives the configuration information of the at least one frequency resource group sent by the network device, where the configuration information includes at least one of the frequency resource groups included in the frequency resource group.
  • Two frequency resources have information about the QCL relationship.
  • the network device may send configuration information of the at least one frequency resource group by using any one of RRC signaling, a MAC-CE message, and a DCI.
  • all the parameters of the configuration information may be sent through one signaling, and may also be sent through multiple signalings, where each signaling only sends some parameters of the configuration information, which is not limited in this embodiment.
  • the configuration information further includes:
  • At least one of a first phase count value of the frequency resource group (which may also be referred to as a counter or timer) and a first phase time window; and/or
  • At least one of a first phase count value (which may also be referred to as a counter or timer Timer) and a first phase time window of each frequency resource within the frequency resource group.
  • the configuration information further includes:
  • At least one of a second phase count value and a second phase time window of each frequency resource in the frequency resource group At least one of a second phase count value and a second phase time window of each frequency resource in the frequency resource group.
  • the configuration information further includes: a timing duration of the frequency resource group, and a timing duration of each frequency resource in the frequency resource group.
  • the first stage count value is a count value of the beam detection stage
  • the second stage count value is a count value of the beam recovery stage.
  • the first phase window and the second phase window are time intervals of a preset duration
  • the first phase window is a time window of the beam detection phase
  • the second phase window is a time window of the beam recovery phase.
  • the first phase count value, the first phase time window, the second phase time window, the second phase count value, and the timing duration set by different frequency resource groups may be the same, Can be different.
  • the first phase count value, the first phase time window, the second phase time window, and the second phase count value and the timing duration of the frequency resource group may be associated with each frequency resource in the frequency resource group.
  • the first phase count value of the frequency resource group is equal to the value of the first phase count value of each frequency resource in the frequency resource group, or the first phase count value of the frequency resource group is equal to each frequency resource in the frequency resource group.
  • Corresponding minimum first-stage count value other parameters can also refer to the above-mentioned association relationship, and details are not described herein again.
  • At least one of the first phase count value, the first phase time window, the second phase time window, the second phase count value, and the timing duration of each frequency resource in the frequency resource group and the frequency resource group may be pre- It is stored or pre-configured on the network device and the terminal device, and can also be configured by the network device and then sent to the terminal device through signaling.
  • the carrier component group includes carrier component 1 and carrier component 2, carrier component 1 and carrier component 2 have a QCL relationship, and the first phase count value of the carrier component group is N11, and the first phase time window is W11.
  • the second stage count value is N12, the timing duration is T11;
  • the first stage count value of the carrier component 1 is N21, the first stage time window is W21, the second stage count value is N22, and the timing duration is T21;
  • the carrier component 1 The first stage count value is N31, the first stage time window is W31, the second stage count value is N32, and the timing period is T31.
  • the configuration information further includes: an identifier of the frequency resource group, an identifier of the reference frequency resource in the frequency resource group, an identifier of each frequency resource in the frequency resource group, a frequency resource and a beam mapping in the frequency resource group. Relationship, and at least one beam indication information associated with each frequency resource in the frequency resource group.
  • the identifier of the frequency resource group is used to uniquely identify the identity of the frequency resource group, and the reference frequency resource may be any frequency resource in the frequency resource group.
  • the reference frequency resource is the primary carrier component in the carrier component group; if there is no primary carrier component in the carrier component group, the reference frequency resource is any one of the carrier components specified by the network device.
  • the identifier of the reference frequency resource is used to indicate the identity of the reference frequency resource, and the identifier of the frequency resource is used to indicate the identity of the frequency resource.
  • Each frequency resource in the frequency resource group is associated with at least 1 beam.
  • the multiple beams In the case of multiple beams associated with one frequency resource, the multiple beams generally do not have a QCL relationship.
  • the beam indication information is used to indicate the identity of the beam, and the beam indication information includes at least one of a beam index, a CSI-RS resource number of the beam, and an SRS resource number of the beam.
  • the network device may further allocate a QCL identifier to the beam having the QCL relationship among the beams associated with the frequency resource group, to represent the frequency resource having the QCL relationship in the frequency resource group.
  • each frequency resource in the frequency resource group CC group#1: (CC#1, CC#2)
  • CC group#1 is the identifier of the frequency resource group
  • CC#1 is the identifier of the carrier component 1
  • CC #2 is the identifier of carrier component 2
  • carrier component 1 is the reference carrier component.
  • Carrier component 1 and carrier component 2 are associated with two beams, and the mapping relationship between carrier component and beam is expressed as: (CC#1BPL1, CC#1BPL2; CC#2BPL1, CC#2BPL2).
  • the network device may directly notify the QCL relationship described above, or may assign a QCL identifier (QCL FLAG) to the beam having the QCL relationship, for example: CC#1BPL1QCL FLAG, CC#1BPL2; CC#2BPL2), indicates that carrier 1 of carrier component 1 and carrier 1 of carrier component 2 have a QCL relationship.
  • QCL FLAG QCL identifier
  • the configuration information of the frequency resource group further includes:
  • the configuration of the downlink signals on different frequency resources is different.
  • the period of the downlink signal on each frequency resource in the frequency resource group is different, and the period of the uplink and downlink signals of the reference frequency resource is smaller than the period of the downlink signal on the non-reference frequency resource.
  • the carrier component group includes carrier component 1 and carrier component 2, and carrier component 1 and carrier component 2 are associated with one beam, carrier component 1
  • the beam and the beam of carrier component 2 have a QCL relationship, so the two beams have the same beam direction.
  • the carrier component 1 and the carrier component 2 configure the downlink signal and the control channel, and the time-frequency position and period of the downlink signal of the carrier component 1 and the carrier component 1 are different.
  • the network device sends the downlink signal on the frequency resource corresponding to the at least one frequency resource group by using the at least one beam, and the terminal device receives the downlink signal from the network device by using the at least one beam on the frequency resource corresponding to the at least one frequency resource group.
  • the network device sends one or more downlink signals on each frequency resource, and the downlink signal may be a CSI-RS or an SS block.
  • the network device respectively transmits one downlink signal on carrier component 1 and carrier component 2, and the terminal device receives one downlink signal on carrier component 1 and carrier component 2, respectively.
  • the network device may be one base station, and one base station sends a downlink signal to the terminal device on the frequency resource group.
  • the network device may also be a plurality of base stations, each of which transmits a downlink signal to the terminal device on one or more frequency resources.
  • the base station transmits a downlink signal 1 to the terminal device on the carrier component 1 and a downlink signal 2 to the terminal device on the carrier component 2.
  • the base station 1 transmits a downlink signal 1 to the terminal device on the carrier component 1, and the base station 2 transmits the downlink signal 2 to the terminal device on the carrier component 2.
  • the terminal device monitors the downlink signal.
  • the terminal device can monitor the downlink signal according to the beam detection rule indicated by the network device or the pre-configured beam detection rule.
  • the terminal device can detect the beam by using a signal quality parameter of the downlink signal on each frequency resource in the frequency resource group.
  • the physical layer of the terminal device measures a signal quality parameter of the downlink signal, and determines a beam quality difference if the signal quality parameter of the downlink signal is less than the first threshold, and determines that the signal quality parameter of the downlink signal is greater than the second threshold.
  • the beam quality is good.
  • the signal quality parameter includes one or more of a reference signal receiving power (RSRP), a reference signal receiving quality (RSRQ), a received signal strength indication (RSSI), and an SNR. .
  • the terminal device monitors the downlink signal, and specifically includes:
  • the terminal device When the terminal device continuously detects the N1 secondary beam quality difference, it determines that the beam associated with the frequency resource group fails.
  • the N1 is the first stage count value of the frequency resource group, and the physical layer of the terminal device measures the signal quality parameter of the downlink signal of all the frequency resources in the frequency resource group, and the signal quality parameter detected by the physical layer of the terminal device is smaller than the first
  • the threshold is determined, the beam quality is determined to be poor.
  • the terminal device detects the N1 secondary beam quality difference, it determines that the beam associated with the frequency resource group fails.
  • the failure of the beam associated with the frequency resource group indicates that one or more beams in the frequency resource group fail.
  • the beam failure associated with the frequency resource group may be a beam failure with a QCL relationship among the beams associated with the frequency resource group.
  • the carrier component group includes carrier component 1 and carrier component 2, carrier component 1 is associated with carrier 1 and carrier 2, carrier component 2 is associated with carrier 3 and carrier 4, carrier 1 and carrier 3 have QCL relationship, carrier component 1 is configured with CSI-RS1, and carrier component 2 is configured with CSI-RS2.
  • the physical layer of the terminal device detects signal quality parameters on CSI-RS1 and CSI-RS2, and determines beam quality when the signal quality parameter is less than the first threshold. Poor, in the case where the beam quality difference is continuously detected 3 times, the terminal device judges that carrier 1 and carrier 3 fail.
  • the terminal device determines that the beam associated with the frequency resource group fails.
  • W1 is a first phase time window of the frequency resource group
  • the first phase time window is a time window of the beam detection phase.
  • the physical layer of the terminal device measures the signal quality parameters of all downlink signals on the frequency resource group multiple times in W1, and then averages the signal quality parameters measured multiple times. If the average value is less than the preset threshold, the frequency is determined.
  • the beam associated with the resource group failed.
  • the failure of the beam associated with the frequency resource group indicates that one or more beams in the frequency resource group fail.
  • the beam failure associated with the frequency resource group may be a beam failure with a QCL relationship among the beams associated with the frequency resource group.
  • the carrier component group includes carrier component 1 and carrier component 2, carrier component 1 is associated with beam 1 and beam 2, carrier component 2 is associated with beam 3 and beam 4, beam 2 and beam 4 have a QCL relationship, and carrier component 1 is associated with a downlink signal.
  • Carrier component 2 is associated with downlink signal 2.
  • the duration of the first-stage time window W1 is 10 ms, and the physical layer of the terminal device measures the signal quality parameters of the downlink signal 1 and the downlink signal 2 multiple times in the first-stage time window W1 of 10 ms, and the signal quality parameters of the multiple measurements are measured. Average, if the average is less than the preset threshold, it is judged that beam 2 and beam 4 fail.
  • the terminal device determines that the beam associated with the frequency resource group fails in the case that the N1 secondary beam quality difference is continuously detected in the first phase time window W1.
  • the physical layer of the terminal device monitors the signal quality parameters of all downlink signals on the frequency resource group in the time window W1, and determines that the signal quality parameter of any one downlink signal is less than the first threshold.
  • the upper layer of the terminal device determines that the beam associated with the frequency resource group fails in the case where the high-order beam quality difference is continuously detected in the first-stage time window W1.
  • the failure of the beam associated with the frequency resource group indicates that one or more beams in the frequency resource group fail.
  • the beam failure associated with the frequency resource group may be a beam failure with a QCL relationship among the beams associated with the frequency resource group.
  • the terminal device continuously detects that the signal quality parameter of the frequency resource group in the first phase time window W1 is less than the preset threshold, the beam of the frequency resource group associated with the frequency resource group fails.
  • the physical layer of the terminal device measures the signal quality parameters of all downlink signals on the frequency resource group in the first phase time window W1, and then averages the signal quality parameters of the multiple measurements, if the average value is less than the preset
  • the threshold is determined to determine that the current first-stage time window beam quality is poor.
  • the beam failure associated with the frequency resource group is determined.
  • the failure of the beam associated with the frequency resource group indicates that one or more beams in the frequency resource group fail.
  • the beam failure associated with the frequency resource group may be a beam failure with a QCL relationship among the beams associated with the frequency resource group.
  • the embodiment of the present invention further includes:
  • the N2 secondary beam quality is continuously detected, it is determined that the beam recovery associated with the frequency resource group is successful.
  • N2 is a second phase count value of the frequency resource group
  • the terminal device sends a beam recovery request to the network device, where the beam recovery request is used for recovery, if the terminal device fails to have a QCL relationship in the beam associated with the frequency resource group. A failed beam occurs.
  • the terminal device measures the signal quality parameters of all the downlink signals on the frequency resource group. If the signal quality parameter of any one of the downlink signals is greater than the second threshold, the terminal device determines that the beam quality is good once, and the terminal device is continuous. When the N2 secondary beam quality is detected, it is determined that the failed beam recovery is successful.
  • the second phase time window W2 is a time window of the frequency resource group in the beam recovery phase, and the physical layer of the terminal device performs multiple measurements on the signal quality parameters of all downlink signals on the frequency resource group in the second phase time window W2.
  • the signal quality parameters of the multiple measurements are averaged. If the average value is greater than the preset threshold, it is determined that the beam with the QCL relationship in the frequency resource group is successfully recovered.
  • the physical layer of the terminal device measures the signal quality parameters of all downlink signals of the frequency resource group in the second phase time window. If the signal quality parameter of the downlink signal is greater than the second threshold, it is determined that the beam quality is good once. In the case, when the terminal device detects that the N2 secondary beam quality is good in W2, it is determined that the beam recovery with the QCL relationship in the frequency resource group is successful.
  • the beam recovery associated with the frequency resource group is determined. success.
  • the physical layer of the terminal device measures the signal quality parameters of all the downlink signals on the frequency resource group in the second phase time window W2, and then averages the signal quality parameters of the multiple measurements, if the average value is greater than the preset Threshold, determining that the current second-stage time window has poor beam quality.
  • the terminal device continuously detects the N2 beam quality according to the above measurement manner, it is determined that the beam recovery with the QCL relationship in the beam associated with the frequency resource group is successful.
  • the method further includes:
  • the parameters such as the timing duration, the second phase count value, and the second phase time window are cleared.
  • the terminal device monitors the downlink signal, and specifically includes:
  • the N1 secondary beam quality difference on the reference frequency resource is continuously detected, it is determined that the beam associated with the reference frequency resource fails.
  • the reference layer resource bit is in any one of the frequency resource groups of the at least one frequency resource group, and the physical layer of the terminal device measures the signal quality parameter of the downlink signal on the reference frequency resource, where the measured signal quality parameter is smaller than the first threshold.
  • the terminal device determines that the beam quality difference is detected once, when the physical layer of the terminal device continuously detects the N1 beam quality difference, it determines that the beam associated with the reference frequency resource fails.
  • the frequency resource is a carrier component
  • carrier component 1 is a reference carrier component
  • carrier component 1 is associated with beam 1 and beam 2
  • carrier component 2 is associated with beam 3 and beam.
  • CSI-RS1 is arranged on carrier component 1
  • CSI-RS2 is arranged on carrier component 2.
  • the physical layer of the terminal device measures the signal quality parameter of the CSI-RS1. When the signal quality parameter of the CSI-RS1 is less than the first threshold, it is determined that the first-order beam quality difference is detected, and the physical layer of the terminal device continuously detects the third-order beam. In the case of poor quality, it is judged that beam 1 and beam 2 associated with the reference carrier component fail.
  • the terminal device monitors the downlink signal, and specifically includes:
  • the physical layer of the terminal device measures the signal quality parameter of the downlink signal on the reference frequency resource multiple times in the time window W1, and averages the signal quality parameters measured multiple times, and the average signal quality parameter is smaller than the first threshold. In the case, it is determined that the beam associated with the reference frequency resource fails.
  • the terminal device monitors a beam that is associated with two frequency resources, and specifically includes:
  • the N1 secondary beam quality difference on the reference frequency resource is continuously detected in the time window W1, it is determined that the beam associated with the reference frequency resource fails.
  • the physical layer of the terminal device measures the signal quality parameter of the downlink signal on the reference frequency resource in the time window W1. When the signal quality parameter is smaller than the first threshold, determining that the beam quality difference is detected once, the physicality of the terminal device When the layer continuously detects the N1 secondary beam quality difference, it determines that the beam associated with the reference frequency resource fails.
  • the terminal device detects the downlink signal, and specifically includes:
  • the beam associated with the reference frequency resource is determined to be failed.
  • the physical layer of the terminal device in the first phase time window W1 is a signal quality parameter of the uplink and downlink signals of the granularity reference frequency resource, and then averages the signal quality parameters of the multiple measurements. If the average value is less than the preset threshold, Determining the current first-stage time window beam quality difference, and determining that the beam having the QCL relationship among the beams associated with the reference frequency resource fails in the case that the terminal device continuously detects the N1 beam quality difference according to the above measurement manner.
  • a method for monitoring a beam according to the related parameter of the reference frequency resource where the configuration information further includes at least one of a second phase count value N2 and a second phase time window W2 associated with the reference frequency resource.
  • This embodiment further includes:
  • the beam associated with the reference frequency resource fails, if the N2 secondary beam quality on the reference frequency resource is continuously detected, it is determined that the beam recovery associated with the reference frequency resource is successful.
  • the physical layer of the terminal device measures the signal quality parameter of the downlink signal associated with the reference frequency resource, and sends a synchronization indication to the upper layer if the signal quality parameter is greater than the second threshold.
  • the beam recovery associated with the reference frequency resource is determined to be successful.
  • the second phase time window W2 is a time window of the reference frequency resource in the beam recovery phase, and the physical layer of the terminal device performs multiple measurements on the signal quality parameter of the downlink signal of the reference frequency resource in the second phase time window W2.
  • the signal quality parameters of the multiple measurements are averaged. If the average value is greater than the preset threshold, the beam recovery associated with the reference frequency resource is determined to be successful.
  • the terminal device detects the downlink signal, and specifically includes:
  • the N2 secondary beam quality on the reference frequency resource is detected in the second phase time window W2, it is determined that the beam recovery associated with the reference frequency resource is successful.
  • the physical layer of the terminal device measures the signal quality parameter of the downlink signal of the reference frequency resource in the second phase time window. If the signal quality parameter of the downlink signal is greater than the second threshold, it is determined that the beam quality is good once. When the terminal device detects that the N2 secondary beam quality is good in W2, it determines that the beam recovery associated with the reference frequency resource is successful.
  • the terminal device detects the downlink signal, and specifically includes:
  • the beam recovery associated with the reference frequency resource is determined to be successful.
  • the physical layer of the terminal device measures the signal quality parameter of the downlink signal of the reference frequency resource in the second phase time window W2, and then averages the signal quality parameter of the multiple measurement, if the average value is greater than the preset threshold.
  • the beam quality in the current second-stage time window is determined to be good.
  • the terminal device continuously detects the N2 beam quality according to the above measurement manner, the beam recovery associated with the reference frequency resource is determined to be successful.
  • the method further includes:
  • the configuration information further includes: a timing duration T1 of the reference frequency resource association;
  • the method further includes:
  • the configuration information further includes at least one of a first phase count value and a time window of each frequency resource in the frequency resource group.
  • the configuration information further includes: a timing duration of each frequency resource in the frequency resource group.
  • the terminal device may refer to the foregoing description of the monitoring of the reference frequency resource, and details are not described herein again.
  • the network device sends configuration information indicating that the frequency resource group has a QCL relationship to the terminal device, and sends a downlink signal on the frequency resource group, so that the terminal device can have multiple QCLs according to the QCL relationship of the frequency resource group.
  • the downlink signal of the frequency resource of the relationship is measured to obtain more measurement opportunities, which can effectively improve the accuracy of the beam detection and reduce the detection time compared to the beam detection of the single carrier.
  • FIG. 12 is a schematic flowchart of a method for communication according to an embodiment of the present invention.
  • the method includes:
  • the network device sends, to the terminal device, configuration information that receives at least one frequency resource group, where the terminal device receives configuration information of at least one frequency resource from the network device.
  • the network device may send configuration information of at least the frequency resource group by using any one of RRC signaling, a MAC-CE message, and a DCI.
  • Each frequency resource group includes at least two frequency resources, each frequency resource corresponding to at least one beam, and the configuration information includes an identifier of each frequency resource group and an identifier of each frequency resource.
  • the frequency resource in the frequency resource group can be CC or BP.
  • the frequency resources in each frequency resource group may or may not have a QCL relationship.
  • the network device sends the downlink signal on the frequency resource corresponding to the at least one frequency resource group by using the at least one beam, and the terminal device receives the downlink signal by indicating one beam on the frequency resource corresponding to the at least one frequency resource group.
  • the frequency resource group is configured with one or more downlink signals, and the network device sends the downlink signal by using the frequency resource group.
  • the downlink signal may be an uplink reference signal, for example, a sounding reference signal (SRS), or may be a downlink signal, such as a CSI-RS or an SS block.
  • SRS sounding reference signal
  • the terminal device detects, according to the downlink signal, a beam failure associated with the first frequency resource in the frequency resource group.
  • the frequency resource group is any one of the at least one frequency resource group, and the frequency resource group includes the first frequency resource and the second frequency resource, where the first frequency resource and the second frequency resource are two different frequency resources.
  • the physical layer of the terminal device measures the signal quality parameter of the downlink signal associated with the first frequency resource to detect the beam failure.
  • the terminal device detects that the carrier 1 associated with carrier 1 fails.
  • the terminal device sends a beam recovery request on the second frequency resource in the frequency resource group.
  • the configuration information further includes a relationship between the downlink signal of the frequency resource and the transmission resource, that is, for any frequency resource in the frequency resource group, the downlink signal of the frequency resource is associated with one or more transmission resources in the frequency resource group. relationship.
  • the transmission resource is a resource for sending a beam recovery request in the frequency resource group.
  • the transmission resource may be a random access channel (RACH) resource in the frequency resource group.
  • the terminal device sends a beam recovery request by using the transmission resource on the second frequency resource, where the beam failure of the first frequency resource is indicated in the beam recovery request.
  • the terminal device learns multiple transmission resources of the second frequency resource according to the foregoing association relationship, and the terminal device sends a beam recovery request according to the multiple transmission resources.
  • the network device or the terminal device is pre-stored or pre-configured with the foregoing relationship, so that the network device or the terminal device can learn the beam failure of the first frequency resource according to the transmission resource used by the received beam recovery request.
  • association relationship is specifically:
  • the identifier of the downlink signal, the identifier of the frequency resource, the identifier of the frequency resource group, the identifier of the antenna port, the identifier of the antenna port group, and the beam indication information are used to indicate the beam direction.
  • association relationship is specifically:
  • k is the index of the downlink signal of the frequency resource
  • n is the index of the frequency resource
  • r n is the index of the transmission resource on the frequency resource.
  • the downlink signal is any one of a CSI-RS, an SRS, and a synchronization signal block (SS block).
  • the embodiment of the present invention is applicable to the beam recovery process in the uplink direction, that is, the direction of the terminal device to the network device.
  • the configuration information includes:
  • At least one of a first phase count value and a first phase time window of each frequency resource in the frequency resource group and at least one of a second phase count value, a second phase time window, and a timing duration of each frequency resource in the frequency resource groupkind.
  • the configuration information further includes:
  • the identifier of the frequency resource group, the identifier of the reference frequency resource in the frequency resource group, the identifier of each frequency resource in the frequency resource group, the mapping relationship between the frequency resource and the beam in the frequency resource group, and at least one associated with each frequency resource in the frequency resource group includes at least one of a beam number and a downlink signal resource number.
  • the configuration information further includes:
  • the periods of the downlink signals on the frequency resource group are different.
  • the carrier component group includes carrier component 1 and carrier component 2, and carrier component 1 and carrier component 2 are associated with one beam, carrier component 1
  • the beam and the beam of carrier component 2 do not have a QCL relationship, so the beam direction of carrier component 1 and carrier component 2 are different.
  • the carrier component 1 and the carrier component 2 configure the downlink signal and the control channel, and the downlink signal of the carrier component 1 and the carrier component 1 have different time-frequency positions but the same period.
  • each beam has a QCL relationship.
  • the configuration information further includes:
  • the QCL information of the beam having the QCL relationship among the beams associated with the frequency resource group and the QCL identifier of the beam having the QCL relationship among the beams associated with the frequency resource group is a prefix for the QCL relationship among the beams associated with the frequency resource group.
  • the frequency domain resource is a carrier component CC or a bandwidth part BP.
  • the terminal device when the terminal device detects that the beam of one frequency resource in the frequency resource group fails, the terminal device sends a beam recovery request on another frequency resource in the frequency resource group, so that the terminal can use multiple beams for beam recovery. , to improve the probability of beam recovery.
  • the apparatus 4 shown in FIG. 13 can implement the embodiment shown in FIG. 11a, and the apparatus 4 includes a processing unit 401 and a transmitting unit 402.
  • the processing unit 401 is configured to configure at least one frequency resource group; wherein each frequency resource group includes at least two frequency resources.
  • the processing unit 401 performs the steps of S201 in Fig. 11a.
  • the sending unit 402 is configured to send configuration information of the at least one frequency resource group to the terminal device, where the configuration information includes information that the frequency resource in each frequency resource group has a quasi-co-located QCL relationship; the sending unit 402, And for transmitting downlink signals on the frequency resources corresponding to the at least one frequency resource group by using at least one beam, wherein each frequency resource is associated with one beam.
  • the transmitting unit 402 performs the steps of S202 and S203 in Fig. 11a.
  • the device 4 may be a network device, and the device 4 may also be a field-programmable gate array (FPGA), a dedicated integrated chip, a system on chip (SoC), and a central unit.
  • FPGA field-programmable gate array
  • SoC system on chip
  • CPU central processor unit
  • NP network processor
  • NP digital signal processing circuit
  • MCU micro controller unit
  • PLD programmable logic device
  • the receiving unit may be an input unit such as an input circuit or a communication interface; the transmitting unit may be an output unit such as an output circuit or a communication interface.
  • the receiving unit may be a receiver (which may also be referred to as a receiver); the transmitting unit may be a transmitter (which may also be referred to as a transmitter).
  • an embodiment of the present invention further provides a device 5.
  • the device 5 is a network device, and the network device includes:
  • the memory 502 is configured to store programs and data.
  • the number of the memories may be one or more, and the type of the memory may be any form of storage medium.
  • the memory may be a random access memory (English: random access memory, RAM for short) or read only memory (English: read only memory, abbreviated as: ROM) or a flash memory, wherein the memory 502 may be located in a separate terminal device, It may be located inside the processor 501.
  • the processor 501 is configured to execute the program code stored by the memory 502, when the program code is executed, the processor 501 is configured to configure at least one frequency resource group; wherein each frequency resource group includes at least two frequency resources Each frequency resource is associated with at least one beam.
  • the processor 501 is configured to perform the steps of S201 in FIG. 11a.
  • the transceiver 503 is configured to send and receive signals.
  • the transceiver can be a separate chip, or can be a transceiver circuit in the processor 501 or as an input and output interface.
  • the transceiver may be at least one of a transmitter for performing a transmitting step in the device and a receiver for performing a receiving step in the device.
  • the transceiver 503 may further include a transmitting antenna and a receiving antenna.
  • the transmitting antenna and the receiving antenna may be two antennas that are separately provided, or may be one antenna.
  • the transceiver 503 is configured to send configuration information of the at least one frequency resource group to the terminal device, where the configuration information includes information that the frequency resource in each frequency resource group has a quasi-co-located QCL relationship; and use at least one The beam transmits a downlink signal on a frequency resource corresponding to the at least one frequency resource group.
  • the transceiver 503 is configured to perform the steps of S202 and S203 in Fig. 11a.
  • the transceiver 503, the memory 502, and the processor 501 communicate with each other through an internal connection path, for example, by a bus connection.
  • the device 5 may be a chip, for example, may be a communication chip used in a network device for implementing related functions of the processor 501 in the network device.
  • the chip can be a field programmable gate array for implementing related functions, a dedicated integrated chip, a system chip, a central processing unit, a network processor, a digital signal processing circuit, a microcontroller, and a programmable controller or other integrated chip.
  • one or more memories may be included for storing program code, and when the program code is executed, the processor implements corresponding functions.
  • the computer program product includes one or more computer instructions (sometimes referred to as code or programs).
  • code or programs When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server or data center via wired (eg coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device that includes one or more servers, data centers, etc. that can be integrated with the media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)) or the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium such as a solid state disk (SSD)
  • the apparatus 6 shown in FIG. 15 can implement the embodiment shown in FIG. 11a, and the apparatus 6 includes: a receiving unit 601 and a processing unit 602.
  • the receiving unit 601 is configured to receive configuration information of at least one frequency resource group from the network device, and receive a downlink signal on the frequency resource corresponding to the at least one frequency resource group by indicating one beam; wherein each frequency resource The group includes at least two frequency resources, and the configuration information indicates that the frequency resources within each frequency resource have a quasi-homogonal QCL relationship.
  • the receiving unit 601 performs the steps of S202 and S203 in Fig. 11a.
  • the processing unit 602 is configured to monitor the downlink signal, for example, the processing unit 602 is configured to perform the step of S204 in FIG.
  • the device 6 may be a terminal device, and the device 6 may also be a field-programmable gate array (FPGA), a dedicated integrated chip, a system on chip (SoC), and a central unit for implementing related functions.
  • FPGA field-programmable gate array
  • SoC system on chip
  • CPU central processor unit
  • NP network processor
  • MCU micro controller unit
  • PLD programmable logic device
  • the receiving unit may be an input unit such as an input circuit or a communication interface; the transmitting unit may be an output unit such as an output circuit or a communication interface.
  • the receiving unit may be a receiver (which may also be referred to as a receiver); the transmitting unit may be a transmitter (which may also be referred to as a transmitter).
  • an embodiment of the present invention further provides a device 7.
  • the device 7 is a terminal device, and the terminal device includes:
  • the memory 702 is configured to store programs and data.
  • the number of the memories may be one or more, and the type of the memory may be any form of storage medium.
  • the memory may be a random access memory (English: random access memory, RAM for short) or a read only memory (English: read only memory, abbreviated as: ROM) or a flash memory, wherein the memory 702 may be located separately in the terminal device, It may be located inside the processor 701.
  • the transceiver 703 is configured to receive configuration information of at least one frequency resource group from the network device, and receive a downlink signal by indicating a beam on the frequency resource corresponding to the at least one frequency resource group; where each frequency resource group includes At least two frequency resources, the configuration information indicating that the frequency resources within each frequency resource have a quasi-homogonal QCL relationship.
  • the transceiver 703 performs the steps of S202 and S203 in Fig. 11a.
  • the transceiver can be a separate chip, or can be a transceiver circuit in the processor 701 or as an input and output interface.
  • the transceiver 703 can be at least one of a transmitter for performing a transmitting step in the device and a receiver for performing a receiving step in the device.
  • the processor 701 is configured to execute the program code stored in the memory 702, and when the program code is executed, the processor 701 is configured to monitor the downlink signal. For example, processor 701 performs the steps of S204 in Figure 11a.
  • the transceiver 703, the memory 702, and the processor 701 communicate with each other through an internal connection path, for example, via a bus.
  • the device 7 may be a chip, for example, may be a communication chip used in a terminal device for implementing related functions of the processor 701 in the network device.
  • the chip can be a field programmable gate array for implementing related functions, a dedicated integrated chip, a system chip, a central processing unit, a network processor, a digital signal processing circuit, a microcontroller, and a programmable controller or other integrated chip.
  • one or more memories may be included for storing program code, and when the program code is executed, the processor implements corresponding functions.
  • the computer program product includes one or more computer instructions (sometimes referred to as code or programs).
  • code or programs When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server or data center via wired (eg coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device that includes one or more servers, data centers, etc. that can be integrated with the media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)) or the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium such as a solid state disk (SSD)
  • the apparatus 8 shown in FIG. 17 can implement the embodiment shown in FIG. 12a.
  • the apparatus 8 includes a receiving unit 801, a processing unit 802, and a sending unit 803.
  • the receiving unit 801 is configured to receive configuration information of the at least one frequency resource group, and receive the downlink signal on the frequency resource corresponding to the at least one frequency resource group by using at least one beam; where each frequency resource group includes at least two Each of the frequency resources corresponds to at least one beam, and the configuration information includes an identifier of each frequency resource group and an identifier of each frequency resource; for example, the receiving unit 801 performs the steps of S301 and S302 in FIG. 12a.
  • the processing unit 802 is configured to: when the downlink signal detects that the beam associated with the first frequency resource in the frequency resource group fails, the indication sending unit 803 sends a beam recovery request on the second frequency resource in the frequency resource group. For example, the processing unit 802 performs the steps of S303 in Fig. 12a, and the transmitting unit 803 performs the steps of S304 in Fig. 12a.
  • the device 8 may be a terminal device, and the device 8 may also be a field-programmable gate array (FPGA), a dedicated integrated chip, a system on chip (SoC), and a central unit.
  • the receiving unit may be an input unit such as an input circuit or a communication interface; the transmitting unit may be an output unit such as an output circuit or a communication interface.
  • the receiving unit may be a receiver (which may also be referred to as a receiver); the transmitting unit may be a transmitter (which may also be referred to as a transmitter).
  • an embodiment of the present invention further provides a device 9.
  • the device 9 is a terminal device, and the terminal device includes:
  • the memory 902 is configured to store programs and data.
  • the number of the memories may be one or more, and the type of the memory may be any form of storage medium.
  • the memory may be a random access memory (English: random access memory, RAM for short) or a read only memory (English: read only memory, abbreviated as: ROM) or a flash memory, wherein the memory 902 may be located separately in the terminal device, It may be located inside the processor 901.
  • the transceiver 903 is configured to receive configuration information of the at least one frequency resource group, and receive downlink signals on the frequency resources corresponding to the at least one frequency resource group by using at least one beam; where each frequency resource group includes at least two frequencies a resource, each frequency resource corresponding to at least one beam, the configuration information including an identifier of each frequency resource group and an identifier of each frequency resource.
  • transceiver 903 performs the steps of S302, S302, and S304 in Figure 12a.
  • the transceiver can be used as a separate chip, or can be a transceiver circuit in the processor 901 or as an input and output interface.
  • the transceiver 703 can be at least one of a transmitter for performing a transmitting step in the device and a receiver for performing a receiving step in the device.
  • the processor 901 is configured to execute the program code stored in the memory 902. When the program code is executed, the processor 901 is configured to detect, according to the downlink signal, that the beam associated with the first frequency resource in the frequency resource group fails. Instructing the transceiver 903 to transmit a beam recovery request on the second frequency resource within the frequency resource group. For example, processor 901 performs the steps of S303 in Figure 12a.
  • the transceiver 903, the memory 902, and the processor 901 communicate with each other through an internal connection path, for example, via a bus.
  • the device 9 may be a chip, for example, may be a communication chip used in a terminal device for implementing related functions of the processor 901 in the network device.
  • the chip can be a field programmable gate array for implementing related functions, a dedicated integrated chip, a system chip, a central processing unit, a network processor, a digital signal processing circuit, a microcontroller, and a programmable controller or other integrated chip.
  • one or more memories may be included for storing program code, and when the program code is executed, the processor implements corresponding functions.
  • the computer program product includes one or more computer instructions (sometimes referred to as code or programs).
  • code or programs When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server or data center via wired (eg coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device that includes one or more servers, data centers, etc. that can be integrated with the media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)) or the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium such as a solid state disk (SSD)
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are only illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in or transmitted by a computer readable storage medium.
  • the computer instructions can be from a website site, computer, server or data center to another website site by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) Transfer from a computer, server, or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a Solid State Disk (SSD)) or the like.
  • the program can be stored in a computer readable storage medium, when the program is executed
  • the flow of the method embodiments as described above may be included.
  • the foregoing storage medium includes various media that can store program codes, such as a ROM or a random access memory RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种通信方法及装置。其中,该方法包括:配置至少一个频率资源组,其中,每个频率资源组包括一个或多个频率资源;将所述至少一个频率资源组的指示信息发送给终端设备;使用至少一个波束在所述至少一个频率资源组对应的频率资源上发送下行信号;接收来自所述终端设备的用于指示所述至少一个频率资源组的多个频率资源是否具有准同位QCL关系的信息。相应地,还公开了相应的装置。采用该频率资源配置方案,通过网络设备和终端设备的信息交互,实现了针对每个终端设备特定的频率资源分组,使得每个频率资源组内的频率资源对于一个终端设备来说是QCL的,从而网络设备可以采用该频率资源分组为该终端设备服务。

Description

通信方法及通信装置
本申请要求于2017年8月11日提交中国专利局、申请号为CN2017106842702、发明名称为“通信方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及频率资源的配置。
背景技术
网络设备采用频率资源聚合技术,可以允许使用多个频率资源为一个终端设备服务,大大增加了带宽,进而提高了传输速率。准同位(quasi-co-location,QCL)关系是指多个资源之间具有一个或多个相同或相类似的通信特征。
在相邻的多个频率资源上,两个天线端口之间可能关于延迟扩展,多普勒扩展,多普勒频移,平均延迟,空域参数等至少一种参数具有QCL关系。例如,对于空域参数来说,如图1a所示的一种接收功率在到达角(angle of arrival,AOA)的分布示意图,多个频率资源之间的接收功率在到达角的分布很相似,可以认为这两个频率资源之间存在空域准同位(spatial QCL)关系。这样,可以考虑使用一个频率资源的通信特性来为多个频率资源的通信服务,从而节省了对每个频率资源都进行管理带来的时延和开销。但是,在相邻的多个频率资源上也有可能并不具有spatial QCL关系,如图1b所示的另一种接收功率在到达角的分布示意图,多个频率资源之间的接收功率在到达角的分布相似度较低。这时对于每一个频率资源,可能需要单独进行管理。相邻多个频率资源之间是否具有QCL关系,与多种因素相关。利用QCL关系进行频率资源的配置有利于提高频率资源配置的准确性,但现有技术中尚未有如何确定频率资源的QCL关系以进行频率资源的配置的方案。
因此,网络设备如何对频率资源进行配置是亟待解决的问题。
发明内容
本申请提供一种通信方法及装置,以确定频率资源之间的准同位关系,从而根据该准同位关系进行频率资源的配置。
本申请的一方面,提供了一种通信方法,包括:网络设备配置至少一个频率资源组,其中,每个频率资源组包括一个或多个频率资源;所述网络设备将所述至少一个频率资源组的指示信息发送给终端设备;所述网络设备使用至少一个波束在所述至少一个频率资源组对应的频率资源上发送下行信号;以及所述网络设备接收来自所述终端设备的用于指示所述至少一个频率资源组的多个频率资源是否具有准同位QCL关系的信息。在该实现方式中,通过网络设备和终端设备的信息交互,实现了针对每个终端设备特定的频率资源分组,使得每个频率资源组内的频率资源对于一个终端设备来说是QCL的,从而网络设备可以采用该频率资源分组为该终端设备服务。
在一种可能的实现方式中,所述网络设备配置至少一个频率资源组之前,所述方法还 包括:所述网络设备获取所述终端设备支持的一个或多个频率资源的信息。在该实现方式中,网络设备在配置频率资源组之前,获取终端设备的频率资源聚合能力,这样可以针对性的配置频率资源组,提高频率资源配置的效率。
在另一种可能的实现方式中,所述方法还包括:所述网络设备通知所述终端设备更新后的频率资源组。在该实现方式中,若网络设备配置的频率资源组有更新,则需要通知终端设备,终端设备重新确定各个频率资源组中频率资源的QCL关系。在终端设备上报QCL关系后,对于网络设备原先配置的频率资源组,需要更新频率资源组的,也要将更新后的频率资源组信息通知终端设备。
在又一种可能的实现方式中,所述方法还包括:所述网络设备为终端设备配置主频率资源。在该实现方式中,网络设备根据终端设备上报的频率资源的波束质量等,确定是否需要为终端设备重新配置主频率资源。
本申请的另一方面,提供了一种通信方法,包括:终端设备接收来自网络设备的至少一个频率资源组的指示信息,每个频率资源组包括一个或多个频率资源;所述终端设备通过至少一个波束接收来自网络设备的下行信号,所述下行信号是在所述至少一个频率资源组对应的频率资源上发送的;所述终端设备测量所述下行信号;以及所述终端设备上报所述至少一个频率资源组中的多个频率资源是否具有QCL关系的指示信息。在该实现方式中,通过网络设备和终端设备的信息交互,实现了针对每个终端设备特定的频率资源分组,使得每个频率资源组内的频率资源对于一个终端设备来说是QCL的,从而网络设备可以采用该频率资源分组为该终端设备服务。
在一种可能的实现方式中,所述终端设备接收来自网络设备的至少一个频率资源组的指示信息之前,所述方法还包括:所述终端设备发送其支持的一个或多个频率资源的信息给所述网络设备。在该实现方式中,网络设备在配置频率资源组之前,终端设备上报自身的频率资源聚合能力,这样可以针对性的配置频率资源组,提高频率资源配置的效率。
在另一种可能的实现方式中,所述终端设备测量所述下行信号,包括:所述终端设备测量所述下行信号的以下至少一个信息:波束指示信息、所述至少一个频率资源关联的下行信号的质量信息、天线端口的信道大尺度特性。
在又一种可能的实现方式中,所述方法还包括:所述终端设备接收所述网络设备通知的更新后的频率资源组。在该实现方式中,若网络设备配置的频率资源组有更新,则需要通知终端设备,终端设备重新确定各个频率资源组中频率资源的QCL关系。在终端设备上报QCL关系后,对于网络设备原先配置的频率资源组,需要更新频率资源组的,也要将更新后的频率资源组信息通知终端设备。
在又一种可能的实现方式中,所述方法还包括:所述终端设备根据所述至少一个频率资源组中的多个频率资源是否具有QCL关系的指示信息,获取每个频率资源组中的其中一个频率资源对应的同步信息;其中,所述同步信息包括上行同步信息和/或下行同步信息。在该实现方式中,对于是否具有QCL关系的频率资源,只需要获取其中一个频率资源的上下行同步信息。尤其对于与主频率资源是否具有QCL关系的频率资源,可以省去测量在该频率资源上进行上下行同步所需的上下行同步信息。
在又一种可能的实现方式中,所述方法还包括:所述终端设备根据主频率资源与多个 辅频率资源是否具有QCL关系的指示信息,在接收到来自所述网络设备的激活所述辅频率资源的指示之后,激活所述辅频率资源进行数据传输。在该实现方式中,对于与主频率资源是否具有QCL关系的其它辅频率资源,辅频率资源可以直接使用进行数据传输,不需要在接收到激活指示后再等待8个子帧的时间,从而可以提高频率资源的利用率。
相应的,本申请还提供了一种通信装置,可以实现上述通信方法。例如所述通信装置可以是芯片(如基带芯片,或通信芯片等)或者网络设备。可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的实现方式中,所述通信装置的结构中包括处理器、存储器;所述处理器被配置为支持所述装置执行上述通信方法中相应的功能。存储器用于与处理器耦合,其保存所述装置必要的程序(指令)和/或数据。可选的,所述通信装置还可以包括通信接口用于支持所述装置与其他网元之间的通信。
在另一种可能的实现方式中,所述通信装置,可以包括处理单元、发送单元和接收单元。所述处理单元,用于配置至少一个频率资源组,其中,每个频率资源组包括一个或多个频率资源;所述发送单元,用于将所述至少一个频率资源组的指示信息发送给终端设备;所述发送单元还用于使用至少一个波束在所述至少一个频率资源组对应的频率资源上发送下行信号;以及所述接收单元,用于接收来自所述终端设备的用于指示所述至少一个频率资源组的多个频率资源是否具有准同位QCL关系的信息。
可选地,所述接收单元还用于获取所述终端设备支持的一个或多个频率资源的信息。
可选地,所述发送单元还用于通知所述终端设备更新后的频率资源组。
可选地,所述处理单元还用于为终端设备配置主频率资源。
当所述通信装置为芯片时,发送单元可以是输出单元,比如输出电路或者通信接口;接收单元可以是输入单元,比如输入电路或者通信接口。当所述通信装置为网络设备时,发送单元可以是发射器或发射机;接收单元可以是接收器或接收机。
本申请的又一方面还提供了一种通信装置,可以实现上述通信方法。例如所述通信装置可以是芯片(如基带芯片,或通信芯片等)或者终端设备,可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的实现方式中,所述通信装置的结构中包括处理器、存储器;所述处理器被配置为支持所述装置执行上述通信方法中相应的功能。存储器用于与处理器耦合,其保存所述装置必要的程序(指令)和数据。可选的,所述通信装置还可以包括通信接口用于支持所述装置与其他网元之间的通信。
在另一种可能的实现方式中,所述通信装置,可以包括接收单元、处理单元和发送单元。所述处理单元用于实现上述方法中的测量功能,所述接收单元和发送单元分别用于实现上述方法中的接收和发送功能。例如,所述接收单元,用于接收来自网络设备的至少一个频率资源组的指示信息,每个频率资源组包括一个或多个频率资源;所述接收单元还用于通过至少一个波束接收来自网络设备的下行信号,所述下行信号是在所述至少一个频率资源组对应的频率资源上发送的;所述处理单元,用于测量所述下行信号;以及所述发送单元,用于上报所述至少一个频率资源组中的多个频率资源是否具有QCL关系的指示信息。
可选地,所述发送单元还用于发送其支持的一个或多个频率资源的信息给所述网络设备。
可选地,所述处理单元具体用于:测量所述下行信号的以下至少一个信息:波束指示信息、所述至少一个频率资源关联的下行信号的质量信息、天线端口的信道大尺度特性。
可选地,所述接收单元还用于接收所述网络设备通知的更新后的频率资源组。
可选地,所述接收单元还用于根据所述至少一个频率资源组中的多个频率资源是否具有QCL关系的指示信息,获取每个频率资源组中的其中一个频率资源对应的同步信息;其中,所述同步信息包括上行同步信息和/或下行同步信息。
可选地,所述处理单元还用于根据主频率资源与多个辅频率资源是否具有QCL关系的指示信息,在接收到来自所述网络设备的激活所述辅频率资源的指示之后,激活所述辅频率资源进行数据传输。
当所述通信装置为芯片时,接收单元可以是输入单元,比如输入电路或者通信接口;发送单元可以是输出单元,比如输出电路或者通信接口。当所述通信装置为终端设备时,接收单元可以是接收器(也可以称为接收机);发送单元可以是发射器(也可以称为发射机)。
结合以上各方面,在一种可能的实现方式中,所述频率资源为载波分量CC或者带宽部分BP。
结合以上各方面,在另一种可能的实现方式中,所述至少一个频率资源组的指示信息,具体包括以下至少一个信息:所述至少一个频率资源组的标识、以及每个频率资源组包括的一个或多个频率资源的标识。
结合以上各方面,在又一种可能的实现方式中,所述至少一个频率资源组的一个或多个频率资源是否具有QCL关系的指示信息,具体包括以下至少一种信息:所述至少一个频率资源组的标识、所述一个或多个频率资源的标识、所述波束指示信息、所述至少一个频率资源关联的下行信号的质量信息、天线端口的信道大尺度特性和所述至少一个频率资源的相关度信息。
结合以上各方面,在又一种可能的实现方式中,所述下行信号为同步信号块或者信道状态信息下行信号。
结合以上各方面,在又一种可能的实现方式中,所述至少一个频率资源组的多个频率资源是否具有QCL关系的指示信息,还用于指示所述一个或多个波束是否具有QCL关系的指示信息,所述一个或多个波束为发送或者接收所述至少一个频率资源组的多个频率资源的波束。
本申请的又一方面提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
本申请的又一方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
另外,为了提升无线通信系统的传输速率和效率,在第五代新空口(fifth generation new radio,5G NR)通信系统中网络设备和终端设备之间采用波束进行通信,波束的特点是信号的能量集中在某个方向上。网络设备和终端设备可采用波束成形技术生成波束,波束成形技术具体为数字波束成形技术、模拟波束成形技术和混合波束成形技术,这种波束通信 的方法能有效增强信号的抗干扰能力,从而达到更高的传输速率和效率。网络设备和终端设备之间复杂的信道环境会导致无法正常通信,因此需要快速和准确的检测波束失败的情况,如何检测波束失败是目前研究的热点。
本发明另一实施例所要解决的技术问题在于,提供一种通信的方法,能快速的检测波束失败的情况。
一方面,在本申请提供了一种通信的方法,包括:网络设备配置至少一个频率资源组,每个频率资源组包括至少两个频率资源;网络设备将至少一个频率资源组的配置信息发送给终端设备,配置信息包括用于表示每个频率资源组内的频率资源具有准同位(quasi-co-location,QCL)关系的信息,网络设备使用至少一个波束在所述至少一个频率资源组对应的频率资源上发送下行信号,其中,一个频率资源对应一个波束。
其中,频率资源表示频域上用来传输数据的资源,例如:频率资源可以是载波分量(carrier component,CC)或带宽部分(bandwidth part,BP)。QCL关系表示多个天线端口之间具有至少一个相同或相似的通信特征,例如:载波分量1和载波分量2之间具有QCL关系是指发送载波分量1的天线端口和发送载波分量2的天线端口之间具有QCL关系;又例如:波束1和波束2之间具有QCL关系是指发送波束1对应的下行信号的天线端口和发送波束2对应的下行信号的天线端口之间具有QCL关系。对于具有QCL关系的多个频率资源,尤其是具有空域准同位关系(spatial QCL)的多个频率资源,可以采用相同或相似的配置。网络设备可以使用至少一个波束在频率资源组内的每个频率资源上发送一个或多个下行信号,下行信号包括但不限于信道状态信息参考信号(channel state information-reference signal,CSI-RS)和同步信号块(SS block)中至少一种。配置信息可通过无线资源控制(radio resource control,RRC)消息、介质访问控制-控制元素(media access control-control element,MAC-CE)消息或下行控制信息(downlink control information,DCI)等消息发送。
实施本发明的实施例,网络设备将表示频率资源组具有QCL关系的配置信息发送给终端设备,以及在频率资源组上发送下行信号,这样终端设备可根据频率资源组的QCL关系,在多个具有QCL关系的频率资源上对下行信号进行测量,从而获得更多的测量机会,相对于单载波的波束检测,能有效提高波束检测的准确性和减少检测时间。
在一种可能的设计中,配置信息还包括:频率资源组的第一阶段计数值和第一阶段时间窗时间窗中至少一种,和/或频率资源组内各频率资源的第一阶段计数值和第一阶段时间窗中至少一种。
在一种可能的设计中,配置信息还包括:频率资源组的第二阶段计数值和第二阶段时间窗中至少一种;和/或频率资源组内各频率资源的第二阶段计数值和第二阶段时间窗中至少一种。
其中,第一阶段计数值为波束检测阶段设置的计数值,第二阶段计数值为波束恢复阶段设置的计数值。第一阶段时间窗和第二阶段时间窗为一个时间区间,第一阶段时间窗为波束检测阶段设置的时间窗,第二阶段时间窗为波束恢复阶段设置的时间窗。
在一种可能的设计中,配置信息还包括频率资源组的定时时长,以及频率资源组内各频率资源的定时时长。
在一种可能的设计中,配置信息还包括:频率资源组的标识、频率资源组内参考频率资源的标识、频率资源组内各频率资源的标识、频率资源组内频率资源和波束的映射关系以及频率资源组内各频率资源关联的至少一个波束的波束指示信息。
其中,参考频率资源为频率资源组内的一个频率资源,例如:频率资源为载波分量时,参考载波分量为载波分量组内的主载波分量;在载波分量组内没有主载波分量的情况下,网络设备指定一个辅载波分量作为参考载波分量。频率资源组内每个频率资源关联至少一个波束,频率资源组内的至少两个频率资源具有QCL关系表示频率资源关联的任意一个波束与其他频率资源关联的任意一个波束具有QCL关系。例如:频率资源组包括频率资源1和频率资源2,频率资源1关联波束11和波束12,频率资源2关联波束21和波束22,频率资源1和频率资源2具有QCL关系表示波束11和波束21具有QCL关系,或波束11和波束22具有QCL关系,或波束12和波束21具有QCL关系,或波束12和波束22具有QCL关系。波束指示信息用于表示波束的标识,不同的波束具有不同的波束指示信息,波束指示信息包括波束号、下行信号资源号、波束的绝对索引、波束的相对索引、波束的逻辑索引、波束对应的天线端口的索引、波束对应的天线端口组索引、波束对应的下行信号的索引、波束对应的下行同步信号块的时间索引、波束对连接(beam pair link,BPL)信息、波束对应的发送参数(Tx parameter)、波束对应的接收参数(Rx parameter)、波束对应的发送权重、波束对应的权重矩阵、波束对应的权重向量、波束对应的接收权重、波束对应的发送权重的索引、波束对应的权重矩阵的索引、波束对应的权重向量的索引、波束对应的接收权重的索引、波束对应的接收码本、波束对应的发送码本、波束对应的接收码本的索引、波束对应的发送码本的索引中的至少一种,下行信号包括信道状态信息下行信号(channel state information reference signal,CSI-RS)、小区专用参考信号(cell specific reference signal,CS-RS)、UE专用参考信号(user equipment specific reference signal,US-RS)中任意一种。可选的,网络设备还可以为频率资源组关联的波束中具有QCL关系的波束分配QCL标示符,以表示频率资源组内具有QCL关系的波束。
在一种可能的设计中,配置信息还包括:频率资源组内各频率资源上的下行信号的天线端口号、时频资源位置和周期中至少一种。
其中,不同的频率资源上的下行信号的配置可相同,可不相同,例如:不同频率资源上的下行信号的周期不相同。
在一种可能的设计中,频率资源组关联的所有波束均具有QCL关系。
在一种可能的设计中,配置信息还包括:频率资源组关联的波束中具有QCL关系的波束的QCL信息和频率资源组关联的波束中具有QCL关系的波束的QCL标示符。
第二方面,本申请提供了一种通信的方法,包括:终端设备接收来自网络设备的至少一个频率资源组的配置信息,以及通过至少一个波束在至少一个频率资源组对应的频率资源上接收下行信号;其中,每个频率资源组包括至少两个频率资源,每个频率资源关联至少一个波束,配置信息包括表示每个频率资源组内的频率资源具有准同位QCL关系的信息;终端设备监测下行信号。
在一种可能的设计中,配置信息包括频率资源组关联的第一阶段计数值N1和第一阶段时间窗W1中至少一种,该频率资源组为至少一个频率资源中的任意一个;
所述终端设备监测下行信号,具体包括:
在连续检测到N1次波束质量差的情况下,判断所述频率资源组关联的波束失败;或
在第一阶段时间窗W1内检测到所述频率资源组的下行信号的信号质量参数小于预设门限的情况下,判断所述频率资源组关联的波束失败;或
在第一阶段时间窗W1内连续检测到N1次波束质量差的情况下,判断所述频率资源组关联的波束失败;或
在连续检测到N1次第一阶段时间窗W1内所述频率资源组的下行信号的信号质量参数小于预设门限的情况下,判断所述频率资源组关联的波束失败。
其中,频率资源组内每个频率资源配置有下行信号,终端设备通过监测频率资源组对应的所有下行信号来监测波束,下行信号包括CSI-RS或SS block。终端设备的物理层测量下行信号的信号质量参数,在信号质量参数大于第一阈值的情况下,确定波束质量差;在信号质量参数小于第二阈值的情况下,确定波束质量好。频率资源组关联的波束失败表示频率资源组内一个或多个波束失败。
在一种可能的设计中,频率资源组关联的波束失败具体为频率资源组关联的波束中具有QCL关系的波束失败。
在一种可能的设计中,所述频率资源组关联的第二阶段计数值N2和第二阶段时间窗W2中至少一种。
在一种可能的设计中,所述方法还包括:
在连续检测到N2次波束质量好的情况下,判断所述频率资源组关联的波束恢复成功;或
在第二时间窗W2中检测到所述频率资源组的下行信号的信号质量参数大于预设门限的情况下,判断所述频率资源组关联的波束恢复成功;或
在第二阶段时间窗W2内检测到N2次波束质量好的情况下,判断所述频率资源组关联的波束恢复成功;或
在连续检测到N2次第二阶段时间窗W2内所述频率资源组的下行信号的信号质量参数大于预设门限的情况下,判断所述频率资源组关联的波束恢复成功;或
终端设备接收来自网络设备的波束恢复响应时,判断所述频率资源组关联的波束恢复成功,其中,所述波束恢复响应携带波束指示信息。
在一种可能的设计中,配置信息还包括:频率资源组关联的定时时长T1;所述方法还包括:在频率资源组的波束失败的情况下,启动定时时长为T1的计时操作;在频率资源组关联的波束恢复成功的情况下,停止定时时长为T1的计时操作;在计时操作超时的情况下,判断频率资源组关联的波束失败。
在一种可能的设计中,所述配置信息包括参考频率资源关联的第一阶段计数值N1和时间窗W1中至少一种和所述参考频率资源的标识,参考频率资源位于至少一个频率资源组中任意一个频率资源组中;
所述终端设备监测所述下行信号,具体包括:
在所述参考频率资源上连续检测到N1次波束质量差的情况下,判断所述参考频率资源关联的波束失败;或
在第一阶段时间窗W1内检测到所述参考频率资源的下行信号的信号质量参数小于预设门限的情况下,判断所述参考频率资源关联的波束失败;或
在第一阶段时间窗内W1内连续检测到所述参考频率资源上N1次波束质量差的情况下,判断所述参考频率资源关联的波束失败;或
连续检测到N1次第一阶段时间窗W1内所述参考频率资源的下行信号的信号质量参数小于门限的情况下,判断所述参考频率资源关联的波束失败。
在一种可能的设计中,所述配置信息还包括所述参考频率资源关联的第二阶段计数值N2和第二阶段时间窗W中至少一种。
在一种可能的设计中,所述方法还包括:
在连续检测到所述参考频率资源上N2次波束质量好的情况下,判断所述参考频率资源关联的波束恢复成功;或
在第二阶段时间窗W2中检测到所述参考频率资源的信号质量参数大于预设门限的情况下,判断所述参考频率资源关联的波束恢复成功;或
在第二阶段时间窗W2内检测到所述参考频率资源上N2次波束质量好的情况下,判断所述参考频率资源关联的波束恢复成功;或
在连续检测到N2次第二阶段时间窗W2内所述频率资源组的信号质量参数大于预设门限的情况下,判断所述参考频率资源关联的波束恢复成功;或
终端设备接收到网络设备发送的波束恢复响应,判断参考频率资源关联的波束恢复成功,所述波束恢复响应中携带波束指示信息。
在一种可能的设计中,配置信息还包括:所述参考频率资源关联的定时时长T1,所述方法还包括:在参考频率资源关联的波束失败的情况下,启动定时时长为T1的计时操作;在参考频率资源关联的波束恢复成功的情况下,停止所述定时时长为T1的计时操作;在所述计时操作超时的情况下,判断所述参考频率资源关联的波束恢复失败。
在一种可能的设计中,所述配置信息还包括所述频率资源组内各频率资源的第一阶段计数值和第一阶段时间窗中至少一种,以及所述频率资源组内各频率资源的第二阶段计数值和第二阶段时间窗中至少一种。
在一种可能的设计中,配置信息还包括频率资源组各频率资源的定时时长。
在一种可能的设计中,所述配置信息还包括:
频率资源组的标识、频率资源组内参考频率资源的标识、频率资源组内各频率资源的标识、频率资源组内频率资源和波束的映射关系、以及频率资源组内各频率资源关联的至少一个波束的波束指示信息,波束指示信息包括波束号和下行信号资源号中的至少一种。
在一种可能的设计中,所述配置信息还包括:频率资源组内各频率资源上的下行信号的天线端口号、时频资源位置和周期中的至少一种。
在一种可能的设计中,所述配置信息还包括:所述频率资源组关联的波束中具有QCL关系的波束的QCL信息和所述频率资源组关联的波束中具有QCL关系的波束的QCL标示符。
第三方面,本申请提供了一种通信的方法,包括:接收至少一个频率资源组的配置信息,以及通过至少一个波束在所述至少一个频率资源组对应的频率资源上接收下行信号; 其中,每个频率资源组包括至少两个频率资源,所述配置信息包括每个频率资源组的标识和每个频率资源的标识;根据下行信号检测到频率资源组内第一频率资源关联的波束失败的情况下,在所述频率资源组内第二频率资源上发送波束恢复请求,频率资源组为所述至少一个频率资源组中任意一个。
在一种可能的设计中,配置信息包括:频率资源组内波束和多个频率资源对应的传输资源之间的关联关系,其中,传输资源为频率资源上用于发送波束恢复请求的资源。
其中,上述关联关系可以是预存储或预配置的,不需要配置信息进行指示。
在一种可能的设计中,在频率资源组的第二频率资源上发送波束恢复请求,具体为:
在第一或第二频率资源的下行信号关联的传输资源上发送波束恢复请求。
在一种可能的设计中,关联关系包括:传输资源与以下信息中至少一种的关联关系:下行信号的标识、下行信号组的标识、频率资源标识、频率资源组的标识、天线端口标识和天线端口组标识。
在一种可能的设计中,关联关系具体为:
在k=0、1、2或3的情况下,r n=2k+(0or/and 1)+n;
在k=4、5、6或7的情况下,r n=k+4+n;
其中,k为频率资源的下行信号的索引,n为频率资源的索引,r n为频率资源上传输资源的索引。
在一种可能的设计中,下行信号为CSI-RS和同步信号块(synchronization signal block,SS block)中任意一种。
再一方面,提供了一种通信装置,该装置具有实现上述方法中网络设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。例如所述网络设备可以是芯片(如基带芯片,或通信芯片等)或者发送设备(如网络设备、基带单板等)。可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
一种可能的设计中,所述装置包括:处理单元和发送单元;处理单元用于配置至少一个频率资源组;其中,每个频率资源组包括至少两个频率资源,每个频率资源关联至少一个波束;发送单元用于将所述至少一个频率资源组的配置信息发送给终端设备;其中,所述配置信息包括每个频率资源组内的频率资源具有准同位QCL关系的信息;发送单元,还用于使用至少一个波束在所述至少一个频率资源组对应的频率资源上发送下行信号。
其中,配置信息的具体内容可参照第一方面的实现方法,此处不再赘述。
再一方面,所述装置包括:收发器、存储器和处理器;其中,所述存储器中存储一组程序代码,且所述处理器用于调用所述存储器中存储的程序代码,执行以下操作:
配置至少一个频率资源组;其中,每个频率资源组包括至少两个频率资源,每个频率资源关联至少一个波束;
收发器,用于将所述至少一个频率资源组的配置信息发送给终端设备;其中,所述配置信息包括每个频率资源组内的频率资源具有准同位QCL关系的信息;
收发器,还用于使用至少一个波束在所述至少一个频率资源组对应的频率资源上发送下行信号。
其中,配置信息的具体内容可参照第一方面的实现方法,此处不再赘述。
再一方面,提供了一种通信装置,该装置具有实现上述方法中终端设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。例如所述终端设备可以是芯片(如基带芯片,或通信芯片等)或者发送设备(如网络设备、基带单板等)。可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
一种可能的设计中,所述装置包括:接收单元和处理单元;接收单元,用于接收来自网络设备的至少一个频率资源组的配置信息,以及通过指示一个波束在所述至少一个频率资源组对应的频率资源上接收下行信号;其中,每个频率资源组包括至少两个频率资源,所述配置信息表示每个频率资源内的频率资源具有准同位QCL关系;处理单元,用于监测所述下行信号。
其中,接收单元和处理单元的具体实现可以参照第二方面的实施方式,此处不再赘述。
再一方面,所述装置包括:收发器、存储器和处理器;其中,
所述收发器,用于接收来自网络设备的至少一个频率资源组的配置信息,以及通过指示一个波束在所述至少一个频率资源组对应的频率资源上接收下行信号;其中,每个频率资源组包括至少两个频率资源,所述配置信息表示每个频率资源内的频率资源具有准同位QCL关系。
所述存储器中存储一组程序代码,且所述处理器用于调用所述存储器中存储的程序代码,执行以下操作:
监测所述下行信号。
再一方面,提供了一种通信装置,该装置具有实现上述方法中终端设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。例如所述终端设备可以是芯片(如基带芯片,或通信芯片等)或者发送设备(如网络设备、基带单板等)。可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
一种可能的设计中,所述装置包括:接收单元、处理单元和发送单元;所述接收单元,用于接收至少一个频率资源组的配置信息,以及通过至少一个波束在所述至少一个频率资源组对应的频率资源上接收下行信号;其中,每个频率资源组包括至少两个频率资源,每个频率资源对应至少一个波束,所述配置信息包括每个频率资源组的标识和每个频率资源的标识;所述处理单元,用于根据下行信号检测到频率资源组内第一频率资源关联的波束失败的情况下,在所述频率资源组内第二频率资源上发送波束恢复请求。
其中,接收单元、处理单元和发送单元的具体实现可以参照第三方面的实施方式,此处不再赘述。
再一方面,所述装置包括:收发器、存储器和处理器;其中,
所述收发器,用于接收至少一个频率资源组的配置信息,以及通过至少一个波束在所述至少一个频率资源组对应的频率资源上接收下行信号;其中,每个频率资源组包括至少两个频率资源,每个频率资源对应至少一个波束,所述配置信息包括每个频率资源组的标识和每个频率资源的标识。
所述存储器中存储一组程序代码,且所述处理器用于调用所述存储器中存储的程序代码,执行以下操作:
根据下行信号检测到频率资源组内第一频率资源关联的波束失败的情况下,在所述频率资源组内第二频率资源上发送波束恢复请求。
基于同一发明构思,由于该装置解决问题的原理以及有益效果可以参见上述各可能的终端设备的方法实施方式以及所带来的有益效果,因此该装置的实施可以参见方法的实施,重复之处不再赘述。
本申请的又一方面提了供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
本申请的又一方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
附图说明
为了更清楚地说明本发明实施例或背景技术中的技术方案,下面将对本发明实施例或背景技术中所需要使用的附图进行说明。
图1a为一种接收功率在到达角的分布示意图;
图1b为另一种接收功率在到达角的分布示意图;
图2为本发明实施例提供的一种通信系统示意图;
图3为本发明实施例提供的一种通信方法的交互流程示意图;
图4为示例的同步信号结构和发送方式示意图;
图5a为示例的一种多载波上SS block的发送示意图;
图5b为示例的另一种多载波上SS block的发送示意图;
图5c为示例的又一种多载波上SS block的发送示意图;
图6为示例的又一种多载波上SS block的发送示意图;
图7为本发明实施例提供的另一种通信方法的交互流程示意图;
图8为本发明实施例提供的一种简化的终端设备的结构示意图;
图9为本发明实施例提供的一种简化的网络设备的结构示意图。
图10是本发明实施例提供的载波聚合的示意图;
图11a是本发明实施例提供的一种通信的方法的流程示意图;
图11b是本发明实施例提供的一种载波分量的结构示意图;
图11c是本发明实施例提供的一种载波分量的另一结构示意图;
图12a是本发明实施例提供的一种通信的方法的另一流程示意图;
图12b是本发明实施例提供的一种载波分量的另一结构示意图;
图13是本发明实施例提供的一种通信的装置的结构示意图;
图14是本发明实施例提供的一种通信的装置的另一结构示意图;
图15是本发明实施例提供的一种通信的装置的另一结构示意图;
图16是本发明实施例提供的一种通信的装置的另一结构示意图;
图17是本发明实施例提供的一种通信的装置的另一结构示意图;
图18是本发明实施例提供的一种通信的装置的另一结构示意图。
具体实施方式
下面结合本发明实施例中的附图对本发明实施例进行描述。
图2给出了一种通信系统示意图。该通信系统可以包括至少一个网络设备100(仅示出1个)以及与网络设备100连接的一个或多个终端设备200。
网络设备100可以是能和终端设备200通信的设备。网络设备100可以是任意一种具有无线收发功能的设备。包括但不限于:基站(例如,基站NodeB、演进型基站eNodeB、第五代(the fifth generation,5G)通信系统中的基站、未来通信系统中的基站或网络设备、WiFi系统中的接入节点、无线中继节点、无线回传节点)等。网络设备100还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。网络设备100还可以是5G网络中的网络设备或未来演进网络中的网络设备;还可以是可穿戴设备或车载设备等。网络设备100还可以是小站,传输节点(transmission reference point,TRP)等。当然不申请不限于此。
终端设备200是一种具有无线收发功能的设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。终端设备有时也可以称为用户设备(user equipment,UE)、接入终端设备、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、终端设备、无线通信设备、UE代理或UE装置等。
需要说明的是,本发明实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本发明实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
图3为本发明实施例提供的一种通信方法的交互流程示意图,该方法可包括以下步骤:
S101、网络设备配置至少一个频率资源组,其中,每个频率资源组包括一个或多个频率资源。
S102、所述网络设备将所述至少一个频率资源组的指示信息发送给终端设备。终端设备接收来自网络设备的至少一个频率资源组的指示信息。
S103、所述网络设备使用至少一个波束在所述至少一个频率资源组对应的频率资源上发送下行信号。所述终端设备通过至少一个波束接收来自网络设备的下行信号,所述下行信号是在所述至少一个频率资源组对应的频率资源上发送的。
S104、所述终端设备测量所述下行信号。
S105、所述终端设备上报所述至少一个频率资源组中的多个频率资源是否具有QCL关系的指示信息。
S106、所述网络设备接收来自所述终端设备的用于指示所述至少一个频率资源组的多个频率资源是否具有QCL关系的信息。
本申请中涉及的通信装置可包括第一通信装置和第二通信装置,还可以是更多的通信装置,如图3所示,这里的第一通信装置为网络设备,第二通信装置为终端设备。
本申请中,该频率资源可以为载波分量(carrier component,CC,下文简称“载波”)或者带宽部分(bandwidth part,BP)。带宽部分是指一个载波的一部分带宽,一个载波可分为多个带宽部分,该多个带宽部分构成一个带宽部分组,即一个载波可以看成是一个或多个带宽部分组。
本申请中所指的QCL关系,是指天线端口之间具有QCL关系。
天线端口之间具有QCL关系具体又可以包括:载波分量之间具有QCL关系,波束之间具有QCL关系,带宽部分之间具有QCL关系等。
一个载波和另一个载波具有QCL关系是指发送一个载波的天线端口和发送另一个载波的天线端口之间具有QCL的关系。
一个带宽部分和另一个带宽部分具有QCL关系,是指发送一个带宽部分的天线端口和发送另一个带宽部分的天线端口之前具有QCL关系。
而一个波束和另一个波束具有QCL关系则是指,例如:发送一个下行信号的天线端口和发送另一个下行信号的天线端口之间是具有QCL的关系。这个例子的场景是使用下行信号标识以及天线端口标识来指示波束信息。例如,采用CSI-RS资源#1指示波束1,采用CSI-RS资源#2指示波束2。波束1和波束2具有QCL关系,本质上是CSI-RS资源#1和CSI-RS资源#2的天线端口具有QCL关系。
本文中若使用简略的描述“具有QCL关系”,则可以包括载波之间具有QCL关系,带宽部分之间具有QCL关系,以及波束之间具有QCL关系;也可以指其中一种情况,即载波之间具有QCL关系,带宽部分之间具有QCL关系,或波束之间具有QCL关系。
网络设备采用频率资源聚合技术可以先配置一个或多个频率资源组,并假设该频率资源组中的多个频率资源具有QCL关系。网络设备可以根据自身的判断配置频率资源组。例如,网络设备假设在频率相差较小的频率资源上QCL关系可能总是成立,则将频率相差较小的多个频率资源配置为一个频率资源组。
下面实施例的描述都是基于网络设备进行QCL关系的假设展开描述的。作为S101和S102的另一种替代的实现方式,网络设备也可以不预先配置具有假设的QCL关系的频率资源组,而是终端设备配置频率资源组,并根据下行信号的测量,确定该频率资源组的假设是否成立,然后再将配置的频率资源组的指示信息上报给网络设备。这时,配置的频率资源组中的多个频率资源是确定具有QCL关系的。作为S101和S102的又一种替代的实现方式,网络设备和终端设备也可以不执行配置频率资源组的动作,而采用默认的协商好的频率资源组。
可选地,作为一种实现方式,在S101之前,还可以包括以下步骤:所述终端设备发送 其支持的一个或多个频率资源的信息给所述网络设备。所述网络设备获取所述终端设备支持的一个或多个频率资源的信息。即终端设备上报频率资源聚合的能力。例如,终端设备上报其能支持{频率资源1,频率资源2,频率资源7,频率资源8,频率资源9}。作为另一种实现方式,网络设备也可以默认终端设备支持哪些频率资源,后续若终端设备不支持网络设备划分的频率资源组中的某些频率资源,终端设备则可以不对这些频率资源上发送的下行信号进行测量。
网络设备在配置好频率资源组后,将频率资源组的指示信息发送给终端设备。具体地,所述至少一个频率资源组的指示信息,具体包括以下至少一个信息:所述至少一个频率资源组的标识、以及每个频率资源组包括的一个或多个频率资源的标识。
举例说明,比如,将多个CC划分为2个CC组,分别为CCG{CC 1,CC2}和CCG2{CC3,CC5,CC 6},网络设备将两个CC组的指示信息发送给终端设备,CC组的指示信息为CCG1包括CC1和CC2,CCG2包括CC3,CC5和CC6。
网络设备在配置好频率资源组并将频率资源组的指示信息发送给终端设备后,使用至少一个波束在配置好的一个或多个频率资源组对应的频率资源上发送下行信号。其中,该下行信号可以是同步信号块(Synchronization signal,SS block)或者信道状态信息下行信号(channel status information-reference signal,CSI-RS)。其中,同步信号包括主同步信号(primary synchronization signal,PSS)和辅同步信号(secondary synchronization signal,SSS)。如图4所示的同步信号结构和发送方式示意图,同步信号和物理广播信道(physical broadcast channel,PBCH)绑定发送,称为一个SS block。例如,SS block最大可支持64个波束方向,它们之间通过同步信号时间索引(SS block time index)区分,即不同的SS block time index指示不同的波束。例如,SS block可以以{20,40,80,160}毫秒为周期进行周期性的发送,在一个周期内需要将所有的波束方向扫完。
终端设备通过一个或多个接收波束接收到网络设备发送的下行信号后,对下行信号进行测量。其中,步骤S104又具体包括以下步骤:所述终端设备测量所述下行信号的以下至少一个信息:波束指示信息、所述至少一个频率资源关联的下行信号的质量信息、天线端口的信道大尺度特性。其中,所述一个或多个接收波束的波束方向全部相同或部分相同。
其中,波束指示信息可以体现为以下的至少一种:波束的绝对索引,波束的相对索引,波束的逻辑索引,波束对应的天线端口的索引,波束对应的天线端口组的索引,波束对应的下行信号的索引,下行同步信号块的时间索引,波束对连接(beam pair link,BPL)信息,波束对应的发送参数(Tx parameter),波束对应的接收参数(Rx parameter),波束对应的发送权重,权重矩阵,权重向量(weight,weight vector,weight matrix),波束对应的接收权重,或者它们的索引;波束对应的发送码本(codebook),波束对应的接收码本,或者它们的索引。
这里描述的测量波束指示信息,具体是指有些波束标识是测量获得,有些波束标识是其它方式获取的。例如,下行同步信号块的时间索引(6比特表示),其中3比特携带在物理广播信道(physical broadcast channel,PBCH)中,另外3比特可以以PBCH的解调下行信号(demodulation reference signal,DMRS)的掩码体现。对于终端设备来说,3个比特是通过测量PBCH的DRMS得到,另外3个比特则是通过解码PBCH获得。
其中,下行信号的质量信息包括信噪比(signal-to-(interference and noise)ratio,SINR/SNR)、下行信号接收功率(reference signal received power,RSRP)、下行信号接收质量(reference signal received quality,RSRQ)、接收信号强度指示(received signal strength indicator,RSSI)和信道质量信息(channel quality information,CSI)中的一种或多种。
终端设备上报该至少一个频率资源组中的多个频率资源是否具有QCL关系的指示信息。作为一种实现方式,所述至少一个频率资源组的一个或多个频率资源具有QCL关系的指示信息,具体包括以下至少一种信息:所述至少一个频率资源组的标识、所述一个或多个频率资源的标识、所述波束指示信息、所述至少一个频率资源关联的下行信号的质量信息、天线端口的信道大尺度特性和所述至少一个频率资源的相关度信息。在该实现方式中,网络设备需根据该指示信息确定至少一个频率资源组中的多个频率资源是否具有QCL关系。作为另一种实现方式,该指示消息可以是具体的值,例如若指示信息为第一值,表示至少一个频率资源组中的多个频率资源具有QCL关系;若指示信息为第二值,表示至少一个频率资源组中的多个频率资源不具有QCL关系。在该实现方式中,终端设备确定了至少一个频率资源组中的多个频率资源是否具有QCL关系,网络设备直接接收该确定结果即可。
其中,频率资源关联的下行信号的质量信息可以通过测量在该频率资源上接收到的下行信号的质量得到。
其中,天线端口的信道大尺度特性包括:延迟扩展,平均延迟,多普勒扩展,多普勒频移,平均增益,终端设备接收波束编号,发射/接收信道相关性,接收到达角,接收机天线的空间相关性,主到达角(angel-of-arrival,AoA),平均到达角,AoA的扩展等。
根据该信道大尺度特性,定义了三种类型的QCL关系:
类型1:平均增益QCL。如果两个天线端口关于平均增益QCL,一般来说这两个天线端口应该位于同一传输点,这样才能保证它们经历的路损相同。
类型2:解调参数QCL,即延迟扩展,多普勒扩展,多普勒频移,平均延迟。如果两个天线端口关于上述四个参数QCL,一般来说这两个天线端口应该位于同一个天线面(panel),或者由同一个射频链路(RF chain)打出,这样才能保证它们经历的移动速度和相位偏移相同。
类型3:空域参数QCL(spatial QCL),即波束是否朝向同一方向。如果两个天线端口关于接收侧空域参数QCL(Rx spatial QCL),一般来说这两个天线端口打出的信号能被终端设备用一个接收波束收到。
其中,至少一个频率资源的相关度信息可以指频率资源与该频率资源组中的参考频率资源之间的相关度。如果频率资源组中的多个频率资源与参考频率资源的相关度高,则这多个频率资源与参考频率资源具有QCL关系。具体地,在包含了主频率资源的组内,参考频率资源就是主频率资源。在没有包括主频率资源的组内,网络设备可以指定某个频率资源为该组的参考频率资源。
具体地,网络设备使用波束在频率资源上发送下行信号,可考虑几种情况。根据实际情况,终端设备上报的指示信息的内容可以有所不同。以多载波上SS block的发送、空域QCL确定为例:
一种情况是,网络设备在每一个载波组内的每一个载波上发送了SS block。
另外,根据在每一个载波上发送的波束的方向是否全部相同、部分相同或完全不同,终端设备测量的结果也有所不同。
如图5a示例的一种多载波上SS block的发送示意图,每个载波在多个波束方向上发送SS block,且每个载波上的波束指示(即SS block time index)对应的发送波束方向相同。具体地,网络设备在同步信号的时频资源位置发送同步信号。终端设备在每个载波上对接收到的每个SS Block进行测量,终端设备测量和上报的内容可以有以下几种方式:
第一种:终端设备测量下行信号后上报相关的内容,由网络设备根据终端设备上报的相关内容来确定载波之间是否QCL。比如,{载波编号#1,波束信息SS block time index#1,波束质量8dB,空域参数AoA 20度;波束信息SS block time index#2,波束质量10dB,空域参数AoA 25度;……};{载波编号#2,波束信息SS block time index#1,波束质量8dB,空域参数AoA 20度;波束信息SS block time index#2,波束质量10dB,空域参数AoA 25度;……}。网络设备通过分别比较终端设备上报的两个载波上各对应方向的波束质量信息和空域参数,可以得出这两个载波之间是spatial QCL的。若两个载波的某一方向的波束质量信息或空域参数不同,这两个载波可能不具有spatial QCL关系。
第二种,终端设备测量下行信号后上报相关的内容,由网络设备根据终端设备上报的相关内容来确定载波之间是否QCL。比如,{载波编号#1,波束信息SS block time index#1,波束质量8dB,空域参数与主载波相关度80%;波束信息SS block time index#2,波束质量10dB,空域参数与主载波相关度100%;……}。假设这里的参考载波为主载波,载波编号#1与主载波位于一个载波组内,网络设备通过比较该载波上各对应方向的空域参数和与主载波的相关度,若该相关度都超过设定阈值,可以得出该载波编号#1与主载波之间是spatial QCL的。对于其他载波组内的载波,则通过比较其他载波与参考载波的空域参数上的相关度,也可以确定其他载波组内的载波是否具有QCL关系。
第三种,终端设备测量下行信号后,自行确定载波之间是否具有QCL的关系,将是否QCL的指示信息发送给网络设备。比如,{载波编号#1,波束信息SS block time index#2,波束质量10dB};{载波编号#2,波束信息SS block time index#2,波束质量10dB};{1比特信息表明载波#1和#2是spatial QCL的}。终端设备根据测量信息,确定两个载波是否具有QCL关系,然后向网络设备上报两个载波是否具有QCL关系的指示信息,该指示信息为1比特信息。网络设备通过1比特信息可以得出这两个载波之间是spatial QCL的。
第四种,终端设备测量下行信号后,发现某两个或多个载波的波束信息、波束质量一致,可以只上报一组信息。比如,{载波编号组#1,波束信息SS block time index#2,波束质量10dB}。由于两个载波测得的波束信息、波束质量完全一致,即QCL关系成立,则终端设备也可以只报一组量来降低开销。网络设备通过上报的形式可以得出这两个载波之间是spatial QCL的。如果QCL关系不成立,则网络设备会得到两组不同的上报量。
对于一个包括N个频率资源的频率资源组,终端设备反馈两两之间是否具有QCL关系,可以采用以下几种形式:
例如,可以使用表格的形式,如表1所示。
表1一个频率资源组中的频率资源的QCL关系
Figure PCTCN2018096984-appb-000001
表1中,“1”表示两个频率资源之间具有QCL关系,“0”表示两个频率资源之间不具有QCL关系,“——”表示是无效信息。当然,反之,也可以是“0”表示两个频率资源之间具有QCL关系,“1”表示两个频率资源之间不具有QCL关系;或者“是”表示两个频率资源之间具有QCL关系,“否”表示两个频率资源之间不具有QCL关系。
另外,从表1可以看出,对角线两侧的值是一样的,终端设备也可以只上报其中一侧的值。
又例如,终端设备可以使用位图(bitmap)的方式反馈。具体地,例如,对于一个有N=4个频率资源的频率资源组,组中的第一个频率资源为参考频率资源。终端设备使用4个比特(1,1,0,0)表示组中的第一个和第二个频率资源与参考频率资源有QCL关系,而组中的第三个频率资源、第四个频率资源与参考频率资源没有QCL关系。终端设备也可以使用N-1个比特(1,0,0)表示除参考频率资源外的组内其他频率资源与参考频率资源的QCL关系。
如图5b示例的另一种多载波上SS block的发送示意图,每个载波上在多个波束方向上发送SS block,且这多个波束方向只有部分相同。其中,虚线标注的波束是在载波1上发送了而在载波2上没有发送的波束方向。这种情况下,例如,在载波2上的SS block time index#2对应的波束方向和载波1上的SS block time index#2对应的波束方向不同,需要终端设备按照载波编号反馈来区分。其它上报内容可参考前面的描述。终端设备可以根据部分波束的接收信号测量载波是否具有QCL关系。
如图5c示例的又一种多载波上SS block的发送示意图,每个载波上在多个波束方向上发送SS block,且这多个波束方向均不相同。其中,虚线标识的波束是在载波1上发送了而在载波2上没有发送的波束方向。这种情况说明网络设备在这两个载波上一定使用了不同的射频链路。例如,在载波2上的SS block time index#2对应的波束方向和载波1上的SS block time index#2对应的波束方向不同,需要终端设备按照载波编号反馈来区分。由于网络设备在发送下行信号的时候没有采用相同方向的波束,终端设备不能根据该测量结果来确定这两个载波是否具有QCL关系,或者网络设备根据终端设备上报的内容,也不能确定这两个载波是否具有QCL关系。终端设备可以在后续的波束测量中对该QCL关系进行修正。
另一种情况是,网络设备在每一个载波组内的一个载波发送下行信号。如图6示例的又一种多载波上下行信号的发送示意图。载波1和载波2属于一个载波组,网络设备只在载波1发送了SS block,发送的波束有多个方向,不同方向用不同的SS block time index表示。在这种情况下,终端设备可以只上报{载波组编号,波束指示信息,波束质量}。而载 波编号,不同载波之间QCL假设,或者空域参数之间的相关性可以不上报。终端设备在这个阶段只能假设一个载波组内的载波都具有spatial QCL关系。终端设备可以在后续阶段确认是否对于组内每个载波spatial QCL关系都成立。
网络设备在根据终端设备的QCL关系的指示信息对频率资源的QCL关系进行确定后,对预先配置的频率资源组进行更新,并将更新的频率资源组发送给终端设备。因此,可选地,步骤S105之后,该方法还可以包括以下步骤:所述网络设备通知所述终端设备更新后的频率资源组。所述终端设备接收所述网络设备通知的更新后的频率资源组。例如,网络设备预先配置载波组为:{载波组#1:载波1,载波2};{载波组#2:载波7,载波8}。而如果终端设备上报反馈载波1和载波2spatial QCL成立,而载波7和载波8spatial QCL不成立,则网络设备可能会重新配置载波组为:{载波组#1:载波1,载波2};{载波组#2:载波7};{载波组#3:载波8},并将更新的频率资源组信息通知给终端设备。
需要说明的是,以上网络设备的配置信令和终端设备的上报信令,可以使用数据信道承载的无线资源控制(radio resource control,RRC)信令发送,也可以使用媒体接入控制控制元素(media access control-control element,MAC-CE)信令或下行控制信息(downlink control information,DCI)信令。使用的信道也可以是广播信道或控制信道。在此不作限定。
可以看出,通过网络设备和终端设备之间的信息交互,实现了针对每个终端设备特定的频率资源分组,使得每个频率资源组内的频率资源对于一个终端设备来说是QCL的,从而网络设备可以采用该频率资源分组为该终端设备服务。
进一步地,由于终端设备可能会移动,终端设备接收波束的方向可能会发生变化,需要针对该终端设备的频率资源的QCL关系进行维护和更新。
例如,在终端设备刚接入网络设备时,网络设备可以发送同步信号来确定针对该终端设备的频率资源的QCL关系。而在后续的QCL关系的维护和更新时,网络设备可以发送CSI-RS来进行QCL关系的更新,当然也可以发送其它下行信号。其中,同步信号是周期性发送的,而CSI-RS可以是周期性、非周期性或半静态发送的。
终端设备发生移动后,网络设备配置服务终端设备的频率资源可能发生变化,则频率资源组的配置也相应的改变。因此,可选地,步骤S105之后,该方法还可以包括以下步骤:所述网络设备通知所述终端设备更新后的频率资源组。所述终端设备接收所述网络设备通知的更新后的频率资源组。终端设备对更新后的频率资源组包括的频率资源是否具有QCL关系的确定过程与前述实施例相同,所不同的是,终端设备接收的下行信号还可以是CSI-RS。在此不再赘述。当然,如果频率资源组的配置未发生改变,则终端设备也可以重新对该频率资源组包括的频率资源是否具有QCL关系进行进一步确认。
其中,若网络设备发送的是CSI-RS,则终端设备上报的指示信息中,波束指示信息可以是CSI-RS资源编号,CSI-RS资源配置编号,或者CSI-RS端口号,或者以上几种编号的组合。
另外,在本实施例中,由于各个频率资源上的波束方向可能不同,网络设备还需要指示终端设备使用哪个载波上的那个波束进行发送和接收。因此,可选地,该方法还包括以下步骤:网络设备向终端设备发送载波资源标识和波束标识。例如,{载波标识#1,波束标识#1,…波束标识#N}用于指示终端设备使用载波#1上的波束#1~波束#N对应的接收波束 方向进行接收。
另外,在发送CSI-RS进行QCL关系的维护和更新时,还可以考虑网络设备和终端设备可以维护多个波束对链路(beam pair link,BPL)的场景。例如,在两个相邻的载波上,一个波束对可能具有spatial QCL关系(例如该波束对经历视距(line-of-sight,LOS)),而另一个波束对可能不具有spatial QCL关系(例如该波束对经历非视距(none-line-of-sight,NLOS))。则所述至少一个频率资源组的多个频率资源具有QCL关系的指示信息,还包括所述一个或多个波束具有QCL关系的指示信息。
在网络设备和终端设备之间维护的波束对和载波可能有以下几种形式:
一种形式是,{载波组#1:载波1,载波2;波束对1;spatial QCL假设成立};{载波组#1:载波1,载波2;波束对2;spatial QCL假设不成立}。这种形式直接给出了波束对是否具有QCL关系的指示。
另一种形式是,{载波1,波束对1,CSI-RS资源#1;波束对2,CSI-RS资源#2};{载波2,波束对1,CSI-RS资源#2;波束对2,CSI-RS资源#3}。这种形式则可以通过比较每个波束对的CSI-RS资源对应的天线端口是否具有QCL关系,来确定该波束对是否具有QCL关系。例如,这里的CSI-RS资源#1和CSI-RS资源#2对应的天线端口具有QCL关系,则波束对1具有QCL关系;而CSI-RS资源#2和CSI-RS资源#3对应的天线端口具有QCL关系,则波束对2不具有QCL关系。
根据本发明实施例提供的一种通信方法,通过网络设备和终端设备的信息交互,实现了针对每个终端设备特定的频率资源分组,使得每个频率资源组内的频率资源对于一个终端设备来说是QCL的,从而网络设备可以采用该频率资源分组为该终端设备服务。
以上实施例主要描述了如何通过网络设备和终端设备的信息交互,确定频率资源的QCL关系。下面的实施例重点描述在确定了频率资源的QCL关系,即确定了频率资源组后,如何利用该频率资源的QCL关系。
图7为本发明实施例提供的另一种通信方法的交互流程示意图,该实施例考虑终端设备接入网络设备的场景,则在执行步骤S201之前,还可以包括以下步骤:
步骤A,网络设备发送下行信号,例如同步信号。网络设备可以以扫描的方式在多个波束方向上发送下行信号。这是为了在基于波束的通信系统中保持覆盖。
步骤B,终端设备开机,检测各个频点能量,选择符合条件的频点发起接入。接入频点对应的载波为主载波。
终端设备可以以扫描的方式在多个波束方向上测量能量。在基于波束的通信系统中,需要考虑终端设备接收波束方向的变化。
由于网络设备也是采用扫描的方式发送,终端设备可以选择在一个接收波束方向上驻留一段时间,例如,不小于SS block发送周期的一段时间,用以检测基站发送的所有方向上的能量。如果没有满足接入条件的,终端设备切换接收波束方向,重复上述检测过程。
如果终端设备有N个射频链路,即终端设备能同时支持使用N个接收波束方向,终端设备可以选择同时在不大于N个接收波束方向上驻留一段时间,例如,不小于SS block发送周期的一段时间,用以检测基站发送的所有方向上的能量。如果没有满足条件的,终端设备切换不大于N个接收波束方向,重复上述检测过程。这样可以加速接入进程。
S201、网络设备配置至少一个频率资源组,其中,每个频率资源组包括一个或多个频率资源。
S202、所述网络设备将所述至少一个频率资源组的指示信息发送给终端设备。终端设备接收来自网络设备的至少一个频率资源组的指示信息。
S203、所述网络设备使用至少一个波束在所述至少一个频率资源组对应的频率资源上发送下行信号。所述终端设备通过至少一个波束接收来自网络设备的下行信号,所述下行信号是在所述至少一个频率资源组对应的频率资源上发送的。
S204、所述终端设备测量所述下行信号。
S205、所述终端设备上报所述至少一个频率资源组中的多个频率资源是否具有QCL关系的指示信息。所述网络设备接收来自所述终端设备的用于指示所述至少一个频率资源组的多个频率资源是否具有QCL关系的信息。
以上步骤S201至步骤S205关于频率资源是否具有QCL关系的确定过程可参考前述实施例。
S206,所述网络设备为终端设备配置主频率资源。
由于终端设备上报的QCL关系的指示信息中包括波束质量等信息,网络设备可以根据该波束质量信息重新配置测得信号最强的频率资源为主频率资源。并且网络设备将重新配置的主频率资源通知终端设备。
进一步地,网络设备通知终端设备激活使用其它频率资源,即网络设备发送激活指令给终端设备。
S207,所述终端设备根据所述至少一个频率资源组中的多个频率资源是否具有QCL关系的指示信息,获取每个频率资源组中的其中一个频率资源对应的同步信息。
终端设备在需要激活的频率资源上发起随机接入过程,获得同步信息,该同步信息包括上行同步信息和/或下行同步信息,例如时间提前量(time advance,TA)。在获取同步信息时,由于前面确定了频率资源组,频率资源组中的多个频率资源具有QCL关系,则终端设备只需要获取每个频率资源组中的其中一个频率资源上进行同步所需的同步信息,这是因为具有QCL关系的频率资源之间的同步信息相同,不需要再进行测量。特别地,对于与主频率资源具有QCL关系的其它频率资源,则该随机接入过程可以省去。这样,网络设备可以在一定程度上节省发送同步信息的信令开销。
需要说明的是,若网络设备预先配置频率资源组,且默认该频率资源组中的多个频率资源具有QCL关系,则终端设备也可以只需要获取每个频率资源组中的其中一个频率资源上进行同步所需的同步信息,网络设备可以在一定程度上节省发送同步信息的信令开销。
S208,所述终端设备根据主频率资源与多个辅频率资源具有QCL关系的指示信息,在接收到来自所述网络设备的激活所述辅频率资源的指示之后,激活所述辅频率资源进行数据传输。
一般地,例如,频分双工(frequency division duplexing,FDD)场景中,在n+8个子帧后,辅频率资源被激活,可以供数据传输使用。其中,网络设备在子帧n发送激活辅频率资源的指示。特别地,对于与主频率资源具有QCL关系的其它辅频率资源,可以在k个子帧后使用辅频率资源进行数据传输,其中,0≤k≤8,不需要在接收到激活指示后再等待8个子帧 的时间。从而可以提高频率资源的利用率。
根据本发明实施例提供的一种通信方法,通过网络设备和终端设备的信息交互,实现了针对每个终端设备特定的频率资源分组,使得每个频率资源组内的频率资源对于一个终端设备来说是QCL的,从而网络设备可以采用该频率资源分组为该终端设备服务;对于具有QCL关系的频率资源组,可以只测量该频率资源组中的一个频率资源的上下行同步信息,一定程度上节省了网络设备发送上下行同步信息的信令开销;对于与主频率资源具有QCL关系的其它辅频率资源,辅频率资源可以直接使用进行数据传输,不需要在接收到激活指示后再等待8个子帧的时间,从而可以提高频率资源的利用率。
上述详细阐述了本发明实施例的方法,下面提供了本发明实施例的装置。
本申请实施例可以根据上述方法示例对终端设备或者网络设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图8示出了一种简化的终端设备结构示意图。便于理解和图示方便,图8中,终端设备以手机作为例子。如图8所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图8中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的接收单元和发送单元(也可以统称为收发单元),将具有处理功能的处理器视为终端设备的处理单元。如图8所示,终端设备包括接收单元8001、处理单元8002和发送单元8003。接收单元8001也可以称为接收器、接收机、接收电路等,发送单元8003也可以称为发送器、发射器、发射机、发射电路等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。
例如,在一个实施例中,接收单元8001用于执行图3所示实施例的S102步骤和S103步骤,处理单元8002用于执行图3所示实施例的S104步骤,以及发送单元8003用于执行 图3所示实施例的S105步骤。
又如,在另一个实施例中,接收单元8001用于执行图7所示实施例的S202、S203和S207步骤,处理单元8002用于执行图7所示实施例的S204和S209步骤,以及发送单元8003用于执行图7所示实施例的S205和S208步骤。
图9示出了一种简化的网络设备结构示意图。网络设备包括射频信号收发及转换部分以及处理单元9003部分,该射频信号收发及转换部分又包括接收单元9001部分和发送单元9002部分(也可以统称为收发单元)。射频信号收发及转换部分主要用于射频信号的收发以及射频信号与基带信号的转换;9003部分主要用于基带处理,对网络设备进行控制等。接收单元9001也可以称为接收器、接收机、接收电路等,发送单元9002也可以称为发送器、发射器、发射机、发射电路等。9003部分通常是网络设备的控制中心,通常可以称为处理单元,用于控制网络设备执行上述图3或图7中关于网络设备所执行的步骤。具体可参见上述相关部分的描述。
9003部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器,处理器用于读取和执行存储器中的程序以实现基带处理功能以及对网络设备的控制。若存在多个单板,各个单板之间可以互联以增加处理能力。作为一中可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一个实施例中,处理单元9003用于执行图3所示实施例的S101步骤,发送单元9002用于执行图3所示实施例的S102和S103步骤,以及接收单元9001用于执行图3所示实施例的S105步骤。
又如,在另一个实施例中,处理单元9003用于执行图7所示实施例的S201和S206步骤,发送单元9002用于执行图7所示实施例的S202、S203和S207步骤,以及接收单元9001用于执行图7所示实施例的S205和S208步骤。
作为另一种可选的实施方式,随着片上系统(英文:System-on-chip,简称:SoC)技术的发展,可以将9001部分、9002部分和9003部分的全部或者部分功能由SoC技术实现,例如由一颗基站功能芯片实现,该基站功能芯片集成了处理器、存储器、天线接口等器件,基站相关功能的程序存储在存储器中,由处理器执行程序以实现基站的相关功能。可选的,该基站功能芯片也能够读取该芯片外部的存储器以实现基站的相关功能。
本发明还提供第二实施例,用于解决不同的技术问题。
为了提升无线通信系统的传输速率和效率,在第五代新空口(fifth generation new radio,5G NR)通信系统中网络设备和终端设备之间采用波束进行通信,波束的特点是信号的能量集中在某个方向上。网络设备和终端设备可采用波束成形技术生成波束,波束成形技术具体为数字波束成形技术、模拟波束成形技术和混合波束成形技术,这种波束通信的方法能有效增强信号的抗干扰能力,从而达到更高的传输速率和效率。网络设备和终端设备之间复杂的信道环境会导致无法正常通信,因此需要快速和准确的检测波束失败的情况,如何检测波束失败是目前研究的热点。
本发明第二实施例所要解决的技术问题在于,提供一种通信的方法,能快速的检测波束失败的情况。
在LTE通信系统中,信道的发送无线帧(radio frame,RF)为单位,1个无线帧包括10个子帧(subframe),每个子帧的长度为1毫秒(ms),每个子帧包括两个时隙(slot),每个时隙的长度为0.5毫秒。每个时隙包含的符号的数量和子帧中循环前缀(cyclic prefix,CP)长度有关,如果循环前缀为普通循环前缀(normal CP),每个时隙包含7个符号,每个子帧包含14个符号;如果循环前缀为扩展循环前缀(extended CP),每个时隙包括6个符号,每个子帧包括12个符号。在长期演进通信系统中,资源单元(resource element,RE)是时频域上最小的单位,由索引对(k,l)唯一标识,k为子载波索引,l为符号索引。
其中,在长期演进(Long Term Evolution,LTE)通信系统中,支持在多个载波上同时传输数据,以增大系统带宽,从而提高数据的传输速率。例如:参见图10所示,为长期演进通信系统中的载波聚合(Carrier Aggregation,CA)模式,在载波聚合模式下通信系统可以将带内连续的多个载波分量进行聚合,或者将带内多个不连续的载波进行聚合,或者是带外的多个不连续的载波分量进行聚合。
又例如,在双连接(dual connectivity,DC)场景下,终端设备同时连接主小区(master cell)和辅小区(secondary cell),终端设备同时利用主小区和辅小区同时进行上行传输和下行传输,主小区对应主载波分量,辅小区对应辅载波分量。
其中,在长期演进通信系统中,终端设备在物理层监测链路质量判断失步状态或同步状态,并上报给高层,监测的方法为:终端设备的物理层测量链路质量小于第一阈值的情况下,向高层发送失步指示(out of sync);终端设备的物理层测量链路质量大于第二阈值的情况下,向高层发送同步指示(in sync)。终端设备的高层在连续收到N个失步指示的情况下,判断链路失败,向网络设备发送链路恢复请求,同时终端设备启动一个定时时长为T1的定时器。如果计时器到期,判断链路恢复失败。在T1内,如果终端设备连续接收到M个同步指示,终端设备判断链路恢复,同时停止计时器。
综上,根据目前的长期演进通信系统中没有公开检测波束的方法,如果将长期演进通信系统中链路检测方法应用于波束检测,判断过程通常耗时较长,增加了通信的时延。
本发明是实施例提供的波束检测方法中,网络设备将表示频率资源组具有QCL关系的配置信息发送给终端设备,以及在频率资源组上发送下行信号,这样终端设备可根据频率资源组的QCL关系,在多个具有QCL关系的频率资源上的下行信号进行测量,从而获得更多的测量机会,相对于单载波的波束检测,能有效提高波束检测的准确性和减少检测时间。
请参见图11a,图11a是本发明实施例提供的一种通信的方法,该方法包括但不限于如下步骤:
S301、网络设备配置至少一个频率资源组。
其中,频率资源表示频域上用于传输数据的资源,每个频率资源组包括至少两个频率资源,频率资源可以为载波分量(carrier component,CC)或带宽部分(bandwidth part,BP),网络设备根据终端设备上报的频率资源的测量参数,确定具有QCL关系的频率资源,将具有QCL关系的频率资源编为至少一个频率资源组。测量参数包括延迟扩展、平均延迟、多普勒扩展、平均增益、终端设备接收波束编号、发射接收信道相关性、接收到达角(angel of arrival,AOA)、接收天线的空间相关性、主到达角、平均到达角中的至少一种。
QCL关系表示多个天线端口之间具有至少一个相同或相似的通信特征,例如:载波分量1和载波分量2之间具有QCL关系是指发送载波分量1的天线端口和发送载波分量2的天线端口之间具有QCL关系;又例如:波束1和波束2之间具有QCL关系是指发生波束1对应的下行信号的天线端口和发送波束2对应的下行信号的天线端口之间具有QCL关系。
参见图11b所示,频率资源为载波分量,1个频率资源组包括2个载波分量,分别为载波分量1和载波分量2,载波分量1和载波分量2具有QCL关系,网络设备根据终端设备上报的测量参数确定载波分量1和载波分量2的接收功率在到达角之间的分布相似,网络设备确定载波分量1和载波分量2在空域参数上具有QCL关系,即载波分量1和载波分量2具有空域QCL关系。其中,载波分量1和载波分量2可以为相邻的载波分量,也可为不相邻的载波分量。
S302:网络设备向终端设备发送至少一个频率资源组的配置信息,终端设备接收网络设备发送的至少一个频率资源组的配置信息,其中,所述配置信息包括用于表示频率资源组中包含的至少两个频率资源具有QCL关系的信息。
具体地,网络设备可通过RRC信令、MAC-CE消息和DCI中任意一种发送至少一个频率资源组的配置信息。例如:配置信息的所有参数可以通过一个信令发送,还可以通过多个信令发送,其中,每个信令仅发送配置信息的部分参数,本实施例不作限制。
在一种可能的实施方式中,所述配置信息还包括:
频率资源组的第一阶段计数值(也可以称为计数器或者定时器Timer)和第一阶段时间窗中至少一种;和/或
频率资源组内各频率资源的第一阶段计数值(也可以称为计数器或者定时器Timer)和第一阶段时间窗中至少一种。
在另一种可能的实施方式中,所述配置信息还包括:
所述频率资源组的第二阶段计数值和第二阶段时间窗中至少一种;和/或
频率资源组内各频率资源的第二阶段计数值和第二阶段时间窗中至少一种。
在另一种可能的实施方式中,所述配置信息还包括:频率资源组的定时时长,以及频率资源组内各频率资源的定时时长。
其中,第一阶段计数值为波束检测阶段的计数值,第二阶段计数值为波束恢复阶段的计数值。第一阶段时间窗和第二阶段时间窗为一个预设时长的时间区间,第一阶段时间窗为波束检测阶段的时间窗,第二阶段时间窗为波束恢复阶段的时间窗。在频率资源组的数量为多个的情况下,不同的频率资源组设置的第一阶段计数值、第一阶段时间窗、第二阶段时间窗、第二阶段计数值和定时时长可相同,也可以不相同。频率资源组的第一阶段计数值、第一阶段时间窗、第二阶段时间窗和第二阶段计数值和定时时长可以与该频率资源组内各频率资源有关联关系。例如:频率资源组的第一阶段计数值等于该频率资源组内各频率资源的第一阶段计数值进行累加的值,或频率资源组的第一阶段计数值等于该频率资源组内各频率资源对应的最小的第一阶段计数值,其他参数也可以参照上述的关联关系,此处不再赘述。
需要说明的是,频率资源组和频率资源组内各频率资源的第一阶段计数值、第一阶段时间窗、第二阶段时间窗、第二阶段计数值和定时时长中的至少一种可以预存储或预配置 在网络设备和终端设备上,也可以由网络设备配置后通过信令发送给终端设备。
举例说明,参照S201的例子,载波分量组包含载波分量1和载波分量2,载波分量1和载波分量2具有QCL关系,载波分量组的第一阶段计数值为N11,第一阶段时间窗为W11,第二阶段计数值为N12,定时时长为T11;载波分量1的第一阶段计数值为N21,第一阶段时间窗为W21,第二阶段计数值为N22,定时时长为T21;载波分量1的第一阶段计数值为N31,第一阶段时间窗为W31,第二阶段计数值为N32,定时时长为T31。N11=N21+N31,或N11=min(N21,N31)。
在一种可能的实施方式中,配置信息还包括:频率资源组的标识、频率资源组内参考频率资源的标识、频率资源组内各频率资源的标识、频率资源组内频率资源和波束的映射关系,以及频率资源组内各频率资源关联的至少一个波束指示信息。
其中,频率资源组的标识用于唯一标识频率资源组的身份,参考频率资源可以为频率资源组内的任意一个频率资源,例如:频率资源为载波分量时,载波分量组内存在主载波分量的情况下,参考频率资源为载波分量组内的主载波分量;载波分量组内不存在主载波分量的情况下,参考频率资源为网络设备指定的任意一个载波分量。参考频率资源的标识用于表示参考频率资源的身份,频率资源的标识用于表示频率资源的身份。频率资源组内每个频率资源关联至少1个波束。在一个频率资源关联的多个波束的情况下,该多个波束一般情况下不具有QCL关系。波束指示信息用于表示波束的身份,波束指示信息包括波束索引、波束的CSI-RS资源号和波束的SRS资源号中的至少一种。可选的,网络设备还可以为频率资源组关联的波束中具有QCL关系的波束分配QCL标示符,以表示频率资源组内具有QCL关系的频率资源。
举例说明,频率资源组内各频率资源的标识:CC group#1:(CC#1,CC#2),CC group#1为频率资源组的标识,CC#1为载波分量1的标识,CC#2为载波分量2的标识,载波分量1为参考载波分量。载波分量1和载波分量2都关联2个波束,载波分量和波束的映射关系表示为:(CC#1BPL1,CC#1BPL2;CC#2BPL1,CC#2BPL2)。假设CC#1BPL1指示的波束和CC#2BPL1指示的波束具有QCL关系,网络设备可直接通知上述的QCL关系,也可以为具有QCL关系的波束分配1个QCL标示符(QCL FLAG),例如:(CC#1BPL1QCL FLAG,CC#1BPL2;CC#2BPL2),表示载波分量1的载波1和载波分量2的载波1具有QCL关系。其中,BPL为波束指示信息。
在一种可能的实施方式中,频率资源组的配置信息还包括:
频率资源组内各频率资源上的下行信号的天线端口号、时频资源位置和周期中至少一种。
其中,不同的频率资源上的下行信号的配置不同。例如:频率资源组内各频率资源上的下行信号的周期不同,参考频率资源上下行信号的周期小于非参考频率资源上的下行信号的周期。
参见图11c所示,为一种载波分量的结构示意图,从图11c可以看出,载波分量组包括载波分量1和载波分量2,载波分量1和载波分量2均关联1个波束,载波分量1的波束和载波分量2的波束具有QCL关系,因此两个波束具有相同的波束方向。载波分量1和载波分量2配置下行信号和控制信道,载波分量1的下行信号和载波分量1的时频位置和 周期不相同。
S303:网络设备使用至少一个波束在至少一个频率资源组对应的频率资源上发送下行信号,终端设备通过至少一个波束在至少一个频率资源组对应的频率资源上接收来自网络设备的下行信号。
具体地,对于任意一个频率资源组内的频率资源,网络设备在每个频率资源上发送一个或多个下行信号,下行信号可以是CSI-RS或SS block。
例如:根据S202的例子,网络设备在载波分量1和载波分量2上分别发送1个下行信号,终端设备在载波分量1和载波分量2上分别接收1个下行信号。
需要说明的是,网络设备可以是1个基站,1个基站在频率资源组上发送下行信号至终端设备。网络设备也可以是多个基站,每个基站上在1个或多个频率资源上发送下行信号给终端设备。
例如:基站在载波分量1上向终端设备发送下行信号1,以及在载波分量2上向终端设备发送下行信号2。
又例如:基站1在载波分量1上向终端设备发送下行信号1,基站2在载波分量2上向终端设备发送下行信号2。
S304、终端设备监测下行信号。
其中,终端设备可根据网络设备指示的波束检测规则或预配置的波束检测规则监测下行信号。终端设备可通过频率资源组内各频率资源上的下行信号的信号质量参数来检测波束。终端设备的物理层测量下行信号的信号质量参数,在下行信号的信号质量参数小于第一阈值的情况下,确定波束质量差),在下行信号的信号质量参数大于第二阈值的情况下,确定波束质量好。信号质量参数包括下行信号接收功率(reference signal receiving power,RSRP)、下行信号接收质量(reference signal receiving quality,RSRQ)、接收信号强度指示(received signal strength indication,RSSI)和SNR中一种或多种。
在一种可能的实施方式中,终端设备监测下行信号,具体包括:
终端设备连续检测到N1次波束质量差的情况下,判断频率资源组关联的波束失败。
其中,N1为频率资源组的第一阶段计数值,终端设备的物理层对频率资源组内所有频率资源的下行信号的信号质量参数进行测量,终端设备的物理层检测到信号质量参数小于第一阈值时,确定波束质量差,终端设备检测到N1次波束质量差的情况下,判断频率资源组关联的波束失败。其中,频率资源组关联的波束失败表示频率资源组内1个或多个波束失败,进一步的,频率资源组关联的波束失败可以是频率资源组关联的波束中具有QCL关系的波束失败。
举例说明,N1=3,载波分量组包括载波分量1和载波分量2,载波分量1关联载波1和载波2,载波分量2关联载波3和载波4,载波1和载波3具有QCL关系,载波分量1配置有CSI-RS1,载波分量2配置有CSI-RS2,终端设备的物理层检测CSI-RS1和CSI-RS2上的信号质量参数,在信号质量参数小于第一阈值的情况下,确定波束质量差,在连续检测到3次波束质量差的情况下,终端设备判断载波1和载波3失败。
在另一种可能的实施方式中,终端设备在第一阶段时间窗W1内检测到频率资源组的信号质量参数小于预设门限的情况下,判断频率资源组关联的波束失败。
其中,W1为频率资源组的第一阶段时间窗,第一阶段时间窗为波束检测阶段的时间窗。终端设备的物理层在W1内多次测量频率资源组上所有下行信号的信号质量参数,然后对多次测量到的信号质量参数求平均值,若平均值小于预设门限的情况下,判断频率资源组关联的波束失败。其中,频率资源组关联的波束失败表示频率资源组内1个或多个波束失败,进一步的,频率资源组关联的波束失败可以是频率资源组关联的波束中具有QCL关系的波束失败。
举例说明,载波分量组包括载波分量1和载波分量2,载波分量1关联波束1和波束2,载波分量2关联波束3和波束4,波束2和波束4具有QCL关系,载波分量1关联下行信号1,载波分量2关联下行信号2。第一阶段时间窗W1的时长为10ms,终端设备的物理层在10ms的第一阶段时间窗W1内多次测量下行信号1和下行信号2的信号质量参数,对多次测量到的信号质量参数求平均值,若平均值小于预设门限,判断波束2和波束4失败。
在另一种可能的实施方式中,终端设备在第一阶段时间窗W1内连续检测到N1次波束质量差的情况下,判断频率资源组关联的波束失败。
其中,终端设备的物理层在时间窗W1内监测频率资源组上所有下行信号的信号质量参数进行测量,在测量到任意一个下行信号的信号质量参数小于第一阈值的情况下,确定检测到1次波束质量差的情况,终端设备的高层在第一阶段时间窗W1内连续检测到N1次波束质量差的情况下,判断频率资源组关联的波束失败。其中,频率资源组关联的波束失败表示频率资源组内1个或多个波束失败,进一步的,频率资源组关联的波束失败可以是频率资源组关联的波束中具有QCL关系的波束失败。
在另一种可能的实施方式中,终端设备连续检测到N1次第一阶段时间窗W1内频率资源组的信号质量参数小于预设门限的情况下,判断所述频率资源组关联的波束失败。
其中,终端设备的物理层在第一阶段时间窗W1为粒度多次测量频率资源组上所有下行信号的信号质量参数,然后对多次测量的信号质量参数求平均值,若平均值小于预设门限,确定当前的第一阶段时间窗波束质量差,终端设备根据上述测量方式连续检测到N1次波束质量差的情况下,确定频率资源组关联的波束失败。其中,频率资源组关联的波束失败表示频率资源组内1个或多个波束失败,进一步的,频率资源组关联的波束失败可以是频率资源组关联的波束中具有QCL关系的波束失败。
根据上述的频率资源组的相关参数的波束检测方法,本发明实施例还包括:
在连续检测到N2次波束质量好的情况下,判断所述频率资源组关联的波束恢复成功。
其中,N2为频率资源组的第二阶段计数值,终端设备在频率资源组关联的波束中具有QCL关系的波束失败的情况下,终端设备向网络设备发送波束恢复请求,波束恢复请求用于恢复发生失败的波束。然后终端设备测量频率资源组上所有的下行信号的信号质量参数,在任意一个下行信号的信号质量参数大于第二阈值的情况下,终端设备确定检测到1次波束质量好的情况,终端设备连续检测到N2次波束质量好的情况下,判断上述失败的波束恢复成功。
在另一种可能的实施方式中,在第二阶段时间窗W2中检测到频率资源组的信号质量参数大于预设门限的情况下,判断频率资源组关联的波束恢复成功。
其中,第二阶段时间窗W2为频率资源组在波束恢复阶段的时间窗,终端设备的物理 层在第二阶段时间窗W2内对频率资源组上所有的下行信号的信号质量参数进行多次测量,将多次测量的信号质量参数求平均值,若平均值大于预设门限,判断频率资源组中具有QCL关系的波束恢复成功。
在另一种可能的实施方式中,在第二阶段时间窗W2内检测到N2次波束质量好的情况下,判断所述频率资源组关联的波束恢复成功。
其中,终端设备的物理层在第二阶段时间窗内对频率资源组的所有下行信号的信号质量参数进行测量,若下行信号的信号质量参数大于第二门限,确定检测到1次波束质量好的情况,在终端设备在W2内检测到N2次波束质量好时,确定频率资源组内具有QCL关系的波束恢复成功。
在另一种可能的实施方式中,在连续检测到N2次第二阶段时间窗W2内所述频率资源组的信号质量参数大于预设门限的情况下,判断所述频率资源组关联的波束恢复成功。
其中,终端设备的物理层在第二阶段时间窗W2为粒度多次测量频率资源组上所有下行信号的信号质量参数,然后对多次测量的信号质量参数求平均值,若平均值大于预设门限,确定当前的第二阶段时间窗内波束质量差好终端设备根据上述测量方式连续检测到N2次波束质量好的情况下,确定频率资源组关联的波束中具有QCL关系的波束恢复成功。
根据上述的频率资源组关联的波束恢复成功的过程,所述方法还包括:
所述频率资源组关联的波束失败的情况下,启动定时时长T1的计时操作;
在所述频率资源组关联的波束恢复成功的情况下,停止所述定时时长为T1的计时操作;
在所述计时操作超时的情况下,判断所述频率资源组关联的波束恢复失败。
其中,在频率资源组关联的波束恢复成功的情况下,定时时长、第二阶段计数值、第二阶段时间窗等参数清零。
在一种可能的实施方式中,终端设备监测下行信号,具体包括:
在连续检测到参考频率资源上的N1次波束质量差的情况下,判断参考频率资源关联的波束失败。
其中,参考频率资源位至少一个频率资源组的任意一个频率资源组内,终端设备的物理层测量参考频率资源上的下行信号的信号质量参数,在测量到的信号质量参数小于第一阈值的情况下,终端设备确定检测到1次波束质量差的情况下,终端设备的物理层连续检测到N1次波束质量差时,判断参考频率资源关联的波束失败。
举例说明,频率资源为载波分量,N1=3载波分量组包括载波分量1和载波分量2,载波分量1为参考载波分量,载波分量1关联波束1和波束2,载波分量2关联波束3和波束4,载波分量1上配置有CSI-RS1,载波分量2上配置有CSI-RS2。终端设备的物理层测量CSI-RS1的信号质量参数,在CSI-RS1的信号质量参数小于第一阈值的情况下,确定检测到1次波束质量差,终端设备的物理层连续检测到3次波束质量差的情况下,判断参考载波分量关联的波束1和波束2失败。
在另一种可能的实施方式中,终端设备监测下行信号,具体包括:
在时间窗W1内检测到参考频率资源的信号质量参数小于预设门限的情况下,判断所述参考频率资源关联的波束失败。
其中,终端设备的物理层在时间窗W1内多次测量参考频率资源上的下行信号的信号质量参数,将多次测量到的信号质量参数进行平均,在平均后的信号质量参数小于第一阈值的情况下,判断参考频率资源关联的波束失败。
在一种可能的实施方式中,终端设备监测指示两个频率资源关联的波束,具体包括:
在时间窗W1内连续检测到参考频率资源上的N1次波束质量差的情况下,判断参考频率资源关联的波束失败。
其中,终端设备的物理层在时间窗W1内测量参考频率资源上的下行信号的信号质量参数,在信号质量参数小于第一阈值的情况下,确定检测到1次波束质量差,终端设备的物理层再连续检测到N1次波束质量差的情况下,判断参考频率资源关联的波束失败。
在另一种可能的实施方式中,终端设备检测下行信号,具体包括:
连续检测到N1次第一阶段时间窗W1内所述参考频率资源的信号质量参数小于预设门限的情况下,判断所述参考频率资源关联的波束失败。
其中,终端设备的物理层在第一阶段时间窗W1为粒度多次参考频率资源上下行信号的信号质量参数,然后对多次测量的信号质量参数求平均值,若平均值小于预设门限,确定当前的第一阶段时间窗波束质量差,终端设备根据上述测量方式连续检测到N1次波束质量差的情况下,确定参考频率资源关联的波束中具有QCL关系的波束失败。
根据上述的参考频率资源的相关参数监测波束的方法,所述配置信息还包括所述参考频率资源关联的第二阶段计数值N2和第二阶段时间窗W2中至少一种。本实施例还包括:
在参考频率资源关联的波束失败的情况下,若连续检测到参考频率资源上的N2次波束质量好的情况,判断参考频率资源关联的波束恢复成功。
其中,在参考频率资源关联的波束失败的情况下,终端设备的物理层测量参考频率资源关联的下行信号的信号质量参数,在信号质量参数大于第二阈值的情况下,向高层发送同步指示,终端设备的高层连续接收到N2次波束质量好的情况下,判断参考频率资源关联的波束恢复成功。
其中,第二阶段时间窗W2为参考频率资源在波束恢复阶段的时间窗,终端设备的物理层在第二阶段时间窗W2内对参考频率资源的下行信号的信号质量参数进行多次测量,将多次测量的信号质量参数求平均值,若平均值大于预设门限,判断参考频率资源关联的波束恢复成功。
在另一种可能的实施方式中,终端设备检测下行信号,具体包括:
在第二阶段时间窗W2内检测到所述参考频率资源上N2次波束质量好的情况下,判断所述参考频率资源关联的波束恢复成功。
其中,终端设备的物理层在第二阶段时间窗内对参考频率资源的下行信号的信号质量参数进行测量,若下行信号的信号质量参数大于第二门限,确定检测到1次波束质量好的情况,在终端设备在W2内检测到N2次波束质量好时,确定参考频率资源关联的波束恢复成功。
在另一种可能的实施方式中,终端设备检测下行信号,具体包括:
在连续检测到N2次第二阶段时间窗W2内所述频率资源组的信号质量参数大于预设门限的情况下,判断所述参考频率资源关联的波束恢复成功。
其中,终端设备的物理层在第二阶段时间窗W2为粒度多次测量参考频率资源的下行信号的信号质量参数,然后对多次测量的信号质量参数求平均值,若平均值大于预设门限,确定当前的第二阶段时间窗内波束质量好,终端设备根据上述测量方式连续检测到N2次波束质量好的情况下,确定参考频率资源关联的波束恢复成功。
根据上述的参考频率资源关联的波束的恢复成功过程,所述方法还包括:
所述配置信息还包括:所述参考频率资源关联的定时时长T1;
所述方法还包括:
在所述参考频率资源关联的波束失败的情况下,启动定时时长为T1的计时操作;
在所述参考频率资源关联的波束恢复成功的情况下,停止所述定时时长为T1的计时操作;
在所述计时操作超时的情况下,判断所述参考频率资源关联的波束恢复失败。
在一种可能的实施方式中,配置信息还包括频率资源组中各频率资源的第一阶段计数值和时间窗中至少一种。
在一种可能的实施方式中,配置信息还包括:频率资源组内各频率资源的定时时长。
其中,终端设备对频率资源组内各频率资源关联的波束的监测可参照上述的对参考频率资源的监控的描述,此处不再赘述。
实施上述实施例,网络设备将表示频率资源组具有QCL关系的配置信息发送给终端设备,以及在频率资源组上发送下行信号,这样终端设备可根据频率资源组的QCL关系,在多个具有QCL关系的频率资源的下行信号进行测量,从而获得更多的测量机会,相对于单载波的波束检测,能有效提高波束检测的准确性和减少检测时间。
参见图12a,是本发明实施例提供的一种通信的方法的流程示意图,在本发明实施例中,所述方法包括:
S401、网络设备向终端设备发送接收至少一个频率资源组的配置信息,终端设备接收来自网络设备的至少一个频率资源的配置信息。
其中,网络设备可通过RRC信令、MAC-CE消息和DCI中任意一种发送至少频率资源组的配置信息。每个频率资源组包括至少两个频率资源,每个频率资源对应至少一个波束,所述配置信息包括每个频率资源组的标识和每个频率资源的标识。频率资源组中的频率资源可以为CC或BP。每个频率资源组内的频率资源可以具有QCL关系,也可以不具有QCL关系。
S402、网络设备使用至少一个波束在至少一个频率资源组对应的频率资源上发送下行信号,终端设备通过指示一个波束在至少一个频率资源组对应的频率资源上接收下行信号。
其中,频率资源组中各频率资源配置有一个或多个下行信号,网络设备通过频率资源组发送下行信号。下行信号可以是上行参考信号,例如:探测参考信号(sounding reference signal,SRS),也可以是下行信号,例如CSI-RS或SS block。
S403、终端设备根据下行信号检测到频率资源组内第一频率资源关联的波束失败。
其中,频率资源组为至少一个频率资源组内任意一个,频率资源组包括第一频率资源和第二频率资源,第一频率资源和第二频率资源为两个不同的频率资源。终端设备的物理层测量第一频率资源关联的下行信号的信号质量参数来检测波束失败,具体过程可参照前 面的描述,此处不再赘述。
例如:根据S301的例子,终端设备检测到载波1关联的波束1失败。
S404、终端设备在频率资源组内第二频率资源上发送波束恢复请求。
其中,配置信息还包括频率资源的下行信号和传输资源之间的关系,即对于频率资源组内的任意一个频率资源,频率资源的下行信号和频率资源组内1个或多个传输资源存在关联关系。传输资源为频率资源组内用于发送波束恢复请求的资源,例如传输资源可以为频率资源组内的随机接入信道(Random Access Channel,RACH)资源。
在一种可能的实施方式中,终端设备使用第二频率资源上的传输资源发送波束恢复请求,波束恢复请求中指示第一频率资源的波束失败。
在一种可能的实施方式中,终端设备根据上述的关联关系,获知第二频率资源的多个传输资源,终端设备根据多个传输资源发送波束恢复请求。网络设备或终端设备预存储或预配置有上述的关系,这样网络设备或终端设备可根据接收到的波束恢复请求使用的传输资源获知第一频率资源的波束失败。
在一种可能的实施方式中,关联关系具体为:
传输资源与以下信息中至少一种的关联关系:
下行信号的标识、频率资源标识、频率资源组的标识、天线端口标识、天线端口组标识和波束指示信息。
在一种可能的实施方式中,关联关系具体为:
在k=0、1、2或3的情况下,r n=2k+(0or/and 1)+n;
在k=4、5、6或7的情况下,r n=k+4+n;
其中,k为频率资源的下行信号的索引,n为频率资源的索引,r n为频率资源上传输资源的索引。
在一种可能的实施方式中,下行信号为CSI-RS、SRS和同步信号块(synchronization signal block,SS block)中任意一种。
需要说明的是,本实施例中描述的下行方向的波束恢复方法,对于上行方向的波束恢复过程,即终端设备向网络设备的方向,本发明实施例同样适用。
在一种可能的实施方式中,所述配置信息包括:
频率资源组的第一阶段计数值和第一阶段时间窗中至少一种,以及频率资源组的第二阶段计数值、第二阶段时间窗和定时时长中至少一种;和/或
频率资源组内各频率资源的第一阶段计数值和第一阶段时间窗中至少一种,以及频率资源组内各频率资源的第二阶段计数值、第二阶段时间窗和定时时长中至少一种。
在一种可能的实施方式中,所述配置信息还包括:
频率资源组的标识、频率资源组内参考频率资源的标识、频率资源组内各频率资源的标识、频率资源组内频率资源和波束的映射关系、以及频率资源组内各频率资源关联的至少一个波束的波束指示信息,波束指示信息包括波束号和下行信号资源号中的至少一种。
在一种可能的实施方式中,所述配置信息还包括:
所述频率资源组内各频率资源上的下行信号的天线端口号、时频资源位置和周期中的至少一种。
在一种可能的实施方式中,所述频率资源组上的下行信号的周期不相同。
参见图12b所示,为一种载波分量的结构示意图,从图11c可以看出,载波分量组包括载波分量1和载波分量2,载波分量1和载波分量2均关联1个波束,载波分量1的波束和载波分量2的波束不具有QCL关系,因此载波分量1的波束和载波分量2的波束方向均不相同。载波分量1和载波分量2配置下行信号和控制信道,载波分量1的下行信号和载波分量1的时频位置不相同但周期相同。
在一种可能的实施方式中,每个波束均具有QCL关系。
在一种可能的实施方式中,所述配置信息还包括:
频率资源组关联的波束中具有QCL关系的波束的QCL信息和频率资源组关联的波束中具有QCL关系的波束的QCL标示符。
在一种可能的实施方式中,所述频域资源为载波分量CC或带宽部分BP。
需要说明的是,上述配置信息中包括的各参数的说明和举例可参见上述描述,此处不再赘述。
在图12a所描述的方法中,终端设备检测到频率资源组内一个频率资源的波束失败时,在频率资源组内另一个频率资源上发送波束恢复请求,这样终端能使用多个波束进行波束恢复,提高波束恢复的概率。
需要说明的是,图13所示的装置4可以实现图11a所示的实施例,装置4包括处理单元401和发送单元402。处理单元401,用于配置至少一个频率资源组;其中,每个频率资源组包括至少两个频率资源。例如:处理单元401执行图11a中S201的步骤。发送单元402,用于将所述至少一个频率资源组的配置信息发送给终端设备;其中,所述配置信息包括每个频率资源组内的频率资源具有准同位QCL关系的信息;发送单元402,还用于使用至少一个波束在所述至少一个频率资源组对应的频率资源上发送下行信号,其中,每个频率资源关联一个波束。例如:发送单元402执行图11a中S202和S203的步骤。所述装置4可以为网络设备,所述装置4也可以为实现相关功能的现场可编程门阵列(field-programmable gate array,FPGA),专用集成芯片,系统芯片(system on chip,SoC),中央处理器(central processor unit,CPU),网络处理器(network processor,NP),数字信号处理电路,微控制器(micro controller unit,MCU),还可以采用可编程控制器(programmable logic device,PLD)或其他集成芯片。
当所述装置为芯片时,接收单元可以是输入单元,比如输入电路或者通信接口;发送单元可以是输出单元,比如输出电路或者通信接口。当所述通信装置为终端设备时,接收单元可以是接收器(也可以称为接收机);发送单元可以是发射器(也可以称为发射机)。
本发明实施例和图11a的方法实施例基于同一构思,其带来的技术效果也相同,具体过程可参照图11a的方法实施例的描述,此处不再赘述。
如图14所示,本发明实施例还提供了一种装置5。
在一种可能的设计中,装置5为网络设备,该网络设备包括:
存储器502,用于存储程序和数据。所述存储器的数量可以是一个或多个,所述存储器的类型可以是任意形式的存储介质。例如:该存储器可以为随机访问内存(英文:random access memory,简称:RAM)或者只读内存(英文:read only memory,简称:ROM) 或者闪存,其中存储器502可以位于单独位于终端设备内,也可以位于处理器501的内部。
处理器501,用于执行存储器502存储的所述程序代码,当所述程序代码被执行时,处理器501用于配置至少一个频率资源组;其中,每个频率资源组包括至少两个频率资源,每个频率资源关联至少一个波束。例如:处理器501用于执行图11a中的S201的步骤。
收发器503,用于收发信号。收发器可以作为单独的芯片,也可以为处理器501内的收发电路或者作为输入输出接口。收发器可以为发射器和接收器中的至少一种,发射器用于执行装置中的发送步骤,接收器用于执行装置中的接收步骤。可选的,收发器503还可以包括发射天线和接收天线,发射天线和接收天线可以为单独设置的两个天线,也可以为一个天线。收发器503,用于将所述至少一个频率资源组的配置信息发送给终端设备;其中,所述配置信息包括每个频率资源组内的频率资源具有准同位QCL关系的信息;以及使用至少一个波束在所述至少一个频率资源组对应的频率资源上发送下行信号。例如:收发器503用于执行图11a中的S202和S203的步骤。
收发器503、存储器502、处理器501之间通过内部连接通路互相通信,例如:通过总线连接。
在一种可能的设计中,装置5可以为芯片,例如:可以为用于网络设备中的通信芯片,用于实现网络设备中处理器501的相关功能。该芯片可以为实现相关功能的现场可编程门阵列,专用集成芯片,系统芯片,中央处理器,网络处理器,数字信号处理电路,微控制器,还可以采用可编程控制器或其他集成芯片。该芯片中,可选的可以包括一个或多个存储器,用于存储程序代码,当所述程序代码执行时,使处理器实现相应的功能。
这些芯片可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令(有时也称为代码或程序)。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本发明实施例和图11a的方法实施例基于同一构思,其带来的技术效果也相同,具体过程可参照图11a的方法实施例的描述,此处不再赘述。
需要说明的是,图15所示的装置6可以实现图11a所示的实施例,装置6包括:接收单元601和处理单元602。其中,接收单元601,用于接收来自网络设备的至少一个频率资源组的配置信息,以及通过指示一个波束在所述至少一个频率资源组对应的频率资源上接收下行信号;其中,每个频率资源组包括至少两个频率资源,所述配置信息表示每个频率 资源内的频率资源具有准同位QCL关系。例如:接收单元601执行图11a中S202和S203的步骤。处理单元602,用于监测所述下行信号,例如:处理单元602用于执行图11a中S204的步骤。所述装置6可以为终端设备,所述装置6也可以为实现相关功能的现场可编程门阵列(field-programmable gate array,FPGA),专用集成芯片,系统芯片(system on chip,SoC),中央处理器(central processor unit,CPU),网络处理器(network processor,NP),数字信号处理电路,微控制器(micro controller unit,MCU),还可以采用可编程控制器(programmable logic device,PLD)或其他集成芯片。
当所述装置为芯片时,接收单元可以是输入单元,比如输入电路或者通信接口;发送单元可以是输出单元,比如输出电路或者通信接口。当所述通信装置为终端设备时,接收单元可以是接收器(也可以称为接收机);发送单元可以是发射器(也可以称为发射机)。
本发明实施例和图11a的方法实施例基于同一构思,其带来的技术效果也相同,具体过程可参照图11a的方法实施例的描述,此处不再赘述。
如图16所示,本发明实施例还提供了一种装置7。
在一种可能的设计中,装置7为终端设备,该终端设备包括:
存储器702,用于存储程序和数据。所述存储器的数量可以是一个或多个,所述存储器的类型可以是任意形式的存储介质。例如:该存储器可以为随机访问内存(英文:random access memory,简称:RAM)或者只读内存(英文:read only memory,简称:ROM)或者闪存,其中存储器702可以位于单独位于终端设备内,也可以位于处理器701的内部。
收发器703,用于接收来自网络设备的至少一个频率资源组的配置信息,以及通过指示一个波束在所述至少一个频率资源组对应的频率资源上接收下行信号;其中,每个频率资源组包括至少两个频率资源,所述配置信息表示每个频率资源内的频率资源具有准同位QCL关系。例如:收发器703执行图11a中S202和S203的步骤。收发器可以作为单独的芯片,也可以为处理器701内的收发电路或者作为输入输出接口。收发器703可以为发射器和接收器中的至少一种,发射器用于执行装置中的发送步骤,接收器用于执行装置中的接收步骤。
处理器701,用于执行存储器702存储的所述程序代码,当所述程序代码被执行时,处理器701用于监测所述下行信号。例如处理器701执行图11a中S204的步骤。
收发器703、存储器702、处理器701之间通过内部连接通路互相通信,例如:通过总线连接。
在一种可能的设计中,装置7可以为芯片,例如:可以为用于终端设备中的通信芯片,用于实现网络设备中处理器701的相关功能。该芯片可以为实现相关功能的现场可编程门阵列,专用集成芯片,系统芯片,中央处理器,网络处理器,数字信号处理电路,微控制器,还可以采用可编程控制器或其他集成芯片。该芯片中,可选的可以包括一个或多个存储器,用于存储程序代码,当所述程序代码执行时,使处理器实现相应的功能。
这些芯片可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令(有时也称为代码或程序)。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计 算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本发明实施例和图11a的方法实施例基于同一构思,其带来的技术效果也相同,具体过程可参照图11a的方法实施例的描述,此处不再赘述。
需要说明的是,图17所示的装置8可以实现图12a所示的实施例,装置8包括:接收单元801、处理单元802和发送单元803。其中,接收单元801,用于接收至少一个频率资源组的配置信息,以及通过至少一个波束在所述至少一个频率资源组对应的频率资源上接收下行信号;其中,每个频率资源组包括至少两个频率资源,每个频率资源对应至少一个波束,所述配置信息包括每个频率资源组的标识和每个频率资源的标识;例如接收单元801执行图12a中S301和S302的步骤。
所述处理单元802,用于根据下行信号检测到频率资源组内第一频率资源关联的波束失败的情况下,指示发送单元803在所述频率资源组内第二频率资源上发送波束恢复请求。例如:处理单元802执行图12a中S303的步骤,发送单元803执行图12a中S304的步骤。所述装置8可以为终端设备,所述装置8也可以为实现相关功能的现场可编程门阵列(field-programmable gate array,FPGA),专用集成芯片,系统芯片(system on chip,SoC),中央处理器(central processor unit,CPU),网络处理器(network processor,NP),数字信号处理电路,微控制器(micro controller unit,MCU),还可以采用可编程控制器(programmable logic device,PLD)或其他集成芯片。
当所述通信装置为芯片时,接收单元可以是输入单元,比如输入电路或者通信接口;发送单元可以是输出单元,比如输出电路或者通信接口。当所述通信装置为终端设备时,接收单元可以是接收器(也可以称为接收机);发送单元可以是发射器(也可以称为发射机)。
本发明实施例和图12a的方法实施例基于同一构思,其带来的技术效果也相同,具体过程可参照图12a的方法实施例的描述,此处不再赘述。
如图18所示,本发明实施例还提供了一种装置9。
在一种可能的设计中,装置9为终端设备,该终端设备包括:
存储器902,用于存储程序和数据。所述存储器的数量可以是一个或多个,所述存储器的类型可以是任意形式的存储介质。例如:该存储器可以为随机访问内存(英文:random access memory,简称:RAM)或者只读内存(英文:read only memory,简称:ROM)或者闪存,其中存储器902可以位于单独位于终端设备内,也可以位于处理器901的内部。
收发器903,用于接收至少一个频率资源组的配置信息,以及通过至少一个波束在所述至少一个频率资源组对应的频率资源上接收下行信号;其中,每个频率资源组包括至少 两个频率资源,每个频率资源对应至少一个波束,所述配置信息包括每个频率资源组的标识和每个频率资源的标识。例如:收发器903执行图12a中S302、S302和S304的步骤。收发器可以作为单独的芯片,也可以为处理器901内的收发电路或者作为输入输出接口。收发器703可以为发射器和接收器中的至少一种,发射器用于执行装置中的发送步骤,接收器用于执行装置中的接收步骤。
处理器901,用于执行存储器902存储的所述程序代码,当所述程序代码被执行时,处理器901用于根据下行信号检测到频率资源组内第一频率资源关联的波束失败的情况下,指示收发器903在所述频率资源组内第二频率资源上发送波束恢复请求。例如处理器901执行图12a中S303的步骤。
收发器903、存储器902、处理器901之间通过内部连接通路互相通信,例如:通过总线连接。
在一种可能的设计中,装置9可以为芯片,例如:可以为用于终端设备中的通信芯片,用于实现网络设备中处理器901的相关功能。该芯片可以为实现相关功能的现场可编程门阵列,专用集成芯片,系统芯片,中央处理器,网络处理器,数字信号处理电路,微控制器,还可以采用可编程控制器或其他集成芯片。该芯片中,可选的可以包括一个或多个存储器,用于存储程序代码,当所述程序代码执行时,使处理器实现相应的功能。
这些芯片可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令(有时也称为代码或程序)。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划 分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。

Claims (72)

  1. 一种通信方法,其特征在于,包括:
    网络设备配置至少一个频率资源组,其中,每个频率资源组包括一个或多个频率资源;
    所述网络设备将所述至少一个频率资源组的指示信息发送给终端设备;
    所述网络设备使用至少一个波束在所述至少一个频率资源组对应的频率资源上发送下行信号;
    所述网络设备接收来自所述终端设备的用于指示所述至少一个频率资源组的多个频率资源是否具有准同位QCL关系的信息。
  2. 如权利要求1所述的方法,其特征在于,所述网络设备配置至少一个频率资源组之前,所述方法还包括:
    所述网络设备获取所述终端设备支持的一个或多个频率资源的信息。
  3. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述网络设备通知所述终端设备更新后的频率资源组。
  4. 如权利要求1~3任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备为终端设备配置主频率资源。
  5. 一种通信方法,其特征在于,包括:
    终端设备接收来自网络设备的至少一个频率资源组的指示信息,所述指示信息用于指示所述至少一个频率资源组的组成信息,所述至少一个频率资源组的每个频率资源组包括一个或多个频率资源;
    所述终端设备通过至少一个波束接收来自网络设备的下行信号,所述下行信号是通过在所述至少一个频率资源组对应的频率资源上接收的;
    所述终端设备测量所述下行信号;
    所述终端设备上报所述至少一个频率资源组中的多个频率资源是否具有QCL关系的指示信息。
  6. 如权利要求5所述的方法,其特征在于,所述终端设备接收来自网络设备的至少一个频率资源组的指示信息之前,所述方法还包括:
    所述终端设备发送其支持的一个或多个频率资源的信息给所述网络设备。
  7. 如权利要求5或6所述的方法,其特征在于,所述终端设备测量所述下行信号,包括:
    所述终端设备测量所述下行信号的以下至少一个信息:波束指示信息、所述至少一个频率资源关联的下行信号的质量信息、天线端口的信道大尺度特性。
  8. 如权利要求5~7任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备通知的更新后的频率资源组。
  9. 如权利要求5~8任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述至少一个频率资源组中的多个频率资源是否具有QCL关系的指示信息,获取每个频率资源组中的其中一个频率资源对应的同步信息;其中,所述同步 信息包括上行同步信息和/或下行同步信息。
  10. 如权利要求5~9任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据主频率资源与多个辅频率资源是否具有QCL关系的指示信息,在接收到来自所述网络设备的激活所述辅频率资源的指示之后,激活所述辅频率资源进行数据传输。
  11. 如权利要求1~10任意一项所述的方法,其特征在于,所述频率资源为载波分量CC或者带宽部分BP。
  12. 如权利要求1~11任意一项所述的方法,其特征在于,所述至少一个频率资源组的指示信息,具体包括以下至少一个信息:
    所述至少一个频率资源组的标识、以及每个频率资源组包括的一个或多个频率资源的标识。
  13. 如权利要求1~12任意一项所述的方法,其特征在于,所述至少一个频率资源组的一个或多个频率资源是否具有QCL关系的指示信息,具体包括以下至少一种信息:
    所述至少一个频率资源组的标识、所述一个或多个频率资源的标识、所述波束指示信息、所述至少一个频率资源关联的下行信号的质量信息、天线端口的信道大尺度特性和所述至少一个频率资源的相关度信息。
  14. 如权利要求1~13任意一项所述的方法,其特征在于,所述下行信号为同步信号块或者信道状态信息下行信号。
  15. 如权利要求1或6所述的方法,其特征在于,所述至少一个频率资源组的多个频率资源是否具有QCL关系的指示信息,还用于指示所述一个或多个波束是否具有QCL关系的指示信息,所述一个或多个波束为发送或者接收所述至少一个频率资源组的一个或多个频率资源的波束。
  16. 一种通信装置,其特征在于,包括:
    处理单元,用于配置至少一个频率资源组,其中,每个频率资源组包括一个或多个频率资源;
    发送单元,用于将所述至少一个频率资源组的指示信息发送给终端设备;
    所述发送单元还用于使用至少一个波束在所述至少一个频率资源组对应的频率资源上发送下行信号;
    接收单元,用于接收来自所述终端设备的用于指示所述至少一个频率资源组的多个频率资源是否具有准同位QCL关系的信息。
  17. 如权利要求16所述的通信装置,其特征在于,所述接收单元还用于获取所述终端设备支持的一个或多个频率资源的信息。
  18. 如权利要求16或17所述的通信装置,其特征在于,所述发送单元还用于通知所述终端设备更新后的频率资源组。
  19. 如权利要求16~18任一项所述的通信装置,其特征在于,所述处理单元还用于为终端设备配置主频率资源。
  20. 如权利要求16~19任一项所述的通信装置,其特征在于,所述至少一个频率资源组的一个或多个频率资源是否具有QCL关系的指示信息,具体包括以下至少一种信息:
    所述至少一个频率资源组的标识、所述一个或多个频率资源的标识、所述波束指示信息、所述至少一个频率资源关联的下行信号的质量信息、天线端口的信道大尺度特性和所述至少一个频率资源的相关度信息。
  21. 如权利要求16~20任意一项所述的通信装置,其特征在于,所述下行信号为同步信号块或者信道状态信息下行信号。
  22. 如权利要求16~21任意一项所述的通信装置,其特征在于,所述至少一个频率资源组的多个频率资源是否具有QCL关系的指示信息,还用于指示所述一个或多个波束是否具有QCL关系的指示信息,所述一个或多个波束为发送或者接收所述至少一个频率资源组的一个或多个频率资源的波束。
  23. 一种通信装置,其特征在于,包括:
    接收单元,用于接收来自网络设备的至少一个频率资源组的指示信息,所述指示信息用于指示所述至少一个频率资源组的组成信息,所述至少一个频率资源组的每个频率资源组包括一个或多个频率资源;
    所述接收单元还用于通过至少一个波束接收来自网络设备的下行信号,所述下行信号是在所述至少一个频率资源组对应的频率资源上发送的;
    处理单元,用于测量所述下行信号;
    发送单元,用于上报所述至少一个频率资源组中的多个频率资源是否具有QCL关系的指示信息。
  24. 如权利要求23所述的通信装置,其特征在于,所述发送单元还用于发送其支持的一个或多个频率资源的信息给所述网络设备。
  25. 如权利要求23或24所述的通信装置,其特征在于,所述处理单元具体用于:
    测量所述下行信号的以下至少一个信息:波束指示信息、所述至少一个频率资源关联的下行信号的质量信息、天线端口的信道大尺度特性。
  26. 如权利要求23~25任一项所述的通信装置,其特征在于,所述接收单元还用于接收所述网络设备通知的更新后的频率资源组。
  27. 如权利要求23~26任一项所述的通信装置,其特征在于:
    所述接收单元还用于根据所述至少一个频率资源组中的多个频率资源是否具有QCL关系的指示信息,获取每个频率资源组中的其中一个频率资源对应的同步信息;
    其中,所述同步信息包括上行同步信息和/或下行同步信息。
  28. 如权利要求23~27任一项所述的通信装置,其特征在于,所述处理单元还用于根据主频率资源与多个辅频率资源是否具有QCL关系的指示信息,在接收到来自所述网络设备的激活所述辅频率资源的指示之后,激活所述辅频率资源进行数据传输。
  29. 如权利要求23~28任一项所述的通信装置,其特征在于,所述至少一个频率资源组的一个或多个频率资源是否具有QCL关系的指示信息,具体包括以下至少一种信息:
    所述至少一个频率资源组的标识、所述一个或多个频率资源的标识、所述波束指示信息、所述至少一个频率资源关联的下行信号的质量信息、天线端口的信道大尺度特性和所述至少一个频率资源的相关度信息。
  30. 如权利要求23~29任一项所述的通信装置,其特征在于,所述下行信号为同步信 号块或者信道状态信息下行信号。
  31. 一种通信的方法,其特征在于,包括:
    网络设备配置至少一个频率资源组;其中,每个频率资源组包括至少两个频率资源;
    所述网络设备将所述至少一个频率资源组的配置信息发送给终端设备;其中,所述配置信息包括用于表示每个频率资源组内的频率资源具有准同位QCL关系的信息;
    所述网络设备使用至少一个波束在所述至少一个频率资源组对应的频率资源上发送下行信号。
  32. 如权利要求31所述的方法,其特征在于,所述配置信息还包括:
    频率资源组的第一阶段计数值和第一阶段时间窗中至少一种;和/或
    频率资源组内各频率资源的第一阶段计数值和第一阶段时间窗中至少一种。
  33. 如权利要求32所述的方法,其特征在于,所述配置信息还包括:
    频率资源组的第二阶段计数值和第二阶段时间窗中至少一种;和/或
    频率资源组内各频率资源的第二阶段计数值和第二阶段时间窗中至少一种。
  34. 如权利要求31~33任意一项所述的方法,其特征在于,所述配置信息还包括:
    频率资源组的定时时长,以及频率资源组内各频率资源的定时时长。
  35. 如权利要求31~34任意一项所述的方法,其特征在于,所述配置信息还包括:
    频率资源组的标识、频率资源组内参考频率资源的标识、频率资源组内各频率资源的标识、频率资源组内频率资源和波束的映射关系、以及频率资源组内各频率资源关联的至少一个波束的波束指示信息,波束指示信息包括波束号和下行信号资源号中的至少一种。
  36. 如权利要求31或32所述的方法,其特征在于,所述配置信息还包括:
    所述频率资源组内各频率资源上的下行信号的天线端口号、时频资源位置和周期中的至少一种。
  37. 如权利要求36所述的方法,其特征在于,所述下行信号的周期不相同。
  38. 如权利要求31~37任意一项所述的方法,其特征在于,所述配置信息还包括:
    所述波束中具有QCL关系的波束的QCL信息和所述波束中具有QCL关系的波束的QCL标示符。
  39. 如权利要求31-38任意一项所述的方法,其特征在于,所示频率资源为载波分量CC或带宽部分BP。
  40. 一种通信方法,其特征在于,包括:
    终端设备接收来自网络设备的至少一个频率资源组的配置信息,以及通过至少一个波束在所述至少一个频率资源组对应的频率资源上接收下行信号;其中,每个频率资源组包括至少两个频率资源,每个频率资源对应一个波束,所述配置信息包括用于表示每个频率资源组内的频率资源具有准同位QCL关系的信息;
    所述终端设备监测所述下行信号。
  41. 如权利要求40所述的方法,其特征在于,所述配置信息还包括:频率资源组关联的第一阶段计数值N1和第一阶段时间窗W1中至少一种,所述频率资源组为所述至少一个频率资源组中任意一个,
    所述终端设备监测所述下行信号,具体包括:
    在连续检测到N1次波束质量差的情况下,判断所述频率资源组关联的波束失败;或
    在第一阶段时间窗W1内检测到所述频率资源组的下行信号的信号质量参数小于预设门限的情况下,判断所述频率资源组关联的波束失败;或
    在第一阶段时间窗W1内连续检测到N1次波束质量差的情况下,判断所述频率资源组关联的波束失败;或
    在连续检测到N1次第一阶段时间窗W1内所述频率资源组的下行信号的信号质量参数小于预设门限的情况下,判断所述频率资源组关联的波束失败。
  42. 如权利要求41所述的方法,其特征在于,所述频率资源组关联的波束失败具体为所述频率资源组关联的波束中具有QCL关系的波束失败。
  43. 如权利要求41或42所述的方法,其特征在于,所述配置信息还包括:所述频率资源组关联的第二阶段计数值N2和第二阶段时间窗W2中至少一种;
    所述方法还包括:
    在连续检测到N2次波束质量好的情况下,判断所述频率资源组关联的波束恢复成功;或
    在第二时间窗W2中检测到所述频率资源组的下行信号的信号质量参数大于预设门限的情况下,判断所述频率资源组关联的波束恢复成功;或
    在第二阶段时间窗W2内检测到N2次波束质量好的情况下,判断所述频率资源组关联的波束恢复成功;或
    在连续检测到N2次第二阶段时间窗W2内所述频率资源组的下行信号的信号质量参数大于预设门限的情况下,判断所述频率资源组关联的波束恢复成功。
  44. 如权利要求43所述的方法,其特征在于,所述配置信息还包括:所述频率资源组关联的定时时长T1;
    所述方法还包括:
    所述频率资源组关联的波束失败的情况下,启动定时时长T1的计时操作;
    在所述频率资源组关联的波束恢复成功的情况下,停止所述定时时长为T1的计时操作;
    在所述计时操作超时的情况下,判断所述频率资源组关联的波束恢复失败。
  45. 如权利要求40所述的方法,其特征在于,所述配置信息包括参考频率资源关联的第一阶段计数值N1和第一阶段时间窗W1中至少一种和所述参考频率资源的标识,所述参考频率位于所述至少一个频率资源组中任意一个频率资源组中;
    所述终端设备监测所述下行信号,具体包括:
    在所述参考频率资源上连续检测到N1次波束质量差的情况下,判断所述参考频率资源关联的波束失败;或
    在第一阶段时间窗W1内检测到所述参考频率资源的下行信号的信号质量参数小于预设门限的情况下,判断所述参考频率资源关联的波束失败;或
    在第一阶段时间窗内W1内连续检测到所述参考频率资源上N1次波束质量差的情况下,判断所述参考频率资源关联的波束失败;或
    连续检测到N1次第一阶段时间窗W1内所述参考频率资源的下行信号的信号质量参数 小于预设门限的情况下,判断所述参考频率资源关联的波束失败。
  46. 如权利要求45所述的方法,其特征在于,所述配置信息还包括所述参考频率资源关联的第二阶段计数值N2和第二阶段时间窗W2中至少一种;
    所述方法还包括:
    在连续检测到所述参考频率资源上N2次波束质量好的情况下,判断所述参考频率资源关联的波束恢复成功;或
    在第二阶段时间窗W2中检测到所述参考频率资源的信号质量参数大于预设门限的情况下,判断所述参考频率资源关联的波束恢复成功;或
    在第二阶段时间窗W2内检测到所述参考频率资源上N2次波束质量好的情况下,判断所述参考频率资源关联的波束恢复成功;或
    在连续检测到N2次第二阶段时间窗W2内所述频率资源组的信号质量参数大于预设门限的情况下,判断所述参考频率资源关联的波束恢复成功。
  47. 如权利要求46所述的方法,其特征在于,所述配置信息还包括:所述参考频率资源关联的定时时长T1;
    所述方法还包括:
    在所述参考频率资源关联的波束失败的情况下,启动定时时长为T1的计时操作;
    在所述参考频率资源关联的波束恢复成功的情况下,停止所述定时时长为T1的计时操作;
    在所述计时操作超时的情况下,判断所述参考频率资源关联的波束恢复失败。
  48. 一种通信方法,其特征在于,所述方法包括:
    接收至少一个频率资源组的配置信息,以及通过至少一个波束在所述至少一个频率资源组对应的频率资源上接收下行信号;其中,每个频率资源组包括至少两个频率资源,每个频率资源对应至少一个波束,所述配置信息包括每个频率资源组的标识和每个频率资源的标识;
    根据下行信号检测到频率资源组内第一频率资源关联的波束失败的情况下,在所述频率资源组内第二频率资源上发送波束恢复请求。
  49. 如权利要求48所述的方法,其特征在于,所述配置信息还包括频率资源的下行信号和传输资源之间的关联关系;
    所述在所述频率资源组的第二频率资源上发送波束恢复请求,具体为:
    根据所述第一频率资源的下行信号关联的一个或多个传输资源发送波束恢复请求。
  50. 如权利要求49所述的方法,其特征在于,所述关联关系具体为:
    传输资源与以下信息中至少一种的关联关系:
    下行信号的标识、频率资源标识、频率资源组的标识、天线端口标识、天线端口组标识和波束指示信息。
  51. 如权利要求49或50所述的方法,其特征在于,所述下行信号为信道状态信息参考信号CSI-RS、同步信号块SS Block。
  52. 一种通信装置,其特征在于,包括:
    处理单元,用于配置至少一个频率资源组;其中,每个频率资源组包括至少两个频率 资源,每个频率资源关联至少一个波束;
    发送单元,用于将所述至少一个频率资源组的配置信息发送给终端设备;其中,所述配置信息包括用于指示每个频率资源组内的频率资源具有准同位QCL关系的信息;
    所述发送单元,还用于使用至少一个波束在所述至少一个频率资源组对应的频率资源上发送下行信号。
  53. 如权利要求52所述的装置,其特征在于,所述配置信息还包括:
    频率资源组的第一阶段计数值和第一阶段时间窗中至少一种;和/或
    频率资源组内各频率资源的第一阶段计数值和第一阶段时间窗中至少一种。
  54. 如权利要求53所述的装置,其特征在于,所述配置信息还包括:
    频率资源组的第二阶段计数值和第二阶段时间窗中至少一种;和/或
    频率资源组内各频率资源的第二阶段计数值和第二阶段时间窗中至少一种。
  55. 如权利要求52或53所述的装置,其特征在于,所述配置信息还包括:
    频率资源组的定时时长,以及频率资源组内各频率资源的定时时长。
  56. 如权利要求52-55任意一项所述的装置,其特征在于,频域资源为载波分量CC或带宽部分BP。
  57. 一种通信装置,其特征在于,包括:
    接收单元,用于接收来自网络设备的至少一个频率资源组的配置信息,以及通过至少一个波束在所述至少一个频率资源组对应的频率资源上接收下行信号;其中,每个频率资源组包括至少两个频率资源,所述配置信息包括用于表示每个频率资源内的频率资源具有准同位QCL关系的信息;
    处理单元,用于监测所述下行信号。
  58. 如权利要求57所述的装置,其特征在于,所述配置信息包括频率资源组关联的第一阶段计数值N1和第一阶段时间窗W1中至少一种,所述频率资源组为所述至少一个频率资源组中任意一个;
    所述处理单元监测所述下行信号,具体包括:
    在连续检测到N1次波束质量差的情况下,判断所述频率资源组关联的波束失败;或
    在第一阶段时间窗W1内检测到所述频率资源组下行信号的信号质量参数小于预设门限的情况下,判断所述频率资源组关联的波束失败;或
    在第一阶段时间窗W1内连续检测到N1次波束质量差的情况下,判断所述频率资源组关联的波束失败;或
    在连续检测到N1次第一阶段时间窗W1内所述频率资源组下行信号的信号质量参数小于预设门限的情况下,判断所述频率资源组关联的波束失败。
  59. 如权利要求58所述的装置,其特征在于,所述频率资源组关联的波束失败具体为所述频率资源组关联的波束中具有QCL关系的波束失败。
  60. 如权利要58或59所述的装置,其特征在于,所述配置信息还包括:所述频率资源组关联的第二阶段计数值N2和第二阶段时间窗W2中至少一种;
    所述处理单元,还用于:
    在连续检测到N2次波束质量好的情况下,判断所述具有QCL关系的波束恢复成功; 或
    在第二时间窗W2中检测到所述频率资源组的下行信号的信号质量参数大于预设门限的情况下,判断所述频率资源组关联的波束恢复成功;或
    在第二阶段时间窗W2内检测到N2次波束质量好的情况下,判断所述频率资源组关联的波束恢复成功;或
    在连续检测到N2次第二阶段时间窗W2内所述频率资源组的下行信号的信号质量参数大于预设门限的情况下,判断所述频率资源组关联的波束恢复成功。
  61. 如权利要求60所述的装置,其特征在于,所述配置信息还包括:所述频率资源组关联的定时时长T1;
    所述处理单元,还用于:
    所述频率资源组关联的波束失败的情况下,启动定时时长T1的计时操作;
    在所述频率资源组关联的波束恢复成功的情况下,停止所述定时时长为T1的计时操作;
    在所述计时操作超时的情况下,判断所述频率资源组关联的波束恢复失败。
  62. 如权利要求57所述的装置,其特征在于,所述配置信息包括参考频率资源关联的第一阶段计数值N1和第一阶段时间窗W1中至少一种和所述参考频率资源的标识;
    所述处理单元监测所述下行信号,具体包括:
    在所述参考频率资源上连续检测到N1次波束质量差的情况下,判断所述参考频率资源关联的波束失败;或
    在第一阶段时间窗W1内检测到所述参考频率资源的下行信号的信号质量参数小于预设门限的情况下,判断所述参考频率资源关联的波束失败;或
    在第一阶段时间窗内W1内连续检测到所述参考频率资源上N1次波束质量差的情况下,判断所述参考频率资源关联的波束失败;或
    连续检测到N1次第一阶段时间窗W1内所述参考频率资源的下行信号的信号质量参数小于预设门限的情况下,判断所述参考频率资源关联的波束失败。
  63. 如权利要求62所述的装置,其特征在于,所述配置信息还包括所述参考频率资源关联的第二阶段计数值N2和第二阶段时间窗W2中至少一种,所述参考频率位于所述至少一个频率资源组中任意一个频率资源组中;
    所述处理单元,还用于:
    在连续检测到所述参考频率资源上N2次波束质量好的情况下,判断所述参考频率资源关联的波束恢复成功;或
    在第二阶段时间窗W2中检测到所述参考频率资源的下行信号的信号质量参数大于预设门限的情况下,判断所述参考频率资源关联的波束恢复成功;或
    在第二阶段时间窗W2内检测到所述参考频率资源上N2次波束质量好的情况下,判断所述参考频率资源关联的波束恢复成功;或
    在连续检测到N2次第二阶段时间窗W2内所述频率资源组的下行信号的信号质量参数大于预设门限的情况下,判断所述参考频率资源关联的波束恢复成功。
  64. 如权利要求63所述的装置,其特征在于,所述配置信息还包括:所述参考频率资 源关联的定时时长T1;
    所述处理单元还用于:
    在所述参考频率资源关联的波束失败的情况下,启动定时时长为T1的计时操作;
    在所述参考频率资源关联的波束恢复成功的情况下,停止所述定时时长为T1的计时操作;
    在所述计时操作超时的情况下,判断所述参考频率资源关联的波束恢复失败。
  65. 一种通信装置,其特征在于,包括:接收单元、处理单元和发送单元;
    所述接收单元,用于接收至少一个频率资源组的配置信息,以及通过至少一个波束在所述至少一个频率资源组对应的频率资源上接收下行信号;其中,每个频率资源组包括至少两个频率资源,每个频率资源对应至少一个波束,所述配置信息包括每个频率资源组的标识和每个频率资源的标识;
    所述处理单元,用于根据下行信号检测到频率资源组内第一频率资源关联的波束失败的情况下,指示所述发送单元在所述频率资源组内第二频率资源上发送波束恢复请求。
  66. 如权利要求65所述的装置,其特征在于,所述配置信息还包括频率资源的下行信号和传输资源之间的关联关系;
    所述发送单元在所述频率资源组的第二频率资源上发送波束恢复请求,具体为:
    根据所述第一频率资源的下行信号关联的一个或多个传输资源发送波束恢复请求。
  67. 如权利要求66所述的装置,其特征在于,所述关联关系具体为:
    传输资源与以下信息中的至少一种关联:
    下行信号的标识、频率资源标识、频率资源组的标识、天线端口标识、天线端口组标识和波束指示信息。
  68. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1至15、31至51中任一项所述的方法。
  69. 一种用于终端设备能力传输的装置,包括存储器和处理器,所述存储器中存储有可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求5至15、40至51中任一项所述的方法。
  70. 一种用于终端设备能力传输的装置,其特征在于,包括处理器,所述处理器用于与存储器耦合,并读取存储器中的指令,并根据所述指令实现如权利要求1至15、31至51中任一项所述的方法。
  71. 根据权利要求70所述的装置,其特征在于,
    所述存储器设置在所述处理器中,或
    所述存储器与所述处理器独立设置。
  72. 一种计算机程序产品,其特征在于,所述计算机程序产品被计算机执行时,使得所述计算机实现权利要求1至15、31至51中任一项所述的方法。
PCT/CN2018/096984 2017-08-11 2018-07-25 通信方法及通信装置 WO2019029360A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18843842.8A EP3657839B1 (en) 2017-08-11 2018-07-25 Communication method and device
US16/784,306 US11316579B2 (en) 2017-08-11 2020-02-07 Communication method and communications apparatus
US17/716,323 US11923948B2 (en) 2017-08-11 2022-04-08 Communication method and communications apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710684270.2A CN109391962B (zh) 2017-08-11 2017-08-11 通信方法及通信装置
CN201710684270.2 2017-08-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/784,306 Continuation US11316579B2 (en) 2017-08-11 2020-02-07 Communication method and communications apparatus

Publications (1)

Publication Number Publication Date
WO2019029360A1 true WO2019029360A1 (zh) 2019-02-14

Family

ID=65273295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/096984 WO2019029360A1 (zh) 2017-08-11 2018-07-25 通信方法及通信装置

Country Status (4)

Country Link
US (2) US11316579B2 (zh)
EP (1) EP3657839B1 (zh)
CN (2) CN114666904A (zh)
WO (1) WO2019029360A1 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3668231A4 (en) * 2017-08-11 2021-02-17 Fujitsu Limited METHOD AND APPARATUS FOR CONFIGURING A TRIGGERING CONDITIONS FOR A WAVEBACK FAILURE EVENT, AND COMMUNICATION SYSTEM
WO2019066451A1 (ko) * 2017-09-27 2019-04-04 엘지전자 주식회사 레인지 추정을 위한 리포팅을 전송 및 수신하는 방법과 이를 위한 통신 장치
US11770806B2 (en) 2018-11-12 2023-09-26 Qualcomm Incorporated Spatial quasi co-location conflict handling
CN111757475B (zh) * 2019-03-28 2022-04-05 华为技术有限公司 更新波束的方法与通信装置
US20200314829A1 (en) * 2019-03-29 2020-10-01 Qualcomm Incorporated Signaling-overhead reduction with resource grouping
CN111769921B (zh) 2019-04-02 2021-12-24 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
US11277193B2 (en) * 2019-05-31 2022-03-15 Qualcomm Incorporated Beam selection procedures for multi-stream environments
CN112118194B (zh) * 2019-06-04 2021-12-10 华为技术有限公司 数据交换设备、服务器和通信系统
CN111082909B (zh) * 2019-08-15 2024-06-07 中兴通讯股份有限公司 准共址假设的确定方法及装置、存储介质和电子装置
CN112399592A (zh) * 2019-08-16 2021-02-23 中国移动通信有限公司研究院 一种信息发送方法、接收方法、终端及网络设备
US11758606B2 (en) * 2020-03-05 2023-09-12 Qualcomm Incorporated Suspension of beam or link recovery for a failure event
US11736957B2 (en) * 2020-06-10 2023-08-22 Qualcomm Incorporated Techniques for dynamic downlink and uplink quasi co-location relationship reporting
US11728950B2 (en) * 2020-06-16 2023-08-15 Qualcomm Incorporated Quasi co-location reporting in millimeter wave frequency regimes
US11627542B2 (en) * 2020-07-14 2023-04-11 Qualcomm Incorporated Beam reselection for narrowband non-terrestrial networks
US20220038235A1 (en) * 2020-07-28 2022-02-03 Qualcomm Incorporated Reference signal configuration and quasi co-location mappings for wide bandwidth systems
EP4195737A1 (en) * 2020-08-07 2023-06-14 Ntt Docomo, Inc. Terminal, base station device, and beam fault recovery method
CN112003909B (zh) * 2020-08-10 2021-10-01 上海交通大学 平台化的智能终端系统及其实现方法
WO2022077482A1 (en) * 2020-10-16 2022-04-21 Nokia Shanghai Bell Co., Ltd. Signalling port information
WO2022077513A1 (zh) * 2020-10-16 2022-04-21 华为技术有限公司 准同位信息确定方法、装置及系统
US11831384B2 (en) * 2020-10-23 2023-11-28 Qualcomm Incorporated Joint panel parameter update
CN115150843A (zh) * 2021-03-31 2022-10-04 北京三星通信技术研究有限公司 波束管理方法和设备
CN115835383A (zh) * 2021-09-14 2023-03-21 中兴通讯股份有限公司 信号发送方法、信号接收方法、电子设备和存储介质
CN116886169A (zh) * 2023-08-10 2023-10-13 四川创智联恒科技有限公司 一种卫星终端判断波位的方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104335651A (zh) * 2012-05-09 2015-02-04 株式会社Ntt都科摩 无线基站、用户终端、无线通信系统以及无线通信方法
CN104813602A (zh) * 2013-01-03 2015-07-29 英特尔公司 新载波类型(nct)无线网络中用于跨载波准同位信令的装置和方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10601492B2 (en) * 2017-01-05 2020-03-24 Futurewei Technologies, Inc. Device/UE-oriented beam recovery and maintenance mechanisms
US11943677B2 (en) * 2017-01-19 2024-03-26 Qualcomm Incorporated Beam selection and radio link failure during beam recovery
EP3649803A4 (en) 2017-08-04 2020-09-16 Samsung Electronics Co., Ltd. PROCEDURE AND USER DEVICE (UE) FOR RAY MANAGEMENT FRAMEWORK FOR CARRIER AGGREGATION
US11337265B2 (en) * 2017-08-10 2022-05-17 Comcast Cable Communications, Llc Beam failure recovery request transmission

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104335651A (zh) * 2012-05-09 2015-02-04 株式会社Ntt都科摩 无线基站、用户终端、无线通信系统以及无线通信方法
CN104813602A (zh) * 2013-01-03 2015-07-29 英特尔公司 新载波类型(nct)无线网络中用于跨载波准同位信令的装置和方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3657839A4
ZTE ET AL., R1-1701819 QCUQCB DESIGN FOR DL MIMO, 28 February 2017 (2017-02-28), XP051220885, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/Meetings_3GPP_SYNC/RAN1/Docs> *

Also Published As

Publication number Publication date
EP3657839A1 (en) 2020-05-27
CN109391962A (zh) 2019-02-26
CN114666904A (zh) 2022-06-24
EP3657839B1 (en) 2023-02-01
EP3657839A4 (en) 2020-07-29
US20200177265A1 (en) 2020-06-04
CN109391962B (zh) 2022-02-25
US11316579B2 (en) 2022-04-26
US20220302990A1 (en) 2022-09-22
US11923948B2 (en) 2024-03-05

Similar Documents

Publication Publication Date Title
WO2019029360A1 (zh) 通信方法及通信装置
CN110475337B (zh) 通信方法及装置
CN111972004B (zh) Scell bfr期间的用户设备接收机空间滤波器配置的方法和装置
US11876744B2 (en) Secondary cell activation method, access network device, and communications apparatus and system
US11601238B2 (en) Beam failure recovery
EP3579604B1 (en) User terminal and wireless communication method
CN110401471B (zh) 通信方法及装置,计算机可读存储介质
JP7262619B2 (ja) セカンダリ・セルのためのビーム障害回復の装置および方法
US11943037B2 (en) Method and apparatus for beam failure recovery in a wireless communication system
WO2018228468A1 (zh) 一种无线链路监控方法和装置
WO2019096195A1 (zh) 通信方法及装置
CN111819811B (zh) Nb-iot tdd网络中发信号通知频率偏移的方法和装置
WO2019157967A1 (zh) 一种用于波束失败检测的方法、装置及系统
US11470589B2 (en) Communication method and communications apparatus
WO2019011248A1 (zh) 一种上报及确定波束信息的方法和装置
WO2019214333A1 (zh) 通信方法及装置
US20220167339A1 (en) Beam failure recovery method and apparatus
WO2023134333A1 (zh) 通信方法及装置
US20230336234A1 (en) Fast beam switch
CN116803048A (zh) 上行链路(ul)传输的时间和频率关系

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18843842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018843842

Country of ref document: EP

Effective date: 20200218