WO2019157967A1 - 一种用于波束失败检测的方法、装置及系统 - Google Patents

一种用于波束失败检测的方法、装置及系统 Download PDF

Info

Publication number
WO2019157967A1
WO2019157967A1 PCT/CN2019/074068 CN2019074068W WO2019157967A1 WO 2019157967 A1 WO2019157967 A1 WO 2019157967A1 CN 2019074068 W CN2019074068 W CN 2019074068W WO 2019157967 A1 WO2019157967 A1 WO 2019157967A1
Authority
WO
WIPO (PCT)
Prior art keywords
beam detection
period
detection signal
length
interval
Prior art date
Application number
PCT/CN2019/074068
Other languages
English (en)
French (fr)
Inventor
管鹏
陈雷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19753764.0A priority Critical patent/EP3745759A4/en
Priority to BR112020016149-7A priority patent/BR112020016149A2/pt
Publication of WO2019157967A1 publication Critical patent/WO2019157967A1/zh
Priority to US16/992,879 priority patent/US20200374853A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0882Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using post-detection diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a beam communication based technology in a communication system.
  • the use of beams for transmission in mobile communication systems ie by transmitting signals spatially in a particular direction, enables higher antenna array gains.
  • the beam can be realized by technical means such as beamforming.
  • beamforming For example, in high frequency (HF) communication, an important direction is analog plus hybrid beamforming, which can well resist the loss of high frequency signals due to transmission distance and complexity. And hardware cost control is within acceptable limits.
  • HF high frequency
  • the transmitting end In order to obtain beam gain, the transmitting end will concentrate the signal in a specific direction, and the receiving end will adjust the receiving beam mode to obtain more signal energy.
  • the communication quality of a pair of transceiver beams being communicated may be degraded, even failing to communicate properly.
  • the user equipment User Equipment, UE for short
  • the user equipment needs to detect the beam.
  • the physical layer of the UE is in a beam detection interval (which can correspond to one reporting period)
  • the detected beam is not determined. If the beam failure instance is generated, the report will be reported to the upper layer of the UE according to the reporting period.
  • the UE can confirm the beam failure and enter the beam recovery process, and the beam recovery process includes new beam identification, beam failure recovery request, and beam. Failure response receipt and other steps.
  • the beam detection interval length setting of the beam detection interval (which can correspond to one reporting period). If the beam detection interval length is set too long, the continuous beam failure instance is generated and the beam is confirmed. The time required for the failure to occur will be too long, resulting in the effectiveness of timely beam recovery being affected, and the lack of flexibility for too long a time; and if the beam detection interval length is set too short, it may be misjudged to confirm that the beam failure occurs. Therefore, it is urgent to propose a scheme for determining the length of a reasonable beam detection interval (which can correspond to a reporting period).
  • the present application provides a method, device, and system for beam failure detection, which can effectively perform beam failure detection by effectively determining a reasonable beam detection interval (which can correspond to a reporting period).
  • a method and apparatus for beam failure detection is provided.
  • the method is applied to a terminal device to obtain an effective beam failure detection by obtaining valid parameters to determine a reasonable length of the beam detection interval.
  • the method includes acquiring a period T of at least one beam detection signal and a number N of consecutive beam failure instances corresponding to a beam failure announcement; wherein the beam detection signal is transmitted by using a beam, and one of the beam failure instances is at least one beam
  • the detection result of each beam detection signal in the at least one beam detection signal in the detection interval does not satisfy a predetermined condition; and the length of the beam detection interval is determined according to the acquired T and N.
  • the design can determine the length of a reasonable beam detection interval and achieve effective beam failure detection.
  • the period T of the at least one beam detection signal and/or the number N of consecutive beam failure instances corresponding to the beam failure announcement are obtained from the access node.
  • the period T of the at least one beam detection signal and/or the number N of consecutive beam failure instances corresponding to the beam failure announcement are obtained from the storage device.
  • the at least one beam detection signal is a beam detection signal set
  • the beam detection signal in the set which may be configured by the access node through the higher layer signaling (RRC) for the beam failure detection.
  • RRC higher layer signaling
  • One way to perform beam detection signals when performing beam failure detection is: The beam detection signal in which the DMRS of the PDCCH satisfies the spatial quasi-homomorphic relationship; the other way is: All beam detection signals in .
  • the collection The terminal device determines itself according to the relevant indication of the downlink physical channel, and forms the set by including a beam detection signal having a spatial QCL relationship with the channel.
  • the shortest period corresponding to the detection signal to be measured is T short , and the maximum period is T long .
  • the UE can assume that T short ⁇ N is greater than or equal to T long ⁇ k. Or, the UE can assume The reference signal period that needs to be measured is the same.
  • the beam is in one-to-one correspondence with the beam detection signal, and the corresponding beam detection signal is sent through the beam; optionally, one of the beam detection signals is sent through multiple beams; optionally, through a beam
  • the beam transmits a plurality of the beam detection signals.
  • the beam detection signals include, but are not limited to, a reference signal RS, a synchronization signal block, and a signal for evaluating beam quality.
  • the period T of the at least one beam detection signal includes: a period T short of the shortest period of the beam detection signal in the at least one beam detection signal and/or the at least one beam detection signal a period T long of the longest period of the beam detection signal; determining the length of the beam detection interval according to the obtained T and N, comprising: according to the T short and/or the T long , and the N. Determine the length of the beam detection interval.
  • the determined length of the beam detection interval includes one of the following: Max ⁇ T short ,T long /N ⁇ , Max ⁇ max ⁇ T short ,T long /N ⁇ ,T' ⁇ ,min ⁇ T long ,T short ⁇ N ⁇ , Where T' is a predetermined duration value, the symbol max ⁇ represents the maximum value, and min ⁇ represents the minimum value, the symbol Indicates rounding up.
  • T' may be a one-time value specified by the standard, or may be configured by the access node for the terminal device, or may be a value determined according to different sub-carrier intervals.
  • the method further includes: obtaining an adjustment amount k; determining the length of the beam detection interval according to the obtained T and N, including: according to the T, N, and k, The length of the beam detection interval is determined.
  • the period T of the at least one beam detection signal includes: a period T short of the shortest period of the beam detection signal in the at least one beam detection signal and/or the at least one beam detection signal
  • the determined length of the beam detection interval includes one of the following: Max ⁇ T short ,k ⁇ T long /N ⁇ , Max ⁇ max ⁇ T short ,k ⁇ T long /N ⁇ , T' ⁇ , min ⁇ T long , T short ⁇ N ⁇ k ⁇ ,
  • T' is a predetermined duration value
  • the symbol max ⁇ represents the maximum value
  • min ⁇ represents the minimum value
  • T' may be a one-time value specified by the standard, or may be configured by the access node for the terminal device, or may be a value determined according to different sub-carrier intervals.
  • the beam detection is for detection of a beam transmitting a downlink control channel PDCCH.
  • the PDCCH corresponds to at least one control resource set CORESET
  • the beam indication of each CORESET corresponds to an effective TCI state
  • the beam indications of different CORESETs correspond to the same or different TCI states, and for each TCI state, measurement is required.
  • the CORESET associated with the TCI state has a QCL relationship.
  • T short and/or T long have the shortest period from at least one beam detection signal corresponding to each CORESET. It is determined in the set Q formed by the period of the beam detection signal that the correspondence includes the correspondence of the QCL relationship.
  • a device for beam failure detection can implement a corresponding method in the first aspect.
  • the device is defined in a functional form, and may be an entity on the terminal side.
  • the specific implementation may be a terminal device, for example, a terminal device, or a chip or a function module in the terminal device, which may be implemented by software or hardware. Or implement the above method by executing corresponding software through hardware.
  • the apparatus can include a processor and a memory.
  • the processor is configured to support the apparatus to perform the corresponding functions of the first aspect method described above.
  • the memory is for coupling to a processor that holds the programs (instructions) and data necessary for the device.
  • the apparatus can also include a communication interface for supporting communication between the apparatus and other network elements.
  • the communication interface can be a transceiver.
  • the apparatus can include a transceiver unit, wherein the transceiver unit is configured to communicate with the network device.
  • the apparatus may further comprise a processing unit for acquiring the period T and the number N (optionally k), determining the length of the beam detection interval.
  • a method and apparatus for beam failure detection is provided.
  • the method is applied to a network device, such as an access node, and a transmission receiving point having a function of an access node part on the network side.
  • the configuration information for the beam failure detection is sent to the terminal device by the network device, and the beam failure detection of the terminal device is implemented.
  • the method includes generating adjustment amount information for the terminal device to adjust the length of the beam detection interval; and transmitting the adjustment amount information to the terminal device.
  • the length of the reasonable beam detection interval can be determined, and effective beam failure detection can be realized.
  • the method further includes generating period information T of the at least one beam detection signal and/or number information N of consecutive beam failure instances corresponding to the beam failure announcement, and transmitting the T and the terminal device / or N.
  • the period T of the at least one beam detection signal includes: a period T short of the shortest period of the beam detection signal in the at least one beam detection signal and/or the at least one beam detection signal
  • the period T long of the longest beam detection signal in the middle period; the length of the beam detection interval determined by the terminal includes one of the following: Max ⁇ T short ,k ⁇ T long /N ⁇ , Max ⁇ max ⁇ T short ,k ⁇ T long /N ⁇ , T' ⁇ , min ⁇ T long , T short ⁇ N ⁇ k ⁇ , Where T' is a predetermined duration value, the symbol max ⁇ represents the maximum value, and min ⁇ represents the minimum value, the symbol Indicates rounding up.
  • T' may be a one-time value specified by the standard, or may be configured by the access node for the terminal device, or may be a value determined according to different sub-carrier intervals.
  • the method further comprises: configuring a beam detection signal set to the terminal device
  • the at least one beam detection signal is a beam detection signal set
  • the beam detection signal is optional.
  • the set may be configured by the access node for the UE through higher layer signaling (eg, RRC).
  • the shortest period corresponding to the detection signal to be measured is T short , and the maximum period is T long .
  • the UE can assume that T short ⁇ N is greater than or equal to T long ⁇ k. Or, the UE can assume The reference signal period that needs to be measured is the same.
  • the method further includes: transmitting a beam detection signal to the terminal device; optionally, the beam is in one-to-one correspondence with the beam detection signal, and the corresponding beam detection signal is sent through the beam; optionally, One of the beam detection signals is transmitted through multiple beams; optionally, a plurality of the beam detection signals are transmitted through one beam.
  • the beam detection signals include, but are not limited to, a reference signal RS, a synchronization signal block, and a signal for evaluating beam quality.
  • a device for beam failure detection can implement a corresponding method in the second aspect.
  • the device is defined in a functional form, and may be an entity on the access side.
  • the specific implementation may be an access node device, for example, an access node device, or a chip or a function module in the access node device.
  • the above method can be implemented by software, hardware, or by executing corresponding software through hardware.
  • the apparatus can include a processor and a memory.
  • the processor is configured to support the apparatus to perform the corresponding functions of the second aspect method described above.
  • the memory is for coupling to a processor that holds the programs (instructions) and data necessary for the device.
  • the apparatus can also include a communication interface for supporting communication between the apparatus and other network elements.
  • the communication interface can be a transceiver.
  • the apparatus may include a transceiver unit, wherein the transceiver unit is configured to send related information for the beam failure detection to the terminal device.
  • the apparatus can also include a processing unit for generating a correlation signal for the beam failure detection.
  • a method and apparatus for beam failure detection is provided.
  • the method is applied to a terminal device, and by considering the CORESET detection period, a reasonable beam detection interval length can be determined, and effective beam failure detection can be realized.
  • the method includes acquiring a detection period Tc of at least one control resource set CORESET for beam detection and a number N of consecutive beam failure instances corresponding to a beam failure announcement; determining a length of the beam detection interval according to the acquired Tc and N .
  • the period Tc and/or the number N is received from an access node.
  • the period Tc and/or the number N is read from a storage device.
  • the Tc includes: a shortest detection period T short of the detection period of the at least one CORESET and/or a longest detection period T long of the detection period of the at least one CORESET; Determining the length of the beam detection interval, the Tc and N, comprising: determining a length of the beam detection interval according to the T short and/or the T long , and the N.
  • the determined length of the beam detection interval includes one of the following: Max ⁇ T short ,T long /N ⁇ , Max ⁇ max ⁇ T short ,T long /N ⁇ ,T' ⁇ ,min ⁇ T long ,T short ⁇ N ⁇ , Where T' is a predetermined duration value, the symbol max ⁇ represents the maximum value, and min ⁇ represents the minimum value, the symbol Indicates rounding up. It can be understood that, optionally, T' may be a value of time specified by the standard, may be configured by the access node for the terminal device, or may be a value determined according to different subcarrier intervals.
  • the method further includes: obtaining an adjustment amount k, determining a length of the beam detection interval according to the obtained Tc and N, comprising: determining, according to the Tc, N, and k, The length of the beam detection interval.
  • the Tc includes: a shortest detection period T short of the detection period of the at least one CORESET and/or a longest detection period T long of the detection period of the at least one CORESET; Determining the lengths of the beam detection intervals, the obtained Tc and N, comprising: determining a length of the beam detection interval according to the T short and/or the T long , and the N.
  • the determined length of the beam detection interval includes one of the following: k ⁇ T long /N, Max ⁇ T short ,k ⁇ T long /N ⁇ , Max ⁇ max ⁇ T short ,k ⁇ T long /N ⁇ , T' ⁇ , min ⁇ T long , T short ⁇ N ⁇ k ⁇ , Where T' is a predetermined duration value, the symbol max ⁇ represents the maximum value, and min ⁇ represents the minimum value, the symbol Indicates rounding up.
  • T' may be a one-time value specified by the standard, or may be configured by the access node for the terminal device, or may be a value determined according to different sub-carrier intervals.
  • a device for beam failure detection can implement a corresponding method in the third aspect.
  • the device is defined in a functional form, and may be an entity on the terminal side.
  • the specific implementation may be a terminal device, for example, a terminal device, or a chip or a function module in the terminal device, which may be implemented by software or hardware. Or implement the above method by executing corresponding software through hardware.
  • the apparatus can include a processor and a memory.
  • the processor is configured to support the apparatus to perform the corresponding functions of the method of the third aspect described above.
  • the memory is for coupling to a processor that holds the programs (instructions) and data necessary for the device.
  • the apparatus can also include a communication interface for supporting communication between the apparatus and other network elements.
  • the communication interface can be a transceiver.
  • the apparatus can include a transceiver unit, wherein the transceiver unit is configured to communicate with the network device.
  • the apparatus may further comprise a processing unit for acquiring the period Tc and the number N (optionally k) to determine the length of the beam detection interval.
  • a method and apparatus for beam failure detection is provided.
  • the method is applied to a terminal device, and by considering the relevant time information Tf for beam detection, a reasonable beam detection interval length can be determined, and effective beam failure detection can be realized.
  • the method includes acquiring relevant time information Tf for beam detection; determining a length of the beam detection interval according to the acquired Tf.
  • the Tf includes at least one of: a period T of at least one beam detection signal, a detection period Tc of at least one CORESET, and a value Ts determined according to different subcarrier spacings SCS.
  • the Tf is received from an access node.
  • the Tf is read from a storage device.
  • the determined length of the beam detection interval may include Ts, max ⁇ Ts, T' ⁇ , min ⁇ Ts, T' ⁇ , max ⁇ k ⁇ Ts , T' ⁇ or min ⁇ k ⁇ Ts, T' ⁇ , where T' is a fixed value, which can be set in advance, and k is an adjustment amount that can be acquired in advance.
  • the determined length of the beam detection interval may include T short , T long , k ⁇ T short , k ⁇ T long , max ⁇ T long , T′ ⁇ , max ⁇ k ⁇ T long , T′ ⁇ , min ⁇ T long , T′ ⁇ or min ⁇ k ⁇ T long , T′ ⁇ , where T′ is a fixed value, which can be set in advance, and k is an adjustment amount. It may be acquired in advance, and T includes a period T long of the beam detection signal having the longest period among the at least one beam detection signal.
  • the determined length of the beam detection interval may include T short , T long , k ⁇ T short , k ⁇ T long , max ⁇ T long , T′ ⁇ , max ⁇ k ⁇ T long , T′ ⁇ , min ⁇ T long , T′ ⁇ or min ⁇ k ⁇ T long , T′ ⁇ , where T′ is a fixed value, which can be set in advance, and k is an adjustment amount. It may be acquired in advance, and T includes the longest detection period T long in at least one CORESET detection period.
  • the determined length of the beam detection interval may include max ⁇ T long , Ts ⁇ , max ⁇ k ⁇ T long , Ts ⁇ , min ⁇ T long , Ts ⁇ , min ⁇ k ⁇ T long , Ts ⁇ , max ⁇ T long , Ts, T′ ⁇ , max ⁇ k ⁇ T long , Ts, T′ ⁇ , min ⁇ T long , Ts, T′ ⁇ or min ⁇ k ⁇ T long , Ts, T′ ⁇ , wherein when Tf includes T, T long corresponds to the period T of the beam detection signal, and when Tf includes Tc, T long corresponds to the CORESET detection period Tc, and T′ is one.
  • a fixed value can be set in advance
  • k is an adjustment amount that can be acquired in advance.
  • a device for beam failure detection can implement a corresponding method in the fourth aspect.
  • the device is defined in a functional form, and may be an entity on the terminal side.
  • the specific implementation may be a terminal device, for example, a terminal device, or a chip or a function module in the terminal device, which may be implemented by software or hardware. Or implement the above method by executing corresponding software through hardware.
  • the apparatus can include a processor and a memory.
  • the processor is configured to support the apparatus to perform the corresponding functions of the method of the fourth aspect described above.
  • the memory is for coupling to a processor that holds the programs (instructions) and data necessary for the device.
  • the apparatus can also include a communication interface for supporting communication between the apparatus and other network elements.
  • the communication interface can be a transceiver.
  • the apparatus can include a transceiver unit, wherein the transceiver unit is configured to communicate with the network device.
  • the apparatus may further include a processing unit for acquiring the Tf and determining a length of the beam detection interval.
  • a method and apparatus for beam monitoring is provided.
  • the method is applied to a terminal device.
  • the method includes monitoring a beam mismatch interval; if the number of consecutive beam mismatch intervals is monitored to reach a preset number threshold N, beam failure announcement is performed, wherein in each beam mismatch interval, in the beam set Each in-use beam is in an abnormal state, the in-use beam set includes at least one in-use beam, and a length of the beam mismatch interval is based on a reference time corresponding to the at least one in-use beam and the preset number
  • the threshold N is determined.
  • the reference time includes a period T of detecting a signal resource in a beam corresponding to the beam;
  • the reference time includes a detection period Tc of the CORESET described in the third aspect
  • the reference time includes the correlation time Tf described in the fourth aspect
  • the design achieves effective beam monitoring by reasoning the length of the reasonable beam mismatch interval.
  • the reference time and/or the N is received from an access node.
  • the reference time and/or the N is read from a storage device.
  • the period T of the at least one beam detection signal includes: a period in the at least one beam detection signal a period T short of the shortest beam detection signal and/or a period T long of the longest period of the beam detection signal in the at least one beam detection signal;
  • the length of the beam mismatch interval includes one of the following: T long /N, Max ⁇ T short ,T long /N ⁇ , Max ⁇ max ⁇ T short ,T long /N ⁇ ,T' ⁇ ,min ⁇ T long ,T short ⁇ N ⁇ ,
  • T' is a predetermined duration value
  • the symbol max ⁇ represents the maximum value
  • min ⁇ represents the minimum value
  • T' may be a one-time value specified by the standard, or may be configured by the access node for the terminal device, or may be a value determined according to different sub-carrier intervals.
  • the length of the beam mismatch interval includes one of the following: k ⁇ T long /N, Max ⁇ T short ,k ⁇ T long /N ⁇ , Max ⁇ max ⁇ T short ,k ⁇ T long /N ⁇ , T' ⁇ , min ⁇ T long , T short ⁇ N ⁇ k ⁇ , Where T' is a predetermined duration value, the symbol max ⁇ represents the maximum value, and min ⁇ represents the minimum value, the symbol Indicates rounding up.
  • T' may be a one-time value specified by the standard, or may be configured by the access node for the terminal device, or may be a value determined according to different sub-carrier intervals.
  • k is an adjustment amount.
  • the period Tc of the at least one beam detection signal includes: the shortest detection period T short of CORESET and/or the longest detection period T of CORESET Long ;
  • the length of the beam mismatch interval includes one of the following: T long /N, Max ⁇ T short ,T long /N ⁇ , Max ⁇ max ⁇ T short ,T long /N ⁇ ,T' ⁇ ,min ⁇ T long ,T short ⁇ N ⁇ ,
  • T' is a predetermined duration value
  • the symbol max ⁇ represents the maximum value
  • min ⁇ represents the minimum value
  • T' may be a one-time value specified by the standard, or may be configured by the access node for the terminal device, or may be a value determined according to different sub-carrier intervals.
  • the period Tc of the at least one beam detection signal includes: the shortest detection period T short of CORESET and/or the longest detection period T of CORESET Long ;
  • the length of the beam mismatch interval includes one of the following: k ⁇ T long /N, Max ⁇ T short ,k ⁇ T long /N ⁇ , Max ⁇ max ⁇ T short ,k ⁇ T long /N ⁇ , T' ⁇ , min ⁇ T long , T short ⁇ N ⁇ k ⁇ , Where T' is a predetermined duration value, the symbol max ⁇ represents the maximum value, and min ⁇ represents the minimum value, the symbol Indicates rounding up.
  • T' may be a one-time value specified by the standard, or may be configured by the access node for the terminal device, or may be a value determined according to different sub-carrier intervals.
  • k is an adjustment amount.
  • a beam monitoring device that can implement a corresponding method in the fifth aspect.
  • the device is defined in a functional form, and may be an entity on the terminal side.
  • the specific implementation may be a terminal device, for example, a terminal device, or a chip or a function module in the terminal device, which may be implemented by software or hardware. Or implement the above method by executing corresponding software through hardware.
  • the apparatus can include a processor and a memory.
  • the processor is configured to support the apparatus to perform the corresponding functions of the method of the fifth aspect described above.
  • the memory is for coupling to a processor that holds the programs (instructions) and data necessary for the device.
  • the apparatus can also include a communication interface for supporting communication between the apparatus and other network elements.
  • the communication interface can be a transceiver.
  • the apparatus can include a transceiver unit, wherein the transceiver unit is configured to communicate with the network device.
  • the apparatus can also include a processing unit for detecting a beam mismatch interval to determine whether to perform a beam failure announcement.
  • the application also provides a computer storage medium having stored thereon a computer program (instructions) that, when executed on a computer, cause the computer to perform the method of any of the above aspects.
  • the application also provides a computer program product, when run on a computer, causing the computer to perform the method of any of the above aspects.
  • the present application also provides a chip for beam failure detection in which instructions are stored that, when run on a communication device, cause the communication device to perform the corresponding methods described in the various aspects above.
  • the present application also provides an apparatus for beam failure detection, comprising a memory, a processor, and a computer program stored on the memory and operable on the processor, the processor implementing the computer program to implement the above aspects The corresponding method described.
  • the present application also provides an apparatus for beam failure detection, comprising a processor for coupling with a memory and reading instructions in the memory, and implementing the corresponding method described in the above aspects in accordance with the instructions.
  • a processor for coupling with a memory and reading instructions in the memory, and implementing the corresponding method described in the above aspects in accordance with the instructions.
  • the memory can be integrated in the processor or independently of the processor.
  • the present application also provides an apparatus for beam failure detection, comprising a processor that implements a corresponding method as described in the above aspects when executing a computer program.
  • the processor can be a dedicated processor.
  • the present application also provides a system for beam failure detection, including the terminal side device provided above, and the network side device provided above, which system components respectively implement the corresponding methods described in the above aspects.
  • 1 is a network system architecture involved in the present application
  • FIG. 2 is a flow chart of a first embodiment of a method for beam failure detection provided by the present application
  • FIG. 3 is a flow chart of a second embodiment of a method for beam failure detection provided by the present application.
  • FIG. 4 is a flow chart of another first embodiment of a method for beam failure detection provided by the present application.
  • FIG. 5 is a flowchart of another first embodiment of a method for beam failure detection provided by the present application.
  • FIG. 6 is a flowchart of a first embodiment of a beam monitoring method provided by the present application.
  • FIG. 7 is a schematic structural diagram of a simplified terminal device provided by the present application.
  • FIG. 8 is a schematic structural diagram of a simplified network device provided by the present application.
  • Multiple in this application means two or more.
  • the term “and/or” in the present application is merely an association relationship describing an associated object, indicating that there may be three relationships, for example, A and/or B, which may indicate that A exists separately, and A and B exist at the same time. There are three cases of B alone.
  • the character “/” in this article generally indicates that the contextual object is an "or” relationship.
  • the terms “first”, “second”, “third”, “fourth” and the like in the present application are intended to distinguish different objects, and do not limit the order of the different objects.
  • terminals may in some cases refer to mobile devices, such as mobile phones, personal digital assistants, handheld or laptop computers, and similar devices with telecommunications capabilities, in some cases.
  • the following may also be a wearable device or an in-vehicle device, etc., and include a terminal in a future 5G network or a terminal in a future evolved PLMN network.
  • Such a terminal may include a device and its associated removable storage module (such as, but not limited to, a Subscriber Identification Module (SIM) application, a Universal Subscriber Identification Module (USIM).
  • SIM Subscriber Identification Module
  • USIM Universal Subscriber Identification Module
  • terminal may include the device itself without such a module.
  • terminal may refer to a device that has similar capabilities but is not portable, such as a desktop computer, set top box, or network device.
  • terminal may also refer to any hardware or software component that can terminate a user's communication session.
  • terminal In addition, "user terminal”, “User Equipment”, “UE”, “site”, “station”, “STA”, “user equipment”, “user agent”, “User Agent”, “UA”, “user equipment” “,” “mobile device” and “device” are all alternative terms synonymous with “terminal” / "terminal device” herein.
  • the devices mentioned above are collectively referred to as user equipments or UEs.
  • the "access node” mentioned in the present application is a network device deployed in the radio access network to provide a wireless communication function for the terminal device, and can be responsible for scheduling and configuring downlink reference signals and other functions for the UE.
  • the access node may include various forms of macro base stations, micro base stations, relay stations, access points, etc., and may be Global System of Mobile communication (GSM) or Code Division Multiple Access (Code Division Multiple Access).
  • GSM Global System of Mobile communication
  • Code Division Multiple Access Code Division Multiple Access
  • BTS Base Transceiver Station in CDMA
  • NodeB NodeB, NB for short
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • eNB evolved base station
  • TRP transmission reception point
  • TP transit reception point
  • Next generation Node B (gNB) Wireless-Fidelity (Wi-Fi) site
  • Wi-Fi Wireless-Fidelity
  • 5G Fifth Generation Mobile Communication
  • the device name with access node functionality may vary.
  • the above devices for providing wireless communication functions to the UE are collectively referred to as an access node.
  • Beam-based communication in the present application refers to the use of a beam for transmission in a mobile communication system, that is, by transmitting a signal spatially in a specific direction, a higher antenna array gain can be achieved.
  • the beam can be realized by technical means such as beamforming.
  • beamforming For example, in the high frequency (HF) communication, an important research direction is analog plus hybrid beamforming, which can well resist the loss of high frequency signals due to the transmission distance. Complexity and hardware cost are controlled to an acceptable level.
  • HF high frequency
  • Quasi-co-location A quasi-homologous relationship is used to indicate that one or more identical or similar communication characteristics exist between multiple resources. For multiple resources with quasi-homologous relationships, the same can be used. Or a similar communication configuration. For example, if two antenna ports have a quasi-homologous relationship, the large-scale characteristics of the channel on which one port transmits one symbol can be inferred from the large-scale characteristics of the channel through which one symbol transmits one symbol.
  • Large-scale features may include: delay spread, average delay, Doppler spread, Doppler shift, average gain, receive parameters, receive beam number of the terminal device, transmit/receive channel correlation, receive angle of arrival, receiver antenna Spatial correlation, Angel-of-Arrival (AoA), average angle of arrival, expansion of AoA, etc.
  • the quasi-co-located indication is used to indicate whether the at least two sets of antenna ports have a quasi-homologous relationship: the quasi-co-located indication is used to indicate whether the channel state information reference signals sent by the at least two groups of antenna ports are from the same transmission point, Or the quasi-co-located indication is used to indicate whether the channel state information reference signals sent by the at least two groups of antenna ports are from the same beam group.
  • the configuration and indication of the quasi-homolocation hypothesis can be used to assist the receiver in receiving and demodulating the signal.
  • the receiving end can confirm that the A port and the B port have a QCL relationship, that is, the large-scale parameter of the signal measured on the A port can be used for signal measurement and demodulation on the B port.
  • a beam is a communication resource.
  • the beam can be a wide beam, or a narrow beam, or other type of beam.
  • the beamforming technique can be beamforming techniques or other technical means.
  • the beamforming technology can be specifically digital beamforming technology, analog beamforming technology, and hybrid digital/analog beamforming technology. Different beams can be considered as different resources.
  • the same information or different information can be transmitted through different beams.
  • multiple beams having the same or similar communication characteristics can be considered as one beam.
  • One beam may include one or more antenna ports for transmitting a data channel, a control channel, a sounding signal, etc., for example, the transmitting beam may be a signal intensity distribution formed in different directions of the space after the signal is transmitted through the antenna.
  • the receive beam may refer to a signal strength distribution of wireless signals received from the antenna in different directions in space. It can be understood that one or more antenna ports forming one beam can also be regarded as one antenna port set.
  • the beam can be embodied in the protocol as a spatial filter.
  • the information of the beam can be identified by the index information.
  • the index information may be configured to correspond to a resource identifier of the UE.
  • the index information may correspond to an ID or resource of a channel status information reference signal (CSI-RS).
  • the index information may also be index information of a signal or channel display or implicit bearer carried by the beam.
  • the index information may be a synchronization signal sent by a beam or a broadcast channel indicating the beam. Index information.
  • the identifier of the information of the beam includes an absolute index of the beam, a relative index of the beam, a logical index of the beam, an index of the antenna port corresponding to the beam, an index of the antenna port group corresponding to the beam, and a downlink synchronization signal block.
  • Spatial QCL can be considered a type of QCL. There are two angles to understand for spatial: from the sender or from the receiver. From the perspective of the transmitting end, if the two antenna ports are spatially quasi-co-located, it means that the corresponding beam directions of the two antenna ports are spatially identical. From the perspective of the receiving end, if the two antenna ports are spatially quasi-co-located, it means that the receiving end can receive the signals transmitted by the two antenna ports in the same beam direction.
  • FIG. 1 shows a network system architecture involved in the present application.
  • the present application is applicable to a beam 300-based multi-carrier communication system as shown in FIG. 1, for example, 5G New Radio (NR).
  • the system includes uplink (UE 200 to access node 100) and downlink (access node 100 to UE 200) communications in the communication system.
  • uplink communication includes transmission of uplink physical channels and uplink signals.
  • the uplink physical channel includes a random access channel (Random Access Channel, PRICH for short), an uplink uplink control channel (PUCCH), and an uplink uplink channel (PUSCH).
  • PRICH Random Access Channel
  • PUCCH uplink uplink control channel
  • PUSCH uplink uplink channel
  • Downlink communication includes transmission of downlink physical channels and downlink signals.
  • the downlink physical channel includes a physical broadcast channel (PBCH), a physical downlink control channel (PDCCH), a physical downlink shared channel (PDSCH), and the downlink signal includes a primary synchronization signal ( Primary Synchronization Signal (PSS)/Secondary Synchronization Signal (SSS), downlink control channel demodulation reference signal PDCCH-DMRS, downlink data channel demodulation reference signal PDSCH-DMRS, phase noise tracking signal PTRS, channel status Channel status information reference signal (CSI-RS), Cell Reference Signal (CRS) (NR not), Tim/frequency tracking Reference Signal (TRS) (LTE not available), and the like.
  • PBCH physical broadcast channel
  • PDCCH Physical Downlink control channel
  • SSS secondary Synchronization Signal
  • PDCCH-DMRS downlink control channel demodulation reference signal
  • PDSCH-DMRS downlink data channel demodulation reference signal
  • phase noise tracking signal PTRS phase noise tracking signal
  • CSI-RS channel status Channel status information reference signal
  • CRS Cell Reference
  • the beam indication of the beam or the reference signal used by the downlink channel to transmit the corresponding beam is implemented by using a reference resource index in the Transmission Configuration Indicator (TCI) status table.
  • TCI Transmission Configuration Indicator
  • the base station configures a TCI state table (corresponding to TCI-states in 38.331) through RRC (Radio Resource Control) higher layer signaling, and each TCI state table includes several TCI states (corresponding to TCI in 38.331) -RS-Set).
  • Each TCI state includes a TCI Status ID (TCI-RS-SetID), one or two QCL type indications (QCL-type A/B/C/D), and a reference RS-ID corresponding to each type indication.
  • TCI-RS-SetID TCI Status ID
  • QCL type A/B/C/D QCL type indications
  • the QCL type contains the following:
  • QCL-Type A ⁇ Doppler shift, Doppler spread, average delay, delay spread ⁇
  • QCL-type D represents spatial quasi-homo.
  • the base station indicates, by using the high layer signaling or the control information, one of the TCI states including the spatial quasi-colocated information, and the UE reads the reference RS-ID corresponding to the QCL-type D according to the TCI state, and then the UE can The currently maintained spatial reception configuration (receiving beam) corresponding to the RS-ID is received.
  • the corresponding reference RS of the spatial quasi-co-located indication may be an SS/PBCH Block or a periodic or semi-persistent CSI-RS.
  • Beam indications (TCI indications) for different downstream channels are done at different locations:
  • the PDCCH's beam indicates that the RRC-configured high-layer signaling tci-States PDCCH is associated with one or more TCI states.
  • the associated TCI state number is greater than 1, one of the MAC-CE higher layer signaling is selected.
  • the beam indication of the PDSCH is indicated by the state associated with the TCI field in the DCI transmitted by the PDCCH.
  • the length of the TCI field included in the DCI in the NR standard is 3 bits (corresponding to 8 TCI states).
  • the activated TCI state is directly mapped into the TCI field, otherwise the high-level letter is The command indicates up to 8 TCI states participating in the mapping.
  • the UE reuses the beam indication of the control channel for data channel reception.
  • the NR For uplink transmission, the NR has not defined a spatial quasi-homomorphic relationship, and the uplink beam indication is directly implemented by the reference signal resource identifier:
  • the beam indication of the PUCCH is indicated by the RRC parameter PUCCH-Spatial-relation-info, and the parameter may include one or more reference signal resource identifiers. When multiple reference signal resource identifiers are included, one of the MAC-CE high layer signaling is selected. .
  • the beam indication content of the PUCCH may be an uplink or downlink reference signal resource identifier, including an SSB Index, a CRI or an SRS Index, indicating that the UE is recommended to use the corresponding beam that receives/transmits the downlink/uplink reference signal resource for uplink transmission.
  • the beam information of the PUSCH is configured by the SRS Index in the DCI.
  • the beam failure of the present invention refers to a beam failure of a downlink physical channel (for example, a downlink control channel), specifically, when the downlink physical channel is used. Beam failure may occur after the quality of communication between the transmit beam and the receive beam deteriorates.
  • a beam detection interval which can correspond to a reporting period
  • the beam quality of all downlink physical channels to be detected is lower than a certain threshold, it can be regarded as a primary beam failure instance; The detection of the beam is implemented by the beam detection signal.
  • the UE For the at least one beam detection signal, the UE has known the period of each beam detection signal before the detection, so the UE knows which beam detection numbers need to be detected in the current beam detection interval, and the UE needs to detect The detected beam detection signal; when the continuous beam failure instance reaches the maximum number of times (the maximum number of times can be configured by the access node 100, or a specific value can be specified by the protocol), the beam failure can be determined.
  • the access node 100 can configure a set for the UE 200 by using high layer signaling, such as Radio Resource Control (RRC) signaling. It is used for beam failure detection.
  • RRC Radio Resource Control
  • the set may not be configured by the access node 100, but the UE 200 determines the TCI indication of the following control channel according to the downlink physical channel.
  • the set may optionally include one or more periodic CSI-RS resource indexes; optionally, the access node 100 may also configure a set for the UE 200 by using high layer signaling (such as RRC).
  • the resource index of the CSI-RS resource index and/or the SSB may be optionally included in the set.
  • the access node 100 configures the maximum number of beam failure instances N for the UE 200 by using high layer signaling (such as RRC) (the number N may not be configured by the access node 100, but a specific value is specified by the protocol), and the beam fails.
  • the high-level signaling includes some other configuration information, including a beam recovery timer, a beam recovery response timer, and the maximum number of transmissions of the beam recovery request.
  • the UE 200 should determine according to the TCI status corresponding to the downlink physical channel (such as the PDCCH) currently required to be detected.
  • the threshold Qin is the threshold of the Layer 1-Reference Signal Received Power (L1-RSRP) of the CSI-RS.
  • the threshold of the SSB can be represented by the powerControlOffsetSS in the high-level signaling (ie, PC_ss, indicating the CSI-RS resource element).
  • PC_ss the high-level signaling
  • the power deviation from the resource element of the SSB is inferred in conjunction with Qin.
  • the following row control channel PDCCH is taken as an example, and the UE 200 uses The RS that satisfies the spatial quasi-homogeneous relationship with the PDCCH of the PDCCH evaluates the quality of the control channel. Specifically, the UE 200 estimates the Block Error Rate (BLER) of the PDCCH by using the RS that satisfies the condition (PDCCH-hypothetical-BLER), and all the requirements are needed in one beam detection interval (which can correspond to one reporting period). When the hypothetical-BLER of the detected downlink control channel is greater than the threshold (for example, it may be 0.1), the physical layer of the UE 200 confirms the beam failure instance and reports it to the UE 200 side MAC layer according to the specified period.
  • the threshold for example, it may be 0.1
  • the MAC layer of the UE 200 side counts the beam failure instances reported by the physical layer. When the number of consecutive occurrences of the beam failure instance reaches the maximum value N configured by the access node 100, the MAC may determine that a beam failure occurs, turn on the beam failure recovery timer, and notify the UE 200 that the physical layer beam failure occurs. After receiving the indication of the failure of the MAC layer beam, optionally, the UE200 physical layer reports the set.
  • the beam measurement result of the reference signal satisfying the candidate beam threshold Qin is reported in one or more sets of ⁇ beam RS index, L1-RSRP measurement result ⁇ .
  • the MAC layer of the UE 200 selects an RS index of a candidate beam according to a certain rule according to the measurement result and the beam reported by the physical layer, and searches for a corresponding RACH resource according to the RS index, and selects the selected beam index qnew and its corresponding RACH resource. Feedback to the physical layer.
  • the physical layer of the UE 200 transmits a beam failure recovery request (Beam-failure-recovery-request) using the beam corresponding to qnew on the specified RACH resource according to the RACH information configured by the high layer signaling.
  • Beam-failure-recovery-request Beam-failure-recovery-request
  • the UE 200 monitors the control resource set CORESET for the beam failure recovery response allocated by the high-level signaling to the high-level signaling, and the response content is the possibility of scrambling using the C-RNTI scrambling code.
  • Downlink Control Information DCI
  • the beam recovery is successful and the normal beam management process is entered. If a valid response is not successfully received within a certain time window, the foregoing process is repeated again from the transmission of the beam recovery request until the maximum number of beam recovery requests or the beam failure recovery timer expires.
  • FIG. 1 is only an example of a network system architecture involved in the present application, and the application is not limited thereto.
  • FIG. 2 is a flowchart of a first embodiment of a method for beam failure detection according to an embodiment of the present application.
  • the method is applied to the UE side, including:
  • the beam detection signal is transmitted by using a beam.
  • the sending is performed by using an access node to the UE as an example, and the beam may be in a one-to-one correspondence with the beam detection signal (or the resource of the beam detection signal).
  • the beam detection signal is transmitted, and one of the beam detection signals may be transmitted through multiple beams, and a plurality of the beam detection signals may be transmitted in one beam.
  • the beam detection signal includes, but is not limited to, a reference signal RS (for example, CSI-RS), a synchronization signal block (Synchronization Signal Block, SSB for short), and other signals for evaluating beam quality.
  • RS reference signal
  • SSB Synchronization Signal Block
  • the specific type is not limited.
  • the detection of the transmitted beam (which may be the in-use beam in the fifth embodiment) can be achieved by detecting the beam detection signal transmitted by the beam.
  • the beam in the present application may be embodied as, for example but not limited to, a spatial domain transmission filter (or a spatial transmission filter).
  • the beam may be specifically characterized by, for example, but not limited to, a reference signal resource corresponding to the beam.
  • a next-generation wireless communication system a New Radio (NR) system
  • NR New Radio
  • CSI-RS Channel State Information Reference Signal
  • CSI-RS Resource Resource
  • the CSI-RS resource corresponding to the beam may be indicated by a CSI (CSI-RS Resource Indicator), and the beam quality may be embodied as a Reference Signal Received Power (RSRP).
  • CSI-RS Resource Indicator CSI-RS Resource Indicator
  • RSRP Reference Signal Received Power
  • the NR system can also use SSB resources to characterize the beam and determine the beam quality based on the SSB resources corresponding to the beam. Therefore, both the reference signal and the SSB here belong to the beam detection signal, and the beam detection signal can also be other signals.
  • the at least one beam detection signal is a beam detection signal set a beam detection signal in the set, which may be configured by the access node for high-level signaling (RRC) for the UE to be used for beam failure detection.
  • RRC high-level signaling
  • One possible case of a beam detection signal that needs to be measured when performing beam failure detection is: The beam detection signal in which the DMRS of the PDCCH satisfies the spatial quasi-homomorphic relationship; another possible case is: All beam detection signals in . This application is not limited to the two examples.
  • the collection It may also be configured not by the access node 100, but by the UE 200 according to the downlink physical channel, the TCI indication of the following control channel PDCCH is determined by itself, to form the SSB and/or the periodic CSI-RS having the spatial QCL relationship with the PDCCH.
  • the set may optionally include one or more periodic CSI-RS resource indexes, and may also include a resource index of the SSB.
  • the access node 100 may further configure a set for the UE 200 by using high layer signaling (RRC). As a candidate beam set (this set may also be determined by the UE 200 itself), the resource index of the CSI-RS resource index and/or the SSB may be optionally included in the set.
  • RRC high layer signaling
  • the reference to the PDCCH has a QCL relationship, and if the RS has a QCL relationship with the PDCCH, it may mean that the two have the same TCI state, or the RS is the reference RS indicated by the PDCCH beam. Or the TCI status indicated by the beam corresponding to the RS has the same reference signal RS as the TCI status indicated by the PDCCH beam.
  • the beam failure example is that the detection result of each beam detection signal in the at least one beam detection signal does not satisfy a predetermined condition in at least one beam detection interval.
  • the UE implements the detection of the beam by using the beam detection signal. For at least one beam detection signal, the UE has learned the period of each beam detection signal before the detection, so the UE knows which beam detection numbers need to arrive in the current beam detection interval. Detection, the UE detects the beam detection signal that needs to be detected; the beam detection signal of two different periods, the signal 1 (short period) and the signal 2 (long period) are taken as an example to illustrate, if in a detection interval, the signal 1 needs to be detected.
  • the following is the row control channel PDCCH and the detection by the RS as an example, and the UE 200 uses The RS that satisfies the spatial quasi-homogeneous relationship with the PDCCH of the PDCCH evaluates the quality of the control channel.
  • the UE 200 estimates the BLER of the PDCCH by using the RS that satisfies the condition (PDCCH-hypothetical-BLER), and all in a beam detection interval (which may correspond to one reporting period, and the reporting period may also have a certain time offset)
  • the threshold for example, may be 0.1
  • the detection condition of the present invention for the presence or absence of the beam failure instance is not limited thereto.
  • the beam failure announcement may be performed by enabling a beam failure recovery timer, selecting an available candidate beam set according to the candidate beam threshold, and reporting the corresponding L1-RSRP measurement result, and determining an alternative according to an algorithm. Beam q new and its corresponding RACH resource and transmit beam recovery request.
  • the specific operation of the beam failure announcement is not limited in the embodiment of the present invention. For details of the beam recovery request, reference may be made to the prior art.
  • the beam recovery request may be that the access information is transmitted by using the q new corresponding beam according to the access sequence allocated by the node 100 on the random access resource (which may be the node 100 allocated or the predefined random access resource).
  • the beam failure recovery request may be transmitted using the PUCCH resource allocated by the node 100.
  • the UE physical layer determines a beam failure instance in a certain beam detection interval, and reports a beam failure instance to the upper layer of the UE (for example, the MAC layer) according to the reporting period, and the UE upper layer counts the beam failure instance, if, There is still a beam failure instance in a beam detection interval (may be that the next beam detection interval detects that there is a beam failure instance, or the next beam detection interval is not detected, and the state of the previous beam detection interval of the existing beam failure instance is used.
  • the physical layer of the UE reports to the upper layer, and the upper layer counts the number of failed instances of the beam by one.
  • the upper layer announces the beam failure when counting the number N corresponding to the failure of the beam arrival announcement; If there is no beam failure instance in the next beam detection interval, the physical layer of the UE may not report to the upper layer or report the failure of the beam failure instance to the upper layer.
  • the high-level beam failure instance is cleared until the next time there is a beam failure instance. Only count is set to 1.
  • the UE does not distinguish the reporting of the beam failure instance from the physical layer of the UE to the upper layer of the UE, and is not limited to the action of reporting the report, but only counts the failed instance of the beam, and performs beam failure announcement if the condition is met.
  • the beam failure announcement is performed.
  • additional conditions may be set, such as when the number of consecutive instances of the beam failure reaches the N, and whether the beam is performed.
  • the failure announcement also satisfies a preset condition, which may be that the number of times the detection result of the beam detection signal to be detected does not continuously satisfy the predetermined condition reaches a predetermined value, for example, if there are multiple beam detection signals to be detected.
  • the number of consecutive times in which the detection result of the beam detection signal of the shortest period does not satisfy the predetermined condition reaches at least the N times (corresponding to N beam detection intervals), and the detection result of the beam detection signal of the longest period thereof is not
  • the number of consecutive times that the predetermined condition is met is at least once (the one time needs to be in the N beam inspections) The total length of the section occurs).
  • the beam detection interval is a time interval for beam detection, and is not limited to an interval in which a beam detection operation necessarily occurs.
  • the reporting period is not limited to a beam failure instance. The reported action must occur. The report must be reported in the period. The report is reported in the report period.
  • the length of one beam detection interval may be selected to correspond to the length of one beam reporting period (reporting time interval).
  • the reporting period may further include a predetermined time offset.
  • the UE If the UE can perform beam detection, it needs to perform detection in the detection interval for detection, and the UE may not perform beam detection in the next detection interval after detecting in the previous detection interval, then for the next detection interval, The state follows the state of the previous detection interval. For example, if the result of the detection in the first detection interval is a state in which the beam failure instance is determined, then the second detection interval is determined to be a beam without performing the detection action. The status of the failed instance. If the physical layer of the UE needs to perform the indication of the beam failure instance to the upper layer, such as the MAC layer, the beam failure instance is reported to the UE high layer according to the reporting (indication) period. In the above example, the UE is configured for the first/second detection.
  • the reporting of the detected beam failure instance in the interval may be reported on time according to the reporting period, or may be delayed by a certain time offset, regardless of whether there is an offset, but the time interval between consecutive two reporting needs to be greater than or equal to the said The length of the beam detection interval.
  • the upper layer determines that the beam fails.
  • the obtaining the period T and the number N includes at least two modes, where the method may be obtained by the access node by using the signaling interaction with the access node in whole or in part by the UE, for example,
  • the access node obtains the period T, and the number N is a fixed value specified by the standard.
  • the period T and the number N of the access node configuration may also be obtained by the access node.
  • the second way is that the period T and the number N are obtained by the corresponding processing unit of the UE from the storage unit of the UE. This application is not limited to these two methods, and can also be obtained by a third party. It should be noted that, in addition to the above parameters: period T and number N.
  • the UE may also acquire other parameters than the period T and the number of times N, for example, the length of the beam detection interval, the adjustment amount k for length scaling, etc., may be used to determine the length of the beam detection interval. These parameters are obtained in a manner similar to the period T and the number N. See the above description, and details are not described herein again.
  • the detection interval and period involved in the above may be absolute time (for example, milliseconds), and may also be a relative time concept such as a time slot and an OFDM symbol length.
  • the following row control channel PDCCH is taken as an example.
  • the UE if the access node signaling does not display the configuration set. But the UE determines itself according to the downlink control channel TCI indication. At this time, it should be determined by the UE itself. The period corresponding to the detection signal that needs to be measured determines the length of the beam detection interval.
  • the period T of the at least one beam detection signal includes: a period T short of the shortest period beam detection signal of the at least one beam detection signal and/or a period of the longest period of the at least one beam detection signal The period T long of the detection signal; the determining the length of the beam detection interval according to the acquired T and N, comprising: determining according to the T short and/or the T long , and the N, The length of the beam detection interval.
  • the downlink control channel PDCCH and the beam detection signal are RSs.
  • the PDCCH that the UE is required to detect has multiple control resource sets CORESET, and the beam indication of each CORESET corresponds to an effective TCI state, and different CORESET beams.
  • the indications may correspond to the same or different TCI states. If the TCI states are the same, the multiple CORESET beam indications correspond to one TCI state.
  • the multiple CORESET beam indications correspond to multiple TCI states, assuming the UE
  • the beam indications of all CORESETs that need to be detected are associated with M different TCI states, for each TCI state.
  • one or more reference signals have a QCL relationship with the CORESET associated with the TCI state, and in the corresponding period of the reference signals, the shortest period is selected to be placed in the set Q.
  • the number of elements in the set Q should be equal to the number of different TCI states (ie, M) associated with all CORESETs of the PDCCH.
  • the maximum period in the set Q is T long and the shortest period is T short , and T short and/or T long are used as the calculation parameters of the length of the beam detection interval.
  • the following is an example.
  • the determined length of the beam detection interval may be one of the following, but is not limited to the following examples: T long /N, Max ⁇ T short ,T long /N ⁇ , Max ⁇ max ⁇ T short ,T long /N ⁇ ,T' ⁇ ,min ⁇ T long ,T short ⁇ N ⁇ , Where T' is a predetermined duration value, the symbol max ⁇ represents the maximum value, and min ⁇ represents the minimum value, the symbol Indicates rounding up.
  • the value of T' may be a value specified by the standard, or may be configured by the access node for the UE, or may be a value determined according to different subcarrier spacing (SCS), for example, a subcarrier spacing.
  • SCS subcarrier spacing
  • the period is 2 time slots (signal 1), 4 time slots (signal 2), 8 time slots (signal 3), and 16 time slots (signal 4).
  • N is 3, then according to The length of the determined beam detection interval is That is, 6 time slots. Other ways are similar and will not be described here.
  • the period T of the at least one beam detection signal includes: a period T short of the shortest period of the beam detection signal in the at least one beam detection signal, and/or a period with the longest period in the at least one beam detection signal The period T long of the beam detection signal;
  • the determined length of the beam detection interval includes one of the following, but is not limited to the following examples:
  • T' is a predetermined duration value
  • the symbol max ⁇ represents the maximum value
  • min ⁇ represents the minimum value
  • T' may be a one-time value specified by the standard, may be configured by the access node for the UE, or may be a value determined according to different sub-carrier spacing SCS. For the specific description of the length of the beam detection interval, the reference to the above example is omitted here.
  • the shortest period corresponding to the detection signal to be measured is T short , and the maximum period is T long .
  • the UE can assume that T short ⁇ N is greater than or equal to T long ⁇ k. Or, the UE can assume The reference signal period that needs to be measured is the same.
  • a method for beam failure detection in the embodiment of the present application can determine the length of a reasonable beam detection interval by obtaining valid parameters, and implement effective beam failure detection.
  • FIG. 3 is a flow chart of a second embodiment of a method for beam failure detection provided by the present application.
  • the embodiment is explicitly directed to a scenario with an adjustment amount k and a scenario in which the UE acquires parameters for determining the length of the beam detection interval by interacting with the access node.
  • the same or similar content as the first embodiment will not be described in detail in this embodiment.
  • the embodiment is developed on the two sides of the UE and the access node, and the overall description is performed from the perspective of multiple parties, but the improvement in the non-limiting system lies in the steps of the interaction sides. Must be implemented together, the technical solution proposed in this application has improvements on each side of the system.
  • the method includes:
  • the access node generates the adjustment amount information k, where the adjustment amount information is used by the UE to adjust the length of the beam detection interval.
  • the access node configures configuration information related to beam failure detection, such as information about the beam detection signal, to the UE.
  • the information exists in some cases as described in the first embodiment. Collection
  • the information of the period T or the like may also be the number N of consecutive beam failure instances corresponding to the beam failure announcement.
  • the access node in order to control the scaling of the length of the UE beam detection interval, the access node generates the adjustment amount information k and configures the information to the UE.
  • the access node sends the adjustment amount information k to the UE.
  • This embodiment is not limited to transmitting only the adjustment amount signal, and if there is other configuration information, such as the period T or the number N described above, it is also transmitted to the UE.
  • the UE acquires a period T of at least one beam detection signal, a number N of consecutive beam failure instances corresponding to the beam failure announcement, and the adjustment amount information k.
  • the UE determines a length of the beam detection interval according to the obtained T, N, and k.
  • a method for beam failure detection in the embodiment of the present application by configuring an adjustment amount information for a beam detection interval length adjustment by an access node, can determine a reasonable beam detection interval length, and implement effective beam failure detection.
  • Embodiment 4 is a flow chart of another first embodiment of a method for beam failure detection provided by the present application.
  • the difference from Embodiment 1 and/or Embodiment 2 is that the length of the beam detection interval is determined not to be based on the period T of the beam detection signal, but based on the detection period Tc of the control resource set, and T is replaced by Tc.
  • the same or similar content as the first embodiment and/or the second embodiment will not be described in detail in this embodiment.
  • the method is applied to the UE side, including:
  • beam failure detection is performed by beam detection of the downlink control signal PDCCH.
  • the PDCCH corresponds to a control resource set CORESET, and each PDCCH has its own period, that is, a detection period corresponding to CORESET.
  • each CORESET also has a time offset. Through the configuration of the access node, the UE can know the detection period of the CORESET.
  • the obtaining step is not limited to the manner in which the UE interacts with the access node through the air interface signaling interaction, and the manner in which the UE obtains the data in the stored data.
  • the obtaining step is not limited to the manner in which the UE interacts with the access node through the air interface signaling interaction, and the manner in which the UE obtains the data in the stored data.
  • the Tc may include: a shortest detection period T short of the detection period of the at least one CORESET and/or a longest detection period T long of the detection period of the at least one CORESET; according to the obtained Tc and N, determining the length of the beam detection interval, comprising: determining a length of the beam detection interval according to the T short and/or the T long , and the N.
  • the determined length of the beam detection interval may be one of the following, but is not limited to the following examples: T long /N, Max ⁇ T short ,T long /N ⁇ , Max ⁇ max ⁇ T short ,T long /N ⁇ ,T' ⁇ ,min ⁇ T long ,T short ⁇ N ⁇ , Where T' is a predetermined duration value, the symbol max ⁇ represents the maximum value, and min ⁇ represents the minimum value, the symbol Indicates rounding up.
  • the value of T' may be a value specified by the standard, or may be configured by the access node for the UE, or may be a value determined according to different subcarrier spacing (SCS), for example, a subcarrier spacing.
  • SCS subcarrier spacing
  • the periods are 4 time slots (CORESET#1), 8 time slots (CORESET#2), and 16 time slots (CORESET#3), and N. 3, then according to The length of the determined beam detection interval is That is, 6 time slots. Other ways are similar and will not be described here.
  • the Tc may include: a shortest detection period T short of the detection period of the at least one CORESET and/or a longest detection period T long of the detection period of the at least one CORESET;
  • the determined length of the beam detection interval includes one of the following, but is not limited to the following examples: k ⁇ T long /N,
  • T' is a predetermined duration value
  • the symbol max ⁇ represents the maximum value
  • min ⁇ represents the minimum value
  • T' may be a one-time value specified by the standard, may be configured by the access node for the UE, or may be a value determined according to different sub-carrier spacing SCS. For the specific description of the length of the beam detection interval, the reference to the above example is omitted here.
  • a method for beam failure detection in the embodiment of the present application can determine a reasonable length of a beam detection interval by considering a CORESET detection period, and implement effective beam failure detection.
  • FIG. 5 is a flowchart of another first embodiment of a method for beam failure detection provided by the present application.
  • the difference from the first embodiment, the second embodiment, and/or the third embodiment is that the length of the beam detection interval is not determined based on the number N of consecutive beam failure instances corresponding to the beam failure announcement.
  • the same or similar content as the first embodiment, the second embodiment, and/or the third embodiment will not be described again in this embodiment.
  • the method is applied to the UE side, including:
  • the Tf may include at least one of the following: the period T of the beam detection signal in the first embodiment and the second embodiment, and the detection period Tc of the CORESET in the third embodiment, which are determined according to different subcarrier spacings SCS.
  • the UE may also acquire related parameters, such as an adjustment amount k, for scaling the length of the beam detection interval.
  • the determined length of the beam detection interval may include Ts, max ⁇ Ts, T' ⁇ , min ⁇ Ts, T' ⁇ , max ⁇ k ⁇ Ts, T' ⁇ Or min ⁇ k ⁇ Ts, T' ⁇ , where T' is a fixed value, which can be preset, as specified by the base station configuration or standard.
  • the length of the determined beam detection interval may include T short , T long , and k ⁇ T short in T as described in Embodiment 1/Embodiment 2 (if required) Get k), k ⁇ T long (if k is needed), max ⁇ T long , T' ⁇ , max ⁇ k ⁇ T long , T' ⁇ , min ⁇ T long , T' ⁇ or min ⁇ k ⁇ T long , T' ⁇ (if k is required), where T' is a fixed value, which can be preset, as specified by the base station configuration or standard, or corresponding to the subcarrier spacing SCS.
  • the length of the determined beam detection interval may include T short , T long , k ⁇ T short (if k needs to be obtained) in the Tc as described in the third embodiment, k ⁇ T long (if k is to be obtained), max ⁇ T long , T' ⁇ , max ⁇ k ⁇ T long , T′ ⁇ (if k is to be obtained), min ⁇ T long , T′ ⁇ or min ⁇ k ⁇ T long , T' ⁇ (if k is required), where T' is a fixed value, which can be preset, as specified by the base station configuration or standard, or corresponding to the subcarrier spacing SCS.
  • the determined length of the beam detection interval may include max ⁇ T long , Ts ⁇ , max ⁇ k ⁇ T long , Ts ⁇ (if k is to be acquired), min ⁇ T Long , Ts ⁇ , min ⁇ k ⁇ T long , Ts ⁇ (if k is required), max ⁇ T long , Ts, T' ⁇ , max ⁇ k ⁇ T long , Ts, T' ⁇ (if k is required) , min ⁇ T long , Ts, T' ⁇ or min ⁇ k ⁇ T long , Ts, T′ ⁇ (if k is to be obtained), wherein when Tf includes T, T long corresponds to the period T of the beam detection signal, at Tf When Tc is included, T long corresponds to the CORESET detection period Tc, and T' is a fixed value, which can be preset. If it is specified by the base station configuration or standard, it can also correspond to the subcarrier spacing SCS.
  • a method for beam failure detection in the embodiment of the present application can determine a reasonable length of a beam detection interval by considering the correlation time information Tf for beam detection, and implement effective beam failure detection.
  • FIG. 6 is a flowchart of the first embodiment of the beam monitoring method provided by the present application.
  • the difference from Embodiment 1 to Embodiment 4 is that the angle of the partial beam failure detection flow in this embodiment is described.
  • the schemes for determining the length of the beam detection interval before the beam failure detection described in the first embodiment to the fourth embodiment can be used in the present embodiment. The same or similar content as the first embodiment to the fourth embodiment will not be described in detail in this embodiment.
  • the method is applied to the UE side, including:
  • the beam mismatch interval refers to a time period in which the length of time is P, and during which the inactive beam is in an abnormal state, wherein the in-use beam is used to transmit the beam detection signal. Beam.
  • the time period is a beam mismatch interval.
  • the beam mismatch interval that is, the beam corresponding to the presence of the beam failure instance, in which the detection result of each beam detection signal in the at least one beam detection signal does not satisfy the predetermined condition.
  • the detection interval which is the length of the interval determined in the above embodiments. In order to facilitate the distinction, in the present embodiment, the beam mismatch interval is expressed.
  • the embodiment of the present invention does not limit the starting time of the foregoing time period.
  • the starting time of the foregoing time period may be set according to specific needs.
  • the start time of the foregoing time period may be set as the transmission time of the reference signal carried by the reference signal resource corresponding to one or more beams in the beam set.
  • the start time of the foregoing time period may not be set, but only the time period in which the time length is P is detected, and in the time period, each of the used beams in the beam set is in an abnormal state as a condition. Beam mismatch interval.
  • the beam may be embodied as, for example but not limited to, a spatial domain transmission filter.
  • the beam may be specifically characterized by, for example, but not limited to, a reference signal resource corresponding to the beam.
  • a next-generation wireless communication system a New Radio (NR) system
  • NR New Radio
  • CSI-RS Channel State Information Reference Signal
  • CSI-RS Resource Resource
  • the CSI-RS resource corresponding to the beam may be indicated by a CSI (CSI-RS Resource Indicator), and the beam quality may be embodied as a Reference Signal Received Power (RSRP).
  • the NR system may further use the SSB resource to characterize the beam, and determine the beam quality based on the SSB resource corresponding to the beam, and the SSB resource corresponding to the beam may be indicated by an SSB index.
  • reference signal resources may be used to represent the beam according to specific needs, and the reference signal resources are indicated by other indications, and the other parameters are used to characterize the beam quality, which is not limited by the embodiment of the present invention.
  • the in-use beam set includes at least one in-service beam
  • the length of the beam mismatch interval is based on a period T of the beam detection signal resource corresponding to the at least one in-use beam
  • the preset number threshold N definite
  • the preset number threshold N is the N described in the first embodiment to the fourth embodiment
  • the period T of the beam detection signal resource is the period T of the beam detection signal described in the first embodiment/second embodiment; the limitation of the beam detection signal may be referred to the description of the first or second embodiment, and may include a reference.
  • the signal may specifically be a CSI-RS. However, the application is not limited to this.
  • the period T of the beam detection signal resource in step S502 may be replaced by the detection period Tc of the CORESET described in the third embodiment, and may also be replaced with the correlation time Tf described in the fourth embodiment.
  • an additional condition may also be set. For example, when the number of consecutive beam mismatch intervals is reached to reach the N, whether a beam failure announcement is performed or not, a preset condition may be met, and the preset condition may be The number of times the detection result of the beam detection signal does not satisfy the predetermined condition continuously reaches a predetermined value. For example, if there are multiple beam detection signals to be detected, the number of consecutive detections of the detection result of the beam detection signal of the shortest period does not satisfy the predetermined condition. At least the N times are reached, and the number of consecutive times that the detection result of the beam detection signal of the longest period does not satisfy the predetermined condition is at least once.
  • the use of the beam in an abnormal state can be used to indicate, for example, but not limited to, that the in-use beam is not available, or that the in-use beam is not available, wherein the available beam is available through the in-use
  • the beam is communicated and transmitted. If the beam is not available, the communication cannot be transmitted through the in-use beam. It is impossible to determine whether the in-use beam is available. It means that it is impossible to determine whether the communication can be performed by the in-use beam. For example, when the user equipment is in a mobile state, it may occur that the used beam is no longer pointing to the user equipment, or it is impossible to determine whether the in-use beam still points to the user equipment. In this case, the in-use beam is abnormal. status.
  • the in-use beam is in an abnormal state.
  • the reference signal resource period corresponding to the used beam is too long, causing the in-use beam quality detection period to be too long, the previously measured in-use beam quality may be expired, and thus the situation in which the beam quality cannot be determined may occur.
  • the beam in use is in an abnormal state.
  • the determination condition that the beam is in an abnormal state includes at least one of the following: there is no reference signal resource corresponding to the in-use beam in the beam mismatch interval; The reference beam resource corresponding to the in-use beam is present in the beam mismatch interval but the beam is not detected based on the reference signal resource; in the beam mismatch interval, based on the in-use The beam quality obtained by performing beam quality detection on the in-use beam by the reference signal resource corresponding to the beam is lower than a preset quality threshold.
  • any condition that can be used to determine the occurrence of the above situation can be used as a determination condition that the in-use beam is in an abnormal state.
  • the determination conditions of the present invention in which the beam is in an abnormal state are for example only, and are not exhaustive of all the determination conditions, and thus are not intended to limit the scope of the embodiments of the present invention.
  • the determination condition that the in-use beam is in an abnormal state may be set according to specific needs.
  • the beam 1 if the signal 1 is transmitted through the beam 1, the signal 2 is transmitted through the beam 2, and if the detection result of the signal 1 does not satisfy the predetermined condition, the beam 1 is in an abnormal state, if If the detection result of the signal 2 does not satisfy the predetermined condition, the beam 2 is in an abnormal state.
  • an in-use beam that can be used for communication transmission can be referred to by the set of beams used, where the in-use beam set typically includes at least one in-use beam.
  • the beam failure announcement may be embodied by, for example, but not limited to, transmitting a beam recovery request.
  • the specific operation of the beam failure announcement is not limited in the embodiment of the present invention.
  • the beam recovery request For details of the beam recovery request, reference may be made to the prior art. For example, for example, but not limited to, turning on a beam failure recovery timer, selecting an available candidate beam set according to the candidate beam threshold and reporting the corresponding L1-RSRP measurement result, determining the candidate beam q new and its algorithm according to an algorithm Corresponding RACH resources and transmit beam recovery requests.
  • the specific operation of the beam failure announcement is not limited in the embodiment of the present invention.
  • the beam recovery request may be that the access information is transmitted by using the q new corresponding beam according to the access sequence allocated by the node 100 on the random access resource (which may be the node 100 allocated or the predefined random access resource).
  • the beam failure recovery request may be transmitted using the PUCCH resource allocated by the node 100.
  • the length of the beam mismatch interval includes one of the following, but is not limited to the following examples:
  • T' is a predetermined duration value
  • the symbol max ⁇ represents the maximum value
  • min ⁇ represents the minimum value
  • the value of T' may be a value specified by the standard, or may be configured by the access node for the UE, or may be a value determined according to different subcarrier spacing (SCS), for example, a subcarrier spacing.
  • SCS subcarrier spacing
  • T short and T long refer to the foregoing embodiment, and details are not described herein again.
  • the length of the beam mismatch interval includes one of the following, but is not limited to the following examples:
  • T' is a predetermined duration value
  • the symbol max ⁇ represents the maximum value
  • min ⁇ represents the minimum value
  • T' may be a one-time value specified by the standard, may be configured by the access node for the UE, or may be a value determined according to different sub-carrier spacing SCS.
  • the reference to the above example is omitted here.
  • T short and T long refer to the foregoing embodiment, and details are not described herein again.
  • a beam monitoring method of an embodiment of the present application achieves effective beam monitoring by a reasonable length of a beam mismatch interval.
  • the start time of the detection interval/beam failure instance reporting period (if the solution involving the beam failure instance is reported) is not limited in the foregoing embodiment, and may be implemented according to the specific implementation process. Specific needs, to set the starting time.
  • the starting moment can be set to the transmitting moment of the beam detecting signal carried by the beam detecting signal resource.
  • the time slot in which the high layer signaling (such as RRC) takes effect may be used as the starting time, or may be in the time slot agreed by the current time slot delaying protocol, or several time slots agreed by the protocol.
  • the length of time can be related to the subcarrier spacing SCS.
  • the embodiments of the present application may divide the function modules of the UE and the access node according to the foregoing method.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner. The following is an example of dividing each functional module by using corresponding functions.
  • the embodiment of the present application further provides a terminal device.
  • the terminal device can be used to perform the steps performed by the UE in any of Figures 2-6.
  • Figure 7 shows a simplified schematic diagram of the structure of a terminal device.
  • the terminal device uses a mobile phone as an example.
  • the terminal device 70 includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used for processing communication protocols and communication data, and controlling the terminal device 70, executing software programs, processing data of software programs, and the like.
  • Memory is primarily used to store software programs and data.
  • the RF circuit is mainly used for the conversion of the baseband signal and the RF signal and the processing of the RF signal.
  • the antenna is mainly used to transmit and receive RF signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are primarily used to receive user input data and output data to the user. It should be noted that some types of terminal devices 70 may not have input and output devices.
  • the memory and the processor may be integrated or independently provided; in addition, the RF circuit and the processor may be integrated or independently.
  • the processor When the data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • only one memory and processor are shown in FIG. In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or a storage device or the like.
  • the memory may be independent of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • the antenna and the radio frequency circuit having the transceiving function can be regarded as the transceiving unit of the terminal device 70
  • the processor having the processing function can be regarded as the processing unit of the terminal device 70.
  • the terminal device 70 includes a transceiver unit 701 and a processing unit 702.
  • the transceiver unit may also be referred to as a transceiver (including a transmitter and/or receiver), a transceiver, a transceiver, a transceiver circuit, and the like.
  • the processing unit may also be referred to as a processor, a processing board, a processing module, a processing device, and the like.
  • the device for implementing the receiving function in the transceiver unit 701 can be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 701 is regarded as a sending unit, that is, the transceiver unit 701 includes a receiving unit and a sending unit.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may also be referred to as a receiver, a receiver, or a receiving circuit or the like.
  • the transmitting unit may also be referred to as a transmitter, a transmitter, or a transmitting circuit, and the like.
  • the transceiving unit 701 and the processing unit 702 may be integrated or independently.
  • all the functions in the processing unit 702 can be implemented in one chip, or can be partially integrated in one chip, and the other functions are integrated in one or more other chips, which is not limited in this application.
  • the term "unit” as used herein may refer to an application specific integrated circuit (ASIC), electronic circuit, (shared, dedicated or group) processor and memory, combinational logic circuit, and/or provided to execute one or more software or firmware programs. Other suitable components of the function.
  • ASIC application specific integrated circuit
  • the transceiving unit 701 can be used to perform S101 of FIG. 2, and/or other steps in the present application.
  • Processing unit 702 can be used to perform S101 and/or S102 of FIG. 2, and/or other steps in the application.
  • the transceiving unit 701 is configured to perform S203 of FIG. 3, and/or other steps in the present application.
  • Processing unit 702 is operative to perform S203 and/or S204 of FIG. 3, and/or other steps in the application.
  • the transceiving unit 701 can be configured to perform S301 of FIG. 4, and/or other steps in the present application.
  • Processing unit 702 can be used to perform S301 and/or S302 of FIG. 4, and/or other steps in the application.
  • the transceiving unit 701 can be configured to perform S401 of FIG. 5, and/or other steps in the present application.
  • Processing unit 702 can be used to perform S401 and/or S402 of Figure 5, and/or other steps in the application.
  • the transceiving unit 701 can be used to communicate with the access node, and/or other steps in the application.
  • Processing unit 702 can be used to perform S501 and/or S502 of Figure 6, and/or other steps in the application.
  • the embodiment of the present application further provides a network device.
  • the network device can serve as an access node or a transmission receiving point for performing the steps performed by the access node if there is a scenario of interaction with the access node in any of the Figures 2-6.
  • Figure 8 shows a simplified schematic diagram of the structure of a network device.
  • Network device 80 includes a 801 portion and an 802 portion.
  • the 801 part is mainly used for transmitting and receiving RF signals and converting RF signals and baseband signals; the 802 part is mainly used for baseband processing, and controls the network device 80.
  • Section 801 can be generally referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver.
  • the 802 portion is generally a control center of the network device 80, and may be generally referred to as a processing unit, a control unit, a processor, or a controller, etc., for controlling the network device 80 to perform the measurement function entity on the access side in the above related embodiments, Or the step performed by the access node/transmission receiving point of the measurement function entity of the access side.
  • a processing unit for controlling the network device 80 to perform the measurement function entity on the access side in the above related embodiments, Or the step performed by the access node/transmission receiving point of the measurement function entity of the access side.
  • the transceiver unit of the 801 part which may also be called a transceiver, or a transceiver, etc., includes an antenna and a radio frequency unit, wherein the radio frequency unit is mainly used for radio frequency processing.
  • the device for implementing the receiving function in the 801 part may be regarded as a receiving unit
  • the device for implementing the transmitting function may be regarded as a transmitting unit, that is, the 801 portion includes a receiving unit and a transmitting unit.
  • the receiving unit may also be referred to as a receiver, a receiver, or a receiving circuit, etc.
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit or the like.
  • the 802 portion may include one or more boards, each of which may include one or more processors and one or more memories for reading and executing programs in the memory to implement baseband processing functions and to network devices 80 control. If multiple boards exist, the boards can be interconnected to increase processing power. As an optional implementation manner, multiple boards share one or more processors, or multiple boards share one or more memories, or multiple boards share one or more processes at the same time.
  • the memory and the processor may be integrated or independently.
  • the 801 portion and the 802 portion may be integrated or may be independently arranged.
  • all the functions in the 802 part can be implemented in one chip, and some functions can be integrated in one chip, and another part of the functions are integrated in one or more other chips, which is not limited in this application.
  • the transceiver unit may be configured to perform the step of transmitting, by the access node corresponding to S101 of FIG. 2, the acquired information, and/or the present application. Other steps in .
  • the processing unit may be configured to perform a step of generating corresponding information when the corresponding information acquired by the UE in S101 of FIG. 2 is sent by the access node, and/or other steps in the application.
  • the transceiver unit is operative to perform S202 of FIG. 3, and/or other steps in the application.
  • the processing unit is operative to perform S201 of Figure 3, and/or other steps in the application.
  • the transceiver unit may be configured to perform the step of the access node corresponding to S301 of FIG. 4 transmitting the acquired information to the UE, and/or the present application. Other steps in .
  • the processing unit may be configured to perform a step of generating corresponding information when the corresponding information acquired by the UE in S301 of FIG. 4 is sent by the access node, and/or other steps in the application.
  • the transceiver unit may be configured to perform the step of the access node corresponding to S401 of FIG. 5 transmitting the acquired information to the UE, and/or the present application. Other steps in .
  • the processing unit may be configured to perform a step of generating corresponding information when the corresponding information acquired by the UE in S401 of FIG. 5 is sent by the access node, and/or other steps in the application.
  • the device on the terminal side provided above may be a terminal device or a chip or a function module in the terminal device, and the foregoing method may be implemented by using software, hardware, or hardware to execute corresponding software.
  • the network-side device may be an access node device, for example, may be an access node device, or may be a chip or a function module in the access node device, and may pass software, hardware, or The hardware executes the corresponding software to implement the above method.
  • the present application further provides a system for beam failure detection, including the UE in the foregoing embodiment (which may also be a UE-side device that implements the foregoing UE function), and an access node (which may also be implemented to implement the foregoing access node function). Access side device or transmission receiving point).
  • the application also provides a computer program product that, when run on a computer, causes the computer to perform any of the methods provided above.
  • the present application also provides a chip in which instructions are stored, which, when run on each of the above-described devices, cause each device to perform the method provided above.
  • the application also provides a computer storage medium having stored thereon a computer program (instructions) that, when executed on a computer, cause the computer to perform the method of any of the above aspects.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server or data center via wired (eg coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device that includes one or more servers, data centers, etc. that can be integrated with the media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)) or the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium such as a solid state disk (SSD)
  • NR New Radio
  • a person skilled in the art can incorporate the proposal solution into the above embodiment to implement the related technical solution.
  • Introducing a beam failure instance indication in the NR which allows the UE physical layer to provide periodic indications to higher layers for beam failure instances.
  • the instructions need further clarification.
  • Beam failure instance indication is introduced to NR, which allows UE PHY layer to provide periodic indications to higher layer on the beam failure instance.
  • some further clarifications are needed on this indication scheme.
  • a suitable indication interval must ensure that all PDCCH beams are evaluated, ie the set of PDCCH BLER evaluations assumed by the UE before the beam failure announcement BFD RS in.
  • the UE should consider the longest periodicity and NrOfBeamFailureInstance to derive the beam failure instance indication interval. (A proper indication interval has to guarantee the evaluation of all PDCCH beams, ie, BFD RSs in the set That UE assesses in terms of hypothetical PDCCH BLER before beam failure declaration.
  • UE should consider the longest periodicity and NrOfBeamFailureInstance to derive the beam failure instance indication interval.
  • Recommendation x Support the UE to determine the appropriate beam failure instance indication interval to ensure that all evaluated BFD RSs are evaluated based on the longest periodicity and NrOfBeamFailureInstance.
  • Proposal x Support UE to determine a proper beam failure instance indication interval to guarantee the evaluation of all assessed BFD RSs based on the longest periodicity and NrOfBeamFailureInstance.
  • the appropriate indication interval (ie corresponding to the length of the beam detection interval in the above) must ensure that all PDCCH beams are evaluated, that is, the beam failure detection reference in the set of the PDCCH BLER evaluation according to the hypothetical PDCCH BLER before the UE fails to declare the beam.
  • Signal Beam Failure Detection RS, BFD RS for short.
  • the UE should consider the longest periodicity and the NrOfBeamFailureInstance (ie, the number N of consecutive beam failure instances corresponding to the beam failure announcement described above) to derive the beam failure instance indication interval.
  • the preferred solution in the proposal is to support the UE to determine an appropriate beam failure instance indication interval to ensure that all evaluated BFD RSs are evaluated according to the longest periodicity and NrOfBeamFailureInstance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请实施例公开了一种波束失败检测的方法、装置及系统。其中,终端设备通过获取至少一个波束检测信号的周期和波束失败宣告对应的连续的波束失败实例的个数,根据获取的所述至少一个波束检测信号的周期和所述连续的波束失败实例的个数,确定波束检测区间的长度。其中,所述波束检测信号通过波束发送,一个所述波束失败实例为在至少一个所述波束检测区间内对所述至少一个波束检测信号中各波束检测信号的检测结果未满足预定条件。通过波束检测区间长度的确定,可以在检测区间内进行波束失败检测,进而在满足条件时进行波束失败宣告,进入波束恢复流程。该技术方案通过合理的波束检测区间长度的确定方式,能够实现有效的波束失败检测。

Description

一种用于波束失败检测的方法、装置及系统
本申请要求于2018年2月13日提交中国国家知识产权局、申请号为201810150836.8、发明名称为“一种用于波束失败检测的方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及通信系统中的基于波束通信的技术。
背景技术
在移动通信系统中使用波束进行传输,即通过在空间上朝向特定的方向发送信号,可以实现更高的天线阵列增益。波束可以通过波束成型(Beamforming)等技术手段实现。例如在高频(high frequency,HF)通信中的一个重要的方向就是模拟加数字混合波束成型(hybrid Beamforming),这样既可以很好的对抗高频信号由于传输距离导致的损耗又可以把复杂度和硬件成本控制在可接受的范围内。
在基于波束的通信系统中,为了获得波束增益,发射端会将信号朝特定方向集中发射,而接收端会调整接收波束模式,尽量获取更多的信号能量。然而,随着由于移动、遮挡或信道干扰环境改变,正在通信的一对收发波束的通信质量可能下降,甚至无法正常通信。为了解决由于波束通信质量下降造成的波束失败,用户设备(User Equipment,简称UE)需要对波束进行检测,当UE物理层在一个波束检测区间(可以对应一个上报周期)内确定被检测的波束不满足预定条件,产生波束失败实例,则将按照上报周期上报给UE的高层。当被检测的波束持续不满足预定条件(即,波束失败实例持续产生)时,UE即可确认波束失败发生,并进入波束恢复流程,波束恢复流程包括新波束的识别、波束失败恢复请求和波束失败应答接收等步骤。
针对波束失败检测,为进行有效的波束失败检测,需考虑波束检测区间(可以对应一个上报周期)长度设置的恰当性,如果波束检测区间长度设置过长,则在持续波束失败实例产生进而确认波束失败发生需要的时间就会过长,导致及时进行波束恢复的有效性受到影响,且过长的时间缺乏灵活性;而如果波束检测区间长度设置过短,则确认波束失败发生可能有误判。因此,亟需提出一种确定合理的波束检测区间(可以对应一个上报周期)长度的方案。
发明内容
本申请提供一种用于波束失败检测的方法、装置及系统,用以通过有效确定合理的波束检测区间(可以对应一个上报周期)长度的方案,使得能有效进行波束失败检测。
第一方面,提供一种用于波束失败检测的方法和装置。
在一种可能的设计中,该方法应用于终端设备上,通过获取有效的参数,用以确定合理的波束检测区间的长度,实现有效的波束失败检测。该方法包括获取至少一个波束检测信号的周期T和波束失败宣告对应的连续的波束失败实例的个数N;其中,所述波束检测信号通过波束发送,一个所述波束失败实例为在至少一个波束检测区间内对所述至少一个波束检测信号中各波束检测信号的检测结果未满足预定条件;根据获取的所述T和N,确定所述波束检测区间的长度。
该设计通过获取有效的参数,能够确定合理的波束检测区间的长度,实现有效的波束失败检测。
在一种可能的设计中,所述至少一个波束检测信号的周期T和/或波束失败宣告对应的连续的波束失败实例的个数N从接入节点接收获得。
在一种可能的设计中,所述至少一个波束检测信号的周期T和/或波束失败宣告对应的连续的波束失败实例的个数N从存储装置读取获得。
在一种可能的设计中,所述至少一个波束检测信号是波束检测信号集合
Figure PCTCN2019074068-appb-000001
中的波束检测信号,该集合可以由接入节点通过高层信令(RRC)为UE配置用于波束失败检测。可选的,确定
Figure PCTCN2019074068-appb-000002
中进行波束失败检测时需要测量的波束检测信号的一种方式为:对
Figure PCTCN2019074068-appb-000003
中与PDCCH的DMRS满足空间准同位关系的波束检测信号;另一种方式为:
Figure PCTCN2019074068-appb-000004
中的全部波束检测信号。
在一种可能的设计中,所述集合
Figure PCTCN2019074068-appb-000005
由终端设备根据下行物理信道的相关指示自行确定,以包括与该信道具有空间QCL关系的波束检测信号形成所述集合。
在一种可能的设计中,在集合
Figure PCTCN2019074068-appb-000006
里需要测量的检测信号所对应的最短周期为T short,最大周期为T long,则UE可以假设T short×N大于等于T long×k恒成立。或者,UE可以假设
Figure PCTCN2019074068-appb-000007
里需要测量的参考信号周期是一样的。
在一种可能的设计中,波束与所述波束检测信号一一对应,通过波束发送对应的波束检测信号;可选的,一个所述波束检测信号通过多个波束发送;可选的,通过一个波束发送多个所述波束检测信号。所述波束检测信号包括但不限于:参考信号RS、同步信号块、用于评估波束质量的信号。
在一种可能的设计中,所述至少一个波束检测信号的周期T,包括:所述至少一个波束检测信号中周期最短的波束检测信号的周期T short和/或所述至少一个波束检测信号中周期最长的波束检测信号的周期T long;所述根据获取的所述T和N,确定所述波束检测区间的长度,包括:根据所述T short和/或所述T long,以及所述N,确定所述波束检测区间的长度。
在一种可能的设计中,确定的所述波束检测区间的长度包括以下之一:
Figure PCTCN2019074068-appb-000008
Figure PCTCN2019074068-appb-000009
Figure PCTCN2019074068-appb-000010
max{T short,T long/N}、
Figure PCTCN2019074068-appb-000011
max{max{T short,T long/N},T’}、min{T long,T short×N}、
Figure PCTCN2019074068-appb-000012
其中,T’为预定的时长值,符号max{}表示取最大值,min{}表示取最小值,符号
Figure PCTCN2019074068-appb-000013
表示向上取整。T’可以是由标准规定的一时长值,也可以由接入节点为终端设备配置,还可以是根据不同的子载波间隔确定的值。
在一种可能的设计中,所述方法还包括:获取调节量k;所述根据获取的所述T和N,确定所述波束检测区间的长度,包括:根据所述T、N和k,确定所述波束检测区间的长度。
在一种可能的设计中,所述至少一个波束检测信号的周期T,包括:所述至少一个波束检测信号中周期最短的波束检测信号的周期T short和/或所述至少一个波束检测信号中周期最长的波束检测信号的周期T long;确定的所述波束检测区间的长度包括以下之一:
Figure PCTCN2019074068-appb-000014
Figure PCTCN2019074068-appb-000015
max{T short,k×T long/N}、
Figure PCTCN2019074068-appb-000016
Figure PCTCN2019074068-appb-000017
max{max{T short,k×T long/N},T’}、min{T long,T short×N×k}、
Figure PCTCN2019074068-appb-000018
Figure PCTCN2019074068-appb-000019
其中,T’为预定的时长值,符号max{}表示取最大值,min{}表示取最小值,符号
Figure PCTCN2019074068-appb-000020
表示向上取整。T’可以是由标准规定的一时长值,也可以由接入节点为终端设备配置,还可以是根据不同的子载波间隔确定的值。
在一种可能的设计中,所述波束检测针对传输下行控制信道PDCCH的波束的检测。可选的,若所述PDCCH对应至少一个控制资源集CORESET,每个CORESET的波束指示对应一个生效的TCI状态,不同CORESET的波束指示对应相同或不同的TCI状态,对于每种TCI状态,需要测量的波束检测信号中有一个或多个波束检测信号与该TCI状态关联的CORESET存在QCL关系上述可能的设计中,T short和/或T long从各CORESET对应的至少一个波束检测信号中周期最短的波束检测信号的周期所形成的集合Q中确定,所述对应包括QCL关系的对应。
上述各种可能的设计,皆是保证确定合理的波束检测区间长度,实现有效的波束检测。
相应的,提供一种用于波束失败检测的装置,该装置可以实现第一方面中的对应的方法。例如,该装置以功能形式限定,可以是终端侧的实体,其具体实现形式可以是终端设备,例如:可以为终端设备,也可以为终端设备中的芯片或功能模块,可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的设计中,该装置可以包括处理器和存储器。该处理器被配置为支持该装置执行上述第一方面方法中相应的功能。存储器用于与处理器耦合,其保存该装置必要的程序(指令)和数据。另外该装置还可以包括通信接口,用于支持该装置与其他网元之间的通信。该通信接口可以是收发器。
在一种可能的设计中,该装置可以包括收发单元,其中,收发单元,用于与网络设备通信。该装置还可以包括处理单元,该处理单元用于获取所述周期T和个数N(可选的还有k),确定所述波束检测区间的长度。
第二方面,提供一种用于波束失败检测的方法和装置。
在一种可能的设计中,该方法应用于网络设备上,如接入节点、网络侧具备接入节点部分功能的传输接收点。通过网络设备向终端设备发送用于波束失败检测的配置信息,实现终端设备的波束失败检测。该方法包括生成调节量信息,所述调节量信息用于终端设备调节波束检测区间的长度;向终端设备发送所述调节量信息。
在该设计中,通过接入节点配置用于波束检测区间长度调节的调节量信息,能够确定合理的波束检测区间的长度,实现有效的波束失败检测。
在一种可能的设计中,所述方法还包括生成至少一个波束检测信号的周期信息T和/或波束失败宣告对应的连续的波束失败实例的个数信息N,向终端设备发送所述T和/或N。
进一步在一种可能的设计中,所述至少一个波束检测信号的周期T,包括:所述至少一个波束检测信号中周期最短的波束检测信号的周期T short和/或所述至少一个波束检测信号中周期最长的波束检测信号的周期T long;终端确定的所述波束检测区间的长度包括以下之一:
Figure PCTCN2019074068-appb-000021
Figure PCTCN2019074068-appb-000022
max{T short,k×T long/N}、
Figure PCTCN2019074068-appb-000023
max{max{T short,k×T long/N},T’}、min{T long,T short×N×k}、
Figure PCTCN2019074068-appb-000024
其中,T’为预定的时长值,符 号max{}表示取最大值,min{}表示取最小值,符号
Figure PCTCN2019074068-appb-000025
表示向上取整。T’可以是由标准规定的一时长值,也可以由接入节点为终端设备配置,还可以是根据不同的子载波间隔确定的值。
在一种可能的设计中,所述方法还包括:向终端设备配置波束检测信号集合
Figure PCTCN2019074068-appb-000026
所述至少一个波束检测信号是波束检测信号集合
Figure PCTCN2019074068-appb-000027
中的波束检测信号,可选的,该集合可以由接入节点通过高层信令(如,RRC)为UE配置。
在一种可能的设计中,在集合
Figure PCTCN2019074068-appb-000028
里需要测量的检测信号所对应的最短周期为T short,最大周期为T long,则UE可以假设T short×N大于等于T long×k恒成立。或者,UE可以假设
Figure PCTCN2019074068-appb-000029
里需要测量的参考信号周期是一样的。
在一种可能的设计中,所述方法还包括:向终端设备发送波束检测信号;可选的,波束与所述波束检测信号一一对应,通过波束发送对应的波束检测信号;可选的,一个所述波束检测信号通过多个波束发送;可选的,通过一个波束发送多个所述波束检测信号。所述波束检测信号包括但不限于:参考信号RS、同步信号块、用于评估波束质量的信号。
相应的,提供一种用于波束失败检测的装置,该装置可以实现第二方面中的对应的方法。例如,该装置以功能形式限定,可以是接入侧的实体,其具体实现形式可以是接入节点设备,例如:可以为接入节点设备,也可以为接入节点设备中的芯片或功能模块,可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的设计中,该装置可以包括处理器和存储器。该处理器被配置为支持该装置执行上述第二方面方法中相应的功能。存储器用于与处理器耦合,其保存该装置必要的程序(指令)和数据。另外该装置还可以包括通信接口,用于支持该装置与其他网元之间的通信。该通信接口可以是收发器。
在一种可能的设计中,该装置可以包括收发单元,其中,收发单元,用于向终端设备发送的用于所述波束失败检测的相关信息。该装置还可以包括处理单元,该处理单元用于生成用于所述波束失败检测的相关信。
第三方面,提供一种用于波束失败检测的方法和装置。
在一种可能的设计中,该方法应用于终端设备上,通过对CORESET检测周期的考虑,能够确定合理的波束检测区间的长度,实现有效的波束失败检测。该方法包括获取用于波束检测的至少一个控制资源集CORESET的检测周期Tc和波束失败宣告对应的连续的波束失败实例的个数N;根据获取的所述Tc和N,确定波束检测区间的长度。
该设计中,通过获取用于波束检测的至少一个控制资源集CORESET的检测周期Tc和波束失败宣告对应的连续的波束失败实例的个数N,确定合理的波束检测区间的长度,实现有效的波束失败检测。
在一种可能的设计中,所述周期Tc和/或所述个数N从接入节点接收获得。
在一种可能的设计中,所述周期Tc和/或所述个数N从存储装置读取获得。
在一种可能的设计中,所述Tc包括:所述至少一个CORESET的检测周期中最短的检测周期T short和/或所述至少一个CORESET的检测周期中最长的检测周期T long;根据获取的所述Tc和N,确定所述波束检测区间的长度,包括:根据所述T short和/或所述T long,以及所述N,确定所述波束检测区间的长度。
进一步在一种可能的设计中,确定的所述波束检测区间的长度包括以下之一:
Figure PCTCN2019074068-appb-000030
Figure PCTCN2019074068-appb-000031
Figure PCTCN2019074068-appb-000032
max{T short,T long/N}、
Figure PCTCN2019074068-appb-000033
max{max{T short,T long/N},T’}、min{T long,T short×N}、
Figure PCTCN2019074068-appb-000034
其中,T’为预定的时长值,符号max{}表示取最大值,min{}表示取最小值,符号
Figure PCTCN2019074068-appb-000035
表示向上取整。可以理解的,可选的,T’可以是由标准规定的一时长值,也可以由接入节点为终端设备配置,还可以是根据不同的子载波间隔确定的值。
在一种可能的设计中,所述方法还包括:获取调节量k,根据获取的所述Tc和N,确定所述波束检测区间的长度,包括:根据所述Tc、N和k,确定所述波束检测区间的长度。
进一步在一种可能的设计中,所述Tc包括:所述至少一个CORESET的检测周期中最短的检测周期T short和/或所述至少一个CORESET的检测周期中最长的检测周期T long;根据获取的所述Tc和N,确定所述波束检测区间的长度,包括:根据所述T short和/或所述T long,以及所述N,确定所述波束检测区间的长度。确定的所述波束检测区间的长度包括以下之一:
Figure PCTCN2019074068-appb-000036
k×T long/N、
Figure PCTCN2019074068-appb-000037
Figure PCTCN2019074068-appb-000038
max{T short,k×T long/N}、
Figure PCTCN2019074068-appb-000039
max{max{T short,k×T long/N},T’}、min{T long,T short×N×k}、
Figure PCTCN2019074068-appb-000040
其中,T’为预定的时长值,符号max{}表示取最大值,min{}表示取最小值,符号
Figure PCTCN2019074068-appb-000041
表示向上取整。T’可以是由标准规定的一时长值,也可以由接入节点为终端设备配置,还可以是根据不同的子载波间隔确定的值。
相应的,提供一种用于波束失败检测的装置,该装置可以实现第三方面中的对应的方法。例如,该装置以功能形式限定,可以是终端侧的实体,其具体实现形式可以是终端设备,例如:可以为终端设备,也可以为终端设备中的芯片或功能模块,可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的设计中,该装置可以包括处理器和存储器。该处理器被配置为支持该装置执行上述第三方面方法中相应的功能。存储器用于与处理器耦合,其保存该装置必要的程序(指令)和数据。另外该装置还可以包括通信接口,用于支持该装置与其他网元之间的通信。该通信接口可以是收发器。
在一种可能的设计中,该装置可以包括收发单元,其中,收发单元,用于与网络设备通信。该装置还可以包括处理单元,该处理单元用于获取所述周期Tc和个数N(可选的还有k),确定所述波束检测区间的长度。
第四方面,提供一种用于波束失败检测的方法和装置。
在一种可能的设计中,该方法应用于终端设备上,通过对用于波束检测的相关时间信息Tf的考虑,能够确定合理的波束检测区间的长度,实现有效的波束失败检测。该方法包括获取用于波束检测的相关时间信息Tf;根据获取的所述Tf,确定波束检测区间的长度。可选的,所述Tf包括以下至少一项:至少一个波束检测信号的周期T,至少一个CORESET的检测周期Tc,根据不同的子载波间隔SCS确定的值Ts。
该设计中,通过对用于波束检测的相关时间信息Tf的考虑,能够确定合理的波束检测区间的长度,实现有效的波束失败检测。
在一种可能的设计中,所述Tf从接入节点接收获得。
在一种可能的设计中,所述Tf从存储装置读取获得。
在一种可能的设计中,若所述Tf包括所述Ts,则确定的波束检测区间的长度可以包括Ts、max{Ts,T’}、min{Ts,T’}、max{k×Ts,T’}或者min{k×Ts,T’},其中T’为一固定值,可以预先设置,k为一调节量可以预先获取。
在一种可能的设计中,若所述Tf包括所述T,则确定的波束检测区间的长度可以包括T short、T long、k×T short、k×T long、max{T long,T’}、max{k×T long,T’}、min{T long,T’}或者min{k×T long,T’},其中T’为一固定值,可以预先设置,k为一调节量可以预先获取,T包括至少一个波束检测信号中周期最长的波束检测信号的周期T long
在一种可能的设计中,若所述Tf包括所述Tc,则确定的波束检测区间的长度可以包括T short、T long、k×T short、k×T long、max{T long,T’}、max{k×T long,T’}、min{T long,T’}或者min{k×T long,T’},其中T’为一固定值,可以预先设置,k为一调节量可以预先获取,T包括至少一个CORESET检测周期中最长的检测周期T long
在一种可能的设计中,若所述Tf包括所述Ts以及T/Tc,则确定的波束检测区间的长度可以包括max{T long,Ts}、max{k×T long,Ts}、min{T long,Ts}、min{k×T long,Ts}、max{T long,Ts,T’}、max{k×T long,Ts,T’}、min{T long,Ts,T’}或者min{k×T long,Ts,T’},其中在Tf包括T时,T long对应波束检测信号的周期T,在Tf包括Tc时,T long对应CORESET检测周期Tc,T’为一固定值,可以预先设置,k为一调节量可以预先获取。
相应的,提供一种用于波束失败检测的装置,该装置可以实现第四方面中的对应的方法。例如,该装置以功能形式限定,可以是终端侧的实体,其具体实现形式可以是终端设备,例如:可以为终端设备,也可以为终端设备中的芯片或功能模块,可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的设计中,该装置可以包括处理器和存储器。该处理器被配置为支持该装置执行上述第四方面方法中相应的功能。存储器用于与处理器耦合,其保存该装置必要的程序(指令)和数据。另外该装置还可以包括通信接口,用于支持该装置与其他网元之间的通信。该通信接口可以是收发器。
在一种可能的设计中,该装置可以包括收发单元,其中,收发单元,用于与网络设备通信。该装置还可以包括处理单元,该处理单元用于获取所述Tf,确定所述波束检测区间的长度。
第五方面,提供一种波束监测的方法和装置。
在一种可能的设计中,该方法应用于终端设备上。该方法包括监测波束失配区间;若监测到连续的波束失配区间的数量达到预设数量阈值N,则进行波束失败宣告,其中,在每个波束失配区间内,在用波束集合中的每个在用波束处于异常状态,所述在用波束集合包含至少一个在用波束,所述波束失配区间的长度是基于所述至少一个在用波束所对应的参考时间及所述预设数量阈值N确定的。
在一种可能的设计中,所述参考时间包括在用波束所对应的波束检测信号资源的周期T;
在一种可能的设计中,所述参考时间包括第三方面所描述的CORESET的检测周期Tc;
在一种可能的设计中,所述参考时间包括第四方面所描述的相关时间Tf;
该设计通过合理的波束失配区间的长度,实现有效的波束监测。
在一种可能的设计中,所述参考时间和/或所述N从接入节点接收获得。
在一种可能的设计中,所述参考时间和/或所述N从存储装置读取获得。
如果所述参考时间包括在用波束所对应的波束检测信号资源的周期T,在一种可能的设计中,所述至少一个波束检测信号的周期T,包括:所述至少一个波束检测信号中周期最短的波束检测信号的周期T short和/或所述至少一个波束检测信号中周期最长的波束检测信号的周期T long;所述波束失配区间的长度包括以下之一:
Figure PCTCN2019074068-appb-000042
T long/N、
Figure PCTCN2019074068-appb-000043
Figure PCTCN2019074068-appb-000044
max{T short,T long/N}、
Figure PCTCN2019074068-appb-000045
max{max{T short,T long/N},T’}、min{T long,T short×N}、
Figure PCTCN2019074068-appb-000046
其中,T’为预定的时长值,符号max{}表示取最大值,min{}表示取最小值,符号
Figure PCTCN2019074068-appb-000047
表示向上取整。T’可以是由标准规定的一时长值,也可以由接入节点为终端设备配置,还可以是根据不同的子载波间隔确定的值。
如果所述参考时间包括在用波束所对应的波束检测信号资源的周期T,在一种可能的设计中,所述波束失配区间的长度包括以下之一:
Figure PCTCN2019074068-appb-000048
k×T long/N、
Figure PCTCN2019074068-appb-000049
Figure PCTCN2019074068-appb-000050
Figure PCTCN2019074068-appb-000051
max{T short,k×T long/N}、
Figure PCTCN2019074068-appb-000052
max{max{T short,k×T long/N},T’}、min{T long,T short×N×k}、
Figure PCTCN2019074068-appb-000053
其中,T’为预定的时长值,符号max{}表示取最大值,min{}表示取最小值,符号
Figure PCTCN2019074068-appb-000054
表示向上取整。T’可以是由标准规定的一时长值,也可以由接入节点为终端设备配置,还可以是根据不同的子载波间隔确定的值。k为一调节量。
如果所述参考时间包括CORESET的检测周期Tc,在一种可能的设计中,所述至少一个波束检测信号的周期Tc,包括:CORESET的最短检测周期T short和/或CORESET的最长检测周期T long;所述波束失配区间的长度包括以下之一:
Figure PCTCN2019074068-appb-000055
T long/N、
Figure PCTCN2019074068-appb-000056
Figure PCTCN2019074068-appb-000057
max{T short,T long/N}、
Figure PCTCN2019074068-appb-000058
max{max{T short,T long/N},T’}、min{T long,T short×N}、
Figure PCTCN2019074068-appb-000059
其中,T’为预定的时长值,符号max{}表示取最大值,min{}表示取最小值,符号
Figure PCTCN2019074068-appb-000060
表示向上取整。T’可以是由标准规定的一时长值,也可以由接入节点为终端设备配置,还可以是根据不同的子载波间隔确定的值。
如果所述参考时间包括CORESET的检测周期Tc,在一种可能的设计中,所述至少一个波束检测信号的周期Tc,包括:CORESET的最短检测周期T short和/或CORESET的最长检测周期T long;所述波束失配区间的长度包括以下之一:
Figure PCTCN2019074068-appb-000061
k×T long/N、
Figure PCTCN2019074068-appb-000062
Figure PCTCN2019074068-appb-000063
Figure PCTCN2019074068-appb-000064
max{T short,k×T long/N}、
Figure PCTCN2019074068-appb-000065
max{max{T short,k×T long/N},T’}、min{T long,T short×N×k}、
Figure PCTCN2019074068-appb-000066
其中,T’为预定的时长值,符号max{}表示取最大值,min{}表示取最小值,符号
Figure PCTCN2019074068-appb-000067
表示向上取整。T’可以是由标准规定的一时长值,也可以由接入节点为终端设备配置,还可以是根据不同的子载波间隔确定的值。k为一调节量。
相应的,提供一种波束监测装置,该装置可以实现第五方面中的对应的方法。例如,该装置以功能形式限定,可以是终端侧的实体,其具体实现形式可以是终端设备,例如:可以为终端设备,也可以为终端设备中的芯片或功能模块,可以通过软件、硬件、或者 通过硬件执行相应的软件实现上述方法。
在一种可能的设计中,该装置可以包括处理器和存储器。该处理器被配置为支持该装置执行上述第五方面方法中相应的功能。存储器用于与处理器耦合,其保存该装置必要的程序(指令)和数据。另外该装置还可以包括通信接口,用于支持该装置与其他网元之间的通信。该通信接口可以是收发器。
在一种可能的设计中,该装置可以包括收发单元,其中,收发单元,用于与网络设备通信。该装置还可以包括处理单元,该处理单元用于检测波束失配区间确定是否进行波束失败宣告。
本申请还提供了一种计算机存储介质,其上储存有计算机程序(指令),当该程序(指令)在计算机上运行时,使得计算机执行上述任一方面所述的方法。
本申请还提供了一种计算机程序产品,当其在计算机上运行时,使得计算机执行上述任一方面所述的方法。
本申请还提供了一种用于波束失败检测的芯片,其中存储有指令,当其在通信设备上运行时,使得通信设备执行上述各方面所述的对应方法。
本申请还提供了一种用于波束失败检测的装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述各方面所述的对应方法。
本申请还提供了一种用于波束失败检测的装置,包括处理器,该处理器用于与存储器耦合,并读取存储器中的指令,并根据所述指令实现上述各方面所述的对应方法。可以理解的,该存储器可以集成在处理器中,也可以独立于处理器之外。
本申请还提供了一种用于波束失败检测的装置,包括处理器,所述处理器执行计算机程序时实现上述各方面所述的对应方法。该处理器可以是专用处理器。
本申请还提供了一种用于波束失败检测的系统,包括上述提供的终端侧的装置,以及上述提供的网络侧的装置,这些系统组成分别实现上述各方面所述的对应方法。
可以理解地,上述提供的任一种装置、计算机存储介质、计算机程序产品、芯片、系统均用于实现上文所提供的对应的方法,因此,其所能达到的有益效果可参考对应的方法中的有益效果,此处不再赘述。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对本申请实施例描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据本申请实施例的内容和这些附图获得其他的附图。
图1是本申请涉及的一种网络系统架构;
图2是本申请提供的一种用于波束失败检测的方法的第一个实施例的流程图;
图3是本申请提供的一种用于波束失败检测的方法的第二个实施例的流程图;
图4是本申请提供的另一种用于波束失败检测的方法的第一个实施例的流程图;
图5是本申请提供的另一种用于波束失败检测的方法的第一个实施例的流程图;
图6是本申请提供的一种波束监测方法的第一个实施例的流程图;
图7是本申请提供的一种简化的终端设备结构示意图;
图8是本申请提供的一种简化的网络设备结构示意图。
具体实施方式
为使本申请解决的技术问题、采用的技术方案和达到的技术效果更加清楚,下面将以实施例的形式结合附图对本申请的技术方案作进一步详细的描述。所述详细的描述通过使用方框图、流程图和/或示例提出了设备和/或过程的各种实施例。由于这些方框图、流程图和/或示例包含一个或多个功能和/或操作,所以本领域技术人员将理解可以通过许多硬件、软件、固件或它们的任意组合单独和/或共同实施这些方框图、流程图或示例内的每个功能和/或操作。
本申请中“多个”是指两个或两个以上。本申请中的术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。本申请中的术语“第一”、“第二”、“第三”、“第四”等是为了区分不同的对象,并不限定该不同对象的顺序。
本申请中,名词“网络”和“系统”经常交替使用,但本领域的技术人员可以理解其含义。本申请所提及的所有“终端”/“终端设备”,在一些情况下可以是指移动设备,例如移动电话、个人数字助理、手持或膝上型计算机以及具有电信能力的类似设备,有些情况下还可以是穿戴设备或车载设备等,并包括未来5G网络中的终端或者未来演进的PLMN网络中的终端等。这种终端可以包括设备及其相关联的可移除存储模块(例如但不限于:包括订户标识模块(Subscriber Identification Module,简称为SIM)应用、通用订户标识模块(Universal Subscriber Identification Module,简称为USIM)应用或可移除用户标识模块(Removable User Identity Module,简称为R-UIM)应用的通用集成电路卡(Universal Integrated Circuit Card,简称为UICC)))。备选地,这种终端可以包括没有这种模块的设备本身。在其它情况下,术语“终端”/“终端设备”可以是指具有类似能力但是不可携带的设备,例如,台式计算机、机顶盒或网络设备。术语“终端”/“终端设备”还可以是指可端接用户的通信会话的任何硬件或软件组件。此外,“用户终端”、“User Equipment”、“UE”、“站点”、“station”、“STA”、“用户设备”、“用户代理”、“User Agent”、“UA”、“用户装备”、“移动设备”和“设备”等皆是与本文中“终端”/“终端设备”同义的替代术语。为方便描述,本申请中,上面提到的设备统称为用户设备或UE。
本申请中提及的“接入节点”,是一种网络设备,部署在无线接入网中用以为终端设备提供无线通信功能的装置,能够负责调度和配置给UE的下行参考信号等功能。所述接入节点可以包括各种形式的宏基站、微基站、中继站、接入点等等,可以是全球移动通讯(Global System of Mobile communication,简称GSM)或码分多址(Code Division Multiple Access,简称CDMA)中的基站(Base Transceiver Station,简称BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,简称WCDMA)中的基站(NodeB,简称NB),还可以是长期演进(Long Term Evolution,简称LTE)中的演进型基站(Evolutional Node B,简称eNB或eNodeB),或者中继站或接入点,NR系统中的传输节点或收发点(transmission reception point,简称TRP或者TP)或者下一代节点B(generation nodeB,简称gNB),无线保真(Wireless-Fidelity,简称Wi-Fi) 的站点、无线回传节点、小站、微站,或者未来第五代移动通信(the 5th Generation Mobile Communication,简称5G)网络中的基站等,本申请在此并不限定。在采用不同的无线接入技术的系统中,具备接入节点功能的设备名称可能会有所不同。为方便描述,本申请中,上述为UE提供无线通信功能的装置统称为接入节点。
本申请中基于波束的通信,是指在移动通信系统中使用波束进行传输,即通过在空间上朝向特定的方向发送信号,可以实现更高的天线阵列增益。波束可以通过波束成型(Beamforming)等技术手段实现。例如在高频(high frequency,简称HF)通信中的一个重要的研究方向就是模拟加数字混合波束成型(hybrid Beamforming),这样既可以很好的对抗高频信号由于传输距离导致的损耗又可以把复杂度和硬件成本控制在可接受的范围内。
本申请所涉及的技术中,相关术语定义如下:
准同位(quasi-co-location,简称QCL):准同位关系用于表示多个资源之间具有一个或多个相同或者相类似的通信特征,对于具有准同位关系的多个资源,可以采用相同或者类似的通信配置。例如,如果两个天线端口具有准同位关系,那么一个端口传送一个符号的信道大尺度特性可以从另一个端口传送一个符号的信道大尺度特性推断出来。大尺度特性可以包括:延迟扩展,平均延迟,多普勒扩展,多普勒频移,平均增益,接收参数,终端设备接收波束编号,发射/接收信道相关性,接收到达角,接收机天线的空间相关性,主到达角(Angel-of-Arrival,AoA),平均到达角,AoA的扩展等。具体地,准同位指示用于指示至少两组天线端口是否具有准同位关系为:所述准同位指示用于指示所述至少两组天线端口发送的信道状态信息参考信号是否来自相同的传输点,或所述准同位指示用于指示所述至少两组天线端口发送的信道状态信息参考信号是否来自相同的波束组。
准同位假设(QCL assumption):是指假设两个端口之间是否具有QCL关系。准同位假设的配置和指示可以用来帮助接收端进行信号的接收和解调。例如,接收端能确认A端口和B端口具有QCL关系,即可以将A端口上测得的信号的大尺度参数用于B端口上的信号测量和解调。
波束(beam):波束是一种通信资源。波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束成形技术或者其他技术手段。波束成形技术可以具体为数字波束成形技术,模拟波束成形技术,混合数字/模拟波束成形技术。不同的波束可以认为是不同的资源。通过不同的波束可以发送相同的信息或者不同的信息。可选的,可以将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束内可以包括一个或多个天线端口,用于传输数据信道,控制信道和探测信号等,例如,发射波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。可以理解的是,形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。波束在协议中的体现还是可以空域滤波器(spatial filter)。
波束的信息可以通过索引信息进行标识。可选地,所述索引信息可以对应配置UE的资源标识,比如,所述索引信息可以对应配置的信道状态信息参考信号(Channel status information Reference Signal,简称CSI-RS)的ID或者资源,也可以对应配置的上行探测参考信号(Sounding Reference Signal,简称SRS)的ID或者资源。或者,可选地, 所述索引信息也可以是通过波束承载的信号或信道显示或隐式承载的索引信息,比如,所述索引信息可以是通过波束发送的同步信号或者广播信道指示该波束的索引信息。
或者,可选地,波束的信息的标识包括可以通过波束的绝对索引、波束的相对索引,波束的逻辑索引,波束对应的天线端口的索引,波束对应的天线端口组的索引,下行同步信号块的时间索引,波束对连接(beam pair link,BPL)信息,波束对应的发送参数(Tx parameter),波束对应的接收参数(Rx parameter),波束对应的发送权重(weight),权重矩阵(weight vector),权重向量(weight matrix),波束对应的接收权重,或者它们的索引,波束对应的发送码本(codebook),波束对应的接收码本,或者它们的索引。
空域准同位(spatial QCL):spatial QCL可以认为是QCL的一种类型。对于spatial有两个角度可以理解:从发送端或者从接收端。从发送端来看,如果说两个天线端口是空域准同位的,那么是指这两个天线端口的对应的波束方向在空间上是一致的。从接收端来看,如果说两个天线端口是空域准同位的,那么是指接收端能够在相同的波束方向上接收到这两个天线端口发送的信号。
图1给出了本申请涉及的一种网络系统架构,本申请适用于如图1所示的基于波束300的多载波通信系统,例如5G新空口(New Radio,简称NR)。该系统中包括通信系统中的上行(UE200到接入节点100)和下行(接入节点100到UE200)通信。根据长期演进(Long Term Evolution,简称LTE)/NR的协议,在物理层,上行通信包括上行物理信道和上行信号的传输。其中上行物理信道包括随机接入信道(Random access channel,简称为PRACH),上行控制信道(Physical uplink control channel,简称为PUCCH),上行数据信道(Physical uplink shared channel,简称为PUSCH)等,上行信号包括信道探测信号SRS,上行控制信道解调参考信号(PUCCH De-modulation Reference Signal,简称PUCCH-DMRS),上行数据信道解调参考信号PUSCH-DMRS,上行相位噪声跟踪信号(phase noise tracking reference signal,简称PTRS)等。下行通信包括下行物理信道和下行信号的传输。其中下行物理信道包括广播信道(Physical broadcast channel,简称PBCH),下行控制信道(Physical downlink control channel,简称PDCCH),下行数据信道(Physical downlink shared channel,简称PDSCH)等,下行信号包括主同步信号(Primary Synchronization Signal,简称PSS)/辅同步信号(Secondary Synchronization Signal,简称SSS),下行控制信道解调参考信号PDCCH-DMRS,下行数据信道解调参考信号PDSCH-DMRS,相位噪声跟踪信号PTRS,信道状态信息参考信号(Channel status information reference signal,CSI-RS),小区信号(Cell Reference Signal,简称CRS)(NR没有),精同步信号(Tim/frequency tracking Reference Signal,简称TRS)(LTE没有)等。
在NR中,下行信道所使用的波束或参考信号发送对应的波束的波束指示是通过关联传输配置指示(Transmission Configuration Indicator,简称TCI)状态表中的参考资源索引实现的。
具体而言,基站通过RRC(Radio Resource Control,无线资源控制)高层信令配置了一个TCI状态表(对应38.331中的TCI-states),每个TCI状态表包含若干个TCI状态(对应38.331中TCI-RS-Set)。每个TCI状态包括TCI状态ID(TCI-RS-SetID)、一种或两种QCL类型指示(QCL-type A/B/C/D)以及各个类型指示对应的参考RS-ID。QCL 类型包含了以下几种:
QCL-Type A:{多普勒频移,多普勒扩展,平均时延,时延扩展}
QCL-Type B:{多普勒频移,多普勒扩展}
QCL-Type C:{平均时延,多普勒频移}
QCL-Type D:{空间接收参数}
其中,QCL-type D表示空间准同位。当需要指示接收波束时,基站通过高层信令或控制信息指示其中的一个包含空间准同位信息的TCI状态,UE根据该TCI状态读取QCL-type D对应的参考RS-ID,然后UE可以根据当前维护的与RS-ID相对应的空间接收配置(接收波束)进行接收。根据38.214,如果一个TCI状态中含有空间准同位指示(QCL-type D),那么该空间准同位指示的对应参考RS可能是一个SS/PBCH Block或是一个周期或半持续的CSI-RS。不同的下行信道的波束指示(TCI指示)在不同位置完成:
PDCCH的波束指示由RRC配置的高层信令tci-StatesPDCCH与一个或多个TCI状态关联,当关联的TCI状态数大于1时,由MAC-CE高层信令选择其中一个。
PDSCH的波束指示由PDCCH传输的DCI中的TCI字段关联的状态进行指示。NR标准中DCI中包含的TCI字段的长度为3bit(对应8个TCI状态),当RRC信令包含的TCI状态数量M小于8时,激活的TCI状态直接映射到TCI字段中,否则由高层信令指示最多8种参与映射的TCI状态。当高层信令提示TCI字段未在DCI中出现时,UE重用控制信道的波束指示进行数据信道接收。
对于上行传输,NR尚未定义空间准同位关系,上行的波束指示直接通过参考信号资源标识实现:
PUCCH的波束指示通过RRC参数PUCCH-Spatial-relation-info指示,该参数可能包括了一个或者多个参考信号资源标识,当包含多个参考信号资源标识时,由MAC-CE高层信令选择其中一个。PUCCH的波束指示内容可能是上行或下行的参考信号资源标识,包括SSB Index,CRI或者SRS Index,表示建议UE使用接收/发送该下行/上行参考信号资源的对应波束进行上行传输。
PUSCH的波束信息通过DCI中的SRS Index进行配置。
在上行和下行通信中,所有的信道都可以有对应的发送和接收波束,本申请涉及的波束失败以下行物理信道(例如下行控制信道)的波束失败为例,具体的,当下行物理信道的发射波束与接收波束之间的通信质量恶化后,波束失败可能发生。在NR协议中,在一个波束检测区间(可以对应一个上报周期)内,当所有需要检测的下行物理信道的波束质量低于某一门限时,可以视作一次波束失败实例;需要说明的是UE通过波束检测信号实现对波束的检测,对于至少一个波束检测信号,UE在检测之前已经获知各波束检测信号的周期,所以UE知道在当前波束检测区间内哪些波束检测号到来需要检测,UE检测需要检测的波束检测信号;连续波束失败实例达到最大次数时(最大次数可以由接入节点100配置,也可以由协议规定具体值),可以确定波束失败发生。
本申请中,在图1所示的系统下,接入节点100可以通过高层信令,例如无线资源控制(Radio Resouce Control,简称RRC)信令为UE200配置一个集合
Figure PCTCN2019074068-appb-000068
用于波束失败检测,需要说明的,该集合也可以不由接入节点100配置,而由UE200根据下行物理信道,如下行控制信道的TCI指示自行确定。该集合中可选包含一个或多个周期性的CSI-RS资源索引;可选的,接入节点100还可通过高层信令(如RRC)为UE200配置一个集合
Figure PCTCN2019074068-appb-000069
作为候选波束集合(该集合也可以由UE200自行确定),该集合中可选包含CSI-RS资源索引和/或SSB的资源索引。可选的,接入节点100通过高层信令(如RRC)为UE200配置最大波束失败实例个数N(该个数N也可不由接入节点100配置,而由协议规定具体值),波束失败后的候选波束门限Qin,以及UE200波束恢复的随机接入信道(Random Access Channel,简称RACH)信息、候选波束对应的RACH资源、用于检测波束失败恢复应答的控制资源集合(control resource set)等。除此之外,高层信令还包含一些其他配置信息,包括波束恢复计时器、波束恢复应答计时器,波束恢复请求的最大传输次数。当接入节点100没有配置集合
Figure PCTCN2019074068-appb-000070
时,UE200应根据当前被要求检测的下行物理信道(如PDCCH)所对应的TCI状态来决定
Figure PCTCN2019074068-appb-000071
以包括与该信道(如PDCCH)具有空间QCL关系的SSB和/或周期性CSI-RS。门限Qin为CSI-RS的物理层参考信号接收功率(Layer 1-Reference Signal Received Power,简称L1-RSRP)门限,SSB的门限可以通过高层信令中的powerControlOffsetSS(即PC_ss,表示CSI-RS资源元素与SSB的资源元素的功率偏差)结合Qin推断。
以下行控制信道PDCCH为例,UE200使用
Figure PCTCN2019074068-appb-000072
中与PDCCH的DMRS满足空间准同位关系的RS对控制信道的质量进行评估。具体的,UE200使用满足条件的RS对PDCCH的块误码率(Block Error Rate,简称BLER)进行估算(PDCCH-hypothetical-BLER),在一个波束检测区间(可以对应一个上报周期)内当所有需被检测的下行控制信道的hypothetical-BLER大于门限值(例如,可以为0.1)时,UE200物理层确认一次波束失败实例,并按照指定周期上报给UE200侧MAC层。
UE200侧MAC层对物理层上报的波束失败实例进行计数。当波束失败实例连续发生次数达到接入节点100配置的最大值N时,MAC可以判定为波束失败发生,开启波束失败恢复计时器,并通知UE200物理层波束失败发生。收到MAC层波束失败的指示后,可选的,UE200物理层上报集合
Figure PCTCN2019074068-appb-000073
中满足候选波束门限Qin的参考信号的波束测量结果,上报形式为一组或多组{波束RS索引,L1-RSRP测量结果}。UE200的MAC层根据物理层上报的测量结果和波束,按照某种规则选择一个候选波束的RS索引,并根据这个RS索引查找对应的RACH资源,并将选择后的波束索引qnew与其对应的RACH资源反馈给物理层。UE200的物理层在指定的RACH资源上按照高层信令配置的RACH信息使用qnew对应的波束发送波束失败恢复请求(Beam-failure-recovery-request)。在发送波束失败恢复请求预定个时隙后,UE200使用qnew对应波束对高层信令分配的用于波束失败恢复应答的控制资源集CORESET进行监测,应答内容为使用C-RNTI扰码加扰的可能的下行控制信息(DCI)。若成功获取应答,则波束恢复成功,进入正常波束管理流程。若在一定时间窗口内未能成功收到有效的应答,则再次从发送波束恢复请求开始重复前述过程,直到达到最大波束恢复请求次数或波束失败恢复计时器超时。
以上,实现了在该系统中波束失败检测和恢复的流程。需要说明的是,图1所示的仅是本申请所涉及的一种网络系统架构的示例,本申请并不局限于此。
实施例一
本实施例可以应用在UE与接入节点进行交互的场景下,也可以应用在UE内部实现的场景下。根据本申请的实施例,图2为本申请提供的一种用于波束失败检测的方法的第一个实施例的流程图。
该方法应用于UE侧,包括:
S101、获取至少一个波束检测信号的周期T和波束失败宣告对应的连续的波束失败实例的个数N。
其中,所述波束检测信号通过波束发送,本申请中,该发送以接入节点到UE方向为例描述,可以通过波束与所述波束检测信号(或者波束检测信号的资源)一一对应的方式进行波束检测信号的发送,也可以一个所述波束检测信号通过多个波束发送,还可以一个波束发送多个所述波束检测信号。所述波束检测信号包括但不限于:参考信号RS(例如CSI-RS)、同步信号块(Synchronization Signal Block,简称为SSB),还可以是用于评估波束质量的其他信号,本申请对参考信号的具体类型不做限定。通过对经波束发送的所述波束检测信号的检测,能够实现发射波束(该波束可以为实施例五中的在用波束)的检测。
本申请中波束可以具体体现为,例如但不限于,空域传输滤波器(spatial domain transmission filter,或spatial transmission filter)。该波束具体可以由,例如但不限于,该波束对应的参考信号资源来表征。举例来说,下一代无线通信系统即新无线(New Radio,NR)系统可以使用信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)资源来表征波束,并基于波束对应的CSI-RS资源(CSI-RS Resource)来确定波束质量。波束对应的CSI-RS资源可以通过CRI(CSI-RS Resource Indicator,CSI-RS资源指示)来指示,波束质量可以具体体现为参考信号接收功率(Reference Signal Received Power,RSRP)。又例如,NR系统还可以使用SSB资源来表征波束,并基于波束对应的SSB资源来确定波束质量。因此,此处的参考信号和SSB都属于波束检测信号,且波束检测信号还可以为其他信号。
可选的,所述至少一个波束检测信号是波束检测信号集合
Figure PCTCN2019074068-appb-000074
中的波束检测信号,该集合可以由接入节点通过高层信令(RRC)为UE配置用于波束失败检测,确定
Figure PCTCN2019074068-appb-000075
中进行波束失败检测时需要测量的波束检测信号的一种可能情况为:对
Figure PCTCN2019074068-appb-000076
中与PDCCH的DMRS满足空间准同位关系的波束检测信号;另一种可能的情况为:
Figure PCTCN2019074068-appb-000077
中的全部波束检测信号。本申请不限于此两种举例。
可选的,该集合
Figure PCTCN2019074068-appb-000078
也可以不由接入节点100配置,而由UE200根据下行物理信道,如下行控制信道PDCCH的TCI指示自行确定,以包括与该PDCCH具有空间QCL关系的SSB和/或周期性CSI-RS形成所述集合。该集合中可选包含一个或多个周期性的CSI-RS资源索引,也可包含SSB的资源索引;可选的,接入节点100还可通过高层信令(RRC)为UE200配置一个集合
Figure PCTCN2019074068-appb-000079
作为候选波束集合(该集合也可以由UE200自行确定),该集合中可选包含CSI-RS资源索引和/或SSB的资源索引。此处涉及的“与该PDCCH具有QCL关系”,以参考信号RS为例,若RS与该PDCCH具有QCL关系,可以指两者拥有相同的TCI状态,或该RS作为PDCCH波束指示的参考RS,或该RS对应的波束指示的TCI状态与PDCCH波束指示的TCI状态拥有相同的参考信号RS。
所述波束失败实例为在至少一个波束检测区间内对所述至少一个波束检测信号中各波束检测信号的检测结果未满足预定条件。需要说明的是UE通过波束检测信号实现对波束的检测,对于至少一个波束检测信号,UE在检测之前已经获知各波束检测信号的周期,所以UE知道在当前波束检测区间内哪些波束检测号到来需要检测,UE检测需要检测的波束检测信号;以两个不同周期的波束检测信号,信号1(短周期)和信号2(长周期)为 例进行说明,如果在一个检测区间内,需检测信号1,无需检测信号2,而对信号1的检测结果未满足预定条件,则确定该检测区间存在波束失败实例;如果在一个检测区间内,需检测信号1,也需检测信号2,而对信号1和信号2的检测结果均未满足预定条件,则确定该检测区间存在波束失败实例;如果在一个检测区间内,需检测信号1,也需检测信号2,当对信号1和/或信号2的检测结果满足预定条件,则确定该检测区间不存在波束失败实例。以下行控制信道PDCCH和通过RS进行检测为例,UE200使用
Figure PCTCN2019074068-appb-000080
中与PDCCH的DMRS满足空间准同位关系的RS对控制信道的质量进行评估。可选的,UE200使用满足条件的RS对PDCCH的BLER进行估算(PDCCH-hypothetical-BLER),在一个波束检测区间(可以对应一个上报周期,上报周期也可以有一定时间偏移量)内当所有需要被检测的下行控制信道的hypothetical-BLER大于门限值(例如,可以为0.1)时,确定存在波束失败实例,本申请对是否存在波束失败实例的检测条件不限于此。
如果UE连续检测到波束失败实例的个数到达波束失败宣告所对应的所述个数N,则确定波束检测持续失败,进行波束失败宣告。在具体实现过程中,进行波束失败宣告可以体现为,开启波束失败恢复计时器、根据备选波束门限选择可用的备选波束集合并上报对应的L1-RSRP测量结果、根据某种算法确定备选波束q new和其对应的RACH资源以及发送波束恢复请求。本发明实施例对进行波束失败宣告的具体操作不做限定。有关该波束恢复请求的具体内容可以参考现有技术。举例来说,该波束恢复请求可以是按照节点100分配的接入序列利用q new对应的波束在随机接入资源(可能是节点100分配的或预定义的随机接入资源)上发送接入信息,也可以是利用节点100分配的PUCCH资源发送波束失败恢复请求。可选的,UE物理层在确定某波束检测区间存在波束失败实例,则按照上报周期向UE的高层(例如,MAC层)上报波束失败实例,UE的高层对波束失败实例进行计数,若,下一波束检测区间仍存在波束失败实例(可以是在下一波束检测区间检测确定存在波束失败实例,也可以是下一波束检测区间未进行检测,而沿用存在波束失败实例的上一波束检测区间的状态),则UE物理层向高层上报,高层对波束失败实例的计数加1,如果,连续存在波束失败实例,则高层在计数到达波束失败宣告对应的所述个数N时,宣告波束失败;若,下一波束检测区间不存在波束失败实例,则UE物理层可以不向高层上报或者向高层上报不存在波束失败实例,高层对波束失败实例的计数清零,直至下次再有波束失败实例时才计数置1。可选的,可以不区分UE物理层向UE高层进行波束失败实例的上报,不限于体现上报的动作,而只是对波束失败实例进行计数,满足条件就进行波束失败宣告,例如,可以不限定是否存在上报,只要当波束失败实例的连续个数达到所述N,就进行波束失败宣告,可选的,也可以设置附加条件,如当波束失败实例的连续个数达到所述N,是否进行波束失败宣告还要同时满足一预设条件,该预设条件可以是对需要检测的波束检测信号的检测结果连续不满足预定条件的次数达到预定值,例如,如果需要检测的波束检测信号有多个,那么对其中最短周期的波束检测信号的检测结果未满足预定条件的连续次数达到至少所述N次(对应了N个波束检测区间),以及对其中最长周期的波束检测信号的检测结果未满足预定条件的连续次数达到至少一次(该一次需在所述N个波束检测区间的合计长度范围内出现)。
需要说明的,所述波束检测区间,是用于波束检测的时间区间,而并非限定波束检测动作必然发生的区间;类似的,在存在涉及上述上报的方案时,上报周期也并非限定波束失败实例上报的动作必然发生,按照该周期必须产生上报动作,而是在确定存在波 束失败实例时,要进行上报,需按照上报周期进行上报。此外,一个波束检测区间的长度可选的可以对应一个波束上报周期(上报时间间隔)的长度,可选的,上报周期还可以包括预定的时间偏移量。如果UE可以执行波束检测,那么需在该用于检测的检测区间内进行检测,UE也可能在上一检测区间进行检测后,在下一检测区间不进行波束检测,那么对于下一检测区间,其状态沿用上一检测区间的状态,例如,第一检测区间中检测的结果为确定有波束失败实例的状态,那么第二检测区间在不执行检测动作的情况下,其状态也认为是确定有波束失败实例的状态。如果UE的物理层需要向MAC层等高层进行波束失败实例的指示,则按照上报(指示)周期,向UE高层上报波束失败实例,以上述例子来讲,UE针对所述第一/第二检测区间检测到的波束失败实例的上报可以按照上报周期准点上报,也可以有一定时间偏移量的延迟,无论是否有偏移量,但连续两次上报之间的时间间隔需大于或等于所述波束检测区间的长度。在UE上报的波束失败实例达到预定个数,高层会确定宣告波束失败。
可选的,获取所述周期T和个数N,至少包括两种方式,一种方式为可以全部或部分由UE通过与接入节点的信令交互,由接入节点获得,例如,可以通过接入节点获取所述周期T,而所述个数N为标准所规定一固定值;可选的,也可以由接入节点获取接入节点配置的所述周期T与所述个数N。第二种方式为,所述周期T和个数N由UE的相应处理单元从UE的存储单元中获取。本申请不限于此两种方式,还可以通过第三方获取。需要说明的,除了上述参数:周期T和个数N。可选的,UE还会获取除了周期T和次数N之外的其他参数,例如用于调节波束检测区间长度,进行长度缩放的调节量k等,均可用于确定所述波束检测区间的长度,这些参数的获取方式类似周期T和个数N,参见上述描述,在此不再赘述。
上文中涉及的检测区间、周期可以是绝对时间(例如毫秒)为单位,也可以为时隙、OFDM符号长度等相对时间概念。
S102、根据获取的所述T和N,确定波束检测区间的长度。
可选的,以下行控制信道PDCCH为例,对于UE,若接入节点信令没有显示配置集合
Figure PCTCN2019074068-appb-000081
而是由UE根据下行控制信道TCI指示自行确定
Figure PCTCN2019074068-appb-000082
此时,应按照UE自行确定的
Figure PCTCN2019074068-appb-000083
中需要测量的检测信号所对应的周期决定所述波束检测区间的长度。
可选的,所述至少一个波束检测信号的周期T包括:所述至少一个波束检测信号中周期最短的波束检测信号的周期T short和/或所述至少一个波束检测信号中周期最长的波束检测信号的周期T long;则,所述根据获取的所述T和N,确定所述波束检测区间的长度,包括:根据所述T short和/或所述T long,以及所述N,确定所述波束检测区间的长度。
可选的,以下行控制信道PDCCH及波束检测信号为RS为例,假设UE被要求检测的PDCCH有多个控制资源集CORESET,每个CORESET的波束指示对应一个生效的TCI状态,不同CORESET的波束指示可能对应相同或不同的TCI状态,如果这些TCI状态相同,则多个CORESET的波束指示对应一种TCI状态,如果这些TCI状态不同,则多个CORESET的波束指示对应多种TCI状态,假设UE需要检测的所有CORESET的波束指示一共关联了M个不同的TCI状态,对于每种TCI状态,
Figure PCTCN2019074068-appb-000084
里需要测量的参考信号中有一个或多个参考信号与该TCI状态关联的CORESET存在QCL关系,则在这些参考信号对应周期中,选择最短周期放入集合Q。显然,集合Q中的元素个数应等于PDCCH所有CORESET关联的不同TCI状态数(即M)。此时,设集合Q中的最大周期为T long,最短周期为T short,则使用 T short和/或T long作为所述波束检测区间长度的计算参数。以下进行举例说明,假设有2个CORESET(CORESET#1,CORESET#2),CORESET#1的DMRS端口与RS#1、RS#2的端口具有QCL关系,RS#1的周期为T1=10ms、RS#2的周期为T2=20ms;CORESET#2的DMRS端口与RS#3、RS#4的端口具有QCL关系,RS#3的周期为T3=5ms、RS#4的周期为T4=10ms;则,集合Q中应放入,CORESET#1的RS#1的周期10ms,CORESET#2的RS#3的周期5ms,即集合Q为[10,5],那么UE获取的波束检测信号的周期T包括T short=5,T long=10,随后再基于该T short和T long确定所述波束检测区间的长度。
可选的,确定的所述波束检测区间的长度可以为以下之一,但不限于以下举例:
Figure PCTCN2019074068-appb-000085
Figure PCTCN2019074068-appb-000086
T long/N、
Figure PCTCN2019074068-appb-000087
Figure PCTCN2019074068-appb-000088
max{T short,T long/N}、
Figure PCTCN2019074068-appb-000089
max{max{T short,T long/N},T’}、min{T long,T short×N}、
Figure PCTCN2019074068-appb-000090
其中,T’为预定的时长值,符号max{}表示取最大值,min{}表示取最小值,符号
Figure PCTCN2019074068-appb-000091
表示向上取整。T’可以是由标准规定的一时长值,也可以由接入节点为UE配置,还可以是根据不同的子载波间隔(Subcarrier Spacing,简称SCS)确定的值,例如是一个随着子载波间隔改变的值,T’与SCS的关系可以是比例关系,例如对于120kHz的子载波间隔,T’=10ms,对于60kHz的子载波间隔,T’=10×(120/60)ms=20ms;或者,T’可以是一个以时隙为单位的时间单位;T’与子载波间隔的关联也可以通过遍历的方式明确对应,例如一张说明两者关系的表格等。
具体的,以
Figure PCTCN2019074068-appb-000092
为例,如果波束检测信号有4个,周期分别是2个时隙(信号1)、4个时隙(信号2)、8个时隙(信号3)、16个时隙(信号4),而N为3,则根据
Figure PCTCN2019074068-appb-000093
确定的波束检测区间的长度为
Figure PCTCN2019074068-appb-000094
Figure PCTCN2019074068-appb-000095
即6个时隙。其他方式类似,在此不再赘述。
如果UE还获取了除所述T和N之外的其他参数,如上述调节量k,则所述根据获取的所述T和N,确定所述波束检测区间的长度,包括:根据所述T、N和k,确定所述波束检测区间的长度。可选的,所述至少一个波束检测信号的周期T,包括:所述至少一个波束检测信号中周期最短的波束检测信号的周期T short和/或所述至少一个波束检测信号中周期最长的波束检测信号的周期T long
可选的,确定的所述波束检测区间的长度包括以下之一,但不限于以下举例:
Figure PCTCN2019074068-appb-000096
k×T long/N、
Figure PCTCN2019074068-appb-000097
Figure PCTCN2019074068-appb-000098
Figure PCTCN2019074068-appb-000099
max{T short,k×T long/N}、
Figure PCTCN2019074068-appb-000100
Figure PCTCN2019074068-appb-000101
max{max{T short,k×T long/N},T’}、min{T long,T short×N×k}、
Figure PCTCN2019074068-appb-000102
Figure PCTCN2019074068-appb-000103
其中,T’为预定的时长值,符号max{}表示取最大值,min{}表示取最小值,符号
Figure PCTCN2019074068-appb-000104
表示向上取整。T’可以是由标准规定的一时长值,也可以由接入节点为UE配置,还可以是根据不同的子载波间隔SCS确定的值。引入k的波束检测区间的长度取值方式具体说明,可以参考上文的举例,在此不再赘述。
可选的,在集合
Figure PCTCN2019074068-appb-000105
里需要测量的检测信号所对应的最短周期为T short,最大周期为T long,则UE可以假设T short×N大于等于T long×k恒成立。或者,UE可以假设
Figure PCTCN2019074068-appb-000106
里需要测量的参考信号周期是一样的。
本申请实施例的一种用于波束失败检测的方法,通过获取有效的参数,能够确定合 理的波束检测区间的长度,实现有效的波束失败检测。
实施例二
图3为本申请提供的一种用于波束失败检测的方法的第二个实施例的流程图。与实施例一的区别在于,该实施例明确针对具有调节量k的方案及UE通过与接入节点交互来获取用于确定波束检测区间长度的参数的场景。与实施例一相同或类似的内容在本实施例中不再赘述。需要说明的,为了便于方案理解,在描述时,本实施例以UE和接入节点双侧的行为展开,从交互多方的角度进行整体描述,但绝非限定系统中改进在于交互各侧的步骤必须合在一起执行,本申请提出的技术方案,在系统中每一侧均有改进。
该方法包括:
S201、接入节点生成调节量信息k,所述调节量信息用于UE调节波束检测区间的长度。
为实现UE侧的波束失败检测,接入节点会向UE配置相关用于波束失败检测的配置信息,如相关波束检测信号的信息,可选的,如实施例一所述在某些情况下存在的集合
Figure PCTCN2019074068-appb-000107
周期T的信息等,也可以是针对波束失败宣告对应的连续波束失败实例的个数N。本实施例,接入节点为了控制UE波束检测区间长度的缩放,会生成调节量信息k并向UE配置该信息。
S202、接入节点向UE发送所述调节量信息k。
本实施例不限于只发送调节量信号,如果存在其他配置信息,如上文所述周期T或个数N,则也向UE发送。
S203、UE获取至少一个波束检测信号的周期T、波束失败宣告对应的连续的波束失败实例的个数N和所述调节量信息k。
相关解释和可选方案的描述,参见实施例一S101的对应内容,在此不再赘述。
S204、UE根据获取的所述T、N和k,确定波束检测区间的长度。
相关解释和可选方案的描述,参见实施例一S102的对应内容,在此不再赘述。
本申请实施例的一种用于波束失败检测的方法,通过接入节点配置用于波束检测区间长度调节的调节量信息,能够确定合理的波束检测区间的长度,实现有效的波束失败检测。
实施例三
图4为本申请提供的另一种用于波束失败检测的方法的第一个实施例的流程图。与实施例一和/或实施例二的区别在于,该实施例中确定波束检测区间长度不是基于波束检测信号的周期T,而是基于控制资源集的检测周期Tc,用Tc替代所述T。与实施例一和/或实施例二相同或类似的内容在本实施例中不再赘述。
该方法应用于UE侧,包括:
S301、获取用于波束检测的至少一个控制资源集CORESET的检测周期Tc和波束失败宣告对应的连续的波束失败实例的个数N。
本实施例中,通过对下行控制信号PDCCH的波束检测,来进行波束失败检测。PDCCH对应有控制资源集CORESET,每个PDCCH都有其本身的周期,即对应CORESET的检测周期,此外,各CORESET还具有时间偏移量。通过接入节点的配置,UE能够获知CORESET的检 测周期。
需要说明的,本实施例中,该获取步骤,不限于UE与接入节点交互通过空口信令交互进行的获取方式,还包括UE在已存储的数据中获取的方式,具体可参见实施例一的相关描述。
S302、根据获取的所述Tc和N,确定波束检测区间的长度。
可选的,所述Tc可以包括:所述至少一个CORESET的检测周期中最短的检测周期T short和/或所述至少一个CORESET的检测周期中最长的检测周期T long;根据获取的所述Tc和N,确定所述波束检测区间的长度,包括:根据所述T short和/或所述T long,以及所述N,确定所述波束检测区间的长度。
可选的,确定的所述波束检测区间的长度可以为以下之一,但不限于以下举例:
Figure PCTCN2019074068-appb-000108
Figure PCTCN2019074068-appb-000109
T long/N、
Figure PCTCN2019074068-appb-000110
Figure PCTCN2019074068-appb-000111
max{T short,T long/N}、
Figure PCTCN2019074068-appb-000112
max{max{T short,T long/N},T’}、min{T long,T short×N}、
Figure PCTCN2019074068-appb-000113
其中,T’为预定的时长值,符号max{}表示取最大值,min{}表示取最小值,符号
Figure PCTCN2019074068-appb-000114
表示向上取整。T’可以是由标准规定的一时长值,也可以由接入节点为UE配置,还可以是根据不同的子载波间隔(Subcarrier Spacing,简称SCS)确定的值,例如是一个随着子载波间隔改变的值,T’与SCS的关系可以是比例关系,例如对于120kHz的子载波间隔,T’=10ms,对于60kHz的子载波间隔,T’=10×(120/60)ms=20ms;或者,T’可以是一个以时隙为单位的时间单位;T’与子载波间隔的关联也可以通过遍历的方式明确对应,例如一张说明两者关系的表格等。
具体的,以
Figure PCTCN2019074068-appb-000115
为例,如果UE需要检测的控制资源集合有3个,周期分别是4个时隙(CORESET#1)、8个时隙(CORESET#2)、16个时隙(CORESET#3),而N为3,则根据
Figure PCTCN2019074068-appb-000116
确定的波束检测区间的长度为
Figure PCTCN2019074068-appb-000117
Figure PCTCN2019074068-appb-000118
即6个时隙。其他方式类似,在此不再赘述。
如果UE还获取了除所述Tc和N之外的其他参数,如上述调节量k,则所述根据获取的所述Tc和N,确定所述波束检测区间的长度,包括:根据所述Tc、N和k,确定所述波束检测区间的长度。可选的,所述Tc可以包括:所述至少一个CORESET的检测周期中最短的检测周期T short和/或所述至少一个CORESET的检测周期中最长的检测周期T long
可选的,确定的所述波束检测区间的长度包括以下之一,但不限于以下举例:
Figure PCTCN2019074068-appb-000119
Figure PCTCN2019074068-appb-000120
k×T long/N、
Figure PCTCN2019074068-appb-000121
Figure PCTCN2019074068-appb-000122
max{T short,k×T long/N}、
Figure PCTCN2019074068-appb-000123
max{max{T short,k×T long/N},T’}、min{T long,T short×N×k}、
Figure PCTCN2019074068-appb-000124
其中,T’为预定的时长值,符号max{}表示取最大值,min{}表示取最小值,符号
Figure PCTCN2019074068-appb-000125
表示向上取整。T’可以是由标准规定的一时长值,也可以由接入节点为UE配置,还可以是根据不同的子载波间隔SCS确定的值。引入k的波束检测区间的长度取值方式具体说明,可以参考上文的举例,在此不再赘述。
本申请实施例的一种用于波束失败检测的方法,通过对CORESET检测周期的考虑,能够确定合理的波束检测区间的长度,实现有效的波束失败检测。
实施例四
图5为本申请提供的另一种用于波束失败检测的方法的第一个实施例的流程图。与实施例一、实施例二和/或实施例三的区别在于,该实施例中确定波束检测区间长度未基于所述波束失败宣告对应的连续的波束失败实例的个数N。与实施例一、实施例二和/或实施例三相同或类似的内容在本实施例中不再赘述。
该方法应用于UE侧,包括:
S401、获取用于波束检测的相关时间Tf。
本实施例中,所述Tf可以包括以下至少一项:实施例一和实施例二中的波束检测信号的周期T,实施例三中CORESET的检测周期Tc,根据不同的子载波间隔SCS确定的值Ts,例如是一个随着子载波间隔改变的值,Ts与SCS的关系可以是比例关系,例如对于120kHz的子载波间隔,Ts=10ms,对于60kHz的子载波间隔,Ts=10×(120/60)ms=20ms;或者,Ts可以是一个以时隙为单位的时间单位;Ts与子载波间隔的关联也可以通过遍历的方式明确对应,例如一张说明两者关系的表格等。
Tf的获取方式可以参见前面实施例中对T或Tc获取的类似方式,在此不再赘述。
可选的,如UE还可以获取用于对波束检测区间的长度进行缩放的调节量k等相关参数。
S402、根据获取的所述Tf,确定波束检测区间的长度。
可选的,如果所述Tf包括所述Ts,则确定的波束检测区间的长度可以包括Ts、max{Ts,T’}、min{Ts,T’}、max{k×Ts,T’}或者min{k×Ts,T’},其中T’为一固定值,可以预先设置,如由基站配置或标准规定,。
可选的,如果所述Tf包括所述T,则确定的波束检测区间的长度可以包括如实施例一/实施例二中所述T中的T short、T long、k×T short(如果需获取k)、k×T long(如果需获取k)、max{T long,T’}、max{k×T long,T’}、min{T long,T’}或者min{k×T long,T’}(如果需获取k),其中T’为一固定值,可以预先设置,如由基站配置或标准规定,也可以对应子载波间隔SCS。
可选的,如果所述Tf包括所述Tc,则确定的波束检测区间的长度可以包括如实施例三中所述Tc中的T short、T long、k×T short(如果需获取k)、k×T long(如果需获取k)、max{T long,T’}、max{k×T long,T’}(如果需获取k)、min{T long,T’}或者min{k×T long,T’}(如果需获取k),其中T’为一固定值,可以预先设置,如由基站配置或标准规定,也可以对应子载波间隔SCS。
如果所述Tf包括所述Ts以及T/Tc,则确定的波束检测区间的长度可以包括max{T long,Ts}、max{k×T long,Ts}(如果需获取k)、min{T long,Ts}、min{k×T long,Ts}(如果需获取k)、max{T long,Ts,T’}、max{k×T long,Ts,T’}(如果需获取k)、min{T long,Ts,T’}或者min{k×T long,Ts,T’}(如果需获取k),其中在Tf包括T时,T long对应波束检测信号的周期T,在Tf包括Tc时,T long对应CORESET检测周期Tc,T’为一固定值,可以预先设置,如由基站配置或标准规定,也可以对应子载波间隔SCS。
以上仅为根据获取的所述Tf,确定波束检测区间的长度的示例性说明,本申请不限于上述列举的方式。
本申请实施例的一种用于波束失败检测的方法,通过对用于波束检测的相关时间信息Tf的考虑,能够确定合理的波束检测区间的长度,实现有效的波束失败检测。
实施例五
实施例一至实施例四皆是从波束失败宣告前为波束失败检测确定检测间隔的角度进行描述,图6为本申请提供的一种波束监测方法的第一个实施例的流程图。与实施例一至实施例四的区别在于,该实施例中侧重波束失败检测流程的角度进行描述。实施例一至实施例四中描述的对于波束失败检测前确定波束检测区间长度的方案皆可用于本实施例,与实施例一至实施例四相同或类似的内容在本实施例中不再赘述。
该方法应用于UE侧,包括:
S501、监测波束失配区间。
波束失配区间是指时间长度为P的一个时间段,且在该时间段内,在用波束集合中的每个在用波束处于异常状态,其中,在用波束是指用于传输波束检测信号的波束。换句话说,若检测到在时间长度为P的一个时间段内,在用波束集合中的每个在用波束处于异常状态,则可以判定该时间段为一个波束失配区间。结合上文中其他实施例的描述,可以知道该实施例中,波束失配区间即对应出现对所述至少一个波束检测信号中各波束检测信号的检测结果未满足预定条件的存在波束失败实例的波束检测区间,所述P即为上文各实施例中所确定的区间长度。为了便于区分,本实施例中皆以波束失配区间进行表述。
本发明实施例对上述时间段的起始时刻不做限定,在具体实现过程中,可以根据具体需要,来设置上述时间段的起始时刻。举例来说,可以将上述时间段的起始时刻设置为在用波束集合中一个或者多个波束对应的参考信号资源所承载参考信号的发送时刻。此外,还可以不对上述时间段的起始时刻进行设置,而仅以检测到时间长度为P的时间段且在该时间段内在用波束集合中的每个在用波束处于异常状态为条件来确定波束失配区间。
波束可以具体体现为,例如但不限于,空域传输滤波器(spatial domain transmission filter)。该波束具体可以由,例如但不限于,该波束对应的参考信号资源来表征。举例来说,下一代无线通信系统即新无线(New Radio,NR)系统可以使用信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)资源来表征波束,并基于波束对应的CSI-RS资源(CSI-RS Resource)来确定波束质量。波束对应的CSI-RS资源可以通过CRI(CSI-RS Resource Indicator,CSI-RS资源指示)来指示,波束质量可以具体体现为参考信号接收功率(Reference Signal Received Power,RSRP)。又例如,NR系统还可以使用SSB资源来表征波束,并基于波束对应的SSB资源来确定波束质量,波束对应的SSB资源可以通过SSB索引(index)来指示。
在具体实现过程中,还可以根据具体需要,使用其他参考信号资源来表征波束,并通过其他指示来指示参考信号资源,并使用其他参数来表征波束质量,本发明实施例对此不做限定。
S502、若监测到连续的波束失配区间的数量达到预设数量阈值N,则进行波束失败宣告,其中,在每个波束失配区间内,在用波束集合中的每个在用波束处于异常状态,所述在用波束集合包含至少一个在用波束,所述波束失配区间的长度是基于所述至少一个在用波束所对应的波束检测信号资源的周期T及所述预设数量阈值N确定的。
所述预设数量阈值N即为实施例一至实施例四中所述的N;
所述波束检测信号资源的周期T,即为实施例一/实施例二中所述的波束检测信号的周期T;所述波束检测信号的限定可以参考实施例一或二的描述,可以包括参考信号,具体可以是CSI-RS。但本申请不限于此。
可替换的,步骤S502中所述波束检测信号资源的周期T可以替换为实施例三中所述CORESET的检测周期Tc,还可以替换为实施例四中所述相关时间Tf。
可选的,也可以设置附加条件,如当监测到连续的波束失配区间的数量达到所述N,是否进行波束失败宣告还要同时满足一预设条件,该预设条件可以是对需要检测的波束检测信号的检测结果连续不满足预定条件的次数达到预定值,例如,如果需要检测的波束检测信号有多个,那么对其中最短周期的波束检测信号的检测结果未满足预定条件的连续次数达到至少所述N次,以及对其中最长周期的波束检测信号的检测结果未满足预定条件的连续次数达到至少一次。
一般来说,在用波束处于异常状态可以用于表明,例如但不限于,该在用波束不可用,或者无法判定该在用波束是否可用,其中,在用波束可用是指可以通过该在用波束进行通信传输,在用波束不可用是指无法通过该在用波束进行通信传输,无法判定该在用波束是否可用,是指无法判定是否可以通过该在用波束进行通信传输。举例来说,当用户设备处于移动状态时,会出现在用波束不再指向用户设备的情形,或者无法判定在用波束是否依然指向用户设备的情形,在这种情况下,在用波束处于异常状态。又例如,当用户设备受到遮挡,则会出现波束无法到达用户设备的情形,或者无法判定在用波束是否能够到达用户设备情形,在这种情况下,在用波束处于异常状态。再例如,当在用波束对应的参考信号资源周期过长,致使在用波束质量检测周期过长,会导致之前测得的在用波束质量发生过期,从而出现在用波束质量无法确定的情形,在这种情况下,在用波束处于异常状态。此外,还有可能出现导致在用波束质量无法判定的其他情况。可以说,在每个波束失配区间内,在用波束处于异常状态的判定条件包括以下至少一种:在所述波束失配区间内不存在所述在用波束对应的参考信号资源;在所述波束失配区间内存在所述在用波束对应的参考信号资源但未基于所述参考信号资源对所述在用波束进行波束质量检测;在所述波束失配区间内,基于所述在用波束对应的参考信号资源对所述在用波束进行波束质量检测获得的波束质量低于预设质量阈值。
在这种情况下,凡是可以用于判定出现上述情形的条件,均可以用做在用波束处于异常状态的判定条件。由此可见,本文描述的在用波束处于异常状态的判定条件仅用于举例,而并非穷举所有判定条件,因此并非用于限制本发明实施例的范围。在具体实现过程中,可以根据具体需要,来设置在用波束处于异常状态的判定条件。参考实施例一中对信号1和信号2的描述,如果信号1通过波束1发送,信号2通过波束2发送,如果对信号1的检测结果未满足预定条件,则波束1处于异常状态,如果对信号2的检测结果未满足预定条件,则波束2处于异常状态。
通常来说,在用波束可以不止一个,因此可以通过在用波束集合来指代可用于进行通信传输的在用波束,其中在用波束集合通常包含至少一个在用波束。
在具体实现过程中,进行波束失败宣告可以具体体现为,例如但不限于,发送波束恢复请求。本发明实施例对进行波束失败宣告的具体操作不做限定。
有关该波束恢复请求的具体内容可以参考现有技术。举例来说,例如但不限于,开启波束失败恢复计时器、根据备选波束门限选择可用的备选波束集合并上报对应的 L1-RSRP测量结果、根据某种算法确定备选波束q new和其对应的RACH资源以及发送波束恢复请求。本发明实施例对进行波束失败宣告的具体操作不做限定。有关该波束恢复请求的具体内容可以参考现有技术。举例来说,该波束恢复请求可以是按照节点100分配的接入序列利用q new对应的波束在随机接入资源(可能是节点100分配的或预定义的随机接入资源)上发送接入信息,也可以是利用节点100分配的PUCCH资源发送波束失败恢复请求。
可选的,所述波束失配区间的长度包括以下之一,但不限于以下举例:
Figure PCTCN2019074068-appb-000126
T long/N、
Figure PCTCN2019074068-appb-000127
Figure PCTCN2019074068-appb-000128
max{T short,T long/N}、
Figure PCTCN2019074068-appb-000129
max{max{T short,T long/N},T’}、min{T long,T short×N}、
Figure PCTCN2019074068-appb-000130
其中,T’为预定的时长值,符号max{}表示取最大值,min{}表示取最小值,符号
Figure PCTCN2019074068-appb-000131
表示向上取整。T’可以是由标准规定的一时长值,也可以由接入节点为UE配置,还可以是根据不同的子载波间隔(Subcarrier Spacing,简称SCS)确定的值,例如是一个随着子载波间隔改变的值,T’与SCS的关系可以是比例关系,例如对于120kHz的子载波间隔,T’=10ms,对于60kHz的子载波间隔,T’=10×(120/60)ms=20ms;或者,T’可以是一个以时隙为单位的时间单位;T’与子载波间隔的关联也可以通过遍历的方式明确对应,例如一张说明两者关系的表格等。T short和T long的相关解释,可以参见上述实施例,在此不再赘述。
可选的,所述波束失配区间的长度包括以下之一,但不限于以下举例:
Figure PCTCN2019074068-appb-000132
k×T long/N、
Figure PCTCN2019074068-appb-000133
Figure PCTCN2019074068-appb-000134
Figure PCTCN2019074068-appb-000135
max{T short,k×T long/N}、
Figure PCTCN2019074068-appb-000136
Figure PCTCN2019074068-appb-000137
max{max{T short,k×T long/N},T’}、min{T long,T short×N×k}、
Figure PCTCN2019074068-appb-000138
Figure PCTCN2019074068-appb-000139
其中,T’为预定的时长值,符号max{}表示取最大值,min{}表示取最小值,符号
Figure PCTCN2019074068-appb-000140
表示向上取整。T’可以是由标准规定的一时长值,也可以由接入节点为UE配置,还可以是根据不同的子载波间隔SCS确定的值。引入k的波束检测区间的长度取值方式具体说明,可以参考上文的举例,在此不再赘述。T short和T long的相关解释,可以参见上述实施例,在此不再赘述。
本申请实施例的一种波束监测的方法,通过合理的波束失配区间的长度,实现有效的波束监测。
需要说明的是,以上各实施例中,本发明实施例对检测区间/波束失败实例上报周期(如果涉及波束失败实例上报的方案)的起始时刻不做限定,在具体实现过程中,可以根据具体需要,来设置起始时刻。举例来说,可以将起始时刻设置为波束检测信号资源所承载波束检测信号的发送时刻。还可以以高层信令(如RRC)生效的时隙作为起始时刻,也可以在当前高层信令生效的时隙延迟协议约定的一段时间,或协议约定的几个时隙。时间长短可以与子载波间隔SCS相关。
上述主要从系统各实体之间交互或者实体内部实现流程角度对本申请实施例提供的方案进行了介绍。可以理解的是,各实体,为了实现上述功能,其包含了执行各个功能 相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对UE、接入节点进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
本申请实施例还提供了一种终端设备。该终端设备可以用于执行图2-图6任一附图中UE所执行的步骤。图7示出了一种简化的终端设备结构示意图。便于理解和图示方便,图7中,终端设备以手机作为例子。如图7所示,终端设备70包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备70进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备70可以不具有输入输出装置。其中,存储器和处理器可以是集成在一起的,也可以是独立设置的;此外,射频电路和处理器可以是集成在一起的,也可以是独立设置的。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备70时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图7中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备70的收发单元,将具有处理功能的处理器视为终端设备70的处理单元。如图7所示,终端设备70包括收发单元701和处理单元702。收发单元也可以称为收发器(包括发射机和/或接收器)、收发机、收发装置、收发电路等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元701中用于实现接收功能的器件视为接收单元,将收发单元701中用于实现发送功能的器件视为发送单元,即收发单元701包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。在一些实施例中,收发单元701和处理单元702可以是集成在一起的,也可以是独立设置的。另外,处理单元702中的全部功能可以集成在一个芯片 中实现,也可以部分功能集成在一个芯片中实现,另外一部分功能集成在其他一个或多个芯片中实现,本申请对此不进行限定。本文所使用的术语“单元”可指执行一个或多个软件或固件程序的专用集成电路(ASIC)、电子电路、(共享、专用或组)处理器以及存储器,组合逻辑电路,和/或提供所述功能的其它合适的部件。
例如,在一种实现方式中,如果涉及与接入节点交互的场景,收发单元701可以用于执行图2的S101,和/或本申请中的其他步骤。处理单元702可以用于执行图2的S101和/或S102,和/或本申请中的其他步骤。
例如,在另一种实现方式中,收发单元701用于执行图3的S203,和/或本申请中的其他步骤。处理单元702用于执行图3的S203和/或S204,和/或本申请中的其他步骤。
例如,在一种实现方式中,如果涉及与接入节点交互的场景,收发单元701可以用于执行图4的S301,和/或本申请中的其他步骤。处理单元702可以用于执行图4的S301和/或S302,和/或本申请中的其他步骤。
例如,在一种实现方式中,如果涉及与接入节点交互的场景,收发单元701可以用于执行图5的S401,和/或本申请中的其他步骤。处理单元702可以用于执行图5的S401和/或S402,和/或本申请中的其他步骤。
例如,在一种实现方式中,如果涉及与接入节点交互的场景,收发单元701可以用于与接入节点通信,和/或本申请中的其他步骤。处理单元702可以用于执行图6的S501和/或S502,和/或本申请中的其他步骤。
本申请实施例还提供了一种网络设备。该网络设备可以作为接入节点或传输接收点,用于执行图2-图6任一附图中如果存在与接入节点交互的场景,接入节点所执行的步骤。图8示出了一种简化的网络设备结构示意图。网络设备80包括801部分以及802部分。801部分主要用于射频信号的收发以及射频信号与基带信号的转换;802部分主要用于基带处理,对网络设备80进行控制等。801部分通常可以称为收发单元、收发机、收发电路、或者收发器等。802部分通常是网络设备80的控制中心,通常可以称为处理单元、控制单元、处理器、或者控制器等,用于控制网络设备80执行上述相关实施例中关于接入侧的测量功能实体,或作为接入侧的测量功能实体的接入节点/传输接收点所执行的步骤。具体可参见上述相关部分的描述。
801部分的收发单元,也可以称为收发机,或收发器等,其包括天线和射频单元,其中射频单元主要用于进行射频处理。可选的,可以将801部分中用于实现接收功能的器件视为接收单元,将用于实现发送功能的器件视为发送单元,即801部分包括接收单元和发送单元。接收单元也可以称为接收机、接收器、或接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
802部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器,处理器用于读取和执行存储器中的程序以实现基带处理功能以及对网络设备80的控制。若存在多个单板,各个单板之间可以互联以增加处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。其中,存储器和处理器可以是集成在一起的,也可以是独立设置的。在一些实施例中,801部分和802部分可以是集成在一起的,也可以是独立设置的。另外,802部分中的全部功能可以集成在一个芯片中实现, 也可以部分功能集成在一个芯片中实现,另外一部分功能集成在其他一个或多个芯片中实现,本申请对此不进行限定。
例如,在一种实现方式中,如果涉及有UE与接入节点交互的场景,收发单元可以用于执行图2的S101对应的接入节点向UE发送所获取信息的步骤,和/或本申请中的其他步骤。处理单元可以用于执行图2的S101中UE获取的对应信息由接入节点发送时,对应信息的生成步骤,和/或本申请中的其他步骤。
例如,在另一种实现方式中,收发单元用于执行图3的S202,和/或本申请中的其他步骤。处理单元用于执行图3的S201,和/或本申请中的其他步骤。
例如,在一种实现方式中,如果涉及有UE与接入节点交互的场景,收发单元可以用于执行图4的S301对应的接入节点向UE发送所获取信息的步骤,和/或本申请中的其他步骤。处理单元可以用于执行图4的S301中UE获取的对应信息由接入节点发送时,对应信息的生成步骤,和/或本申请中的其他步骤。
例如,在一种实现方式中,如果涉及有UE与接入节点交互的场景,收发单元可以用于执行图5的S401对应的接入节点向UE发送所获取信息的步骤,和/或本申请中的其他步骤。处理单元可以用于执行图5的S401中UE获取的对应信息由接入节点发送时,对应信息的生成步骤,和/或本申请中的其他步骤。
以上提供的终端侧的装置可以为终端设备,也可以为终端设备中的芯片或功能模块,可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
以上提供的网络侧的装置,其具体实现形式可以是接入节点设备,例如:可以为接入节点设备,也可以为接入节点设备中的芯片或功能模块,可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
上述提供的任一种终端设备、网络设备及对应装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
本申请还提供了一种用于波束失败检测的系统,包括上述实施方式中UE(还可以是实现上述UE功能的UE端装置),以及接入节点(还可以是实现上述接入节点功能的接入侧装置或传输接收点)。
本申请还提供了一种计算机程序产品,当其在计算机上运行时,使得计算机执行上述提供的任一种方法。
本申请还提供了一种芯片,其中存储有指令,当其在上述各设备上运行时,使得各设备执行上述提供的方法。
本申请还提供了一种计算机存储介质,其上储存有计算机程序(指令),当该程序(指令)在计算机上运行时,使得计算机执行上述任一方面所述的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同 轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
上述方案在新空口(New Radio,简称为NR)中的提案具体为以下描述,本领域技术人员根据该提案的描述,可以将该提案的方案结合进上述实施例中,以实现相关的技术方案:在NR中引入波束失败实例指示,这允许UE物理层针对波束失败实例向较高层提供周期性指示。但是,该指示方案需要进一步澄清。(Beam failure instance indication is introduced to NR,which allows UE PHY layer to provide periodic indications to higher layer on the beam failure instance.However,some further clarifications are needed on this indication scheme.
首先,什么是波束失效实例?在我们的理解中,当UE物理层在一个指示间隔期间可以测量的所有BFD RS的评估结果高于给定的BLER阈值时,即是波束失败实例,并且UE物理层应该向MAC层发送标志。(Firstly,what is a beam failure instance?In our understanding,when the evaluation results of all BFD RSs that UE PHY layer can measure during one indication interval are above a given BLER threshold,it is a beam failure instance and UE PHY layer should send a flag to MAC layer.)
其次,指示区间的下界X是多少?一方面,[10]毫秒似乎不是一个好的选择,因为在波束失效宣告之前消耗的时间太多了。考虑到UE高层仅在来自UE物理层的NrOfBeamFailureInstance Nr个连续波束失败实例指示之后宣布波束失败,波束失败检测所需的时间为[10*Nr]ms。明显需要更短的时间限制,以确保NR中快速足够的波束失败恢复机制。另一方面,使用最短的RS周期或低得多的时间限制<<[10]ms可能导致这样的问题,即当宣布波束失败时,具有较长周期性的RS甚至一次都不能被评估到,这违反了协议协定波束失败意味着所有的PDCCH波束失败。(Secondly,what is the lower bound X of the indication interval?On the one hand,[10]ms seems not a good option,since the time consumed before beam failure declaration is too much.Considering UE higher layer would only declare beam failure after NrOfBeamFailureInstance Nr consecutive beam failure instance indication from UE PHY layer,the time needed for beam failure detection is[10*Nr]ms.A much shorter time bound is clearly needed,to ensure a fast-enough beam failure recovery mechanism in NR.On the other hand,using the shortest RS periodicity or a much lower time bound<<[10]ms may lead to the issue that the RS with a longer periodicity can be not evaluated even once when beam failure is declared,which violates the agreements that beam failure means all PDCCH beam fails.)
合适的指示间隔必须保证评估所有PDCCH波束,即,UE在波束失败宣告之前根据假设PDCCH BLER评估的集合
Figure PCTCN2019074068-appb-000141
中的BFD RS。UE应该考虑最长的周期性和NrOfBeamFailureInstance来得出波束失败实例指示间隔。(A proper indication  interval has to guarantee the evaluation of all PDCCH beams,i.e.,BFD RSs in the set 
Figure PCTCN2019074068-appb-000142
that UE assesses in terms of hypothetical PDCCH BLER before beam failure declaration.UE should consider the longest periodicity and NrOfBeamFailureInstance to derive the beam failure instance indication interval.)
建议x:支持UE确定合适的波束失败实例指示间隔,以保证基于最长周期性和NrOfBeamFailureInstance评估所有已评估的BFD RS。(Proposal x:Support UE to determine a proper beam failure instance indication interval to guarantee the evaluation of all assessed BFD RSs based on the longest periodicity and NrOfBeamFailureInstance.)
可见,在提案中指出恰当的指示间隔(即对应上文中波束检测区间的长度)必须保证评估所有的PDCCH波束,即UE在波束失败宣告之前根据假设的PDCCH BLER评估的集合中的波束失败检测参考信号(Beam Failure Detection RS,简称BFD RS)。UE应该考虑最长的周期性和NrOfBeamFailureInstance(即,上文所述波束失败宣告对应的连续的波束失败实例的个数N)来导出波束失败实例指示间隔。
最后,在提案中的优选方案为:支持UE确定合适的波束失效实例指示间隔,以保证根据最长的周期性和NrOfBeamFailureInstance评估所有评估的BFD RS。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器/控制器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (48)

  1. 一种用于波束失败检测的方法,其特征在于,所述方法包括:
    获取用于波束检测的相关时间信息Tf和调节量k,所述Tf包括至少一个波束检测信号的周期T;
    在波束检测区间内进行波束失败检测,所述波束检测区间的长度根据所述Tf和k确定。
  2. 根据权利要求1所述的方法,其特征在于,所述至少一个波束检测信号的周期T包括:所述至少一个波束检测信号中周期最短的波束检测信号的周期T short
    所述波束检测区间的长度根据所述Tf和k确定,包括:所述所述波束检测区间的长度根据所述T short和k确定。
  3. 根据权利要求2所述的方法,其特征在于,所述波束检测区间的长度包括k×T short
  4. 根据权利要求1所述的方法,其特征在于,所述至少一个波束检测信号的周期T包括:所述至少一个波束检测信号中周期最长的波束检测信号的周期T long
    所述波束检测区间的长度根据所述Tf和k确定,包括:所述波束检测区间的长度根据所述T long和k确定。
  5. 根据权利要求1所述的方法,其特征在于,
    所述Tf还包括以下至少一项:根据不同的子载波间隔SCS确定的值Ts、至少一个控制资源集CORESET的检测周期Tc。
  6. 一种用于波束失败检测的方法,其特征在于,所述方法包括:
    生成波束检测的相关时间配置Tf和调节量k,所述Tf包括至少一个波束检测信号的周期T;
    向终端设备发送所述Tf和k,以配置波束检测区间,所述波束检测区间的长度根据所述Tf和k确定。
  7. 根据权利要求6所述的方法,其特征在于,所述至少一个波束检测信号的周期T包括:所述至少一个波束检测信号中周期最短的波束检测信号的周期T short
    所述波束检测区间的长度根据所述Tf和k确定,包括:所述波束检测区间的长度根据所述T short和k确定。
  8. 根据权利要求7所述的方法,其特征在于,所述波束检测区间的长度包括k×T short
  9. 根据权利要求6所述的方法,其特征在于,所述至少一个波束检测信号的周期T包括:所述至少一个波束检测信号中周期最长的波束检测信号的周期T long
    所述波束检测区间的长度根据所述Tf和k确定,包括:所述所述波束检测区间的长度根据所述T long和k确定。
  10. 根据权利要求6所述的方法,其特征在于,
    所述Tf还包括以下至少一项:根据不同的子载波间隔SCS确定的值Ts、至少一个控制资源集CORESET的检测周期Tc。
  11. 一种用于波束失败检测的方法,其特征在于,所述方法包括:
    获取至少一个波束检测信号的周期T和波束失败宣告对应的连续的波束失败实例的个数N;其中,所述波束检测信号通过波束发送,一个所述波束失败实例为在至少一个波束检测区间内对所述至少一个波束检测信号中各波束检测信号的检测结果未满足预定条件;
    根据获取的所述T和N,确定所述波束检测区间的长度。
  12. 根据权利要求11所述的方法,其特征在于,
    所述至少一个波束检测信号的周期T,包括:所述至少一个波束检测信号中周期最短的波束检测信号的周期T short和/或所述至少一个波束检测信号中周期最长的波束检测信号的周期T long
    所述根据获取的所述T和N,确定所述波束检测区间的长度,包括:
    根据所述T short和/或所述T long,以及所述N,确定所述波束检测区间的长度。
  13. 根据权利要求12所述的方法,其特征在于,
    确定的所述波束检测区间的长度包括以下之一:
    Figure PCTCN2019074068-appb-100001
    T long/N、
    Figure PCTCN2019074068-appb-100002
    Figure PCTCN2019074068-appb-100003
    max{T short,T long/N}、
    Figure PCTCN2019074068-appb-100004
    max{max{T short,T long/N},T’}、min{T long,T short×N}、
    Figure PCTCN2019074068-appb-100005
    其中,T’为预定的时长值,符号max{}表示取最大值,min{}表示取最小值,符号
    Figure PCTCN2019074068-appb-100006
    表示向上取整。
  14. 根据权利要求11所述的方法,其特征在于,所述方法还包括:获取调节量k;
    所述根据获取的所述T和N,确定所述波束检测区间的长度,包括:
    根据所述T、N和k,确定所述波束检测区间的长度。
  15. 根据权利要求14所述的方法,其特征在于,
    所述至少一个波束检测信号的周期T,包括:所述至少一个波束检测信号中周期最短的波束检测信号的周期T short和/或所述至少一个波束检测信号中周期最长的波束检测信号的周期T long
    确定的所述波束检测区间的长度包括以下之一:
    Figure PCTCN2019074068-appb-100007
    k×T long/N、
    Figure PCTCN2019074068-appb-100008
    Figure PCTCN2019074068-appb-100009
    Figure PCTCN2019074068-appb-100010
    max{T short,k×T long/N}、
    Figure PCTCN2019074068-appb-100011
    Figure PCTCN2019074068-appb-100012
    max{max{T short,k×T long/N},T’}、min{T long,T short×N×k}、
    Figure PCTCN2019074068-appb-100013
    Figure PCTCN2019074068-appb-100014
    其中,T’为预定的时长值,符号max{}表示取最大值,min{}表示取最小值,符号
    Figure PCTCN2019074068-appb-100015
    表示向上取整。
  16. 一种用于波束失败检测的方法,其特征在于,所述方法包括:
    生成调节量信息,所述调节量信息用于终端设备调节波束检测区间的长度;
    向终端设备发送所述调节量信息;
    其中,所述波束检测区间的长度,还基于至少一个波束检测信号的周期T和波束失败宣告对应的连续的波束失败实例的个数N来确定,所述波束检测信号通过波束发送,一个所述波束失败实例为在至少一个波束检测区间内对所述至少一个波束检测信号中各波束检测信号的检测结果未满足预定条件。
  17. 一种用于波束失败检测的装置,其特征在于,所述装置包括:
    收发单元,用于获取用于波束检测的相关时间信息Tf和调节量k,所述Tf包括至少一个波束检测信号的周期T;
    处理单元,用于在波束检测区间内进行波束失败检测,所述波束检测区间的长度根 据所述Tf和k确定。
  18. 根据权利要求17所述的装置,其特征在于,所述至少一个波束检测信号的周期T包括:所述至少一个波束检测信号中周期最短的波束检测信号的周期T short
    所述波束检测区间的长度根据所述Tf和k确定,包括:所述所述波束检测区间的长度根据所述T short和k确定。
  19. 根据权利要求18所述的装置,其特征在于,所述波束检测区间的长度包括k×T short
  20. 根据权利要求17所述的装置,其特征在于,所述至少一个波束检测信号的周期T包括:所述至少一个波束检测信号中周期最长的波束检测信号的周期T long
    所述波束检测区间的长度根据所述Tf和k确定,包括:所述波束检测区间的长度根据所述T long和k确定。
  21. 根据权利要求17所述的装置,其特征在于,
    所述Tf还包括以下至少一项:根据不同的子载波间隔SCS确定的值Ts、至少一个控制资源集CORESET的检测周期Tc。
  22. 一种用于波束失败检测的装置,其特征在于,所述装置包括:
    处理单元,用于生成波束检测的相关时间配置Tf和调节量k,所述Tf包括至少一个波束检测信号的周期T;
    收发单元,用于向终端设备发送所述Tf和k,以配置波束检测区间,所述波束检测区间的长度根据所述Tf和k确定。
  23. 根据权利要求22所述的装置,其特征在于,所述至少一个波束检测信号的周期T包括:所述至少一个波束检测信号中周期最短的波束检测信号的周期T short
    所述波束检测区间的长度根据所述Tf和k确定,包括:所述波束检测区间的长度根据所述T short和k确定。
  24. 根据权利要求23所述的装置,其特征在于,所述波束检测区间的长度包括k×T short
  25. 根据权利要求22所述的装置,其特征在于,所述至少一个波束检测信号的周期T包括:所述至少一个波束检测信号中周期最长的波束检测信号的周期T long
    所述波束检测区间的长度根据所述Tf和k确定,包括:所述所述波束检测区间的长度根据所述T long和k确定。
  26. 根据权利要求22所述的装置,其特征在于,
    所述Tf还包括以下至少一项:根据不同的子载波间隔SCS确定的值Ts、至少一个控制资源集CORESET的检测周期Tc。
  27. 一种用于波束失败检测的装置,其特征在于,所述装置包括:
    处理单元,用于获取至少一个波束检测信号的周期T和波束失败宣告对应的连续的波束失败实例的个数N,根据获取的所述T和N,确定所述波束检测区间的长度;
    其中,所述波束检测信号通过波束发送,一个所述波束失败实例为在至少一个波束检测区间内对所述至少一个波束检测信号中各波束检测信号的检测结果未满足预定条件。
  28. 根据权利要求27所述的装置,其特征在于,
    所述至少一个波束检测信号的周期T,包括:所述至少一个波束检测信号中周期最短 的波束检测信号的周期T short和/或所述至少一个波束检测信号中周期最长的波束检测信号的周期T long
    所述根据获取的所述T和N,确定所述波束检测区间的长度,包括:
    根据所述T short和/或所述T long,以及所述N,确定所述波束检测区间的长度。
  29. 根据权利要求28所述的装置,其特征在于,
    确定的所述波束检测区间的长度包括以下之一:
    Figure PCTCN2019074068-appb-100016
    T long/N、
    Figure PCTCN2019074068-appb-100017
    Figure PCTCN2019074068-appb-100018
    max{T short,T long/N}、
    Figure PCTCN2019074068-appb-100019
    max{max{T short,T long/N},T’}、min{T long,T short×N}、
    Figure PCTCN2019074068-appb-100020
    其中,T’为预定的时长值,符号max{}表示取最大值,min{}表示取最小值,符号
    Figure PCTCN2019074068-appb-100021
    表示向上取整。
  30. 根据权利要求27所述的装置,其特征在于,所述装置还包括:获取调节量k;
    所述根据获取的所述T和N,确定所述波束检测区间的长度,包括:
    根据所述T、N和k,确定所述波束检测区间的长度。
  31. 根据权利要求30所述的装置,其特征在于,
    所述至少一个波束检测信号的周期T,包括:所述至少一个波束检测信号中周期最短的波束检测信号的周期T short和/或所述至少一个波束检测信号中周期最长的波束检测信号的周期T long
    确定的所述波束检测区间的长度包括以下之一:
    Figure PCTCN2019074068-appb-100022
    k×T long/N、
    Figure PCTCN2019074068-appb-100023
    Figure PCTCN2019074068-appb-100024
    Figure PCTCN2019074068-appb-100025
    max{T short,k×T long/N}、
    Figure PCTCN2019074068-appb-100026
    Figure PCTCN2019074068-appb-100027
    max{max{T short,k×T long/N},T’}、min{T long,T short×N×k}、
    Figure PCTCN2019074068-appb-100028
    Figure PCTCN2019074068-appb-100029
    其中,T’为预定的时长值,符号max{}表示取最大值,min{}表示取最小值,符号
    Figure PCTCN2019074068-appb-100030
    表示向上取整。
  32. 一种用于波束失败检测的装置,其特征在于,所述装置包括:
    处理单元,用于生成调节量信息,所述调节量信息用于终端设备调节波束检测区间的长度;
    收发单元,用于向终端设备发送所述调节量信息;
    其中,所述波束检测区间的长度,还基于至少一个波束检测信号的周期T和波束失败宣告对应的连续的波束失败实例的个数N来确定,所述波束检测信号通过波束发送,一个所述波束失败实例为在至少一个波束检测区间内对所述至少一个波束检测信号中各波束检测信号的检测结果未满足预定条件。
  33. 一种用于波束失败检测的装置,其特征在于,所述装置包括:
    收发器,用于获取用于波束检测的相关时间信息Tf和调节量k,所述Tf包括至少一个波束检测信号的周期T;
    处理器,用于在波束检测区间内进行波束失败检测,所述波束检测区间的长度根据所述Tf和k确定。
  34. 根据权利要求33所述的装置,其特征在于,所述至少一个波束检测信号的周期 T包括:所述至少一个波束检测信号中周期最短的波束检测信号的周期T short
    所述波束检测区间的长度根据所述Tf和k确定,包括:所述所述波束检测区间的长度根据所述T short和k确定。
  35. 根据权利要求18所述的装置,其特征在于,所述波束检测区间的长度包括k×T short。
  36. 根据权利要求33所述的装置,其特征在于,所述至少一个波束检测信号的周期T包括:所述至少一个波束检测信号中周期最长的波束检测信号的周期T long
    所述波束检测区间的长度根据所述Tf和k确定,包括:所述波束检测区间的长度根据所述T long和k确定。
  37. 根据权利要求33所述的装置,其特征在于,
    所述Tf还包括以下至少一项:根据不同的子载波间隔SCS确定的值Ts、至少一个控制资源集CORESET的检测周期Tc。
  38. 一种用于波束失败检测的装置,其特征在于,所述装置包括:
    处理器,用于生成波束检测的相关时间配置Tf和调节量k,所述Tf包括至少一个波束检测信号的周期T;
    收发器,用于向终端设备发送所述Tf和k,以配置波束检测区间,所述波束检测区间的长度根据所述Tf和k确定。
  39. 根据权利要求38所述的装置,其特征在于,所述至少一个波束检测信号的周期T包括:所述至少一个波束检测信号中周期最短的波束检测信号的周期T short
    所述波束检测区间的长度根据所述Tf和k确定,包括:所述波束检测区间的长度根据所述T short和k确定。
  40. 根据权利要求39所述的装置,其特征在于,所述波束检测区间的长度包括k×T short
  41. 根据权利要求38所述的装置,其特征在于,所述至少一个波束检测信号的周期T包括:所述至少一个波束检测信号中周期最长的波束检测信号的周期T long
    所述波束检测区间的长度根据所述Tf和k确定,包括:所述所述波束检测区间的长度根据所述T long和k确定。
  42. 根据权利要求38所述的装置,其特征在于,
    所述Tf还包括以下至少一项:根据不同的子载波间隔SCS确定的值Ts、至少一个控制资源集CORESET的检测周期Tc。
  43. 一种用于波束失败检测的系统,其特征在于,所述系统包括:
    如权利要求17至21任一项所述的装置,以及如权利要求22至26任一项所述的装置;或者
    如权利要求27至31任一项所述的装置,以及如权利要求32所述的装置;或者
    如权利要求33至37任一项所述的装置,以及如权利要求38至42任一项所述的装置。
  44. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1至16中任一项所述的方法。
  45. 一种用于波束失败检测的装置,包括存储器、处理器及存储在存储器上 并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至16中任一项所述的方法。
  46. 一种用于波束失败检测的装置,其特征在于,包括处理器,所述处理器用于与存储器耦合,并读取存储器中的指令,并根据所述指令实现如权利要求1至16中任一项所述的方法。
  47. 一种计算机程序产品,包括计算机程序指令,其特征在于,当所述计算机程序指令在计算机上运行时,使得计算机执行上述权利要求1至16中任一项所述的方法。
  48. 一种用于波束失败检测的装置,其特征在于,所述装置用于实现如权利要求1至16中任一项所述的方法。
PCT/CN2019/074068 2018-02-13 2019-01-31 一种用于波束失败检测的方法、装置及系统 WO2019157967A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19753764.0A EP3745759A4 (en) 2018-02-13 2019-01-31 BEAM FAILURE DETECTION METHOD, APPARATUS AND SYSTEM
BR112020016149-7A BR112020016149A2 (pt) 2018-02-13 2019-01-31 Método, aparelho, sistema de detecção de falha de feixe, mídia de armazenamento legível por computador e produto de programa de computador
US16/992,879 US20200374853A1 (en) 2018-02-13 2020-08-13 Beam Failure Detection Method, Apparatus, And System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810150836.8 2018-02-13
CN201810150836.8A CN110167055B (zh) 2018-02-13 2018-02-13 一种用于波束失败检测的方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/992,879 Continuation US20200374853A1 (en) 2018-02-13 2020-08-13 Beam Failure Detection Method, Apparatus, And System

Publications (1)

Publication Number Publication Date
WO2019157967A1 true WO2019157967A1 (zh) 2019-08-22

Family

ID=67619170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074068 WO2019157967A1 (zh) 2018-02-13 2019-01-31 一种用于波束失败检测的方法、装置及系统

Country Status (5)

Country Link
US (1) US20200374853A1 (zh)
EP (1) EP3745759A4 (zh)
CN (2) CN114363916B (zh)
BR (1) BR112020016149A2 (zh)
WO (1) WO2019157967A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022057461A1 (en) * 2020-09-21 2022-03-24 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for beam failure recovery, user equipment

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110324914B (zh) * 2018-03-28 2021-03-23 维沃移动通信有限公司 波束失败的处理方法和终端
US20220239437A1 (en) * 2019-05-31 2022-07-28 Ntt Docomo, Inc. User terminal and radio communication method
US11930490B2 (en) * 2020-04-01 2024-03-12 Samsung Electronics Co., Ltd. Method and apparatus for idle mode operation in wireless communication system
KR20230107299A (ko) * 2021-01-14 2023-07-14 지티이 코포레이션 빔 고장 복구 정보를 결정하기 위한 시스템 및 방법
US20240172006A1 (en) * 2021-03-04 2024-05-23 Beijing Xiaomi Mobile Software Co., Ltd. Method and apparatus for beam recovery, communication device and storage medium
CN116017534A (zh) * 2021-10-22 2023-04-25 南宁富联富桂精密工业有限公司 波束故障检测方法、系统及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107342801A (zh) * 2017-06-15 2017-11-10 宇龙计算机通信科技(深圳)有限公司 一种波束处理方法、用户设备及基站
WO2017217901A1 (en) * 2016-06-13 2017-12-21 Telefonaktiebolaget Lm Ericsson (Publ) Assisted beamforming at mobility
CN107567038A (zh) * 2016-07-01 2018-01-09 华硕电脑股份有限公司 无线通信中当服务波束为无效时管理通信的方法和设备
CN107612602A (zh) * 2017-08-28 2018-01-19 清华大学 毫米波通信系统的波束恢复方法及装置
CN107645324A (zh) * 2016-07-22 2018-01-30 华硕电脑股份有限公司 无线通信系统中使用波束成形的传送或接收方法和设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016127403A1 (en) * 2015-02-13 2016-08-18 Mediatek Singapore Pte. Ltd. Handling of intermittent disconnection in a millimeter wave (mmw) system
EP3280068B1 (en) * 2015-04-17 2019-10-09 Huawei Technologies Co. Ltd. Method for transmitting information, base station, and user equipment
CN113556752A (zh) * 2015-10-02 2021-10-26 瑞典爱立信有限公司 自适应波束成形扫描
US11368950B2 (en) * 2017-06-16 2022-06-21 Asustek Computer Inc. Method and apparatus for beam management in unlicensed spectrum in a wireless communication system
WO2019041244A1 (en) * 2017-08-31 2019-03-07 Zte Corporation BEAM RECOVERY IN A CONNECTED DISCONTINUOUS RECEPTION
US10880761B2 (en) * 2017-09-11 2020-12-29 Qualcomm Incorporated System and method for selecting resources to transmit a beam failure recovery request
SG11202003186PA (en) * 2017-11-17 2020-05-28 Lg Electronics Inc Method for carrying out beam failure recovery in wireless communication system and device therefor
EP3744013A1 (en) * 2018-01-22 2020-12-02 Nokia Technologies Oy Higher-layer beam management
US11316798B2 (en) * 2018-02-06 2022-04-26 Apple Inc. Control signaling of beam failure detection

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017217901A1 (en) * 2016-06-13 2017-12-21 Telefonaktiebolaget Lm Ericsson (Publ) Assisted beamforming at mobility
CN107567038A (zh) * 2016-07-01 2018-01-09 华硕电脑股份有限公司 无线通信中当服务波束为无效时管理通信的方法和设备
CN107645324A (zh) * 2016-07-22 2018-01-30 华硕电脑股份有限公司 无线通信系统中使用波束成形的传送或接收方法和设备
CN107342801A (zh) * 2017-06-15 2017-11-10 宇龙计算机通信科技(深圳)有限公司 一种波束处理方法、用户设备及基站
CN107612602A (zh) * 2017-08-28 2018-01-19 清华大学 毫米波通信系统的波束恢复方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3745759A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022057461A1 (en) * 2020-09-21 2022-03-24 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for beam failure recovery, user equipment

Also Published As

Publication number Publication date
EP3745759A1 (en) 2020-12-02
US20200374853A1 (en) 2020-11-26
BR112020016149A2 (pt) 2020-12-08
CN114363916B (zh) 2023-12-08
CN114363916A (zh) 2022-04-15
CN110167055B (zh) 2021-12-14
CN110167055A (zh) 2019-08-23
EP3745759A4 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
US11825323B2 (en) System and method for periodic beam failure measurements
WO2019157967A1 (zh) 一种用于波束失败检测的方法、装置及系统
CN110475337B (zh) 通信方法及装置
US11777587B2 (en) Resource configuration method, apparatus, and system
US20200107341A1 (en) Signal transmission method and communications apparatus
CN112470415B (zh) 在不连续传输操作中节能的系统和方法
WO2020228589A1 (zh) 通信方法和通信装置
CN114666904A (zh) 通信方法及装置
CN112368954B (zh) 用于不连续接收的链路恢复的系统和方法
CN114128170A (zh) 触发多波束报告的方法和装置
CN115486175A (zh) 用于发送和接收下行链路(dl)带宽部分(bwp)的信道状态信息(csi)报告的装置和方法
US20230095844A1 (en) Beam failure recovery method and apparatus, and device
US20210314054A1 (en) User terminal and radio communication method
CN114205015B (zh) 测量方法、发送方法及相关设备
RU2779458C2 (ru) Способ, устройство, оконечное устройство, сетевое устройство, машиночитаемый носитель данных, компьютерный программный продукт и система для конфигурации ресурсов
WO2023014469A1 (en) Techniques for aperiodic discontinuous reception mode communications
CN116367307A (zh) 波束失败确定方法及装置、计算机可读存储介质
CN117397281A (zh) 用于最大准许照射值的差分报告
CN118140517A (zh) 用于配置与可重新配置智能表面相关联的通信的技术

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19753764

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019753764

Country of ref document: EP

Effective date: 20200827

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020016149

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020016149

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200807