WO2019029209A1 - 用于驱动电泳显示面板的方法、装置以及显示装置 - Google Patents

用于驱动电泳显示面板的方法、装置以及显示装置 Download PDF

Info

Publication number
WO2019029209A1
WO2019029209A1 PCT/CN2018/086684 CN2018086684W WO2019029209A1 WO 2019029209 A1 WO2019029209 A1 WO 2019029209A1 CN 2018086684 W CN2018086684 W CN 2018086684W WO 2019029209 A1 WO2019029209 A1 WO 2019029209A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
voltage signal
display panel
electrophoretic display
driving
Prior art date
Application number
PCT/CN2018/086684
Other languages
English (en)
French (fr)
Inventor
方浩博
薛艳娜
包智颖
张勇
米磊
白璐
华刚
王景棚
院凌翔
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/316,943 priority Critical patent/US10755649B2/en
Publication of WO2019029209A1 publication Critical patent/WO2019029209A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/344Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on particles moving in a fluid or in a gas, e.g. electrophoretic devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2230/00Details of flat display driving waveforms
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/061Details of flat display driving waveforms for resetting or blanking
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/068Application of pulses of alternating polarity prior to the drive pulse in electrophoretic displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving

Definitions

  • the present disclosure relates to display technologies, and in particular, to a method, apparatus, and display apparatus for driving an electrophoretic display panel.
  • An electrophoretic display device such as an electronic paper display device, has the same display characteristics as conventional paper, and has the advantages of low energy consumption, light weight, and flexibility, and has been applied to more and more fields.
  • charged particles of different colors are moved to a visible surface of the electrophoretic display panel by applying different driving voltages to present contents such as images. After the display is completed, even if the application of the driving voltage is stopped, the state of the charged particles does not change, thereby maintaining the display content.
  • Embodiments of the present disclosure provide a method, apparatus, and display apparatus for driving an electrophoretic display panel.
  • a first aspect of the present disclosure provides a method for driving an electrophoretic display panel, wherein the electrophoretic display panel includes a first electrode layer, a second electrode layer, and a distribution between the first electrode layer and the second electrode layer Charged particles.
  • a method for driving an electrophoretic display panel includes: applying a direct current voltage signal to a first electrode layer to move a charged particle to a predetermined position; applying an alternating voltage signal including an alternating voltage signal to the first electrode layer to cause a charged particle to generate a round trip Motion; and applying a data voltage signal to the first electrode layer for display.
  • the alternating voltage signal is a square wave voltage signal.
  • the duty cycle of the square wave voltage signal is about 50%.
  • the frequency of the alternating voltage signal is greater than or equal to about 24 Hz.
  • the frequency is greater than or equal to about 30 Hz.
  • an alternating voltage signal is applied after applying a direct voltage signal.
  • an alternating voltage signal is applied prior to applying a direct voltage signal.
  • the duration of the alternating voltage signal is less than or equal to the duration of the direct voltage signal.
  • the duration of the alternating voltage signal is less than or equal to half the duration of the direct voltage signal.
  • the method for driving an electrophoretic display panel further includes: applying a compensation voltage signal to the first electrode layer according to a magnitude, a duration, and a magnitude and duration of the DC voltage signal; The time during which a positive voltage is applied to the first electrode layer is equal to the time at which a negative voltage is applied to the first electrode layer.
  • a compensation voltage signal is applied prior to applying a DC voltage signal.
  • the first electrode layer is a pixel electrode layer and the second electrode layer is a common electrode layer.
  • the electrophoretic display panel is an electronic paper display panel.
  • a second aspect of the present disclosure provides an apparatus for driving an electrophoretic display panel, wherein the electrophoretic display panel includes a first electrode layer, a second electrode layer, and a distribution between the first electrode layer and the second electrode layer Charged particles.
  • the apparatus for driving an electrophoretic display panel includes: a first circuit, a second circuit, and a data voltage circuit connected to the first electrode layer.
  • the first circuit is configured to apply a DC voltage signal to the first electrode layer to cause the charged particles to move to a predetermined position.
  • the second circuit is configured to apply an alternating voltage signal comprising an alternating voltage signal to the first electrode layer to cause the charged particles to oscillate.
  • the data voltage circuit is configured to apply a data voltage signal to the first electrode layer for display.
  • the apparatus for driving the electrophoretic display panel further includes: a compensation voltage circuit connected to the first electrode layer.
  • the compensation voltage circuit is configured to apply a compensation voltage signal to the first electrode layer according to the amplitude, duration, and amplitude and duration of the DC voltage signal such that a positive voltage is applied to the first electrode layer for a time equal to The time during which a negative voltage is applied to the first electrode layer.
  • a third aspect of the present disclosure provides a display device comprising: an electrophoretic display panel, and the device for driving the electrophoretic display panel of any of the above.
  • the electrophoretic display panel includes a first electrode layer, a second electrode layer, and charged particles distributed between the first electrode layer and the second electrode layer.
  • a method, apparatus, and display apparatus for driving an electrophoretic display panel according to an embodiment of the present disclosure can improve motion activity of charged particles, so that charged particles can be more accurately based
  • Data voltage signal motion improves display accuracy.
  • 1 is an exemplary schematic view of an electrophoretic display panel
  • FIG. 2 is a first exemplary flow chart of a method for driving an electrophoretic display panel
  • Figure 3 is an exemplary signal timing diagram corresponding to Figure 2;
  • Figure 4 shows the reciprocating motion of charged particles driven by the signal timing of Figure 3;
  • Figure 5 is a second exemplary signal timing diagram corresponding to Figure 2;
  • FIG. 6 is a second exemplary flowchart of a method for driving an electrophoretic display panel
  • Figure 7 is an exemplary signal timing diagram corresponding to Figure 6;
  • FIG. 8 is an exemplary schematic view of an electrophoretic display panel and a driving device thereof included in a display device;
  • Figure 9 is a first exemplary structural block diagram of the apparatus for driving an electrophoretic display panel of Figure 8.
  • FIG. 10 is a second exemplary structural block diagram of the apparatus for driving an electrophoretic display panel of FIG.
  • FIG. 1 is an exemplary schematic view of an electrophoretic display panel.
  • the electrophoretic display panel of FIG. 1 includes first charged particles 1 and second charged particles 2.
  • the first charged particle 1 may be white and have a negative charge.
  • the second charged particle 2 may be black and have a positive charge.
  • the first charged particles 1 and the second charged particles 2 are distributed between the first electrode layer 3 and the second electrode layer 4.
  • the voltage applied to the first electrode layer 3 and the second electrode layer 4 changes, the states of the first charged particles 1 and the second charged particles 2 are changed, thereby changing the displayed content.
  • the first electrode layer 3 may be the pixel electrode layer 3, and the second electrode layer 4 may be the common electrode layer 4 having a voltage of 0V.
  • the common electrode layer 4 may be a transparent electrode for display. At this time, the portion shown in Fig. 1 will appear white. Thereafter, even if the application of the voltage to the pixel electrode layer 3 is stopped, the state of the charged particles does not change, and the content displayed on the electrophoretic display panel can be held.
  • the electrophoretic display panel When a positive voltage is applied to the pixel electrode layer 3, the first charged particles 1 move toward the pixel electrode layer 3, and the second charged particles 2 move toward the common electrode layer 4. At this time, the portion shown in FIG. 1 will appear black.
  • the electrophoretic display panel By applying different voltages at different positions of the first electrode layer 3, it is possible to cause the electrophoretic display panel to present a pattern or a character as a whole.
  • the electrophoretic display panel may have more kinds of charged particles, and the charged particles may also be grouped and packaged in different tiny containers, and the first electrode layer 3 may be divided in various different manners to respectively control the respective electrophoretic display panels. Partially displayed content.
  • the method for driving an electrophoretic display panel includes: step S201, applying a DC voltage signal to the pixel electrode layer 3 to move the charged particles to a predetermined position; and step S202, applying an alternating voltage signal to the pixel electrode layer 3 To cause the charged particles to oscillate; and in step S203, apply a data voltage signal to the pixel electrode layer 3 for display.
  • step 201 a direct current voltage signal is applied to the pixel electrode layer 3 such that the first charged particle 1 and the second charged particle 2 are respectively moved to respective predetermined positions.
  • step S202 an amplitude-varying alternating voltage signal is applied to the pixel electrode layer 3 such that the first charged particle 1 and the second charged particle 2 oscillate in the vicinity of respective predetermined positions, that is, a small-amplitude reciprocating motion is generated.
  • This can increase the activity of the charged particles.
  • the charged particles are in the same position for a long time. At this time, the charged particles may be hindered by the surrounding environment (for example, a liquid surrounding the charged particles) and cannot move sensitively in response to the data voltage. The charged particles can overcome such obstacles well after shaking.
  • step S203 a data voltage signal is applied to the pixel electrode layer 3, and the first charged particle 1 and the second charged particle 2 can correctly display the new content in response to the data voltage signal. Since the motion activity of the charged particles is increased in step S202, it is possible to reduce the possible hindrance of the first charged particles 1 and the second charged particles 2, and to avoid the case where the charged particles cannot move to a predetermined display position. The problem of displaying inaccurate content is thus avoided.
  • FIG. 3 is an exemplary signal timing diagram corresponding to FIG. 2.
  • Figure 4 shows the reciprocating motion of charged particles driven by the signal timing of Figure 3.
  • a DC voltage signal having a first amplitude V1 (eg, a positive value) is applied to the pixel electrode layer 3.
  • V1 a DC voltage signal having a first amplitude
  • the alternating voltage signal may include various alternating voltage signals of a sine wave or the like to cause the first charged particle 1 and the second charged particle 2 to reciprocate.
  • the AC voltage signal can be a square wave voltage signal to simplify the control of the drive signal.
  • the square wave voltage signal can have a first magnitude V1 and a second magnitude V2 (eg, a negative value).
  • the first amplitude value V1 and the second amplitude value V2 can also be generated by a drive circuit that generates a data voltage signal, which can make full use of the existing drive circuit.
  • 4 shows that the first charged particle 1 leaves the pixel electrode layer 3 (FIG. 4(b)), approaches the pixel electrode layer 3 (FIG. 4(c)), and leaves the pixel electrode layer 3 again under the action of the alternating voltage signal. Process ( Figure 4(d)).
  • the duty ratio of the square wave voltage signal may be about 50%, such that in step S202, the charged particles are subjected to the same force in two different directions, which can prevent the charged particles from being subjected to excessive force in one direction for too long. Causes a drop in display performance. Any value in the range of 50% ⁇ 5% of 49%, 51%, etc. is suitable.
  • the frequency of the alternating voltage signal can be greater than or equal to about 24 Hz so that the human eye cannot perceive changes in the image. This can avoid the occurrence of flicker when switching the display content. Further, the frequency may be greater than or equal to about 30 Hz to obtain a better effect of preventing flicker. In general, an effect greater than 28 Hz results in an improved flicker prevention effect.
  • the duration of the alternating voltage signal can be less than or equal to the duration of the direct voltage signal to reduce power consumption and reduce drive time. Further, the duration of the alternating voltage signal is less than or equal to half the duration of the direct current voltage signal to further reduce power consumption and shorten driving time.
  • the number of cycles of the AC voltage signal can be arbitrarily set. In general, the more the number of cycles, the better the effect of the oscillation. The case of two cycles is shown in Fig. 3. Two or slightly more cycles can maintain low power consumption while achieving better oscillation effects.
  • FIG. 5 is a second exemplary signal timing diagram corresponding to FIG. 2.
  • an alternating voltage signal may also be applied prior to applying a direct voltage signal.
  • step S202 is performed once before and after step S201 is shown in Fig. 5, which can cause the charged particles to oscillate before moving a relatively long distance to improve the activity and the accuracy of the moving position.
  • step S601 applying a compensation voltage signal to the pixel electrode layer 3 such that a positive voltage is applied to the pixel electrode layer 3 for a time equal to applying a negative voltage to the pixel electrode layer 3. time.
  • the charged particles are subjected to more force in one direction. If such a situation lasts for a long time, it may damage the charged particles and affect the display effect. Increasing the compensation phase can avoid this situation.
  • the magnitude, duration, and amplitude and duration of the data voltage signal can be used according to the magnitude and duration of the DC voltage signal applied in step S201.
  • the pixel electrode layer applies a compensation voltage signal such that a time during which a positive voltage is applied to the pixel electrode layer is equal to a time when a negative voltage is applied to the pixel electrode layer.
  • FIG. 7 is an exemplary signal timing diagram corresponding to FIG. 6.
  • the DC voltage signal that causes the charged particles to move to a predetermined position has a first amplitude V1 and a duration of ta.
  • the amplitude of the data voltage signal is the second amplitude V2 and the duration is td.
  • the amplitude of the compensation voltage signal is the second amplitude value V2
  • the duration is tc
  • tc+td ta.
  • the amplitude of the compensation voltage signal is the first amplitude V1
  • the duration is tc
  • tc + ta td.
  • the compensation phase in FIGS. 6 and 7 can also be the compensation for the last display process, that is, the value of tc can also be "ta" in the last display process. "and "td” calculations.
  • the display device includes an electrophoretic display panel, and a device 5 (also referred to as a driving device 5) for driving the electrophoretic display panel.
  • the driving device 5 is connected to the pixel electrode layer 3, and applies a voltage to the pixel electrode layer 3 to perform the above-described method for driving the electrophoretic display panel.
  • the display device can be various electrophoretic display devices, and for example, can be various electronic paper display devices that should be applied in many fields at present.
  • the driving device 5 includes a first circuit 501 connected to the pixel electrode layer 3, a second circuit 502, and a data voltage circuit 502.
  • the first circuit 501 is configured to apply a DC voltage signal to the pixel electrode layer 3 to move the charged particles to a predetermined position.
  • the second circuit 502 is configured to apply an alternating voltage signal to the pixel electrode layer 3 to cause the charged particles to oscillate.
  • the data voltage circuit 503 is configured to apply a data voltage signal to the pixel electrode layer 3 for display.
  • the driving device 5 of the electronic paper display device may further include: a compensation voltage circuit 504 connected to the pixel electrode layer 3.
  • the compensation voltage circuit 504 is configured to apply a compensation voltage signal to the pixel electrode layer 3 such that a time during which a positive voltage is applied to the pixel electrode layer is equal to a time when a negative voltage is applied to the pixel electrode layer.
  • the compensation voltage circuit 504 may apply a compensation voltage signal to the pixel electrode layer 3 according to the amplitude, duration, and amplitude and duration of the DC voltage signal such that a positive voltage is applied to the pixel electrode layer 3 for a time equal to The time during which a negative voltage is applied to the pixel electrode layer.
  • the first circuit 501, the second circuit 502, the data voltage circuit 503, and the compensation voltage circuit 504 may use any dedicated or general-purpose circuit structure, and may include software, hardware, or a combination thereof, for example, various analog or digital voltage generators. Or a signal generator.
  • FIG. 10 is a second exemplary structural block diagram of the apparatus for driving an electrophoretic display panel of FIG.
  • the driving device 5 includes a data storage device in which first voltage data 511, second voltage data 512, data voltage data 513, and compensation voltage data 514 are stored. These data can be transmitted to the same voltage generating circuit 515 to generate different voltages and apply them to the pixel electrode layer 3.
  • the structure of FIG. 10 can be implemented in any electronic paper driving chip, or a microcontroller system such as a single chip microcomputer, a digital signal processor, or a programmable logic gate array.
  • a method, apparatus, and display apparatus for driving an electrophoretic display panel according to an embodiment of the present disclosure can improve motion activity of charged particles, so that charged particles can be more accurately based
  • Data voltage signal motion improves display accuracy.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

本公开的实施例提供用于驱动电泳显示面板的方法、装置以及显示装置。电泳显示面板包括第一电极层,第二电极层,以及在第一电极层、第二电极层之间分布的带电粒子。在用于驱动电泳显示面板的方法中,对于第一电极层施加直流电压信号,以使得带电粒子运动到预定位置。对于第一电极层施加交流电压信号,以使得带电粒子进行振荡。对于所述第一电极层施加数据电压信号,以进行显示。带电粒子进行振荡后,能够提高运动活性,使得带电粒子能够更精确的根据数据电压信号运动,提高显示精度。

Description

用于驱动电泳显示面板的方法、装置以及显示装置
相关申请的交叉引用
本申请要求2017年08月09日递交的中国专利申请第201710675781.8号的优先权,在此全文引用上述中国专利申请所公开的内容以作为本申请的一部分。
技术领域
本公开涉及显示技术,具体涉及用于驱动电泳显示面板的方法、装置以及显示装置。
背景技术
电泳显示装置,例如电子纸显示装置,具有和传统纸张一样的显示特性,并且具有能耗低、轻薄、可弯曲等优点,已经应用于越来越多的领域。
在电泳显示装置的电泳显示面板中,通过施加不同的驱动电压使得不同颜色的带电粒子运动至电泳显示面板的可视的表面,以呈现图像等内容。在完成显示后,即使停止施加驱动电压,带电粒子的状态也不会改变,从而保持了显示内容。
如何对于电泳显示面板中的带电粒子进行有效的驱动,始终是该技术领域的研究热点。用于驱动电泳显示面板的方法、装置以及显示装置存在改进空间。
发明内容
本公开的实施例提供用于驱动电泳显示面板的方法、装置以及显示装置。
本公开的第一个方面提供了一种用于驱动电泳显示面板的方法,其中,电泳显示面板包括第一电极层,第二电极层,以及在第一电极层、第二电极层之间分布的带电粒子。用于驱动电泳显示面板的方法包括:对于第一 电极层施加直流电压信号,以使得带电粒子运动到预定位置;对于第一电极层施加包含交流电压信号的交流电压信号,以使得带电粒子产生往返运动;以及对于第一电极层施加数据电压信号,以进行显示。
在本公开的实施例中,交流电压信号是方波电压信号。
在本公开的实施例中,方波电压信号的占空比为约50%。
在本公开的实施例中,交流电压信号的频率大于等于约24Hz。
在本公开的实施例中,频率大于等于约30Hz。
在本公开的实施例中,在施加直流电压信号之后,施加交流电压信号。
在本公开的实施例中,在施加直流电压信号之前,施加交流电压信号。
在本公开的实施例中,交流电压信号的持续时间小于等于直流电压信号的持续时间。
在本公开的实施例中,交流电压信号的持续时间小于等于直流电压信号的持续时间的一半。
在本公开的实施例中,用于驱动电泳显示面板的方法还包括:根据直流电压信号的幅值、持续时间,和数据电压信号的幅值、持续时间,对第一电极层施加补偿电压信号,使得向第一电极层施加正电压的时间等于向第一电极层施加负电压的时间。
在本公开的实施例中,在施加直流电压信号之前施加补偿电压信号。
在本公开的实施例中,第一电极层是像素电极层,第二电极层是公共电极层。
在本公开的实施例中,电泳显示面板是电子纸显示面板。
本公开的第二个方面提供了一种用于驱动电泳显示面板的装置,其中,电泳显示面板包括第一电极层,第二电极层,以及在第一电极层、第二电极层之间分布的带电粒子。用于驱动电泳显示面板的装置包括:与第一电极层连接的第一电路、第二电路、以及数据电压电路。第一电路被配置为对于第一电极层施加直流电压信号,以使得带电粒子运动到预定位置。第二电路被配置为对于第一电极层施加包含交流电压信号的交流电压信号,以使得带电粒子进行振荡。数据电压电路被配置为对于第一电极层施加数 据电压信号,以进行显示。
在本公开的实施例中,用于驱动电泳显示面板的装置还包括:与第一电极层连接的补偿电压电路。补偿电压电路被配置为根据直流电压信号的幅值、持续时间,和数据电压信号的幅值、持续时间,对第一电极层施加补偿电压信号,使得向第一电极层施加正电压的时间等于向第一电极层施加负电压的时间。
本公开的第三个方面提供了一种显示装置,包括:电泳显示面板,以及上述任一项的用于驱动电泳显示面板的装置。电泳显示面板包括第一电极层,第二电极层,以及在第一电极层、第二电极层之间分布的带电粒子。
根据本公开的实施例的用于驱动电泳显示面板的方法、装置以及显示装置,使得用于显示的带电粒子在预定位置进行振荡,能够提高带电粒子的运动活性,使得带电粒子能够更精确的根据数据电压信号运动,提高显示精度。
附图说明
为了更清楚地说明本公开的实施例的技术方案,下面将对实施例的附图进行简要说明,应当知道,以下描述的附图仅仅涉及本公开的一些实施例,而非对本公开的限制,其中:
图1是电泳显示面板的示例性的示意图;
图2是用于驱动电泳显示面板的方法的第一个示例性的流程图;
图3是与图2相对应的一个示例性的信号时序图;
图4示出了在图3的信号时序的驱动下的带电粒子的往返运动;
图5是与图2相对应的第二个示例性的信号时序图;
图6是用于驱动电泳显示面板的方法的第二个示例性的流程图;
图7是与图6相对应的一个示例性的信号时序图;
图8是显示装置中包含的电泳显示面板及其驱动装置的示例性的示意图;
图9是图8中的用于驱动电泳显示面板的装置的第一个示例性的结构 框图;
图10是图8中的用于驱动电泳显示面板的装置的第二个示例性的结构框图。
具体实施方式
为了使本公开的实施例的技术方案和优点更加清楚,下面将结合附图,对本公开的实施例的技术方案进行清楚、完整的描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域技术人员在无需创造性劳动的前提下所获得的所有其他实施例,也都属于本公开保护的范围。
图1是电泳显示面板的示例性的示意图。作为一个简单的示例,图1中的电泳显示面板包括第一带电粒子1和第二带电粒子2。第一带电粒子1可以是白色,并且具有负电荷。第二带电粒子2可以是黑色,并且具有正电荷。第一带电粒子1和第二带电粒子2分布在第一电极层3和第二电极层4之间。第一电极层3和第二电极层4上施加的电压发生变化时,将使得第一带电粒子1和第二带电粒子2的状态发生变化,从而改变显示的内容。
作为示例,第一电极层3可以是像素电极层3,第二电极层4可以是具有0V的电压的公共电极层4。在向像素电极层3施加负电压时,第二带电粒子2向像素电极层3运动,第一带电粒子1向公共电极层4运动。公共电极层4可以是透明电极,用于显示。此时,图1中示出的部分将呈现白色。之后,即使停止向像素电极层3施加电压,带电粒子的状态也不会改变,电泳显示面板显示的内容可以被保持。在向像素电极层3施加正电压时,第一带电粒子1向像素电极层3运动,第二带电粒子2向公共电极层4运动。此时,图1中示出的部分将呈现黑色。通过在第一电极层3的不同位置施加不同的电压,则可以使得电泳显示面板整体呈现出图案或者文字。
应当理解,图1所示的仅仅是电泳显示面板的一个示例,本公开的实 施例的应用环境并不局限于此。电泳显示面板可以具有更多种类的带电粒子,带电粒子也可以被分组并封装在不同的微小容器中,第一电极层3可以通过各种不同的方式被分割,以分别控制电泳显示面板的各个部分显示的内容。
图2是用于驱动电泳显示面板的方法的第一个示例性的流程图。如图2所示,用于驱动电泳显示面板的方法包括:步骤S201,对于像素电极层3施加直流电压信号,以使得带电粒子运动到预定位置;步骤S202,对于像素电极层3施加交流电压信号,以使得带电粒子进行振荡;以及步骤S203,对于像素电极层3施加数据电压信号,以进行显示。
在步骤201中,对于像素电极层3施加直流电压信号,以使得第一带电粒子1和第二带电粒子2分别运动到各自的预定位置。
在步骤S202中,对于像素电极层3施加幅值变化的交流电压信号,以使得第一带电粒子1和第二带电粒子2在各自的预定位置附近进行振荡,即产生小幅度的往返运动。这可以提高带电粒子的运动活性。在电泳显示面板长时间显示静态内容后,带电粒子长时间处于同一位置。此时,带电粒子可能受到周围环境(例如包围带电粒子的液体)的阻碍而不能灵敏地响应数据电压而运动。带电粒子在进行振荡后,能够很好的克服这样的阻碍。
在步骤S203中,向像素电极层3施加数据电压信号,第一带电粒子1和第二带电粒子2能够正确地响应于数据电压信号,显示新的内容。由于在步骤S202中提高了带电粒子的运动活性,因此,可以减小第一带电粒子1和第二带电粒子2可能受到的阻碍,避免了带电粒子不能运动到预定的显示位置的情况。显示内容不准确的问题因而被避免。
图3是与图2相对应的一个示例性的信号时序图。图4示出了在图3的信号时序的驱动下带电粒子的往返运动。
在步骤201中,对于像素电极层3施加了具有第一幅值V1(例如,正值)的直流电压信号。如图4(a)所示,第一带电粒子1运动到像素电极层3附近,第二带电粒子2运动到公共电极层4附近。
在步骤S202中,交流电压信号可以包括正弦波等的各种交流电压信号来使得第一带电粒子1和第二带电粒子2产生往返运动。例如,交流电压信号可以是方波电压信号,以简化驱动信号的控制过程。方波电压信号可以具有第一幅值V1和第二幅值V2(例如,负值)。第一幅值V1和第二幅值V2可以同样由产生数据电压信号的驱动电路产生,这可以充分利用现有的驱动电路。图4示出了在交流电压信号的作用下,第一带电粒子1离开像素电极层3(图4(b))、接近像素电极层3(图4(c))、再次离开像素电极层3的过程(图4(d))。
方波电压信号的占空比可以为约50%,这样,在步骤S202中,带电粒子在两个不同方向上受力的时间相同,这能够防止带电粒子在一个方向上受力时间过长,造成显示性能的下降。49%,51%等任何在50%±5%范围内的值都是适合的。
交流电压信号的频率可以大于等于约24Hz,以使得人眼不能觉察到图像的改变。这可以在切换显示内容时,避免的闪烁现象的出现。进一步地,频率可以大于等于约30Hz,以获得更好的防止闪烁的效果。一般而言,大于28Hz的值都可以得到改进的防止闪烁的效果。
交流电压信号的持续时间可以小于等于直流电压信号的持续时间,以降低功耗、并且缩短驱动时间。进一步地,交流电压信号的持续时间小于等于直流电压信号的持续时间的一半,以进一步降低功耗、缩短驱动时间。
交流电压信号的周期数量可以任意设定。一般而言,周期数量越多,振荡的效果越好。图3中示出了2个周期的情况,2个或者稍多一些的周期能够在得到较好的振荡效果的同时,维持低的功耗。
图5是与图2相对应的第二个示例性的信号时序图。在本公开的实施例中,还可以在施加直流电压信号之前,施加交流电压信号。图5中示出了步骤S202在步骤S201前后各执行一次的情况,这可以使得带电粒子在运动相对较长的距离之前都可以产生振荡,以提高活性以及运动位置的准确性。
图6是用于驱动电泳显示面板的方法的第二个示例性的流程图。如图 6所示,用于驱动电泳显示面板的方法还包括:步骤S601,对像素电极层3施加补偿电压信号,使得向像素电极层3施加正电压的时间等于向像素电极层3施加负电压的时间。
如果施加正电压的时间不能等于施加负电压的时间,则带电粒子在一个方向上会受到更多的力的作用。如果这样的情况持续较长的时间,则可能损伤带电粒子,影响显示效果。增加补偿阶段能够避免该情况的出现。
由于往返运动阶段带电粒子在两个方向上的受力程度基本相同,因此,可以根据在步骤S201中施加的直流电压信号的幅值、持续时间,和数据电压信号的幅值、持续时间,对像素电极层施加补偿电压信号,使得向像素电极层施加正电压的时间等于向像素电极层施加负电压的时间。
图7是与图6相对应的一个示例性的信号时序图。图7中,使得带电粒子运动至预定位置的直流电压信号具有第一幅值V1,并且持续时间为ta。数据电压信号的幅值是第二幅值V2,持续时间是td。
在ta>td时,补偿电压信号的幅值是第二幅值V2,持续时间是tc,并且tc+td=ta。应当理解,在ta<td时,补偿电压信号的幅值是第一幅值V1,持续时间是tc,并且tc+ta=td。在ta=td时,不需要进行补偿。
此外,何时执行补偿阶段并不会影响显示内容,因此,图6和7中的补偿阶段也可以是对于上次显示过程的补偿,即tc的值也可以按照上次显示过程中的“ta”和“td”计算。
图8是电子纸显示装置中包含的电泳显示面板及其驱动装置的示例性的示意图。如图8所示,显示装置包括电泳显示面板、以及用于驱动电泳显示面板的装置5(也称为驱动装置5)。驱动装置5与像素电极层3连接,并向像素电极层3施加电压,以执行上述的用于驱动电泳显示面板的方法。显示装置可以各种电泳显示装置,例如,可以是目前应经在很多领域应用的各种电子纸显示装置。
图9是图8中的用于驱动电泳显示面板的装置的第一个示例性的结构框图。如图9所示,驱动装置5包括:与像素电极层3连接的第一电路501,第二电路502,以及数据电压电路502。第一电路501被配置为对于像素电 极层3施加直流电压信号,以使得带电粒子运动到预定位置。第二电路502被配置为对于像素电极层3施加交流电压信号,以使得带电粒子进行振荡。数据电压电路503被配置为对于像素电极层3施加数据电压信号,以进行显示。
此外,电子纸显示器件的驱动装置5还可以包括:与像素电极层3连接的补偿电压电路504。补偿电压电路504被配置为对像素电极层3施加补偿电压信号,使得向像素电极层施加正电压的时间等于向像素电极层施加负电压的时间。
补偿电压电路504可以是根据直流电压信号的幅值、持续时间,和数据电压信号的幅值、持续时间,对像素电极层3施加补偿电压信号,使得向像素电极层3施加正电压的时间等于向像素电极层施加负电压的时间。
第一电路501、第二电路502、数据电压电路503、补偿电压电路504可以使用任意的专用或者通用电路结构,并且可以包括软件、硬件或者结合,例如,各种模拟或者数字的电压产生器,或者信号产生器。
图10是图8中的用于驱动电泳显示面板的装置的第二个示例性的结构框图。如图10所示,在一个实施方式中,驱动装置5包括了数据存储器件,在其中存储了第一电压数据511、第二电压数据512、数据电压数据513、补偿电压数据514。这些数据能够被传输至同一个电压生成电路515,以生成不同的电压并将其施加到像素电极层3。图10的结构可以在任意的电子纸驱动芯片,或者单片机、数字信号处理器、可编程逻辑门阵列等微控制器系统中实现。
根据本公开的实施例的用于驱动电泳显示面板的方法、装置以及显示装置,使得用于显示的带电粒子在预定位置进行振荡,能够提高带电粒子的运动活性,使得带电粒子能够更精确的根据数据电压信号运动,提高显示精度。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改 进,这些变型和改进也视为本公开的保护范围。

Claims (16)

  1. 一种用于驱动电泳显示面板的方法,其中,所述电泳显示面板包括第一电极层,第二电极层,以及在所述第一电极层、所述第二电极层之间分布的带电粒子,所述方法包括:
    向所述第一电极层施加直流电压信号,以使得所述带电粒子运动到预定位置;
    向所述第一电极层施加交流电压信号,以使得所述带电粒子进行振荡;以及
    向所述第一电极层施加数据电压信号,以进行显示。
  2. 根据权利要求1所述的用于驱动电泳显示面板的方法,其中,所述交流电压信号是方波电压信号。
  3. 根据权利要求2所述的用于驱动电泳显示面板的方法,其中,所述方波电压信号的占空比为约50%。
  4. 根据权利要求1所述的用于驱动电泳显示面板的方法,其中,所述交流电压信号的频率大于等于约24Hz。
  5. 根据权利要求4所述的用于驱动电泳显示面板的方法,其中,所述频率大于等于约30Hz。
  6. 根据权利要求1至5中任一项所述的用于驱动电泳显示面板的方法,其中,在施加所述直流电压信号之后,施加所述交流电压信号。
  7. 根据权利要求1至5中任一项所述的用于驱动电泳显示面板的方法,其中,在施加所述直流电压信号之前,施加所述交流电压信号。
  8. 根据权利要求1至5中任一项所述的用于驱动电泳显示面板的方法,其中,所述交流电压信号的持续时间小于等于所述直流电压信号的持续时间。
  9. 根据权利要求8所述的用于驱动电泳显示面板的方法,其中,所述交流电压信号的持续时间小于等于所述直流电压信号的持续时间的一半。
  10. 根据权利要求1至5中任一项所述的用于驱动电泳显示面板的方法,还包括:
    根据所述直流电压信号的幅值、持续时间,和所述数据电压信号的幅值、持续时间,对所述第一电极层施加补偿电压信号,使得向所述第一电极层施加正电压的时间等于向所述第一电极层施加负电压的时间。
  11. 根据权利要求10所述的用于驱动电泳显示面板的方法,其中,在施加所述直流电压信号之前施加所述补偿电压信号。
  12. 根据权利要求1至5中任一项所述的用于驱动电泳显示面板的方法,其中,所述第一电极层是像素电极层,所述第二电极层是公共电极层。
  13. 根据权利要求1至5中任一项所述的用于驱动电泳显示面板的方法,其中,所述电泳显示面板是电子纸显示面板。
  14. 一种用于驱动电泳显示面板的装置,其中,所述电泳显示面板包括第一电极层,第二电极层,以及在所述第一电极层、所述第二电极层之间分布的带电粒子,所述用于驱动电泳显示面板的装置包括:与第一电极层连接的第一电路、第二电路、以及数据电压电路;
    其中,所述第一电路被配置为对于所述第一电极层施加直流电压信号,以使得所述带电粒子运动到预定位置;
    其中,所述第二电路被配置为对于所述第一电极层施加包含交流电压信号的交流电压信号,以使得所述带电粒子进行振荡;以及
    其中,所述数据电压电路被配置为对于所述第一电极层施加数据电压信号,以进行显示。
  15. 根据权利要求14所述的用于驱动电泳显示面板的装置,还包括:与第一电极层连接的补偿电压电路;
    其中,所述补偿电压电路被配置为根据所述直流电压信号的幅值、持续时间,和所述数据电压信号的幅值、持续时间,对所述第一电极层施加补偿电压信号,使得向所述第一电极层施加正电压的时间等于向所述第一电极层施加负电压的时间。
  16. 一种显示装置,包括:
    电泳显示面板,包括第一电极层,第二电极层,以及在所述第一电极层、所述第二电极层之间分布的带电粒子;以及
    根据权利要求14至15中任一项所述的用于驱动电泳显示面板的装置。
PCT/CN2018/086684 2017-08-09 2018-05-14 用于驱动电泳显示面板的方法、装置以及显示装置 WO2019029209A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/316,943 US10755649B2 (en) 2017-08-09 2018-05-14 Method and apparatus for driving electrophoretic display panel, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710675781.8A CN107342057A (zh) 2017-08-09 2017-08-09 用于驱动电泳显示面板的方法、装置以及显示装置
CN201710675781.8 2017-08-09

Publications (1)

Publication Number Publication Date
WO2019029209A1 true WO2019029209A1 (zh) 2019-02-14

Family

ID=60216851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086684 WO2019029209A1 (zh) 2017-08-09 2018-05-14 用于驱动电泳显示面板的方法、装置以及显示装置

Country Status (3)

Country Link
US (1) US10755649B2 (zh)
CN (1) CN107342057A (zh)
WO (1) WO2019029209A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107342057A (zh) 2017-08-09 2017-11-10 京东方科技集团股份有限公司 用于驱动电泳显示面板的方法、装置以及显示装置
US11151951B2 (en) 2018-01-05 2021-10-19 E Ink Holdings Inc. Electro-phoretic display and driving method thereof
TWI664482B (zh) * 2018-01-05 2019-07-01 元太科技工業股份有限公司 電泳顯示器及其驅動方法
TWI702456B (zh) * 2018-02-26 2020-08-21 美商電子墨水股份有限公司 驅動電光顯示器之方法
US11495184B2 (en) * 2020-09-29 2022-11-08 Chongqing Boe Smart Electronics System Co., Ltd. Control method of electronic ink screen, display control device and electronic ink display apparatus
CN116665599B (zh) * 2022-11-25 2024-03-19 荣耀终端有限公司 电泳显示屏的驱动方法、驱动电路及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020033784A1 (en) * 2000-09-08 2002-03-21 Fuji Xerox Co., Ltd. Display medium driving method
CN1479153A (zh) * 2002-08-29 2004-03-03 ��ʿͨ��ʽ���� 图像显示介质及图像写入装置
CN1799083A (zh) * 2003-06-02 2006-07-05 皇家飞利浦电子股份有限公司 用于电泳显示器的驱动方法和驱动电路
CN106023906A (zh) * 2016-06-24 2016-10-12 深圳市国华光电科技有限公司 一种电泳电子纸驱动方法及其系统
CN107342057A (zh) * 2017-08-09 2017-11-10 京东方科技集团股份有限公司 用于驱动电泳显示面板的方法、装置以及显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3483759B2 (ja) * 1998-03-19 2004-01-06 株式会社東芝 液晶表示装置
JP6256822B2 (ja) * 2012-09-14 2018-01-10 Tianma Japan株式会社 電気泳動表示装置及びその駆動方法
TWI503808B (zh) * 2013-05-17 2015-10-11 希畢克斯幻像有限公司 用於彩色顯示裝置之驅動方法
CN103680426B (zh) * 2013-12-27 2015-12-30 深圳市国华光电科技有限公司 一种改进电泳显示器激活模式的驱动方法
JP2017535820A (ja) * 2014-11-17 2017-11-30 イー インク カリフォルニア, エルエルシー カラーディスプレイデバイス
CN105070254A (zh) * 2015-08-31 2015-11-18 深圳市国华光电科技有限公司 一种多级灰阶电泳电子纸的快速响应方法
CN105139811B (zh) * 2015-09-30 2017-12-22 深圳市国华光电科技有限公司 一种电泳显示器减弱鬼影的驱动方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020033784A1 (en) * 2000-09-08 2002-03-21 Fuji Xerox Co., Ltd. Display medium driving method
CN1479153A (zh) * 2002-08-29 2004-03-03 ��ʿͨ��ʽ���� 图像显示介质及图像写入装置
CN1799083A (zh) * 2003-06-02 2006-07-05 皇家飞利浦电子股份有限公司 用于电泳显示器的驱动方法和驱动电路
CN106023906A (zh) * 2016-06-24 2016-10-12 深圳市国华光电科技有限公司 一种电泳电子纸驱动方法及其系统
CN107342057A (zh) * 2017-08-09 2017-11-10 京东方科技集团股份有限公司 用于驱动电泳显示面板的方法、装置以及显示装置

Also Published As

Publication number Publication date
US20190228716A1 (en) 2019-07-25
US10755649B2 (en) 2020-08-25
CN107342057A (zh) 2017-11-10

Similar Documents

Publication Publication Date Title
WO2019029209A1 (zh) 用于驱动电泳显示面板的方法、装置以及显示装置
US9754529B2 (en) Gate controlling unit, gate controlling circuit, array substrate and display panel
JP5246924B2 (ja) 黒潰れ改善された液晶ディスプレイ、ディスプレイパネル及びその駆動方法
US11747703B2 (en) Method for driving color electronic paper and color electronic paper
CN103680416B (zh) 电泳显示装置
TW200823845A (en) Liquid crystal display and gate modulation method thereof
CN106448601B (zh) 液晶显示装置及其窄视角模式下的公共电压驱动方法
JP2010217282A (ja) 電気泳動表示装置、電子機器及び電気泳動表示パネルの駆動方法
CN105845095B (zh) 消除lvds展频引起水波纹的方法
CN110010081A (zh) 电泳显示器及其驱动方法
CN110010080A (zh) 电泳显示器及其驱动方法
US9311864B2 (en) Display device and method for updating image frames based on image frame switching period thereof
CN102831865B (zh) 一种近晶相液晶显示屏动态扫描驱动方法
CN104934010A (zh) 显示面板的驱动方法、栅极驱动电路和显示装置
CN105845087B (zh) 驱动电子纸的控制方法、控制器、装置及电子纸显示装置
CN106023921A (zh) 一种goa电路
CN103941443B (zh) 液晶显示装置及加快液晶分子偏转的驱动电路和方法
CN103268748B (zh) 一种电极的电压控制方法及装置
CN109166516A (zh) 驱动单元、显示面板及其驱动方法和显示装置
CN107219653B (zh) 液晶显示装置及其宽窄视角切换的驱动模块
US20160351113A1 (en) Gate driving circuit, gate driving method, and display apparatus
CN114550662B (zh) 电子纸显示装置及其驱动方法
CN113096608B (zh) 一种电泳显示面板及其驱动方法、显示装置
JPH1020274A (ja) 液晶表示駆動回路及び液晶表示装置
CN213025339U (zh) 交流公共电压的产生电路和液晶显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18842931

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15.07.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18842931

Country of ref document: EP

Kind code of ref document: A1