WO2019029095A1 - Procédé de commande de climatisation de véhicule automatique basée sur une unité de détection de température intégrée et dispositif de commande - Google Patents

Procédé de commande de climatisation de véhicule automatique basée sur une unité de détection de température intégrée et dispositif de commande Download PDF

Info

Publication number
WO2019029095A1
WO2019029095A1 PCT/CN2017/118384 CN2017118384W WO2019029095A1 WO 2019029095 A1 WO2019029095 A1 WO 2019029095A1 CN 2017118384 W CN2017118384 W CN 2017118384W WO 2019029095 A1 WO2019029095 A1 WO 2019029095A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
vehicle
built
detecting unit
air
Prior art date
Application number
PCT/CN2017/118384
Other languages
English (en)
Chinese (zh)
Inventor
陈雄志
隋延春
Original Assignee
惠州市德赛西威汽车电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州市德赛西威汽车电子股份有限公司 filed Critical 惠州市德赛西威汽车电子股份有限公司
Publication of WO2019029095A1 publication Critical patent/WO2019029095A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices

Definitions

  • the invention relates to the technical field of automobile automatic air conditioning control, in particular to an automobile automatic air conditioning control method and controller based on a built-in temperature detecting unit.
  • the central control module automatically adjusts the indoor climate according to the ambient climatic conditions and the signals detected by the temperature and humidity sensors, so that the temperature and air volume in the vehicle are maintained at a comfortable level.
  • the interior temperature sensor is an important unit in the current automotive automatic air conditioning control system.
  • the current in-vehicle temperature sensors mainly include a suction type interior temperature sensor and a non-inhalation type interior temperature sensor.
  • the conventional suction type interior temperature sensor uses the negative pressure of the air conditioning system box or the ventilation motor to draw in the air inside the vehicle, and the air flows along the pipeline through the temperature sensor disposed in the pipeline to measure the temperature of the air inside the vehicle, but due to the negative pressure As the air volume of the blower changes, it will cause a change in the inspiratory volume.
  • the unstable air intake will affect the measurement of the air temperature inside the vehicle, and the pipe structure of the in-vehicle temperature sensor will cause the dust in the air to accumulate or even block in the pipeline. , affecting the measurement of the air temperature inside the car.
  • the non-inhalation interior temperature sensor does not have the above-mentioned problem of the in-vehicle temperature sensor, but it needs to expose a sensor probe to contact with the air, which affects the interior of the car, and if the passenger accidentally touches the sensor The probe will affect the accuracy of the air temperature measurement inside the car.
  • Both the inhaled in-vehicle temperature sensor and the non-inhalation in-vehicle temperature sensor require a certain production cost.
  • the present invention provides an automobile automatic air conditioning control method and controller based on a built-in temperature detecting unit that improves stability and accuracy of temperature measurement in a vehicle and reduces production cost.
  • a method for controlling an automatic air conditioner of an automobile based on a built-in temperature detecting unit comprising the following steps: A: obtaining a vehicle body temperature; B, obtaining the whole The vehicle body temperature calculates and outputs the virtual interior temperature equal to the actual vehicle air temperature; C. controls the wind according to the virtual interior temperature.
  • the parameter correction step is further included.
  • the obtained vehicle body temperature and the actually detected air temperature in the vehicle have an error larger than the tolerance error range
  • the corresponding parameters are adjusted and the virtual interior temperature is output.
  • the virtual interior temperature can be output without parameter adjustment.
  • the tolerance error ranges from "-1.5 ° C to 1.5 ° C".
  • the parameter modification includes the following parameter quantities: ambient temperature, sunlight intensity, engine water temperature, evaporator temperature, mixing damper position, internal and external circulation damper position, mode damper position, and blower voltage, vehicle body temperature and interior air There is a big difference in temperature. In order to obtain the temperature of the air inside the vehicle through the obtained vehicle body temperature, it is necessary to consider the amount of the connection between the two.
  • the step C specifically includes: C1, controlling the air outlet mode; C2, controlling the target air outlet temperature; C3, controlling the target wind, and automatically adjusting the interior temperature.
  • the invention provides an automobile automatic air conditioning controller based on a built-in temperature detecting unit, comprising an air conditioner controller and a built-in temperature detecting unit connected to the air conditioner controller.
  • the control strategy of the air conditioner controller includes an in-vehicle temperature calculation module, an in-vehicle temperature control module, and an air outlet module, and the built-in temperature detecting unit sends the acquired vehicle body temperature to the in-vehicle temperature calculation.
  • the module, the in-vehicle temperature calculation module calculates the virtual vehicle interior temperature and sends it to the in-vehicle temperature control module, and the in-vehicle temperature control module controls the outlet module to generate air.
  • the air outlet module includes an air outlet mode control end that controls the air outlet mode, an air outlet temperature control end that controls the target air outlet temperature, and a blower control end that controls the target wind, to automatically adjust the interior temperature.
  • the air outlet module further comprises an inner and outer circulation control end for controlling internal and external circulation.
  • the in-vehicle temperature calculation module includes a temperature correction end and a parameter interface end, the temperature correction end corrects and outputs a virtual interior temperature equal to an actual in-vehicle air temperature, and the parameter interface end is used to adjust the temperature correction.
  • the correction of each parameter in the end correction process causes the virtual interior temperature outputted by the temperature correction end to be the same as the actually detected interior air temperature, and the output virtual interior temperature feedback is used to control the outlet mode and the target outlet temperature. And the target wind speed.
  • the parameter modification includes the following parameter quantities: ambient temperature, sunlight intensity, engine water temperature, evaporator temperature, mixing damper position, internal and external circulation damper position, mode damper position, and blower voltage, vehicle body temperature and interior air There is a big difference in temperature. In order to obtain the temperature of the air inside the vehicle through the obtained vehicle body temperature, it is necessary to consider the amount of the connection between the two.
  • the present invention has the beneficial effects of obtaining the vehicle body temperature through a built-in temperature detecting unit provided on a certain component related to the air conditioner controller, and obtaining a virtual vehicle interior temperature by using a thermodynamic model, and further Through the virtual interior temperature to complete the subsequent automatic control of the interior temperature, the automatic control of the interior temperature without the need for the interior temperature sensor is realized, which saves the temperature sensor inside the vehicle and the cost of the attached wiring harness, and ensures the temperature control inside the vehicle. Stability and accuracy.
  • FIG. 2 and FIG. 3 are flowcharts showing specific calculations of the temperature inside the virtual vehicle
  • Figure 4 is a graph showing the calculation of the external temperature compensation of the present invention.
  • Figure 5 is a graph of solar compensation calculation of the present invention.
  • Figure 6 is a graph showing the calculation of the outlet temperature compensation of the present invention.
  • Figure 7 is a graph showing the calculation of the wind speed compensation of the present invention.
  • FIG. 8 is a block diagram showing the overall structure of the second embodiment.
  • Embodiment 1 The automatic air conditioning control method based on the built-in temperature detecting unit, A, obtaining the vehicle body temperature; B, calculating and outputting the virtual vehicle interior temperature equal to the actual vehicle air temperature by acquiring the vehicle body temperature; C. According to the temperature inside the virtual car, the wind is controlled.
  • Step B further includes a parameter correction step.
  • the parameter correction process is as follows: Obtain the vehicle body temperature Determine whether the output vehicle body temperature and the actual vehicle air temperature are greater than the tolerance error range. If the tolerance is greater than the tolerance error range, the parameter calculation is performed according to the error, and finally the virtual vehicle interior temperature corresponding to the actual vehicle air temperature is calculated. The calculation of the parameters can only consider the calculation of the vehicle body temperature and the actual vehicle air temperature.
  • the tolerance error range can be adjusted according to actual needs, without any limitation, and in the parameter correction process.
  • the parameter calculation will be in the output of the vehicle body temperature and the actual car air temperature When the difference reaches the end of the error within the tolerable range, otherwise it will continue to adjust the parameters.
  • the parameter calculation in this embodiment also includes the following parameter quantities: ambient temperature, sunlight intensity, engine water temperature, evaporator temperature, mixing damper position, internal and external circulation damper position, mode damper position
  • the calculation of the virtual interior temperature needs to consider all the energy input that affects the temperature of the air inside the vehicle.
  • the external temperature sensor, the sunlight sensor, the engine water temperature sensor and the evaporator temperature sensor installed on the vehicle sense the external energy.
  • the input combined with the energy input of the mixed damper position, the internal and external circulation damper position, the mode damper position and the blower voltage, is used to calculate their influence on the air temperature inside the vehicle, thereby obtaining the virtual interior temperature.
  • the influence of each external energy input on the air temperature inside the vehicle is determined by environmental simulation experiments and road experiments. After the parameter correction is completed and the same parameter correction is performed again, the vehicle body temperature can be calculated and outputted by virtual. The temperature inside the car can be used as feedback to control the air outlet mode, target air temperature and target wind, and automatically adjust the interior temperature.
  • the above-mentioned judgment input or judgment feedback is valid, depending on the sensor of the corresponding component, such as the external temperature sensor, where the input value of the external temperature sensor is the ambient temperature mentioned in the parameter quantity. If the external temperature sensor is directly detected by the controller, it is determined whether the external temperature sensor is open or shorted by detecting the voltage to determine whether the external temperature sensor is normal. If not, the default external temperature compensation is used; if the external temperature is used; If the sensor input signal is coming through the bus, the bus fault flag is used to judge whether the external temperature sensor is normal. If it is not normal, the default external temperature compensation is used. The default external temperature compensation here is an average value measured in advance.
  • the effect of using the default external temperature compensation is that if the external temperature sensor is not working properly, it will not cause the internal temperature calculation module to calculate the temperature inside the vehicle. Here, it is only the input judgment of the external temperature sensor and the interpretation using the default external temperature compensation.
  • the above-mentioned solar sensor, engine water temperature, evaporator temperature and other discriminants follow this principle.
  • the external temperature compensation calculation curve, the solar compensation calculation curve diagram, the outlet temperature compensation calculation curve diagram, and the wind speed compensation calculation curve diagram obtained in the parameter modification experiment process of the present embodiment It has been experimentally verified that the control method can accurately calculate the virtual interior temperature equal to the actual vehicle air temperature. Therefore, the present invention is more accurate than the conventional interior temperature sensor due to the consideration of a plurality of factors affecting the temperature variation inside the vehicle. And stable.
  • thermodynamic model is used to determine the influence of all detected external energy inputs as a numerical heat flow level, and the heat flow level is integrated into time to obtain a heat level, and then the heat level is combined with the external temperature compensation calculation curve.
  • the virtual interior temperature can be obtained from the graph, the solar compensation calculation graph, the wind temperature compensation calculation graph, and the wind speed compensation calculation graph.
  • Embodiment 2 An automatic air conditioning controller for an automobile based on a built-in temperature detecting unit, as shown in FIG. 8, includes an air conditioner controller and a built-in temperature detecting unit connected to the air conditioner controller, and it should be noted that, in this embodiment, The built-in temperature detecting unit is different from the conventional in-vehicle temperature sensor. It can be any type of device that can realize the temperature detecting function, such as an infrared temperature sensor, a thermocouple or a thermistor.
  • the built-in temperature detecting unit in this embodiment is The thermistor is installed on the panel of the air conditioner controller and away from the area of the heat generating component, so that the influence of the heat generating component on the panel of the air conditioner controller on the temperature detection can be avoided.
  • the built-in temperature detecting unit in this embodiment can also It is installed on the black box of the air conditioner controller or connected to the independent components of the air conditioner controller by wire harness or the like.
  • the control strategy of the air conditioner controller includes an in-vehicle temperature calculation module, an in-vehicle temperature control module and an air outlet module, and the built-in temperature detecting unit transmits the acquired vehicle body temperature to the in-vehicle temperature calculation module, and the in-vehicle temperature calculation module.
  • the temperature inside the virtual vehicle is calculated and sent to the temperature control module in the vehicle, and the temperature control module in the vehicle controls the air outlet of the air outlet module.
  • the air outlet module includes an air outlet mode control end, an air outlet temperature control end, and a blower control end, the air outlet mode control end controls the air outlet mode, the outlet air temperature control end controls the target air outlet temperature, and the blower control end controls the target wind speed.
  • the air outlet module further includes an inner and outer circulation end for controlling the inner and outer circulations to realize automatic adjustment of the interior temperature.
  • the vehicle interior temperature calculation module includes a temperature correction end and a parameter interface end, the temperature correction end corrects and outputs the virtual vehicle interior temperature, and the parameter interface end is used to adjust various parameter corrections in the temperature correction end correction process, so that the temperature correction end outputs the virtual vehicle.
  • the internal temperature is the same as the actually detected air temperature inside the vehicle, and the output virtual interior temperature feedback is used to control the air outlet mode, the target air outlet temperature, the target wind speed, and the internal and external circulation.
  • the air temperature in the vehicle cannot be directly obtained by the measurement of the temperature sensor inside the vehicle, and the air temperature in the vehicle is used as the feedback of the temperature control module in the vehicle, and the temperature inside the vehicle is automatically controlled. Therefore, in this embodiment, the interior temperature is virtualized by the thermodynamic model, and then the subsequent internal temperature automatic control function is realized by the virtual interior temperature.
  • the parameter correction includes the following parameter quantities: ambient temperature, sunlight intensity, engine water temperature, evaporator temperature, mixing damper position, internal and external circulation damper position, mode damper position, and blower voltage.
  • the calculation of the virtual interior temperature needs to consider all the factors in the vehicle.
  • the energy input caused by the air temperature is sensed by an external temperature sensor, a sunlight sensor, an engine water temperature sensor, and an evaporator temperature sensor installed on the vehicle, and combined with the position of the mixing damper, the position of the inner and outer circulation dampers, the mode damper position, and
  • the blower voltages, these influential energy inputs calculate their effect on the temperature of the air inside the vehicle, resulting in a virtual interior temperature.
  • the influence of each external energy input on the air temperature inside the vehicle is determined by environmental simulation experiments and road experiments. After the parameter correction is completed and the same parameter correction is performed again, the vehicle body temperature can be calculated and outputted by virtual. The temperature inside the car can be used as feedback to control the air outlet mode, the target air temperature, the target wind, and the internal and external circulation to automatically adjust the interior temperature.
  • the above-mentioned judgment input or judgment feedback is valid, depending on the sensor of the corresponding component, such as the external temperature sensor, where the input value of the external temperature sensor is the ambient temperature mentioned in the parameter quantity. If the external temperature sensor is directly detected by the controller, it is determined whether the external temperature sensor is open or shorted by detecting the voltage to determine whether the external temperature sensor is normal. If not, the default external temperature compensation is used; if the external temperature is used; If the sensor input signal is coming through the bus, the bus fault flag is used to judge whether the external temperature sensor is normal. If it is not normal, the default external temperature compensation is used. The default external temperature compensation here is an average value measured in advance.
  • the effect of using the default external temperature compensation is that if the external temperature sensor is not working properly, it will not cause the internal temperature calculation module to calculate the temperature inside the vehicle.
  • the input judgment of the external temperature sensor and the use of the default external temperature compensation are explained.
  • the above-mentioned solar sensor, engine water temperature, evaporator water temperature and the like all follow this principle.
  • the external temperature compensation calculation curve, the solar compensation calculation curve diagram, the outlet temperature compensation calculation curve diagram, and the wind speed compensation calculation curve diagram obtained in the parameter modification experiment process of the present embodiment It has been experimentally verified that the control method can accurately calculate the virtual interior temperature equal to the actual vehicle air temperature. Therefore, the present invention is more accurate than the conventional interior temperature sensor due to the consideration of a plurality of factors affecting the temperature variation inside the vehicle. And stable.
  • thermodynamic model is used to determine the influence of all detected external energy inputs as a numerical heat flow level, and the heat flow level is integrated into time to obtain a heat level, and then the heat level is combined with the external temperature compensation calculation curve.
  • the virtual interior temperature can be obtained from the graph, the solar compensation calculation graph, the wind temperature compensation calculation graph, and the wind speed compensation calculation graph.
  • the virtual interior temperature as feedback for the in-vehicle temperature control module, it can realize the automatic control function of all vehicle air conditioners, ensuring the comfort of the environment inside the cabin and the rapidity, stability and accuracy of the air temperature control inside the vehicle. It saves the cost of the traditional in-vehicle temperature sensor and its associated piping, fan, motor and wiring harness, and does not require any external sensor probe to detect the temperature of the air inside the cabin, ensuring the aesthetic requirements of the air conditioner controller.

Abstract

L'invention concerne un procédé de commande de climatisation de véhicule automatique basée sur une unité de détection de température intégrée et un dispositif de commande, comprenant les étapes suivantes : A. acquérir une température de carrosserie de véhicule de l'ensemble du véhicule; B. au moyen de la température de carrosserie de véhicule acquise de l'ensemble du véhicule, calculer et délivrer en sortie une température intérieure de véhicule virtuelle qui est égale à une température d'air intérieur de véhicule réelle; C. en fonction de la température intérieure de véhicule virtuelle, commander la sortie de ventilation. Le procédé de commande et le dispositif de commande obtiennent la température de la carrosserie de véhicule de l'ensemble du véhicule au moyen d'une unité de détection de température intégrée disposée sur un certain composant associé au dispositif de commande de climatiseur et obtiennent une température intérieure de véhicule virtuelle à l'aide d'un modèle thermodynamique; en outre, au moyen de la température intérieure de véhicule virtuelle, une commande automatique ultérieure de la température intérieure du véhicule est accomplie, ce qui permet d'obtenir une commande automatique de la température intérieure du véhicule sans nécessiter de capteur de température intérieure de véhicule, ce qui permet d'économiser sur les coûts de capteurs de température intérieure de véhicule et de faisceaux de câbles associés de ceux-ci tout en assurant une stabilité et une précision dans la commande de la température intérieure du véhicule.
PCT/CN2017/118384 2017-08-11 2017-12-25 Procédé de commande de climatisation de véhicule automatique basée sur une unité de détection de température intégrée et dispositif de commande WO2019029095A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710686061.1 2017-08-11
CN201710686061.1A CN107571713B (zh) 2017-08-11 2017-08-11 基于内置温度检测单元的汽车自动空调控制方法及控制器

Publications (1)

Publication Number Publication Date
WO2019029095A1 true WO2019029095A1 (fr) 2019-02-14

Family

ID=61035562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118384 WO2019029095A1 (fr) 2017-08-11 2017-12-25 Procédé de commande de climatisation de véhicule automatique basée sur une unité de détection de température intégrée et dispositif de commande

Country Status (2)

Country Link
CN (1) CN107571713B (fr)
WO (1) WO2019029095A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108394247A (zh) * 2018-01-30 2018-08-14 惠州市德赛西威汽车电子股份有限公司 一种车载空调温度检测方法以及空调控制装置
CN111976413B (zh) * 2019-05-21 2022-03-22 长城汽车股份有限公司 车辆空调控制装置、方法和车辆空调及车辆
CN110487314B (zh) * 2019-08-02 2022-02-01 惠州市德赛西威汽车电子股份有限公司 一种仪表指针自动检测方法
CN114379309B (zh) * 2020-10-21 2023-05-05 比亚迪股份有限公司 汽车空调控制方法及汽车
CN112693278A (zh) * 2020-12-30 2021-04-23 重庆金康赛力斯新能源汽车设计院有限公司 一种汽车空调控制器标定及开环式控温方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103963598A (zh) * 2013-01-31 2014-08-06 杭州三花研究院有限公司 汽车自动空调控制方法
CN103963604A (zh) * 2014-05-05 2014-08-06 惠州华阳通用电子有限公司 一种汽车自动空调的车内温度校准方法
JP2015182697A (ja) * 2014-03-25 2015-10-22 カルソニックカンセイ株式会社 車両用空調装置
KR20160039720A (ko) * 2014-10-01 2016-04-12 한온시스템 주식회사 차량용 공조장치
CN105922840A (zh) * 2016-04-15 2016-09-07 广州汽车集团股份有限公司 一种汽车空调控制方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1261538B (it) * 1993-04-01 1996-05-23 Fiat Auto Spa Procedimento per il controllo delle condizioni termiche in un ambientee relativo sistema.
KR100777890B1 (ko) * 2003-05-14 2007-11-21 주식회사 현대오토넷 자동차 에어콘의 온도센서 및 그를 이용한 조절방법
US7159788B2 (en) * 2004-03-11 2007-01-09 Nissan Technical Center North America, Inc. Interior temperature sensing method and apparatus
FR2974762B1 (fr) * 2011-05-05 2013-11-08 Renault Sa Procede de regulation de la temperature interieure de l'habitacle d'un vehicule automobile, et systeme de climatisation associe.
US10393595B2 (en) * 2017-01-12 2019-08-27 GM Global Technology Operations LLC Estimating a cabin temperature of a vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103963598A (zh) * 2013-01-31 2014-08-06 杭州三花研究院有限公司 汽车自动空调控制方法
JP2015182697A (ja) * 2014-03-25 2015-10-22 カルソニックカンセイ株式会社 車両用空調装置
CN103963604A (zh) * 2014-05-05 2014-08-06 惠州华阳通用电子有限公司 一种汽车自动空调的车内温度校准方法
KR20160039720A (ko) * 2014-10-01 2016-04-12 한온시스템 주식회사 차량용 공조장치
CN105922840A (zh) * 2016-04-15 2016-09-07 广州汽车集团股份有限公司 一种汽车空调控制方法及装置

Also Published As

Publication number Publication date
CN107571713A (zh) 2018-01-12
CN107571713B (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
WO2019029095A1 (fr) Procédé de commande de climatisation de véhicule automatique basée sur une unité de détection de température intégrée et dispositif de commande
CN105946505B (zh) 车载空调的控制方法及车载空调
CN103486701B (zh) 一种车载空调温度控制方法
CN103042895B (zh) 汽车空调出风温度控制方法
CN103673225B (zh) 一种汽车空调自动控制方法
CN106765861A (zh) 空调控制方法及装置
CN106080092A (zh) 用于控制车辆的空调的系统和方法
CN104986011A (zh) 一种汽车双驱自动空调的温度风门控制系统
CN103596782A (zh) 用于调节机动车辆内部温度的方法以及相关联的空气调节系统
CN104764543A (zh) 温度测量装置和用于对车辆的周围空气进行温度测量的方法
CN103692881A (zh) 一种车载空调混风温度控制方法
CN104589951A (zh) 汽车空调循环风门的控制方法及其控制系统
CN105022904B (zh) 基于发动机进气温度的车辆外界环境温度计算方法
US7392662B2 (en) Method and system for controlling a climate control system
CN109703322A (zh) 一种汽车车内环境调节方法及电子设备
WO2018012098A1 (fr) Système de mesure de poussière destiné à des véhicules et appareil de climatisation destiné à des véhicules
US20220135090A1 (en) Pressure regulating apparatus in vehicle and regulating method
KR101940729B1 (ko) 자동차의 내부 온도의 멀티존 조절 방법 및 관련 에어­컨디셔닝 시스템
CN109532383A (zh) 一种车载空调调节方法、系统及车辆
CN105082929A (zh) 车辆用空调装置
CN202098248U (zh) 用于汽车自动空调的车厢内温度探测装置
CN103982989B (zh) 一种汽车自动空调出风温度的检测方法及系统
CN107672407A (zh) 车内温度的检测方法、系统及车辆
KR101282854B1 (ko) 공기조화장치의 온도 보상 제어방법
CN106524422A (zh) 空调器及其温度修正方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17921409

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17921409

Country of ref document: EP

Kind code of ref document: A1