WO2019028940A1 - 鞘流阻抗计数装置及包括该装置的流式细胞分析仪 - Google Patents

鞘流阻抗计数装置及包括该装置的流式细胞分析仪 Download PDF

Info

Publication number
WO2019028940A1
WO2019028940A1 PCT/CN2017/098960 CN2017098960W WO2019028940A1 WO 2019028940 A1 WO2019028940 A1 WO 2019028940A1 CN 2017098960 W CN2017098960 W CN 2017098960W WO 2019028940 A1 WO2019028940 A1 WO 2019028940A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
isolation
pool
degrees
wall
Prior art date
Application number
PCT/CN2017/098960
Other languages
English (en)
French (fr)
Inventor
张学锋
武林
管海兵
徐伟
Original Assignee
利多(香港)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 利多(香港)有限公司 filed Critical 利多(香港)有限公司
Publication of WO2019028940A1 publication Critical patent/WO2019028940A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers

Definitions

  • the present invention relates to a sheath flow impedance counting device for use in a flow cytometer, and a flow cytometer comprising the sheath flow impedance counting device.
  • Sheath flow impedance counting is a technique commonly used in flow blood analyzers.
  • the sheath flow impedance counter is usually composed of a front pool, a back pool, and a counting hole between the front and back pools. There is an electrical signal between the solution in the front and back pools. When the particles in the solution pass through the counting holes between the front and back pools, the electrical signal changes, so the front and back pools need to be isolated, usually the back pool is isolated.
  • air isolation is basically adopted, that is, there is a back pool isolation pool between the back pool inlet and the reservoir, and the liquid first drops into the back pool isolation tank to cause a pressure difference, and then the liquid enters the back pool. Then, it flows out from the liquid outlet of the back pool to the waste liquid isolation tank, and then enters the waste liquid pool.
  • the waste separation tank is also air isolated.
  • the back pool isolation tank is easy to get caught in the air due to the large flow rate during the liquid addition, and the bubbles will mix into the pool and interfere with the count value.
  • the current technology is basically a way of air isolation.
  • CN102533536A application number: 201010609840.X.
  • This patent application discloses a counter assembly including a counter, a waste isolation chamber, a rear sheath isolation chamber, and a pressure equalization conduit.
  • the counter has a front pool, a rear pool, a rear sheath inlet and a waste liquid outlet, the front pool and the back pool are connected through a counting hole, and the rear sheath inlet and the waste liquid outlet are both connected to the back pool, and the rear a sheath isolation chamber is connected to the rear sheath inlet, the waste liquid isolation chamber is connected to the rear sheath inlet, the waste liquid isolation chamber is connected to the waste liquid discharge port, and the rear sheath isolation chamber passes through the gas pipeline Connect to the ambient atmosphere.
  • the pressure equalization pipeline is connected to the rear sheath isolation chamber and the waste liquid isolation chamber, and the pressure balance pipeline is provided with a pressure balance controller for controlling its on and off.
  • the liquid is first dropped into the waste liquid isolation chamber to cause a pressure difference, and then the liquid enters the back pool through the rear sheath inlet, and then flows out of the waste liquid outlet of the back pool to the waste liquid isolation tank, and then enters the waste liquid pool.
  • the waste separation tank is also air isolated. When the back pool is filled, the air is easily entangled in the air to generate bubbles due to the flow rate of the liquid, and the pool will mix into the pool and interfere with the counter value.
  • the liquid flow rate is large, especially when the added liquid directly impacts the liquid surface in the waste liquid isolation tank, the added liquid directly impacts the liquid at the bottom of the waste liquid isolation tank, and bubbles are easily generated. .
  • the technical proposal disclosed in Chinese Patent Application Publication No. CN102533536A is to make the first liquid filling port inclined to ensure that the liquid is rushed toward the first side wall of the first pool body at a certain angle during the joining process, and then Flowing into the first cell along the first side wall minimizes the possibility of air being drawn into the liquid during the dosing process.
  • U.S. Patent No. 5,085,833 Another liquid discharge conduit device is disclosed in U.S. Patent No. 5,085,833.
  • the inlet tube of the pipe device is partially bent into a "U" shape in the cavity of the container, bringing its end closer to And facing the inner wall of the container.
  • the liquid first hits the inner wall of the container and then flows down the inner wall of the container, thereby preventing the added liquid from directly impacting the liquid level at the bottom of the container, thereby reducing the probability of bubble generation.
  • the present invention proposes a completely new technical solution for reducing the speed of the liquid after it leaves the liquid inlet to the liquid level of the inner wall of the container or the bottom of the container, thereby reducing the speed.
  • the impact of the added liquid on the inner wall of the container or the liquid level of the liquid at the bottom of the container greatly reduces the probability of bubble generation, reduces the interference of the bubble on the counter count, and thus greatly improves the accuracy of the counter counting, and ultimately greatly improves the biochemistry.
  • the accuracy of the analyzer detection is a completely new technical solution for reducing the speed of the liquid after it leaves the liquid inlet to the liquid level of the inner wall of the container or the bottom of the container, thereby reducing the speed.
  • the technical solution of the present invention is to provide a separation tank for a sheath flow back pool cleaning device, comprising a container body, an inner cavity, a liquid inlet and a liquid outlet, wherein the position near the liquid inlet of the isolation pool Providing means for controlling the flow rate of the liquid or means for controlling the flow rate of the liquid at a position near the inlet of the isolation tank, the means for controlling the flow rate of the liquid protruding from the inner wall of the container body or being mounted to the inner wall of the container body And at least a portion is opposite the inlet of the isolation cell.
  • a device for controlling the flow rate of the liquid at a position near the inlet of the isolation tank means that the linear distance between the inlet port and the means for controlling the flow rate of the liquid is smaller than the inlet port. The linear distance to the inner wall of the isolation pool it faces.
  • the “device for controlling the flow rate of the liquid at the inlet of the isolation tank” means that the end of the pipeline connecting the inlet of the isolation tank at the position of the inlet is fixedly provided for A device for controlling the flow rate of the liquid, or a device for controlling the flow rate of the liquid is detachably mounted.
  • the means for controlling the flow rate of the liquid comprises a stopper extending from the inner wall of the isolation tank toward the inner cavity of the isolation tank and having an end extending beyond the axis or the center line of the liquid inlet port by at least 5 Millimeter.
  • the liquid inlet is located at a side wall of the isolation tank
  • the stopper includes an elongated cylindrical structure extending from a top wall of the isolation tank to a cavity inside the isolation tank.
  • the liquid inlet is located at a side wall of the isolation tank, and the stopper includes a flat plate structure extending from a top wall of the isolation tank to a cavity inside the isolation tank.
  • the stop is perpendicular or inclined with respect to the top wall of the isolation cell.
  • the angle of the stop relative to the top wall of the isolation cell is 45 degrees.
  • the liquid inlet is located at a top wall of the isolation cell
  • the stopper includes a structure extending from a side wall of the isolation cell to a cavity inside the isolation cell.
  • the liquid inlet is located at a top wall of the isolation tank, and the means for controlling the flow rate of the liquid comprises a disc-shaped or conical structure fixed to the inner wall of the isolation tank, the inner wall of the isolation tank and the disk shape Or the edge of the cone structure is designed with a gap.
  • the outer edge of the disc or cone structure is designed with a number of indentations.
  • the outer circular edge of the disc-shaped or conical structure is designed with a porous structure or a porous material that allows liquid to pass therethrough.
  • Still another technical solution of the present invention is to provide a blood cell analyzer comprising the sheath flow back pool cleaning device as described above.
  • the present invention also includes a sheath flow impedance counting device comprising: a reservoir connected by a pipeline, an isolation pool, and a counting pool; wherein the counting pool includes a back pool, a front pool, and a back pool a counting hole between the front pools; the isolation pool includes a liquid inlet connected to the liquid storage tank and a liquid outlet connected to the rear tank; and is characterized in that: a device for controlling the flow rate of the liquid is connected at the inlet of the isolation tank .
  • the device for controlling the flow rate of the liquid includes a stopper disposed at the liquid inlet, and a passage is provided between the liquid inlet and the stopper, and the liquid flowing out from the liquid inlet passes through the The channel diffuses to the surface of the stop.
  • the stopper is an elongated cylindrical structure placed substantially parallel to the bottom wall of the isolation tank.
  • the stopper is a disc-shaped or conical structure placed substantially parallel to the bottom wall of the isolation chamber, and the center of the disc-shaped or conical structure faces the inlet.
  • the means for controlling the flow rate of the liquid comprises a diverging tube structure disposed at the liquid inlet, the diverging tube structure including a cavity communicating with the liquid inlet, the inner wall of the cavity The aperture is gradually increased from the end to which it is connected to the inlet to the end remote from the inlet.
  • the diverging tube structure is in the shape of a trumpet or a cone, and the axis or the center line of the diverging tube does not overlap or parallel with the axis or the center line of the channel in which the inlet port is located.
  • the means for controlling the flow rate of the liquid comprises a shower device connected to the liquid inlet, the shower device comprising a cavity communicating with the liquid inlet and at least the communication cavity and the inner cavity of the isolation cell Two shower holes.
  • the shower device comprises a cylindrical structure, and the bottom wall and the side wall are provided with shower holes.
  • the shower device includes a cone structure having a shower hole only on the bottom wall thereof.
  • the cavity for controlling the flow rate of the liquid contains a porous material which allows the liquid to penetrate, such as sponge, cotton, filter paper, activated carbon, porous ceramic, wire mesh, glass fiber, fabric, and the like. .
  • the liquid inlet is located at a side wall of the isolation tank, and the isolation tank is placed obliquely, and the angle between the side wall where the liquid inlet is located and the horizontal plane at a clock three o'clock direction is selected from:
  • An angle greater than or equal to 30 degrees is less than 45 degrees, greater than or equal to 45 degrees is less than or equal to 60 degrees, greater than 60 degrees is less than or equal to 90 degrees, greater than 90 degrees is less than or equal to 120 degrees, and greater than 120 degrees is less than or equal to 135 degrees.
  • an angle greater than 135 degrees is less than or equal to 150 degrees.
  • the isolation tank is placed vertically, the liquid inlet is located at the top wall of the isolation tank, and the liquid flowing out from the liquid inlet port flows at least partially to the device for controlling the flow rate of the liquid, and then The means for controlling the flow rate of the liquid diffuses and then flows into the cavity of the isolation cell.
  • Still another technical solution of the present invention is to provide a flow cytometer characterized by comprising the sheath flow impedance counting device as described above.
  • the liquid flowing out from the inlet port is effectively decelerated by means of a device for controlling the flow rate of the liquid at the inlet of the isolation tank or at the inlet of the isolation tank, so that the added liquid is added.
  • the flow rate of the liquid surface touching the inner wall of the isolation tank or the bottom of the isolation tank is much smaller than the flow rate when the liquid just flows out of the liquid inlet, which greatly reduces the impact of the added liquid on the inner wall of the isolation tank or the liquid level at the bottom of the isolation tank, thereby greatly reducing the occurrence of liquid.
  • the probability of bubbles reduces the interference of the bubbles on the counter and greatly improves the accuracy of the instrument detection.
  • the means for controlling the flow rate of the liquid comprises a diverging tube structure disposed at the inlet port
  • the end of the taper tube structure is from the end to which the inlet pipe is connected to the end of the wall of the isolation cell
  • the flow rate of the added liquid will gradually slow down, thereby effectively reducing the impact of the added liquid on the inner wall of the isolation tank or the liquid level at the bottom of the isolation tank.
  • the means for controlling the flow rate of the liquid comprises a stopper which extends from the inner wall of the isolation tank to the inner cavity of the isolation tank and at least partially opposes the liquid inlet
  • the added liquid first impacts after flowing out of the liquid inlet
  • the flow rate of the liquid is significantly reduced, and the liquid either touches the inner wall of the isolation tank at a lower flow rate, and then smoothly flows down the inner wall of the isolation tank, or is broken up to be lower.
  • the flow rate drops into the liquid at the bottom of the isolation tank, thereby effectively reducing the impact of the added liquid on the inner wall of the isolation tank or the liquid level at the bottom of the isolation tank.
  • the added liquid does not directly impact the liquid level at the bottom of the isolation tank after flowing out from the liquid inlet, thereby reducing the probability of generating bubbles.
  • the added liquid flows out from the liquid inlet and is approximately parabolic.
  • the arc is sprayed obliquely upward, and the self-weighting force of the liquid lowers the flow rate of the liquid, and then falls gently on the inner wall where the liquid inlet is located.
  • the liquid When the angle between the side wall where the liquid inlet is located and the horizontal plane is greater than 60 degrees and the angle is less than 90 degrees, the liquid is sprayed obliquely upward to the stopper disposed on the inner wall of the isolation tank, after being buffered and broken up by the stopper, and then The light is gently reversed on the inner wall where the liquid inlet is located, and the liquid flow rate is lowered.
  • the angle between the side wall where the inlet port is located and the horizontal plane is equal to 90 degrees, the liquid is ejected from the inlet port in the horizontal direction, and then inclined obliquely downward to the block provided on the inner wall of the isolation tank.
  • the liquid flow rate is lowered.
  • the angle between the side wall where the liquid inlet is located and the horizontal plane is greater than 90 degrees and the angle is less than or equal to 120 degrees
  • the liquid is sprayed obliquely downward to the stopper disposed on the inner wall of the isolation tank, after being buffered and broken up by the stopper. Then, it is gently reversed on the inner wall where the liquid inlet is located, and the liquid flow rate is lowered.
  • the liquid is sprayed obliquely downward to the block disposed on the inner wall of the isolation tank. After the buffer is buffered and broken up, and then gently reversed on the inner wall where the liquid inlet is located, the liquid flow rate is lowered.
  • the angle between the plane where the block is located and the axis of the liquid inlet is selected from: an angle greater than or equal to 30 degrees and less than 45 degrees, an angle greater than or equal to 45 degrees, an angle less than or equal to 60 degrees, and an angle greater than 60 degrees less than or equal to 90 degree angle, greater than 90 degree angle less than or equal to 120
  • an angle greater than or equal to 30 degrees and less than 45 degrees an angle greater than or equal to 45 degrees
  • an angle less than or equal to 60 degrees an angle greater than 60 degrees less than or equal to 90 degree angle
  • greater than 90 degree angle less than or equal to 120 When the degree angle is greater than 120 degrees and the angle is less than or equal to 135 degrees, and when the angle is greater than or equal to 135 degrees and less than or equal to 150 degrees, a technical effect similar to the above-described technical solution can be obtained. The applicant will not repeat them.
  • the liquid inlet When the isolation tank is placed vertically, the liquid inlet is located at the top wall of the isolation tank, the means for controlling the liquid flow rate is connected to the liquid inlet, and the liquid flowing out of the inlet port flows at least partially to the control liquid.
  • the flow rate device is then diffused by the means for controlling the flow rate of the liquid and then flows into the cavity of the isolation cell, thereby also reducing the flow rate of the liquid.
  • liquid inlet port and the liquid outlet port are disposed on the side of the isolation pool, which is beneficial to reduce the installation space of the back pool isolation pool in the vertical direction. Tilting the isolation cell body to facilitate the concentration of liquid at a corner, even in the case of a small volume of solution at the bottom of the isolation, still maintains a good liquid seal, while the inclined inner wall of the pool has better liquid Drainage effect.
  • the side liquid inlet, the liquid inlet port and the liquid outlet port are all disposed at the side of the pool body, which is beneficial to reduce the installation space of the back pool isolation pool in the vertical direction.
  • the isolation tank is inclined to make the liquid in the isolation pool gather at a corner. Even if there is only a small amount of liquid in the isolation tank, the liquid outlet can maintain a good liquid seal, and the inclined pool wall has better liquid drainage effect, thereby reducing The probability of generating bubbles.
  • Figure 1 is a schematic view of a first embodiment of the present invention.
  • FIGS. 1D-1F are a second design of the isolation cell of FIG. 1.
  • Figure 2 is a schematic view of a second embodiment of the present invention.
  • FIGS. 2D-2F are a second design of the isolation cell of FIG. 2.
  • Figure 3 is a schematic view of a third embodiment of the present invention.
  • Figure 3A is an enlarged schematic view of the isolation cell of Figure 3
  • Figures 3B and 3C are a first and second design of the device of Figure 3A
  • Figures 3D-3F are the third and fourth of the device of Figure 3 A design scheme.
  • Figure 4 is a schematic view of a fourth embodiment of the present invention.
  • FIGS. 4D-4F are the second design of the isolation cell of FIG. 4
  • FIG. 4G is the third design of the isolation cell of FIG.
  • Figure 5 is a schematic view of a fifth embodiment of the present invention.
  • FIG. 5A-5C are a first design of the isolation cell of FIG. 5, and FIG. 5D is a second design of the isolation cell of FIG.
  • 6A and 6B are schematic views showing the first and second designs of the sixth embodiment of the present invention.
  • Fig. 6C is a partially enlarged schematic view of Fig. 6A.
  • FIG. 7A and 7B are schematic views of a first and second design of a seventh embodiment of the present invention, and Fig. 7C is a partial bottom view of Fig. 7A.
  • 8A-8G are schematic views of seven placement positions of the isolation cell in the first embodiment of the present invention.
  • the sheath flow impedance counting device (also referred to as a sheath flow back pool cleaning device) of the present invention includes: a liquid storage tank 100, an isolation pool 200, and a counting pool 300.
  • the counting pool 300 includes a back pool 400, a front pool 500, and a counting hole 600 between the back pool 400 and the front pool 500.
  • the isolation cell 200 includes a container body 201, a liquid inlet 202, and a liquid outlet 204.
  • the container body 201 includes a top wall 203, a bottom wall 205, and a side wall 207. The top, bottom and side walls enclose an inner cavity 209 of the isolation cell.
  • the container body 201 may be a cylinder, a square body, a regular polygonal body, a sphere, an ellipsoid, or a combination of a cylinder and a hemisphere or a cone.
  • the inlet port 202 of the isolation tank is connected to the reservoir 100 by a line 700 (collectively the same as the entire line), and the outlet port 204 of the isolation tank is connected to the back tank 400 by the line 700.
  • the innovation of the present invention mainly includes: A) a device 206 for controlling the flow rate of the liquid is connected at the position of the liquid inlet 202 of the isolation cell 200, or a liquid for controlling the liquid at a position near the liquid inlet 202 of the isolation cell 200.
  • Flow rate device 206 (at this point, at least a portion of the means 206 for controlling the flow rate of the liquid is opposite the inlet 202 of the isolation cell 200); B) a novel structure of the means 206 for controlling the flow rate of the liquid; C) the isolation cell 200 Novel new installation method; and D) novel arrangement of the liquid inlet 202 and the liquid outlet 204 of the isolation tank 200, and the like.
  • the isolation cell 200 is designed to be placed obliquely, that is, the axis or centerline of the isolation cell 200 is not equal to 90 degrees from the horizontal.
  • the isolation cell 200 is designed to be placed vertically, that is, the axis or centerline of the isolation cell 200 is at an angle equal to 90 degrees from the horizontal.
  • FIG. 1A is a first structural view of the isolation cell 200 of the present invention when placed vertically, and FIGS. 1B and 1C are respectively a right side view and a bottom view of FIG. 1A;
  • FIG. It is a second structural schematic diagram of the isolation cell 200 in the present invention when placed vertically, and FIGS. 1E and 1F are a right side view and a bottom view, respectively, of FIG. 1D.
  • the means 206 for controlling the flow rate of the liquid comprises a stop extending from the inner wall of the isolation basin to the inner cavity 209 of the isolation cell (ie, the stop protrudes from the inner wall of the isolation cell), and At least partially opposite the inlet port 202.
  • the "device for controlling the flow rate of the liquid at least partially opposite the inlet port" as used in the present invention means that at least a portion of the means for controlling the flow rate of the liquid is adjacent to the inlet port 202 so that the outer contour of the inlet port is
  • the orthographic projections fall wholly or partially on the means for controlling the flow rate of the liquid, and at least part of the liquid flowing out of the inlet port can be impacted or flowed onto the stop.
  • the stop 206 extends from the inner wall 207 of the isolation cell to the interior cavity 209 of the isolation cell and causes the end of the stop 206 to at least exceed the axis or centerline of the inlet 202 by 5 mm (mm, identical).
  • the liquid inlet 202 is located at the side wall 207 of the isolation cell 200.
  • the block 206 includes an elongated cylindrical structure (shown in FIGS. 1A-1C and 2D-2F) extending from the top wall 203 of the isolation cell 200 to the inner cavity 209 of the isolation cell, or a long strip-shaped flat structure ( As shown in Figures 1D-1F and 2A-2C).
  • the liquid inlet mode of the isolation tank 200 is a side liquid inlet, that is, the liquid inlet 202 and the liquid outlet 204 are both located on the side wall 207 of the isolation tank 200.
  • the stop 206 extends from the top wall 203 of the isolation cell to the inner cavity 209 of the isolation cell and is perpendicular to the top wall 203 of the isolation cell and is at least partially opposite the inlet of the isolation cell 200.
  • the isolation cell 200 is placed vertically or obliquely, so that the liquid in the inner cavity 209 is concentrated at the bottom of the isolation cell 200 (the position of the liquid inlet 202 is higher than the position of the liquid outlet 204).
  • the inlet port 202 is located in the top wall 203 of the isolation cell
  • the block 206 is located in the side wall 207 of the isolation cell, i.e., the block 206 includes a sidewall 207 of the isolation cell.
  • the structure extends into the cavity 209 within the isolation cell and at least a portion of the stop 206 is opposite the inlet 202.
  • the liquid inlet 202 is disposed on the side wall of the isolation tank body, and may be filled perpendicular to the side wall or may be inclined into the liquid.
  • the liquid outlet 204 may be disposed at a lower portion of the side wall of the cell body of the cell body of the cell body, or may be disposed at a bottom wall of the cell body of the cell.
  • the stopper 206 may be integrally formed with the isolation tank body, or may be separately fabricated and then detachably mounted into the isolation tank 200.
  • the vertical length of the stop 206 is less than one-half the height of the isolation vessel body, preferably between one fifth and one third.
  • the shortest distance of the stop 206 is based on the liquid that can block access (i.e., the liquid after the liquid can impact the stop 206).
  • the stopper 206 may be cylindrical or flat.
  • the minimum width of the stopper 206 is larger than the inner diameter of the liquid inlet, and the maximum width of the stopper 206 is based on the fact that no liquid is formed between the stopper 206 and the side wall of the isolation tank.
  • the hanging liquid refers to a droplet attached between the stopper and the side wall. Generally, the diameter of the hanging liquid is 2 mm to 5 mm, so the minimum gap between the stopper 206 and the side wall of the isolation pool is greater than 5 mm.
  • the specific process of the buffer 206 for buffering the rapid flowing liquid is as follows: after the liquid enters from the liquid inlet 202 of the side wall 207 of the isolation tank, a portion of the liquid directly hits the stopper 206, and the liquid is dissipated by the stopper 206.
  • the disintegrated liquid is drained from the pool wall of the isolation tank at a slow speed and then falls into the bottom of the isolation tank or the liquid level in the isolation tank, or directly drops to the bottom of the isolation tank or the liquid level in the isolation tank; Secondly, another liquid, under the blocking of the stopper 206, slides out from both sides of the stopper 206 and directly impacts the side wall 207 of the isolation tank, and this portion of the liquid flows into the bottom of the isolation pool along the side wall 207. Or isolate the liquid level in the tank, or drop directly to the bottom of the isolation tank or the liquid level in the isolation tank.
  • the liquid level in the isolation tank rises to generate a pressure difference, so that the liquid in the pool flows into the back pool 400 of the counting pool, and then flows into the waste liquid from the liquid outlet of the upper portion of the counting pool 300. Pool (not shown).
  • the air pressure in the isolation tank 200 is restored, the liquid stops flowing and the air pressure in the isolation pool reaches an equilibrium state. Due to the inclined placement of the isolation cell, the lower outlet port 204 is always below the liquid level position, and air does not enter the line connected to the rear pool 400.
  • the stopper 206 acts as a buffer for the liquid, the flow rate of the liquid is lowered, so that when the liquid falls into the bottom of the isolation tank or the liquid level in the isolation tank, the liquid is greatly reduced to the bottom of the isolation tank or The impact of the liquid level in the isolation tank greatly reduces the probability of air entrapment in the isolation tank.
  • FIGS. 2 and 2A-2F show a second embodiment of the present invention.
  • the main difference between the second embodiment and the first embodiment is that the angle between the block 206 and the top wall 203 of the isolation cell is 45 degrees, that is, the block 206 is isolated from the top wall 203 of the isolation cell.
  • the inner cavity 209 of the cell extends and is at an angle of 45 degrees or 135 degrees to all planes of the top wall 203 of the isolation cell.
  • the experiment has shown that the angle between the block 206 and all the planes of the top wall 203 of the isolation pool can also be selected from: an angle greater than or equal to 30 degrees, an angle less than or equal to 60 degrees, and an angle greater than 60 degrees and less than 90 degrees.
  • the angle between the plane of the stopper and the axis of the liquid inlet may also be an angle of 45 degrees or 135 degrees, or is selected from: The angle equal to 30 degrees is less than or equal to 60 degrees, the angle greater than 60 degrees is less than 90 degrees, equal to 900 degrees, greater than 90 degrees is less than or equal to 120 degrees, and greater than 120 degrees is less than or equal to 150 degrees.
  • the stopper 206 may also be a flat structure as shown in Figs. 2A to 2C.
  • the flat structure allows the stopper to have a large area and has a better cushioning and drainage effect for the liquid impinging on it.
  • FIG. 3 and 3A-3F show a third embodiment of the present invention.
  • the main difference between the third embodiment and the first embodiment is that: A) the isolation cell 200 is placed vertically (of course, it can also be placed obliquely, but the effect is better when placed vertically); B) the liquid inlet 202 of the isolation cell is located On the top wall 203 of the isolation cell, the liquid outlet 204 of the isolation cell is located on the lower portion or the bottom wall 205 of the side wall 207 of the isolation cell; C) the device 206 for controlling the flow rate of the liquid is a disk shape (as shown in Fig. 3D). Show) or cone structure (as shown in Figure 3A).
  • the disc-shaped or conical structure is fixed to the inner wall of the partition, and a gap allowing the passage of the liquid is designed between the edge of the disc-shaped or conical structure and the inner wall 207 of the isolator.
  • a plurality of notches or grooves 208 are provided at the edges of the disc or cone structure to allow liquid to pass therethrough.
  • a porous structure allowing the passage of a liquid or a ring 210 made of a porous material is provided at the outer edge of the disc-shaped or conical structure (for example, a sponge ring, a rubber ring with a hole, and a cloth).
  • a ring into which a porous material is twisted, etc. may be provided in other regions (as shown in Figures 3E and 3F). It is also possible to have no notches or grooves in the outer edge region of the disc-shaped or conical structure, but only a plurality of small holes 213 (not shown) are designed in other regions.
  • FIG. 4 and 4A-4G show a fourth embodiment of the present invention.
  • the main difference between the fourth embodiment and the first embodiment is that: A) the isolation cell 200 is placed vertically (of course, it can also be placed obliquely, but the effect is better when placed vertically); B) the liquid inlet 202 of the isolation cell is located On the top wall 203 of the isolation cell, the liquid outlet 204 of the isolation cell is located on the lower portion or the bottom wall 205 of the side wall 207 of the isolation cell; C) means for controlling the flow rate of the liquid comprises a liquid supply port 202 disposed at the inlet port 202 The stopper 206 is connected to the stopper 206, and a passage 212 is disposed therebetween.
  • the liquid flowing out of the liquid inlet 202 passes through the passage 212 and diffuses to the upper surface of the stopper 206, and passes through the stopper 206. After the upper surface is drained, it falls into the isolation tank, thereby slowing the flow rate of the liquid.
  • the stopper 206 is an elongated cylindrical structure substantially parallel to the bottom wall 205 of the isolation tank, and the block 206 and the pipeline where the liquid inlet 202 is located form a letter "T". "Type structure.
  • the stop 206 can also be a disc-like structure (as shown in Figures 4D-4F) or a conical structure (as shown in Figure 4G) placed substantially parallel to the bottom wall 205 of the isolation cell.
  • the disc-shaped or conical structure is fixed to the inner wall 207 of the partition, and the center of the cylinder or cone faces the inlet 202.
  • a gap allowing liquid to pass therethrough is designed between the edge of the disc-shaped or conical structure and the inner wall 207 of the isolation cell (see Example 3 of the present invention for a specific structure).
  • the means for controlling the flow rate of the liquid comprises a diverging tube structure 206 disposed at the inlet port 202.
  • the diverging tube structure 206 includes a cavity 215 in communication with the inlet port 202, the aperture of the inner wall of the cavity 215 being connected from the inlet port 202 One end is gradually increased toward the end thereof away from the liquid inlet 202.
  • the tapered tube structure 206 can be conical or flared.
  • the duct structure 206 is non-coaxially mounted with the duct of the liquid inlet 202, that is, the axis or the center line of the diverging tube structure and the axis or the center line of the channel where the liquid inlet is located are neither overlap nor parallel, preferably mutually Crossing or clamping an acute angle, so that the liquid entering by the inlet pipe 202 can be blocked by the wall of the diverging pipe 206 to be in a water storage state, and the liquid in the inlet pipe is prevented from directly impacting the liquid surface in the isolation tank through the diverging pipe. Reduce the probability of bubble generation.
  • the axis or centerline of the diverging tube structure 206 is tilted upward relative to the horizontal plane, the effect of the diverging tube will be better.
  • the diverging tube structure 206 acts to slow down the flow rate of the liquid so that the flow rate of the liquid can be reduced without the need for additional blocking means.
  • the specific process of reducing the liquid flow rate by the dilating tube structure 206 is as follows: the liquid entering from the liquid inlet port 202 first collides against the inner wall of the diverging tube structure 206, and then accumulates in a relatively large volume area, which is slowed down during the accumulation process. The flow rate of the liquid. When the liquid in the dip tube structure 206 is full and overflows, the overflowed liquid flows along the inner side wall of the isolation cell 200 into the inner cavity 209 of the isolation cell.
  • FIGS. 6A-6C show a sixth embodiment of the present invention.
  • the means for controlling the flow rate of the liquid comprises a shower means 206 connected to the inlet 202.
  • the shower device 206 is connected to the conduit of the inlet 202 through its opening 220.
  • the shower device 206 includes a cavity 218 in communication with the inlet port 202 and at least two shower holes 222 that communicate with the cavity 218 and the isolation cell lumen 209.
  • the shower device 206 includes a cylindrical structure with a shower hole 222 (shown in Figure 6C) on both the bottom wall and the side wall.
  • the isolation cell 200 can be placed either vertically (Fig. 6A) or obliquely (Fig. 6B).
  • FIGS. 7A-7C show a seventh embodiment of the present invention.
  • the main difference between the seventh embodiment and the sixth embodiment is that the shower device 206 changes the cylindrical structure to a cone structure, and only the shower hole 224 is provided on the bottom wall thereof, and the other structures are the same.
  • the cavity for the means for controlling the flow rate of the liquid may contain a porous material such as sponge, cotton, filter paper, cloth or the like that allows liquid to permeate.
  • the center line 228 of the isolation pool or the side wall 207 where the liquid inlet 202 is located and the horizontal plane at the clock three-point direction 226 are approximately equal to 45 degrees. Or 135 degrees, or selected from: greater than or equal to 30 degrees, angles less than or equal to 60 degrees, greater than 60 degrees, angles less than 90 degrees, equal to 90 degrees, greater than 90 degrees, less than or equal to 120 degrees, and greater than 120 degrees, less than or equal to 150 degree angle.
  • the isolation tank is placed obliquely, the liquid is used to buffer or break up the liquid flow control device, and then slides along the inner wall of the isolation tank into the inner cavity of the isolation tank, which has better drainage effect and reduces the probability of bubble generation. .
  • the stopper 206 may be made of a hard material such as a hard plastic, a wood block, a bamboo piece, or a metal, or may be made of a soft material such as rubber, soft plastic, waterproof paper, or fiber.
  • the present invention also discloses a flow cytometer comprising the sheath flow impedance counting device described above. Since the main improvement of the flow cytometer of the present invention is the sheath flow impedance counting device as disclosed in detail above, the other structures are basically the same as those of the prior art, and therefore, the applicant will not repeat them here.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

一种用于鞘流后池清洗装置的隔离池(200),包括容器体(201)、内空腔(209)、进液口(202)和出液口(204),在隔离池的进液口附近位置处设有用于控制液体流速的装置(206),该用于控制液体流速的装置凸出于容器体之内壁或者被安装至容器体之内壁并且至少一部分与隔离池之进液口相对;以及鞘流阻抗计数装置(300)和包括上述鞘流阻抗计数装置的血球分析仪(又称为流式细胞分析仪);在隔离池的进液口位置处或靠近进液口位置处设有控制液体流速的装置,使加入的液体碰触到隔离池内壁或者隔离池底部液面的流速小于液体刚流出进液口的流速,降低了液体对隔离池内壁或池底部液面的冲击,降低了产生气泡的机率,减少了气泡对计数器的干扰,提高了仪器检测的准确性。

Description

鞘流阻抗计数装置及包括该装置的流式细胞分析仪 技术领域
本发明是关于一种应用于流式细胞分析仪的鞘流阻抗计数装置,以及一种包括该鞘流阻抗计数装置的流式细胞分析仪。
技术背景
鞘流阻抗计数是流式血液分析仪中普遍采用的技术。鞘流阻抗计数器通常是由前池、后池以及介于前、后池之间的计数孔三部分组成。其中,前池和后池内的溶液之间存在电信号。当溶液内的微粒通过前、后池之间的计数孔时会引起电信号的变化,所以前、后池之间需要进行隔离,通常是对后池进行隔离。
目前的技术中基本是采取空气隔离的方式,即后池进液与储液池之间存在一个后池隔离池,液体先滴入到后池隔离池中引起压差,然后液体进入到后池中,再从后池的出液口中流出到废液隔离池,然后再进入废液池。废液隔离池同样是采用空气隔离。后池隔离池在加液时由于流速大容易卷入空气产生气泡,气泡混入后池中会对计数值产生干扰。液体由储液池进入到废液隔离池时,由于液体流速较大,直接冲击废液隔离池中的液面,直接冲击的液体与底部液体的接触,非常容易产生气泡。
目前的技术基本是采取空气隔离的方式。请参照中国专利申请公布号CN102533536A(申请号是:201010609840.X)。该专利申请公开了一种计数器组件,包括计数器、废液隔离室、后鞘隔离室及压力平衡管路。所述计数器具有前池、后池、后鞘入口及废液出口,所述前池和后池通过计数孔连通,所述后鞘入口和废液出口均与所述后池连通,所述后鞘隔离室与所述后鞘入口连接,所述废液隔离室与所述后鞘入口连接,所述废液隔离室与所述废液排出口连接,所述后鞘隔离室通过气体管路连接环境大气。所述压力平衡管路连接所述后鞘隔离室和废液隔离室,且所述压力平衡管路上设有用于控制其通断的压力平衡控制器。液体先被滴入到废液隔离室中引起压差,然后液体经由后鞘入口进入到后池中,再从后池的废液出口流出到废液隔离池,然后再进入废液池。废液隔离池同样是采用空气隔离。后池在加液时由于液体的流速大容易卷入空气产生气泡,气泡混入后池中会对计数器的计数值产生干扰。此外,在上述过程中,由于液体流速较大,尤其是当加入的液体直接冲击废液隔离池中的液面时,加入的液体对废液隔离池底部的液体形成直接冲击,非常容易产生气泡。为了解决这个技术难题,中国专利申请公布号CN102533536A公开的技术方案是:使第一加液口倾斜设置,保证液体在加入过程中以一定角度冲向第一池体的第一侧壁,之后再顺着第一侧壁流入到第一池体内,尽可能减少加液过程中空气被卷入液体的可能。
美国第US5,085,833号专利公开了另一种液体排出管道装置。为了避免在加入液体时,在容器内产生气泡,该管道装置的进液管在容器的腔体内部分弯曲成“U”形,使其末端靠近并 且正对容器的内壁。当加入液体时,液体先冲击容器的内壁,然后再顺着容器的内壁往下流,从而避免了加入的液体直接冲击容器底部的液面,减少了气泡的产生概率。
上述两份专利公开文献虽然避免了加入的液体直接冲击容器底部的液面,一定程度上起到了减少气泡的产生概率的作用,但是其局限性也是很明显的。比如,液体冲击到容器内壁时的流速和液体在离开进液口时的流速几乎是一样的,而没有明显的减速。因此,加入的液体对容器内壁的冲击力是很大的(加入液体的流速越快,冲击力越大)。加入的液体在冲击容器内壁以后,只有少数液体如设计者所期待的那样,顺着容器内壁往下流,而多数液体则在触碰到容器内壁后反弹,在容器内形成飞溅。这些飞溅的液体在落入到容器底部时,对容器底部的液面形成冲击,从而容易产生影响计数准确性的气泡。
为了克服现有技术的不足,本发明提出了一种全新的技术方案,对液体在离开进液口后到碰触到容器内壁或者容器底部液体的液面的过程中进行降速处理,从而减少了加入的液体对容器内壁或者容器底部液体的液面的冲击力,大大降低了气泡产生的概率,减少了气泡对计数器计数的干扰,进而大大提高了计数器计数的准确性,最终大大提高了生化分析仪检测的准确性。
发明内容
本发明的技术方案是:提供一种用于鞘流后池清洗装置的隔离池,包括容器体、内空腔、进液口和出液口,其中,在隔离池的进液口附近位置处设有用于控制液体流速的装置或者在靠近隔离池的进液口位置处设有控制液体流速的装置,该用于控制液体流速的装置凸出于容器体之内壁或者被安装至容器体之内壁并且至少一部分与隔离池之进液口相对。
在本发明中,“在隔离池的进液口附近位置处设有用于控制液体流速的装置”指的是:进液口到用于控制液体流速的装置之间的直线距离要小于进液口到其所面对的那个隔离池内壁的直线距离。
本发明所述的“在隔离池的进液口位置处连接有用于控制液体流速的装置”指的是:连通隔离池之进液口的管路在进液口位置处的那一端固定设置有用于控制液体流速的装置,或者可拆卸地安装有用于控制液体流速的装置。
作为本发明之进一步改进,所述用于控制液体流速的装置包括挡块,该挡块由隔离池之内壁向隔离池内空腔延伸并且其末端延伸超过所述进液口的轴线或者中心线至少5毫米。
作为本发明之进一步改进,所述进液口位于隔离池的侧壁,所述挡块包括由隔离池之顶壁向隔离池之内空腔延伸的长条状圆柱体结构。
作为本发明之进一步改进,所述进液口位于隔离池的侧壁,所述挡块包括由隔离池之顶壁向隔离池之内空腔延伸的平板结构。
作为本发明之进一步改进,所述挡块相对于隔离池之顶壁垂直或者倾斜。
作为本发明之进一步改进,所述挡块相对于隔离池之顶壁之夹角为45度角。
作为本发明之进一步改进,所述进液口位于隔离池的顶壁,所述挡块包括由隔离池之侧壁向隔离池之内空腔延伸的结构。
作为本发明之进一步改进,所述进液口位于隔离池的顶壁,所述用于控制液体流速的装置包括固定在隔离池内壁的圆盘状或者圆锥体结构,隔离池内壁与圆盘状或者圆锥体结构之边缘设计有间隙。
作为本发明之进一步改进,所述圆盘状或者圆锥体结构之外圆边缘设计有若干个缺口。
作为本发明之进一步改进,所述圆盘状或者圆锥体结构之外圆边缘设计有允许液体通过的多孔性结构或者多孔性材料。
本发明的再一种技术方案是:提供一种血球分析仪,包括如上所述的鞘流后池清洗装置。
另一方面,本发明还包括一种鞘流阻抗计数装置,包括:藉由管路连接的储液池、隔离池和计数池;其中,计数池包括后池、前池以及介于后池与前池之间的计数孔;隔离池包括连接至储液池的进液口和连接至后池的出液口;其特征在于:在隔离池的进液口位置处连接有用于控制液体流速的装置。
作为本发明之进一步改进,所述用于控制液体流速的装置包括设置在所述进液口处的挡块,进液口与挡块之间设有通道,从进液口流出的液体经过该通道扩散至挡块的表面。
作为本发明之进一步改进,所述挡块是与隔离池底壁大致平行放置的长条形圆柱体结构。
作为本发明之进一步改进,所述挡块是与隔离池底壁大致平行放置的圆盘状或者圆锥体结构,圆盘状或者圆锥体结构的中心正对进液口。
作为本发明之进一步改进,所述用于控制液体流速的装置包括设置在所述进液口处的渐扩管结构,该渐扩管结构包括与进液口连通的空腔,该空腔内壁的孔径自其与进液口相连接的一端向其远离进液口的那一端逐步增加。
作为本发明之进一步改进,所述渐扩管结构呈喇叭状或者圆锥体状,渐扩管的轴线或者中心线与进液口所在通道的轴线或者中心线既不重叠也不平行。
作为本发明之进一步改进,所述用于控制液体流速的装置包括与进液口相连的花洒装置,该花洒装置包括与进液口连通的空腔和连通空腔与隔离池内腔的至少两个花洒孔。
作为本发明之进一步改进,所述花洒装置包括一个圆柱体结构,其底壁和侧壁均设有花洒孔。
作为本发明之进一步改进,所述花洒装置包括一个圆锥体结构,仅在其底壁设有花洒孔。
作为本发明之进一步改进,所述用于控制液体流速的装置的空腔内收容有海绵、棉花、滤纸、活性碳、多孔陶瓷、丝网、玻璃纤维、织物等多孔性允许液体渗透的填充材料。
作为本发明之进一步改进,所述进液口位于隔离池的侧壁,并且所述隔离池倾斜放置,进液口所在的那个侧壁与水平面在时钟三点钟方向的夹角选自于:大于等于30度角小于45度角、大于等于45度角小于等于60度角、大于60度角小于等于90度角、大于90度角小于等于120度角、大于120度角小于等于135度角和大于135度角小于等于150度角。
作为本发明之进一步改进,所述隔离池竖直放置,所述进液口位于隔离池的顶壁,从进液口流出的液体至少部分先流到所述控制液体流速的装置,然后经所述控制液体流速的装置扩散后再流入到隔离池的空腔。
本发明的再一种技术方案是:提供一种流式细胞分析仪,其特征在于:包括如上所述的鞘流阻抗计数装置。
有益效果
藉由在隔离池的进液口位置处或者在靠近隔离池的进液口位置处设有控制液体流速的装置,有效地对从进液口流出的液体进行了降速处理,使加入的液体碰触到隔离池内壁或者隔离池底部液面的流速大大小于液体刚刚流出进液口时的流速,大大降低了加入的液体对隔离池内壁或者隔离池底部液面的冲击,从而大大降低了产生气泡的机率,减少了气泡对计数器的干扰,大大提高了仪器检测的准确性。
当所述控制液体流速的装置包括设置在所述进液口处的渐扩管结构时,由于该渐扩管结构的孔径自其与进液管道连接的一端向其靠近隔离池壁的那一端逐步增加,加入的液体的流速会逐步变缓,从而有效地降低了加入的液体对隔离池内壁或者隔离池底部液面的冲击力度。
当所述控制液体流速的装置包括挡块,该挡块由隔离池之内壁向隔离池内空腔延伸并且至少部分与所述进液口相对时,加入的液体在流出进液口后,先冲击到挡块,经过挡块的缓冲之后,液体的流速明显降低,液体要么以较低的流速触碰隔离池的内壁,然后顺着隔离池的内壁顺畅地往下流,要么被打散,以较低的流速跌落到隔离池底部的液体中,从而有效地降低了加入的液体对隔离池内壁或者隔离池底部液面的冲击力度。
当所述进液口位于隔离池的侧壁时,加入的液体自进液口流出后,不会直接冲击隔离池底部的液面,从而降低了产生气泡的机率。
当进液口所在的那个侧壁与水平面的夹角大于等于30度角小于45度角、大于等于45度角小于等于60度角时,加入的液体自进液口流出后,以近似抛物线的弧线斜向上方喷射出去,液体的自重作用力会使液体的流速降低,然后平缓地落在进液口所在的内壁。当进液口所在的那个侧壁与水平面的夹角大于60度角小于90度角时,液体斜向上喷射到设置在隔离池内壁的挡块上,经过挡块的缓冲和打散以后,然后平缓地反向射在进液口所在的内壁,液体流速降低了。当进液口所在的那个侧壁与水平面的夹角等于90度角时,液体从进液口沿水平方向喷射出后,以近似抛物线的弧线斜向下到设置在隔离池内壁的挡块上,经过挡块的缓冲和打散以后,然后平缓地反向射在进液口所在的内壁,液体流速降低了。当进液口所在的那个侧壁与水平面的夹角大于90度角小于等于120度角时,液体斜向下喷射到设置在隔离池内壁的挡块上,经过挡块的缓冲和打散以后,然后平缓地反向射在进液口所在的内壁,液体流速降低了。当进液口所在的那个侧壁与水平面的夹角大于120度角小于等于135度角和大于135度角小于等于150度角时,液体斜向下喷射到设置在隔离池内壁的挡块上,经过挡块的缓冲和打散以后,然后平缓地反向射在进液口所在的内壁,液体流速降低了。
当所述挡块所在的平面与进液口的轴线之间的夹角选自于:大于等于30度角小于45度角、大于等于45度角小于等于60度角、大于60度角小于等于90度角、大于90度角小于等于120 度角、大于120度角小于等于135度角和大于135度角小于等于150度角时,也可以取得与上述记载的技术方案类似的技术效果。申请人不再赘述了。
当所述隔离池竖直放置,所述进液口位于隔离池的顶壁,所述控制液体流速的装置与进液口相连,从进液口流出的液体至少部分先流到所述控制液体流速的装置,然后经所述控制液体流速的装置扩散后再流入到隔离池的空腔,从而也降低了液体的流速。
此外,将进液口和出液口均设置在隔离池的侧部,有利于减小后池隔离池在竖直方向的安装空间。将隔离池池体倾斜安置,有利于使液体汇聚于一角,即使是在隔离底部只有较少容积的溶液的情况下也依然能够保持良好的液封,同时,倾斜的池内壁对液体具有更好的引流效果。
侧部进液,进液口和出液口均设置在池体的侧部,有利于减小后池隔离池在竖直方向的安装空间。
隔离池倾斜,使隔离池内的液体汇聚一角,即使隔离池内仅存在较少液体时,也能对出液口保持良好的液封,同时,倾斜的池壁具有更好的液体引流效果,从而减少了产生气泡的概率。
附图说明
图1是本发明之第一实施例的示意图。
图1A-1C是图1中的隔离池之第一种设计方案,图1D-1F是图1中的隔离池之第二种设计方案。
图2是本发明之第二实施例的示意图。
图2A-2C是图2中的隔离池之第一种设计方案,图2D-2F是图2中的隔离池之第二种设计方案。
图3是本发明之第三实施例的示意图。
图3A是图3中的隔离池之放大示意图,图3B和3C是图3A中的装置之第一种和第二种设计方案;图3D-3F是图3中的装置之第三种和第四种设计方案。
图4是本发明之第四实施例的示意图。
图4A-4C是图4中的隔离池之第一种设计方案,图4D-4F是图4中的隔离池之第二种设计方案,图4G是图4中的隔离池之第三种设计方案。
图5是本发明之第五实施例的示意图。
图5A-5C是图5中的隔离池之第一种设计方案,图5D是图5中的隔离池之第二种设计方案。
图6A和6B是本发明之第六实施例的第一、第二种设计方案的示意图。
图6C是图6A中之局部放大示意图。
图7A和7B是本发明之第七实施例的第一、第二种设计方案的示意图,图7C是图7A中的局部底视图。
图8A-8G是本发明之第一实施例中的隔离池的七种安放位置示意图。
具体实施例
实施例1
请参考图1,本发明之鞘流阻抗计数装置(又称为鞘流后池清洗装置)包括:储液池100、隔离池200和计数池300。其中,计数池300包括后池400、前池500以及介于后池400与前池500之间的计数孔600。隔离池200包括一个容器体201、进液口202和出液口204,其中,容器体201包括顶壁203、底壁205、侧壁207。所述顶壁、底壁和侧壁围成隔离池的内空腔209。容器体201可以是圆柱体、方体、正多边体、球体、椭圆体、或者是圆柱体与半球体或者圆锥体之组合等。隔离池的进液口202藉由管路700(全部管路的统称,全文同)连接至储液池100,隔离池的出液口204藉由管路700连接至后池400。本发明之创新主要包括:A)在隔离池200的进液口202位置处连接有用于控制液体流速的装置206,或者是在隔离池200的进液口202的附近位置处设置有用于控制液体流速的装置206(此时,该用于控制液体流速的装置206至少一部分与隔离池200之进液口202相对);B)用于控制液体流速的装置206的新颖结构;C)隔离池200的新颖新安置方式;以及D)隔离池200之进液口202和出液口204的新颖安置方式等。
在实施例1的第一种方案中,所述隔离池200被设计成倾斜放置,即,隔离池200之轴线或者中心线与水平面的夹角不等于90度。在实施例1的第二种方案中,所述隔离池200被设计成垂直放置,即,隔离池200之轴线或者中心线与水平面的夹角等于90度。
请参阅图1A-1F所示,其中,图1A是本发明中的隔离池200在竖直放置时的第一种结构示意图,图1B和1C分别是图1A之右视图和底视图;图1D是本发明中的隔离池200在竖直放置时的第二种结构示意图,图1E和1F分别是图1D之右视图和底视图。在第一实施例中,所述用于控制液体流速的装置206包括挡块,该挡块由隔离池之内壁向隔离池的内空腔209延伸(即挡块凸出于隔离池之内壁),并且至少部分与所述进液口202相对。本发明所述的“用于控制液体流速的装置至少部分与所述进液口相对”指的是:用于控制液体流速的装置至少有一部分结构靠近进液口202,使进液口外轮廓的正投影全部或者部分落在用于控制液体流速的装置上,并且可以让自进液口流出的至少部分液体冲击或者流到所述挡块上。在另一种方案中,挡块206由隔离池内壁207向隔离池内空腔209延伸并且使挡块206的末端至少超过进液口202的轴线或中心线5mm(毫米,全文同)。所述进液口202位于隔离池200的侧壁207。所述挡块206包括由隔离池200之顶壁203向隔离池之内空腔209延伸的长条状圆柱体结构(如图1A-1C和2D-2F所示),或者长条状偏平板结构(如图1D-1F和2A-2C所示)。
在实施例1中,隔离池200的进液方式为侧部进液,即,进液口202和出液口204均位于隔离池200的侧壁207。所述挡块206自隔离池的顶壁203向隔离池的内空腔209延伸并且与隔离池的顶壁203垂直,并且至少部分结构与隔离池200之进液口相对。同时将隔离池200垂直或者倾斜放置,使内空腔内209的液体汇聚在隔离池200的底部(进液口202所在的位置要高于出液口204所在的位置)。
此外,在可替代的方案中,所述进液口202位于隔离池的顶壁203,所述挡块206则位于隔离池之侧壁207,即,所述挡块206包括由隔离池之侧壁207向隔离池之内空腔209延伸的结构,并且至少使部分挡块206与进液口202相对。
进液口202设置在隔离池容器体的侧壁,既可以垂直于侧壁进液,也可以倾斜进液。出液口204可以设置在池体的隔离池容器体的侧壁下部,也可设置在隔离池容器体的底壁。
挡块206可以与隔离池容器体一体成型,也可以单独制作后再可拆卸地安装到隔离池200内。
挡块206的竖直长度小于隔离池容器体高度的二分之一,优选范围为五分之一到三分之一之间。挡块的206的最短距离以能够阻挡到进入的液体为准(即进液后的液体能够冲击到挡块206)。挡块206可以为圆柱状或者平板状。挡块206的最小宽度大于进液口的内径,挡块206的最大宽度以挡块206与隔离池的侧壁之间不会形成挂液为准。所述挂液指的是附着在挡块与侧壁之间的液滴。一般挂液的直径为2mm-5mm,因此,挡块206与隔离池的侧壁之间的最小间隙要大于5mm。
挡块206对急速流动液体的缓冲具体过程如下:液体从隔离池侧壁207的进液口202进入后,首先一部分液体直接冲击到挡块206上,由挡块206将这部分液体打散,打散后的液体以较慢的速度由隔离池的池壁引流后落入到隔离池的池底或者隔离池内的液面,或者直接滴落到隔离池的池底或者隔离池内的液面;其次,另一部液体,在挡块206的阻挡下,从挡块206的两侧滑出并直接冲击到隔离池的侧壁207上,这部分液体沿着侧壁207流入隔离池的池底或者隔离池内的液面,或者直接滴落到隔离池的池底或者隔离池内的液面。
液体进入到隔离池的内空腔209后,隔离池内的液面上升产生压差,使池内的液体流入到计数池的后池400,再从计数池300上部的出液口流入到废液隔离池(图未示)。当隔离池200内的气压恢复时,液体停止流动,隔离池内的气压达到平衡状态。由于隔离池的倾斜放置,使其下部的出液口204始终处于液面位置以下,空气不会进入到与后池400连接的管路。
由于挡块206对液体起了缓冲的作用,降低了液体的流速,因此,当液体落入到隔离池的池底或者隔离池内的液面时,大大减小了液体对隔离池的池底或者隔离池内的液面的冲击力度,从而大大降低了卷入空气在隔离池内产生气泡的概率。
实施例2
图2及图2A-2F所示是本发明之第二实施例。第二实施例与第一实施例的主要差别在于:所述挡块206相对于隔离池的顶壁203之夹角为45度角,即所述挡块206自隔离池的顶壁203向隔离池的内空腔209延伸,并且与隔离池的顶壁203所有的平面之夹角为45度角或者135度角。发明人经过实验表明,所述挡块206与隔离池的顶壁203所有的平面之夹角为也可以选自于:大于等于30度角小于等于60度角、大于60度角小于90度角、等于900度角、大于90度角小于等于120度角和大于120度角小于等于150度角。由于挡块的上述设计,所述挡块所在的平面与进液口的轴线之间的夹角也可以是45度角或者135度角,或者是选自于:大 于等于30度角小于等于60度角、大于60度角小于90度角、等于900度角、大于90度角小于等于120度角和大于120度角小于等于150度角。
在实施例2中,挡块206也可以是图2A-2C所示的平板状结构。该平板状结构使得挡块具有较大的面积,对于冲击到其上的液体具有更好的缓冲和引流效果。
实施例3
图3及图3A-3F所示是本发明之第三实施例。第三实施例与第一实施例的主要差别在于:A)隔离池200竖直放置(当然也可以倾斜放置,但是竖直放置时的效果更佳);B)隔离池的进液口202位于隔离池的顶壁203上,隔离池的出液口204位于隔离池的侧壁207的下部或者底壁205上;C)用于控制液体流速的装置206是一个圆盘状(如图3D所示)或者圆锥体结构(如图3A所示)。此时,圆盘状或者圆锥体结构被固定在隔离池的内壁上,在圆盘状或者圆锥体结构之边缘与隔离池的内壁207之间设计有允许液体通过的间隙。如图3B所示,在圆盘状或者圆锥体结构之边缘设计有若干个允许液体通过的缺口或者凹槽208。如图3C所示,在圆盘状或者圆锥体结构之外边缘设计有允许液体通过的多孔性结构或者安装有多孔性材料制作的圆环210(例如:海绵环、带孔的橡胶环、由布等多孔性材料拧成的环等)。除了在圆盘状或者圆锥体结构的外边缘区域设计有缺口或者凹槽208外,在其他区域也可以设计有若干个小孔213(如图3E和3F所示)。也可以在圆盘状或者圆锥体结构的外边缘区域没有缺口或者凹槽,而仅仅在其他区域设计有若干个小孔213(图未示)。
实施例4
图4及图4A-4G所示是本发明之第四实施例。第四实施例与第一实施例的主要差别在于:A)隔离池200竖直放置(当然也可以倾斜放置,但是竖直放置时的效果更佳);B)隔离池的进液口202位于隔离池的顶壁203上,隔离池的出液口204位于隔离池的侧壁207的下部或者底壁205上;C)用于控制液体流速的装置包括设置在所述进液口202处的挡块206,进液口202与挡块206相连,两者之间设有通道212,自进液口202流出的液体经过该通道212后,扩散至挡块206的上表面,经过挡块206的上表面引流后,落入到隔离池内,从而使液体的流速变缓。
如图4A-4C所示,所述挡块206是与隔离池底壁205大致平行放置的长条形圆柱体结构,挡块206与所述进液口202所在的管路组成一个字母“T”型结构。作为替代方案,所述挡块206也可以是一个与隔离池底壁205大致平行放置的圆盘状结构(如图4D-4F所示)或者圆锥体结构(如图4G所示)。此时,圆盘状或者圆锥体结构被固定在隔离池的内壁207上,圆柱体或者圆锥体的中心正对进液口202。在圆盘状或者圆锥体结构之边缘与隔离池的内壁207之间设计有允许液体通过的间隙(具体结构参阅本发明之实施例3)。
实施例5
图5及图5A-5D所示是本发明之第五实施例。第五实施例与第一实施例的主要差别在于:所述用于控制液体流速的装置包括设置在所述进液口202处的渐扩管结构206。该渐扩管结构206包括与进液口202连通的空腔215,该空腔215的内壁的孔径自其与进液口202相连接的 一端向其远离进液口202的那一端逐步增加。渐扩管结构206可以是圆锥体状或者喇叭状。渐扩管结构206与进液口202之管道非同轴安装,即,渐扩管结构的轴线或者中心线与进液口所在通道的轴线或者中心线既不重叠也不平行,最好是相互交叉或者夹一个锐角,从而使由进液管202进入的液体能受到渐扩管206壁面的阻挡而处于蓄水状态,避免进液管中的液体直接经由渐扩管冲击隔离池内的液面,减少气泡的产生概率。当渐扩管结构206的轴线或者中心线相对于水平面往上翘起时,渐扩管的效果将更佳。
渐扩管结构206起到减缓液体流速的作用,这样不需要再额外设置阻拦装置就可以把液体的流速降下来。
液体流速被渐扩管结构206降低的具体过程如下:自进液口202进入的液体首先冲撞渐扩管结构206的内壁,然后在容积较大的区域中积聚,在积聚的过程中,减缓了液体的流速。当渐扩管结构206中的液体充满而溢出时,溢出的液体沿隔离池200的内侧壁流入到隔离池的内空腔209。
实施例6
图6A-6C所示是本发明之第六实施例。第六实施例与第一实施例的主要差别在于:所述用于控制液体流速的装置包括与进液口202相连的花洒装置206。花洒装置206通过其开口220与进液口202的管道连接。花洒装置206包括与进液口202连通的空腔218和连通空腔218和隔离池内腔209的至少两个花洒孔222。所述花洒装置206包括一个圆柱体结构,其底壁和侧壁均设有花洒孔222(图6C所示)。在本实施例中,隔离池200既可以竖直放置(图6A),也可以倾斜放置(图6B)。
实施例7
图7A-7C所示是本发明之第七实施例。第七实施例与第六实施例的主要差别在于:所述花洒装置206将圆柱体结构改为圆锥体结构,并且仅在其底壁设有花洒孔224,其他结构均相同。
在进一步的改进步设计方案中,所述用于控制液体流速的装置的空腔内可以收容有海绵、棉花、滤纸、布等多孔性允许液体渗透的材料。
本发明所包括的隔离池的摆放方式请参阅图8A-8G所示。以第一实施例为例(其他实施例可以类推),所述隔离池的中心线228或者进液口202所在的那个侧壁207与水平面在时钟三点钟方向226的夹角约等于45度或者135度,或者选自于:大于等于30度角小于等于60度角、大于60度角小于90度角、等于90度角、大于90度角小于等于120度角和大于120度角小于等于150度角。当隔离池倾斜放置时,液体被用于控制液体流速的装置缓冲或者打散后,顺着隔离池的内壁滑入隔离池的内空腔,具有更好的引流效果,减少了产生气泡的概率。
为使本专利申请说明书简洁明了,申请人在其他的实施例中仅仅公开了与第一实施例中相区别的内容,至于其他相同的内容,则不再重复叙述了。
在本明之所有实施例中,挡块206可以由硬质塑料、木块、竹片、金属等硬性材料制作,也可以是橡胶、软质塑料、防水纸、纤维等软性材料制作。
本发明除了公开了上述鞘流阻抗计数装置以外,还公开了一种包括上述鞘流阻抗计数装置的流式细胞分析仪。由于本发明之流式细胞分析仪的主要改进之处在于如前详细公开了的鞘流阻抗计数装置,其他结构则基本上与现有技术相同,因此,申请人在此不再赘述。
虽然本专利申请对本发明的实质内容已经进行了充分的公开,但是发明人不可能对本发明的内容事无具细地全部记载。任何可以根据本专利申请所公开的内容无需创造性劳动即可得到或者推导出的内容,均应当包括在本专利申请所公开的内容中,属于本专利申请所要求保护的范围。

Claims (44)

  1. 一种用于鞘流后池清洗装置的隔离池,包括容器体、内空腔、进液口和出液口,其特征在于:在隔离池的进液口附近位置处设有用于控制液体流速的装置,该用于控制液体流速的装置凸出于容器体之内壁或者被安装至容器体之内壁并且至少一部分与隔离池之进液口相对。
  2. 根据权利要求1所述的隔离池,其特征在于:所述用于控制液体流速的装置包括挡块,该挡块由隔离池之内壁向隔离池内空腔延伸并且其末端延伸超过所述进液口的轴线或者中心线至少5毫米。
  3. 根据权利要求2所述的隔离池,其特征在于:所述进液口位于隔离池的侧壁,所述挡块包括由隔离池之顶壁向隔离池之内空腔延伸的长条状圆柱体结构。
  4. 根据权利要求2所述的隔离池,其特征在于:所述进液口位于隔离池的侧壁,所述挡块包括由隔离池之顶壁向隔离池之内空腔延伸的平板结构。
  5. 根据权利要求3或者4所述的隔离池,其特征在于:所述挡块相对于隔离池之顶壁垂直或者倾斜。
  6. 根据权利要求5所述的隔离池,其特征在于:所述挡块相对于隔离池之顶壁之夹角为45度角。
  7. 根据权利要求2所述的隔离池,其特征在于:所述进液口位于隔离池的顶壁,所述挡块包括由隔离池之侧壁向隔离池之内空腔延伸的结构。
  8. 根据权利要求1所述的隔离池,其特征在于:所述进液口位于隔离池的顶壁,所述用于控制液体流速的装置包括固定在隔离池内壁的圆盘状或者圆锥体结构,隔离池内壁与圆盘状或者圆锥体结构之边缘设计有间隙。
  9. 根据权利要求8所述的隔离池,其特征在于:所述圆盘状或者圆锥体结构之外圆边缘设计有若干个缺口。
  10. 根据权利要求8所述的隔离池,其特征在于:所述圆盘状或者圆锥体结构之外圆边缘设计有允许液体通过的多孔性结构或者多孔性材料。
  11. 一种血球分析仪,其特征在于:包括一种鞘流后池清洗装置,该鞘流后池清洗装置包括:藉由管路连接的储液池、隔离池和计数池;其中,计数池包括后池、前池以及介于后池与前池之间的计数孔;隔离池包括连接至储液池的进液口和连接至后池的出液口;在隔离池的进液口附近位置处设有用于控制液体流速的装置,该用于控制液体流速的装置凸出于容器体之内壁或者被安装至容器体之内壁并且至少一部分与隔离池之进液口相对。
  12. 根据权利要求11所述的血球分析仪,其特征在于:所述用于控制液体流速的装置包括挡块,该挡块由隔离池之内壁向隔离池内空腔延伸并且至少部分与所述进液口相对。
  13. 根据权利要求12所述的血球分析仪,其特征在于:所述进液口位于隔离池的侧壁,所述挡块包括由隔离池之顶壁向隔离池之内空腔延伸的长条状圆柱体结构。
  14. 根据权利要求12所述的血球分析仪,其特征在于:所述进液口位于隔离池的侧壁,所述挡块包括由隔离池之顶壁向隔离池之内空腔延伸的平板结构。
  15. 根据权利要求13或者14所述的血球分析仪,其特征在于:所述挡块相对于隔离池之顶壁垂直或者倾斜。
  16. 根据权利要求15所述的血球分析仪,其特征在于:所述挡块相对于隔离池之顶壁之夹角为45度角。
  17. 根据权利要求12所述的血球分析仪,其特征在于:所述进液口位于隔离池的顶壁,所述挡块包括由隔离池之侧壁向隔离池之内空腔延伸的结构。
  18. 根据权利要求11所述的血球分析仪,其特征在于:所述进液口位于隔离池的顶壁,所述用于控制液体流速的装置包括固定在隔离池内壁的圆盘状或者圆锥体结构,隔离池内壁与圆盘状或者圆锥体结构之边缘设计有间隙。
  19. 根据权利要求18所述的血球分析仪,其特征在于:所述圆盘状或者圆锥体结构之外圆边缘设计有若干个缺口。
  20. 根据权利要求18所述的血球分析仪,其特征在于:所述圆盘状或者圆锥体结构之外圆边缘设计有允许液体通过的多孔性结构或者多孔性材料。
  21. 一种鞘流阻抗计数装置,包括:藉由管路连接的储液池、隔离池和计数池;其中,计数池包括后池、前池以及介于后池与前池之间的计数孔;隔离池包括连接至储液池的进液口和连接至后池的出液口;其特征在于:在隔离池的进液口位置处连接有用于控制液体流速的装置。
  22. 根据权利要求21所述的鞘流阻抗计数装置,其特征在于:所述用于控制液体流速的装置包括设置在所述进液口处的挡块,进液口与挡块之间设有通道,从进液口流出的液体经过该通道扩散至挡块的表面。
  23. 根据权利要求22所述的鞘流阻抗计数装置,其特征在于:所述挡块是与隔离池底壁大致平行放置的长条形圆柱体结构。
  24. 根据权利要求22所述的鞘流阻抗计数装置,其特征在于:所述挡块是与隔离池底壁大致平行放置的圆盘状或者圆锥体结构,圆盘状或者圆锥体结构的中心正对进液口。
  25. 根据权利要求21所述的鞘流阻抗计数装置,其特征在于:所述用于控制液体流速的装置包括设置在所述进液口处的渐扩管结构,该渐扩管结构包括与进液口连通的空腔,该空腔内壁的孔径自其与进液口相连接的一端向其远离进液口的那一端逐步增加。
  26. 根据权利要求25所述的鞘流阻抗计数装置,其特征在于:所述渐扩管结构呈喇叭状或者圆锥体状,渐扩管的轴线或者中心线与进液口所在通道的轴线或者中心线既不重叠也不平行。
  27. 根据权利要求21所述的鞘流阻抗计数装置,其特征在于:所述用于控制液体流速的装置包括与进液口相连的花洒装置,该花洒装置包括与进液口连通的空腔和连通空腔与隔离池内腔的至少两个花洒孔。
  28. 根据权利要求27所述的鞘流阻抗计数装置,其特征在于:所述花洒装置包括一个圆柱体结构,其底壁和侧壁均设有花洒孔。
  29. 根据权利要求27所述的鞘流阻抗计数装置,其特征在于:所述花洒装置包括一个圆锥体结构,仅在其底壁设有花洒孔。
  30. 根据权利要求25-29之任一者所述的鞘流阻抗计数装置,其特征在于:所述用于控制液体流速的装置的空腔内收容有海绵、棉花、滤纸、活性碳、多孔陶瓷、丝网、玻璃纤维、织物等多孔性允许液体渗透的填充材料。
  31. 根据权利要求21-29之任一者所述的鞘流阻抗计数装置,其特征在于:所述进液口位于隔离池的侧壁,并且所述隔离池倾斜放置,进液口所在的那个侧壁与水平面在时钟三点钟方向的夹角选自于:大于等于30度角小于45度角、大于等于45度角小于等于60度角、大于60度角小于等于90度角、大于90度角小于等于120度角、大于120度角小于等于135度角和大于135度角小于等于150度角。
  32. 根据权利要求21-29之任一者所述的鞘流阻抗计数装置,其特征在于:所述隔离池竖直放置,所述进液口位于隔离池的顶壁,从进液口流出的液体至少部分先流到所述控制液体流速的装置,然后经所述控制液体流速的装置扩散后再流入到隔离池的空腔。
  33. 一种流式细胞分析仪,其特征在于:包括一种鞘流阻抗计数装置,该鞘流阻抗计数装置包括:藉由管路连接的储液池、隔离池和计数池;其中,计数池包括后池、前池以及介于后池与前池之间的计数孔;隔离池包括连接至储液池的进液口和连接至后池的出液口;在隔离池的进液口位置处连接有用于控制液体流速的装置。
  34. 根据权利要求33所述的流式细胞分析仪,其特征在于:所述用于控制液体流速的装置包括设置在所述进液口处的挡块,进液口与挡块之间设有通道,从进液口流出的液体经过该通道扩散至挡块的表面。
  35. 根据权利要求34所述的流式细胞分析仪,其特征在于:所述挡块是与隔离池底壁大致平行放置的长条形圆柱体结构。
  36. 根据权利要求34所述的流式细胞分析仪,其特征在于:所述挡块是与隔离池底壁大致平行放置的圆盘状或者圆锥体结构,圆盘状或者圆锥体结构的中心正对进液口。
  37. 根据权利要求1所述的流式细胞分析仪,其特征在于:所述用于控制液体流速的装置包括设置在所述进液口处的渐扩管结构,该渐扩管结构包括与进液口连通的空腔,该空腔内壁的孔径自其与进液口相连接的一端向其远离进液口的那一端逐步增加。
  38. 根据权利要求5所述的流式细胞分析仪,其特征在于:所述渐扩管结构呈喇叭状或者圆锥体状,渐扩管的轴线或者中心线与进液口所在通道的轴线或者中心线既不重叠也不平行。
  39. 根据权利要求1所述的流式细胞分析仪,其特征在于:所述用于控制液体流速的装置包括与进液口相连的花洒装置,该花洒装置包括与进液口连通的空腔和连通空腔与隔离池内腔的至少两个花洒孔。
  40. 根据权利要求39所述的流式细胞分析仪,其特征在于:所述花洒装置包括一个圆柱体结构,其底壁和侧壁均设有花洒孔。
  41. 根据权利要求39所述的流式细胞分析仪,其特征在于:所述花洒装置包括一个圆锥体结构,仅在其底壁设有花洒孔。
  42. 根据权利要求37-41之任一者所述的流式细胞分析仪,其特征在于:所述用于控制液体流速的装置的空腔内收容有海绵、棉花、滤纸、活性碳、多孔陶瓷、丝网、玻璃纤维、织物等多孔性允许液体渗透的填充材料。
  43. 根据权利要求33-41之任一者所述的流式细胞分析仪,其特征在于:所述进液口位于隔离池的侧壁,并且所述隔离池倾斜放置,进液口所在的那个侧壁与水平面在时钟三点钟方向的夹角选自于:大于等于30度角小于45度角、大于等于45度角小于等于60度角、大于60度角小于等于90度角、大于90度角小于等于120度角、大于120度角小于等于135度角和大于135度角小于等于150度角。
  44. 根据权利要求33-41之任一者所述的流式细胞分析仪,其特征在于:所述隔离池竖直放置,所述进液口位于隔离池的顶壁,从进液口流出的液体至少部分先流到所述控制液体流速的装置,然后经所述控制液体流速的装置扩散后再流入到隔离池的空腔。
PCT/CN2017/098960 2017-08-09 2017-08-25 鞘流阻抗计数装置及包括该装置的流式细胞分析仪 WO2019028940A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2017/096679 2017-08-09
CN2017096679 2017-08-09

Publications (1)

Publication Number Publication Date
WO2019028940A1 true WO2019028940A1 (zh) 2019-02-14

Family

ID=65272784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/098960 WO2019028940A1 (zh) 2017-08-09 2017-08-25 鞘流阻抗计数装置及包括该装置的流式细胞分析仪

Country Status (1)

Country Link
WO (1) WO2019028940A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5085833A (en) * 1987-09-11 1992-02-04 Tosoh Corporation Liquid drain trap device
CN101451989A (zh) * 2007-11-29 2009-06-10 深圳迈瑞生物医疗电子股份有限公司 一种流式细胞仪及其废液排放装置和方法
CN201981054U (zh) * 2011-03-04 2011-09-21 宁波市建通环保科技有限公司 一种生物接触池
CN102533536A (zh) * 2010-12-28 2012-07-04 深圳迈瑞生物医疗电子股份有限公司 计数器组件、鞘液阻抗计数装置及流式细胞分析仪
CN103575637A (zh) * 2013-11-12 2014-02-12 桂林优利特医疗电子有限公司 一种鞘流阻抗、光学同步计数装置
CN107449721A (zh) * 2017-08-09 2017-12-08 利多(香港)有限公司 用于鞘流后池清洗装置的隔离池
CN107561254A (zh) * 2017-08-09 2018-01-09 利多(香港)有限公司 血球分析仪
CN107677590A (zh) * 2017-08-09 2018-02-09 利多(香港)有限公司 流式细胞分析仪
CN107677589A (zh) * 2017-08-09 2018-02-09 利多(香港)有限公司 用于鞘流阻抗计数装置的隔离池
CN207307272U (zh) * 2017-08-09 2018-05-04 利多(香港)有限公司 鞘流后池清洗装置
CN207318495U (zh) * 2017-08-09 2018-05-04 利多(香港)有限公司 一种血球分析仪

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5085833A (en) * 1987-09-11 1992-02-04 Tosoh Corporation Liquid drain trap device
CN101451989A (zh) * 2007-11-29 2009-06-10 深圳迈瑞生物医疗电子股份有限公司 一种流式细胞仪及其废液排放装置和方法
CN102533536A (zh) * 2010-12-28 2012-07-04 深圳迈瑞生物医疗电子股份有限公司 计数器组件、鞘液阻抗计数装置及流式细胞分析仪
CN201981054U (zh) * 2011-03-04 2011-09-21 宁波市建通环保科技有限公司 一种生物接触池
CN103575637A (zh) * 2013-11-12 2014-02-12 桂林优利特医疗电子有限公司 一种鞘流阻抗、光学同步计数装置
CN107449721A (zh) * 2017-08-09 2017-12-08 利多(香港)有限公司 用于鞘流后池清洗装置的隔离池
CN107561254A (zh) * 2017-08-09 2018-01-09 利多(香港)有限公司 血球分析仪
CN107677590A (zh) * 2017-08-09 2018-02-09 利多(香港)有限公司 流式细胞分析仪
CN107677589A (zh) * 2017-08-09 2018-02-09 利多(香港)有限公司 用于鞘流阻抗计数装置的隔离池
CN207307272U (zh) * 2017-08-09 2018-05-04 利多(香港)有限公司 鞘流后池清洗装置
CN207318495U (zh) * 2017-08-09 2018-05-04 利多(香港)有限公司 一种血球分析仪

Similar Documents

Publication Publication Date Title
CN104084049B (zh) 模块化的脉冲式曝气装置、标准曝气系统模块及过滤系统
CN107449721B (zh) 用于鞘流后池清洗装置的隔离池
CN107561254B (zh) 血球分析仪
CN207318495U (zh) 一种血球分析仪
WO2019028940A1 (zh) 鞘流阻抗计数装置及包括该装置的流式细胞分析仪
CN208684977U (zh) 一种多层细胞培养瓶装置
CN108315967A (zh) 一种洗涤剂和/或柔顺剂投放盒及洗衣机
CN107677590A (zh) 流式细胞分析仪
CN207307272U (zh) 鞘流后池清洗装置
CN109077669B (zh) 一种水箱和清洁机器人
CN208183894U (zh) 进水阀结构件、控制开关以及坐便器
CN207540945U (zh) 鞘流阻抗计数装置
CN203862147U (zh) 模块化的脉冲式曝气装置、标准曝气系统模块及过滤系统
CN207751841U (zh) 一种流式细胞分析仪
CN211921518U (zh) 一种用于细胞培养的换液器
CN107677589A (zh) 用于鞘流阻抗计数装置的隔离池
CN211290668U (zh) 分水盒、风扇
CN209941009U (zh) 一种细胞培养系统
CN208950027U (zh) 一种排水防臭机构
CN208677054U (zh) 储水设备及净饮水设备
CN214828986U (zh) 一种防飞溅的液态玻璃倾倒用漏斗
CN210664614U (zh) 一种新型电磁流量计
CN208492923U (zh) 一种无声湿化瓶
CN213669324U (zh) 一种催化剂洗涤装置
CN213868132U (zh) 一种抽水马桶自动清洁液加注装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920760

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 31/03/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17920760

Country of ref document: EP

Kind code of ref document: A1