WO2019028808A1 - 数据传输的方法、终端设备和网络设备 - Google Patents

数据传输的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2019028808A1
WO2019028808A1 PCT/CN2017/097013 CN2017097013W WO2019028808A1 WO 2019028808 A1 WO2019028808 A1 WO 2019028808A1 CN 2017097013 W CN2017097013 W CN 2017097013W WO 2019028808 A1 WO2019028808 A1 WO 2019028808A1
Authority
WO
WIPO (PCT)
Prior art keywords
bandwidth portion
bandwidth
terminal device
configuration information
data transmission
Prior art date
Application number
PCT/CN2017/097013
Other languages
English (en)
French (fr)
Inventor
张治�
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201780092398.8A priority Critical patent/CN110786038A/zh
Priority to EP17920982.0A priority patent/EP3668148B1/en
Priority to CA3072138A priority patent/CA3072138C/en
Priority to MX2020001204A priority patent/MX2020001204A/es
Priority to RU2020108083A priority patent/RU2745777C1/ru
Priority to BR112020002468-6A priority patent/BR112020002468A2/pt
Priority to AU2017427055A priority patent/AU2017427055A1/en
Priority to JP2020506181A priority patent/JP7089579B2/ja
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to KR1020207003290A priority patent/KR102393633B1/ko
Priority to CN202010073082.8A priority patent/CN111278030B/zh
Priority to PCT/CN2017/097013 priority patent/WO2019028808A1/zh
Priority to US16/637,150 priority patent/US11503596B2/en
Priority to SG11202000995TA priority patent/SG11202000995TA/en
Publication of WO2019028808A1 publication Critical patent/WO2019028808A1/zh
Priority to ZA2020/00765A priority patent/ZA202000765B/en
Priority to PH12020500272A priority patent/PH12020500272A1/en
Priority to IL272506A priority patent/IL272506A/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the embodiments of the present application relate to the field of wireless communications, and, more particularly, to a method, a terminal device, and a network device for data transmission.
  • LTE Long Term Evolution
  • NR 5G New Radio
  • BWP bandwidth part
  • a terminal device when a terminal device performs radio resource management (RRM) measurement, signals from different cells, such as a Synchronization Signal Block (SS Block), may be located at different frequency positions, so the terminal device needs The signals of different cells are measured at different frequency positions. If the different frequency positions of the SS blocks from different cells are greatly different in the frequency domain, the terminal needs to adopt a larger receiving bandwidth to simultaneously receive the SS Blocks of all cells. At this time, the BWP configured for the data transmission by the network device to the terminal device may not meet the requirement for the terminal device to perform RRM measurement.
  • RRM radio resource management
  • the embodiment of the present application provides a data transmission method, a terminal device, and a network device.
  • the terminal device can effectively perform data transmission in its corresponding bandwidth portion, and simultaneously meet the requirements of RRM measurement.
  • a first aspect provides a data transmission method, including: determining, by a terminal device, a first bandwidth portion and a second bandwidth portion; wherein the terminal device uses the first bandwidth portion for data transmission on a specific time domain resource
  • the radio resource management RRM measures and uses the second bandwidth portion to perform the data transmission on other time domain resources than the specific time domain resource.
  • the terminal device determines two different transmission bandwidths and uses different bandwidth portions when performing different operations, due to the bandwidth portion used for data transmission and RRM measurement, and only The bandwidth used in data transmission is partially different, so that the terminal device can efficiently perform data transmission in the corresponding bandwidth portion while satisfying the requirements of RRM measurement.
  • the terminal device determines the first bandwidth part and the second bandwidth part, including: the terminal device receives first configuration information and second configuration information sent by the network device, where the first configuration The information includes bandwidth information of the first bandwidth portion, the second configuration information includes bandwidth information of the second bandwidth portion, and the terminal device determines the first bandwidth portion according to the first configuration information, and according to the The second configuration information determines the second bandwidth portion.
  • the terminal device determines the first bandwidth part and the second bandwidth part, including: the terminal device receives second configuration information and third configuration information sent by the network device, where the second configuration The information includes bandwidth information of the second bandwidth part, where the third configuration information includes information of a frequency band occupied by at least one signal to be measured by the terminal device in the RRM measurement; the terminal device according to the second Determining, by the configuration information, the second bandwidth portion, and determining, according to the third configuration information, a third bandwidth portion, where the third bandwidth portion includes a frequency band occupied by the at least one signal; and the terminal device is configured according to the second The bandwidth portion and the third bandwidth portion determine the first bandwidth portion.
  • the first bandwidth portion includes the second bandwidth portion and the third bandwidth portion, and the second bandwidth portion at least partially overlaps or does not overlap with the third bandwidth portion.
  • the first bandwidth portion includes the entire system bandwidth.
  • the bandwidth information includes at least one of the following: a center frequency, a bandwidth size, and a subcarrier spacing.
  • the specific time domain resource includes multiple time domain resources distributed in time periods.
  • the time period is a time period used by the terminal device to perform the RRM measurement.
  • the at least one signal to be measured by the terminal device in the RRM measurement comprises a synchronization signal block SS Block and/or a channel status indication reference signal CSI-RS of at least one cell to be measured.
  • the second aspect provides a data transmission method, including: the network device sends first configuration information or third configuration information to the terminal device, where the first configuration information includes bandwidth information of the first bandwidth portion, and the third The configuration information includes a radio resource to be sent for the terminal device to perform And managing, by the RRM, information about a frequency band occupied by at least one signal, where the first configuration information and the third configuration information are used by the terminal device to determine the first bandwidth portion, so that the terminal device is at a specific time And using the first bandwidth part to perform data transmission and the RRM measurement on the domain resource; the network device sends second configuration information to the terminal device, where the second configuration information includes a bandwidth of the second bandwidth part And the information is used to facilitate the data transmission by using the second bandwidth part on the other time domain resources except the specific time domain resource.
  • the network device configures two different bandwidth parts for the terminal device based on different requirements of the terminal device for data transmission and RRM measurement, so that the terminal device uses different bandwidth portions when performing different operations, because data transmission and RRM measurement are performed.
  • the bandwidth portion used is different from the bandwidth portion used only for data transmission, so that the terminal device can efficiently perform data transmission in the corresponding bandwidth portion while satisfying the requirements of RRM measurement.
  • the method further includes: determining, by the network device, according to the to-be-sent for the terminal device Determining, by the RRM, information of a frequency band occupied by the at least one signal, wherein the third bandwidth portion includes a frequency band occupied by the at least one signal; and the network device is configured according to the second bandwidth portion And the third bandwidth portion, the first bandwidth portion is determined.
  • the first bandwidth portion includes the second bandwidth portion and a third bandwidth portion, and the second bandwidth portion at least partially overlaps or does not overlap with the third bandwidth portion.
  • the first bandwidth portion includes the entire system bandwidth.
  • the bandwidth information includes at least one of the following: a center frequency, a bandwidth size, and a subcarrier spacing.
  • the specific time domain resource includes multiple time domain resources distributed in time periods.
  • the time period is a time period in which the terminal device performs the RRM measurement.
  • the at least one signal to be sent by the terminal device for performing the RRM measurement comprises a synchronization signal block SS Block and/or a channel status indication reference signal CSI of at least one cell to be measured. RS.
  • a terminal device which can perform the above first aspect or The operation of the terminal device in any optional implementation of the first aspect.
  • the terminal device may comprise a modular unit for performing the operations of the terminal device in any of the possible implementations of the first aspect or the first aspect described above.
  • a network device which can perform the operations of the network device in any of the foregoing optional implementations of the second aspect or the second aspect.
  • the network device may comprise a modular unit for performing the operations of the network device in any of the possible implementations of the second aspect or the second aspect described above.
  • a terminal device comprising: a processor, a transceiver, and a memory.
  • the processor, the transceiver, and the memory communicate with each other through an internal connection path.
  • the memory is for storing instructions for executing instructions stored by the memory.
  • the processor executes the instruction stored by the memory, the executing causes the terminal device to perform the method in the first aspect or any possible implementation manner of the first aspect, or the execution causes the terminal device to implement the terminal provided by the third aspect device.
  • a network device comprising: a processor, a transceiver, and a memory.
  • the processor, the transceiver, and the memory communicate with each other through an internal connection path.
  • the memory is for storing instructions for executing instructions stored by the memory.
  • the processor executes the instruction stored by the memory, the executing causes the network device to perform the method in any of the possible implementations of the second aspect or the second aspect, or the execution causes the network device to implement the network provided by the fourth aspect device.
  • a computer readable storage medium storing a program, the program causing the terminal device to perform the above first aspect, and any one of the various implementations of the data transmission Methods.
  • a computer readable storage medium storing a program causing a network device to perform the second aspect described above, and any one of the various implementations of the data transmission Methods.
  • a system chip comprising an input interface, an output interface, a processor, and a memory
  • the processor is configured to execute an instruction stored by the memory, and when the instruction is executed, the processor can implement the foregoing The method of any of the first aspect or any of the possible implementations of the first aspect.
  • a system chip includes an input interface, an output interface, a processor, and a memory, the processor is configured to execute an instruction stored by the memory, when the instruction is executed
  • the processor may implement the method of any of the foregoing second aspect or any of the possible implementations of the second aspect.
  • a computer program product comprising instructions for causing a computer to execute the method of any of the first aspect or the first aspect of the first aspect, when the computer program product is run on a computer.
  • a computer program product comprising instructions which, when executed on a computer, cause the computer to perform the method of any of the second aspect or the second aspect of the second aspect.
  • FIG. 1 is a schematic structural diagram of an application scenario of an embodiment of the present application.
  • FIG. 2 is a schematic diagram of frequency domain locations of SS Blocks of different cells.
  • FIG. 3 is a schematic flowchart of a method for data transmission in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a bandwidth portion of an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a method for determining a bandwidth portion according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a method for determining a bandwidth portion according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a bandwidth portion of an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a bandwidth portion of an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a method for data transmission in an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a system chip according to an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • the present application describes various embodiments in connection with a terminal device.
  • the terminal device may also refer to a user equipment (User Equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, and a user agent.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • PLMN public land mobile network
  • the present application describes various embodiments in connection with a network device.
  • the network device may be a device for communicating with the terminal device, for example, may be a base station (Base Transceiver Station, BTS) in the GSM system or CDMA, or may be a base station (NodeB, NB) in the WCDMA system, or may be An evolved base station (Evolutional Node B, eNB or eNodeB) in an LTE system, or the network device may be a relay station, an access point, an in-vehicle device, a wearable device, and a network side device in a future 5G network or a future evolved PLMN network. Network side devices, etc.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • the communication system in FIG. 1 may include a network device 10 and a terminal device 20.
  • the network device 10 is configured to provide communication services for the terminal device 20 and access the core network.
  • the terminal device 20 can access the network by searching for synchronization signals, broadcast signals, and the like transmitted by the network device 10, thereby performing communication with the network.
  • the arrows shown in FIG. 1 may represent uplink/downlink transmissions by a cellular link between the terminal device 20 and the network device 10.
  • the network in the embodiment of the present application may refer to a Public Land Mobile Network (PLMN) or a Device to Device (D2D) network or a Machine to Machine/Man (M2M) network.
  • PLMN Public Land Mobile Network
  • D2D Device to Device
  • M2M Machine to Machine/Man
  • FIG. 1 is only a simplified schematic diagram of an example, and other terminal devices may also be included in the network, which are not shown in FIG.
  • the system bandwidth may reach hundreds of MHz or even several GHz of bandwidth. But when the terminal device is working, it is not always necessary to have such a large bandwidth. For example, at low data rate transmissions, the terminal device only needs to use a smaller operating bandwidth.
  • BWP Bandwidth Part
  • the synchronization channel in the 5G system is transmitted in the form of a Synchronization Signal Block (SS Block).
  • SS Block includes a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS). , Physical Broadcast Channel (PBCH) signal, etc.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the PSS, SSS, and PBCH are always located at the central location of the system bandwidth, but the location of the SS Block in the system bandwidth in the 5G system is not fixed, but the network device is flexibly configured according to the deployment requirements. This poses a problem.
  • RRM Radio Resource Management
  • signals from different cells such as SS Block
  • the terminal device needs to be different at different frequency positions.
  • the signal of the cell is measured. If the different frequency positions where the signals from different cells are located differ greatly in the frequency domain, for example, as shown in FIG. 2, the SS blocks of different cells (eg, cell 1, cell 2, cell 3, cell 4) are respectively located at different frequencies. Location, the terminal needs to adopt a larger receiving bandwidth to receive SS Blocks of all cells at the same time. At this time, the BWP configured for the data transmission by the network device to the terminal device may not meet the requirement for the terminal device to perform RRM measurement.
  • RRM Radio Resource Management
  • the embodiments of the present application are based on different requirements of data transmission and RRM measurement by the terminal device, and respectively configure two different bandwidth parts for the terminal device, and the terminal device uses different bandwidth parts when performing different operations, because data transmission and RRM measurement are performed.
  • the bandwidth portion used is different from the bandwidth portion used only for data transmission, so that the terminal device can efficiently perform data transmission in the corresponding bandwidth portion while satisfying the requirements of RRM measurement.
  • FIG. 3 is a schematic flowchart of a method for data transmission in an embodiment of the present application.
  • the method shown in FIG. 3 can be performed by a terminal device, which can be, for example, the terminal device 20 shown in FIG. 1.
  • the data transmission method includes:
  • the terminal device determines a first bandwidth portion and a second bandwidth portion.
  • the terminal device uses the first bandwidth portion for data transmission and RRM measurement on a specific time domain resource, and uses the second bandwidth portion on other time domain resources except the specific time domain resource.
  • the data is transmitted.
  • the first bandwidth portion (first BWP) and the second bandwidth portion (second BWP) are both bandwidth portions of the terminal device for data transmission, and the first bandwidth portion is also used for terminal design.
  • the RRM measurement is performed, for example, the SS block and/or the reference signal from the cell to be measured is measured, and the reference signal may be, for example, a Channel State Indication Reference Signal (CSI-RS).
  • CSI-RS Channel State Indication Reference Signal
  • the first bandwidth portion can be used for data transmission and RRM measurement on a specific time domain resource, and in a time domain other than the specific time domain resource. Resources, the second bandwidth portion is used for the data transmission.
  • the specific time domain resource includes multiple time domain resources distributed by time period.
  • the time period is a time period used by the terminal device to perform the RRM measurement. That is to say, the terminal device can perform RRM measurement according to the time period.
  • the terminal device uses the first bandwidth portion for data transmission and performs RRM measurement on multiple time domain resources distributed according to the time period, and uses the second bandwidth portion for data transmission on other time domain resources. .
  • the terminal device determines two different transmission bandwidths and uses different bandwidth portions when performing different operations, since the bandwidth portion used for data transmission and RRM measurement is different from the bandwidth portion used when only data transmission is performed, thereby The device can efficiently perform data transmission in the corresponding bandwidth portion while satisfying the requirements of RRM measurement.
  • the data transmitted may include service data, signaling data, or other types of data, where Not limited.
  • the data transmission may include the terminal device receiving the data sent by the network device or the terminal device transmitting the data to the network device.
  • the terminal device determines that the first bandwidth portion and the second bandwidth portion are specifically in the following two manners.
  • 310 may include 311 and 312.
  • the terminal device receives the first configuration information and the second configuration information that are sent by the network device.
  • the first configuration information includes bandwidth information of the first bandwidth portion
  • the second configuration information includes bandwidth information of the second bandwidth portion
  • the terminal device determines the first bandwidth portion according to the first configuration information, and determines the second bandwidth portion according to the second configuration information.
  • the first configuration information and the second configuration information are configured by the network device and are indicated to the terminal device by using the first configuration information and the second configuration information.
  • the terminal device receives the first match
  • the information may determine the first bandwidth portion and determine the second bandwidth portion based on the received second configuration information.
  • 310 may include 313 to 315.
  • the terminal device receives the second configuration information and the third configuration information that are sent by the network device.
  • the second configuration information includes bandwidth information of the second bandwidth part, where the third configuration information includes information about a frequency band occupied by at least one signal to be measured by the terminal device in the RRM measurement.
  • the terminal device determines the second bandwidth portion according to the second configuration information, and determines a third bandwidth portion according to the third configuration information, where the third bandwidth portion includes a frequency band occupied by the at least one signal.
  • the terminal device determines the first bandwidth portion according to the second bandwidth portion and the third bandwidth portion.
  • the network device may send the second configuration information to the terminal device, so that the terminal device determines the second bandwidth portion according to the second configuration information.
  • the network device may send the third configuration information to the terminal device, where the third configuration information includes information about a frequency band occupied by at least one signal to be measured by the terminal device in the RRM measurement process, so that the terminal device determines the first information according to the third configuration information.
  • a third bandwidth portion the frequency band occupied by the at least one signal should be included in the third bandwidth portion.
  • the at least one signal may include, for example, an SS Block and/or a CSI-RS of at least one cell to be measured by the terminal device.
  • the terminal device will ultimately determine the first bandwidth portion based on the second bandwidth portion and the third bandwidth portion.
  • the first bandwidth portion includes a second bandwidth portion and a third bandwidth portion, and the second bandwidth portion and the third bandwidth portion may at least partially overlap or not overlap.
  • the third bandwidth portion may be determined as the first bandwidth portion, such as the bandwidth portion shown in FIG.
  • the third bandwidth portion is a continuous frequency domain resource
  • the third bandwidth portion includes the four cells.
  • the frequency band occupied by the transmitted SS block, and the second bandwidth portion configured by the network device for the terminal device for data transmission is located within the range of the third bandwidth portion, the terminal device may determine the third bandwidth portion as the first bandwidth section.
  • the first bandwidth portion should include at least the second bandwidth portion and the third bandwidth portion, such as the schematic portion of the bandwidth portion shown in FIG.
  • the SS blocks sent by different cells are respectively located in different frequency bands, and the second bandwidth portion and the third bandwidth portion do not overlap at all, and the range of the first bandwidth portion is horizontal.
  • the second bandwidth portion and the third bandwidth portion are included in the first bandwidth portion, and the first bandwidth portion includes the second bandwidth portion and the third bandwidth portion, and the first bandwidth portion is a continuous frequency domain resource.
  • the first bandwidth portion may also include discontinuous frequency domain resources.
  • the first bandwidth portion may include only the second bandwidth portion and the third bandwidth portion shown in FIG.
  • the terminal device can acquire information of a frequency band occupied by at least one signal to be measured, so that the terminal device determines the first bandwidth portion according to the third bandwidth portion and the second bandwidth portion.
  • the terminal device can use the entire system bandwidth as the first bandwidth portion, so that all the cells to be measured can be guaranteed. The signals are measured efficiently.
  • the foregoing bandwidth information may include at least one of the following: a center frequency, a bandwidth size, and a subcarrier spacing.
  • the terminal device may determine the center frequency, the bandwidth size, the subcarrier spacing, and the like of the first bandwidth portion according to the bandwidth information of the first bandwidth portion.
  • the terminal device may determine the center frequency, the bandwidth size, the subcarrier spacing, and the like of the second bandwidth portion according to the bandwidth information of the second bandwidth portion.
  • bandwidth portion (BWP) in the embodiment of the present application may also be referred to as a transmission bandwidth, a bandwidth segment, a bandwidth configuration, and the like, and a plurality of bandwidth portions may be included in the system bandwidth.
  • Different bandwidth portions may have different bandwidth sizes and/or center frequencies, and the basic parameter sets for data transmission in different bandwidth portions, such as subcarrier spacing, etc., may also be different.
  • FIG. 9 is a schematic flowchart of a method for data transmission in an embodiment of the present application.
  • the method illustrated in FIG. 9 may be performed by a network device, such as network device 10 shown in FIG.
  • the data transmission method includes:
  • the network device sends, to the terminal device, first configuration information or third configuration information, where the first configuration information includes bandwidth information of a first bandwidth portion, where the third configuration information includes a to-be-sent for the terminal.
  • the device performs information on a frequency band occupied by at least one signal measured by the radio resource management RRM, where the first configuration information and the third configuration information are used by the terminal device to determine the first bandwidth portion, so as to facilitate the terminal.
  • the device uses the first bandwidth portion for data transmission and the RRM measurement on a specific time domain resource;
  • the network device sends second configuration information to the terminal device, where the second configuration information includes bandwidth information of the second bandwidth portion, so that the terminal device is in addition to the The second bandwidth portion is used for the data transmission on other time domain resources other than the specific time domain resource.
  • the network device can configure different second bandwidth parts for different terminal devices according to deployment requirements, and indicate the second bandwidth part to the terminal device by using the second configuration information.
  • the network device may further determine a third bandwidth portion according to a frequency band occupied by the at least one signal sent by the plurality of cells for performing RRM measurement by the terminal device, and finally the network device determines the first according to the second bandwidth portion and the third bandwidth portion. a bandwidth portion, and indicating the first bandwidth portion to the terminal device by using the first configuration information.
  • the network device may not send the first configuration information, but indicate the information about the frequency band occupied by the at least one signal to the terminal device by using the third configuration information, so that the terminal device determines the first according to the third configuration information and the second configuration information.
  • a bandwidth part may be used to indicate the information about the frequency band occupied by the at least one signal to the terminal device by using the third configuration information, so that the terminal device determines the first according to the third configuration information and the second configuration information.
  • the network device configures two different bandwidth parts for the terminal device based on different requirements of the terminal device for data transmission and RRM measurement, so that the terminal device uses different bandwidth portions when performing different operations, because data transmission and RRM measurement are performed.
  • the bandwidth portion used is different from the bandwidth portion used only for data transmission, so that the terminal device can efficiently perform data transmission in the corresponding bandwidth portion while satisfying the requirements of RRM measurement.
  • the method further includes: determining, by the network device, at least performing, according to the terminal device, the RRM measurement Information of a frequency band occupied by a signal, wherein the third bandwidth portion includes a frequency band occupied by the at least one signal; the network device according to the second bandwidth portion and the third The bandwidth portion determines the first bandwidth portion.
  • the first bandwidth portion includes the second bandwidth portion and a third bandwidth portion, the second bandwidth portion at least partially overlapping or not overlapping the third bandwidth portion.
  • the first bandwidth portion includes an entire system bandwidth.
  • the bandwidth information includes at least one of the following: a center frequency, a bandwidth size, and a subcarrier spacing.
  • the specific time domain resource includes multiple time domain resources distributed in time periods.
  • the time period is a time period in which the terminal device performs the RRM measurement.
  • the at least one signal to be sent for the terminal device to perform the RRM measurement comprises a synchronization signal block SS Block and/or a channel status indication reference signal CSI-RS of at least one cell to be measured.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be implemented in the present application.
  • the implementation of the examples constitutes any limitation.
  • FIG. 10 is a schematic block diagram of a terminal device 1000 according to an embodiment of the present application.
  • the terminal device 1000 includes a determining unit 1010 and a transceiver unit 1020. among them:
  • a determining unit 1010 configured to determine a first bandwidth portion and a second bandwidth portion
  • the transceiver unit 1020 is configured to perform data transmission and radio resource management RRM measurement by using the first bandwidth part on a specific time domain resource, and use the other time domain resources except the specific time domain resource.
  • the second bandwidth portion performs the data transmission.
  • the terminal device determines two different transmission bandwidths and uses different bandwidth portions when performing different operations, since the bandwidth portion used for data transmission and RRM measurement is different from the bandwidth portion used when only data transmission is performed, thereby The device can efficiently perform data transmission in the corresponding bandwidth portion while satisfying the requirements of RRM measurement.
  • the transceiver unit 1020 is further configured to: receive first configuration information and second configuration information that are sent by the network device, where the first configuration information includes bandwidth information of the first bandwidth portion, and the second configuration The information includes bandwidth information of the second bandwidth portion;
  • the determining unit 1010 is specifically configured to: determine the first bandwidth portion according to the first configuration information, and determine the second bandwidth portion according to the second configuration information.
  • the transceiver unit 1020 is further configured to: receive second configuration information and third configuration information that are sent by the network device, where the second configuration information includes bandwidth information of the second bandwidth portion, the third configuration The information includes information about a frequency band occupied by at least one signal to be measured by the terminal device in the RRM measurement;
  • the determining unit 1010 is specifically configured to: determine the second bandwidth portion according to the second configuration information, and determine a third bandwidth portion according to the third configuration information, where the third bandwidth portion includes the at least a frequency band occupied by a signal; determining the first bandwidth portion based on the second bandwidth portion and the third bandwidth portion.
  • the first bandwidth portion includes the second bandwidth portion and the third bandwidth portion, and the second bandwidth portion at least partially overlaps or does not overlap with the third bandwidth portion.
  • the first bandwidth portion includes an entire system bandwidth.
  • the bandwidth information includes at least one of the following: a center frequency, a bandwidth size, and Subcarrier spacing.
  • the specific time domain resource includes multiple time domain resources distributed in time periods.
  • the time period is a time period used by the terminal device to perform the RRM measurement.
  • the at least one signal to be measured by the terminal device in the RRM measurement comprises a synchronization signal block SS Block and/or a channel status indication reference signal CSI-RS of at least one cell to be measured.
  • FIG. 11 is a schematic block diagram of a network device 1100 in accordance with an embodiment of the present application. As shown in FIG. 11, the network device 1100 includes a transceiver unit 1110, configured to:
  • the terminal device Transmitting the first configuration information or the third configuration information to the terminal device, where the first configuration information includes bandwidth information of the first bandwidth portion, where the third configuration information includes a radio resource management RRM to be sent for the terminal device Measuring information of a frequency band occupied by the at least one signal, the first configuration information and the third configuration information being used by the terminal device to determine the first bandwidth portion, so that the terminal device is in a specific time domain resource Upper, using the first bandwidth portion for data transmission and the RRM measurement;
  • RRM radio resource management
  • the second configuration information includes bandwidth information of the second bandwidth portion, so that the terminal device is on other time domain resources except the specific time domain resource.
  • the data transmission is performed using the second bandwidth portion.
  • the network device configures two different bandwidth parts for the terminal device based on different requirements of the terminal device for data transmission and RRM measurement, so that the terminal device uses different bandwidth portions when performing different operations, because data transmission and RRM measurement are performed.
  • the bandwidth portion used is different from the bandwidth portion used only for data transmission, so that the terminal device can efficiently perform data transmission in the corresponding bandwidth portion while satisfying the requirements of RRM measurement.
  • the network device further includes a determining unit 1120, configured to: determine, according to information about a frequency band occupied by the at least one signal used by the terminal device to perform the RRM measurement, to determine a third bandwidth portion,
  • the third bandwidth portion includes a frequency band occupied by the at least one signal; and the first bandwidth portion is determined according to the second bandwidth portion and the third bandwidth portion.
  • the first bandwidth portion includes the second bandwidth portion and a third bandwidth portion, the second bandwidth portion at least partially overlapping or not overlapping the third bandwidth portion.
  • the first bandwidth portion includes an entire system bandwidth.
  • the bandwidth information includes at least one of the following: a center frequency, a bandwidth size, and Subcarrier spacing.
  • the specific time domain resource includes multiple time domain resources distributed in time periods.
  • the time period is a time period in which the terminal device performs the RRM measurement.
  • the at least one signal to be sent for the terminal device to perform the RRM measurement comprises a synchronization signal block SS Block and/or a channel status indication reference signal CSI-RS of at least one cell to be measured.
  • FIG. 12 is a schematic structural diagram of a terminal device 1200 according to an embodiment of the present application.
  • the terminal device includes a processor 1210, a transceiver 1220, and a memory 1230, wherein the processor 1210, the transceiver 1220, and the memory 1230 communicate with each other through an internal connection path.
  • the memory 1230 is configured to store instructions for executing the instructions stored by the memory 1230 to control the transceiver 1220 to receive signals or transmit signals.
  • the processor 1210 is configured to:
  • the transceiver 1220 is configured to: use the first bandwidth part to perform data transmission and radio resource management RRM measurement on a specific time domain resource, and use on other time domain resources except the specific time domain resource.
  • the second bandwidth portion performs the data transmission.
  • the terminal device determines two different transmission bandwidths and uses different bandwidth portions when performing different operations, since the bandwidth portion used for data transmission and RRM measurement is different from the bandwidth portion used when only data transmission is performed, thereby The device can efficiently perform data transmission in the corresponding bandwidth portion while satisfying the requirements of RRM measurement.
  • the transceiver 1220 is further configured to: receive first configuration information and second configuration information that are sent by the network device, where the first configuration information includes bandwidth information of the first bandwidth portion, and the second configuration The information includes bandwidth information of the second bandwidth portion;
  • the processor 1210 is specifically configured to: determine the first bandwidth portion according to the first configuration information, and determine the second bandwidth portion according to the second configuration information.
  • the transceiver 1220 is further configured to: receive second configuration information and third configuration information that are sent by the network device, where the second configuration information includes bandwidth information of the second bandwidth portion, the third configuration The information includes information about a frequency band occupied by at least one signal to be measured by the terminal device in the RRM measurement;
  • the processor 1210 is specifically configured to: determine the second bandwidth portion according to the second configuration information, and determine a third bandwidth portion according to the third configuration information, where the third bandwidth portion
  • the sub-band includes a frequency band occupied by the at least one signal; and the first bandwidth portion is determined according to the second bandwidth portion and the third bandwidth portion.
  • the first bandwidth portion includes the second bandwidth portion and the third bandwidth portion, and the second bandwidth portion at least partially overlaps or does not overlap with the third bandwidth portion.
  • the first bandwidth portion includes an entire system bandwidth.
  • the bandwidth information includes at least one of the following: a center frequency, a bandwidth size, and a subcarrier spacing.
  • the specific time domain resource includes multiple time domain resources distributed in time periods.
  • the time period is a time period used by the terminal device to perform the RRM measurement.
  • the at least one signal to be measured by the terminal device in the RRM measurement comprises a synchronization signal block SS Block and/or a channel status indication reference signal CSI-RS of at least one cell to be measured.
  • the processor 1210 may be a central processing unit (CPU), and the processor 1210 may also be another general-purpose processor, a digital signal processor (Digital Signal Processor, DSP). ), Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 1230 can include read only memory and random access memory and provides instructions and data to the processor 1210. A portion of the memory 1230 can also include a non-volatile random access memory.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 1210 or an instruction in a form of software.
  • the steps of the positioning method disclosed in the embodiment of the present application may be directly implemented by the hardware processor, or may be performed by a combination of hardware and software modules in the processor 1210.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 1230, and the processor 1210 reads the information in the memory 1230 and, in conjunction with its hardware, performs the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the terminal device 1200 according to the embodiment of the present application may correspond to the terminal device for performing the method 300 in the foregoing method 300, and the terminal device 1000 according to the embodiment of the present application, and each unit or module in the terminal device 1200 is used for The operations or processes performed by the terminal device in the above method 300 are performed.
  • each unit or module in the terminal device 1200 is used for The operations or processes performed by the terminal device in the above method 300 are performed.
  • detailed description thereof will be omitted.
  • FIG. 13 is a schematic structural diagram of a network device 1300 according to an embodiment of the present application.
  • the network device includes a processor 1310, a transceiver 1320, and a memory 1330, wherein the processor 1310, the transceiver 1320, and the memory 1330 communicate with each other through an internal connection path.
  • the memory 1330 is configured to store instructions for executing the instructions stored by the memory 1330 to control the transceiver 1320 to receive signals or transmit signals.
  • the transceiver 1320 is configured to:
  • the terminal device Transmitting the first configuration information or the third configuration information to the terminal device, where the first configuration information includes bandwidth information of the first bandwidth portion, where the third configuration information includes a radio resource management RRM to be sent for the terminal device Measuring information of a frequency band occupied by the at least one signal, the first configuration information and the third configuration information being used by the terminal device to determine the first bandwidth portion, so that the terminal device is in a specific time domain resource Upper, using the first bandwidth portion for data transmission and the RRM measurement;
  • RRM radio resource management
  • the second configuration information includes bandwidth information of the second bandwidth portion, so that the terminal device is on other time domain resources except the specific time domain resource.
  • the data transmission is performed using the second bandwidth portion.
  • the network device configures two different bandwidth parts for the terminal device based on different requirements of the terminal device for data transmission and RRM measurement, so that the terminal device uses different bandwidth portions when performing different operations, because data transmission and RRM measurement are performed.
  • the bandwidth portion used is different from the bandwidth portion used only for data transmission, so that the terminal device can efficiently perform data transmission in the corresponding bandwidth portion while satisfying the requirements of RRM measurement.
  • the processor 1310 is configured to: determine, according to information about a frequency band occupied by the at least one signal that is used by the terminal device to perform the RRM measurement, to determine a third bandwidth portion, where the The three bandwidth portion includes a frequency band occupied by the at least one signal; and the first bandwidth portion is determined according to the second bandwidth portion and the third bandwidth portion.
  • the first bandwidth portion includes the second bandwidth portion and a third bandwidth portion, the second bandwidth portion at least partially overlapping or not overlapping the third bandwidth portion.
  • the first bandwidth portion includes an entire system bandwidth.
  • the bandwidth information includes at least one of the following: a center frequency, a bandwidth size, and a subcarrier spacing.
  • the specific time domain resource includes multiple time domain resources distributed in time periods.
  • the time period is a time period in which the terminal device performs the RRM measurement.
  • the at least one signal to be sent for the terminal device to perform the RRM measurement comprises a synchronization signal block SS Block and/or a channel status indication reference signal CSI-RS of at least one cell to be measured.
  • the processor 1310 may be a central processing unit (CPU), and the processor 1310 may also be other general-purpose processors, digital signal processors (DSPs), and application specific integrated circuits. (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and more.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 1330 can include read only memory and random access memory and provides instructions and data to the processor 1310. A portion of the memory 1330 can also include a non-volatile random access memory.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 1310 or an instruction in a form of software.
  • the steps of the positioning method disclosed in the embodiment of the present application may be directly implemented by the hardware processor, or may be performed by a combination of hardware and software modules in the processor 1310.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 1330, and the processor 1310 reads the information in the memory 1330 and performs the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the network device 1300 may correspond to the network device for performing the method 900 in the foregoing method 900, and the network device 1100 according to the embodiment of the present application, and each unit or module in the network device 1300 is used for The operations or processes performed by the network device in the above method 900 are performed.
  • each unit or module in the network device 1300 is used for The operations or processes performed by the network device in the above method 900 are performed.
  • detailed description thereof will be omitted.
  • FIG. 14 is a schematic structural diagram of a system chip according to an embodiment of the present application.
  • the system chip 1400 of FIG. 14 includes an input interface 1401, an output interface 1402, at least one processor 1403, and a memory 1404.
  • the input interface 1401, the output interface 1402, the processor 1403, and the memory 1404 are interconnected by an internal connection path.
  • the processor 1403 is configured to execute code in the memory 1404.
  • the processor 1403 can implement the method 400 performed by the terminal device in the method embodiment. For the sake of brevity, it will not be repeated here.
  • the processor 1403 can implement the method 900 performed by the network device in the method embodiments. For the sake of brevity, it will not be repeated here.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one monitoring unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • This functionality if implemented as a software functional unit and sold or used as a standalone product, can be stored on a computer readable storage medium.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including Several instructions are used to make a computer device (which can be a personal computer, a server, Either a network device or the like) performs all or part of the steps of the method described in the various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种数据传输的方法、终端设备和网络设备,该方法包括:终端设备确定第一带宽部分和第二带宽部分;所述终端设备在特定时域资源上,使用所述第一带宽部分进行数据传输和无线资源管理RRM测量,并在除所述特定时域资源之外的其他时域资源上,使用所述第二带宽部分进行所述数据传输。由于进行数据传输和RRM测量所使用的带宽部分与仅进行数据传输所使用的带宽部分不同,从而终端设备在相应的带宽部分中能够有效地进行数据传输,并同时满足RRM测量的需求。

Description

数据传输的方法、终端设备和网络设备 技术领域
本申请实施例涉及无线通信领域,并且更具体地,涉及一种数据传输的方法、终端设备和网络设备。
背景技术
在长期演进(Long Term Evolution,LTE)系统中,传输数据的频域资源都是在整个系统带宽中分配的。而在5G新无线(New Radio,NR)系统中,由于系统带宽大大提高,终端设备的传输带宽可能只占用系统带宽的一部分。例如网络设备将系统带宽分为多个传输频带,每个传输频带称为一个带宽部分(Bandwidth Part,BWP),终端设备仅需要在其相应的带宽部分内进行数据传输。
在5G系统中,终端设备进行无线资源管理(Radio Resource Management,RRM)测量时,来自不同的小区的信号例如同步信号块(Synchronization Signal Block,SS Block)可能位于不同的频率位置,因此终端设备需要在不同的频率位置对不同小区的信号进行测量。如果来自不同的小区的SS block所在的不同频率位置在频域上相差很大,则终端需要采用较大的接收带宽才可以同时接收到所有小区的SS Block。此时,网络设备配置给终端设备的用于数据传输的BWP可能不能满足终端设备进行RRM测量的需求。
发明内容
本申请实施例提供了一种数据传输的方法、终端设备和网络设备,终端设备可以在其对应的带宽部分内有效地进行数据传输,并同时满足RRM测量的需求。
第一方面,提供了一种数据传输的方法,包括:终端设备确定第一带宽部分和第二带宽部分;所述终端设备在特定时域资源上,使用所述第一带宽部分进行数据传输和无线资源管理RRM测量,并在除所述特定时域资源之外的其他时域资源上,使用所述第二带宽部分进行所述数据传输。
因此,终端设备确定两个不同的传输带宽,并在执行不同操作时使用不同的带宽部分,由于进行数据传输和RRM测量时使用的带宽部分与仅进行 数据传输时使用的带宽部分不同,从而终端设备在相应的带宽部分中能够有效地进行数据传输,并同时满足RRM测量的需求。
在一种可能的实现方式中,所述终端设备确定第一带宽部分和第二带宽部分,包括:所述终端设备接收网络设备发送的第一配置信息和第二配置信息,所述第一配置信息包括所述第一带宽部分的带宽信息,所述第二配置信息包括所述第二带宽部分的带宽信息;所述终端设备根据所述第一配置信息确定所述第一带宽部分,并根据所述第二配置信息确定所述第二带宽部分。
在一种可能的实现方式中,所述终端设备确定第一带宽部分和第二带宽部分,包括:所述终端设备接收网络设备发送的第二配置信息和第三配置信息,所述第二配置信息包括所述第二带宽部分的带宽信息,所述第三配置信息包括所述RRM测量中所述终端设备待测量的至少一个信号所占的频带的信息;所述终端设备根据所述第二配置信息确定所述第二带宽部分,并根据所述第三配置信息确定第三带宽部分,所述第三带宽部分包括所述至少一个信号所占的频带;所述终端设备根据所述第二带宽部分和所述第三带宽部分,确定所述第一带宽部分。
在一种可能的实现方式中,所述第一带宽部分包括所述第二带宽部分和所述第三带宽部分,所述第二带宽部分与所述第三带宽部分至少部分重叠或者不重叠。
在一种可能的实现方式中,所述第一带宽部分包括整个系统带宽。
在一种可能的实现方式中,所述带宽信息包括以下中的至少一种:中心频率、带宽大小和子载波间隔。
在一种可能的实现方式中,所述特定时域资源包括按时间周期分布的多个时域资源。
在一种可能的实现方式中,所述时间周期为所述终端设备用于进行所述RRM测量的时间周期。
在一种可能的实现方式中,所述RRM测量中所述终端设备待测量的至少一个信号包括待测量的至少一个小区的同步信号块SS Block和/或信道状态指示参考信号CSI-RS。
第二方面,提供了一种数据传输的方法,包括:网络设备向终端设备发送第一配置信息或者第三配置信息,所述第一配置信息包括第一带宽部分的带宽信息,所述第三配置信息包括待发送的用于所述终端设备进行无线资源 管理RRM测量的至少一个信号所占的频带的信息,所述第一配置信息和所述第三配置信息用于所述终端设备确定所述第一带宽部分,以便于所述终端设备在特定时域资源上,使用所述第一带宽部分进行数据传输和所述RRM测量;所述网络设备向所述终端设备发送第二配置信息,所述第二配置信息包括所述第二带宽部分的带宽信息,以便于所述终端设备在除所述特定时域资源之外的其他时域资源上,使用所述第二带宽部分进行所述数据传输。
因此,网络设备基于终端设备进行数据传输和RRM测量的不同需求,为终端设备配置两个不同的带宽部分,使得终端设备在执行不同操作时使用不同的带宽部分,由于进行数据传输和RRM测量时使用的带宽部分与仅进行数据传输时使用的带宽部分不同,从而终端设备在相应的带宽部分中能够有效地进行数据传输,并同时满足RRM测量的需求。
在一种可能的实现方式中,若所述网络设备向所述终端设备发送所述第一配置信息,所述方法还包括:所述网络设备确定根据待发送的用于所述终端设备进行所述RRM测量的至少一个信号所占的频带的信息,确定第三带宽部分,其中,所述第三带宽部分包括所述至少一个信号所占的频带;所述网络设备根据所述第二带宽部分和所述第三带宽部分,确定所述第一带宽部分。
在一种可能的实现方式中,所述第一带宽部分包括所述第二带宽部分和第三带宽部分,所述第二带宽部分与所述第三带宽部分至少部分重叠或者不重叠。
在一种可能的实现方式中,所述第一带宽部分包括整个系统带宽。
在一种可能的实现方式中,所述带宽信息包括以下中的至少一种:中心频率、带宽大小和子载波间隔。
在一种可能的实现方式中,所述特定时域资源包括按时间周期分布的多个时域资源。
在一种可能的实现方式中,所述时间周期为所述终端设备进行所述RRM测量的时间周期。
在一种可能的实现方式中,待发送的用于所述终端设备进行所述RRM测量的至少一个信号包括待测量的至少一个小区的同步信号块SS Block和/或信道状态指示参考信号CSI-RS。
第三方面,提供了一种终端设备,该终端设备可以执行上述第一方面或 第一方面的任意可选的实现方式中的终端设备的操作。具体地,该终端设备可以包括用于执行上述第一方面或第一方面的任意可能的实现方式中的终端设备的操作的模块单元。
第四方面,提供了一种网络设备,该网络设备可以执行上述第二方面或第二方面的任意可选的实现方式中的网络设备的操作。具体地,该网络设备可以包括用于执行上述第二方面或第二方面的任意可能的实现方式中的网络设备的操作的模块单元。
第五方面,提供了一种终端设备,该终端设备包括:处理器、收发器和存储器。其中,该处理器、收发器和存储器之间通过内部连接通路互相通信。该存储器用于存储指令,该处理器用于执行该存储器存储的指令。当该处理器执行该存储器存储的指令时,该执行使得该终端设备执行第一方面或第一方面的任意可能的实现方式中的方法,或者该执行使得该终端设备实现第三方面提供的终端设备。
第六方面,提供了一种网络设备,该网络设备包括:处理器、收发器和存储器。其中,该处理器、收发器和存储器之间通过内部连接通路互相通信。该存储器用于存储指令,该处理器用于执行该存储器存储的指令。当该处理器执行该存储器存储的指令时,该执行使得该网络设备执行第二方面或第二方面的任意可能的实现方式中的方法,或者该执行使得该网络设备实现第四方面提供的网络设备。
第七方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得终端设备执行上述第一方面,及其各种实现方式中的任一种数据传输的方法。
第八方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得网络设备执行上述第二方面,及其各种实现方式中的任一种数据传输的方法。
第九方面,提供了一种系统芯片,该系统芯片包括输入接口、输出接口、处理器和存储器,该处理器用于执行该存储器存储的指令,当该指令被执行时,该处理器可以实现前述第一方面或第一方面的任意可能的实现方式中的方法。
第十方面,提供了一种系统芯片,该系统芯片包括输入接口、输出接口、处理器和存储器,该处理器用于执行该存储器存储的指令,当该指令被执行 时,该处理器可以实现前述第二方面或第二方面的任意可能的实现方式中的方法。
第十一方面,提供了一种包括指令的计算机程序产品,当所述计算机程序产品在计算机上运行时,使得该计算机执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第十二方面,提供了一种包括指令的计算机程序产品,当所述计算机程序产品在计算机上运行时,使得该计算机执行上述第二方面或第二方面的任意可能的实现方式中的方法。
附图说明
图1是本申请实施例的一种应用场景的示意性架构图。
图2是不同小区的SS Block的频域位置的示意图。
图3是本申请实施例的数据传输的方法的示意性流程图。
图4是本申请实施例的带宽部分的示意图。
图5是本申请实施例的确定带宽部分的方法的示意性流程图。
图6是本申请实施例的确定带宽部分的方法的示意性流程图。
图7是本申请实施例的带宽部分的示意图。
图8是本申请实施例的带宽部分的示意图。
图9是本申请实施例的数据传输的方法的示意性流程图。
图10是本申请实施例的终端设备的示意性框图。
图11是本申请实施例的网络设备的示意性框图。
图12是本申请实施例的终端设备的示意性结构图。
图13是本申请实施例的网络设备的示意性结构图。
图14是本申请实施例的系统芯片的示意性结构图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile Communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、长期演进(Long Term  Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、以及未来的5G通信系统等。
本申请结合终端设备描述了各个实施例。终端设备也可以指用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的陆上公用移动通信网(Public Land Mobile Network,PLMN)网络中的终端设备等。
本申请结合网络设备描述了各个实施例。网络设备可以是用于与终端设备进行通信的设备,例如,可以是GSM系统或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络侧设备或未来演进的PLMN网络中的网络侧设备等。
图1是本申请实施例的一个应用场景的示意图。图1中的通信系统可以包括网络设备10和终端设备20。网络设备10用于为终端设备20提供通信服务并接入核心网,终端设备20可以通过搜索网络设备10发送的同步信号、广播信号等而接入网络,从而进行与网络的通信。图1中所示出的箭头可以表示通过终端设备20与网络设备10之间的蜂窝链路进行的上/下行传输。
本申请实施例中的网络可以是指公共陆地移动网络(Public Land Mobile Network,PLMN)或者设备对设备(Device to Device,D2D)网络或者机器对机器/人(Machine to Machine/Man,M2M)网络或者其他网络,图1只是举例的简化示意图,网络中还可以包括其他终端设备,图1中未予以画出。
在5G新无线(New Radio,NR)系统中,系统带宽可能会达到数百MHz甚至数GHz的带宽。但终端设备工作时,并非时时刻刻都需要如此大的带宽。例如,在低数据速率传输时,终端设备仅需要采用较小的工作带宽。为 此提出了带宽部分(Bandwidth Part,BWP)的概念。在网络设备向终端设备配置了BWP后,终端设备仅需要在该BWP内进行数据的收发即可,从而可以有效地降低数据速率传输时终端设备的功率消耗。
5G系统中的同步信道采用同步信号块(Synchronization Signal Block,SS Block)的形式进行传输,每个SS Block内包括主同步信号(Primary Synchronization Signal,PSS)、辅同步信号(Secondary Synchronization Signal,SSS)、物理广播信道(Physical Broadcast Channel,PBCH)信号等。在LTE系统中,PSS、SSS和PBCH始终位于系统带宽的中央位置,但是5G系统中SS Block在系统带宽中的位置并不是固定的,而是网络设备根据部署需求灵活配置的。这就带来一个问题,例如终端设备进行无线资源管理(Radio Resource Management,RRM)测量时,来自不同小区的信号例如SS Block可能位于不同的频率位置,因此终端设备需要在不同的频率位置对不同小区的信号进行测量。如果来自不同小区的信号所在的不同频率位置在频域上相差很大,例如图2中所示,不同小区(例如小区1、小区2、小区3、小区4)的SS block分别位于不同的频率位置,则终端需要采用较大的接收带宽才可以同时接收到所有小区的SS Block。此时,网络设备配置给终端设备的用于数据传输的BWP可能不能满足终端设备进行RRM测量的需求。
本申请实施例基于终端设备进行数据传输和RRM测量的不同需求,分别为终端设备配置两个不同的带宽部分,终端设备在执行不同操作时使用不同的带宽部分,由于进行数据传输和RRM测量时使用的带宽部分与仅进行数据传输时使用的带宽部分不同,从而终端设备在相应的带宽部分中能够有效地进行数据传输,并同时满足RRM测量的需求。
图3是本申请实施例的数据传输的方法的示意性流程图。图3所示的方法可以由终端设备执行,该终端设备例如可以为图1中所示的终端设备20。如图3所示,该数据传输的方法包括:
在310中,终端设备确定第一带宽部分和第二带宽部分。
在320中,终端设备在特定时域资源上,使用该第一带宽部分进行数据传输和RRM测量,并在除该特定时域资源之外的其他时域资源上,使用该第二带宽部分进行该数据传输。
具体地说,第一带宽部分(第一BWP)和第二带宽部分(第二BWP)均为该终端设备进行数据传输的带宽部分,并且第一带宽部分还用于终端设 备进行RRM测量,例如对来自待测量小区的SS block和/或参考信号进行测量,该参考信号例如可以为道状态指示参考信号(Channel State Indication Reference Signal,CSI-RS)。终端设备确定了第一带宽部分和第二带宽部分后,就可以在特定时域资源上使用第一带宽部分进行数据传输并进行RRM测量,并且在除该特定时域资源之外的其他时域资源上,使用该第二带宽部分进行该数据传输。
可选地,该特定时域资源包括按时间周期分布的多个时域资源。
进一步地,可选地,该时间周期为终端设备用于进行该RRM测量的时间周期。也就是说,终端设备可以按照该时间周期进行RRM测量。
例如图4所示,终端设备在按照该时间周期分布的多个时域资源上,使用第一带宽部分进行数据传输并进行RRM测量,并在其他时域资源上使用第二带宽部分进行数据传输。
因此,终端设备确定两个不同的传输带宽,并在执行不同操作时使用不同的带宽部分,由于进行数据传输和RRM测量时使用的带宽部分与仅进行数据传输时使用的带宽部分不同,从而终端设备在相应的带宽部分中能够有效地进行数据传输,并同时满足RRM测量的需求。
应理解,本申请实施例中,终端设备在第一带宽部分和第二带宽部分上与该网络设备进行数据传输时,传输的该数据可以包括业务数据、信令数据或者其他类型的数据,这里不做限定。所述的数据传输可以包括终端设备接收网络设备发送的该数据或者终端设备向网络设备发送该数据。
在310中,终端设备确定第一带宽部分和第二带宽部分具体可以通过以下两种方式。
方式1
可选地,如图5所示,310可以包括311和312。
在311中,终端设备接收网络设备发送的第一配置信息和第二配置信息。
其中,该第一配置信息包括该第一带宽部分的带宽信息,该第二配置信息包括该第二带宽部分的带宽信息;
在312中,终端设备根据该第一配置信息确定该第一带宽部分,并根据该第二配置信息确定该第二带宽部分。
具体地说,该第一配置信息和第二配置信息为网络设备配置并通过第一配置信息和第二配置信息指示给终端设备的。终端设备根据接收到的第一配 置信息可以确定该第一带宽部分,并根据接收到的第二配置信息确定该第二带宽部分。
方式2
可选地,如图6所示,310可以包括313至315。
在313中,终端设备接收网络设备发送的第二配置信息和第三配置信息。
其中,该第二配置信息包括该第二带宽部分的带宽信息,该第三配置信息包括该RRM测量中终端设备待测量的至少一个信号所占的频带的信息。
在314中,终端设备根据该第二配置信息确定该第二带宽部分,并根据该第三配置信息确定第三带宽部分,该第三带宽部分包括该至少一个信号所占的频带。
在315中,终端设备根据该第二带宽部分和该第三带宽部分,确定该第一带宽部分。
具体地说,网络设备可以向终端设备发送第二配置信息,从而终端设备根据该第二配置信息确定第二带宽部分。同时,网络设备可以向终端设备发送第三配置信息,该第三配置信息包括RRM测量过程中终端设备待测量的至少一个信号所占的频带的信息,从而终端设备根据该第三配置信息确定第三带宽部分,该第三带宽部分中应包括该至少一个信号所占的频带。其中,该至少一个信号例如可以包括终端设备待测量的至少一个小区的SS Block和/或CSI-RS。终端设备最终会根据第二带宽部分和第三带宽部分共同确定第一带宽部分。
可选地,第一带宽部分包括第二带宽部分和第三带宽部分,所述第二带宽部分与第三带宽部分可以至少部分重叠或者不重叠。
举例来说,若第二带宽部分在第三带宽部分之内,即第三带宽部分包括第二带宽部分,那么可以将第三带宽部分确定为第一带宽部分,例如图7所示的带宽部分的示意图,以小区1、小区2、小区3和小区4为例,不同小区发送的SS block分别位于不同的频带,第三带宽部分为连续的频域资源且第三带宽部分包括这四个小区发送的SS block所占用的频带,并且网络设备为终端设备配置的用于数据传输的第二带宽部分位于该第三带宽部分的范围内,那么终端设备可以将第三带宽部分确定为第一带宽部分。
又例如,若第二带宽部分与第三带宽部分不重叠,那么第一带宽部分至少应当包括第二带宽部分和第三带宽部分,例如图8所示的带宽部分的示意 图,以小区1、小区2、小区3和小区4为例,不同小区发送的SS block分别位于不同的频带,第二带宽部分与第三带宽部分完全不重叠,那么第一带宽部分的范围横跨第二带宽部分和第三带宽部分,即第一带宽部分中包括第二带宽部分和第三带宽部分且第一带宽部分为连续的频域资源。
当然,第一带宽部分也可以包括不连续的频域资源,例如,第一带宽部分可以仅包括图8中所示的第二带宽部分和第三带宽部分。
上面都是假设终端设备能够获取待测量的至少一个信号所占的频带的信息,从而终端设备根据第三带宽部分和第二带宽部分确定第一带宽部分。但是,如果终端设备无法准确获取待测量的该至少一个信号所占的频带的信息,那么,可选地,终端设备可以将整个系统带宽作为第一带宽部分,从而可以保证对所有待测量小区的信号都进行有效地测量。
可选地,上述的带宽信息可以包括以下中的至少一种:中心频率、带宽大小和子载波间隔。
例如,终端设备根据第一带宽部分的带宽信息,可以确定第一带宽部分的中心频率、带宽大小和子载波间隔等。终端设备根据第二带宽部分的带宽信息,可以确定第二带宽部分的中心频率、带宽大小和子载波间隔等。
应理解,本申请实施例中的带宽部分(Bandwidth Part,BWP)也可以称为传输带宽、带宽分段、带宽配置等,系统带宽中可以包括多个带宽部分。不同的带宽部分可以具有不同带宽大小和/或中心频率,不同带宽部分中用于数据传输的基础参数集例如子载波间隔等也可以不相同。
图9是本申请实施例的数据传输的方法的示意性流程图。图9所示的方法可以由网络设备执行,该网络设备例如可以为图1中所示的网络设备10。如图9所示,该数据传输的方法包括:
在910中,网络设备向终端设备发送第一配置信息或者第三配置信息,所述第一配置信息包括第一带宽部分的带宽信息,所述第三配置信息包括待发送的用于所述终端设备进行无线资源管理RRM测量的至少一个信号所占的频带的信息,所述第一配置信息和所述第三配置信息用于所述终端设备确定所述第一带宽部分,以便于所述终端设备在特定时域资源上,使用所述第一带宽部分进行数据传输和所述RRM测量;
在920中,所述网络设备向所述终端设备发送第二配置信息,所述第二配置信息包括所述第二带宽部分的带宽信息,以便于所述终端设备在除所述 特定时域资源之外的其他时域资源上,使用所述第二带宽部分进行所述数据传输。
也就是说,网络设备可以根据部署需求为不同终端设备配置不同的第二带宽部分,并通过第二配置信息向终端设备指示该第二带宽部分。同时,网络设备还可以根据多个小区发送的用于终端设备进行RRM测量的至少一个信号所占的频带确定第三带宽部分,最后网络设备根据第二带宽部分和第三带宽部分共同确定该第一带宽部分,并通过第一配置信息向终端设备指示该第一带宽部分。或者,网络设备可以不发送第一配置信息,而是通过第三配置信息向终端设备指示该至少一个信号所占的频带的信息,以便终端设备根据第三配置信息和第二配置信息自行确定第一带宽部分。
因此,网络设备基于终端设备进行数据传输和RRM测量的不同需求,为终端设备配置两个不同的带宽部分,使得终端设备在执行不同操作时使用不同的带宽部分,由于进行数据传输和RRM测量时使用的带宽部分与仅进行数据传输时使用的带宽部分不同,从而终端设备在相应的带宽部分中能够有效地进行数据传输,并同时满足RRM测量的需求。
可选地,若所述网络设备向所述终端设备发送所述第一配置信息,所述方法还包括:所述网络设备确定根据待发送的用于所述终端设备进行所述RRM测量的至少一个信号所占的频带的信息,确定第三带宽部分,其中,所述第三带宽部分包括所述至少一个信号所占的频带;所述网络设备根据所述第二带宽部分和所述第三带宽部分,确定所述第一带宽部分。
可选地,所述第一带宽部分包括所述第二带宽部分和第三带宽部分,所述第二带宽部分与所述第三带宽部分至少部分重叠或者不重叠。
可选地,所述第一带宽部分包括整个系统带宽。
可选地,所述带宽信息包括以下中的至少一种:中心频率、带宽大小和子载波间隔。
可选地,所述特定时域资源包括按时间周期分布的多个时域资源。
可选地,所述时间周期为所述终端设备进行所述RRM测量的时间周期。
可选地,待发送的用于所述终端设备进行所述RRM测量的至少一个信号包括待测量的至少一个小区的同步信号块SS Block和/或信道状态指示参考信号CSI-RS。
应理解,网络设备确定第一带宽部分和第二带宽部分的过程具体可以参 考前述图3至图8中对终端设备的相关描述,为了简洁,这里不再赘述。
还应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
图10是根据本申请实施例的终端设备1000的示意性框图。如图10所示,该终端设备1000包括确定单元1010和收发单元1020。其中:
确定单元1010,用于确定第一带宽部分和第二带宽部分;
收发单元1020,用于在特定时域资源上,使用所述第一带宽部分进行数据传输和无线资源管理RRM测量,并在除所述特定时域资源之外的其他时域资源上,使用所述第二带宽部分进行所述数据传输。
因此,终端设备确定两个不同的传输带宽,并在执行不同操作时使用不同的带宽部分,由于进行数据传输和RRM测量时使用的带宽部分与仅进行数据传输时使用的带宽部分不同,从而终端设备在相应的带宽部分中能够有效地进行数据传输,并同时满足RRM测量的需求。
可选地,所述收发单元1020还用于:接收网络设备发送的第一配置信息和第二配置信息,所述第一配置信息包括所述第一带宽部分的带宽信息,所述第二配置信息包括所述第二带宽部分的带宽信息;
其中,所述确定单元1010具体用于:根据所述第一配置信息确定所述第一带宽部分,并根据所述第二配置信息确定所述第二带宽部分。
可选地,所述收发单元1020还用于:接收网络设备发送的第二配置信息和第三配置信息,所述第二配置信息包括所述第二带宽部分的带宽信息,所述第三配置信息包括所述RRM测量中所述终端设备待测量的至少一个信号所占的频带的信息;
其中,所述确定单元1010具体用于:根据所述第二配置信息确定所述第二带宽部分,并根据所述第三配置信息确定第三带宽部分,所述第三带宽部分包括所述至少一个信号所占的频带;根据所述第二带宽部分和所述第三带宽部分,确定所述第一带宽部分。
可选地,所述第一带宽部分包括所述第二带宽部分和所述第三带宽部分,所述第二带宽部分与所述第三带宽部分至少部分重叠或者不重叠。
可选地,所述第一带宽部分包括整个系统带宽。
可选地,所述带宽信息包括以下中的至少一种:中心频率、带宽大小和 子载波间隔。
可选地,所述特定时域资源包括按时间周期分布的多个时域资源。
可选地,所述时间周期为所述终端设备用于进行所述RRM测量的时间周期。
可选地,所述RRM测量中所述终端设备待测量的至少一个信号包括待测量的至少一个小区的同步信号块SS Block和/或信道状态指示参考信号CSI-RS。
图11是根据本申请实施例的网络设备1100的示意性框图。如图11所示,该网络设备1100包括收发单元1110,用于:
向终端设备发送第一配置信息或者第三配置信息,所述第一配置信息包括第一带宽部分的带宽信息,所述第三配置信息包括待发送的用于所述终端设备进行无线资源管理RRM测量的至少一个信号所占的频带的信息,所述第一配置信息和所述第三配置信息用于所述终端设备确定所述第一带宽部分,以便于所述终端设备在特定时域资源上,使用所述第一带宽部分进行数据传输和所述RRM测量;
向所述终端设备发送第二配置信息,所述第二配置信息包括所述第二带宽部分的带宽信息,以便于所述终端设备在除所述特定时域资源之外的其他时域资源上,使用所述第二带宽部分进行所述数据传输。
因此,网络设备基于终端设备进行数据传输和RRM测量的不同需求,为终端设备配置两个不同的带宽部分,使得终端设备在执行不同操作时使用不同的带宽部分,由于进行数据传输和RRM测量时使用的带宽部分与仅进行数据传输时使用的带宽部分不同,从而终端设备在相应的带宽部分中能够有效地进行数据传输,并同时满足RRM测量的需求。
可选地,所述网络设备还包括确定单元1120,用于:确定根据待发送的用于所述终端设备进行所述RRM测量的至少一个信号所占的频带的信息,确定第三带宽部分,其中,所述第三带宽部分包括所述至少一个信号所占的频带;根据所述第二带宽部分和所述第三带宽部分,确定所述第一带宽部分。
可选地,所述第一带宽部分包括所述第二带宽部分和第三带宽部分,所述第二带宽部分与所述第三带宽部分至少部分重叠或者不重叠。
可选地,所述第一带宽部分包括整个系统带宽。
可选地,所述带宽信息包括以下中的至少一种:中心频率、带宽大小和 子载波间隔。
可选地,所述特定时域资源包括按时间周期分布的多个时域资源。
可选地,所述时间周期为所述终端设备进行所述RRM测量的时间周期。
可选地,待发送的用于所述终端设备进行所述RRM测量的至少一个信号包括待测量的至少一个小区的同步信号块SS Block和/或信道状态指示参考信号CSI-RS。
图12是根据本申请实施例的终端设备1200的示意性结构图。如图12所示,该终端设备包括处理器1210、收发器1220和存储器1230,其中,该处理器1210、收发器1220和存储器1230之间通过内部连接通路互相通信。该存储器1230用于存储指令,该处理器1210用于执行该存储器1230存储的指令,以控制该收发器1220接收信号或发送信号。其中,该处理器1210用于:
确定第一带宽部分和第二带宽部分;
该收发器1220用于:在特定时域资源上,使用所述第一带宽部分进行数据传输和无线资源管理RRM测量,并在除所述特定时域资源之外的其他时域资源上,使用所述第二带宽部分进行所述数据传输。
因此,终端设备确定两个不同的传输带宽,并在执行不同操作时使用不同的带宽部分,由于进行数据传输和RRM测量时使用的带宽部分与仅进行数据传输时使用的带宽部分不同,从而终端设备在相应的带宽部分中能够有效地进行数据传输,并同时满足RRM测量的需求。
可选地,所述收发器1220还用于:接收网络设备发送的第一配置信息和第二配置信息,所述第一配置信息包括所述第一带宽部分的带宽信息,所述第二配置信息包括所述第二带宽部分的带宽信息;
其中,所述处理器1210具体用于:根据所述第一配置信息确定所述第一带宽部分,并根据所述第二配置信息确定所述第二带宽部分。
可选地,所述收发器1220还用于:接收网络设备发送的第二配置信息和第三配置信息,所述第二配置信息包括所述第二带宽部分的带宽信息,所述第三配置信息包括所述RRM测量中所述终端设备待测量的至少一个信号所占的频带的信息;
其中,所述处理器1210具体用于:根据所述第二配置信息确定所述第二带宽部分,并根据所述第三配置信息确定第三带宽部分,所述第三带宽部 分包括所述至少一个信号所占的频带;根据所述第二带宽部分和所述第三带宽部分,确定所述第一带宽部分。
可选地,所述第一带宽部分包括所述第二带宽部分和所述第三带宽部分,所述第二带宽部分与所述第三带宽部分至少部分重叠或者不重叠。
可选地,所述第一带宽部分包括整个系统带宽。
可选地,所述带宽信息包括以下中的至少一种:中心频率、带宽大小和子载波间隔。
可选地,所述特定时域资源包括按时间周期分布的多个时域资源。
可选地,所述时间周期为所述终端设备用于进行所述RRM测量的时间周期。
可选地,所述RRM测量中所述终端设备待测量的至少一个信号包括待测量的至少一个小区的同步信号块SS Block和/或信道状态指示参考信号CSI-RS。
应理解,在本申请实施例中,该处理器1210可以是中处理测单元(Central Processing Unit,CPU),该处理器1210还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器1230可以包括只读存储器和随机存取存储器,并向处理器1210提供指令和数据。存储器1230的一部分还可以包括非易失性随机存取存储器。
在实现过程中,上述方法的各步骤可以通过处理器1210中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的定位方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器1210中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1230,处理器1210读取存储器1230中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
根据本申请实施例的终端设备1200可以对应于上述方法300中用于执行方法300的终端设备,以及根据本申请实施例的终端设备1000,且该终端设备1200中的各单元或模块分别用于执行上述方法300中终端设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
图13是根据本申请实施例的网络设备1300的示意性结构图。如图13所示,该网络设备包括处理器1310、收发器1320和存储器1330,其中,该处理器1310、收发器1320和存储器1330之间通过内部连接通路互相通信。该存储器1330用于存储指令,该处理器1310用于执行该存储器1330存储的指令,以控制该收发器1320接收信号或发送信号。其中,该收发器1320用于:
向终端设备发送第一配置信息或者第三配置信息,所述第一配置信息包括第一带宽部分的带宽信息,所述第三配置信息包括待发送的用于所述终端设备进行无线资源管理RRM测量的至少一个信号所占的频带的信息,所述第一配置信息和所述第三配置信息用于所述终端设备确定所述第一带宽部分,以便于所述终端设备在特定时域资源上,使用所述第一带宽部分进行数据传输和所述RRM测量;
向所述终端设备发送第二配置信息,所述第二配置信息包括所述第二带宽部分的带宽信息,以便于所述终端设备在除所述特定时域资源之外的其他时域资源上,使用所述第二带宽部分进行所述数据传输。
因此,网络设备基于终端设备进行数据传输和RRM测量的不同需求,为终端设备配置两个不同的带宽部分,使得终端设备在执行不同操作时使用不同的带宽部分,由于进行数据传输和RRM测量时使用的带宽部分与仅进行数据传输时使用的带宽部分不同,从而终端设备在相应的带宽部分中能够有效地进行数据传输,并同时满足RRM测量的需求。
可选地,所述处理器1310用于:确定根据待发送的用于所述终端设备进行所述RRM测量的至少一个信号所占的频带的信息,确定第三带宽部分,其中,所述第三带宽部分包括所述至少一个信号所占的频带;根据所述第二带宽部分和所述第三带宽部分,确定所述第一带宽部分。
可选地,所述第一带宽部分包括所述第二带宽部分和第三带宽部分,所述第二带宽部分与所述第三带宽部分至少部分重叠或者不重叠。
可选地,所述第一带宽部分包括整个系统带宽。
可选地,所述带宽信息包括以下中的至少一种:中心频率、带宽大小和子载波间隔。
可选地,所述特定时域资源包括按时间周期分布的多个时域资源。
可选地,所述时间周期为所述终端设备进行所述RRM测量的时间周期。
可选地,待发送的用于所述终端设备进行所述RRM测量的至少一个信号包括待测量的至少一个小区的同步信号块SS Block和/或信道状态指示参考信号CSI-RS。
应理解,在本申请实施例中,该处理器1310可以是中央处理单元(Central Processing Unit,CPU),该处理器1310还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器1330可以包括只读存储器和随机存取存储器,并向处理器1310提供指令和数据。存储器1330的一部分还可以包括非易失性随机存取存储器。在实现过程中,上述方法的各步骤可以通过处理器1310中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的定位方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器1310中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1330,处理器1310读取存储器1330中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
根据本申请实施例的网络设备1300可以对应于上述方法900中用于执行方法900的网络设备,以及根据本申请实施例的网络设备1100,且该网络设备1300中的各单元或模块分别用于执行上述方法900中网络设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
图14是本申请实施例的系统芯片的一个示意性结构图。图14的系统芯片1400包括输入接口1401、输出接口1402、至少一个处理器1403、存储器1404,所述输入接口1401、输出接口1402、所述处理器1403以及存储器1404之间通过内部连接通路互相连接。所述处理器1403用于执行所述存储器1404中的代码。
可选地,当所述代码被执行时,所述处理器1403可以实现方法实施例中由终端设备执行的方法400。为了简洁,这里不再赘述。
可选地,当所述代码被执行时,所述处理器1403可以实现方法实施例中由网络设备执行的方法900。为了简洁,这里不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
该作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个监测单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
该功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器, 或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上,仅为本申请的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请适合私利的保护范围之内。因此,本申请实施例的保护范围应该以权利要求的保护范围为准。

Claims (34)

  1. 一种数据传输的方法,其特征在于,所述方法包括:
    终端设备确定第一带宽部分和第二带宽部分;
    所述终端设备在特定时域资源上,使用所述第一带宽部分进行数据传输和无线资源管理RRM测量,并在除所述特定时域资源之外的其他时域资源上,使用所述第二带宽部分进行所述数据传输。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备确定第一带宽部分和第二带宽部分,包括:
    所述终端设备接收网络设备发送的第一配置信息和第二配置信息,所述第一配置信息包括所述第一带宽部分的带宽信息,所述第二配置信息包括所述第二带宽部分的带宽信息;
    所述终端设备根据所述第一配置信息确定所述第一带宽部分,并根据所述第二配置信息确定所述第二带宽部分。
  3. 根据权利要求1所述的方法,其特征在于,所述终端设备确定第一带宽部分和第二带宽部分,包括:
    所述终端设备接收网络设备发送的第二配置信息和第三配置信息,所述第二配置信息包括所述第二带宽部分的带宽信息,所述第三配置信息包括所述RRM测量中所述终端设备待测量的至少一个信号所占的频带的信息;
    所述终端设备根据所述第二配置信息确定所述第二带宽部分,并根据所述第三配置信息确定第三带宽部分,所述第三带宽部分包括所述至少一个信号所占的频带;
    所述终端设备根据所述第二带宽部分和所述第三带宽部分,确定所述第一带宽部分。
  4. 根据权利要求3所述的方法,其特征在于,所述第一带宽部分包括所述第二带宽部分和所述第三带宽部分,所述第二带宽部分与所述第三带宽部分至少部分重叠或者不重叠。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一带宽部分包括整个系统带宽。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述带宽信息包括以下中的至少一种:中心频率、带宽大小和子载波间隔。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述特定 时域资源包括按时间周期分布的多个时域资源。
  8. 根据权利要求7所述的方法,其特征在于,所述时间周期为所述终端设备用于进行所述RRM测量的时间周期。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述RRM测量中所述终端设备待测量的至少一个信号包括待测量的至少一个小区的同步信号块SS Block和/或信道状态指示参考信号CSI-RS。
  10. 一种数据传输的方法,其特征在于,所述方法包括:
    网络设备向终端设备发送第一配置信息或者第三配置信息,所述第一配置信息包括第一带宽部分的带宽信息,所述第三配置信息包括待发送的用于所述终端设备进行无线资源管理RRM测量的至少一个信号所占的频带的信息,所述第一配置信息和所述第三配置信息用于所述终端设备确定所述第一带宽部分,以便于所述终端设备在特定时域资源上,使用所述第一带宽部分进行数据传输和所述RRM测量;
    所述网络设备向所述终端设备发送第二配置信息,所述第二配置信息包括所述第二带宽部分的带宽信息,以便于所述终端设备在除所述特定时域资源之外的其他时域资源上,使用所述第二带宽部分进行所述数据传输。
  11. 根据权利要求10所述的方法,其特征在于,若所述网络设备向所述终端设备发送所述第一配置信息,所述方法还包括:
    所述网络设备确定根据待发送的用于所述终端设备进行所述RRM测量的至少一个信号所占的频带的信息,确定第三带宽部分,其中,所述第三带宽部分包括所述至少一个信号所占的频带;
    所述网络设备根据所述第二带宽部分和所述第三带宽部分,确定所述第一带宽部分。
  12. 根据权利要求11所述的方法,其特征在于,所述第一带宽部分包括所述第二带宽部分和第三带宽部分,所述第二带宽部分与所述第三带宽部分至少部分重叠或者不重叠。
  13. 根据权利要求10至12中任一项所述的方法,其特征在于,所述第一带宽部分包括整个系统带宽。
  14. 根据权利要求10至13中任一项所述的方法,其特征在于,所述带宽信息包括以下中的至少一种:中心频率、带宽大小和子载波间隔。
  15. 根据权利要求10至14中任一项所述的方法,其特征在于,所述特 定时域资源包括按时间周期分布的多个时域资源。
  16. 根据权利要求15所述的方法,其特征在于,所述时间周期为所述终端设备进行所述RRM测量的时间周期。
  17. 根据权利要求10至16中任一项所述的方法,其特征在于,待发送的用于所述终端设备进行所述RRM测量的至少一个信号包括待测量的至少一个小区的同步信号块SS Block和/或信道状态指示参考信号CSI-RS。
  18. 一种终端设备,其特征在于,所述终端设备包括:
    确定单元,用于确定第一带宽部分和第二带宽部分;
    收发单元,用于在特定时域资源上,使用所述第一带宽部分进行数据传输和无线资源管理RRM测量,并在除所述特定时域资源之外的其他时域资源上,使用所述第二带宽部分进行所述数据传输。
  19. 根据权利要求18所述的终端设备,其特征在于,所述收发单元还用于:
    接收网络设备发送的第一配置信息和第二配置信息,所述第一配置信息包括所述第一带宽部分的带宽信息,所述第二配置信息包括所述第二带宽部分的带宽信息;
    其中,所述确定单元具体用于:
    根据所述第一配置信息确定所述第一带宽部分,并根据所述第二配置信息确定所述第二带宽部分。
  20. 根据权利要求18所述的终端设备,其特征在于,所述收发单元还用于:
    接收网络设备发送的第二配置信息和第三配置信息,所述第二配置信息包括所述第二带宽部分的带宽信息,所述第三配置信息包括所述RRM测量中所述终端设备待测量的至少一个信号所占的频带的信息;
    其中,所述确定单元具体用于:
    根据所述第二配置信息确定所述第二带宽部分,并根据所述第三配置信息确定第三带宽部分,所述第三带宽部分包括所述至少一个信号所占的频带;
    根据所述第二带宽部分和所述第三带宽部分,确定所述第一带宽部分。
  21. 根据权利要求20所述的终端设备,其特征在于,所述第一带宽部分包括所述第二带宽部分和所述第三带宽部分,所述第二带宽部分与所述第 三带宽部分至少部分重叠或者不重叠。
  22. 根据权利要求18至21中任一项所述的终端设备,其特征在于,所述第一带宽部分包括整个系统带宽。
  23. 根据权利要求18至22中任一项所述的终端设备,其特征在于,所述带宽信息包括以下中的至少一种:中心频率、带宽大小和子载波间隔。
  24. 根据权利要求18至23中任一项所述的终端设备,其特征在于,所述特定时域资源包括按时间周期分布的多个时域资源。
  25. 根据权利要求24所述的终端设备,其特征在于,所述时间周期为所述终端设备用于进行所述RRM测量的时间周期。
  26. 根据权利要求18至25中任一项所述的终端设备,其特征在于,所述RRM测量中所述终端设备待测量的至少一个信号包括待测量的至少一个小区的同步信号块SS Block和/或信道状态指示参考信号CSI-RS。
  27. 一种网络设备,其特征在于,所述网络设备包括:
    收发单元,用于向终端设备发送第一配置信息或者第三配置信息,所述第一配置信息包括第一带宽部分的带宽信息,所述第三配置信息包括待发送的用于所述终端设备进行无线资源管理RRM测量的至少一个信号所占的频带的信息,所述第一配置信息和所述第三配置信息用于所述终端设备确定所述第一带宽部分,以便于所述终端设备在特定时域资源上,使用所述第一带宽部分进行数据传输和所述RRM测量;
    所述收发单元还用于,向所述终端设备发送第二配置信息,所述第二配置信息包括所述第二带宽部分的带宽信息,以便于所述终端设备在除所述特定时域资源之外的其他时域资源上,使用所述第二带宽部分进行所述数据传输。
  28. 根据权利要求27所述的网络设备,其特征在于,所述网络设备还包括确定单元,用于:
    确定根据待发送的用于所述终端设备进行所述RRM测量的至少一个信号所占的频带的信息,确定第三带宽部分,其中,所述第三带宽部分包括所述至少一个信号所占的频带;
    根据所述第二带宽部分和所述第三带宽部分,确定所述第一带宽部分。
  29. 根据权利要求28所述的网络设备,其特征在于,所述第一带宽部分包括所述第二带宽部分和第三带宽部分,所述第二带宽部分与所述第三带 宽部分至少部分重叠或者不重叠。
  30. 根据权利要求27至29中任一项所述的网络设备,其特征在于,所述第一带宽部分包括整个系统带宽。
  31. 根据权利要求27至30中任一项所述的网络设备,其特征在于,所述带宽信息包括以下中的至少一种:中心频率、带宽大小和子载波间隔。
  32. 根据权利要求27至31中任一项所述的网络设备,其特征在于,所述特定时域资源包括按时间周期分布的多个时域资源。
  33. 根据权利要求32所述的网络设备,其特征在于,所述时间周期为所述终端设备进行所述RRM测量的时间周期。
  34. 根据权利要求27至33中任一项所述的网络设备,其特征在于,待发送的用于所述终端设备进行所述RRM测量的至少一个信号包括待测量的至少一个小区的同步信号块SS Block和/或信道状态指示参考信号CSI-RS。
PCT/CN2017/097013 2017-08-11 2017-08-11 数据传输的方法、终端设备和网络设备 WO2019028808A1 (zh)

Priority Applications (16)

Application Number Priority Date Filing Date Title
KR1020207003290A KR102393633B1 (ko) 2017-08-11 2017-08-11 데이터 전송 방법, 단말 장치와 네트워크 장치
EP17920982.0A EP3668148B1 (en) 2017-08-11 2017-08-11 Data transmission method and terminal device
CN202010073082.8A CN111278030B (zh) 2017-08-11 2017-08-11 数据传输的方法、终端设备和网络设备
RU2020108083A RU2745777C1 (ru) 2017-08-11 2017-08-11 Способ передачи данных, оконечное устройство и сетевое устройство
BR112020002468-6A BR112020002468A2 (pt) 2017-08-11 2017-08-11 método de transmissão de dados, e dispositivo de terminal
AU2017427055A AU2017427055A1 (en) 2017-08-11 2017-08-11 Data transmission method, terminal device, and network device
JP2020506181A JP7089579B2 (ja) 2017-08-11 2017-08-11 データ伝送方法、端末装置及びネットワーク装置
CN201780092398.8A CN110786038A (zh) 2017-08-11 2017-08-11 数据传输的方法、终端设备和网络设备
CA3072138A CA3072138C (en) 2017-08-11 2017-08-11 Data transmission method, terminal device, and network device
MX2020001204A MX2020001204A (es) 2017-08-11 2017-08-11 Procedimiento de transmision de datos, dispositivo terminal, y dispositivo de red.
PCT/CN2017/097013 WO2019028808A1 (zh) 2017-08-11 2017-08-11 数据传输的方法、终端设备和网络设备
US16/637,150 US11503596B2 (en) 2017-08-11 2017-08-11 Data transmission method, terminal device, and network device
SG11202000995TA SG11202000995TA (en) 2017-08-11 2017-08-11 Data transmission method, terminal device, and network device
ZA2020/00765A ZA202000765B (en) 2017-08-11 2020-02-05 Data transmission method, terminal device, and network device
PH12020500272A PH12020500272A1 (en) 2017-08-11 2020-02-06 Data transmission method, terminal device, and network device
IL272506A IL272506A (en) 2017-08-11 2020-02-06 Data transfer method, end unit, and network unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/097013 WO2019028808A1 (zh) 2017-08-11 2017-08-11 数据传输的方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2019028808A1 true WO2019028808A1 (zh) 2019-02-14

Family

ID=65272938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/097013 WO2019028808A1 (zh) 2017-08-11 2017-08-11 数据传输的方法、终端设备和网络设备

Country Status (15)

Country Link
US (1) US11503596B2 (zh)
EP (1) EP3668148B1 (zh)
JP (1) JP7089579B2 (zh)
KR (1) KR102393633B1 (zh)
CN (2) CN110786038A (zh)
AU (1) AU2017427055A1 (zh)
BR (1) BR112020002468A2 (zh)
CA (1) CA3072138C (zh)
IL (1) IL272506A (zh)
MX (1) MX2020001204A (zh)
PH (1) PH12020500272A1 (zh)
RU (1) RU2745777C1 (zh)
SG (1) SG11202000995TA (zh)
WO (1) WO2019028808A1 (zh)
ZA (1) ZA202000765B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019068587A1 (en) * 2017-10-02 2019-04-11 Sony Mobile Communications Inc METHOD AND DEVICE FOR SYNCHRONIZATION AND MEASUREMENT IN A RADIO COMMUNICATION SYSTEM
WO2023151052A1 (en) * 2022-02-12 2023-08-17 Apple Inc. Enhanced reduced capability user equipment
WO2023179690A1 (zh) * 2022-03-25 2023-09-28 华为技术有限公司 测距方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110105048A1 (en) * 2008-07-15 2011-05-05 Panasonic Corporation Radio receiving apparatus, and extra-use-unit-band reference signal measurement method
CN104205979A (zh) * 2012-03-29 2014-12-10 索尼公司 无线电通信装置和无线电通信方法以及无线电通信系统

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102238243B (zh) 2010-05-05 2014-07-09 华为终端有限公司 数据传输方法及系统、地址获取方法、终端设备、服务器
GB2491858C (en) 2011-06-14 2020-07-29 Sca Ipla Holdings Inc Telecommunications method and system
GB2497743B (en) 2011-12-19 2017-09-27 Sca Ipla Holdings Inc Telecommunications systems and methods
GB2502274B (en) * 2012-05-21 2017-04-19 Sony Corp Telecommunications systems and methods
US8976698B2 (en) 2012-08-09 2015-03-10 Qualcomm Incorporated Methods and apparatus for radio link monitoring in new carrier type (NCT) in a long term evolution (LTE) system
GB2506403B (en) 2012-09-28 2018-01-03 Sony Corp Assigning mode of virtual channel operation to mobile terminal
RU2594882C1 (ru) * 2015-04-23 2016-08-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный аграрный университет" Мельница
WO2017217719A1 (en) * 2016-06-12 2017-12-21 Lg Electronics Inc. Method for receiving signals and wireless device thereof
US20180279289A1 (en) * 2017-03-23 2018-09-27 Huawei Technologies Co., Ltd. System and Method for Signaling for Resource Allocation for One or More Numerologies
US11160057B2 (en) * 2017-04-21 2021-10-26 Asustek Computer Inc. Method and apparatus for improving precoding resource block group in a wireless communication system
WO2018203717A1 (en) * 2017-05-04 2018-11-08 Samsung Electronics Co., Ltd. Bandwidth part configurations for single carrier wideband operations
WO2018212509A1 (en) * 2017-05-15 2018-11-22 Samsung Electronics Co., Ltd. Method and apparatus for control resource set configuration and monitoring of downlink control channel in wireless communication system
KR102443452B1 (ko) * 2017-07-17 2022-09-15 삼성전자 주식회사 무선 통신 시스템에서 하향링크 제어정보를 전송하는 방법 및 장치
US10687365B2 (en) * 2017-08-01 2020-06-16 Htc Corporation Device and method of handling bandwidth parts
PL3664539T3 (pl) * 2017-08-04 2022-10-31 Beijing Xiaomi Mobile Software Co., Ltd. Sposób i urządzenie do przesyłania danych oraz czytelny dla komputera nośnik magazynujący
KR20200030026A (ko) * 2017-08-10 2020-03-19 삼성전자주식회사 차세대 무선 통신 시스템에서의 광대역 부분을 고려한 동작 방법 및 장치
CN109391417B (zh) * 2017-08-11 2022-05-13 华为技术有限公司 传输下行控制信息的方法、装置和系统
KR102321488B1 (ko) * 2017-08-11 2021-11-04 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 크로스 캐리어 스케줄링 방법 및 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110105048A1 (en) * 2008-07-15 2011-05-05 Panasonic Corporation Radio receiving apparatus, and extra-use-unit-band reference signal measurement method
CN104205979A (zh) * 2012-03-29 2014-12-10 索尼公司 无线电通信装置和无线电通信方法以及无线电通信系统

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Overview of Wider Bandwidth Operations", 3GPP TSG RAN WG1 NR AD HOC MEETING R1-1709972, 30 June 2017 (2017-06-30), XP051299197 *
HUAWEI ET AL.: "Scheduling and Resource Allocation Mechanism for Active Bandwidth Parts", 3GPP TSG RAN WG1 NR AD HOC MEETING R1-1709974, 30 June 2017 (2017-06-30), XP051299199 *
MEDIATEK INC.: "Discussion on UE Measurement Capability", 3GPP TSG-RAN WG4 NR AH MEETING #2 R4-1706547, 29 June 2017 (2017-06-29), XP051302595 *
See also references of EP3668148A4 *

Also Published As

Publication number Publication date
RU2745777C1 (ru) 2021-03-31
CN111278030A (zh) 2020-06-12
CA3072138C (en) 2023-03-07
CN110786038A (zh) 2020-02-11
AU2017427055A1 (en) 2020-02-27
CA3072138A1 (en) 2019-02-14
KR102393633B1 (ko) 2022-05-02
US11503596B2 (en) 2022-11-15
CN111278030B (zh) 2022-04-12
JP7089579B2 (ja) 2022-06-22
JP2020534720A (ja) 2020-11-26
EP3668148A4 (en) 2020-08-12
ZA202000765B (en) 2021-08-25
BR112020002468A2 (pt) 2020-07-28
SG11202000995TA (en) 2020-03-30
US20200367243A1 (en) 2020-11-19
EP3668148A1 (en) 2020-06-17
MX2020001204A (es) 2020-03-20
PH12020500272A1 (en) 2020-09-21
EP3668148B1 (en) 2022-12-21
IL272506A (en) 2020-03-31
KR20200035036A (ko) 2020-04-01

Similar Documents

Publication Publication Date Title
WO2020248261A1 (zh) 一种测量间隔的确定方法及装置、终端
US20230007676A1 (en) Method for data transmission, terminal device and network device
WO2018170673A1 (zh) 传输数据的方法、终端设备和网络设备
US11419111B2 (en) Data transmission method, terminal device, and network device
KR102462432B1 (ko) 무선 통신 방법, 네트워크 기기 및 단말 기기
WO2019237241A1 (zh) 一种下行信号的传输方法及终端设备
WO2019242712A1 (zh) 一种能力交互方法及相关设备
TW201909692A (zh) 無線資源管理測量的方法、終端設備和網路設備
WO2016045097A1 (zh) D2d信号跳频方法及基站
CN113785618B (zh) 一种通信方法及装置
CA3072138C (en) Data transmission method, terminal device, and network device
WO2019153266A1 (zh) 用于传输数据的方法和设备
WO2019033392A1 (zh) 信号传输的方法、终端设备和网络设备
KR102466135B1 (ko) 무선 통신 방법, 네트워크 기기 및 단말 기기
CN114208262A (zh) 载波测量方法和装置
WO2020042976A1 (zh) 一种ui显示方法、装置、终端设备及存储介质
KR20210022633A (ko) 무선 링크 모니터링의 방법과 단말 장치
CN109757130A (zh) 配置分组数据汇聚协议pdcp的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920982

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207003290

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2020506181

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3072138

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020002468

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017427055

Country of ref document: AU

Date of ref document: 20170811

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017920982

Country of ref document: EP

Effective date: 20200309

ENP Entry into the national phase

Ref document number: 112020002468

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200205