WO2019028722A1 - 一种3d打印工件的制备方法 - Google Patents
一种3d打印工件的制备方法 Download PDFInfo
- Publication number
- WO2019028722A1 WO2019028722A1 PCT/CN2017/096749 CN2017096749W WO2019028722A1 WO 2019028722 A1 WO2019028722 A1 WO 2019028722A1 CN 2017096749 W CN2017096749 W CN 2017096749W WO 2019028722 A1 WO2019028722 A1 WO 2019028722A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- printed workpiece
- printed
- filling material
- workpiece
- sintering
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/379—Handling of additively manufactured objects, e.g. using robots
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C69/00—Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore
Definitions
- the invention belongs to the technical field of production of 3D printing products, and in particular relates to a method for preparing a 3D printed workpiece.
- the relatively mature injection molding process is widely used in the molding and processing of polymers, and a product having good strength uniformity can be obtained.
- the injection molding process is difficult to get rid of the constraints of the mold, not only the cost of mold opening is high, but also the complexity of the mold design is limited.
- 3D printing is a rapid prototyping technology.
- the working process is as follows: firstly build a model through computer software, and then “partition” the built 3D model into a layer-by-layer cross section to guide the printer to print layer by layer and stack the thin layers. Until a solid object is formed.
- the technical problem to be solved by the present invention is to provide a method for preparing a 3D printed workpiece in view of the technical defect of the difference in internal interlayer adhesion caused by the 3D printed workpiece in the prior art.
- a method of preparing a 3D printed workpiece comprising:
- the 3D printed workpiece is immersed in the flowing state of the filling, and the flowing filling material is solidified to obtain a 3D printed workpiece wrapped by the solid filling material;
- the solidified 3D printed workpiece is cooled to remove the filler from the exterior of the cured 3D printed workpiece.
- the temperature of the sintering is greater than or equal to the temperature at which the 3D printed workpiece melts.
- the method further includes:
- the fluid filling material is degassed.
- the “sintering the 3D printed workpiece encapsulating the solid filling material” further includes:
- the 3D printed workpiece and the filling material wrapped in the solid filling material are dehumidified.
- the filler comprises one or more of gypsum milk, water glass, and silica sol.
- the 3D printed workpiece is a thermoplastic polymer material and a derivative thereof.
- thermoplastic polymer material comprises one or more of polycarbonate, nylon, polylactic acid, polyetherimide, polyetheretherketone.
- the sintering temperature is greater than or equal to the viscous flow temperature or melting point of the thermoplastic polymer material and its derivatives, and the sintering temperature is lower than the temperature at which the thermoplastic polymer material and its derivatives are deformed.
- the “removing the filler outside the cured 3D printed workpiece” includes:
- the solidified filler is peeled off by tapping or high-pressure rinsing of the solidified 3D printed workpiece.
- the method for preparing the 3D printed workpiece further comprises: performing a sanding process on the 3D printed workpiece after removing the solid filling material.
- the method further comprises: preparing the 3D printed workpiece by a melt deposition molding method or a selective laser sintering method.
- the method for preparing a 3D printed workpiece combines 3D printing with a conventional process by performing die immersion and sintering treatment on a 3D printed workpiece.
- 3D printing has the advantages of quick forming and easy modification, Thereby, the processing efficiency of the method for preparing a 3D printed workpiece provided by the present invention is improved; on the other hand, compared with the conventional 3D printing technology, the present invention is sintered. The form releases the internal stress of the 3D printed workpiece, improving the uniformity and strength of the product.
- the filling of the filling material around the 3D printing workpiece forms a "mold" that constrains the 3D printing workpiece, eliminating the need for the traditional mold design and reducing the mold opening process. Manufacturing efficiency and production costs are reduced.
- the invention is particularly suitable for the production of polymer products having a complex structure, avoiding the complicated production design of the mold, thereby simplifying the process.
- the invention provides a method for preparing a 3D printed workpiece, which comprises immersing a 3D printed workpiece in a fluid filling mold, and solidifying the flowing filling material to obtain a 3D printing workpiece wrapped by a solid filling material. .
- the 3D printed workpiece wrapped with the solid filler is sintered to melt the 3D printed workpiece.
- the solidified 3D printed workpiece is cooled to remove the filler from the exterior of the cured 3D printed workpiece.
- the temperature of the sintering is greater than or equal to the temperature at which the 3D printed workpiece melts.
- the method before the "solidifying the filling material in the flowing state", the method further comprises: degassing the filling material in the flowing state.
- the air may be degassed or vibrated to remove air from the flowing state of the mold.
- the cured filling material can tightly wrap the 3D printing workpiece, so that the filling material and the 3D printing workpiece can be better fitted, which is beneficial to ensure the accuracy of the 3D printing workpiece and the 3D printing workpiece in the subsequent sintering process. Tightness.
- the "sintering the 3D printed workpiece enclosing the solid filling material” further includes: dehumidifying the 3D printed workpiece and the filling material wrapped with the solid filling material to remove the filling material and the 3D printing workpiece. Moisture.
- the filling material comprises one or more of gypsum milk, water glass and silica sol.
- the filling material has fluidity, is capable of wrapping a 3D printed workpiece and filling its gap, and can form a "mold" for wrapping a 3D printed workpiece after curing.
- the 3D printed workpiece is a thermoplastic polymer material and its derivatives.
- the thermoplastic polymer material comprises polycarbonate (Polycarbonate, PC), nylon (Polyamide, PA), polylactide PLA, polyetherimide (PEI), polyether ether ketone (Poly- One or more of ether-ether-ketone, PEEK).
- the sintering temperature is greater than or equal to the viscous flow temperature or melting point of the thermoplastic polymer material, and the sintering temperature is lower than the temperature at which the thermoplastic polymer material and its derivative are denatured. Specifically, when the thermoplastic polymer material is crystalline, the sintering temperature is greater than or equal to the melting point of the thermoplastic polymer material, and when the thermoplastic polymer material is amorphous, the sintering temperature is greater than or equal to the viscosity of the thermoplastic polymer material. Flow temperature.
- thermoplastic polymer materials referred to herein include, but are not limited to, polycarbonate (Polycarbonate, PC), nylon (Polyamide, PA), polylactide PLA, polyetherimide (PEI), polyether. Poly-ether-ether-ketone (PEEK).
- the "removing the filling material outside the solidified 3D printing workpiece” includes: tapping or high-pressure rinsing of the sintered 3D printing workpiece to cause the solid filling material to fall off.
- the 3D printed workpiece after removing the solid filling material is polished.
- the method for preparing a 3D printed workpiece does not specifically limit the source of the 3D printed workpiece, and can be formed by a raw material through a 3D printer by Fused Deposition Modeling (FDM) method or selective laser sintering (Selective Laser Sintering). , SLS) and other different ways to print, can also be obtained by other 3D printing methods, can also be purchased directly, and then through the method provided by the present invention, secondary processing.
- FDM Fused Deposition Modeling
- Selective Laser Sintering Selective Laser Sintering
- a poly-ether-ether-ketone (PEEK) 3D printed workpiece printed by fused deposition molding (FDM) was placed in a sintering tank. Then, the prepared gypsum milk is poured into the sintering tank. After the gypsum milk is enough to immerse the 3D printed workpiece, the sintering tank is quickly placed in a vacuum box to evacuate, the vacuum degree is ⁇ 100 Pa, and the operation time is ⁇ 5 min until no bubbles emerge. .
- the sintering tank was quickly placed in a vacuum box with a vacuum of ⁇ 100 Pa and an operating time of ⁇ 5 min until no bubbles emerged. After degassing, the sintered can was allowed to stand for 24 h, and the gypsum milk was solidified to obtain a 3D printed workpiece wrapped by solid plaster.
- the frit can be dried in an oven at 180 ° C for 5-10 h to remove solid gypsum and moisture from the 3D printed workpiece.
- the sintering tank containing the 3D printed workpiece wrapped with solid gypsum is placed in a sintering furnace, and the sintering furnace is heated to 350-400 ° C at a heating rate of 20-200 ° C / h, and the holding time is 1-4 h. . After that, it was naturally cooled to room temperature and taken out.
- the gypsum wrapped around the solid 3D printed workpiece is cleaned by a high-pressure water gun, and after the plaster is removed, the 3D printed workpiece is exposed, and the 3D printed workpiece is polished and cleaned to obtain S1.
- the holding time of the sintering varies according to the time required for the temperature of the sintering furnace to be heated, and the heating time of the sintering furnace varies according to the difference of the raw materials of the 3D printed workpiece and the size thereof, and the thermoplastic polymer material and its derivative are different.
- the holding time is 0.5-5h.
- a poly-ether-ether-ketone (PEEK) 3D printed workpiece printed by Selective Laser Sintering (SLS) was placed in a sintering tank. Then, the prepared gypsum milk is poured into the sintering tank. After the gypsum milk is enough to immerse the 3D printed workpiece, the sintering tank is quickly placed in a vacuum box to evacuate, the vacuum degree is ⁇ 100 Pa, and the operation time is ⁇ 5 min until no bubbles emerge. .
- the sintering tank was quickly placed in a vacuum box with a vacuum of ⁇ 100 Pa and an operating time of ⁇ 5 min until no bubbles emerged. After degassing, the sintered can was allowed to stand for 24 h, and the gypsum milk was solidified to obtain a 3D printed workpiece wrapped by solid plaster.
- the frit can be dried in an oven at 180 ° C for 5-10 h to remove solid gypsum and moisture from the 3D printed workpiece.
- the sintering tank containing the 3D printed workpiece wrapped with solid gypsum is placed in a sintering furnace, and the sintering furnace is heated to 350-400 ° C at a heating rate of 20-200 ° C / h, and the holding time is 1-4 h. . After that, it was naturally cooled to room temperature and taken out.
- the gypsum wrapped around the solid 3D printed workpiece is cleaned by a high-pressure water gun, and after the plaster is removed, the 3D printed workpiece is exposed, and the 3D printed workpiece is polished and cleaned to obtain S2.
- a polycarbonate (Polycarbonate, PC) 3D printed workpiece printed by a melt deposition molding (FDM) method was placed in a sintering can. Then, the prepared gypsum milk is poured into the sintering tank. After the gypsum milk is enough to immerse the 3D printed workpiece, the sintering tank is quickly placed in a vacuum box to evacuate, the vacuum degree is ⁇ 100 Pa, and the operation time is ⁇ 5 min until no bubbles emerge. .
- the sintering tank was quickly placed in a vacuum box with a vacuum of ⁇ 100 Pa and an operating time of ⁇ 5 min until no bubbles emerged. After degassing, the sintered can was allowed to stand for 24 h, and the gypsum milk was solidified to obtain a 3D printed workpiece wrapped by solid plaster.
- the fritted can was dried in an oven at 120 ° C for 5-10 h to remove solid gypsum and moisture from the 3D printed workpiece.
- the sintering tank containing the 3D printed workpiece enclosing the solid gypsum is placed in a sintering furnace, and the sintering furnace is heated to 200 ° C at a heating rate of 20-200 ° C / h, and the holding time is 0.5-1 h. After that, it was naturally cooled to room temperature and taken out.
- the gypsum wrapped around the solid 3D printed workpiece is cleaned by a high-pressure water gun, and after the plaster is removed, the 3D printed workpiece is exposed, and the 3D printed workpiece is polished and cleaned to obtain S3.
- a nylon (Polyamide, PA) 3D printed workpiece printed by a melt deposition molding (FDM) method was placed in a sintering tank. Then, the prepared gypsum milk is poured into the sintering tank. After the gypsum milk is enough to immerse the 3D printed workpiece, the sintering tank is quickly placed in a vacuum box to evacuate, the vacuum degree is ⁇ 100 Pa, and the operation time is ⁇ 5 min until no bubbles emerge. .
- the sintering tank was quickly placed in a vacuum box with a vacuum of ⁇ 100 Pa and an operating time of ⁇ 5 min until no bubbles emerged. After degassing, the sintered can was allowed to stand for 24 h, and the gypsum milk was solidified to obtain a 3D printed workpiece wrapped by solid plaster.
- the sintered can was dried in an oven at 100 ° C for 5-10 h to remove solid gypsum and moisture from the 3D printed workpiece.
- the sintering can containing the 3D printed workpiece wrapped with the solid gypsum was placed in a sintering furnace, and the sintering furnace was heated to 270 ° C at a heating rate of 20-200 ° C / h, and the holding time was 2 h. After that, it was naturally cooled to room temperature and taken out.
- Use a high pressure water jet to clean the outside of a solid 3D printed workpiece After the plaster is removed, the 3D printed workpiece is exposed, and the 3D printed workpiece is polished and cleaned to obtain S4.
- the obtained poly-ether-ether-ketone (PEEK) 3D printed workpiece D1 was printed by a melt deposition molding (FDM) method.
- the obtained poly-ether-ether-ketone (PEEK) 3D printed workpiece D2 was printed by selective laser sintering (SLS).
- the obtained polycarbonate (Polycarbonate, PC) 3D printed workpiece D3 was printed by a melt deposition molding (FDM) method.
- the obtained nylon (Polyamide, PA) 3D printed workpiece D4 was printed by a melt deposition molding (FDM) method.
- the tensile strength of the sintered 3D printed workpiece is higher than that of the unsintered 3D printed workpiece because the sintering temperature is higher than the viscous temperature of the polymer or The melting point, flowing state of the polymer is reshaped in a mold formed by the cured filler, thereby releasing the internal stress of the polymer, improving the material uniformity and strength of the 3D printed workpiece.
- S1 and D1 with S2 and D2
- the method for preparing a 3D printed workpiece combines 3D printing with a conventional process by performing die immersion and sintering treatment on a 3D printed workpiece.
- 3D printing has the advantages of quick forming and easy modification, Therefore, the processing efficiency of the 3D printed workpiece provided by the present invention is improved; on the other hand, compared with the conventional 3D printing technology, the present invention releases the internal stress of the 3D printed workpiece by sintering, thereby improving the product. Uniformity and strength.
- the filling of the filling material around the 3D printing workpiece forms a "mold" that constrains the 3D printing workpiece, eliminating the need for the traditional mold design and reducing the mold opening process. Manufacturing efficiency and production costs are reduced.
- the invention is particularly suitable for the production of polymer products having a complex structure, avoiding the complicated production design of the mold, thereby simplifying the process.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Robotics (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Optics & Photonics (AREA)
Abstract
一种3D打印工件的制备方法:将3D打印工件浸没在流动状态的充模物中,将流动状态的充模物固化,得到由固态的充模物包裹着的3D打印工件,将包裹着固态的充模物的3D打印工件烧结,使3D打印工件融化;冷却得到固化的3D打印工件,除去固化的3D打印工件外部的充模物。该3D打印工件的制备方法,一方面,由于3D打印具有成型快、便于修改等优点,从而使加工效率得以提升;另一方面,与传统的3D打印相比较而言,通过烧结的形式释放了3D打印工件的内应力,提高了产品的均匀性和强度。该方法特别适用于具有复杂结构的聚合物产品的生产,避免了复杂的模具的生产设计,从而简化了工序。
Description
本发明属于3D打印产品的生产技术领域,尤其涉及一种3D打印工件的制备方法。
现有技术中,技术相对成熟的注塑工艺在聚合物的成型加工生产中应用广泛,且能获得强度均匀性良好的产品。但是,注塑工艺难以摆脱模具的制约,不仅开模成本高,其复杂的模具设计也受到限制。
随着3D打印技术的飞速发展,3D打印技术已被广泛应用到诸多领域中。其3D打印是一种快速成形技术,其工作过程为:先通过计算机软件建立模型,再将建成的三维模型“分区”成逐层的截面,从而指导打印机逐层打印,并将薄型层面堆叠起来,直到一个固态物体成型。
由于3D打印的原理是通过材料的逐层堆积实现整个模型的打印,故打印件整体内部存在各向异性特点,内部层间粘接力差,造成制件垂直于切片方向的强度低,影响打印件的使用性能,限制了3D打印工件的实际应用,因此,很多3D打印制件还只能作为概念模型而不能作为功能性零件使用。
发明内容
本发明所要解决的技术问题是针对现有技术中的3D打印工件造成的内部层间粘接力差的技术缺陷,提供一种3D打印工件的制备方法。
本发明解决上述技术问题所采用的技术方案为:
提供一种3D打印工件的制备方法,包括:
将3D打印工件浸没在流动状态的充模物中,将流动状态的充模物固化,得到由固态的充模物包裹着的3D打印工件;
将包裹着固态的充模物的3D打印工件烧结,使3D打印工件融化;
冷却得到固化的3D打印工件,除去固化的3D打印工件外部的充模物。
可选地,烧结的温度大于或等于所述3D打印工件融化的温度。
可选地,所述“将流动状态的充模物固化”之前还包括:
对流动状态的充模物除气。
可选地,所述“将包裹着固态的充模物的3D打印工件烧结”之前还包括:
对包裹着固态的充模物的3D打印工件和充模物除湿。
可选地,所述充模物包括石膏乳、水玻璃及硅溶胶的一种或多种。
可选地,所述3D打印工件为热塑性聚合物材料及其衍生物。
可选地,所述热塑性聚合物材料包括聚碳酸酯、尼龙、聚乳酸、聚醚酰亚胺、聚醚醚酮的一种或多种。
可选地,烧结的温度大于或等于热塑性聚合物材料及其衍生物的粘流温度或者熔点,且烧结的温度低于热塑性聚合物材料及其衍生物发生变形的温度。
可选地,所述“除去固化的3D打印工件外部的充模物”包括:
对固化后的3D打印工件进行敲打或者高压冲洗,使固态的充模物脱落。
可选地,所述3D打印工件的制备方法还包括:对去除固态的充模物后的3D打印工件进行打磨处理。
可选地,在所述“将3D打印工件浸没在流动状态的充模物中”之前还包括:所述3D打印工件由熔融沉积成型法或选择性激光烧结法制得。
本发明提供的3D打印工件的制备方法,
上述实施例提供的3D打印工件的制备方法,通过对3D打印工件进行充模物浸没和烧结处理,将3D打印与传统工艺相结合,一方面,由于3D打印具有成型快、便于修改等优点,从而使本发明提供的3D打印工件的制备方法加工效率得以提升;另一方面,与传统的3D打印技术相比较而言,本发明通过烧结的
形式释放了3D打印工件的内应力,提高了产品的均匀性和强度。与现有的成熟的注塑工艺相比较,浸没在3D打印工件周围的充模物固化成型后形成约束3D打印工件的“模具”,省去了传统模具的设计,也减少了开模工序,提高了制造效率,降低了生产成本。本发明特别适用于具有复杂结构的聚合物产品的生产,避免了复杂的模具的生产设计,从而简化了工序。
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步的详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供了一种3D打印工件的制备方法,包括将3D打印工件浸没在流动状态的充模物中,将流动状态的充模物固化,得到由固态的充模物包裹着的3D打印工件。将包裹着固态的充模物的3D打印工件烧结,使3D打印工件融化。冷却得到固化的3D打印工件,除去固化的3D打印工件外部的充模物。
其中,烧结的温度大于或等于所述3D打印工件融化的温度。
本发明中,所述“将流动状态的充模物固化”之前还包括:对流动状态的充模物除气。可用真空除气或者振动以去除流动状态的充模物中的空气。使固化后的充模物能够紧密地包裹3D打印工件,从而能够使充模物与3D打印工件能够更好地贴合,有利于在后续烧结过程中保证3D打印工件的精度及3D打印工件的紧实度。
所述“将包裹着固态的充模物的3D打印工件烧结”之前还包括:对包裹着固态的充模物的3D打印工件和充模物除湿,以去除充模物以及3D打印工件中的水分。
其中,所述充模物包括石膏乳、水玻璃及硅溶胶的一种或多种。所述充模物具有流动性,能够对3D打印工件进行包裹并填充其缝隙,且在固化后能够形成包裹3D打印工件的“模具”。
3D打印工件为热塑性聚合物材料及其衍生物。其中,所述热塑性聚合物材料包括聚碳酸酯(Polycarbonate,PC)、尼龙(Polyamide,PA)、聚乳酸(Polylactide PLA)、聚醚酰亚胺(Polyetherimide,PEI)、聚醚醚酮(Poly-ether-ether-ketone,PEEK)的一种或多种。
当3D打印工件为热塑性聚合物材料及其衍生物时,烧结的温度大于或等于热塑性聚合物材料的粘流温度或者熔点,且烧结的温度低于热塑性聚合物材料及其衍生物发生变性的温度。具体来说,当热塑性聚合物材料为结晶物时,烧结的温度大于或等于热塑性聚合物材料的熔点,当热塑性聚合物材料为非结晶物时,烧结的温度大于或等于热塑性聚合物材料的粘流温度。这样既能使3D打印工件熔融又能保证3D打印工件不发生变性,从而不影响3D打印工件原本的性能。当然,本文所指的热塑性聚合物材料包括但不限于聚碳酸酯(Polycarbonate,PC)、尼龙(Polyamide,PA)、聚乳酸(Polylactide PLA)、聚醚酰亚胺(Polyetherimide,PEI)、聚醚醚酮(Poly-ether-ether-ketone,PEEK)。
所述“除去固化的3D打印工件外部的充模物”包括:对烧结后的3D打印工件进行敲打或者高压冲洗,使固态的充模物脱落。对去除固态的充模物后的3D打印工件进行打磨处理。
本发明提供的3D打印工件的制备方法,对3D打印工件的来源不做具体的限制,可以由原材料通过3D打印机通过熔融沉积成型(Fused Deposition Modeling,FDM)法、选择性激光烧结(Selective Laser Sintering,SLS)等不同的方式打印得到,也可以通过其他3D打印方式得到,也可以直接购买,然后经过本发明提供的方法,进行二次加工。
第一实施例
将通过熔融沉积成型(FDM)方式打印得到的聚醚醚酮(poly-ether-ether-ketone,PEEK)3D打印工件放入烧结罐中。然后将调配好的石膏乳倒入烧结罐中,待石膏乳足够浸没3D打印工件后,迅速将烧结罐放入真空箱中抽真空,真空度<100Pa,操作时间<5min,直至无气泡冒出。
将烧结罐迅速放入真空箱中,真空箱中其真空度<100Pa,操作时间<5min,直至无气泡冒出。除气后,将烧结罐静置24h,待石膏乳固化,得到由固态的石膏包裹着的3D打印工件。
将烧结罐置于180℃的烘箱内干燥5-10h,以去除固态的石膏以及3D打印工件中的水分。去除水分后,将装有包裹着固态的石膏的3D打印工件的烧结罐置于烧结炉中,烧结炉以20-200℃/h的升温速度升温至350-400℃,保温时间为1-4h。之后自然降温至室温取出。利用高压水枪清洗包裹在固态的3D打印工件外部的石膏,除去石膏后,3D打印工件露出,对3D打印工件进行打磨清洗得到S1。
其中,烧结的保温时间根据烧结炉升温所需的时间的变化而变化,而烧结炉的升温时间根据3D打印工件的原材料的差异及其尺寸的大小不同而不同,对于热塑性聚合物材料及其衍生物来说,其保温时间为0.5-5h。
第二实施例
将通过选择性激光烧结(Selective Laser Sintering,SLS)方式打印得到的聚醚醚酮(poly-ether-ether-ketone,PEEK)3D打印工件放入烧结罐中。然后将调配好的石膏乳倒入烧结罐中,待石膏乳足够浸没3D打印工件后,迅速将烧结罐放入真空箱中抽真空,真空度<100Pa,操作时间<5min,直至无气泡冒出。
将烧结罐迅速放入真空箱中,真空箱中其真空度<100Pa,操作时间<5min,直至无气泡冒出。除气后,将烧结罐静置24h,待石膏乳固化,得到由固态的石膏包裹着的3D打印工件。
将烧结罐置于180℃的烘箱内干燥5-10h,以去除固态的石膏以及3D打印工件中的水分。去除水分后,将装有包裹着固态的石膏的3D打印工件的烧结罐置于烧结炉中,烧结炉以20-200℃/h的升温速度升温至350-400℃,保温时间为1-4h。之后自然降温至室温取出。利用高压水枪清洗包裹在固态的3D打印工件外部的石膏,除去石膏后,3D打印工件露出,对3D打印工件进行打磨清洗得到S2。
第三实施例
将通过熔融沉积成型(FDM)方式打印得到的聚碳酸酯(Polycarbonate,PC)3D打印工件放入烧结罐中。然后将调配好的石膏乳倒入烧结罐中,待石膏乳足够浸没3D打印工件后,迅速将烧结罐放入真空箱中抽真空,真空度<100Pa,操作时间<5min,直至无气泡冒出。
将烧结罐迅速放入真空箱中,真空箱中其真空度<100Pa,操作时间<5min,直至无气泡冒出。除气后,将烧结罐静置24h,待石膏乳固化,得到由固态的石膏包裹着的3D打印工件。
将烧结罐置于120℃的烘箱内干燥5-10h,以去除固态的石膏以及3D打印工件中的水分。去除水分后,将装有包裹着固态的石膏的3D打印工件的烧结罐置于烧结炉中,烧结炉以20-200℃/h的升温速度升温至200℃,保温时间为0.5-1h。之后自然降温至室温取出。利用高压水枪清洗包裹在固态的3D打印工件外部的石膏,除去石膏后,3D打印工件露出,对3D打印工件进行打磨清洗得到S3。
第四实施例
将通过熔融沉积成型(FDM)方式打印得到的尼龙(Polyamide,PA)3D打印工件放入烧结罐中。然后将调配好的石膏乳倒入烧结罐中,待石膏乳足够浸没3D打印工件后,迅速将烧结罐放入真空箱中抽真空,真空度<100Pa,操作时间<5min,直至无气泡冒出。
将烧结罐迅速放入真空箱中,真空箱中其真空度<100Pa,操作时间<5min,直至无气泡冒出。除气后,将烧结罐静置24h,待石膏乳固化,得到由固态的石膏包裹着的3D打印工件。
将烧结罐置于100℃的烘箱内干燥5-10h,以去除固态的石膏以及3D打印工件中的水分。去除水分后,将装有包裹着固态的石膏的3D打印工件的烧结罐置于烧结炉中,烧结炉以20-200℃/h的升温速度升温至270℃,保温时间为2h。之后自然降温至室温取出。利用高压水枪清洗包裹在固态的3D打印工件外部的
石膏,除去石膏后,3D打印工件露出,对3D打印工件进行打磨清洗得到S4。
第一对比例
通过熔融沉积成型(FDM)方式打印得到的聚醚醚酮(poly-ether-ether-ketone,PEEK)3D打印工件D1。
第二对比例
通过选择性激光烧结(SLS)方式打印得到的聚醚醚酮(poly-ether-ether-ketone,PEEK)3D打印工件D2。
第三对比例
通过熔融沉积成型(FDM)方式打印得到的聚碳酸酯(Polycarbonate,PC)3D打印工件D3。
第四对比例
通过熔融沉积成型(FDM)方式打印得到的尼龙(Polyamide,PA)3D打印工件D4。
将上述实施例及对比例得到的3D打印工件进行拉伸强度的检测,将测得的结果填入表1。
表1
由以上结果可知,经过烧结的3D打印工件较未烧结的3D打印工件,其拉伸强度均得到了较大程度的提升,这是因为烧结温度高于聚合物的粘流温度或
者熔点,流动状态的聚合物在由固化后的充模物形成的模型内重新塑型,从而使聚合物的内应力得到释放,提高了3D打印工件的材料均匀性和强度。由S1及D1与S2及D2结果对比可知,当3D打印工件的材料相同时,通过熔融沉积成型(FDM)方式得到的3D打印工件经本发明的方法处理后,其拉伸性能提升得较高,效果显著。由S1及D1、S3及D3、S4及D4的结果对比可知,当3D打印工件的原始制备方法一致时,材料为聚醚醚酮(PEEK)的3D打印工件经本发明的方法处理后其拉伸性能提升明显。
上述实施例提供的3D打印工件的制备方法,通过对3D打印工件进行充模物浸没和烧结处理,将3D打印与传统工艺相结合,一方面,由于3D打印具有成型快、便于修改等优点,从而使本发明提供的3D打印工件的制备方法加工效率得以提升;另一方面,与传统的3D打印技术相比较而言,本发明通过烧结的形式释放了3D打印工件的内应力,提高了产品的均匀性和强度。与现有的成熟的注塑工艺相比较,浸没在3D打印工件周围的充模物固化成型后形成约束3D打印工件的“模具”,省去了传统模具的设计,也减少了开模工序,提高了制造效率,降低了生产成本。本发明特别适用于具有复杂结构的聚合物产品的生产,避免了复杂的模具的生产设计,从而简化了工序。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
Claims (11)
- 一种3D打印工件的制备方法,其特征在于,包括:将3D打印工件浸没在流动状态的充模物中,将流动状态的充模物固化,得到由固态的充模物包裹着的3D打印工件;将包裹着固态的充模物的3D打印工件烧结,使3D打印工件融化;冷却得到固化的3D打印工件,除去固化的3D打印工件外部的充模物。
- 如权利要求1所述的3D打印工件的制备方法,其特征在于,烧结的温度大于或等于所述3D打印工件融化的温度。
- 如权利要求1所述的3D打印工件的制备方法,其特征在于,所述“将流动状态的充模物固化”之前还包括:对流动状态的充模物除气。
- 如权利要求1所述的3D打印工件的制备方法,其特征在于,所述“将包裹着固态的充模物的3D打印工件烧结”之前还包括:对包裹着固态的充模物的3D打印工件和充模物除湿。
- 如权利要求1所述的3D打印工件的制备方法,其特征在于,所述充模物包括石膏乳、水玻璃及硅溶胶的一种或多种。
- 如权利要求1所述的3D打印工件的制备方法,其特征在于,所述3D打印工件为热塑性聚合物材料及其衍生物。
- 如权利要求6所述的3D打印工件的制备方法,其特征在于,所述热塑性聚合物材料包括聚碳酸酯、尼龙、聚乳酸、聚醚酰亚胺、聚醚醚酮的一种或多种。
- 如权利要求6所述的3D打印工件的制备方法,其特征在于,烧结的温度大于或等于热塑性聚合物材料的粘流温度或者熔点,且烧结的温度低于热塑性聚合物材料及其衍生物发生变性的温度。
- 如权利要求1所述的3D打印工件的制备方法,其特征在于,所述“除 去固化的3D打印工件外部的充模物”包括:对固化后的3D打印工件进行敲打或者高压冲洗,使固态的充模物脱落。
- 如权利要求1所述的3D打印工件的制备方法,其特征在于,所述3D打印工件的制备方法还包括:对去除固态的充模物后的3D打印工件进行打磨处理。
- 如权利要求1所述的3D打印工件的制备方法,其特征在于,在所述“将3D打印工件浸没在流动状态的充模物中”之前还包括:所述3D打印工件由熔融沉积成型法或选择性激光烧结法制得。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/096749 WO2019028722A1 (zh) | 2017-08-10 | 2017-08-10 | 一种3d打印工件的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/096749 WO2019028722A1 (zh) | 2017-08-10 | 2017-08-10 | 一种3d打印工件的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019028722A1 true WO2019028722A1 (zh) | 2019-02-14 |
Family
ID=65273240
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/096749 WO2019028722A1 (zh) | 2017-08-10 | 2017-08-10 | 一种3d打印工件的制备方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019028722A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115056485A (zh) * | 2022-05-31 | 2022-09-16 | 厦门大学嘉庚学院 | 3d打印件的后处理方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103847102A (zh) * | 2014-03-05 | 2014-06-11 | 大连理工大学 | 一种覆膜粉末材料激光壳型失效快速成型方法 |
CN104647760A (zh) * | 2015-02-12 | 2015-05-27 | 华中科技大学 | 一种短纤维增强热固性树脂复合产品的3d打印制造方法 |
CN105172152A (zh) * | 2015-10-28 | 2015-12-23 | 深圳晗竣雅科技有限公司 | 基于轮廓注塑成型的3d成型方法 |
WO2016022449A1 (en) * | 2014-08-04 | 2016-02-11 | 3M Innovative Properties Company | Finishing system for 3d printed components |
CN105834360A (zh) * | 2015-11-18 | 2016-08-10 | 连云港源钰金属制品有限公司 | 采用3d打印制作壳模的铸造方法 |
CN107521118A (zh) * | 2017-08-10 | 2017-12-29 | 东莞远铸智能科技有限公司 | 一种3d打印工件的制备方法 |
-
2017
- 2017-08-10 WO PCT/CN2017/096749 patent/WO2019028722A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103847102A (zh) * | 2014-03-05 | 2014-06-11 | 大连理工大学 | 一种覆膜粉末材料激光壳型失效快速成型方法 |
WO2016022449A1 (en) * | 2014-08-04 | 2016-02-11 | 3M Innovative Properties Company | Finishing system for 3d printed components |
CN104647760A (zh) * | 2015-02-12 | 2015-05-27 | 华中科技大学 | 一种短纤维增强热固性树脂复合产品的3d打印制造方法 |
CN105172152A (zh) * | 2015-10-28 | 2015-12-23 | 深圳晗竣雅科技有限公司 | 基于轮廓注塑成型的3d成型方法 |
CN105834360A (zh) * | 2015-11-18 | 2016-08-10 | 连云港源钰金属制品有限公司 | 采用3d打印制作壳模的铸造方法 |
CN107521118A (zh) * | 2017-08-10 | 2017-12-29 | 东莞远铸智能科技有限公司 | 一种3d打印工件的制备方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115056485A (zh) * | 2022-05-31 | 2022-09-16 | 厦门大学嘉庚学院 | 3d打印件的后处理方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107521118B (zh) | 一种3d打印工件的制备方法 | |
CN107309406B (zh) | 采用组合式3d打印壳模的铸造方法 | |
Liu et al. | A large‐scale double‐stage‐screw 3 D printer for fused deposition of plastic pellets | |
CN103817767A (zh) | 应用3d打印技术的陶瓷产品制作方法 | |
CN106553357A (zh) | 中空多腔异型面复合材料复杂结构件整体成型工艺 | |
CN105170911B (zh) | 一种复杂异型复合砂芯的制造方法 | |
WO2014101326A1 (zh) | 一种型砂喷射固化增材制造方法 | |
KR20170079937A (ko) | 3d 프린팅 금형을 활용한 로스트왁스 주조방법 | |
CN104148580A (zh) | 用于制造轮毂铸件的铸造树脂模具的快速制造方法 | |
CN104722757A (zh) | 一种激光3d打印专用型砂及其制备工艺和应用 | |
CN111941827A (zh) | 一种薄壁异形复合材料承力管的制造方法 | |
CN108687304A (zh) | 一种采用双薄壳模工艺的铸造方法 | |
CN106670385A (zh) | 一种铸造家电底座类的v法模型铸造工艺 | |
CN107052262A (zh) | 一种铸造家电模具复杂类底座的v法模型铸造工艺 | |
WO2019028722A1 (zh) | 一种3d打印工件的制备方法 | |
WO2019109203A1 (zh) | 3d打印工件的热处理方法 | |
CN106623781B (zh) | 一种用于雕像铸造的蜡模快速成型工艺 | |
CN110280722B (zh) | 一种3d打印涡轮壳流道芯的制作方法 | |
KR20170037255A (ko) | 3d 프린팅을 이용한 입체 조형물의 제조 방법 | |
CN113211601B (zh) | 一种陶瓷芯及其制备方法和应用 | |
KR101813654B1 (ko) | 3차원 프린팅으로 제작된 흡기매니폴드 샘플 제조방법 | |
CN109352992A (zh) | 一种隔热材料光固化3d打印成型方法 | |
Kuo et al. | A cost-effective approach for rapid fabricating cooling channels with smooth surface | |
JP2018057998A (ja) | ヒートシンクの製造方法 | |
CN102029687A (zh) | 一种超厚透明胶体塑料模具工艺及其注塑方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17921207 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17921207 Country of ref document: EP Kind code of ref document: A1 |