WO2019028603A1 - 数据传输的方法和终端设备 - Google Patents

数据传输的方法和终端设备 Download PDF

Info

Publication number
WO2019028603A1
WO2019028603A1 PCT/CN2017/096260 CN2017096260W WO2019028603A1 WO 2019028603 A1 WO2019028603 A1 WO 2019028603A1 CN 2017096260 W CN2017096260 W CN 2017096260W WO 2019028603 A1 WO2019028603 A1 WO 2019028603A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
subframe
transmission time
data
time interval
Prior art date
Application number
PCT/CN2017/096260
Other languages
English (en)
French (fr)
Inventor
唐海
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2017/096260 priority Critical patent/WO2019028603A1/zh
Priority to CN201780049615.5A priority patent/CN109601023B/zh
Publication of WO2019028603A1 publication Critical patent/WO2019028603A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present application relates to the field of communications, and more particularly to a method and terminal device for data transmission.
  • the terminal device can transmit data in the Transmission Time Interval (TTI) format, and new to support the 3GPP protocol.
  • TTI Transmission Time Interval
  • sTTI short transmission time interval
  • the embodiment of the present invention provides a data transmission method and a terminal device, which can improve the terminal listening capability of the Release-14 terminal to Release-15, and further improve the reliability of data transmission.
  • the embodiment of the present application provides a data transmission method, including: a first terminal device sends data to a second terminal device in a first transmission time interval in a first subframe; the first terminal device Transmitting a demodulation reference signal to the second terminal device on all pilot symbols in the first subframe;
  • the time domain length of the first transmission time interval is smaller than the time domain length of the first subframe.
  • the first terminal device is a terminal supporting Release-15
  • the second terminal device is a terminal supporting Release-14.
  • the first terminal device sends data to the second terminal device in the first subframe in the form of the first transmission time interval, and at the same time, all in the first subframe.
  • Sending a demodulation reference signal to the second terminal device on the pilot symbol, thereby, the second terminal is configured
  • the device can accurately listen to the demodulation reference signal of the first terminal device, thereby improving the reliability of data transmission.
  • the first terminal device sends data to the second terminal device in a first transmission time interval in the first subframe, including:
  • the first terminal device sends data to the second terminal device in at least one of the first transmission time intervals in the first subframe.
  • the first terminal device when the first terminal device sends data to the second terminal device in all the first transmission time intervals in the first subframe, the first The terminal device sends the demodulation reference signal to the second terminal device on all the pilot symbols in the first subframe, including:
  • the demodulation reference signal is sent to the second terminal device on the pilot symbol included in the first transmission time interval corresponding to the transmitted data.
  • the first subframe includes at least two first transmission time intervals.
  • the time lengths of the different first transmission time intervals included in the first subframe are equal.
  • the time lengths of the different first transmission time intervals included in the first subframe are not equal.
  • the first transmission time interval includes at least one pilot symbol for transmitting a demodulation reference signal.
  • the first subframe includes four pilot symbols.
  • the first transmission time interval is a short transmission time interval (sTTI).
  • sTTI short transmission time interval
  • the method is applied to a vehicle networking system.
  • the embodiment of the present application provides a terminal device, which can execute the module or unit of the method in the first aspect or any optional implementation manner of the first aspect.
  • a terminal device comprising a processor, a memory, and a communication interface.
  • the processor is coupled to the memory and communication interface.
  • the memory is for storing instructions for the processor to execute, and the communication interface is for communicating with other network elements under the control of the processor.
  • the processor executes the instructions stored by the memory, the executing causes the processor to perform the first aspect or the first A method in any possible implementation of the aspect.
  • a computer storage medium storing program code for instructing a computer to perform the method of any of the first aspect or the first aspect of the first aspect. instruction.
  • a computer program product comprising instructions, when executed on a computer, causes the computer to perform the methods described in the various aspects above.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG. 2 is a schematic diagram of another application scenario of an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a method for data transmission according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of data transmission in accordance with an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another data transmission according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of still another type of data transmission in accordance with an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of an apparatus for data transmission provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a system chip according to an embodiment of the present application.
  • a D2D communication system for example, an LTE-D2D-based vehicle networking system.
  • Communication data between terminals in a conventional LTE system is differently received or transmitted by a network device (for example, a base station), and the vehicle networking system adopts a terminal-to-terminal direct communication method, thereby having higher spectral efficiency and lower Transmission delay.
  • a network device for example, a base station
  • the communication system based on the Internet of Vehicles system may be a Global System of Mobile communication (GSM) system, a Code Division Multiple Access (CDMA) system, and a Wideband Code Division Multiple Access (Wideband Code Division). Multiple Access, WCDMA) System, General Packet Radio Service (GPRS), LTE System, LTE Frequency Division Duplex (FDD) System, LTE Time Division Duplex (TDD), General Purpose Mobile communication system (Universal Mobile Telecommunication System, UMTS), Worldwide Interoperability for Microwave Access (WiMAX) communication system, New Radio (NR) or future 5G systems.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • Wideband Code Division Multiple Access Wideband Code Division Multiple Access
  • Multiple Access WCDMA) System
  • GPRS General Packet Radio Service
  • LTE System LTE Frequency Division Duplex
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS General Purpose Mobile communication system
  • WiMAX Worldwide Interoperability
  • the terminal device in the embodiment of the present application may be a terminal device capable of implementing D2D communication.
  • it may be an in-vehicle terminal device, or may be a terminal device in a future 5G network or a terminal device in a public land mobile communication network (PLMN) in the future, which is not limited in the embodiment of the present application.
  • PLMN public land mobile communication network
  • FIG. 1 and FIG. 2 are schematic diagrams of an application scenario of an embodiment of the present application.
  • FIG. 1 exemplarily shows a network device and two terminal devices.
  • the wireless communication system in the embodiment of the present application may include multiple network devices and may include other numbers in the coverage of each network device.
  • the terminal device is not limited in this embodiment of the present application.
  • the wireless communication system may further include other network entities such as a Mobile Management Entity (MME), a Serving Gateway (S-GW), and a Packet Data Network Gateway (P-GW).
  • MME Mobile Management Entity
  • S-GW Serving Gateway
  • P-GW Packet Data Network Gateway
  • embodiments of the present application are not limited thereto.
  • the terminal device 20 and the terminal device 30 can communicate in a D2D communication mode.
  • the terminal device 20 and the terminal device 30 directly communicate via a D2D link, ie, a side link (Sidelink, SL).
  • a side link Sidelink, SL
  • the terminal device 20 and the terminal device 30 directly communicate via a side line.
  • the terminal device 20 and the terminal device 30 communicate by a side line, and the transmission resources thereof are allocated by the network device; in FIG. 2, the terminal device 20 and the terminal device 30 pass the side link. Communication, whose transmission resources are independently selected by the terminal device, does not require the network device to allocate transmission resources.
  • the D2D communication may refer to a vehicle to vehicle (V2V) communication or a vehicle to Everything (V2X) communication.
  • V2X communication X can refer to any device with wireless receiving and transmitting capabilities, such as but not limited to slow moving wireless devices, fast moving in-vehicle devices, or network control nodes with wireless transmit and receive capabilities. It should be understood that the embodiment of the present invention is mainly applied to the scenario of V2X communication, but can also be applied to any other D2D communication scenario, which is not limited in this embodiment.
  • a terminal device having a listening capability such as a Vehicle User Equipment (VUE) or a Pedestrian User Equipment (PUE), and no listening.
  • VUE Vehicle User Equipment
  • PUE Pedestrian User Equipment
  • Capable terminal equipment such as PUE.
  • VUE has higher processing power and is usually powered by a battery in the car, while PUE Low processing power and reduced power consumption are also a major factor that PUE needs to consider. Therefore, in existing vehicle networking systems, VUE is considered to have full receiving and listening capabilities; while PUE is considered to have partial or no reception. And listening ability.
  • the resource may be selected by using a similar listening method as the VUE, and the available resources may be selected on the part of the resources that can be intercepted; if the PUE does not have the listening capability, the PUE is in the resource pool. Randomly select transmission resources.
  • the sTTI transmission mode is introduced in a new version of Release-15 supporting the 3GPP protocol.
  • OFDM orthogonal frequency division multiplexing
  • the resource pool of the sTTI terminal device of Release-15 and the terminal device of Release-14 are required to have a large impact on the process of detecting and selecting the resources of the Release-14 terminal device. Therefore, the terminal device that needs Release-14 can Detecting the control information of the Release-15 terminal device, and performing measurement on the Physical Sidelink Shared Channel Reference Signal Received Power (PSSCH-RSRP) on the Release-15 terminal device, thereby determining whether the resource is Occupied.
  • PSSCH-RSRP Physical Sidelink Shared Channel Reference Signal Received Power
  • the data of Release-15 is in the sTTI format and only occupies a part of the subframe, its Demodulation Reference Signal (DMRS) sequence is also transmitted on only a part of the pilot symbols in one subframe.
  • DMRS Demodulation Reference Signal
  • the DMRS of the Release-14V2X system is transmitted on four OFDM symbols in one subframe (OFDM symbols 2, 5, 8, 11), and a pilot symbol of a slot-based sTTI is transmitted only on two OFDM symbols.
  • the sTTI occupying the first slot is transmitted on OFDM symbols 2, 5, and the sTTI occupying the second slot is transmitted on OFDM symbols 8, 11.
  • PSSCH-RSRP PSSCH-RSRP measurement
  • the data is defaulted to the normal TTI data of Release-14, so PSSCH-RSRP is measured on four pilot OFDM symbols and is performed on four symbols. Average to improve measurement accuracy. This will result in inaccurate measurement of Release-15, affecting the listening performance of Release-14 terminal equipment.
  • the embodiment of the present application is applied to a terminal supporting a new version Release-3 of the 3GPP protocol to send data in the form of sTTI to a terminal supporting Release-14 of the 3GPP protocol, and the terminal of Release-14 receives the TTI in the form of TTI.
  • Data by changing the way the Release-15 terminal sends DMRS, and then, the Release-14 terminal can accurately listen to the Release-15 terminal to send the DMRS.
  • the term "article of manufacture” as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or media.
  • the computer readable medium may include, but is not limited to, a magnetic storage device (eg, a hard disk, a floppy disk, or a magnetic tape, etc.), such as a compact disc (CD), a digital versatile disc (Digital Versatile Disc, DVD). Etc.), smart cards and flash memory devices (eg, Erasable Programmable Read-Only Memory (EPROM), cards, sticks or key drivers, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, a variety of media capable of storing, containing, and/or carrying instructions and/or data.
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and/or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • FIG. 3 is a schematic flowchart of a method 200 for data transmission according to an embodiment of the present application.
  • the method 200 may be performed by a first terminal device, which may be a terminal device as shown in FIG. 1 or FIG. 2, and the second terminal device in the method 200 may also be as The terminal device shown in FIG. 1 or FIG. 2, the method 200 includes the following.
  • the first terminal device sends data to the second terminal device in a first transmission time interval in the first subframe.
  • time domain length of the first transmission time interval is smaller than the time domain length of the first subframe.
  • the first terminal device is a terminal supporting Release-15
  • the second terminal device is a terminal supporting Release-14.
  • At least two first transmission time intervals are included in the first subframe.
  • the first transmission time interval includes at least one single-carrier frequency-division multiple access (SC-FDMA) symbol, or orthogonal frequency-division multiplexing. , OFDM) symbol.
  • SC-FDMA single-carrier frequency-division multiple access
  • OFDM orthogonal frequency-division multiplexing
  • the first transmission time interval includes at least one pilot symbol for transmitting a demodulation reference signal.
  • the first transmission time interval may be sTTI.
  • the first subframe includes four pilot symbols.
  • different time lengths of the first transmission time interval included in the first subframe may be equal or not equal.
  • the pilot symbol locations in each subframe are pre-configured.
  • the first terminal device sends a demodulation reference signal to the second terminal device on all pilot symbols in the first subframe.
  • the first terminal device sends data to the second terminal device in at least one first transmission time interval in the first subframe.
  • the first subframe includes two sTTIs, each sTTI occupies 7 symbols of the first subframe, and two sTTIs in the first subframe share a normal scheduling assignment (Scheduling Assignment, SA) information.
  • SA Service Assignment
  • the first terminal device transmits data to the second terminal device on sTTI 0 (symbols 0, 1, 3, 4, 6) in the first subframe, and pilot symbols (symbols of sTTI 0 in the first subframe) 2, 5) and the pilot symbols (symbols 8, 11) of the sTTI 1 transmit the DMRS to the second terminal device, that is, the first terminal device transmits the DMRS to the second terminal device on all pilot symbols of the first subframe.
  • the second terminal device detects the normal SA, and can obtain the frequency domain resource information of the data transmitted by the first terminal device, and performs the measurement of the PSSCH-RSRP according to the normal TTI data.
  • the first terminal device only occupies the One slot (sTTI 0) transmits data, but DMRS is transmitted on all pilot symbols, so the second terminal device can perform accurate PSSCH-RSRP measurement.
  • the first subframe includes two sTTIs, each sTTI occupies 7 symbols of the first subframe, and two sTTIs in the first subframe share one normal SA information.
  • the first terminal device transmits data to the second terminal device on sTTI 0 (symbols 0, 1, 3, 4, 6) in the first subframe, and pilot symbols (symbols of sTTI 0 in the first subframe) 2, 5) and the pilot symbols (symbols 8, 11) of the sTTI 1 transmit the DMRS to the second terminal device, that is, the first terminal device transmits the DMRS to the second terminal device on all pilot symbols of the first subframe.
  • the third terminal device transmits data to the second terminal device on sTTI 1 (symbols 7, 9, 10, 12, 13) in the first subframe, and pilot symbols (symbols of sTTI 0 in the first subframe) 2, 5) and the pilot symbols (symbols 8, 11) of the sTTI 1 transmit the DMRS to the second terminal device, that is, the third terminal device transmits the DMRS to the second terminal device on all pilot symbols of the first subframe.
  • the second terminal device detects a normal SA, and can obtain the frequency domain resource information of the data transmitted by the first terminal device and the third terminal device, and performs PSSCH-RSRP measurement according to the normal TTI data.
  • each guide On the frequency symbol is a superposition of the DMRS sequences of two users (the first terminal device and the third terminal device).
  • the DMRS sequences transmitted by the two users are different, they do not have a large impact on the respective PSSCH-RSRP measurements.
  • the second terminal device can accurately perform the PSSCH-RSRP measurement.
  • the first terminal device when the first terminal device sends data to the second terminal device on all sTTIs in the first subframe, each time the first terminal device sends data, in the sTTI corresponding to the sent data.
  • a demodulation reference signal is transmitted to the second terminal device on the included pilot symbols.
  • the first subframe includes two sTTIs, each sTTI occupies 7 symbols of the first subframe, and two sTTIs in the first subframe share one normal SA information.
  • the first terminal device transmits data to the second terminal device on sTTI 0 (symbols 0, 1, 3, 4, 6) and sTTI 1 (symbols 7, 9, 10, 12, 13) in the first subframe, ie
  • the data continuously transmitted by the first terminal device occupies the entire first subframe.
  • the first terminal device does not need to send the DMRS symbol on the pilot symbols other than the sTTI in the process of sending data in each sTTI.
  • the DMRS is sent to the second terminal device on the pilot symbols (symbols 2, 5) of sTTI 0, and when the data is sent on sTTI 1, the sTTI 1
  • the DMRS is transmitted to the second terminal device on the pilot symbols (symbols 8, 11).
  • the second terminal device detects a normal SA, and can obtain the frequency domain resource information of the data transmitted by the first terminal device, and performs PSSCH-RSRP measurement according to the normal TTI data. At this time, the first terminal device is respectively in the sTTI.
  • the DMRS When transmitting data, the DMRS is transmitted in the pilot symbol included in sTTI 0, and when the data is transmitted in sTTI 1, the DMRS is transmitted in the pilot symbol included in sTTI 1, but all are DMRS for the first terminal device. Therefore, the second terminal device can perform accurate measurement of PSSCH-RSRP.
  • the method 200 is applied to a vehicle networking system.
  • the first terminal device can implement side-link data transmission as shown in FIG. 1 or FIG. 2 with the second terminal device.
  • the first terminal device sends data to the second terminal device in the first subframe in the form of the first transmission time interval, and at the same time, all in the first subframe.
  • the demodulation reference signal is sent to the second terminal device on the pilot symbol, so that the second terminal device can accurately listen to the demodulation reference signal of the first terminal device, thereby improving the reliability of the data transmission.
  • FIG. 7 is a schematic block diagram of a terminal device 300 according to an embodiment of the present application. As shown in FIG. 7, the terminal device 300 includes:
  • the sending unit 310 is configured to forward to the first end in the first subframe in the form of a first transmission time interval.
  • the end device sends data
  • the sending unit 310 is further configured to send, to all the pilot symbols in the first subframe, a demodulation reference signal to the first terminal device;
  • the time domain length of the first transmission time interval is smaller than the time domain length of the first subframe.
  • the sending unit 310 is specifically configured to:
  • the sending unit 310 when the sending unit 310 sends data to the first terminal device in all the first transmission time intervals in the first subframe, the sending unit 310 is specifically configured to:
  • a demodulation reference signal is transmitted to the first terminal device on a pilot symbol included in the first transmission time interval corresponding to the transmitted data.
  • At least two of the first transmission time intervals are included in the first subframe.
  • the first transmission time interval includes at least one pilot symbol for transmitting a demodulation reference signal.
  • the different time intervals of the first transmission time interval included in the first subframe are equal.
  • different time lengths of the first transmission time interval included in the first subframe are not equal.
  • the first subframe includes four pilot symbols.
  • the terminal device is applied to a car network system.
  • FIG. 8 is a schematic block diagram of a device 400 for data transmission provided by an embodiment of the present application.
  • the device 400 includes:
  • the memory 410 is configured to store a program, where the program includes a code
  • the transceiver 420 is configured to communicate with other devices;
  • the processor 430 is configured to execute program code in the memory 410.
  • the processor 430 can also implement various operations performed by the transmitting device in the method 200 in FIG. 3, and details are not described herein for brevity.
  • the device 400 may be a terminal device, for example, an in-vehicle terminal.
  • the processor 430 may be a central processing unit (CPU), and the processor 430 may also be other general-purpose processors, digital signal processors (DSPs), and application specific integrated circuits. (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and more.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 410 can include read only memory and random access memory and provides instructions and data to the processor 430. A portion of the memory 410 may also include a non-volatile random access memory. For example, the memory 410 can also store information of the device type.
  • the transceiver 420 can be used to implement signal transmission and reception functions, such as frequency modulation and demodulation functions or upconversion and down conversion functions.
  • the device 400 for data transmission can be a chip or a chipset.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor 430 reads the information in the memory and completes the steps of the above method in combination with the hardware thereof. To avoid repetition, it will not be described in detail here.
  • FIG. 9 is a schematic structural diagram of a system chip 500 according to an embodiment of the present application.
  • the system chip 500 of FIG. 9 includes an input interface 501, an output interface 502, a processor 503, and a memory 504 that can be connected by an internal communication connection line for executing code in the memory 504.
  • the processor 503 when the code is executed, the processor 503 implements a method performed by the first terminal device in the method embodiment. For the sake of brevity, it will not be repeated here.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium, or from a The computer readable storage medium is transferred to another computer readable storage medium, for example, the computer instructions can be wired from a website site, computer, server or data center (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or Wireless (eg, infrared, wireless, microwave, etc.) is transmitted to another website site, computer, server, or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.

Abstract

本申请实施例提供了一种数据传输的方法和终端设备,能够提高数据传输的可靠性。该方法包括:第一终端设备在第一子帧中以第一传输时间间隔的形式向第二终端设备发送数据;该第一终端设备在该第一子帧中的所有导频符号上向该第二终端设备发送解调参考信号;其中,该第一传输时间间隔的时域长度小于该第一子帧的时域长度。

Description

数据传输的方法和终端设备 技术领域
本申请涉及通信领域,并且更具体地,涉及一种数据传输的方法和终端设备。
背景技术
在第三代合作伙伴项目(the 3rd Generation Partnership Project,3GPP)协议的版本Release-14中,终端设备可以采用传输时间间隔(Transmission Time Interval,TTI)格式进行数据传输,而对于支持3GPP协议的新版本Release-15的终端来说,终端设备既可以采用TTI格式进行数据传输,又可以采用短传输时间间隔(short Transmission Time Interval,sTTI)格式进行数据传输。
在Release-14的终端与Release-15的终端之间进行数据传输时,对数据传输的可靠性要求较高,如何实现数据的可靠性传输是一项亟待解决的问题。
发明内容
本申请实施例提供了一种数据传输的方法和终端设备,能够提高Release-14的终端对Release-15的终端侦听能力,进而,提高数据传输的可靠性。
第一方面,本申请实施例提供了一种数据传输的方法,包括:第一终端设备在第一子帧中以第一传输时间间隔的形式向第二终端设备发送数据;该第一终端设备在该第一子帧中的所有导频符号上向该第二终端设备发送解调参考信号;
其中,该第一传输时间间隔的时域长度小于该第一子帧的时域长度。
可选地,该第一终端设备为支持Release-15的终端,该第二终端设备为支持Release-14的终端。
因此,在本申请实施例的数据传输的方法中,第一终端设备在第一子帧中以第一传输时间间隔的形式向第二终端设备发送数据,同时,在第一子帧中的所有导频符号上向第二终端设备发送解调参考信号,从而,第二终端设 备可以准确侦听第一终端设备的解调参考信号,进而,提高数据传输的可靠性。
可选地,在第一方面的一种实现方式中,该第一终端设备在第一子帧中以第一传输时间间隔的形式向第二终端设备发送数据,包括:
该第一终端设备在该第一子帧中的至少一个该第一传输时间间隔上向该第二终端设备发送数据。
可选地,在第一方面的一种实现方式中,在该第一终端设备在该第一子帧中的所有该第一传输时间间隔上向该第二终端设备发送数据时,该第一终端设备在该第一子帧中的所有导频符号上向该第二终端设备发送解调参考信号,包括:
该第一终端设备每次发送数据时,在所发送数据对应的第一传输时间间隔中所包括的导频符号上向该第二终端设备发送解调参考信号。
可选地,在第一方面的一种实现方式中,该第一子帧中包括至少两个第一传输时间间隔。
可选地,在第一方面的一种实现方式中,该第一子帧中所包括的不同的该第一传输时间间隔的时域长度相等。
可选地,在第一方面的一种实现方式中,该第一子帧中所包括的不同的该第一传输时间间隔的时域长度不相等。
可选地,在第一方面的一种实现方式中,该第一传输时间间隔中包括至少一个用于传输解调参考信号的导频符号。
可选地,在第一方面的一种实现方式中,该第一子帧中包括4个导频符号。
可选地,该第一传输时间间隔为短传输时间间隔(short Transmission Time Interval,sTTI)。
可选地,在第一方面的一种实现方式中,该方法应用于车联网系统。
第二方面,本申请实施例提供了一种终端设备,可以执行第一方面或第一方面的任一可选的实现方式中的方法的模块或者单元。
第三方面,提供了一种终端设备,该终端设备包括处理器、存储器和通信接口。处理器与存储器和通信接口连接。存储器用于存储指令,处理器用于执行该指令,通信接口用于在处理器的控制下与其他网元进行通信。该处理器执行该存储器存储的指令时,该执行使得该处理器执行第一方面或第一 方面的任意可能的实现方式中的方法。
第四方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示计算机执行上述第一方面或第一方面的任一种可能的实现方式中的方法的指令。
第五方面,提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
附图说明
图1是本申请实施例一个应用场景的示意图。
图2是本申请实施例另一个应用场景的示意图。
图3是根据本申请实施例的一种数据传输的方法的示意性流程图。
图4是根据本申请实施例的一种数据传输的示意图。
图5是根据本申请实施例的另一种数据传输的示意图。
图6是根据本申请实施例的再一种数据传输的示意图。
图7是根据本申请实施例的一种终端设备的示意性框图。
图8示出了本申请实施例提供的数据传输的设备的示意性框图。
图9是根据本申请实施例的系统芯片的示意性结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
应理解,本申请实施例的技术方案可以应用于D2D通信系统,例如,基于LTE-D2D的车联网系统。与传统的LTE系统中终端之间的通信数据通过网络设备(例如,基站)接收或者发送的方式不同,车联网系统采用终端到终端直接通信的方式,因此具有更高的频谱效率以及更低的传输时延。
可选地,车联网系统基于的通信系统可以是全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、LTE系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统 (Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、新无线(New Radio,NR)或未来的5G系统等。
本申请实施例中的终端设备可以是能够实现D2D通信的终端设备。例如,可以是车载终端设备,也可以是未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本申请实施例并不限定。
图1和图2是本申请实施例的一个应用场景的示意图。图1示例性地示出了一个网络设备和两个终端设备,可选地,本申请实施例中的无线通信系统可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。此外,该无线通信系统还可以包括移动管理实体(Mobile Management Entity,MME)、服务网关(Serving Gateway,S-GW)、分组数据网络网关(Packet Data Network Gateway,P-GW)等其他网络实体,但本申请实施例不限于此。
具体地,终端设备20和终端设备30可以D2D通信模式进行通信,在进行D2D通信时,终端设备20和终端设备30通过D2D链路即侧行链路(Sidelink上,SL)直接进行通信。例如图1或者图2所示,终端设备20和终端设备30通过侧行链路直接进行通信。在图1中,终端设备20和终端设备30之间通过侧行链路通信,其传输资源是由网络设备分配的;在图2中,终端设备20和终端设备30之间通过侧行链路通信,其传输资源是由终端设备自主选取的,不需要网络设备分配传输资源。
D2D通信可以指车对车(Vehicle to Vehicle,简称“V2V”)通信或车辆到其他设备(Vehicle to Everything,V2X)通信。在V2X通信中,X可以泛指任何具有无线接收和发送能力的设备,例如但不限于慢速移动的无线装置,快速移动的车载设备,或是具有无线发射接收能力的网络控制节点等。应理解,本发明实施例主要应用于V2X通信的场景,但也可以应用于任意其它D2D通信场景,本申请实施例对此不做任何限定。
在车联网系统中,可以存在两种类型的终端设备,即具有侦听能力的终端设备例如车载终端(Vehicle User Equipment,VUE)或行人手持终端(Pedestrian User Equipment,PUE),以及不具有侦听能力的终端设备例如PUE。VUE具有更高的处理能力,并且通常通过车内的蓄电池供电,而PUE 处理能力较低,降低功耗也是PUE需要考虑的一个主要因素,因此在现有的车联网系统中,VUE被认为具有完全的接收能力和侦听能力;而PUE被认为具有部分或者不具有接收和侦听能力。如果PUE具有部分侦听能力,其资源的选取可以采用和VUE类似的侦听方法,在可侦听的那部分资源上进行可用资源的选取;如果PUE不具有侦听能力,则PUE在资源池中随机选取传输资源。
在支持3GPP协议的新版本Release-15中引入了sTTI的传输方式,终端设备可以利用N个正交频分复用(Orthogonal Frequency Division Multiplex,OFDM)符号进行数据传输,而不是一个完整的子帧,例如,N=4或N=7。并且要求Release-15的sTTI的终端设备和Release-14的终端设备共资源池,不能对Release-14终端设备资源侦听和选取的过程有较大的影响,因此需要Release-14的终端设备能够检测Release-15终端设备的控制信息,并且能够对Release-15终端设备进行物理侧行共享信道参考信号接收功率(Physical Sidelink Shared Channel Reference Signal Received Power,PSSCH-RSRP)的测量,从而判断该资源是否被占用。因为Release-15的数据是sTTI格式的,只占用子帧的一部分,因此,其解调参考信号(Demodulation Reference Signal,DMRS)序列也是只在一个子帧中的一部分导频符号上发送。例如Release-14V2X系统的DMRS在一个子帧中的四个OFDM符号上发送(OFDM符号2、5、8、11),一个基于时隙的sTTI的导频符号只在两个OFDM符号上发送,占第一个时隙的sTTI在OFDM符号2、5上发送,占第二个时隙的sTTI在OFDM符号8、11上发送。当Release-14的终端进行PSSCH-RSRP测量时,会默认该数据是Release-14的正常TTI数据,因此会在四个导频OFDM符号上进行PSSCH-RSRP的测量,并且在四个符号上进行平均以提高测量精度。就会导致对Release-15的测量不准,影响Release-14终端设备的侦听性能。
具体地,本申请实施例应用于支持3GPP协议的新版本Release-15的终端向支持3GPP协议的版本Release-14的终端以sTTI的形式发送数据,Release-14的终端以TTI的形式接收这一数据,通过改变Release-15的终端发送DMRS的方式,进而,Release-14的终端可以准确侦听Release-15的终端发送DMRS。
此外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程 和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(Compact Disc,CD)、数字通用盘(Digital Versatile Disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,能够存储、包含和/或承载指令和/或数据的各种介质。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
图3是根据本申请实施例的一种数据传输的方法200的示意性流程图。如图3所示,该方法200可以由第一终端设备执行,该第一终端设备可以是如图1或图2中所示的终端设备,该方法200中的第二终端设备也可以是如图1或图2中所示的终端设备,该方法200包括以下内容。
210,第一终端设备在第一子帧中以第一传输时间间隔的形式向第二终端设备发送数据。
应理解,该第一传输时间间隔的时域长度小于该第一子帧的时域长度。
可选地,该第一终端设备为支持Release-15的终端,该第二终端设备为支持Release-14的终端。
可选地,该第一子帧中包括至少两个第一传输时间间隔。
可选地,该第一传输时间间隔中包括至少一个单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)符号,或,正交频分多址(Orthogonal frequency-division multiplexing,OFDM)符号。
可选地,该第一传输时间间隔中包括至少一个用于传输解调参考信号的导频符号。
可选地,该第一传输时间间隔可以是sTTI。
可选地,该第一子帧中包括4个导频符号。
可选地,该第一子帧中所包括的不同的该第一传输时间间隔的时域长度可以相等,也可以不相等。
可选地,每个子帧中的导频符号位置为预配置的。
220,该第一终端设备在该第一子帧中的所有导频符号上向该第二终端设备发送解调参考信号。
可选地,该第一终端设备在该第一子帧中的至少一个第一传输时间间隔上向该第二终端设备发送数据。
例如,如图4所示,第一子帧中包括两个sTTI,每个sTTI各占用第一子帧的7个符号,第一子帧中的两个sTTI共用一个正常调度分配(Scheduling Assignment,SA)信息。第一终端设备在第一子帧中的sTTI 0(符号0、1、3、4、6)上向第二终端设备传输数据,以及在第一子帧中的sTTI 0的导频符号(符号2、5)和sTTI 1的导频符号(符号8、11)上向第二终端设备发送DMRS,即第一终端设备在第一子帧的所有导频符号上向第二终端设备发送DMRS。第二终端设备检测正常SA,从中可以获知第一终端设备传输的数据的频域资源信息,并且会按照正常TTI的数据去进行PSSCH-RSRP的测量,此时,第一终端设备虽然只占用了一个时隙(sTTI 0)发送数据,但是在所有的导频符号上都发送了DMRS,因此,第二终端设备可以进行准确的进行PSSCH-RSRP的测量。
又例如,如图5所示,第一子帧中包括两个sTTI,每个sTTI各占用第一子帧的7个符号,第一子帧中的两个sTTI共用一个正常SA信息。第一终端设备在第一子帧中的sTTI 0(符号0、1、3、4、6)上向第二终端设备传输数据,以及在第一子帧中的sTTI 0的导频符号(符号2、5)和sTTI 1的导频符号(符号8、11)上向第二终端设备发送DMRS,即第一终端设备在第一子帧的所有导频符号上向第二终端设备发送DMRS。第三终端设备在第一子帧中的sTTI 1(符号7、9、10、12、13)上向第二终端设备传输数据,以及在第一子帧中的sTTI 0的导频符号(符号2、5)和sTTI 1的导频符号(符号8、11)上向第二终端设备发送DMRS,即第三终端设备在第一子帧的所有导频符号上向第二终端设备发送DMRS。第二终端设备检测正常SA,从中可以获知第一终端设备和第三终端设备传输的数据的频域资源信息,并且会按照正常TTI的数据去进行PSSCH-RSRP的测量,此时,每个导频符号上是两个用户(第一终端设备和第三终端设备)的DMRS序列的叠加。 但是,因为两个用户发送的DMRS序列不同,因此不会对各自的PSSCH-RSRP测量产生大的影响,进而,第二终端设备可以准确地进行PSSCH-RSRP的测量。
可选地,在该第一终端设备在该第一子帧中的所有sTTI上向该第二终端设备发送数据时,该第一终端设备每次发送数据时,在所发送数据对应的sTTI中所包括的导频符号上向该第二终端设备发送解调参考信号。
例如,如图6所示,第一子帧中包括两个sTTI,每个sTTI各占用第一子帧的7个符号,第一子帧中的两个sTTI共用一个正常SA信息。第一终端设备在第一子帧中的sTTI 0(符号0、1、3、4、6)和sTTI 1(符号7、9、10、12、13)上向第二终端设备传输数据,即第一终端设备连续发送的数据占满整个第一子帧,此时,第一终端设备在每个sTTI发送数据的过程中不需要在该sTTI之外的导频符号上发送DMRS符号。具体地,第一终端设备在sTTI 0上发送数据时,在sTTI 0的导频符号(符号2、5)上向第二终端设备发送DMRS,以及在sTTI 1上发送数据时,在sTTI 1的导频符号(符号8、11)上向第二终端设备发送DMRS。第二终端设备检测正常SA,从中可以获知第一终端设备传输的数据的频域资源信息,并且会按照正常TTI的数据去进行PSSCH-RSRP的测量,此时,第一终端设备虽然分别在sTTI 0发送数据时,在sTTI 0中所包括的导频符号发送DMRS,在sTTI 1发送数据时,在sTTI 1中所包括的导频符号发送DMRS,但是,都是针对第一终端设备的DMRS,因此,第二终端设备可以进行准确的进行PSSCH-RSRP的测量。
可选地,该方法200应用于车联网系统。例如,该第一终端设备可以与该第二终端设备实现如图1或图2所示的侧行链路数据传输。
因此,在本申请实施例的数据传输的方法中,第一终端设备在第一子帧中以第一传输时间间隔的形式向第二终端设备发送数据,同时,在第一子帧中的所有导频符号上向第二终端设备发送解调参考信号,从而,第二终端设备可以准确侦听第一终端设备的解调参考信号,进而,提高数据传输的可靠性。
图7是根据本申请实施例的一种终端设备300的示意性框图。如图7所示,该终端设备300包括:
发送单元310,用于在第一子帧中以第一传输时间间隔的形式向第一终 端设备发送数据;
该发送单元310,还用于在该第一子帧中的所有导频符号上向该第一终端设备发送解调参考信号;
其中,该第一传输时间间隔的时域长度小于该第一子帧的时域长度。
可选地,该发送单元310具体用于:
在该第一子帧中的至少一个该第一传输时间间隔上向该第一终端设备发送数据。
可选地,在该发送单元310在该第一子帧中的所有该第一传输时间间隔上向该第一终端设备发送数据时,该发送单元310具体用于:
每次发送数据时,在所发送数据对应的该第一传输时间间隔中所包括的导频符号上向该第一终端设备发送解调参考信号。
可选地,该第一子帧中包括至少两个该第一传输时间间隔。
可选地,该第一传输时间间隔中包括至少一个用于传输解调参考信号的导频符号。
可选地,该第一子帧中所包括的不同的该第一传输时间间隔的时域长度相等。
可选地,该第一子帧中所包括的不同的该第一传输时间间隔的时域长度不相等。
可选地,该第一子帧中包括4个导频符号。
可选地,该终端设备应用于车联网系统。
应理解,根据本申请实施例的一种终端设备300中的各个模块的上述和其它操作和/或功能分别为了实现图3中的方法200中的第一终端设备的相应流程,为了简洁,在此不再赘述。
图8示出了本申请实施例提供的数据传输的设备400的示意性框图,该设备400包括:
存储器410,用于存储程序,该程序包括代码;
收发器420,用于和其他设备进行通信;
处理器430,用于执行存储器410中的程序代码。
可选地,当该代码被执行时,该处理器430还可以实现图3中的方法200中发射端设备执行的各个操作,为了简洁,在此不再赘述。此时,该设备400可以为终端设备,例如,车载终端。
应理解,在本申请实施例中,该处理器430可以是中央处理单元(Central Processing Unit,CPU),该处理器430还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器410可以包括只读存储器和随机存取存储器,并向处理器430提供指令和数据。存储器410的一部分还可以包括非易失性随机存取存储器。例如,存储器410还可以存储设备类型的信息。
收发器420可以是用于实现信号发送和接收功能,例如频率调制和解调功能或叫上变频和下变频功能。
在实现过程中,上述方法的至少一个步骤可以通过处理器430中的硬件的集成逻辑电路完成,或该集成逻辑电路可在软件形式的指令驱动下完成该至少一个步骤。因此,数据传输的设备400可以是个芯片或者芯片组。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器430读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
图9是根据本申请实施例的系统芯片500的示意性结构图。图9的系统芯片500包括输入接口501、输出接口502、处理器503以及存储器504之间可以通过内部通信连接线路相连,该处理器503用于执行该存储器504中的代码。
可选地,当该代码被执行时,该处理器503实现方法实施例中由第一终端设备执行的方法。为了简洁,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个 计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属领的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以该权利要求的保护范围为准。

Claims (16)

  1. 一种数据传输的方法,其特征在于,包括:
    第一终端设备在第一子帧中以第一传输时间间隔的形式向第二终端设备发送数据;
    所述第一终端设备在所述第一子帧中的所有导频符号上向所述第二终端设备发送解调参考信号;
    其中,所述第一传输时间间隔的时域长度小于所述第一子帧的时域长度。
  2. 根据权利要求1所述的方法,其特征在于,所述第一终端设备在第一子帧中以所述第一传输时间间隔的形式向第二终端设备发送数据,包括:
    所述第一终端设备在所述第一子帧中的至少一个所述第一传输时间间隔上向所述第二终端设备发送数据。
  3. 根据权利要求2所述的方法,其特征在于,在所述第一终端设备在所述第一子帧中的所有所述第一传输时间间隔上向所述第二终端设备发送数据时,所述第一终端设备在所述第一子帧中的所有导频符号上向所述第二终端设备发送解调参考信号,包括:
    所述第一终端设备每次发送数据时,在所发送数据对应的所述第一传输时间间隔中所包括的导频符号上向所述第二终端设备发送解调参考信号。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一子帧中包括至少两个所述第一传输时间间隔。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一子帧中所包括的不同的所述第一传输时间间隔的时域长度相等。
  6. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一子帧中所包括的不同的所述第一传输时间间隔的时域长度不相等。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述第一传输时间间隔中包括至少一个用于传输解调参考信号的导频符号。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述第一子帧中包括4个导频符号。
  9. 一种终端设备,其特征在于,包括:
    发送单元,用于在第一子帧中以第一传输时间间隔的形式向第一终端设备发送数据;
    所述发送单元,还用于在所述第一子帧中的所有导频符号上向所述第一终端设备发送解调参考信号;
    其中,所述第一传输时间间隔的时域长度小于所述第一子帧的时域长度。
  10. 根据权利要求9所述的终端设备,其特征在于,所述发送单元具体用于:
    在所述第一子帧中的至少一个所述第一传输时间间隔上向所述第一终端设备发送数据。
  11. 根据权利要求10所述的终端设备,其特征在于,在所述发送单元在所述第一子帧中的所有所述第一传输时间间隔上向所述第一终端设备发送数据时,所述发送单元具体用于:
    每次发送数据时,在所发送数据对应的所述第一传输时间间隔中所包括的导频符号上向所述第一终端设备发送解调参考信号。
  12. 根据权利要求9至11中任一项所述的终端设备,其特征在于,所述第一子帧中包括至少两个所述第一传输时间间隔。
  13. 根据权利要求9至12中任一项所述的终端设备,其特征在于,所述第一子帧中所包括的不同的所述第一传输时间间隔的时域长度相等。
  14. 根据权利要求9至12中任一项所述的终端设备,其特征在于,所述第一子帧中所包括的不同的所述第一传输时间间隔的时域长度不相等。
  15. 根据权利要求9至14中任一项所述的终端设备,其特征在于,所述第一传输时间间隔中包括至少一个用于传输解调参考信号的导频符号。
  16. 根据权利要求9至15中任一项所述的终端设备,其特征在于,所述第一子帧中包括4个导频符号。
PCT/CN2017/096260 2017-08-07 2017-08-07 数据传输的方法和终端设备 WO2019028603A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/096260 WO2019028603A1 (zh) 2017-08-07 2017-08-07 数据传输的方法和终端设备
CN201780049615.5A CN109601023B (zh) 2017-08-07 2017-08-07 数据传输的方法和终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/096260 WO2019028603A1 (zh) 2017-08-07 2017-08-07 数据传输的方法和终端设备

Publications (1)

Publication Number Publication Date
WO2019028603A1 true WO2019028603A1 (zh) 2019-02-14

Family

ID=65272892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/096260 WO2019028603A1 (zh) 2017-08-07 2017-08-07 数据传输的方法和终端设备

Country Status (2)

Country Link
CN (1) CN109601023B (zh)
WO (1) WO2019028603A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220014332A1 (en) * 2018-12-14 2022-01-13 Nec Corporation Methods, devices and computer readable medium for transmission of reference signal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160212750A1 (en) * 2015-01-21 2016-07-21 Qualcomm Incorporated Spatial and frequency diversity design for machine type communications (mtc)
WO2016117983A1 (ko) * 2015-01-23 2016-07-28 엘지전자 주식회사 무선 통신 시스템에서 장치 대 장치 통신 단말의 신호 송수신 방법 및 장치
CN106464404A (zh) * 2014-05-09 2017-02-22 Lg电子株式会社 在无线通信系统中发送用于终端之间直接通信的同步信号的方法及其装置
CN106788930A (zh) * 2016-09-30 2017-05-31 展讯通信(上海)有限公司 sTTI内解调参考信号的传输、接收方法和基站、用户设备
CN106961316A (zh) * 2016-01-11 2017-07-18 上海贝尔股份有限公司 LTE-A Pro中的物理上行共享信道的传输方法和设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101795473B (zh) * 2009-02-03 2012-10-10 电信科学技术研究院 特殊子帧配置方式及时域资源使用方式的确定方法和装置
US8831150B1 (en) * 2013-07-05 2014-09-09 Hong Kong Applied Science and Technology Research Institute Company Limited Method and apparatus for detecting a preamble in a received signal
CN106549726B (zh) * 2015-09-18 2021-02-23 华为技术有限公司 传输数据的方法、基站和终端设备
CN106911438B (zh) * 2015-12-22 2020-02-14 华为技术有限公司 一种数据帧实现方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106464404A (zh) * 2014-05-09 2017-02-22 Lg电子株式会社 在无线通信系统中发送用于终端之间直接通信的同步信号的方法及其装置
US20160212750A1 (en) * 2015-01-21 2016-07-21 Qualcomm Incorporated Spatial and frequency diversity design for machine type communications (mtc)
WO2016117983A1 (ko) * 2015-01-23 2016-07-28 엘지전자 주식회사 무선 통신 시스템에서 장치 대 장치 통신 단말의 신호 송수신 방법 및 장치
CN106961316A (zh) * 2016-01-11 2017-07-18 上海贝尔股份有限公司 LTE-A Pro中的物理上行共享信道的传输方法和设备
CN106788930A (zh) * 2016-09-30 2017-05-31 展讯通信(上海)有限公司 sTTI内解调参考信号的传输、接收方法和基站、用户设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO: "PUSCH design for shortened TTI", 3GPP TSG RAN WG1 MEETING #84BIS, R1-163173, 15 April 2016 (2016-04-15), XP051079878 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220014332A1 (en) * 2018-12-14 2022-01-13 Nec Corporation Methods, devices and computer readable medium for transmission of reference signal

Also Published As

Publication number Publication date
CN109601023B (zh) 2020-08-04
CN109601023A (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
WO2019154333A1 (zh) 资源选择的方法和终端设备
WO2019084931A1 (zh) 确定传输参数的方法、终端设备和网络设备
WO2019100356A1 (zh) 载波选取的方法和设备、终端设备
WO2019095212A1 (zh) 无线通信的方法、终端设备和网络设备
CN110651514B (zh) 数据传输的方法、终端设备和网络设备
WO2019157733A1 (zh) 物理上行共享信道传输方法和终端设备
JP2021536713A (ja) 情報送信および受信方法、デバイス、および装置
WO2019019140A1 (zh) 发送系统信息的方法、网络设备和终端设备
WO2019084929A1 (zh) 资源选取的方法和终端设备
WO2019157726A1 (zh) 资源上报的方法、终端设备和网络设备
TW202007194A (zh) 一種車聯網中傳輸資料的方法和終端設備
WO2019157801A1 (zh) 资源上报的方法、终端设备和网络设备
WO2019023998A1 (zh) 设备对设备通信的方法、终端设备和网络设备
TW202007195A (zh) 一種車聯網中傳輸資料的方法和終端設備
EP3661286A1 (en) Communication method, terminal device and network device
TWI785085B (zh) 支援資料重複的方法、發射端設備和接收端設備
CN110663278B (zh) 设备对设备通信的方法和终端设备
WO2019028603A1 (zh) 数据传输的方法和终端设备
JP2022088609A (ja) 無線通信の方法、ネットワーク装置及び端末装置
WO2019024069A1 (zh) 设备对设备通信的方法、终端设备和网络设备
JP7317930B2 (ja) 伝送パラメータ確定方法、端末装置とネットワーク装置
WO2019028904A1 (zh) 无线通信的方法、网络设备和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17921299

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17921299

Country of ref document: EP

Kind code of ref document: A1