WO2019027704A1 - METHOD AND SYSTEM OF SEGMENTATION AS A SERVICE - Google Patents
METHOD AND SYSTEM OF SEGMENTATION AS A SERVICE Download PDFInfo
- Publication number
- WO2019027704A1 WO2019027704A1 PCT/US2018/043195 US2018043195W WO2019027704A1 WO 2019027704 A1 WO2019027704 A1 WO 2019027704A1 US 2018043195 W US2018043195 W US 2018043195W WO 2019027704 A1 WO2019027704 A1 WO 2019027704A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- website
- user
- server
- segaas
- user session
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0241—Advertisements
- G06Q30/0251—Targeted advertisements
- G06Q30/0269—Targeted advertisements based on user profile or attribute
- G06Q30/0271—Personalized advertisement
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/957—Browsing optimisation, e.g. caching or content distillation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/048—Interaction techniques based on graphical user interfaces [GUI]
- G06F3/0481—Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
- G06F3/0482—Interaction with lists of selectable items, e.g. menus
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0201—Market modelling; Market analysis; Collecting market data
- G06Q30/0204—Market segmentation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L51/00—User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail
- H04L51/02—User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail using automatic reactions or user delegation, e.g. automatic replies or chatbot-generated messages
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/50—Network services
- H04L67/535—Tracking the activity of the user
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/2866—Architectures; Arrangements
- H04L67/30—Profiles
- H04L67/306—User profiles
Definitions
- the technology disclosed relates to the use of segmentation to identify, manage and target cohorts of users.
- it relates to identifying groups of users with similar traits and acting based on those traits- a process common to many online businesses, including news sites, social networking sites and e-commerce sites.
- Websites also face a common problem of mixing the roles of a technical resource specialist who provides development skills, a design resource who provides user interface (UX) skills and a marketing resource who provides an understanding of the market and customers.
- a technical resource specialist who provides development skills
- UX user interface
- a marketing resource who provides an understanding of the market and customers.
- these roles can get merged and thereby make it difficult for the marketing person to manage the segments and design widgets and possibly needing to build small scripts on the website.
- Segmentation as a ServiceTM enables externally developed applications that are accessible through a browser-based API, to access the disclosed segmentation capability.
- SegAAS enables a website to time the delivery of unsolicited but relevant, interesting actions so as to retain a website visitor. Timing of content delivery to retain the website visitor should be just right: not too soon and not too late.
- Analysis of website visitor behavior combines local instrumentation and remote analytics according to allocated roles among distributed computers. The combined analysis component gives a website operator actionable data usable to time content delivery.
- the technology disclosed relates to systems and methods of supplying SegAAS from a SegAAS server, causing deliver of instrumentation code configured to run on a user's machine and generate instrument readings that track a user session during a visit to a website.
- the systems and methods include callback function code included in the instrumentation code, configured to run on the user's machine, further configured to perform actions specified by an operator of the website, as triggered by delivery of a list of segment codes and receiving at a SegAAS server a series of the instrument readings from the user session with the website, and analyzing the instrument readings received at the server to track progress of the user sessions.
- From the analyzing the systems and methods include generating a list of segment codes that characterize results of the analyzing according to parameters or rules specified by an operator of the website being visited in the user session, repeatedly causing delivery of updated lists of the segment codes based on the analyzing of the progress, and the operator of the website being able to time performance of unsolicited actions directed to retaining the user and extending the user session with the website by triggering the callback function code.
- website refers to mobile apps on iOS and Android platforms as well as browsers on desktop machines and mobile devices.
- FIG. 1 shows a block diagram of an example environment for supplying
- Segmentation as a ServiceTM for timing delivery of unsolicited content directed to retaining a website visitor and extending the user session with the website.
- FIG. 2 shows a message diagram for a segmentation-as-a-service system.
- FIG. 3 shows an example script for embedding code for the disclosed specialized smart and targeted publish-and-subscribe app for tracking user data that captures visitor interaction with the customer's site.
- FIG. 4 shows an example script for embedding code for activating callbacks in response to segment tag notifications.
- FIG. 5 displays an example segmentation ruleset and a graphical user interface for entering rules for a ruleset.
- FIG. 6 shows an example set of curves that represent the relationship between the time on a website and the conversion rate in percent of the time on the site.
- FIG. 7 shows an example conversion stage waterfall with various stages of the lifecycle of a website visit and the drop-off between the stages.
- FIG. 8 shows an example segmentation tag usable with callback functions to deliver particular segment-as-a-service offers when the override checkbox is activated.
- FIG. 9 is a block diagram of an example computer system for supplying
- FIG. 10 shows an example ruleset 1022 and high value customer segment tag 1012 for notification to Chatbot for a high value, repeat purchaser.
- FIG. 11 shows an example product interest segment tag 1112 and ruleset 1122 for detennining when to provide notification to a messaging agent.
- FIG. 12 shows example ruleset 1222 and high cart margin segment tag 1212 for notification to a messaging agent of an active shopper who is considering a purchase.
- FIG. 13 shows example Sunday Flash segment tag 1312 and ruleset 1322 for notification to a flash sales messaging agent.
- Segmentation refers to custom filtering of real-time visitor engagement data for predicting a visitor's intent while they are visiting a website. Either a digital fingerprint of the user's device configuration or personally identifiable information is used to access available historical information on the visitor.
- An example of user intent at a news website is to explore late breaking political news. For a business news site, a user might be looking for merger and acquisition activity or earnings surprises. For a high margin retail site, a user might be considering new fashion accessories. For a low margin retail site, a user might be buying economy razor blades. Many signals regarding history, page visits on the site, dwell time on pages and the site, saves during a visit, and the like can be combined to discern intent.
- Segmentation is typically a complex, black box product. Vendors treat segmentation formulas as trade secrets and deliver messages from the results of their black box analysis.
- the disclosed Segmentation as a ServiceTM includes a software service
- the service will provide websites with all services required for segmentation and, via the use of a JavaScript API, relay the information about the segments to the code on the website.
- the website implements code that acts as a listener to an event emitted by the Segmentation as a ServiceTM.
- the service evaluates all the rules of segmentation that the website has set up and notifies all the listeners, providing them with a list of segment codes for which the user has fallen into or satisfied the criteria.
- the website is then free to implement any targeting strategy via use of their custom code or third party software services, depending on the segments that the user has fallen into.
- the disclosed Segmentation as a ServiceTM combines front end graphical user interface (GUI) instrumentation with backend analytics to deliver segmentation from an analysis server to an application server.
- GUI graphical user interface
- a news service web page would push data from instrument code on the web page to the analysis server with an identified call back address.
- the analysis server would assign multiple segment codes to the visitor's session and transmit segment IDs, via the call back address on the web page, to the application server.
- instrument code on the news page would repeat the cycle, with the analysis server accumulating data about activity during the visitor's session. The same applies to shopping pages.
- a most useful aspect of the analysis server's accumulation of data is timing.
- User intent is strongly indicated by their dwell time on a page and in a session - within limits, of course, such as when they walk away from the computer and leave it focused on a page.
- the name of the game is stickiness.
- the disclosed technology helps an application server improve its stickiness using Segmentation as a ServiceTM to harness analytics, in real time and taking into account timing that is otherwise beyond reach of most application developers.
- Using Segmentation as a ServiceTM application servers are enabled to respond appropriately with good timing to current user intent.
- visitor tracking tags Through the use of pre-installed JavaScript code called visitor tracking tags, the disclosed technology tracks and captures visitor activity as it occurs, in real-time.
- a visitor tracking tag is installed on each page of a website so that with each user event such as a page view, add to cart, or search.
- the disclosed technology includes digitizing and capturing as much of the visitor engagement as possible. This includes, but is not limited to, visitor source information, user device, and location, URL history, browsing timeline, page content, chatter sessions, cart state changes and aggregate information from prior visits.
- a single conversion tracking tag is installed on the confirmation page.
- the confirmation page can be a thank you page that acknowledges the completion of a newsletter subscription, a completed survey or a processed order. Conversion tracking makes revenue history, average order value and conversion rate calculations possible.
- the disclosed segmentation and analytics layer consumes the digitized visitor engagement data stream. It then renders it into a form in which interesting insights can be gleaned and each visitor engagement can be understood in the correct and most timely context. This layer can be custom filtered so that only the visitor events of interest are captured and acted upon for each customer.
- FIG. 1 illustrates a system 100 for custom filtering of real-time visitor engagement data for predicting a visitor's intent while they are visiting a website.
- System 100 includes Segmentation as a ServiceTM server 102 with rule evaluation engine 112 for evaluating the rules set up for the website and notification manager 122 that notifies all the listeners, among distributed computers - providing them with a list of segment codes that users have fallen into or for which they have satisfied the criteria.
- Segmentation as a ServiceTM server 102 receives a series of instrument readings from the user session with the website, along wi th a callback API to which to deliver results.
- Segmentation as a ServiceTM server 102 also includes analysis server 132 that includes backend analytics for delivering segmentation and cache memory 142 for storing visitor engagement data, interim results of segmentation analysis and account settings. Analysis server 132 can assign multiple segment tags to the visitor's session and transmit segment IDs, via the call back address registered for the web page. Analysis server 132
- Analysis server 132 can accumulate data among distributed computers for many visitors to many websites.
- System 100 additionally includes Segmentation as a ServiceTM (SegAAS) data store 104 for storing user engagement data, rule evaluation results and analysis results.
- System 100 also includes website operator server 108 with application server 128 that delivers visitor websites for user interaction and receives data from the websites, utilizing an identified call back address and instrumentation code for callback registration, via network 145.
- SegAAS ServiceTM
- System 100 further includes user computing device 168 with graphical user interface instrumentation 178 that provides a display layer for user laptop or desktop computer 164 or mobile device 165 and utilizes instrumentation code for generating instrument readings that track a user session that visits a website.
- graphical user interface instrumentation 178 provides a display layer for user laptop or desktop computer 164 or mobile device 165 and utilizes instrumentation code for generating instrument readings that track a user session that visits a website.
- One implementation includes an extensive display toolkit with which customers can easily create a wide range of message placements in the form of interstitial banners, interactive sliders, fly outs and overlays.
- User computing device 168 includes a web browser 188 for displaying websites provided by application server 128, for visitors.
- browsers can include Microsoft Explorer, Google Chrome, Apple Safari, Mozilla Firefox and the like
- user computing device 168 can be a personal computer, laptop computer, tablet computer, smartphone, personal digital assistant (PDA), digital image capture devices, and the like.
- PDA personal digital assistant
- network(s) 145 can be any one or any combination of Local Area Network (LAN), Wide Area Network (WAN), WiFi, WiMAX, telephone network, wireless network, point-to-point network, star network, token ring network, hub network, peer- to-peer connections like Bluetooth, Near Field Communication (NFC), Z-Wave, ZigBee, or other appropriate configuration of data networks, including the Internet.
- LAN Local Area Network
- WAN Wide Area Network
- WiFi Wireless Fidelity
- WiMAX wireless network
- telephone network wireless network
- point-to-point network star network
- token ring network token ring network
- hub network peer- to-peer connections like Bluetooth, Near Field Communication (NFC), Z-Wave, ZigBee, or other appropriate configuration of data networks, including the Internet.
- NFC Near Field Communication
- Z-Wave Z-Wave
- ZigBee ZigBee
- datastores can store information from one or more tenants into tables of a common database image to form an on-demand database service (ODDS), which can be implemented in many ways, such as a multi-tenant database system (MTDS).
- ODDS on-demand database service
- a database image can include one or more database objects.
- the databases can be relational database management systems (RDBMSs), object oriented database management systems (OODBMSs), distributed file systems (DFS), no-schema database, or any other data storing systems or computing devices.
- RDBMSs relational database management systems
- OODBMSs object oriented database management systems
- DFS distributed file systems
- no-schema database no-schema database
- FIG. 2 shows a message diagram for a segmentation-as-a-service system.
- a user requests a web page and browser 188 sends a webpage request 205 to website operator server 108.
- Website operator server 108 returns webpage 215, with embedded code for the specialized app for tracking user data that captures visitor interaction with the customer's site and also embedded code to set up listeners for callbacks that respond to notifications.
- the returned webpage 215 includes code to initially load the SegAAS library 206 and provide it with tracking data to be consumed by SegAAS server 102, including current page type, product details, and current cart details, in one implementation. Also included in the returned page is code to subscribe to any result returned by SegAAS library 206.
- the server causes delivery of the SegAAS callback function code 204 with the instrumentation code.
- the operator of the website makes SegAAS callback function code 204 available to the segment code processing code.
- the webpage gets executed and visualized within browser 188.
- browser 188 configures callback functions 222 that reflect the choices specified by the website operator.
- the callback function can activate a chatbot, an email messenger service a survey service, or other desired reaction to a visitor to the website.
- the website operator exposes one or more callback functions that will be visible and later executed by SegAAS library 206.
- a website operator embeds code that registers a listener on each of their website pages. They can register multiple listeners, depending on the ways they want to handle events. After tracking a page view, the disclosed API notifies all the listeners with a list of the segments into which the user fell on that web page. The customer's code checks to see whether any particular segment of interest was fired.
- Browser 188 sends a request for SegAAS library code 236 to SegAAS Server 102, and SegAAS Server 102 returns SegAAS library code 246.
- Browser 188 initializes SegAAS library 254, which sends data to be tracked and evaluated 266 to SegAAS server 102 and stores data 268 in SegAAS data store 104, as historical user data 278.
- SegAAS server 102 utilizes segmentation rules, evaluates website operator segments and rules 288 with the received data, and optionally historical user data 278, and returns SegAAS results 276 to SegAAS library 206 which is running on the web page in browser 188.
- SegAAS library 206 publishes the results to callback 284.
- the visitor qualifies in a segment by satisfying all of the rules defined for that segment. If any rule in the ruleset is not met for a segment, the visitor is disqualified from qualifying for that segment with successful completion of that ruleset.
- successful completion of a specified ruleset results in a segment code being sent to an agent on the browser page of the website delivered by application server 128. Multiple listeners typically listen for result notifications from notification manager 122.
- the callback function can initiate a call to display a chat window using a third-party service or show a popup requesting the user to subscribe to a newsletter.
- a third party service that protects the integrity of sensitive secure data, such as users' private personal information, can be implemented as the callback function.
- a callback function can initiate a call to a survey software tool, or a news media distribution service or a credit calculator.
- a further implementation can include a call to a set of insurance-related tools for assessing risk and calculating rates. The reader can extrapolate to additional software tools that could also be instantiated by a callback function activated by the satisfaction of a different set of SegAAS rules.
- FIG. 3 shows an example JavaScript script usable to embed the code for the specialized smart and targeted publish-and-subscribe app for tracking user data that captures visitor interaction with the customer's site for a document, window and script 374.
- URL 364 causes loading of the core internal code of the specialized smart and targeted publish-and- subscribe app w.fanplayr and associated libraries into the browser.
- a loaded library when executed, takes action to display widgets specified to be activated upon successful satisfaction of a ruleset.
- Account key 324 is a JavaScript string that acts as a customer ID that identifies the customer website from which data is being collected and specifies the current attributes associated with the user of the webpage such as the total dollar amount in their shopping cart, any discount currently applied, product IDs and names, to Segmentation as a ServiceTM server 102. Segmentation tags get captured as part of the data captured via the script in FIG. 3. The script shown in FIG. 3 gets added to the customer's website to enable tracking of visitors' actions, using the disclosed technology.
- two sets of clusters of servers- one on the east coast and one on the west coast provide speedier responses to the browser, so their data can be redirected to wl.fanplayr.com or el.fanplayr.com, with wl for west and el for east depending on the geographical location of the website visitor.
- the code for the specialized smart and targeted publish-and-subscribe app completes the analyzing, generating a list of segment codes that characterize results of the analysis in an actionable way specified by an operator of the website being visited in the user session.
- the analyzing gets processed in the cloud.
- FIG. 4 shows a script usable by a customer website developer to set up listeners for callbacks which typically respond to notifications when a visitor satisfies a specific ruleset.
- This example script adds code to a customer's website for Segmentation as a ServiceTM, with two specific callback API functions that get activated conditionally based on the returned event segment value, for delivering the list of segment codes and updates to the list of segment codes based on the analyzing of the progress by the website visitor.
- the website developer could also add a third party cookie as a mechanism that allows the server to store its own information about a visitor, on the user's own computer.
- HVC high value customer
- EMS email management system
- a popup requesting the user to subscribe to a newsletter gets activated, using the disclosed technology.
- the operator of the customer website can time delivery of unsolicited content directed to retaining the visitor and extending the user session with the website.
- FIG. 5 shows an example display of a segmentation ruleset 522 and a graphical user interface for entering rules for a ruleset.
- Rulesets make it possible for external users to segment their customers. A consumer is considered to be part of a defined segment if they satisfy all the rules of any ruleset.
- rulesets are oriented to drive a short term return on investment, with segmentation rules for exit-intent handling and engagement-upsell categories.
- Some implementations include many rule types, in some cases as many as one hundred to one hundred fifty rules, each with multiple attributes.
- SegAAS offers website operators the flexibility of doing what they need to do for their specific applications, including actions such as swapping out widgets and segmentation rules on the serv er, without needing to implement or otherwise replicate their own version of segmentation service.
- a creative editor tool presents customized displays on the fly, including targeted special offers, images and messaging, in ways that optimize conversion rates and increase average order value.
- personalized immediacy is introduced with respect to what product or service options the consumer sees, as well as to the pricing and delivery options. Example use cases for SegAAS are described next.
- Chatbots computer programs which conduct conversations via auditory or textual methods - are quickly becoming a specialization, delivering improved interpretation of visitor text or voice interactions.
- SegAAS is relevant to Chatbots for identifying visitors according to browsing behavior and prior visit history, in order to initiate better informed and relevant conversations earlier in the Chatbot session. Examples of relevant information include whether a user is a first-time or repeat visitor, where the visitor came from, the language a visitor is using, and whether a visitor a repeat purchaser and, if so, how much they have spent in the past.
- Chatbots focus on providing an informed, automated response to visitor inquiries via natural language interpretation.
- SegAAS can inform this service about behaviors, including visit history, current product interest and likelihood of purchase intent. This supplies greater context to each visitor engagement, thus narrowing the range of possibilities that the language interpreter must handle, enabling a faster and better-informed response.
- FIG. 10 shows an example ruleset 1022 and high value customer segment tag 1012 for notification to Chatbot for a high value, repeat purchaser with an average purchase habit of more than $200.
- the ruleset includes customers who have spent more than two minutes on the site, with more than three page views, with a purchase history with an average purchase of more than $200 in the past year, who made more than four converting visits in the past year, and who visited the site within the past seven days.
- instrumentation code that includes a script that when executed, listens for the rule segments into which the user falls is listed next. After a user 'arrives' on a page, the content needed to immediately render the page is downloaded by the browser, processed and the page is rendered.
- the Fanplayr API causes the gathering of information on the page, sends it to the server, receives a response and then triggers the 'onPageView' event once the page has fully loaded.
- the callback function is configured to run on the user's machine to perform actions specified by an operator of the website, as triggered by delivery of a list of segment codes. In the example listed, a high value customer who meets the ruleset described supra will receive a chatbot window invoked by the sample code on the website being viewed, triggered by delivery of the high value customer segment tag 1012.
- the SegAAS server causes delivery of callback function code with the instrumentation code configured to run on the user's machine.
- the instrumentation code configured to run on the user's machine.
- the website operator makes callback function code available to segment tag processing code.
- SegAAS is relevant to surveys by identifying visitors according to browsing behavior and prior visit history, in order to initiate better informed survey selection that is relevant to current or previous engagement.
- product interest can be tracked for visitors browsing a site, as they click on product and category pages, which reflect product interest and potential level of spending. The duration of the browsing time, the number of pages viewed per minute, the specific URLs visited during the current and prior session reveal a lot of information about the level of interest of individual visitors and can suggest messaging strategies that can incentivize a desired end result of the engagement.
- FIG. 11 shows an example product interest segment tag 1112 and ruleset 1122 for determining when to provide notification to a messaging agent with respect to a shopper with an interest in footwear.
- Instrumen tation code listed next includes a Fanplayr script that when executed, listens for the rule segments into which the user falls, along with a callback function configured to run on the user's machine to perform the actions specified by an operator of the website. In this case, when ruleset 1122 is met for product interest segment tag 1112, the action is that a content area with a product suggestion appears on the user's web page.
- Another use case, for smarter re-targeting ads involves informing an ad network of a visitor's prior engagement on a site, often by dropping a cookie which will be read by the ad network on other sites.
- Re-targeting applications can benefit by the use of SegAAS by achieving a greater level of understanding of the precise motivations that drove the previous visit by a visitor, thereby enabling the selection of a more relevant re-targeting ad.
- a Washington Post reader showing interest in a particular category of articles such as technology articles, can be shown articles that reflect that interest, using segment category rules to match their interests.
- FIG. 12 shows example ruleset 1222 and high cart margin segment tag 1212 for notification to a messaging agent of an active shopper who is considering a purchase of the items in a high margin, high value cart.
- the callback code in the example listed next shows a popup to a user who matches ruleset 1222 for high cart margin segment tag 1212.
- segmentation as a ServiceTM can make email collection applications smarter by capturing and analyzing data relative to historical solicitations and improving decision making with regard to who does or does not receive an email request. Replacing an un wieldy existing email system can require custom build of an email collection interface and potentially tough negotiations within a company due to internal politics as to whether to build or buy a better email system. By using SegAAS and only showing the email widget based on segmentation rules, these rules can then be completely controlled by the customer web server. This makes it possible for marketing support personnel to try different things without having to go back to IT.
- SegAAS can make possible a timed promotion that offers the sudden appearance of an incentive for a given product or category of product while a visitor is shopping.
- the promotion can be a real-time response to browsing activity and appears as a short-lived, very personal opportunity to get a great deal.
- SegAAS can notify messaging agents in real-time of shoppers who have crossed a pageview-per-minute or time-on-site threshold or are browsing when a flash sale starts.
- FIG. 13 shows example Sunday Flash segment tag 1312 and ruleset 1322 for notification to a flash sales messaging agent.
- the code then presents a chat window provided by a third- party service, to a dedicated customer service agent who starts a personal dialog with the visitor, making them feel special and important.
- the website is successful and realizes that they need to switch to a different chat service to be able to scale.
- a simple change to the code on the website that handles presenting the chat window is all that is required. This can be done by the development resources, with no change required to the segmentation or without even mvolvmg the marketing resource. Similarly, if at some point the marketing resource decides they would like to target 'High Value Customers' as those who have spent $2,000 in six months, they simply change the rules in SegAAS and do not need to involve the development resource.
- a completely new marketing strategy of the website decides to do away with 'High Value Customers' but would still like to open up a chat window to users who have visited the site a few times in the last week, but have not converted or purchased. They change the segmentation from being called 'High Value
- FIG. 6 shows an example set of curves that represent the relationship between the time on the site on the x axis and the conversion rate in percent of the time on the site on the y axis.
- the curve 622 shows a typical conversion rate by cohort with time engaged
- the curve 662 shows the low likelihood of conversion for website users who stay on the website for extended periods of time. The longer the consumer of the website stays on the site, the more likely conversion is.
- To convert website users, the idea is to provide incentives to convert people who have not yet committed, waiting for an inflection point, in which the average is starting to diverge from the average consumer's behavior.
- FIG. 7 shows an example conversion stage waterfall with various stages of the lifecycle of a visit and the drop-off between the stages.
- the percent of group shows the percentage of users in a stage compared to the previous stage. A lower number helps identify areas of focus for offering incentives to users to encourage them to move through the website pipeline.
- website operator server 108 with application server 128 delivers visitor websites for user interaction and receives data from the web, such as round robin AB testing alternates among offers to generate analytics at varying offer values.
- FIG. 8 shows an example segmentation tag 852 with value ' 1234' usable with callback functions to deliver particular segment-as-a-service offers, when the override algorithms checkbox 862 is activated.
- these algorithms provide services such as the Chatbot service, email management services and survey services described supra.
- FIG. 9 presents a block diagram of an exemplary system 900 suitable for implementing system 100 of FIG. 1 for supplying Segmentation as a ServiceTM (abbreviated SegAAS) from a SegAAS server, supplying instrumentation code to run on a user's machine and generate instrument readings that track a user session that visits a website and receiving at a SegAAS server a series of the instrument readings from the user session with the website, along with a callback API to which the SegAAS server needs to deliver results.
- SegAAS Segmentation as a ServiceTM
- FIG. 9 presents a block diagram of an exemplary system 900 suitable for implementing system 100 of FIG. 1 for supplying Segmentation as a ServiceTM (abbreviated SegAAS) from a SegAAS server, supplying instrumentation code to run on a user's machine and generate instrument readings that track a user session that visits a website and receiving at a SegAAS server a series of the instrument readings from the user session with the website, along with a
- a server 904 that dynamically supports virtual applications 916 and 918, based upon data 922 from a common database 932 that is shared between multiple tenants, alternatively referred to herein as a "multi-tenant database”.
- Data and services generated by the virtual applications 916 and 918, including GUI clients, are provided via a network 945 to any number of client devices 948 or 958, as desired.
- a "tenant” or an “organization” refers to a group of one or more users that shares access to a common subset of the data within the multi-tenant database 932.
- each tenant includes one or more users associated with, assigned to, or otherwise belonging to that respective tenant.
- each respective user within the system 900 is associated with, assigned to, or otherwise belongs to a particular tenant of the plurality of tenants supported by system 900.
- Tenants may represent users, user departments, work or legal organizations, and/or any other entities that maintain data for particular sets of users within system 900.
- the server 904 and the database 932 may share access to the server 904 and the database 932, the particular data and services provided from the server 904 to each tenant can be securely isolated from those provided to other tenants.
- the multi-tenant architecture therefore allows different sets of users to share functionality and hardware resources without necessarily sharing any of the data 922 belonging to or otherwise associated with other tenants.
- the multi-tenant database 932 is any sort of repository or other data storage system capable of storing and managing the data 922 associated with any number of tenants.
- the database 932 may be implemented using any type of conventional database server hardware.
- the database 932 shares processing hardware with the server 904.
- the database 932 is implemented using separate physical and/or virtual database server hardware that communicates with the server 904 to perform the various functions described herein.
- the multi-tenant database 932 may alternatively be referred to herein as an on- demand database, in that the multi-tenant database 932 provides (or is available to provide) data at run-time to on-demand virtual applications 916 or 918 generated by the application platform 917, with tenantl metadata 912 and tenant2 metadata 914 securely isolated.
- the data 922 may be organized and formatted in any manner to support the application platform 922.
- conventional data relationships are established using any number of pivot tables 913 that establish indexing, uniqueness, relationships between entities, and/or other aspects of conventional database organization as desired.
- the server 904 is implemented using one or more actual and/or virtual computing systems that collectively provide the dynamic application platform 917 for generating the virtual applications.
- the server 904 may be implemen ted using a cluster of actual and/or virtual servers operating in conjunction with each other, typically in association with conventional network communications, cluster management, load balancing and other features as appropriate.
- the server 904 operates with any sort of conventional processing hardware such as a processor 936, memory 938, input/output devices 934 and the like.
- the input/output devices 934 generally represent the interface(s) to networks (e.g., to the network 945, or any other local area, wide area or other network), mass storage, display devices, data entry devices and/or the like.
- User interface input devices 934 can include a keyboard; pointing devices such as a mouse, trackball, touchpad, or graphics tablet; a scanner; a touch screen incorporated into the display; audio input devices such as voice recognition systems and microphones; and other types of input devices.
- pointing devices such as a mouse, trackball, touchpad, or graphics tablet
- audio input devices such as voice recognition systems and microphones
- use of the term "input device” is intended to include possible types of devices and ways to input information into application platform 917.
- User interface output devices can include a display subsystem, a printer, a fax machine, or non-visual displays such as audio output devices.
- the display subsystem can include a light emitting diode (LED) screen, a flat-panel device such as a liquid crystal display (LCD), a cathode ray tube (CRT), a projection device, or some other mechanism for creating a visible image.
- the display subsystem can also provide a non- visual display such as audio output devices.
- output device is intended to include all possible types of devices and ways to output information from processor 936 to the user or to another machine or computer system.
- the processor 936 may be implemented using any suitable processing system, such as one or more processors, controllers, microprocessors, microcontrollers, processing cores and/or other computing resources spread across any number of distributed or integrated systems, including any number of "cloud-based" or other virtual systems.
- the memory 938 represents any non-transitory short or long term storage or other computer-readable media capable of storing programming instructions for execution on the processor 936, including any sort of random access memory (RAM), read only memory (ROM), flash memory, magnetic or optical mass storage, and/or the like.
- RAM random access memory
- ROM read only memory
- flash memory magnetic or optical mass storage, and/or the like.
- the computer-executable programming instructions when read and executed by the server 904 and/or processor 936, cause the server 904 and/or processor 936 to create, generate, or otherwise facilitate the application platform 917 and/or virtual applications
- the memory 938 represents one suitable implementation of such computer-readable media, and alternatively or additionally, the server 904 could receive and cooperate with external computer-readable media that is realized as a portable or mobile component or application platform, e.g., a portable hard drive, a USB flash drive, an optical disc, or the like.
- the application platform 917 is any sort of software application or other data processing engine that generates the virtual applications 916 and 918 that provide data and/or services to the client devices 948 and 958.
- the application platform 917 is any sort of software application or other data processing engine that generates the virtual applications 916 and 918 that provide data and/or services to the client devices 948 and 958.
- the application platform 917 is any sort of software application or other data processing engine that generates the virtual applications 916 and 918 that provide data and/or services to the client devices 948 and 958.
- the application platform 917 is any sort of software application or other data processing engine that generates the virtual applications 916 and 918 that provide data and/or services to the client devices 948 and 958.
- the application platform 917 is any sort of software application or other data processing engine that generates the virtual applications 916 and 918 that provide data and/or services to the client devices 948 and 958.
- the application platform 917 is any sort of software application or other data processing engine that generates the virtual applications 916
- the virtual applications 916 and 918 are typically generated at run-time in response to input received from the client devices 948 and 958.
- the data and services provided by the server 904 can be retrieved using any sort of personal computer, mobile telephone, tablet or other network- enabled client device 948 or 958 on the network 945.
- the client device 948 or 958 includes a display device, such as a monitor, screen, or another conventional electronic display capable of graphically presenting data and/or information retrieved from the multi-tenant database 932.
- network(s) 945 can be any one or any combination of Local Area Network (LAN), Wide Area Network (WAN), WiMAX, Wi-Fi, telephone network, wireless network, point-to-point network, star network, token ring network, hub network, mesh network, peer-to-peer connections like Bluetooth, Near Field Communication (NFC), Z-Wave, ZigBee, or other appropriate configuration of data networks, including the Internet.
- LAN Local Area Network
- WAN Wide Area Network
- WiMAX Wi-Fi
- telephone network wireless network
- point-to-point network star network
- token ring network point-to-point network
- hub network token ring network
- mesh network peer-to-peer connections like Bluetooth, Near Field Communication (NFC), Z-Wave, ZigBee, or other appropriate configuration of data networks, including the Internet.
- NFC Near Field Communication
- Z-Wave Z-Wave
- ZigBee ZigBee
- exemplary means "serving as an example, instance, or illustration.” Any implementation described herein as exemplary is not necessarily to be construed as preferred or advantageous over other implementations, and the exemplary implementations described herein are not intended to limit the scope or applicability of the subject matter in any way.
- the technology disclosed can be implemented in the context of any computer- implemented system including a database system, a multi-tenant environment, or a relational database implementation like an OracleTM compatible database implementation, an IBM DB2 Enterprise ServerTM compatible relational database implementation, a MySQLTM or
- PostgreSQLTM compatible relational database implementation or a Microsoft SQL ServerTM compatible relational database implementation or a NoSQL non-relational database implementation such as a VampireTM compatible non-relational database implementation, an Apache CassandraTM compatible non-relational database implementation, a BigTableTM compatible non-relational database implementation or an HBaseTM or DynamoDBTM compatible non-relational database implementation.
- the technology disclosed can be implemented using two or more separate and distinct computer-implemented systems that cooperate and communicate with one another.
- the technology disclosed can be implemented in numerous ways, including as a process, a method, an apparatus, a system, a device, a computer readable medium such as a computer readable storage medium that stores computer readable instructions or computer program code, or as a computer program product comprising a computer usable medium having a computer readable program code embodied therein.
- One disclosed implementation includes a method of supplying Segmentation as a ServiceTM (abbreviated SegAAS) from a SegAAS server, supplying instrumentation code to run on a user's machine and generate instrument readings that track a user session that visits a website.
- the disclosed method also includes receiving at a SegAAS server a series of the instrument readings from the user session with the website, along with a callback API to which the SegAAS server needs to deliver results and analyzing the instrument readings to track progress of the user session.
- the disclosed method further includes generating a list of segment codes that characterize results of the analysis according to parameters or rules specified by an operator of the website being visited in the user session.
- the disclosed method additionally includes repeatedly calling back the code running on the user's machine via the callback API and delivering the list of segment codes and updates to the list of segment codes based on the analyzing of the progress, whereby the operator of the website can time the delivery of unsolicited content directed to retaining the visitor and extending the user session with the website.
- This method and other implementations of the technology disclosed can include one or more of the following features and/or features described in connection with additional methods disclosed.
- the combinations of features disclosed in this application are not individually enumerated and are not repeated with each base set of features.
- One disclosed method further includes the SegAAS server using received data to look up historical information regarding a user who is conducting the user session and combining the historical information regarding the user with the analyzing the instruments readings to track progress of the user session when generating the list of segment codes.
- Some implementations of the disclosed method further include the SegAAS server providing a graphical user interface for creation of parameters or rules by the operator of the website that cause generation of the segment codes. These implementations also include receiving from the operator, through the graphical user interface, instructions for creating the parameters or rules and persisting the parameters or rules for use when analyzing the instrument readings to track progress of the user session and generating the list of segment codes. Some implementations of the disclosed technology further include creation of the parameters or rules incorporating historical information about the user who is conducting the user session.
- the SegAAS server is hosted on an Internet using a server distinct from a server that runs the website. Some implementations further include the SegAAS server using a chatbot service, and email message service, a survey service or other third party application as an element of the unsolicited content directed to retaining the user and extending the user session with the website.
- One disclosed implementation of a method of supplying SegAAS from a SegAAS server includes causing delivery of instrumentation code configured to run on a user's machine and generate instrument readings that track a user session during a visit to a website.
- the disclosed method also includes callback function code included in the instrumentation code, configured to run on the user's machine, further configured to perform actions specified by an operator of the website, as triggered by delivery of a list of segment codes.
- the disclosed method further includes receiving at a SegAAS server a series of the instrument readings from the user session with the website and analyzing the instrument readings received at the server to track progress of the user session.
- the method also includes, from the analyzing, generating a list of segment codes that characterize results of the analyzing according to parameters or rules specified by an operator of the website being visited in the user session and repeatedly causing delivery of updated lists of the segment codes based on the analyzing of the progress.
- the operator of the website can time performance of unsolicited actions directed to retaining the user and extending the user session with the website by triggering the callback function code.
- Instrumentation code is also referred to as customer action data.
- the instrumentation code uses JavaScript.
- a different software language can be utilized.
- website refers to browsers on desktop machines and mobile devices as well as mobile apps on iOS and Android platforms.
- code can be repurposed between browser pages and web apps by following developer guidelines for html and JavaScript for the specific platforms.
- Some implementations of the disclosed method further include the SegAAS server using received data to look up historical information regarding a user who is conducting the user session and combining the historical information regarding the user with the analyzing the instrument readings to track progress of the user session when generating the list of segment codes.
- One implementation of the disclosed method further includes the SegAAS server providing a graphical user interface for creation of parameters or rules by the operator of the website that cause generation of the segment codes, receiving from the operator, through the graphical user interface, instructions for creating the parameters or rules, and persisting the parameters or rules for use when analyzing the instrument readings to track progress of the user session and generating the list of segment codes.
- Some implementations of the disclosed method further include callback function code configured to invoke a chatbot service whereby an informed, automated response to visitor inquiries is provided, based on the updated lists of the segment codes.
- One implementation of a disclosed method of supplying Segmentation as a ServiceTM from a SegAAS server includes causing delivery of instrumentation code and segment code processing code configured to run on a user's machine and generate instrument readings that track a user session during a visit to a website and receive and process segment codes during the visit by invoking callback function code, configured to run on the user's machine, that perform actions specified by an operator of the website, as triggered by delivery of a list of the segment codes.
- the disclosed method also includes receiving at a SegAAS server a series of the instrument readings from the user session with the website and analyzing the instrument readings received at the server to track progress of the user session.
- the method further includes, from the analyzing, generating a list of segment codes that characterize results of the analyzing according to parameters or rules specified by an operator of the website being visited in the user session.
- the method also includes repeatedly causing delivery of updated lists of the segment codes based on the analyzing of the progress, and the operator of the website can time performance of unsolicited actions directed to retaining the user and extending the user session with the website.
- the server causes delivery of the callback function code with the instrumentation code.
- the operator of the website makes the callback function code available to the segment code processing code.
- One implementation of the disclosed method further includes the callback function code configured to invoke a popup with a personalized message that is offered for a constrained period of time, as an element of unsolicited actions directed to retaining the user and extending the user session with the website.
- Another implementation of the disclosed method includes the callback function code configured to invoke a popup and using an email management service as an element of unsolicited actions directed to retaining the user and extending the user session with the website.
- the technology disclosed can be practiced as a system, method, or article of manufacture.
- One or more features of an implementation can be combined with the base implementation. Implementations that are not mutually exclusive are taught to be combinable.
- One or more features of an implementation can be combined with other implementations. This disclosure periodically reminds the user of these options. Omission from some implementations of recitations that repeat these options should not be taken as limiting the combinations taught in the preceding sections - these recitations are hereby incorporated forward by reference into each of the following implementations.
- One disclosed implementation may include a tangible non-volatile computer readable storage media loaded with computer program instructions that, when executed on a server, cause a computer to implement any of the methods described earlier.
- Another disclosed implementation may include a server system including one or more processors and memory coupled to the processors, the memory loaded with instructions that, when executed on the processors, cause the server system to perform any of the methods described earlier.
- This system implementation and other systems disclosed optionally can also include features described in connection with methods disclosed.
- alternative combinations of system features are not individually enumerated.
- Features applicable to systems, methods, and articles of manufacture are not repeated for each statutory class set of base features. The reader will understand how features identified in this section can readily be combined with base features in other statutory classes.
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Theoretical Computer Science (AREA)
- Accounting & Taxation (AREA)
- Development Economics (AREA)
- Finance (AREA)
- Strategic Management (AREA)
- Entrepreneurship & Innovation (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Marketing (AREA)
- Economics (AREA)
- Game Theory and Decision Science (AREA)
- General Business, Economics & Management (AREA)
- Data Mining & Analysis (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Databases & Information Systems (AREA)
- Computer Hardware Design (AREA)
- Human Computer Interaction (AREA)
- Information Transfer Between Computers (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Stored Programmes (AREA)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880062101.8A CN111164950B (zh) | 2017-07-31 | 2018-07-20 | 用于用户分段即服务的方法和系统 |
JP2020529092A JP7250017B2 (ja) | 2017-07-31 | 2018-07-20 | セグメンテーション・アズ・ア・サービスのための方法及びシステム |
AU2018309599A AU2018309599B2 (en) | 2017-07-31 | 2018-07-20 | Method and system for segmentation as a service |
EP18760069.7A EP3662386B1 (en) | 2017-07-31 | 2018-07-20 | Method and system for segmentation as a service |
AU2022202023A AU2022202023B2 (en) | 2017-07-31 | 2022-03-23 | Method and system for segmentation as a service |
JP2023044566A JP7455252B2 (ja) | 2017-07-31 | 2023-03-20 | セグメンテーション・アズ・ア・サービスのための方法及びシステム |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762539460P | 2017-07-31 | 2017-07-31 | |
US62/539,460 | 2017-07-31 | ||
US16/020,730 US10958743B2 (en) | 2017-07-31 | 2018-06-27 | Method and system for segmentation as a service |
US16/020,730 | 2018-06-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019027704A1 true WO2019027704A1 (en) | 2019-02-07 |
Family
ID=65137997
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2018/043195 WO2019027704A1 (en) | 2017-07-31 | 2018-07-20 | METHOD AND SYSTEM OF SEGMENTATION AS A SERVICE |
Country Status (6)
Country | Link |
---|---|
US (3) | US10958743B2 (zh) |
EP (1) | EP3662386B1 (zh) |
JP (2) | JP7250017B2 (zh) |
CN (1) | CN111164950B (zh) |
AU (2) | AU2018309599B2 (zh) |
WO (1) | WO2019027704A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021170408A (ja) * | 2020-01-23 | 2021-10-28 | 株式会社Macbee Planet | サーバ装置、情報処理システム、情報処理方法及びプログラム |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200082288A1 (en) * | 2018-09-11 | 2020-03-12 | ZineOne, Inc. | Network computing system for real-time event analysis |
EP3624136A1 (en) * | 2018-09-14 | 2020-03-18 | Koninklijke Philips N.V. | Invoking chatbot in a communication session |
US11303649B2 (en) | 2019-05-30 | 2022-04-12 | International Business Machines Corporation | Maintaining electronic communications session continuity during session inactivity |
US20200381623A1 (en) * | 2019-05-31 | 2020-12-03 | Applied Materials, Inc. | Methods of forming silicon nitride encapsulation layers |
US11176942B2 (en) * | 2019-11-26 | 2021-11-16 | Vui, Inc. | Multi-modal conversational agent platform |
US11609954B2 (en) * | 2020-06-15 | 2023-03-21 | Salesforce.Com, Inc. | Segment creation in a database system |
CN112328298A (zh) * | 2020-09-29 | 2021-02-05 | 北京迈格威科技有限公司 | 移动端的代码库裁剪方法及装置 |
CN112330278B (zh) * | 2020-11-04 | 2024-03-26 | 合肥壹物易证科技有限公司 | 一种基于模块化子系统的集成系统组建方法 |
US12073002B2 (en) | 2021-04-07 | 2024-08-27 | Fanplayr Inc. | Enhancing user identification with privacy protection across web servers |
US20240176840A1 (en) * | 2022-11-28 | 2024-05-30 | Microsoft Technology Licensing, Llc | Predicting a meaningful event based on user interaction data for a webpage |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120203639A1 (en) * | 2011-02-08 | 2012-08-09 | Cbs Interactive, Inc. | Targeting offers to users of a web site |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7698170B1 (en) * | 2004-08-05 | 2010-04-13 | Versata Development Group, Inc. | Retail recommendation domain model |
US20070065206A1 (en) | 2005-09-19 | 2007-03-22 | Silverbrook Research Pty Ltd | Printing a coupon using a mobile device |
US8028336B2 (en) * | 2005-11-08 | 2011-09-27 | Oracle America, Inc. | Intrusion detection using dynamic tracing |
JP5143013B2 (ja) * | 2005-12-08 | 2013-02-13 | マイバイズ インコーポレイテッド | マーケティングサービスを提供するための装置及び方法 |
JP4417357B2 (ja) | 2006-08-07 | 2010-02-17 | バリューコマース株式会社 | アフィリエイトシステムにおいて広告主のrssフィードを随時取得してバナー広告にして配信する方法と装置 |
US8352318B2 (en) * | 2007-05-29 | 2013-01-08 | Digital River, Inc. | Exclusivity in internet marketing campaigns system and method |
US9003012B2 (en) * | 2008-03-14 | 2015-04-07 | Cardinalcommerce Corporation | System and method for tracking user identity and/or activity across multiple websites |
US9916611B2 (en) * | 2008-04-01 | 2018-03-13 | Certona Corporation | System and method for collecting and targeting visitor behavior |
US9632909B2 (en) * | 2008-12-16 | 2017-04-25 | Microsoft Technology Licensing, Llc | Transforming user script code for debugging |
EP2372677B1 (en) | 2010-03-29 | 2016-06-01 | Deutsche Post AG | A sealing system for sealing of doors of transport vehicles with door specific seals |
US8230062B2 (en) | 2010-06-21 | 2012-07-24 | Salesforce.Com, Inc. | Referred internet traffic analysis system and method |
US20120084749A1 (en) * | 2010-10-01 | 2012-04-05 | Microsoft Corporation | Programming language support for reactive programming |
US20120259891A1 (en) * | 2011-04-11 | 2012-10-11 | David Edoja | Method, system and program for analytics data delivering |
JP5801114B2 (ja) | 2011-06-24 | 2015-10-28 | 株式会社オプティマイザー | コンバージョントラッキングシステム、ネットワーク広告管理システム及びネットワーク広告効果測定システム |
US9081866B2 (en) * | 2011-09-23 | 2015-07-14 | Oracle International Corporation | Dynamic display of web page content based on a rules system |
US8818839B2 (en) * | 2011-10-04 | 2014-08-26 | Reach Pros, Inc. | Online marketing, monitoring and control for merchants |
JP2014049057A (ja) | 2012-09-04 | 2014-03-17 | Fujitsu Ltd | サーバ管理方法、情報処理装置、およびプログラム |
US9372777B2 (en) * | 2013-02-28 | 2016-06-21 | International Business Machines Corporation | Collecting and attaching a bug trace to a problem information technology ticket |
US8869281B2 (en) * | 2013-03-15 | 2014-10-21 | Shape Security, Inc. | Protecting against the introduction of alien content |
US9836193B2 (en) * | 2013-08-16 | 2017-12-05 | International Business Machines Corporation | Automatically capturing user interactions and evaluating user interfaces in software programs using field testing |
GB201411912D0 (en) | 2014-07-03 | 2014-08-20 | Realeyes O | Method of collecting computer user data |
US20160012144A1 (en) * | 2014-07-10 | 2016-01-14 | MyMojo Corporation | Javascript-based, client-side template driver system |
US10580032B2 (en) * | 2014-09-25 | 2020-03-03 | Oracle International Corporation | Evaluating page content to determine user interest |
US20170161728A1 (en) * | 2015-03-26 | 2017-06-08 | Kohl's Department Stores, Inc. | Integrated shopping and mobile payment system |
US10489804B2 (en) * | 2015-07-03 | 2019-11-26 | Cognizant Technology Solutions India Pvt. Ltd. | System and method for identifying customer persona and implementing persuasion techniques thereof |
JP6078625B1 (ja) | 2015-12-02 | 2017-02-08 | デジタル・アドバタイジング・コンソーシアム株式会社 | 広告処理装置、及び、プログラム |
DE102016124277A1 (de) * | 2016-04-19 | 2017-10-19 | Patty's Gmbh | Verfahren zum Ermitteln und Anzeigen von Produkten auf einer elektronischen Anzeigeeinrichtung |
US20180240145A1 (en) * | 2017-02-22 | 2018-08-23 | Syntasa Inc. | System and method for providing predictive behavioral analytics |
-
2018
- 2018-06-27 US US16/020,730 patent/US10958743B2/en active Active
- 2018-07-20 JP JP2020529092A patent/JP7250017B2/ja active Active
- 2018-07-20 CN CN201880062101.8A patent/CN111164950B/zh active Active
- 2018-07-20 AU AU2018309599A patent/AU2018309599B2/en active Active
- 2018-07-20 WO PCT/US2018/043195 patent/WO2019027704A1/en unknown
- 2018-07-20 EP EP18760069.7A patent/EP3662386B1/en active Active
-
2021
- 2021-03-08 US US17/195,475 patent/US11394810B2/en active Active
-
2022
- 2022-03-23 AU AU2022202023A patent/AU2022202023B2/en active Active
- 2022-07-18 US US17/867,587 patent/US12003598B2/en active Active
-
2023
- 2023-03-20 JP JP2023044566A patent/JP7455252B2/ja active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120203639A1 (en) * | 2011-02-08 | 2012-08-09 | Cbs Interactive, Inc. | Targeting offers to users of a web site |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021170408A (ja) * | 2020-01-23 | 2021-10-28 | 株式会社Macbee Planet | サーバ装置、情報処理システム、情報処理方法及びプログラム |
JP7015497B2 (ja) | 2020-01-23 | 2022-02-03 | 株式会社Macbee Planet | サーバ装置、情報処理システム、情報処理方法及びプログラム |
Also Published As
Publication number | Publication date |
---|---|
JP2020530172A (ja) | 2020-10-15 |
JP7455252B2 (ja) | 2024-03-25 |
CN111164950B (zh) | 2022-03-08 |
JP2023078337A (ja) | 2023-06-06 |
EP3662386A1 (en) | 2020-06-10 |
AU2018309599A1 (en) | 2020-03-12 |
AU2018309599B2 (en) | 2022-02-03 |
US20210194976A1 (en) | 2021-06-24 |
US10958743B2 (en) | 2021-03-23 |
US11394810B2 (en) | 2022-07-19 |
AU2022202023B2 (en) | 2024-05-02 |
US12003598B2 (en) | 2024-06-04 |
EP3662386C0 (en) | 2023-07-19 |
JP7250017B2 (ja) | 2023-03-31 |
EP3662386B1 (en) | 2023-07-19 |
AU2022202023A1 (en) | 2022-04-14 |
US20230010184A1 (en) | 2023-01-12 |
CN111164950A (zh) | 2020-05-15 |
US20190037036A1 (en) | 2019-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2022202023B2 (en) | Method and system for segmentation as a service | |
JP7430743B2 (ja) | アクション可能なウィジェットカード | |
CN111742341B (zh) | 逆向出价平台 | |
US11176578B2 (en) | Advertising within social networks | |
US9984338B2 (en) | Real time e-commerce user interface for monitoring and interacting with consumers | |
US9672492B2 (en) | System and method for distributing insurance social media related information | |
CN107113339A (zh) | 增强的推送消息传递 | |
US11615439B2 (en) | Method and apparatus for clustering platform sessions and user accounts associated with the platform sessions | |
US20170039491A1 (en) | Building business objects based on sankey diagram | |
US20130035977A1 (en) | System and method for generating a custom revenue cycle model with automated lead movement | |
CN109155041A (zh) | 提供与社交图相关联的基于旅行或促销的推荐 | |
US20230032739A1 (en) | Propensity modeling process for customer targeting | |
US20150006297A1 (en) | Generating communications including content based on derived attributes | |
CN115023722A (zh) | 客户关系管理应用的不可知增强 | |
US20140244378A1 (en) | System and method for providing real time response to customer activity | |
US20160189194A1 (en) | Computer implemented system and method for creation of a digital,collaborative review platform, network and publication | |
US9779424B1 (en) | Generic message injection system | |
US10354313B2 (en) | Emphasizing communication based on past interaction related to promoted items | |
US20200204514A1 (en) | Prioritized messaging system | |
US20230179676A1 (en) | Method and system for actionable push notifications | |
US11978082B1 (en) | System and method of individualized offer execution at a scale | |
US20240012866A1 (en) | Queuing analytics events before consent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18760069 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020529092 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018309599 Country of ref document: AU Date of ref document: 20180720 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018760069 Country of ref document: EP Effective date: 20200302 |