WO2019027219A1 - 무선 통신 시스템에서 신호를 측정 및 보고하는 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 신호를 측정 및 보고하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2019027219A1
WO2019027219A1 PCT/KR2018/008667 KR2018008667W WO2019027219A1 WO 2019027219 A1 WO2019027219 A1 WO 2019027219A1 KR 2018008667 W KR2018008667 W KR 2018008667W WO 2019027219 A1 WO2019027219 A1 WO 2019027219A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
terminal
beams
reception
base station
Prior art date
Application number
PCT/KR2018/008667
Other languages
English (en)
French (fr)
Inventor
서인권
김기준
이윤정
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to CN201880049981.5A priority Critical patent/CN110999115B/zh
Priority to US16/630,093 priority patent/US11184789B2/en
Priority to EP18840403.2A priority patent/EP3664311B1/en
Publication of WO2019027219A1 publication Critical patent/WO2019027219A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method and apparatus for measuring and reporting a plurality of transmission beams in a wireless communication system.
  • the UE performs an initial cell search (S101).
  • the UE receives a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from a base station, downlink synchronization with the BS, and acquires information such as a cell ID.
  • the UE acquires system information (e.g., MIB) through a PBCH (Physical Broadcast Channel).
  • MIB System information
  • PBCH Physical Broadcast Channel
  • the UE can receive the DL RS (Downlink Reference Signal) and check the downlink channel status.
  • DL RS Downlink Reference Signal
  • the UE can acquire more specific system information (e.g., SIBs) by receiving a Physical Downlink Control Channel (PDCCH) and a Physical Downlink Control Channel (PDSCH) scheduled by the PDCCH (S102).
  • SIBs system information
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Control Channel
  • the UE may perform a random access procedure for uplink synchronization.
  • the UE transmits a preamble (eg, Msg1) through a Physical Random Access Channel (PRACH) (S103), and receives a response message (eg, Msg2) for the preamble on the PDSCH corresponding to the PDCCH and the PDCCH ).
  • a contention resolution procedure such as additional PRACH transmission (S105) and PDCCH / PDSCH reception (S106) may be performed.
  • the UE can perform PDCCH / PDSCH reception (S107) and Physical Uplink Shared Channel (PUSCH) / Physical Uplink Control Channel (PUCCH) transmission (S108) as a normal uplink / downlink signal transmission procedure.
  • the UE can transmit UCI (Uplink Control Information) to the BS.
  • the UCI may include HARQ ACK / NACK (Hybrid Automatic Repeat reQuest Acknowledgment / Negative ACK), SR (Scheduling Request), CQI (Channel Quality Indicator), PMI (Precoding Matrix Indicator) and / or RI have.
  • the present invention provides a method and apparatus for measuring and reporting a terminal for supporting a multi-beam operation on a PDCCH signal in a wireless communication system.
  • the technical problem of the present invention is not limited to the technical problems described above, and other technical problems can be inferred from the embodiments of the present invention.
  • a method for measuring and reporting a beam in a wireless communication system comprising: receiving a plurality of transmission beams for a physical downlink control channel (PDCCH) ; Determining at least one transmission beam to report to the base station according to a result of measuring the plurality of transmission beams; And transmitting to the base station a measurement report comprising information about the determined at least one transmit beam, the terminal identifying a receive beam applied to each of the determined at least one transmit beam, And report the index of the available sync signal block via the beam to the base station via the measurement report.
  • PDCCH physical downlink control channel
  • a terminal for measuring and reporting a beam comprising: a transceiver; And a plurality of transmission beams for measuring a plurality of transmission beams for a physical downlink control channel (PDCCH) through one or more reception beams by controlling the transceiver, and measuring at least one transmission
  • PDCCH physical downlink control channel
  • the terminal may report to the base station the terminal capabilities related to the number of simultaneously configurable reception beams.
  • At least one transmission beam to be reported by the terminal may be a transmission beam exceeding a threshold among transmission beams capable of being received through one reception beam.
  • the at least one transmission beam to be reported by the terminal may include a plurality of transmission beam sets each corresponding to another reception beam.
  • the UE determines that the measured quality reports a transmission beam exceeding a threshold to the BS, the threshold is determined based on whether the resource to be measured corresponds to a synchronization signal block or a CSI-channel status information-reference signal (CSI-RS) Quot; and " whether "
  • CSI-RS CSI-channel status information-reference signal
  • the measurement report may further include information on a reception beam forming a pair with each of the determined at least one transmission beam.
  • the UE receives a data signal scheduled by the PDCCH and transmits a message including ACK / NACK information for the data signal, and the message transmits a PDCCH that can be received at the UE among the plurality of transmission beams And may further include information on the transmission beam.
  • the transmission beams suitable for receiving the PDCCH are measured / reported, the transmission beams to be used for the multi-beam operation can be determined accurately and efficiently, and the multi-beam operation is applied to the PDCCH signal PDCCH is improved and the diversity gain is increased.
  • 1 shows physical channels used in a 3GPP LTE / LTE-A system and a general signal transmission method using them.
  • FIG. 2 is a view for explaining a multi-beam operation for a control channel according to an embodiment of the present invention.
  • FIG. 3 shows a flow of a signal transmission / reception method according to an embodiment of the present invention.
  • FIG. 4 illustrates a terminal and a base station according to an embodiment of the present invention.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • CDMA may be implemented in radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • UTRA Universal Terrestrial Radio Access
  • TDMA may be implemented in a wireless technology such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in wireless technologies such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, and Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3GPP (3rd Generation Partnership Project) LTE (Long Term Evolution) is part of E-UMTS (Evolved UMTS) using E-UTRA, adopts OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A Advanced is an evolved version of 3GPP LTE.
  • next generation communication system discussed recently needs to have enhanced mobile broadband (eMBB) communication compared to the existing radio access technology (RAT) Is emerging.
  • eMBB enhanced mobile broadband
  • RAT radio access technology
  • massive MTC massive machine type communication, mMTC
  • URLLC Ultra-Reliable and Low Latency Communication
  • New RAT new wireless access technology
  • New RAT may be referred to as 5G mobile communication for convenience.
  • downlink (DL) and uplink (UL) transmissions are performed through frames having a duration of 10 ms, and each frame includes 10 subframes. Thus, one subframe corresponds to 1 ms. Each frame is divided into two half-frames.
  • N symb slot denotes the number of symbols per slot
  • denotes OFDM numerology
  • N slot subframe ⁇ denotes the number of slots per subframe for the corresponding ⁇ .
  • multiple OFDM numerologies such as Table 1 can be supported.
  • F means subcarrier spacing (SCS).
  • SCS subcarrier spacing
  • Table 2 shows the number of symbols per slot (N symb slot ), the number of slots per frame (N slot frame, ⁇ ) and the number of slots per subframe (N slot subframe, ⁇ ) for each SCS.
  • Table 3 shows the number of symbols per slot (N symb slot ), the number of slots per frame (N slot frame, ⁇ ) and the number of slots per subframe (N slot subframe, ⁇ ) for each SCS in the case of extended CP.
  • the number of slots constituting one subframe can be changed according to subcarrier spacing (SCS).
  • the OFDM symbols included in each slot may correspond to one of D (DL), U (UL), and X (flexible).
  • the DL transmission may be performed in D or X symbols, and the UL transmission may be performed in U or X symbols.
  • a flexible resource e.g., X symbol
  • one resource block corresponds to 12 subcarriers in the frequency domain.
  • the RB may include multiple OFDM symbols.
  • a resource element (RE) corresponds to one subcarrier and one OFDM symbol. Thus, there are 12 REs on one OFDM symbol in one RB.
  • the carrier BWP may be defined as a set of consecutive physical resource blocks (PRBs).
  • the carrier BWP may be referred to briefly as BWP.
  • up to four BWPs can be set for each uplink / downlink. Even if multiple BWPs are set, one BWP is activated for a given time. However, when a SUL (supplementary uplink) is set in the terminal, an additional four BWPs may be set for the SUL, and one BWP may be activated for a given time.
  • the UE is not expected to receive PDSCH, PDCCH, channel state information-reference signal (CSI-RS), or tracking reference signal (TRS) beyond the active DL BWP. Also, the terminal is not expected to receive a PUSCH or PUCCH beyond the active UL BWP.
  • CSI-RS channel state information-reference signal
  • TRS tracking reference signal
  • a transmission unit of a control channel can be defined as a resource element group (REG) and / or a control channel element (CCE).
  • the CCE may mean a minimum unit for control channel transmission. That is, the minimum PDCCH size can correspond to 1 CCE. If the aggregation level is greater than or equal to 2, the network may aggregate multiple CCEs to transmit one PDCCH (i.e., CCE aggregation).
  • REG may correspond to one OFDM symbol in the time domain and one PRB in the frequency domain. Also, 1 CCE may correspond to 6 REGs.
  • CORESET is a set of resources for control signal transmission
  • a search space is a set of control channel candidates for a terminal performing blind detection Lt; / RTI >
  • the search space can be set on CORESET.
  • a CORESET for a common search space (CSS) and a CORESET for a UE-specific search space (USS) may be respectively set.
  • a plurality of search spaces may be defined in one CORESET.
  • CSS and USS may be set to the same CORESET.
  • CSS indicates a CORESET in which CSS is set
  • USS may mean CORESET and the like in which USS is set.
  • the base station can signal information on the CORESET to the terminal.
  • a CORESET configuration is signaled to the UE for each CORESET, and a CORESET configuration includes a time duration (eg, 1/2/3 symbol) of the CORESET, a frequency domain resource of the CORESET, a precoder REG-to-CCE mapping type (e.g., Interleaved / Non-Interleaved), interleaved REG-to-CCE mapping type and REG bundling size and interleaver size.
  • a precoder REG-to-CCE mapping type e.g., Interleaved / Non-Interleaved
  • interleaved REG-to-CCE mapping type e.g., Interleaved / Non-Interleaved
  • the REG-to-CCE mapping for the 1-symbol CORESET is a non-interleaved type
  • 6 REGs for the CCE are grouped into one REG bundle, and REGs of the corresponding CCE can all be consecutive.
  • the CCEs may be continuous to each other.
  • the UE may assume the same precoding in one REG bundle or assume the same precoding for a plurality of REG bundles according to the precoder granularity.
  • 2, 3 or 6 REGs may be composed of 1 REG bundle.
  • the REG bundle size of ⁇ 2, 6 ⁇ is supported, two REGs can form one REG bundle, or six REGs can form one REG bundle.
  • the UE may assume the same precoding in one REG bundle or assume the same precoding for a plurality of REGs according to the precoder granularity.
  • the REG bundle may be defined in the time / frequency domain.
  • REG bundles are defined in the time domain, REGs belonging to one REG bundle belong to the same RB, and other symbols may correspond.
  • REG bundle is defined in the time-frequency domain, one REG bundle may belong to the same RB and may include REGs belonging to other RBs as well as REGs corresponding to other symbols.
  • time-first mapping can be supported for REG-to-CCE mapping for CORESET with Duration of 2 or more symbols. It can be supported that the REG bundle on the time domain is set equal to the time domain Duration of CORESET.
  • the 6 REGs constituting the CCE may correspond to 1 REG bundle, and the REGs of the corresponding CCE may be localized in the time / frequency domain.
  • 2, 3 or 6 REGs can correspond to 1 REG bundle, and REG bundles within CORESET can be interleaved.
  • the UE may assume the same precoding in one REG bundle or assume the same precoding for a plurality of REGs according to the precoder granularity.
  • the terminal can receive a signal by applying an optimal reception beam to secure a better reception quality for a signal transmitted through a specific analog beam.
  • a multi-beam may also be applied to the control channel, and control channel transmission and reception using the multi-beam may be introduced for the following advantages.
  • the transmission opportunity of the control channel can be increased.
  • 1 REG is composed of 1 symbol & 1 PRB (i.e., 12 REs including RS), and 1 CCE, the minimum transmission unit of the control channel, is composed of 6 REGs. Therefore, a bandwidth of about 10 MHz is required to transmit control information of aggregation level 8 in one symbol. If there are a plurality of terminals that prefer the same analog beam, the control channel capacity may be insufficient. If there are a plurality of analog beams for the control channel and the terminal monitors a plurality of analog beams, flexibility of beam scheduling of the network is improved and control channel capacity is increased.
  • a multi-beam can be applied to the control channel.
  • a measurement / report of a UE for multi-beam operation on a control channel and a feedback on transmission beam information are proposed.
  • the UE selects an SS block based on the measurement result of the PSS / SSS, the PBCH (and / or the DMRS of the PBCH), and transmits the initial The initial connection can be performed using the connection related information.
  • the network allocates multiple transmission beams to the UE based on the beam direction of the selected SS block (eg, SSB indexes and / or CSI-RS ports Or the like), and instruct the terminal to perform measurement / reporting for transmit beam selection (or serving beam selection). If the terminal is able to form multiple receive beams, it may perform measurements using different receive beams for the same transmit beam. Such a process may be referred to as beam management.
  • the terminal may periodically perform beam management to determine a serving beam after initial connection.
  • each transmission beam is allocated in the form of a CSI-RS port.
  • each transmission beam is assigned to a CSI-RS port is assigned a different CSI-RS port for each transmission beam.
  • the present invention is not limited to this, and the transmission beam may be specified by SSB index and / or transmission beam index.
  • the UE can report the measurement result in the following manner.
  • the terminal may report CSI-RS ports (e.g., ports of CSI-RS exceeding the threshold) according to the measurement results. Or the terminal may report a group of transmit beams that can be received with the same receive beam (e.g., a group of transmit beams whose measurements exceed a threshold when the terminal receives / measures the same receive beam). If the terminal reports multiple sets of transmit beams, the base station may assume that each transmit beam set is received via another receive beam.
  • CSI-RS ports e.g., ports of CSI-RS exceeding the threshold
  • a group of transmit beams that can be received with the same receive beam (e.g., a group of transmit beams whose measurements exceed a threshold when the terminal receives / measures the same receive beam). If the terminal reports multiple sets of transmit beams, the base station may assume that each transmit beam set is received via another receive beam.
  • the terminal may report the transmit beams exceeding the measurement result threshold and the receive beam used when receiving each transmit beam. For example, one or more transmission beam groups that can be received using the reception beam and the reception beam may be reported.
  • Measurements and reports may be defined in different ways depending on the purpose of the transmit beams or the transmit beam group.
  • transmission beams / transmission beam groups may be defined in various manners, such as (i) through (iii) below. If the network supports the definitions according to (i) - (iii) below, the network may signal to the terminal which of (i) - (iii) applies.
  • a terminal can receive multiple transmission beams at the same time means that it is capable of receiving multiple transmission beams with the same reception beam, or that the terminal simultaneously receives a plurality of reception beams to receive a plurality of transmission beams , And receive a matched transmission beam for each receive beam).
  • a receive beam may be reported with transmit beam information for each subgroup of transmit beam groups.
  • the transmission beams reported by the terminal may refer to a set of transmission beams that can be simultaneously received in a particular CORESET.
  • the transmission beams reported by the UE may refer to a set of transmission beams that the UE can simultaneously receive in a particular time domain resource (e.g., OFDM symbol).
  • the terminal may report the number of simultaneously applicable receive beams to the network (e.g., reporting in the form of terminal capabilities, etc.).
  • the terminal may report a set of receivable transmission beams for each reception beam while reporting the number of reception beams that can be simultaneously applied.
  • the terminal may report a plurality of preferred transmission beam sets and each preferred transmission beam set may be received by another reception beam set.
  • the transmission beams reported by the UE according to the number of simultaneously applicable reception beams may be defined as follows.
  • the set of transmit beams may be a set of transmit beams that exceed the threshold among the transmit beams that can be received by that receive beam.
  • the terminal is able to apply more than one reception beam at the same time, a reception beam group which can be received for each reception beam can be reported.
  • the terminal may report multiple transmit beam groups without association with the receive beam.
  • the network can determine and use the transmission beam group without considering which reception beam the terminal uses, and the reception beam of the terminal may be determined by the terminal implementation.
  • the transmission beams reported by the terminal may refer to a set of transmission beams that the terminal can simultaneously receive in a specific time / frequency resource.
  • the network may transitively vary the transmit beam for terminal multiplexing, and so on.
  • Each terminal can perform an operation on a transmission beam associated with itself. For example, if the network signals that the transmission beam #a and the transmission beam #b can be used for a specific set of slots, the terminal 1 monitoring the transmission beam #a uses a reception beam suitable for the transmission beam #a, The terminal 2 monitoring the beam #b may perform monitoring using a reception beam suitable for the transmission beam #b.
  • the transmission beam actually used by the network may be transmission beam #a or transmission beam #b.
  • both transmit beams #a and #b may be used.
  • the network may use all of the transmission beams #a and #b, but may notify only the transmission beam to be monitored by the corresponding terminal.
  • the network uses transmission beam set reporting of the terminal is to determine which CSS and USS beams the network can multiplex on one resource for a CORESET that includes both CSS and USS, May be used.
  • the SS block and the CSS transmit / receive beam may be in a quasi-co location (QCL) relationship.
  • the transmit / receive beam used in the SS block may be used equally for CSS.
  • the reception beam used by the terminal in the transmission beam measurement may be different from the reception beam used in general beam measurement.
  • the reception beam used by the terminal in the transmission beam measurement may be the reception beam set used for monitoring the SS block. Therefore, the CSI-RS corresponding to one transmission beam can be repeatedly transmitted so that it can be used in multiple reception beams. If the CSI-RS is transmitted so as to be capable of being monitored in a plurality of reception beams and the reception beams for measurement of the transmission beam set are separately present, the terminal considers such reception beams and transmits the sweeping / Can be reported. Such reporting may be associated with the reception beam related capability report of the terminal. The terminal reporting its own reception beam capability may be interpreted as requesting the network to repeatedly transmit CSI-RS for at least the same number of reception beams to the same CSI-RS.
  • the terminal can operate as follows when measuring / reporting on the transmission beam.
  • the terminal may report a transmission beam whose SINR exceeds the threshold.
  • BLER block error rate
  • the terminal may report a transmission beam whose RSRP exceeds the threshold.
  • the terminal may report a transmission beam whose RSRQ exceeds the threshold.
  • the threshold value used for the measurement report based on the threshold value or the SS block used for the measurement report for the CSS / USS beam sharing may vary as follows.
  • the threshold value when the UE performs the measurement report based on the SS block when measuring the transmission beam group may be set differently from the threshold value when the measurement report is performed based on the CSI-RS resource.
  • the terminal may select a preferred beam by applying a different threshold value according to the granularity / resolution of the transmission beam to be measured.
  • the threshold for CSS beam measurement and the threshold for USS beam measurement can be set differently. Since the CSS or SS block should cover a large number of terminals, a relatively wide beam is used. In this case, it may be preferable that a threshold value lower than a threshold used for beam measurement optimized for a specific terminal is used.
  • the threshold may be set differently according to the group to which each reception beam belongs. For example, thresholds may be set differently for the case where the reception beam corresponds to the reception beam set for beam management and the case where the reception beam corresponds to the reception beam set for monitoring the SS block.
  • control channel and resources assumed by the UE may be differently set according to the measurement RS or the reception beam set. This is because the terminal quality standards for CSS and USS may be different.
  • a reception beam set for beam management eg, a reception beam set applied to CSI-RS, TRS, etc.
  • a reception beam set for SS block monitoring is R2
  • R1 a reception beam set for SS block monitoring
  • the transmit beam group that the terminal measures and reports can mean transmit beams that can be received simultaneously through each receive beam in R1.
  • the CSI-RS for Beam Management may be reused in the transmission beam group report.
  • the transmit beam group that the terminal measures and reports can refer to transmit beams that can be received simultaneously through each receive beam in R2.
  • the transmit beams may be transmitted from CSI-RS resources and / or SS blocks.
  • CSI-RS transmission for transmission beam group measurement may be performed separately from beam management.
  • the transmit beam group measured and reported by the UE can be applied independently for R1 and R2, and the measurement report can be separately processed for each of R1 and R2.
  • the network may also set whether the terminal should make a measurement report based on R1, a measurement report based on R2, or a measurement report on both R1 and R2.
  • information on the SS block may be added to the measurement report of the terminal.
  • the terminal may report an SS block that can be received through the reception beam used when receiving the transmission beam to be reported.
  • the UE reports a transmission beam group exceeding the threshold value, it can additionally report an SS block index that can be received by the reception beam used for receiving the transmission beam group.
  • the CSI-RS port in Beam Management can be classified into two types. For example, Type 1 CSI-RS port (eg, type for SS block measurement) and Type 2 CSI-RS port (eg, Type for transmission beam measurement).
  • Type 1 CSI-RS port eg, type for SS block measurement
  • Type 2 CSI-RS port eg, Type for transmission beam measurement
  • the information on the SS block can be used for setting a common search space (CSS) or the like.
  • the CSS may be used for common control information transmission / reception and fallback operations for USS (UE-specific search space), etc.
  • USS UE-specific search space
  • NR-PDCCH transmission / reception using a plurality of transmission beams can be performed to prevent blockage in analog beam use or to increase control channel transmission / reception opportunities.
  • a plurality of transmission beams for transmitting an NR-PDCCH to a specific UE may be defined as a serving beam group.
  • the network may transmit to the terminal whether or not multiple transmit beams or compact beams are used for a particular CORESET and transmit beam settings when multiple transmit beams are used.
  • the transmission beam may be set for each resource unit (e.g., REG, CCE, candidate, symbol).
  • the serving beam may be defined with a narrower meaning than the serving beam group.
  • the serving beam may refer to a particular transmit beam on which the CSI measurement is performed.
  • both the UE-dedicated beamforming and the precoder cycling are applicable to the serving beam, but only the precoder cycling may be applied to the beams other than the serving beam in the serving beam group.
  • the network may be set to assume different transmit beams depending on the particular REG, CCE, candidate, symbol.
  • the terminal may also apply different receive beams for different transmit beams.
  • a plurality of transmission beams can be used in the same CORESET regardless of the capabilities of the terminal (e.g., whether the terminal can operate multiple reception beams at the same time).
  • a different transmission beam may be applied to each of the resources constituting the corresponding control channel candidate, , Symbol), the control channel candidate can be received using a suitable reception beam.
  • Multi-beam transmission can be applied only to a terminal capable of operating a plurality of reception beams at the same time unless a transmission beam is divided for each symbol.
  • the terminal can extract one control channel candidate by extracting REG, CCE, etc. constituting a specific control channel candidate from the signal received by each reception beam.
  • the terminal may report the preferred transmission beam and may report, for example, at least one transmission beam group or at least one transmission beam / reception beam pair.
  • the terminal may also report capability related to simultaneously applicable receive beams.
  • a terminal capable of applying only one reception beam to a specific time instance can receive a transmission beam group report (e.g., a transmission beam group exceeding a threshold value by performing measurement with the reception beam) capable of being received by the reception beam, The associated receive beam can also be reported.
  • a terminal capable of applying multiple reception beams to a specific time instance reports transmission beam groups exceeding a threshold value without reception beam information according to a measurement result through a combination of a transmission beam and a reception beam, Beam group can be reported.
  • the terminal can report SSB (SS Block) information.
  • the UE may additionally report SSB information that can be received by the reception beam associated with each transmission beam included in the report.
  • the UE when a multi-beam operation is performed on a control channel and the UE can distinguish the control information received through different beams, the UE can feedback information on the decoding success of the control information .
  • the network may perform serving beam determination (or CSI acquisition) of the terminal using the received feedback information.
  • FIG. 2 is a view for explaining a multi-beam operation for a control channel according to an embodiment of the present invention. Specifically, FIG. 2 illustrates transmission / repetition transmission of a control channel over multiple beams and a data channel associated with the corresponding control channel.
  • control channel For convenience of description, a case where a control channel is transmitted for each transmission beam is described, but the present invention can also be applied to a case where one control channel is divided into a plurality of beams and transmitted.
  • the network may set each CORESET for each transmission beam belonging to a transmission beam group, and may transmit the same control information in each CORESET.
  • the UE can perform blind decoding on the control channel in each CORESET and perform decoding of the data channel using control information of one or more control channels that have succeeded in decoding.
  • the control information is repeatedly transmitted by a plurality of transmission beams, but the data is transmitted by one beam (e.g., a serving beam).
  • the terminal can receive the control information through the transmission beams # 1 and # 2 even if the reception performance for the transmission beam # 0 is degraded. However, if data is transmitted through the transmission beam # 0, the terminal may not receive data. In this case, the terminal may retry reception of data that failed to be received through the HARQ process or the like.
  • control information of a control channel transmitted in each CORESET indicates different data areas, and data associated with each control channel and a corresponding control channel can be transmitted by the same transmission beam.
  • the UE successfully receives only one of the beams belonging to the serving beam group, it can receive both the control information and the data.
  • resource consumption is large.
  • the terminal may feed back information about the control channel reception (e.g., transmission beam and / or reception beam information that succeeded in receiving the control channel) to the network to help determine the serving beam of the network.
  • Such feedback may be interpreted as initiating or resetting the Beam Management.
  • the terminal can feed back the transmission beam information associated with the decoded control channel.
  • the transmit beam may be specified in various manners, for example, CORESET index, Tx beam index and / or CSI-RS port information.
  • the terminal may report all of the transmission beams associated with the decoded control channels.
  • the UE may report the transmission beam associated with the control channel having the best reception performance among the control channels that have successfully decoded.
  • an ACK / NACK resource may be defined for each control channel transmitted by each transmission beam.
  • the ACK / NACK resources may include not only the resources in the time / frequency domain but also the transmission beam of the UE.
  • the network may determine the most suitable transmission beam for the UE according to the location of the ACK / NACK resources. The determination of the ACK / NACK resources and the transmission beam can be applied to a case where a control channel is transmitted for each transmission beam and data associated with a corresponding control channel is transmitted as shown in FIG.
  • the ACK / NACK resources may be determined explicitly or implicitly.
  • an ACK / NACK resource may be determined in association with resource information (e.g., starting CCE index, candidate index, REG index) used for control channel transmission.
  • resource information e.g., starting CCE index, candidate index, REG index
  • multiple ACK / NACK resources may be upper layer signaled or predefined, and specific ACK / NACK resources may be indicated via DCI or the like, among higher layer signaling / predefined ACK / NACK resources.
  • the ACK / NACK resources may include time / frequency resources as well as transmit beam related information of the UE.
  • the UE can determine a time / frequency resource to be used for ACK / NACK transmission and an UL transmission beam for ACK / NACK transmission through ACK / NACK resource information.
  • ACK / NACK resources for data may be determined in conjunction with the transmission beam of the control channel.
  • the ACK / NACK resources can be determined according to the transmission beam of the control channel scheduled for the corresponding data.
  • An ACK / NACK resource can be determined by a transmission beam used for transmission of control information that has succeeded in reception irrespective of the transmission beam of the network used for data transmission succeeded / failed in reception.
  • the information on the transmission beam successfully decoded may be reported in the ACK / NACK information of the data associated with the corresponding control channel.
  • the UE transmits transmission beam information (eg, a transmission beam index, CSI-RS port, resource (eg, CCE, candidate) index, and ACK / NACK information.
  • the network may transmit the control channel by changing the serving beam group for the UE.
  • the change of the serving beam group may be determined by the number of times that the network has not received the ACK / NACK information. For example, if the network transmits a control channel using multiple beams but does not receive ACK / NACK information therefrom, and the process repeats more than a predetermined number of times, the network may change the serving beam group for control channel transmission have.
  • the terminal may perform a report based on measurement of a plurality of serving beam groups in advance.
  • FIG. 3 shows a flow of a signal transmission / reception method according to an embodiment of the present invention. Since FIG. 3 is an embodiment of the embodiments described above, the present invention is not limited to FIG. 3, and a description overlapping with that described above may be omitted.
  • a UE measures (305) a plurality of transmission beams for a physical downlink control channel (PDCCH) through one or more reception beams.
  • PDCH physical downlink control channel
  • the terminal determines at least one transmission beam to report to the base station according to a result of measuring the plurality of transmission beams (310).
  • the terminal may determine that the measured quality reports to the base station a transmission beam exceeding the threshold.
  • the threshold may be determined according to whether the resource on which the measurement is performed corresponds to a sync signal block or a channel status information-reference signal (CSI-RS).
  • the terminal transmits (315) a measurement report to the base station that includes information on the determined at least one transmission beam.
  • the terminal may identify the receive beam applied to each determined at least one transmit beam and report the index of the available sync signal block via the identified receive beam to the base station via a measurement report.
  • the measurement report may further include information on a receiving beam pairing with each of the at least one determined transmission beam.
  • the terminal may report to the base station the terminal capabilities related to the number of simultaneously configurable receive beams. If the number of reception beams that can be simultaneously formed by the terminal is 1, at least one transmission beam to be reported by the terminal may be a transmission beam exceeding a threshold among transmission beams capable of being received through one reception beam. In the case where the number of reception beams that can be simultaneously formed by the terminal is two or more, at least one transmission beam to be reported by the terminal may include a plurality of transmission beam sets each corresponding to another reception beam.
  • the UE may receive a data signal scheduled by the PDCCH and transmit a message including ACK / NACK information for the data signal.
  • the message may further include information about a transmission beam for transmitting a PDCCH that can be received at a terminal among a plurality of transmission beams.
  • FIG. 4 is a block diagram illustrating the configuration of a base station 105 and a terminal 110 in a wireless communication system 100 according to an embodiment of the present invention.
  • the configuration of the base station 105 and the terminal 110 of FIG. 4 is an exemplary implementation of the base station and the terminal for implementing the above-described method, and the configuration of the base station and the terminal of the present invention is not limited to FIG.
  • the base station 105 may be referred to as an eNB or a gNB.
  • the terminal 110 may be referred to as a UE.
  • the wireless communication system 100 may include one or more base stations and / or one or more terminals .
  • Base station 105 includes a transmit (Tx) data processor 115, a symbol modulator 120, a transmitter 125, a transmit and receive antenna 130, a processor 180, a memory 185, a receiver 190, a symbol demodulator 195 and a receive data processor 197.
  • the terminal 110 includes a transmission (Tx) data processor 165, a symbol modulator 170, a transmitter 175, a transmission / reception antenna 135, a processor 155, a memory 160, a receiver 140, A demodulator 155 and a receive data processor 150.
  • the base station 105 and the terminal 110 may have a plurality of transmitting and receiving antennas. Therefore, the base station 105 and the terminal 110 according to the present invention can support a multiple input multiple output (MIMO) system. In addition, the base station 105 according to the present invention can support both a Single User-MIMO (SU-MIMO) and a Multi User-MIMO (MIMO) scheme.
  • MIMO multiple input multiple output
  • SU-MIMO Single User-MIMO
  • MIMO Multi User-MIMO
  • the transmit data processor 115 receives traffic data, formats, codes, and interleaves and modulates (or symbol maps) the coded traffic data to generate modulation symbols Symbols ") < / RTI >
  • a symbol modulator 120 may receive and process the data symbols and pilot symbols to provide a stream of symbols.
  • the symbol modulator 120 may multiplex the data and pilot symbols and transmit it to the transmitter 125.
  • each transmission symbol may be a data symbol, a pilot symbol, or a signal value of zero.
  • the pilot symbols may be transmitted continuously.
  • the pilot symbols may be frequency division multiplexed (FDM), orthogonal frequency division multiplexed (OFDM), time division multiplexed (TDM), or code division multiplexed (CDM) symbols.
  • Transmitter 125 receives the stream of symbols and converts it to one or more analog signals and further modulates (e.g., amplifies, filters, and frequency upconverts)
  • the transmission antenna 130 may transmit the generated downlink signal to the mobile station.
  • the reception antenna 135 may receive the downlink signal from the base station and provide the received signal to the receiver 140.
  • the receiver 140 adjusts (e.g., filters, amplifies, and downconverts) the received signal and digitizes the conditioned signal to obtain samples.
  • a symbol demodulator 145 may demodulate the received pilot symbols and provide it to the processor 155 for channel estimation.
  • Symbol demodulator 145 also receives a frequency response estimate for the downlink from processor 155 and performs data demodulation on the received data symbols to obtain a data symbol estimate (which is estimates of the transmitted data symbols) And provide data symbol estimates to a receive (Rx) data processor 150.
  • the receive data processor 150 may demodulate (i.e., symbol demap), deinterleave, and decode the data symbol estimates to recover the transmitted traffic data.
  • symbol demodulator 145 and receive data processor 150 may be complementary to processing by symbol modulator 120 and transmit data processor 115 at base station 105, respectively.
  • the terminal 110 may process the traffic data to provide data symbols, and the transmit data processor 165 may process the traffic data.
  • the symbol modulator 170 may receive and multiplex data symbols, perform modulation, and provide a stream of symbols to the transmitter 175.
  • a transmitter 175 receives and processes the stream of symbols to generate an uplink signal.
  • the transmission antenna 135 may transmit the generated uplink signal to the base station 105.
  • the transmitter and the receiver in the terminal and the base station may be configured as one RF (Radio Frequency) unit.
  • an uplink signal from terminal 110 is received via receive antenna 130, and receiver 190 may process the received uplink signal to obtain samples.
  • the symbol demodulator 195 may then process these samples to provide received pilot symbols and data symbol estimates for the uplink.
  • the receive data processor 197 may process the data symbol estimates to recover the traffic data transmitted from the terminal 110.
  • the processors 155 and 180 of the terminal 110 and the base station 105 can instruct (for example, control, adjust, manage, etc.) the operation in the terminal 110 and the base station 105, respectively.
  • Each of the processors 155 and 180 may be coupled with memory units 160 and 185 that store program codes and data.
  • the memories 160 and 185 may be coupled to the processor 180 to store operating systems, applications, and general files.
  • the processors 155 and 180 may also be referred to as a controller, a microcontroller, a microprocessor, a microcomputer, or the like. Meanwhile, the processors 155 and 180 may be implemented by hardware or firmware, software, or a combination thereof. (DSP), digital signal processing devices (DSPDs), programmable logic devices (PLDs), and the like may be used to implement embodiments of the present invention using hardware, , FPGAs (field programmable gate arrays), and the like may be provided in the processors 155 and 180.
  • DSP digital signal processing devices
  • PLDs programmable logic devices
  • firmware or software may be configured to include modules, procedures, or functions that perform the functions or operations of the present invention.
  • Firmware or software configured to be stored in the memory 155 may be contained within the processor 155 or 180 or may be stored in the memory 160 or 185 and be driven by the processor 155 or 180.
  • Layers of the wireless interface protocol between the terminal and the base station and the wireless communication system (network) are divided into a first layer (L1), a second layer (L2), and a second layer (L2) based on the lower three layers of an open system interconnection ), And a third layer (L3).
  • the physical layer belongs to the first layer and provides an information transmission service through a physical channel.
  • An RRC (Radio Resource Control) layer belongs to the third layer and provides control radio resources between the UE and the network.
  • the UE and the base station can exchange RRC messages through the RRC layer with the wireless communication network.
  • the present invention can be applied to various wireless communication systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명의 일 실시예에 따른 무선 통신 시스템에서 단말이 빔을 측정 및 보고하는 방법은, 하나 또는 둘 이상의 수신 빔들을 통해 PDCCH(physical downlink control channel)를 위한 다수의 송신 빔들을 측정하는 단계; 상기 다수의 송신 빔들을 측정한 결과에 따라서 기지국에 보고할 적어도 하나의 송신 빔을 결정하는 단계; 및 상기 결정된 적어도 하나의 송신 빔에 대한 정보를 포함하는 측정 보고를 상기 기지국에 송신하는 단계를 포함하고, 상기 단말은 상기 결정된 적어도 하나의 송신 빔 각각에 적용된 수신 빔을 식별하고, 상기 식별된 수신 빔을 통해 이용 가능한 동기 신호 블록의 인덱스를 상기 측정 보고를 통해 상기 기지국에 보고할 수 있다.

Description

무선 통신 시스템에서 신호를 측정 및 보고하는 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 구체적으로 무선 통신 시스템에서 다수의 송신 빔들을 측정 및 보고하는 방법 및 이를 위한 장치에 관한 것이다.
먼저 기존의 3GPP LTE/LTE-A 시스템에 대하여 간략히 살펴본다. 도 1을 참조하면 단말은 초기 셀 탐색을 수행한다(S101). 초기 셀 탐색 과정에서 단말은 기지국으로부터 P-SCH(Primary Synchronization Channel) 및 S-SCH(Secondary Synchronization Channel)을 수신하여 기지국과 하향링크 동기를 맞추고, 셀 ID 등의 정보를 획득한다. 그 후, 단말은 PBCH(Physical Broadcast Channel)를 통해 시스템 정보(e.g., MIB)를 획득한다. 단말은 DL RS(Downlink Reference Signal)을 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색 이후 단말은 PDCCH(Physical Downlink Control Channel) 및 PDCCH에 의해 스케줄된 PDSCH(Physical Downlink Control Channel)를 수신하여 좀더 구체적인 시스템 정보(e.g., SIBs)를 획득할 수 있다(S102).
단말은 상향링크 동기화를 위해 임의 접속 과정(Random Access Procedure)을 수행할 수 있다. 단말은 PRACH(Physical Random Access Channel)를 통해 프리앰블(e.g., Msg1)을 전송하고(S103), PDCCH 및 PDCCH에 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지(e.g., Msg2)를 수신할 수 있다(S104). 경쟁 기반 임의 접속의 경우 추가적인 PRACH 전송(S105) 및 PDCCH/PDSCH 수신(S106)과 같은 충돌해결절차(Contention Resolution Procedure)가 수행될 수 있다.
이후, 단말은 일반적인 상/하향링크 신호 전송 절차로서 PDCCH/PDSCH 수신(S107) 및 PUSCH(Physical Uplink Shared Channel)/PUCCH(Physical Uplink Control Channel) 전송(S108)을 수행할 수 있다. 단말이 기지국으로 UCI(Uplink Control Information)를 송신할 수 있다. UCI는 HARQ ACK/NACK(Hybrid Automatic Repeat reQuest Acknowledgement/Negative-ACK), SR(Scheduling Request), CQI(Channel Quality Indicator), PMI(Precoding Matrix Indicator) 및/또는 RI(Rank Indication) 등을 포함할 수 있다.
본 발명이 이루고자 하는 기술적 과제는, 무선 통신 시스템에서 PDCCH 신호에 대하여 다중 빔 동작을 지원하기 위한 단말의 측정 및 보고 방법 및 이를 위한 장치를 제공하는데 있다.
본 발명의 기술적 과제는 상술된 기술적 과제에 제한되지 않으며, 다른 기술적 과제들이 본 발명의 실시예로부터 유추될 수 있다.
상술된 기술적 과제를 이루기 위한 본 발명의 일 측면에 따른 무선 통신 시스템에서 단말이 빔을 측정 및 보고하는 방법은, 하나 또는 둘 이상의 수신 빔들을 통해 PDCCH(physical downlink control channel)를 위한 다수의 송신 빔들을 측정하는 단계; 상기 다수의 송신 빔들을 측정한 결과에 따라서 기지국에 보고할 적어도 하나의 송신 빔을 결정하는 단계; 및 상기 결정된 적어도 하나의 송신 빔에 대한 정보를 포함하는 측정 보고를 상기 기지국에 송신하는 단계를 포함하고, 상기 단말은 상기 결정된 적어도 하나의 송신 빔 각각에 적용된 수신 빔을 식별하고, 상기 식별된 수신 빔을 통해 이용 가능한 동기 신호 블록의 인덱스를 상기 측정 보고를 통해 상기 기지국에 보고할 수 있다.
상술된 기술적 과제를 이루기 위한 본 발명의 다른 일 측면에 따른 빔을 측정 및 보고하는 단말은, 송수신기; 및 상기 송수신기를 제어 함으로써 하나 또는 둘 이상의 수신 빔들을 통해 PDCCH(physical downlink control channel)를 위한 다수의 송신 빔들을 측정하고, 상기 다수의 송신 빔들을 측정한 결과에 따라서 기지국에 보고할 적어도 하나의 송신 빔을 결정하고, 상기 결정된 적어도 하나의 송신 빔에 대한 정보를 포함하는 측정 보고를 상기 기지국에 송신하는 프로세서를 포함하고, 상기 프로세서는 상기 결정된 적어도 하나의 송신 빔 각각에 적용된 수신 빔을 식별하고, 상기 식별된 수신 빔을 통해 이용 가능한 동기 신호 블록의 인덱스를 상기 측정 보고를 통해 상기 기지국에 보고할 수 있다.
상기 단말은 동시에 형성 가능한 수신 빔들의 개수에 관련된 단말 성능을 기지국에 보고할 수 있다.
상기 단말이 동시에 형성 가능한 수신 빔들의 개수가 1 인 경우, 상기 단말이 보고할 적어도 하나의 송신 빔은 하나의 수신 빔을 통해 수신 가능한 송신 빔들 중에서 임계치를 초과하는 송신 빔일 수 있다.
상기 단말이 동시에 형성 가능한 수신 빔들의 개수가 2 이상인 경우, 상기 단말이 보고할 적어도 하나의 송신 빔은 각각이 다른 수신 빔에 대응되는 다수의 송신 빔 세트들을 포함할 수 있다.
상기 단말은 측정된 품질이 임계치를 초과하는 송신 빔을 상기 기지국에 보고하는 것으로 결정하되, 상기 임계치는 측정이 수행되는 자원이 동기 신호 블록에 해당하는지 아니면 CSI-RS(channel status information-reference signal)에 해당하는지 여부에 따라서 결정될 수 있다.
상기 측정 보고는 상기 결정된 적어도 하나의 송신 빔 각각과 쌍(pair)을 이루는 수신 빔에 대한 정보를 더 포함할 수 있다.
상기 단말은 상기 PDCCH가 스케줄하는 데이터 신호를 수신하고, 상기 데이터 신호에 대한 ACK/NACK 정보를 포함하는 메시지를 송신하되, 상기 메시지는, 상기 다수의 송신 빔들 중 상기 단말에서 수신 가능한 PDCCH를 송신하는 송신 빔에 대한 정보를 더 포함할 수 있다.
본 발명의 일 실시예에 따르면 단말이 PDCCH를 수신하기에 적합한 송신 빔들이 측정/보고 되므로 다중 빔 동작에 이용될 송신 빔들이 정확하고 효율적으로 결정될 수 있으며, 또한 PDCCH 신호에 다중 빔 동작이 적용되므로 PDCCH의 송수신 성공 확률이 향상되고 다이버시티 이득이 증가하는 장점이 있다.
본 발명의 기술적 효과는 상술된 기술적 효과에 제한되지 않으며, 다른 기술적 효과들이 본 발명의 실시예로부터 유추될 수 있다.
도 1은 3GPP LTE/LTE-A 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 나타낸다.
도 2는 본 발명의 일 실시예에 따른 제어 채널에 대한 다중 빔 동작을 설명하기 위한 도면이다.
도 3은 본 발명의 일 실시예에 따른 신호 송수신 방법의 흐름을 도시한다.
도 4는 본 발명의 일 실시예에 따른 단말과 기지국을 도시한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로서 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다.
설명을 명확하게 하기 위해, 3GPP 기반의 이동 통신 시스템을 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다. 또한, 이하의 설명에서 사용되는 특정(特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 최근 논의되는 차세대 통신 시스템에서는 기존의 무선 접속 기술(radio access technology, RAT)에 비해 향상된 모바일 브로드 밴드(Enhanced Mobile Broadband, eMBB) 통신에 대한 필요성이 대두되고 있다. 또한, 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 대규모 MTC (massive Machine Type Communications, mMTC) 역시 차세대 통신에서 고려될 주요 이슈 중 하나이다. 뿐만 아니라 신뢰성(reliability) 및 지연(latency)에 민감한 서비스/UE를 고려하여 URLLC(Ultra-Reliable and Low Latency Communication)가 차세대 통신 시스템을 위해 논의되고 있다.
이와 같이 eMBB, mMTC 및 URLCC 등을 고려한 새로운 무선 접속 기술(New RAT)이 차세대 무선 통신을 위하여 논의되고 있다.
New RAT의 설계와 상충되지 않는 몇몇의 LTE/LTE-A 동작과 설정들은 New RAT에도 적용될 수도 있다. New RAT은 편의상 5G 이동 통신으로 지칭될 수도 있다.
<NR 프레임 구조 및 물리 자원>
NR 시스템에서 하향링크(DL) 및 상향링크(UL) 전송은 10 ms 길이(duration)를 갖는 프레임들을 통해 수행되며, 각 프레임은 10개의 서브프레임들을 포함한다. 따라서, 1 서브프레임은 1 ms에 해당한다. 각 프레임은 2개의 하프-프레임(half-frame)들로 나뉜다.
1 개의 서브프레임은 Nsymb subframe,μ= Nsymb slot X Nslot subframe,μ 개의 연속된 OFDM 심볼들을 포함한다. Nsymb slot 는 슬롯 당 심볼 개수, μ는 OFDM 뉴머롤러지 (numerology)를 나타내고, Nslot subframe,μ 는 해당 μ 에 대하여 서브프레임 당 슬롯 개수를 나타낸다. NR에서는 표 1과 같은 다중의 OFDM numerology들이 지원될 수 있다.
[표 1]
Figure PCTKR2018008667-appb-I000001
표 1에서 Δf는 서브캐리어 간격(subcarrier spacing, SCS)을 의미한다. DL 캐리어 BWP(bandwidth part)에 대한 μ와 CP(cyclic prefix)와 UL 캐리어 BWP(bandwidth part)에 대한 μ와 CP(cyclic prefix)는 상향링크 시그널링을 통해 단말에 설정될 수 있다.
표 2는 일반 CP의 경우 각 SCS에 대한 슬롯 당 심볼 수(Nsymb slot), 프레임 당 슬롯 수 (Nslot frame,μ)및 서브프레임 당 슬롯 수(Nslot subframe,μ)를 나타낸다.
[표 2]
Figure PCTKR2018008667-appb-I000002
표 3은 확장 CP의 경우 각 SCS에 대한 슬롯 당 심볼 수(Nsymb slot), 프레임 당 슬롯 수 (Nslot frame,μ)및 서브프레임 당 슬롯 수(Nslot subframe,μ)를 나타낸다.
[표 3]
Figure PCTKR2018008667-appb-I000003
이와 같이, NR 시스템에서는 SCS(subcarrier spacing)에 따라서 1 서브프레임을 구성하는 슬롯들의 수가 변경될 수 있다. 각 슬롯에 포함된 OFDM 심볼들은 D(DL), U(UL), X(flexible) 중 어느 하나에 해당할 수 있다. DL 송신은 D 또는 X 심볼에서 수행될 수 있으며, UL 송신은 U 또는 X 심볼에서 수행될 수 있다. 한편, Flexible 자원(e.g., X 심볼)은 Reserved 자원, Other 자원 또는 Unknown 자원으로 지칭될 수도 있다.
NR에서 하나의 RB(resource block)은 주파수 도메인에서 12개의 서브캐리어들에 해당한다. RB는 다수의 OFDM 심볼들을 포함할 수 있다. RE(resource element)는 1 서브캐리어 및 1 OFDM 심볼에 해당한다. 따라서, 1 RB 내의 1 OFDM 심볼 상에는 12 RE들이 존재한다.
캐리어 BWP는 연속하는 PRB(physical resource block)들의 세트로 정의될 수 있다. 캐리어 BWP는 간략히 BWP로 지칭될 수도 있다. 1개의 UE에는 최대 4개 BWP들이 상향링크/하향링크 각각에 대해서 설정될 수 있다. 다중의 BWP들이 설정되더라도 주어진 시간 동안에는 1개의 BWP가 활성화된다. 다만, 단말에 SUL(supplementary uplink)이 설정되는 경우, 추가적으로 4개의 BWP들이 SUL에 대해서 설정될 수 있으며, 주어진 시간 동안 1개의 BWP가 활성화 될 수 있다. 단말은 활성화된 DL BWP를 벗어나서는 PDSCH, PDCCH, CSI-RS(channel state information - reference signal) 또는 TRS(tracking reference signal)를 수신할 것으로 기대되지 않는다. 또한, 단말은 활성화된 UL BWP를 벗어나서는 PUSCH 또는 PUCCH를 수신할 것으로 기대되지 않는다.
<NR DL Control Channel>
NR 시스템에서 제어 채널의 전송 단위는 REG (resource element group) 및/또는 CCE (control channel element) 등으로 정의될 수 있다. CCE는 제어 채널 전송을 위한 최소 단위를 의미할 수 있다. 즉, 최소 PDCCH 크기는 1 CCE에 대응할 수 있다. 집합 레벨(aggregation level)이 2 이상인 경우, 네트워크는 다수의 CCE들을 묶어 하나의 PDCCH를 전송할 수 있다 (i.e., CCE aggregation).
REG는 시간 도메인에서는 1 OFDM 심볼, 주파수 도메인에서는 1 PRB에 해당할 수 있다. 또한, 1 CCE는 6 REG들에 해당할 수 있다.
한편 제어 자원 세트(control resource set, CORESET) 및 탐색 공간(search space, SS)에 대해 간략히 살펴보면 CORESET은 제어 신호 송신을 위한 자원들의 세트이고, 탐색 공간은 단말이 블라인드 검출을 수행하는 제어 채널 후보들의 집합일 수 있다. 탐색 공간은 CORESET 상에 설정될 수 있다. 일 예로, 하나의 CORESET에 하나의 탐색 공간이 정의된다면 CSS(common search space)를 위한 CORESET과 USS(UE-specific search space)를 위한 CORESET이 각각 설정될 수도 있다. 다른 예로, 하나의 CORESET에 다수의 탐색 공간들이 정의될 수도 있다. 예컨대, CSS와 USS가 동일한 CORESET에 설정될 수도 있다. 이하 예시들에서 CSS는 CSS가 설정되는 CORESET을 의미하고, USS는 USS가 설정되는 CORESET 등을 의미할 수도 있다.
기지국은 CORESET에 대한 정보를 단말에 시그널링할 수 있다. 예컨대, 각 CORESET를 위해 CORESET Configuration이 단말에 시그널링되며, CORESET Configuration에는 해당 CORESET의 시간 길이(time duration) (e.g., 1/2/3 심볼 등), 해당 CORESET의 주파수 도메인 자원, 프리코더 입도(precoder granularity), REG-to-CCE 맵핑 타입(e.g., Interleaved/Non-Interleaved), Interleaved REG-to-CCE 맵핑 타입의 경우 REG 번들링 크기 및 인터리버 크기 등이 시그널링 될 수 있다.
1-심볼 CORESET에 대한 REG-to-CCE 맵핑이 Non-Interleaved 타입인 경우, CCE에 대한 6 REG들이 하나의 REG 번들로 그룹핑되고, 해당 CCE의 REG들은 모두 연속할 수 있다. 1 PDCCH 내에 CCE가 복수인 경우(e.g., aggregation level이 2 이상인 경우), CCE들도 서로 연속할 수 있다. 단말은 프리코더 입도에 따라서 1 REG 번들 내에서 동일 프리코딩을 가정하거나 또는 다수의 REG 번들들에 대하여 동일 프리코딩을 가정할 수 있다.
1-심볼 CORESET에 대한 REG-to-CCE 맵핑이 Interleaved 타입인 경우, 2, 3 또는 6개의 REG들이 1 REG 번들로 구성될 수 있다. 일 예로, 2, 3, 6의 REG 번들 크기가 모두 지원되는 것이 아니라, 그 서브셋으로써 예컨대, {2}, {3}, {2,3}, {2,6}, {3,6} 또는 {2,3,6} 의 REG 번들 크기가 지원될 수도 있다. 만약, {2, 6}의 REG 번들 크기가 지원되는 경우, 2개의 REG들이 1 REG 번들을 구성하거나 또는 6개의 REG 들이 1 REG 번들을 구성할 수 있다. 단말은 프리코더 입도에 따라서 1 REG 번들 내에서 동일 프리코딩을 가정하거나 또는 다수의 REG들에 대하여 동일 프리코딩을 가정할 수 있다.
2 심볼 이상의 Duration을 갖는 CORESET에 대한 REG-to-CCE 맵핑의 경우, REG 번들이 시간/주파수 도메인에서 정의될 수도 있다. REG 번들이 시간 도메인에서 정의되면, 1 REG 번들에 속하는 REG들이 모두 동일한 RB에 속하고 다른 심볼들이 해당할 수 있다. REG 번들이 시간-주파수 도메인에서 정의되면, 1 REG 번들은 동일한 RB에 속하고 다른 심볼들이 해당하는 REG들 뿐 아니라, 다른 RB에 속하는 REG들도 포함할 수 있다.
또한 2 심볼 이상의 Duration을 갖는 CORESET에 대한 REG-to-CCE 맵핑에 대하여 시간 우선 맵핑(time-first mapping)이 지원될 수 있다. 시간 도메인 상에서 REG 번들이 CORESET의 시간 도메인 Duration과 동일하게 설정되는 것이 지원될 수 있다. Non-interleaved 타입의 경우 CCE를 구성하는 6개의 REG들이 1 REG 번들에 해당할 수 있으며, 해당 CCE의 REG들은 시간/주파수 도메인에서 국부화(localized)될 수 있다. Interleaved 타입의 경우 2, 3 또는 6개의 REG들이 1 REG 번들에 해당할 수 있으며, CORESET 내에서 REG 번들들은 인터리빙 될 수 있다. 단말은 프리코더 입도에 따라서 1 REG 번들 내에서 동일 프리코딩을 가정하거나 또는 다수의 REG들에 대하여 동일 프리코딩을 가정할 수 있다.
<Multi-Beam operation for NR PDCCH>
한편, NR 시스템에서는 다수의 아날로그 빔들을 이용한 송수신이 가능하다. 단말은 특정 아날로그 빔을 통해 전송되는 신호에 대하여 보다 좋은 수신 품질을 확보하기 위해 최적의 수신 빔을 적용하여 신호를 수신할 수 있다.
제어 채널에 대해서도 다중-빔(multi-beam)이 적용될 수 있으며, 다중-빔을 이용한 제어 채널 송수신은 다음과 같은 장점을 위해 도입될 수 있다.
첫째, 제어 채널의 경우, 제어 채널 송수신을 알리는 사전 과정이 없기 때문에 데이터 채널에서의 HARQ 절차와 같은 과정을 진행하기 어렵다. 따라서, 다수의 빔들을 통해 송신 다이버시티 이득을 확보함으로써 blockage 등에 의한 송수신 실패를 줄이는 것이 바람직할 수 있다.
둘째, 제어 채널의 전송 기회가 증가될 수 있다. 현재 NR 제어 채널의 경우, 1 REG는 1 symbol & 1 PRB (i.e., RS 포함 12 REs)로 구성되며, 제어 채널의 최소 전송 단위인 1 CCE는 6 REG들로 구성된다. 따라서, 집합 레벨(aggregation level) 8의 제어 정보를 1 심볼에서 전송하기 위해 10 MHz 정도의 대역폭이 필요하다. 만약 동일한 아날로그 빔을 선호하는 단말이 다수일 경우, 제어 채널 용량(capacity)이 부족할 수도 있다. 만약 제어 채널을 위한 아날로그 빔들이 다수 개 존재하고, 단말이 다수의 아날로그 빔들을 모니터링 한다면 네트워크의 빔 스케줄링의 유연성이 향상되고, 제어 채널 용량이 증가하는 장점이 있다.
이와 같은 이유들로 인해 제어 채널에 다중-빔이 적용될 수 있다. 이하에서는 제어 채널에 대한 다중 빔 동작을 위한 단말의 측정/보고 및 송신 빔 정보에 대한 피드백 등을 제안한다.
Measurement and Report for Beam Selection
동기 신호(SS) 블록 선택: 동기화 과정에서 단말은 PSS/SSS, PBCH (및/또는 PBCH의 DMRS) 등에 대한 측정 결과에 기반하여 SS 블록을 선택하고, 선택된 SS 블록의 PBCH 등을 통해 전달되는 초기 접속 관련 정보를 이용하여 초기 접속을 수행할 수 있다.
서빙 빔 선택: 초기 접속 과정을 통해 단말에게 적합한 SS 블록이 선택되면, 네트워크는 선택된 SS 블록의 빔 방향을 기반으로 다수의 송신 빔들을 단말에게 할당하고 (e.g., SSB indexes 및/또는 CSI-RS ports 등의 형태로 송신 빔들을 지시), 단말에게 송신 빔 선택 (또는 서빙 빔 선택)을 위한 측정/보고를 수행할 것을 지시할 수 있다. 단말이 다수의 수신 빔들을 형성할 수 있을 경우, 동일 송신 빔에 대하여 서로 다른 수신 빔들을 이용하여 측정을 수행할 수도 있다. 이와 같은 과정은 빔 관리(beam management)라고 지칭될 수 있다. 단말은 초기 접속 이후에도 주기적으로 Beam Management를 수행하여 서빙 빔을 결정할 수 있다.
아래에서는 설명의 편의상 각 송신 빔이 CSI-RS 포트의 형태로 할당되는 것을 가정하였다. 일 예로, 각 송신 빔이 CSI-RS 포트로 할당되는 것은, 송신 빔마다 다른 CSI-RS 포트가 할당된다는 것으로 이해될 수 있다. 다만 본 발명은 이에 한정되지 않으며 송신 빔은 SSB 인덱스 및/또는 송신 빔 인덱스 등으로 특정될 수도 있다.
단말은 다음과 같은 방식으로 측정 결과를 보고할 수 있다.
- 송신 빔들 또는 송신 빔 그룹: 단말은 측정 결과에 따라서 CSI-RS 포트들(e.g., 임계치를 초과하는 CSI-RS의 포트)을 보고할 수 있다. 또는 단말은 동일한 수신 빔으로 수신 가능한 송신 빔 그룹(e.g., 단말이 동일한 수신 빔으로 수신/측정할 때, 측정 값이 임계치를 초과하는 송신 빔들의 그룹)을 보고할 수 있다. 단말이 다수의 송신 빔 세트들을 보고할 경우, 기지국은 각 송신 빔 세트가 다른 수신 빔을 통해 수신된 것이라고 가정할 수 있다.
- 송신/수신 빔 쌍(pair): 단말은 측정 결과 임계치를 초과하는 송신 빔들과 각 송신 빔을 수신할 때 사용한 수신 빔을 함께 보고할 수 있다. 예컨대 수신 빔과 해당 수신 빔을 이용하여 수신할 수 있는 송신 빔 그룹을 하나 혹은 다수개 보고할 수 있다.
송신 빔들이나 송신 빔 그룹의 목적에 따라 다른 방식으로 측정 및 보고가 정의될 수도 있다. 예를 들어, 아래 (i)~(iii)과 같이 다양한 방식들로 송신 빔들/송신 빔 그룹이 정의될 수 있다. 네트워크가 아래 (i)~(iii)에 따른 정의들을 지원할 경우, 네트워크는 (i)~(iii) 중 어느 것이 적용되는지를 단말에 시그널링 할 수 있다.
또한 아래에서 단말이 동시에 다수 송신 빔들을 수신할 수 있다는 것은 동일한 수신 빔으로 다수 송신 빔들을 수신할 수 있다는 것을 의미하거나, 또는 단말이 다수의 수신 빔들을 동시에 형성하여 다수의 송신 빔을 수신(e.g., 각 수신 빔 별로 매칭되는 송신 빔을 수신) 할 수 있다는 것을 의미할 수 있다. 후자의 경우, 송신 빔 그룹의 서브 그룹 마다 수신 빔이 송신 빔 정보와 함께 보고될 수 있다.
(i) 일 예로, 단말이 보고하는 송신 빔들은 특정 CORESET에서 동시에 수신할 수 있는 송신 빔들의 세트를 의미할 수 있다.
(ii) 다른 예로, 단말이 보고하는 송신 빔들은 단말이 특정 시간 도메인 자원 (e.g., OFDM symbol)에서 동시에 수신할 수 있는 송신 빔들의 세트를 의미할 수 있다. 한편, 단말은 동시에 적용 가능한 수신 빔들의 수를 네트워크에 보고(e.g., 단말 capability 등의 형태로 보고)할 수 있다. 예컨대, 단말은 동시에 적용할 수 있는 수신 빔들의 수를 보고하면서 각 수신 빔 별로 수신 가능한 송신 빔 세트를 보고 할 수도 있다. 또는 단말은 다수의 선호(preferred) 송신 빔 세트들을 보고할 수도 있으며, 각 preferred 송신 빔 세트가 다른 수신 빔 세트에 의해 수신될 수도 있다.
단말이 동시에 적용 가능한 수신 빔들의 수에 따라서 단말이 보고하는 송신 빔들은 다음과 같이 정의될 수도 있다.
- 단말이 하나의 수신 빔만을 적용 가능할 경우, 송신 빔의 세트는 해당 수신 빔으로 수신할 수 있는 송신 빔들 중 임계치를 초과하는 송신 빔들의 집합일 수 있다.
- 단말이 둘 이상의 수신 빔을 동시에 적용할 수 있을 경우, 각 수신 빔 별로 수신 가능한 송신 빔 그룹이 보고될 수 있다. 혹은 단말은 수신 빔과의 연계(association) 없이 다수의 송신 빔 그룹들을 보고할 수도 있다. 네트워크는 단말이 어느 수신 빔을 사용하는지를 고려하지 않고 송신 빔 그룹을 결정하여 사용할 수 있으며, 단말의 수신 빔은 단말 구현(implementation)에 의해 결정될 수도 있다.
(iii) 또 다른 예로, 단말이 보고하는 송신 빔들은 단말이 특정 시간/주파수 자원에서 동시에 수신할 수 있는 송신 빔들의 세트를 의미할 수도 있다.
단말이 송신 빔들의 세트를 보고하고, 네트워크가 다수 송신 빔들을 이용할 수 있을 경우 네트워크는 단말들의 다중화 등을 위해서 송신 빔을 단말-transparent하게 변경할 수도 있다. 각 단말은 자신과 연계된 송신 빔에 대한 동작을 수행할 수 있다. 예를 들어, 네트워크는 특정 슬롯 세트에 대하여 송신 빔 #a, 송신 빔 #b가 사용될 수 있다고 시그널링하면, 송신 빔 #a를 모니터링하는 단말 1은 송신 빔 #a에 적합한 수신 빔을 이용하고, 송신 빔 #b를 모니터링하는 단말 2는 송신 빔 #b에 적합한 수신 빔을 이용하여 모니터링을 수행할 수 있다. 네트워크가 실제 사용하는 송신 빔은 송신 빔 #a 이거나 또는 송신 빔 #b일 수 있다. 혹은 네트워크가 다수의 송신 빔들을 동시에 전송할 수 있을 경우, 송신 빔 #a와 #b가 모두 사용될 수도 있다. 네트워크는 송신 빔 #a, #b를 모두 사용할 수 있으나, 각 단말에게는 해당 단말이 모니터링 해야하는 송신 빔만을 알려줄 수도 있다.
또한 네트워크가 단말의 송신 빔 세트 보고를 이용하는 다른 예로써 CSS와 USS를 모두 포함하는 CORESET에 대하여 네트워크가 어떠한 CSS 빔과 USS 빔을 하나의 자원에서 다중화할 수 있는지를 판단하는데 단말의 송신 빔 세트 보고를 이용할 수도 있다. 여기서, SS 블록과 CSS 송신/수신 빔은 QCL(quasi-co location)관계에 있을 수 있다. 예를 들어, SS 블록에서 사용된 송신/수신 빔이 CSS를 위해서 동일하게 사용될 수도 있다.
이 경우, 단말이 송신 빔 측정시 사용하는 수신 빔은 일반적인 빔 측정에 사용되는 수신 빔과 다를 수 있다. 일례로 단말이 송신 빔 측정 시 사용하는 수신 빔은 SS 블록을 모니터링 할 때 사용하였던 수신 빔 세트일 수 있다. 따라서, 하나의 송신 빔에 해당하는 CSI-RS가 다수 수신 빔들에서 사용될 수 있도록 반복 전송될 수 있다. 만약 CSI-RS가 다수 수신 빔들에서 모니터링 가능하도록 송신되고 송신 빔 세트의 측정을 위한 수신 빔들이 별도로 존재하는 경우 단말은 이와 같은 수신 빔들을 고려하여 측정에 필요한 송신 빔의 스위핑/반복 횟수를 네트워크에 보고할 수 있다. 이와 같은 보고는 단말의 수신 빔 관련 capability 보고와 연계될 수 있다. 단말이 자신의 수신 빔 capability를 보고하는 것은 동일한 CSI-RS에 대하여 적어도 수신 빔들의 수만큼 CSI-RS를 반복 전송해 줄 것을 네트워크에 요청하는 것으로 해석될 수도 있다.
단말의 측정/보고는 제어 채널에 대한 다중-빔 동작을 위한 것이므로, 송신 빔에 대한 측정/보고시 단말은 다음과 같이 동작할 수 있다.
- 단말은 SINR이 임계치를 넘는 송신 빔을 보고할 수 있다.
- 단말은 특정 조건의 제어 채널과 자원을 가정하여 (e.g., AL = 4, DCI size = 60 bits) 제어 채널의 수신 BLER(block error rate)이 일정 값을 넘는 송신 빔을 보고할 수 있다.
- 단말은 RSRP이 임계치를 넘는 송신 빔을 보고할 수 있다.
- 단말은 RSRQ가 임계치를 넘는 송신 빔을 보고할 수 있다.
한편, CSS/USS 간 빔 공유를 위한 측정 보고에 사용되는 임계치 또는 SS 블록을 기준으로 측정 보고에 사용되는 임계치는 다음과 같이 달라질 수도 있다.
- 단말이 송신 빔 그룹을 측정시 SS 블록을 기준으로 측정 보고를 수행하는 경우의 임계치는 CSI-RS 자원을 기준으로 측정 보고를 수행할 경우의 임계치와 다르게 설정될 수 있다. 단말은 측정 대상이 되는 송신 빔의 입도(granularity)/해상도에 따라 다른 임계치를 적용하여 선호 빔을 선택할 수도 있다. 예컨대, CSS 빔 측정에 대한 임계치와 USS 빔 측정에 대한 임계치는 다르게 설정될 수 있다. CSS나 SS 블록은 다수의 단말들을 커버할 수 있어야 하므로 상대적으로 넓은 빔이 사용되므로, 이 경우 특정 단말에 최적화된 빔 측정에 사용되는 임계치 보다 낮은 임계치가 사용되는 것이 바람직할 수 있다.
- 단말이 송신 빔 그룹을 측정시 각 수신 빔이 속하는 그룹에 따라 임계치가 다르게 설정될 수 있다. 일례로 수신 빔이 Beam Management 를 위한 수신 빔 세트에 해당하는 경우와 SS block을 모니터링하기 위한 수신 빔 세트에 해당하는 경우 각각에 대하여 임계치가 다르게 설정될 수 있다.
또한, Hypothesis 제어 채널을 가정하는 경우 단말이 가정하는 제어 채널과 자원은 측정 RS 혹은 수신 빔 세트에 따라 다르게 설정될 수 있다. 이는 CSS와 USS에 대한 단말의 품질 기준이 다를 수 있기 때문이다.
일 예로, Beam management를 위한 수신 빔 세트(e.g., CSI-RS, TRS 등에 적용되는 수신 빔 세트)를 R1이라고 하고, SS 블록 모니터링을 위한 수신 빔 세트를 R2 라고 할 때, 송신 빔 그룹에 대한 측정/보고를 위해 다음과 같은 옵션들이 고려될 수 있다.
- 단말이 측정 보고하는 송신 빔 그룹은 R1 내의 각 수신 빔을 통해 동시에 수신 가능한 송신 빔들을 의미할 수 있다. 이 경우, Beam Management를 위한 CSI-RS가 송신 빔 그룹 보고에 재사용될 수도 있다.
- 단말이 측정 보고하는 송신 빔 그룹은 R2내의 각 수신 빔을 통해 동시에 수신 가능한 송신 빔들을 의미할 수 있다. 송신 빔들은 CSI-RS resources 및/또는 SS blocks 으로부터 송신될 수 있다. 이 경우 송신 빔 그룹 측정을 위한 CSI-RS 전송은 Beam Management와 별도로 수행되어야 할 수 있다.
- 단말이 측정 보고하는 송신 빔 그룹은 R1과 R2에 대해서 독립적으로 적용될 수 있고, 측정 보고도 R1과 R2 각각에 대해서 별도로 진행될 수 있다.
네트워크는 단말이 R1을 기반으로 측정 보고를 해야 하는지 아니면 R2를 기반으로 측정보고를 해야 하는지 또는 R1과 R2 모두에 대해 측정 보고를 수행 해야 하는지를 설정할 수도 있다.
본 발명의 일 실시예에 따르면 상술된 단말의 측정 보고에 SS 블록에 대한 정보가 추가될 수 있다. 예컨대 단말은 보고 대상인 송신 빔을 수신할 때 사용하였던 수신 빔을 통해 수신 가능한 SS 블록을 보고할 수 있다. 단말이 임계치를 초과하는 송신 빔 그룹을 보고할 경우, 해당 송신 빔 그룹을 수신할 때 사용한 수신 빔으로 수신 가능한 SS 블록 인덱스 등을 추가로 보고할 수 있다.
SS 블록의 전송 주기가 길 경우, SS 블록에 대한 측정 역시 CSI-RS 포트들을 이용하여 수행될 수도 있다. 이 경우, Beam Management에서의 CSI-RS 포트는 두 가지 타입들로 구분될 수 있으며, 일례로 Type 1 CSI-RS port (e.g., SS 블록 측정을 위한 타입)와 Type 2 CSI-RS port (e.g., 송신 빔 측정을 위한 타입)로 나뉘어 설정될 수 있다. 단말은 각 타입에 대한 측정을 별도로 수행할 수 있으며, 측정 기준 등이 별도로 설정될 수도 있다.
SS 블록에 대한 정보는 CSS(common search space) 설정 등을 위해 사용될 수 있다. CSS는 공통 제어 정보 송수신 및 USS (UE-specific search space)에 대한 폴백 동작 등을 위해 사용될 수 있으며, 이 경우 다수의 단말에게 정보를 전달할 수 있고, 보다 넓은 폭을 갖는 빔이 필요하기 때문에 SS 블록에 해당하는 빔 폭을 적용하는 것이 바람직할 수 있다.
서빙 빔 그룹 선택: 아날로그 빔 사용에서의 blockage를 방지하거나, 제어 채널 송수신 기회를 증가시키기 위해 다수의 송신 빔을 이용한 NR-PDCCH 송수신이 수행될 수 있다. 이 때 특정 단말에게 NR-PDCCH를 전송하기 위한 다수의 송신 빔들이 서빙 빔 그룹으로 정의될 수 있다. 네트워크는 특정 CORESET에 대하여 다중 송신 빔들 또는 단밀 빔이 사용되는지 여부 및 다중 송신 빔들이 사용될 경우 송신 빔 설정들을 단말에 송신할 수 있다. 송신 빔은 자원 단위 (e.g., REG, CCE, candidate, symbol) 마다 설정될 수 있다.
서빙 빔 그룹이 정의될 경우, 서빙 빔은 서빙 빔 그룹 보다 좁은 의미로 정의될 수도 있다. 예를 들어, 서빙 빔은 CSI 측정이 수행되는 특정 송신 빔을 지칭할 수 있다. 제어 채널 전송시 서빙 빔에는 UE-dedicated beamforming과 precoder cycling이 모두 적용 가능하지만, 서빙 빔 그룹내에서 서빙 빔이 아닌 다른 빔들에는 precoder cycling만이 적용될 수도 있다.
다중 송신 빔들이 1 CORESET에서 정의될 경우, 네트워크는 특정 REG, CCE, 후보, 심볼에 따라서 다른 송신 빔을 가정하도록 설정 할 수 있다. 서로 다른 송신 빔들에 대하여 단말도 서로 다른 수신 빔들을 적용할 수도 있다.
심볼 별로 송신 빔이 구분될 경우, 단말의 capability (e.g., 단말이 동시에 다수의 수신 빔을 운용할 수 있는지 여부)에 상관없이 동일 CORESET내에서 다수의 송신 빔들이 사용될 수 있다. 예를 들어, 서로 다른 심볼들에 위치한 REG들 혹은 CCE들을 결합하여 1 제어 채널 후보가 구성될 경우, 해당 제어 채널 후보를 구성하는 자원들 각각에 다른 송신 빔이 적용될 수 있으며, 단말은 자원(e.g., 심볼) 별로 적합한 수신 빔을 사용하여 제어 채널 후보를 수신할 수 있다.
심볼 별로 송신 빔이 구분되는 것이 아니라면 동시에 다수의 수신 빔을 운용할 수 있는 단말에 한하여 다중 빔 송신이 적용될 수 있다. 단말은 각 수신 빔에 의해 수신된 신호에서 특정 제어 채널 후보를 구성하는 REG, CCE 등을 추출하여 하나의 제어 채널 후보를 획득할 수 있다.
앞서 살펴본 내용들을 간략히 요약하면, 단말은 선호 송신 빔을 보고할 수 있으며, 예컨대 적어도 하나의 송신 빔 그룹을 보고하거나 또는 적어도 하나의 송신 빔/수신 빔 pair을 보고할 수 있다. 또한 단말은 동시에 적용 가능한 수신 빔들에 관련한 성능(Capability)을 보고할 수 있다. 특정 time instance에 1 수신 빔만을 적용할 수 있는 단말은 해당 수신 빔으로 수신 가능한 송신 빔 그룹 보고 (e.g., 해당 수신 빔으로 측정을 수행하여 임계치를 초과하는 송신 빔 그룹)하거나 또는 추가적으로 선호 송신 빔과 연계된 수신 빔도 함께 보고할 수 있다. 특정 time instance에 다중 수신 빔들을 적용할 수 있는 단말은 송신 빔과 수신 빔의 조합을 통한 측정 결과에 따라서 임계치를 초과하는 송신 빔 그룹들을 수신 빔 정보 없이 보고하거나, 수신 빔 별로 임계치를 초과하는 송신 빔 그룹 보고할 수 있다. 또한, 단말은 SSB(SS Block) 정보를 보고할 수 있다. 단말은 CSI-RS, TRS 등을 통해 측정을 수행할 경우, 보고에 포함된 각 송신 빔에 연계된 수신 빔으로 수신 가능한 SSB 정보를 추가적으로 보고할 수도 있다.
Feedback for serving beam selection
본 발명의 일 실시예에 따르면 제어 채널에 대한 다중 빔 동작이 수행되고, 단말이 서로 다른 빔들을 통해 수신되는 제어 정보를 구분할 수 있을 경우, 단말은 제어 정보 디코딩 성공에 대한 정보를 피드백 할 수 있다. 네트워크는 수신된 피드백 정보를 이용하여 단말의 서빙 빔 결정(또는 CSI 획득)을 수행할 수 있다.
도 2는 본 발명의 일 실시예에 따른 제어 채널에 대한 다중 빔 동작을 설명하기 위한 도면이다. 구체적으로, 도 2는 다중 빔을 통한 제어 채널의 전송/반복 전송과 해당 제어 채널과 연계된 데이터 채널을 도시한다.
설명의 편의상 각 송신 빔 마다 제어 채널이 전송되는 경우에 대해 설명하나, 하나의 제어 채널이 다수의 빔들에 나뉘어 송신되는 경우에도 본 발명이 적용될 수 있다.
도 2의 옵션 1을 참조하면, 네트워크는 송신 빔 그룹에 속한 각 송신 빔에 대하여 각 CORESET을 설정하고, 각 CORESET에서 동일한 제어 정보를 전송할 수 있다. 단말은 각 CORESET에서 제어 채널 대한 블라인드 디코딩을 수행하여, 디코딩 성공한 하나 혹은 다수의 제어 채널들의 제어 정보를 이용하여 데이터 채널의 디코딩을 수행할 수 있다. 제어 정보는 다수의 송신 빔들에 의하여 반복 전송되지만 데이터는 하나의 빔 (e.g., serving beam)에 의해서 전송된다. 송신 빔#0에 대한 수신 성능이 저하되더라도 단말은 송신 빔 #1, #2 등을 통해 제어 정보를 수신할 수 있다. 단, 송신 빔#0을 통해 데이터가 송신되면 단말이 데이터를 수신하지 못할 수 있으며, 이 경우 단말은 HARQ process 등을 통하여 수신 실패한 데이터에 대한 수신을 재시도할 수도 있다.
도 2의 옵션 2를 참조하면, 각 CORESET에서 전송되는 제어 채널의 제어 정보가 다른 데이터 영역들을 지시하고, 각 제어 채널 및 해당 제어 채널에 연계된 데이터는 동일 송신 빔에 의해 전송될 수 있다. 단말이 서빙 빔 그룹에 속한 빔들 중 하나만 성공적으로 수신할 경우 제어 정보와 데이터를 모두 수신할 수 있다는 장점이 있으나, 자원 소모가 큰 단점이 있다.
단말은 네트워크의 서빙 빔을 결정에 도움을 주기 위해 제어 채널 수신에 대한 정보(e.g., 제어 채널 수신에 성공한 송신 빔 및/또는 수신 빔 정보)를 네트워크에 피드백할 수 있다. 이와 같은 피드백은 Beam Management를 초기화 혹은 리셋하는 것으로 해석될 수도 있다.
Multi-beam operation에 의해 제어 정보가 전송되고, 단말이 각 송신 빔을 구분할 수 있을 경우, 단말은 디코딩에 성공한 제어 채널에 연계된 송신 빔 정보를 피드백 할 수 있다. 송신 빔은 예를 들어, CORESET 인덱스, Tx 빔 인덱스 및/또는 CSI-RS 포트 정보 등 다양한 방식으로 특정될 수 있다.
네트워크가 각 송신 빔 마다 제어 채널을 전송할 경우, 단말은 디코딩에 성공한 제어 채널들에 연계된 송신 빔들을 모두 보고할 수 있다. 혹은 단말은 디코딩에 성공한 제어 채널들 중 가장 수신 성능이 좋은 제어 채널에 연계된 송신 빔을 보고할 수 있다.
제어 채널에 연계된 데이터가 없을 경우 (e.g., Semi-Persistent Scheduling에 대한 deactivation message에 해당하는 PDCCH), 각 송신 빔에 의해 전송되는 제어 채널 별로 ACK/NACK 자원이 정의될 수 있다. 이 때 ACK/NACK 자원은 시간/주파수 도메인에서의 자원뿐 아니라 단말의 송신 빔도 포함할 수 있다. 네트워크는 ACK/NACK 자원의 위치에 따라 단말에게 가장 적합한 송신 빔을 결정할 수 있다. 이와 같은 ACK/NACK 자원 및 송신 빔의 결정은 도 2와 같이 송신 빔 별로 제어 채널이 전송되고, 해당 제어 채널에 연계된 데이터가 전송될 경우에도 적용될 수 있다.
일 예로, ACK/NACK 자원은 명시적 혹은 암시적으로 결정될 수 있다. 예를 들어, ACK/NACK 자원이 암시적으로 결정될 경우, 제어 채널 전송에 사용되는 자원 정보 (e.g., starting CCE index, candidate index, REG index) 등에 연계되어 ACK/NACK 자원이 결정될 수 있다. 명시적 시그널링의 경우, 다수의 ACK/NACK 자원들이 상위 계층 시그널링 되거나 또는 사전 정의되고, 상위 계층 시그널링/사전 정의된 ACK/NACK 자원들 중에서 특정 ACK/NACK 자원이 DCI 등을 통해 지시될 수 있다.
ACK/NACK 자원은 시간/주파수 자원뿐만 아니라 단말의 송신 빔 관련 정보를 포함할 수 있다. 단말은 ACK/NACK 피드백을 수행할 때, 해당 ACK/NACK 전송에 사용될 시간/주파수 자원과 해당 ACK/NACK 전송을 수행할 UL 송신 빔을 ACK/NACK 자원 정보를 통해 결정할 수 있다.
일 예로 도 2의 옵션 1의 경우, 데이터에 대한 ACK/NACK 자원이 제어 채널의 송신 빔에 연계되어 결정될 수도 있다. 동일한 (혹은 하나의) 데이터에 대한 ACK/NACK 정보라 할 지라도, 해당 데이터를 스케줄한 제어 채널의 송신 빔에 따라 ACK/NACK 자원이 결정될 수 있다. 수신에 성공/실패한 데이터 전송에 사용된 네트워크의 송신 빔과 무관하게, 수신에 성공한 제어 정보 전송에 사용된 송신 빔에 의해 ACK/NACK 자원이 결정될 수 있다.
Multi-beam operation에 의해 제어 정보가 전송될 경우, 디코딩 성공한 송신 빔에 대한 정보는 해당 제어 채널에 연계된 데이터의 ACK/NACK 정보에 포함되어 보고될 수도 있다. 예를 들어, 송신 빔 별로 ACK/NACK 자원이 정의되는 것이 아니라 하나의 ACK/NACK 자원만 정의될 경우, 단말은 ACK/NACK 전송시 디코딩 성공한 PDCCH의 송신 빔 정보 (e.g., 송신 빔 인덱스, 연계된 CSI-RS port, 자원 (e.g., CCE, candidate) 인덱스 등을 ACK/NACK 정보와 함께 보고할 수 있다.
단말이 제어 채널에 대한 디코딩을 실패할 경우, 네트워크는 해당 단말에 대한 서빙 빔 그룹을 변경하여 제어 채널을 전송할 수 있다. 이와 같은 서빙 빔 그룹의 변경은 네트워크가 ACK/NACK 정보를 수신하지 못한 횟수 등에 의해 결정될 수도 있다. 예를 들어, 네트워크가 다중 빔을 이용하여 제어 채널을 전송했으나 이에 대한 ACK/NACK 정보를 수신하지 못하고, 이러한 과정이 소정 횟수 이상 반복될 경우, 네트워크는 제어 채널 전송을 위한 서빙 빔 그룹을 변경할 수 있다. 서빙 빔 그룹의 변경을 위해, 단말은 사전에 다수의 서빙 빔 그룹들의 측정 등에 기반하여 보고를 수행 할 수 있다.
도 3은 본 발명의 일 실시예에 따른 신호 송수신 방법의 흐름을 도시한다. 도 3은 앞서 설명된 실시예들에 대한 일 구현 예이므로 본 발명은 도 3에 한정되지 않으며, 앞서 설명된 내용과 중복하는 설명은 생략될 수 있다.
도 3을 참조하면, 단말은 하나 또는 둘 이상의 수신 빔들을 통해 PDCCH(physical downlink control channel)를 위한 다수의 송신 빔들을 측정한다(305).
단말은 다수의 송신 빔들을 측정한 결과에 따라서 기지국에 보고할 적어도 하나의 송신 빔을 결정한다(310). 단말은 측정된 품질이 임계치를 초과하는 송신 빔을 기지국에 보고하는 것으로 결정할 수 있다. 일 예로, 임계치는 측정이 수행되는 자원이 동기 신호 블록에 해당하는지 아니면 CSI-RS(channel status information-reference signal)에 해당하는지 여부에 따라서 결정될 수 있다.
단말은 결정된 적어도 하나의 송신 빔에 대한 정보를 포함하는 측정 보고를 기지국에 송신한다(315). 단말은 결정된 적어도 하나의 송신 빔 각각에 적용된 수신 빔을 식별하고, 식별된 수신 빔을 통해 이용 가능한 동기 신호 블록의 인덱스를 측정 보고를 통해 기지국에 보고할 수 있다. 측정 보고는 결정된 적어도 하나의 송신 빔 각각과 쌍(pair)을 이루는 수신 빔에 대한 정보를 더 포함할 수 있다.
일 예로, 단말은 동시에 형성 가능한 수신 빔들의 개수에 관련된 단말 성능을 기지국에 보고할 수 있다. 단말이 동시에 형성 가능한 수신 빔들의 개수가 1 인 경우, 단말이 보고할 적어도 하나의 송신 빔은 하나의 수신 빔을 통해 수신 가능한 송신 빔들 중에서 임계치를 초과하는 송신 빔일 수 있다. 단말이 동시에 형성 가능한 수신 빔들의 개수가 2 이상인 경우, 단말이 보고할 적어도 하나의 송신 빔은 각각이 다른 수신 빔에 대응되는 다수의 송신 빔 세트들을 포함할 수 있다.
일 예로, 단말은 상기 PDCCH가 스케줄하는 데이터 신호를 수신하고, 데이터 신호에 대한 ACK/NACK 정보를 포함하는 메시지를 송신할 수 있다. 메시지는, 다수의 송신 빔들 중 단말에서 수신 가능한 PDCCH를 송신하는 송신 빔에 대한 정보를 더 포함할 수 있다.
도 4는 본 발명의 일 실시예에 따른 무선통신 시스템(100)에서의 기지국(105) 및 단말(110)의 구성을 도시한 블록도이다. 도 4의 기지국(105)과 단말(110)의 구성은 상술된 방법을 실시하기 위한 기지국과 단말의 예시적인 구현으로써 본 발명의 기지국과 단말의 구성은 도 4에 한정되지 않는다. 기지국(105)는 eNB 또는 gNB로 지칭될 수 있다. 단말(110)은 UE로 지칭될 수 있다.
무선 통신 시스템(100)을 간략화하여 나타내기 위해 하나의 기지국(105)과 하나의 단말(110)을 도시하였지만, 무선 통신 시스템(100)은 하나 이상의 기지국 및/또는 하나 이상의 단말을 포함할 수 있다.
기지국(105)은 송신(Tx) 데이터 프로세서(115), 심볼 변조기(120), 송신기(125), 송수신 안테나(130), 프로세서(180), 메모리(185), 수신기(190), 심볼 복조기(195) 및 수신 데이터 프로세서(197) 중 적어도 하나를 포함할 수 있다. 그리고, 단말(110)은 송신(Tx) 데이터 프로세서(165), 심볼 변조기(170), 송신기(175), 송수신 안테나(135), 프로세서(155), 메모리(160), 수신기(140), 심볼 복조기(155) 및 수신 데이터 프로세서(150)중 적어도 하나를 포함할 수 있다. 송수신 안테나(130, 135)가 각각 기지국(105) 및 단말(110)에서 하나로 도시되어 있지만, 기지국(105) 및 단말(110)은 복수 개의 송수신 안테나를 구비할 수 있다. 따라서, 본 발명에 따른 기지국(105) 및 단말(110)은 MIMO(Multiple Input Multiple Output) 시스템을 지원할 수 있다. 또한, 본 발명에 따른 기지국(105)은 SU-MIMO(Single User-MIMO) MU-MIMO(Multi User-MIMO) 방식 모두를 지원할 수 있다.
하향링크 상에서, 송신 데이터 프로세서(115)는 트래픽 데이터를 수신하고, 수신한 트래픽 데이터를 포맷하여, 코딩하고, 코딩된 트래픽 데이터를 인터리빙하고 변조하여(또는 심볼 매핑하여), 변조 심볼들("데이터 심볼들")을 제공할 수 있다. 심볼 변조기(120)는 이 데이터 심볼들과 파일럿 심볼들을 수신 및 처리하여, 심볼들의 스트림을 제공할 수 있다.
심볼 변조기(120)는, 데이터 및 파일럿 심볼들을 다중화하여 이를 송신기 (125)로 전송할 수 있다. 이때, 각각의 송신 심볼은 데이터 심볼, 파일럿 심볼, 또는 제로의 신호 값일 수도 있다. 각각의 심볼 주기에서, 파일럿 심볼들이 연속적으로 송신될 수도 있다. 파일럿 심볼들은 주파수 분할 다중화(FDM), 직교 주파수 분할 다중화(OFDM), 시분할 다중화(TDM), 또는 코드 분할 다중화(CDM) 심볼일 수 있다.
송신기(125)는 심볼들의 스트림을 수신하여 이를 하나 이상의 아날로그 신호들로 변환하고, 또한, 이 아날로그 신호들을 추가적으로 조절하여(예를 들어, 증폭, 필터링, 및 주파수 업 컨버팅(upconverting) 하여, 무선 채널을 통한 송신에 적합한 하향링크 신호를 발생시킬 수 있다. 그러면, 송신 안테나(130)는 발생된 하향링크 신호를 단말로 전송할 수 있다.
단말(110)의 구성에서, 수신 안테나(135)는 기지국으로부터의 하향링크 신호를 수신하여 수신된 신호를 수신기(140)로 제공할 수 있다. 수신기(140)는 수신된 신호를 조정하고(예를 들어, 필터링, 증폭, 및 주파수 다운컨버팅(downconverting)), 조정된 신호를 디지털화하여 샘플들을 획득한다. 심볼 복조기(145)는 수신된 파일럿 심볼들을 복조하여 채널 추정을 위해 이를 프로세서(155)로 제공할 수 있다.
또한, 심볼 복조기(145)는 프로세서(155)로부터 하향링크에 대한 주파수 응답 추정치를 수신하고, 수신된 데이터 심볼들에 대해 데이터 복조를 수행하여, (송신된 데이터 심볼들의 추정치들인) 데이터 심볼 추정치를 획득하고, 데이터 심볼 추정치들을 수신(Rx) 데이터 프로세서(150)로 제공할 수 있다. 수신 데이터 프로세서(150)는 데이터 심볼 추정치들을 복조(즉, 심볼 디-매핑(demapping))하고, 디인터리빙(deInterleaving)하고, 디코딩하여, 전송된 트래픽 데이터를 복구할 수 있다.
심볼 복조기(145) 및 수신 데이터 프로세서(150)에 의한 처리는 각각 기지국(105)에서의 심볼 변조기(120) 및 송신 데이터 프로세서(115)에 의한 처리에 대해 상보적일 수 있다.
단말(110)은 상향링크 상에서, 송신 데이터 프로세서(165)는 트래픽 데이터를 처리하여, 데이터 심볼들을 제공할 수 있다. 심볼 변조기(170)는 데이터 심볼들을 수신하여 다중화하고, 변조를 수행하여, 심볼들의 스트림을 송신기(175)로 제공할 수 있다. 송신기(175)는 심볼들의 스트림을 수신 및 처리하여, 상향링크 신호를 발생시킨다. 그리고 송신 안테나(135)는 발생된 상향링크 신호를 기지국(105)으로 전송할 수 있다. 단말 및 기지국에서의 송신기 및 수신기는 하나의 RF(Radio Frequency) 유닛으로 구성될 수도 있다.
기지국(105)에서, 단말(110)로부터 상향링크 신호가 수신 안테나(130)를 통해 수신되고, 수신기(190)는 수신한 상향링크 신호를 처리되어 샘플들을 획득할 수 있다. 이어서, 심볼 복조기(195)는 이 샘플들을 처리하여, 상향링크에 대해 수신된 파일럿 심볼들 및 데이터 심볼 추정치를 제공할 수 있다. 수신 데이터 프로세서(197)는 데이터 심볼 추정치를 처리하여, 단말(110)로부터 전송된 트래픽 데이터를 복구할 수 있다.
단말(110) 및 기지국(105) 각각의 프로세서(155, 180)는 각각 단말(110) 및 기지국(105)에서의 동작을 지시(예를 들어, 제어, 조정, 관리 등)할 수 있다. 각각의 프로세서들(155, 180)은 프로그램 코드들 및 데이터를 저장하는 메모리 유닛(160, 185)들과 연결될 수 있다. 메모리(160, 185)는 프로세서(180)에 연결되어 오퍼레이팅 시스템, 어플리케이션, 및 일반 파일(general files)들을 저장할 수 있다.
프로세서(155, 180)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 호칭될 수 있다. 한편, 프로세서(155, 180)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. 하드웨어를 이용하여 본 발명의 실시예를 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(155, 180)에 구비될 수 있다.
한편, 펌웨어나 소프트웨어를 이용하여 본 발명의 실시예들을 구현하는 경우에는 본 발명의 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등을 포함하도록 펌웨어나 소프트웨어가 구성될 수 있으며, 본 발명을 수행할 수 있도록 구성된 펌웨어 또는 소프트웨어는 프로세서(155, 180) 내에 구비되거나 메모리(160, 185)에 저장되어 프로세서(155, 180)에 의해 구동될 수 있다.
단말과 기지국이 무선 통신 시스템(네트워크) 사이의 무선 인터페이스 프로토콜의 레이어들은 통신 시스템에서 잘 알려진 OSI(open system Interconnection) 모델의 하위 3개 레이어를 기초로 제 1 레이어(L1), 제 2 레이어(L2), 및 제 3 레이어(L3)로 분류될 수 있다. 물리 레이어는 상기 제 1 레이어에 속하며, 물리 채널을 통해 정보 전송 서비스를 제공한다. RRC(Radio Resource Control) 레이어는 상기 제 3 레이어에 속하며 UE와 네트워크 사이의 제어 무선 자원들을 제공한다. 단말, 기지국은 무선 통신 네트워크와 RRC 레이어를 통해 RRC 메시지들을 교환할 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
상술된 바와 같이 본 발명은 다양한 무선 통신 시스템에 적용될 수 있다.

Claims (14)

  1. 무선 통신 시스템에서 단말이 빔을 측정 및 보고하는 방법에 있어서,
    하나 또는 둘 이상의 수신 빔들을 통해 PDCCH(physical downlink control channel)를 위한 다수의 송신 빔들을 측정하는 단계;
    상기 다수의 송신 빔들을 측정한 결과에 따라서 기지국에 보고할 적어도 하나의 송신 빔을 결정하는 단계; 및
    상기 결정된 적어도 하나의 송신 빔에 대한 정보를 포함하는 측정 보고를 상기 기지국에 송신하는 단계를 포함하고,
    상기 단말은 상기 결정된 적어도 하나의 송신 빔 각각에 적용된 수신 빔을 식별하고, 상기 식별된 수신 빔을 통해 이용 가능한 동기 신호 블록의 인덱스를 상기 측정 보고를 통해 상기 기지국에 보고하는, 방법.
  2. 제 1 항에 있어서,
    상기 단말이 동시에 형성 가능한 수신 빔들의 개수에 관련된 단말 성능을 기지국에 보고하는 단계를 더 포함하는, 방법.
  3. 제 2 항에 있어서,
    상기 단말이 동시에 형성 가능한 수신 빔들의 개수가 1 인 경우, 상기 단말이 보고할 적어도 하나의 송신 빔은 하나의 수신 빔을 통해 수신 가능한 송신 빔들 중에서 임계치를 초과하는 송신 빔인, 방법.
  4. 제 2 항에 있어서,
    상기 단말이 동시에 형성 가능한 수신 빔들의 개수가 2 이상인 경우, 상기 단말이 보고할 적어도 하나의 송신 빔은 각각이 다른 수신 빔에 대응되는 다수의 송신 빔 세트들을 포함하는, 방법.
  5. 제 1 항에 있어서,
    상기 단말은 측정된 품질이 임계치를 초과하는 송신 빔을 상기 기지국에 보고하는 것으로 결정하되,
    상기 임계치는 측정이 수행되는 자원이 동기 신호 블록에 해당하는지 아니면 CSI-RS(channel status information-reference signal)에 해당하는지 여부에 따라서 결정되는, 방법.
  6. 제 1 항에 있어서,
    상기 측정 보고는 상기 결정된 적어도 하나의 송신 빔 각각과 쌍(pair)을 이루는 수신 빔에 대한 정보를 더 포함하는, 방법.
  7. 제 1 항에 있어서,
    상기 PDCCH가 스케줄하는 데이터 신호를 수신하는 단계; 및
    상기 데이터 신호에 대한 ACK/NACK 정보를 포함하는 메시지를 송신하는 단계를 더 포함하되,
    상기 메시지는, 상기 다수의 송신 빔들 중 상기 단말에서 수신 가능한 PDCCH를 송신하는 송신 빔에 대한 정보를 더 포함하는, 방법.
  8. 빔을 측정 및 보고하는 단말에 있어서,
    송수신기; 및
    상기 송수신기를 제어 함으로써 하나 또는 둘 이상의 수신 빔들을 통해 PDCCH(physical downlink control channel)를 위한 다수의 송신 빔들을 측정하고, 상기 다수의 송신 빔들을 측정한 결과에 따라서 기지국에 보고할 적어도 하나의 송신 빔을 결정하고, 상기 결정된 적어도 하나의 송신 빔에 대한 정보를 포함하는 측정 보고를 상기 기지국에 송신하는 프로세서를 포함하고,
    상기 프로세서는 상기 결정된 적어도 하나의 송신 빔 각각에 적용된 수신 빔을 식별하고, 상기 식별된 수신 빔을 통해 이용 가능한 동기 신호 블록의 인덱스를 상기 측정 보고를 통해 상기 기지국에 보고하는, 단말.
  9. 제 8 항에 있어서,
    상기 프로세서는 동시에 형성 가능한 수신 빔들의 개수에 관련된 단말 성능을 기지국에 보고하는, 단말.
  10. 제 9 항에 있어서,
    상기 단말이 동시에 형성 가능한 수신 빔들의 개수가 1 인 경우, 상기 단말이 보고할 적어도 하나의 송신 빔은 하나의 수신 빔을 통해 수신 가능한 송신 빔들 중에서 임계치를 초과하는 송신 빔인, 단말.
  11. 제 9 항에 있어서,
    상기 단말이 동시에 형성 가능한 수신 빔들의 개수가 2 이상인 경우, 상기 단말이 보고할 적어도 하나의 송신 빔은 각각이 다른 수신 빔에 대응되는 다수의 송신 빔 세트들을 포함하는, 단말.
  12. 제 8 항에 있어서,
    상기 프로세서는 측정된 품질이 임계치를 초과하는 송신 빔을 상기 기지국에 보고하는 것으로 결정하되,
    상기 임계치는 측정이 수행되는 자원이 동기 신호 블록에 해당하는지 아니면 CSI-RS(channel status information-reference signal)에 해당하는지 여부에 따라서 결정되는, 단말.
  13. 제 8 항에 있어서,
    상기 측정 보고는 상기 결정된 적어도 하나의 송신 빔 각각과 쌍(pair)을 이루는 수신 빔에 대한 정보를 더 포함하는, 단말.
  14. 제 8 항에 있어서,
    상기 프로세서는 상기 PDCCH가 스케줄하는 데이터 신호를 수신하고, 상기 데이터 신호에 대한 ACK/NACK 정보를 포함하는 메시지를 송신하되,
    상기 메시지는, 상기 다수의 송신 빔들 중 상기 단말에서 수신 가능한 PDCCH를 송신하는 송신 빔에 대한 정보를 더 포함하는, 단말.
PCT/KR2018/008667 2017-08-02 2018-07-31 무선 통신 시스템에서 신호를 측정 및 보고하는 방법 및 이를 위한 장치 WO2019027219A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880049981.5A CN110999115B (zh) 2017-08-02 2018-07-31 用于在无线通信系统中测量并报告信号的方法及装置
US16/630,093 US11184789B2 (en) 2017-08-02 2018-07-31 Method and device for measuring and reporting signal in wireless communication system
EP18840403.2A EP3664311B1 (en) 2017-08-02 2018-07-31 Method and device for measuring and reporting signal in wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762540521P 2017-08-02 2017-08-02
US62/540,521 2017-08-02

Publications (1)

Publication Number Publication Date
WO2019027219A1 true WO2019027219A1 (ko) 2019-02-07

Family

ID=65232909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/008667 WO2019027219A1 (ko) 2017-08-02 2018-07-31 무선 통신 시스템에서 신호를 측정 및 보고하는 방법 및 이를 위한 장치

Country Status (4)

Country Link
US (1) US11184789B2 (ko)
EP (1) EP3664311B1 (ko)
CN (1) CN110999115B (ko)
WO (1) WO2019027219A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110034798A (zh) * 2018-01-11 2019-07-19 索尼公司 电子设备、无线通信方法和计算机可读存储介质
US20240063883A1 (en) * 2020-12-28 2024-02-22 Ntt Docomo, Inc. Terminal and base station
CN113196854B (zh) * 2021-03-16 2023-11-10 北京小米移动软件有限公司 波束确定方法、波束确定装置及存储介质
US20230156636A1 (en) * 2021-11-17 2023-05-18 Qualcomm Incorporated Pdsch rate-matching in ntn

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170208494A1 (en) * 2016-01-14 2017-07-20 Samsung Electronics Co., Ltd. Method and apparatus for generating cell measurement information in a wireless communication system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1566896A1 (de) * 2004-02-18 2005-08-24 Siemens Aktiengesellschaft Verfahren zur Kommunikation über eine Mehrzahl von netzseitigen Sendeantennen
US9094977B2 (en) * 2011-11-11 2015-07-28 Samsung Electronics Co., Ltd. Apparatus and method for supporting mobility management in communication systems with large number of antennas
US20130286960A1 (en) * 2012-04-30 2013-10-31 Samsung Electronics Co., Ltd Apparatus and method for control channel beam management in a wireless system with a large number of antennas
WO2014098542A1 (en) * 2012-12-21 2014-06-26 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving control channel by beamforming in a wireless communication system
US9750003B2 (en) * 2012-12-21 2017-08-29 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving control channel by beamforming in a wireless communication system
TW201728207A (zh) * 2015-11-10 2017-08-01 Idac控股公司 波束成形系統下行控制頻道設計及傳訊
WO2017146550A1 (en) * 2016-02-26 2017-08-31 Samsung Electronics Co., Ltd. Apparatus and method for performing random access in beam-formed system
CN108696889B (zh) * 2017-03-30 2021-09-10 财团法人工业技术研究院 波束测量和反馈的方法及使用所述方法的基站与用户设备
US11159217B2 (en) * 2017-03-31 2021-10-26 Apple Inc. System and method for beam management procedure configuration

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170208494A1 (en) * 2016-01-14 2017-07-20 Samsung Electronics Co., Ltd. Method and apparatus for generating cell measurement information in a wireless communication system

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Multi-beam Operation for NR PDCCH", R1-1710545, 3GPP TSG RAN WG1 NR AD_HOC#2, 17 June 2017 (2017-06-17), Qingdao, P.R. China, XP051305116 *
"Remaining Issues on Cell Quality Derivation from N Beams", R2-1706661, 3GPP TSG RAN WG2#NR . ADHOC#2, 16 June 2017 (2017-06-16), Qingdao, China, XP051306553 *
AT &T: "DL Beam Management Details", R1-1710430, 3GPP TSG RAN WG1 AD HOC MEETING #2, 17 June 2017 (2017-06-17), Qingdao, China, XP051305029 *
SAMSUNG: "Beam Management for PDCCH", R1-1711604, 3GPP TSG RAN WG1 MEETING NR AH2, 23 June 2017 (2017-06-23), Qingdao, China, XP051305851 *
SAMSUNG: "Multibeam Transmission for PDCCH", R1-1710695, 3GPP TSGRAN WG1 NR AD-HOC#2, 16 June 2017 (2017-06-16), Qingdao, P.R. China, XP051304343 *

Also Published As

Publication number Publication date
US20200162954A1 (en) 2020-05-21
CN110999115A (zh) 2020-04-10
EP3664311A4 (en) 2021-08-18
US11184789B2 (en) 2021-11-23
EP3664311A1 (en) 2020-06-10
EP3664311B1 (en) 2022-11-02
CN110999115B (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
KR101639407B1 (ko) 이동통신 시스템에서 채널상태정보를 전송하는 장치 및 그 방법
WO2019031942A1 (ko) 무선 통신 시스템에서 신호를 측정 및 보고하는 방법 및 이를 위한 장치
WO2018143621A1 (ko) 무선 통신 시스템에서 복수의 전송 시간 간격, 복수의 서브캐리어 간격 또는 복수의 프로세싱 시간을 지원하기 위한 방법 및 이를 위한 장치
WO2018182383A1 (ko) 무선 통신 시스템에서 짧은 전송 시간 간격을 지원하는 단말을 위한 상향링크 신호 전송 또는 수신 방법 및 이를 위한 장치
WO2017196065A1 (ko) 무선 통신 시스템에서 상향링크 전송 전력의 제어 방법 및 이를 위한 장치
WO2018080151A1 (ko) 무선 통신 시스템에서 v2x 통신을 위한 harq 수행 방법 및 이를 위한 장치
WO2015088276A1 (ko) 무선 통신 시스템에서 측정 수행 방법 및 장치
WO2018225998A1 (ko) 무선 통신 시스템에서 신호를 송신 또는 수신하는 방법 및 이를 위한 장치
WO2014171739A1 (ko) 무선 통신 시스템에서 채널상태정보 보고 방법 및 장치
WO2011034321A2 (en) Apparatus and method for transmitting uplink control information
WO2012115366A1 (en) Method of performing measurement at ue in wireless communication system and apparatus thereof
WO2014107091A1 (ko) 무선 통신 시스템에서 장치 대 장치 통신 수행 방법 및 장치
WO2012134107A2 (ko) 무선 통신 시스템에서 통신 방법 및 장치
WO2010101409A2 (ko) 다중 반송파 시스템에서 채널 상태 보고 방법 및 장치
WO2014189338A1 (ko) 무선 통신 시스템에서 측정 수행 방법 및 장치
WO2014116039A1 (ko) 무선 통신 시스템에서 기지국 간 채널 측정 방법 및 장치
WO2014104627A1 (ko) 무선 통신 시스템에서 장치 대 장치 통신 수행 방법 및 장치
WO2013015637A2 (ko) 상향링크 신호 전송방법 및 사용자기기, 상향링크 신호 수신방법 및 기지국
WO2011074885A2 (ko) 무선 통신 시스템에서 채널 품질 보고 방법 및 장치
WO2017213369A1 (ko) 무선 통신 시스템에서 송수신 방법 및 이를 위한 장치
WO2014142571A1 (ko) 무선 통신 시스템에서 채널상태정보 보고 방법 및 장치
WO2018062766A1 (ko) 무선 통신 시스템에서 복수의 프로세싱 시간 또는 복수의 전송 시간 간격을 위한 방법 및 이를 위한 장치
WO2012169716A1 (ko) 제어정보 송수신 방법 및 송수신 장치
WO2013105821A1 (ko) 무선 통신 시스템에서 신호 수신 방법 및 장치
WO2017026777A1 (ko) 무선 통신 시스템에서 하향링크 채널 수신 또는 상향링크 채널 전송 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18840403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018840403

Country of ref document: EP

Effective date: 20200302