WO2019027014A1 - 有機デバイスの製造方法及び有機デバイス - Google Patents

有機デバイスの製造方法及び有機デバイス Download PDF

Info

Publication number
WO2019027014A1
WO2019027014A1 PCT/JP2018/029110 JP2018029110W WO2019027014A1 WO 2019027014 A1 WO2019027014 A1 WO 2019027014A1 JP 2018029110 W JP2018029110 W JP 2018029110W WO 2019027014 A1 WO2019027014 A1 WO 2019027014A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
sealing member
organic
organic device
cutting blade
Prior art date
Application number
PCT/JP2018/029110
Other languages
English (en)
French (fr)
Inventor
貴志 藤井
松本 康男
進一 森島
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to US16/635,033 priority Critical patent/US20200243803A1/en
Priority to EP18841529.3A priority patent/EP3664580A4/en
Priority to KR1020207005108A priority patent/KR20200036885A/ko
Priority to JP2019534586A priority patent/JPWO2019027014A1/ja
Priority to CN201880049596.0A priority patent/CN110945968A/zh
Publication of WO2019027014A1 publication Critical patent/WO2019027014A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8423Metallic sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/341Short-circuit prevention
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/851Division of substrate

Definitions

  • the present invention relates to a method of manufacturing an organic device and an organic device.
  • the organic device described in Patent Document 1 includes, on a substrate, an anode layer including at least a first electrode, an organic compound layer including a light emitting layer, a cathode layer including a second electrode, and a sealing member.
  • the sealing member has at least one resin substrate and at least one barrier layer.
  • the closure base material containing the material which has conductivity may be used as a barrier layer of the above-mentioned sealing member.
  • the sealing member includes the sealing base
  • the following problems may occur when manufacturing an organic device.
  • the sealing member is attached to a plurality of organic device portions so that a part of the first electrode and the second electrode is exposed, and then cut and separated into individual organic devices.
  • the cutting blade is made to enter the sealing member.
  • the sealing base formed from the material having conductivity is dragged by the cutting blade, and the sealing base contacts with the electrode layer (anode layer, cathode layer).
  • the anode layer and the cathode layer may be electrically connected to cause a short circuit. This can cause the organic device to fail and reduce the reliability of the organic device.
  • At least a first electrode layer, an organic functional layer, and a second electrode layer are laminated in this order on one main surface of a support substrate extending in one direction.
  • a plurality of organic device parts are formed at predetermined intervals in one direction, and a part of each of the first electrode layer and the second electrode layer in each organic device part is exposed and straddles the plurality of organic device parts
  • a sealing member having a sealing base containing a material having conductivity and a tacky bond containing a pressure-sensitive adhesive is bonded to the organic device portion, and in the cutting step, the sealing is performed.
  • the cutting blade is made to enter from the member side and after being cut Adhesive portion is cut sealing member so as to protrude outward from the sealing substrate.
  • the cutting blade in the cutting step, is made to enter from the sealing member side, and the tacky bond portion after being cut protrudes outside the sealing base material Cut the sealing member in the same manner.
  • the sticky bonding part even when the sealing base material including the conductive material is shifted by the cutting blade by causing the sticky bonding part to protrude outside the sealing base material, the sticky bonding part
  • the first electrode layer and / or the second electrode layer and the sealing member can be prevented from being in contact (electrically connected). Therefore, the first electrode layer and the second electrode layer can be prevented from being electrically connected and short circuited through the sealing base material.
  • the decrease in reliability can be suppressed.
  • the cutting blade in the cutting step, using a cutting blade having a single-edged structure, is positioned with the surface having a smaller inclination angle with respect to the entering direction of the cutting blade, on the organic device portion side
  • the blade may enter the sealing member.
  • the cutting blade applies pressure to the sealing member as it enters the sealing member.
  • the pressure exerted by the beveled surface of the cutting blade on the sealing member increases.
  • the pressure applied by the cutting blade is larger on the surface having a large inclination angle with respect to the traveling direction than on the surface having a small inclination angle.
  • the surface side having the large inclination angle due to the pressure applied from the surface side having the large cutting angle.
  • the adhesive part in the sealing member located on the side moves to the side with a small inclination angle.
  • the tacky bond portion moved to the side having a smaller inclination angle tends to return to the position before the cutting, and as a result, the tacky bond portion protrudes outward beyond the sealing base material. In this manner, the tacky adhesive portion can be protruded to the outer side than the sealing base material.
  • An organic device comprises an organic device portion in which at least a first electrode layer, an organic functional layer and a second electrode layer are stacked in this order on a supporting substrate, and a first electrode layer in the organic device portion And a sealing member disposed on the organic device portion such that a portion of each of the second electrode layers is exposed, and the sealing member includes at least a sealing base material including a conductive material.
  • the pressure-sensitive adhesive portion containing a pressure-sensitive adhesive is laminated to be configured, and the pressure-sensitive adhesive portion protrudes outward beyond the sealing substrate.
  • the adhesive part protrudes outward beyond the sealing base.
  • the adhesive part can avoid that a 1st electrode layer and / or a 2nd electrode layer, and a sealing member contact (electrically connect) by a viscous bonding part. Therefore, the first electrode layer and the second electrode layer can be prevented from being electrically connected and short circuited through the sealing base material. As a result, in the organic device, the decrease in reliability can be suppressed.
  • the decrease in reliability can be suppressed.
  • FIG. 1 is a view showing a cross-sectional configuration of an organic EL element manufactured by the method of manufacturing an organic device according to an embodiment.
  • FIG. 2 is a view showing a cross-sectional configuration of the organic EL element.
  • FIG. 3 is a flowchart showing a method of manufacturing an organic EL element.
  • FIG. 4 is a perspective view showing a state in which a sealing member is attached to the organic device portion.
  • FIG. 5 is a diagram for explaining the cutting process.
  • FIG. 6 is a diagram for explaining the cutting process.
  • FIG. 7 is a view showing a cutting unit.
  • FIG. 8 is a view showing the structure of the cutting blade.
  • 9 (a), 9 (b) and 9 (c) are diagrams for explaining the cutting process in detail.
  • FIG. 10 is a view showing a cutting unit according to a modification.
  • FIG. 11 is a diagram showing measurement results.
  • FIG. 12 is a diagram showing measurement results.
  • an organic EL device (organic device) 1 manufactured by the method of manufacturing an organic device according to the present embodiment includes a support substrate 3 and an anode layer (first electrode layer) 5; The organic functional layer 7, the cathode layer (second electrode layer) 9, and the sealing member 11 are provided.
  • the anode layer 5, the organic functional layer 7 and the cathode layer 9 constitute an organic EL unit (organic device unit) 10.
  • the organic EL element 1 may be a top emission type device.
  • the support substrate 3 is made of a resin having transparency to visible light (light with a wavelength of 400 nm to 800 nm).
  • the support substrate 3 is a film-like substrate (a flexible substrate, a substrate having flexibility).
  • the thickness of the support substrate 3 is, for example, 30 ⁇ m or more and 500 ⁇ m or less.
  • the supporting substrate 3 is a resin, it is preferably 45 ⁇ m or more from the viewpoints of substrate deflection, wrinkles, and elongation during the roll-to-roll method, and 125 ⁇ m or less from the viewpoint of flexibility.
  • the support substrate 3 is, for example, a plastic film.
  • the material of the support substrate 3 is, for example, polyether sulfone (PES); polyester resin such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN); polyolefin resin such as polyethylene (PE), polypropylene (PP), cyclic polyolefin, etc.
  • Polyamide resin polycarbonate resin; polystyrene resin; polyvinyl alcohol resin; saponified ethylene-vinyl acetate copolymer; polyacrylonitrile resin; acetal resin; polyimide resin; epoxy resin and the like.
  • the material of the support substrate 3 is preferably a polyester resin or a polyolefin resin because of high heat resistance, low coefficient of linear expansion and low manufacturing cost, and polyethylene terephthalate or polyethylene naphthalate More preferable.
  • One of these resins may be used alone, or two or more of these resins may be used in combination.
  • a gas barrier layer or a moisture barrier layer may be disposed on one main surface 3 a of the support substrate 3.
  • the other main surface 3b of the support substrate 3 is a light emitting surface.
  • a light extraction film may be provided on the other main surface 3 b of the support substrate 3.
  • the light extraction film may be bonded to the other main surface 3 b of the support substrate 3 by an adhesive layer.
  • the support substrate 3 may be thin film glass. When the supporting substrate 3 is a thin film glass, the thickness is preferably 30 ⁇ m or more from the viewpoint of strength and 100 ⁇ m or less from the viewpoint of flexibility.
  • the anode layer 5 is disposed on one main surface 3 a of the support substrate 3.
  • an electrode layer exhibiting light transparency is used.
  • an electrode which shows light transmittance thin films of metal oxides, metal sulfides and metals having high electric conductivity can be used, and thin films having high light transmittance are suitably used.
  • a thin film formed of ITO, IZO or tin oxide is suitably used.
  • anode layer 5 a transparent conductive film of an organic substance such as polyaniline and a derivative thereof, polythiophene and a derivative thereof may be used.
  • an electrode obtained by patterning the above-described metal or metal alloy or the like in a mesh shape or an electrode in which a nanowire containing silver is formed in a network shape may be used.
  • the thickness of the anode layer 5 can be determined in consideration of light transmittance, electrical conductivity, and the like.
  • the thickness of the anode layer 5 is usually 10 nm to 10 ⁇ m, preferably 20 nm to 1 ⁇ m, and more preferably 50 nm to 200 nm.
  • the anode layer 5 may be formed by a dry deposition method such as vacuum deposition, sputtering or ion plating, an inkjet method, a slit coater method, a gravure printing method, a screen printing method, a spray coater method or the like. It can be mentioned.
  • the anode layer 5 can be further patterned by photolithography, dry etching, laser trimming or the like. By directly coating the support substrate 3 using a coating method, it is possible to form a pattern without using a photolithography method, a dry etching method, a laser trimming method or the like.
  • the organic functional layer 7 is disposed on the main surface (the opposite side of the surface in contact with the support substrate 3) of the anode layer 5 and one main surface 3 a of the support substrate 3.
  • the organic functional layer 7 includes a light emitting layer.
  • the organic functional layer 7 usually contains a light emitting material which mainly emits fluorescence and / or phosphorescence, or the light emitting material and a dopant material for a light emitting layer which assists the light emitting material.
  • the dopant material for the light emitting layer is added, for example, to improve the light emission efficiency or to change the light emission wavelength.
  • the light emitting material that emits fluorescence and / or phosphorescence may be a low molecular weight compound or a high molecular weight compound.
  • Examples of the organic substance constituting the organic functional layer 7 include light emitting materials which emit fluorescence and / or phosphorescence such as the following dye materials, metal complex materials and polymer materials, or dopant materials for the light emitting layer described below. be able to.
  • pigment materials include cyclopentamine and its derivatives, tetraphenylbutadiene and its derivatives, triphenylamine and its derivatives, oxadiazole and its derivatives, pyrazoloquinoline and its derivatives, distyrylbenzene and its derivatives, distyryl Arylene and its derivative, pyrrole and its derivative, thiophene compound, pyridine compound, perinone and its derivative, perylene and its derivative, oligothiophene and its derivative, oxadiazole dimer, pyrazoline dimer, quinacridone and its derivative, coumarin and its derivative Etc. can be mentioned.
  • Metal complex material As a metal complex material, for example, rare earth metals such as Tb, Eu, Dy, etc., or Al, Zn, Be, Pt, Ir etc. as central metals, and oxadiazole, thiadiazole, phenylpyridine, phenylbenzimidazole, quinoline structure
  • the metal complex etc. which have etc. as a ligand can be mentioned.
  • metal complexes having light emission from a triplet excited state such as iridium complex and platinum complex, aluminum quinolinol complex, benzoquinolinol beryllium complex, benzoxazolyl zinc complex, benzothiazole zinc complex, azomethyl zinc complex, A porphyrin zinc complex, a phenanthroline europium complex, etc. can be mentioned.
  • Polymer material examples include polyparaphenylene vinylene and derivatives thereof, polythiophene and derivatives thereof, polyparaphenylene and derivatives thereof, polysilane and derivatives thereof, polyacetylene and derivatives thereof, polyfluorene and derivatives thereof, polyvinylcarbazole and derivatives thereof, A pigment material or a material obtained by polymerizing a metal complex material can be mentioned.
  • dopant material for light emitting layer examples include perylene and its derivatives, coumarin and its derivatives, rubrene and its derivatives, quinacridone and its derivatives, squalium and its derivatives, porphyrin and its derivatives, styryl dyes, tetracene and its derivatives, pyrazolone and its derivatives Derivatives, decacyclene and its derivatives, phenoxazone and its derivatives, etc. can be mentioned.
  • the thickness of the organic functional layer 7 is usually about 2 nm to 200 nm.
  • the organic functional layer 7 is formed, for example, by a coating method using a coating liquid (for example, an ink) containing the light emitting material as described above.
  • the solvent of the coating solution containing the light emitting material is not limited as long as it dissolves the light emitting material.
  • the light emitting material as described above may be formed by vacuum evaporation.
  • the cathode layer 9 is disposed on the main surface (the opposite side of the surface in contact with the anode layer 5) of the organic functional layer 7 and one main surface 3 a of the support substrate 3.
  • a material of the cathode layer 9 for example, an alkali metal, an alkaline earth metal, a transition metal, a periodic table group 13 metal or the like can be used.
  • the material of the cathode layer 9 for example, lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, Metals such as europium, terbium, ytterbium, alloys of two or more of the metals, one or more of the metals, gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, tin Alloys with one or more of these, or graphite or graphite intercalation compounds, etc. are used.
  • alloys include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminium alloy, indium-silver alloy, lithium-aluminium alloy, lithium-magnesium alloy, lithium-indium alloy, calcium-aluminium alloy, etc. it can.
  • a transparent conductive electrode formed of a conductive metal oxide or a conductive organic substance can be used as the cathode layer 9.
  • the conductive metal oxide include indium oxide, zinc oxide, tin oxide, ITO, IZO and the like
  • examples of the conductive organic substance include polyaniline and its derivatives, polythiophene and its derivatives, etc. it can.
  • the cathode layer 9 may be composed of a laminate in which two or more layers are stacked. In some cases, an electron injection layer described later may be used as the cathode layer 9.
  • the thickness of the cathode layer 9 is set in consideration of the electrical conductivity and the durability.
  • the thickness of the cathode layer 9 is usually 10 nm to 10 ⁇ m, preferably 20 nm to 1 ⁇ m, and more preferably 50 nm to 500 nm.
  • the method for forming the cathode layer 9 includes, for example, coating methods such as inkjet method, slit coater method, gravure printing method, screen printing method, spray coating method, vacuum evaporation method, sputtering method, lamination method of thermally pressing metal thin film, etc. And vacuum evaporation or sputtering is preferred.
  • the sealing member 11 is disposed on the top of the organic EL element 1 so as to cover at least the organic functional layer 7.
  • the sealing member 11 has a tacky adhesive section 17 and a sealing base material 19.
  • the sealing member 11 may have a tacky-adhesive portion 17, a barrier layer 18, and a sealing base 19.
  • the sealing member 11 includes the adhesive and bonding portion 17, the barrier layer 18, and the sealing base 19.
  • the layers are stacked in order.
  • the adhesive part 17 is used to adhere the barrier layer 18 and the sealing base 19 to the anode layer 5, the organic functional layer 7 and the cathode layer 9 in the above configuration.
  • the adhesive part 17 is a pressure sensitive adhesive.
  • the pressure sensitive adhesive preferably contains an ⁇ -olefin resin and a tackifier.
  • the ⁇ -olefin resin and tackifier are not particularly limited, and conventionally known ones can be used.
  • Examples of the ⁇ -olefin resin include homopolymers or copolymers of polyethylene, polyisobutylene and the like.
  • the copolymer a copolymer obtained by polymerizing two or more ⁇ -olefins, ⁇ -olefin and a monomer other than ⁇ -olefin (for example, styrene, non-conjugated diene, etc.) are polymerized And copolymers obtained by
  • the pressure sensitive adhesive may contain an additive.
  • the additive include hygroscopic metal oxides (for example, calcium oxide, calcined hydrotalcite and the like), and inorganic fillers other than hygroscopic metal oxides (for example, silica, mica, talc and the like).
  • the barrier layer 18 or the sealing base 19 has a gas barrier function, in particular, a moisture barrier function.
  • the barrier layer 18 may be, for example, a film formed of silicon oxide (SiO x ), aluminum oxide (Al 2 O x ) or titanium oxide (TiO x ).
  • the sealing substrate 19 contains a conductive material.
  • the sealing base 19 includes, for example, a metal foil. As a metal foil, copper, aluminum or stainless steel is preferable from the viewpoint of barrier properties. The thickness of the metal foil is preferably as large as possible from the viewpoint of suppressing pinholes, but is preferably 10 ⁇ m to 50 ⁇ m from the viewpoint of flexibility. When the sealing base 19 includes a metal foil, the barrier layer 18 may be omitted.
  • the sealing substrate 19 may be formed of only a metal foil, or may be formed of a plurality of layers including the metal foil.
  • a plastic film is adhered to the surface of the sealing base 19 opposite to the surface on which the barrier layer 18 or the adhesive part 17 is formed. It may be done.
  • a plastic film to be adhered for example, polyethersulfone (PES); polyester resin such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN); polyolefin resin such as polyethylene (PE), polypropylene (PP), cyclic polyolefin etc.
  • Polyamide resin polycarbonate resin; polystyrene resin; polyvinyl alcohol resin; saponified ethylene-vinyl acetate copolymer; polyacrylonitrile resin; acetal resin; polyimide resin; epoxy resin and the like.
  • the adhesive part 17 protrudes more than the sealing base 19.
  • the pressure-sensitive adhesive portion 17 has projecting portions 17a and 17b.
  • the protrusions 17a and 17b are adhesively attached in the second direction (left and right direction in FIG. 2) orthogonal to the first direction (left and right direction in FIG. 1) in which the exposed portions of the anode layer 5 and the cathode layer 9 are disposed. It is provided in the wearing part 17.
  • the protrusions 17 a and 17 b protrude outward in the second direction with respect to the end surface of the sealing base 19. The amount of protrusion of the protrusions 17a and 17b is appropriately set.
  • a roll-to-roll method may be employed from the substrate drying step S01 to the bonding step S05 shown in FIG. 3.
  • the supporting substrate 3 is heated and dried (substrate drying step S01).
  • the anode layer 5 is formed on one of the main surfaces 3a of the dried supporting substrate 3 (anode layer forming step (forming step) S02).
  • the anode layer 5 can be formed by the formation method exemplified in the description of the anode layer 5.
  • a plurality of anode layers 5 are formed on the support substrate 3 at predetermined intervals in the longitudinal direction of the support substrate 3 and at predetermined intervals in the width direction of the support substrate 3 (the other direction orthogonal to one direction). To form a plurality (two in the present embodiment).
  • the organic functional layer 7 is formed on the anode layer 5 (organic functional layer forming step (forming step) S03).
  • the organic functional layer 7 can be formed by the formation method exemplified in the description of the organic functional layer 7.
  • the cathode layer 9 is formed on the organic functional layer 7 (a cathode layer forming step (forming step) S04).
  • the cathode layer 9 can be formed by the forming method exemplified in the description of the cathode layer 9.
  • a plurality of organic EL units 10 are formed on the support substrate 3 at predetermined intervals in the longitudinal direction of the support substrate 3 (Y direction in FIG. 3), A plurality of (two in the present embodiment) are formed at predetermined intervals in the width direction (X direction in FIG. 3) of the support substrate 3. That is, two rows of the organic EL units 10 are formed along the longitudinal direction of the support substrate 3.
  • the sealing member 11 is bonded (bonding step S05).
  • the sealing member 11 has a predetermined width and extends in the longitudinal direction of the support substrate 3. Specifically, as shown in FIG. 4, the sealing member 11 has a width set so that a part of each of the anode layer 5 and the cathode layer 9 is exposed, and has a band shape.
  • the sealing member 11 has flexibility.
  • the adhesive member 17 is provided on one surface of the sealing base 19 of the sealing member 11.
  • the sealing member 11 may be cut in a band shape after the adhesive part 17 is formed on one surface of the sealing base material 19 via the barrier layer 18, or the sealing base material 19 is cut in a band shape. After that, the adhesive portion 17 may be formed on one surface of the sealing base 19 via the barrier layer 18.
  • the sealing member 11 is attached on the organic EL unit 10 so that a part of the anode layer 5 and a part of the cathode layer 9 are exposed. Specifically, the sealing member 11 is attached along one direction across the plurality of organic EL units 10.
  • the organic EL unit 10 formed on the support substrate 3 and the sealing member 11 are bonded together while transporting the support substrate 3.
  • the support substrate 3 and the sealing member 11 pass between rollers (not shown). Thereby, the pressure is applied to the support substrate 3 and the sealing member 11 by the roller. Thereby, the adhesive part 17 and the organic electroluminescent part 10 contact
  • bonding the organic EL unit 10 and the sealing member 11 it is preferable to be performed in an environment with a low water concentration, and it is particularly preferable to be performed in a nitrogen atmosphere.
  • the plurality of organic EL units 10 to which the sealing member 11 is bonded are singulated (cutting step S06).
  • the support substrate 3 and the sealing member 11 are cut along the cutting line L, and the plurality of organic EL units 10 to which the sealing member 11 is bonded are singulated Do.
  • the support substrate 3 is supported by the support 100, and the support substrate 3 is cut by the cutting blade B.
  • FIG. 5 is a view of a cross section along the X direction in FIG. 4 as viewed from the Y direction, and shows a cross section at a position including the anode layer 5 and the organic functional layer 7.
  • FIG. 6 is a view of a cross section along the X direction in FIG. 4 as viewed from the Y direction, and shows a cross section at a position not including the anode layer 5 and the organic functional layer 7.
  • the cutting blade B is provided in the cutting unit 50.
  • the cutting unit 50 includes a cutting blade B, a holding unit (base) 52 that holds the cutting blade B, and elastic members 54 and 55.
  • the holding portion 52 is, for example, a plate member such as a veneer board.
  • the cutting blade B has a shape corresponding to the cutting line L, and has a frame shape. In the present embodiment, the cutting blade B is integrally provided with four blade members.
  • the cutting blade B is held by the holding portion 52, for example, by embedding the end portion of the cutting blade B on the holding portion 52 side in the holding portion 52.
  • the cutting blade B is a blade cut out by cutting a part of the holding portion 52 using an NC (numerical control) processing machine, and the cutting blade B and the holding portion 52 are integrated. It may be In this case, the cutting blade B and the holding portion 52 can be the same material.
  • the cutting blade B has a single-edged structure.
  • the structure of one blade is a structure in which one blade surface and the other blade surface are inclined, and the other blade surface has a smaller inclination angle than one blade surface.
  • the cutting blade B has a first blade surface Ba and a second blade surface Bb.
  • the first blade surface Ba forms an inclination angle ⁇ 1 with respect to a straight line along the height direction of the cutting blade B.
  • the second blade surface Bb forms an inclination angle ⁇ 2 with respect to a straight line along the height direction of the cutting blade B.
  • the inclination angle ⁇ 1 of the first blade surface Ba is larger than the inclination angle ⁇ 2 of the second blade surface Bb.
  • the inclination angle ⁇ 2 of the second blade surface Bb is smaller than the inclination angle ⁇ 1 of the first blade surface Ba.
  • the inclination angle ⁇ 1 is preferably larger than 15 °, and preferably 30 ° or more. More preferable.
  • the inclination angle ⁇ 1 is preferably smaller than 50 °, and more preferably 40 ° or less.
  • the inclination angle ⁇ 2 is preferably 0 ° or more and smaller than 15 °.
  • the first blade surface Ba of the cutting blade B forms an inclination angle ⁇ 1 of about 40 ° with respect to a straight line along the height direction of the cutting blade B.
  • the second blade surface Bb forms an inclination angle ⁇ 2 of about 1 ° with respect to a straight line along the height direction of the cutting blade B. That is, the second blade surface Bb of the cutting blade B has a smaller inclination angle than the first blade surface Ba with respect to the direction in which the cutting blade B enters.
  • both the first blade surface Ba and the second blade surface Bb are inclined.
  • both the first blade surface Ba and the second blade surface Bb receive pressure.
  • part of the pressure received by the first blade surface Ba can be offset by the pressure received by the second blade surface Bb with respect to the sealing member 11. Therefore, the cutting blade B can be made to enter straight.
  • the sealing member 11 can be cut with high accuracy.
  • the cutting blade B is disposed such that the second blade surface Bb faces inward.
  • the second blade surfaces Bb are arranged to face each other.
  • the second blade surface Bb is disposed to face the elastic member 54 (the first blade surface Ba to face the elastic member 55).
  • Examples of the elastic members 54 and 55 include rubber and sponge.
  • the elastic members 54 and 55 are fixed to the holding portion 52.
  • the elastic members 54 and 55 are disposed in a pair facing the position where the cutting blade B is interposed therebetween.
  • a plurality of sets of elastic members 54 and 55 are provided (here, 10 sets) at predetermined intervals.
  • the tip end of the elastic members 54 and 55 protrudes more than the tip (cutting edge) of the cutting blade B, as shown in FIG. .
  • FIGS. 9A to 9C the form in which the support substrate 3 is cut will be described as an example.
  • the cutting blade B is positioned at the cutting point.
  • the elastic members 54 and 55 in which the tip portion protrudes from the cutting blade B hold the support substrate 3.
  • FIG. 9 (b) when the cutting blade B is made to enter the support substrate 3, the elastic members 54 and 55 are sandwiched between the support substrate 3 and the holding portion 52 and pressed by the holding portion 52. Shrink with. Then, as shown in FIG.
  • the support substrate 3 on which the plurality of organic EL units 10 are formed is supported by the support 100.
  • the cutting blade B of the cutting part 50 is made to approach from the one side principal surface 3a side of the support substrate 3, and the area
  • the cutting blade B enters the sealing member 11 so that the second blade surface Bb faces the organic EL unit 10 side (the side on which the organic EL unit 10 is formed).
  • the cutting blade B is advanced to a position where the tip thereof reaches the other main surface 3 b of the support substrate 3.
  • the pressure applied from the side of the first blade surface Ba of the cutting blade B moves the adhesive part located on the side of the first blade surface Ba to the side of the second blade surface Bb.
  • the tacky bond portion moved to the second blade surface Bb side tries to return to the position before the cutting, whereby the tacky bond portion 17 is outside the sealing base 19. Stand out.
  • the plurality of organic EL units 10 to which the sealing member 11 is bonded are singulated.
  • the organic EL element 1 shown in FIG. 1 and FIG. 2 is manufactured.
  • the cutting blade B is made to enter from the sealing member 11 side, and the adhesive portion 17 after being cut is The sealing member 11 is cut so as to protrude outside the sealing base 19.
  • the adhesive part 17 can prevent the anode layer 5 and / or the cathode layer 9 and the sealing member 11 from contacting (electrically connecting). Therefore, the anode layer 5 and the cathode layer 9 can be prevented from being electrically connected and short circuited through the sealing base 19.
  • the decrease in reliability can be suppressed.
  • the second cutting blade B has a small inclination angle with respect to the entering direction of the cutting blade B.
  • the blade surface Bb is positioned on the organic EL unit 10 side, and the cutting blade B is made to enter the sealing member 11.
  • the cutting blade B applies pressure to the sealing member 11 when entering the sealing member 11.
  • the pressure applied to the sealing member 11 by the inclined surface of the cutting blade B increases.
  • the pressure applied by the cutting blade B is greater at the first blade surface Ba with respect to the advancing direction than at the second blade surface Bb with a smaller tilt angle.
  • the adhesive part in the sealing member 11 positioned on the first blade surface Ba side moves to the second blade surface Bb side.
  • the tacky bond portion moved to the second blade surface Bb side tries to return to the position before the cutting, and as a result, the tacky bond portion 17 is outside the sealing base 19. Stand out. In this manner, the adhesive part 17 can be protruded to the outside of the sealing base 19.
  • the adhesive part 17 protrudes outside the sealing base 19.
  • the sealing base 19 including the conductive material is dragged by the cutting blade B because the adhesive part 17 protrudes outside the sealing base 19.
  • the contact (electrical connection) between the anode layer 5 and / or the cathode layer 9 and the sealing member 11 can be avoided. Therefore, the anode layer 5 and the cathode layer 9 can be prevented from being electrically connected and short circuited through the sealing base 19. As a result, in the organic EL element 1, the decrease in reliability can be suppressed.
  • positioned between the anode layer 5 and the cathode layer 9 was illustrated.
  • the configuration of the organic functional layer 7 is not limited to this.
  • the organic functional layer 7 may have the following configuration.
  • A (anode layer) / light emitting layer / (cathode layer)
  • B (anode layer) / hole injection layer / light emitting layer / (cathode layer)
  • C (anode layer) / hole injection layer / light emitting layer / electron injection layer / (cathode layer)
  • D (anode layer) / hole injection layer / light emitting layer / electron transport layer / electron injection layer / (cathode layer)
  • E (anode layer) / hole injection layer / hole transport layer / light emitting layer / (cathode layer)
  • F (anode layer) / hole injection layer / hole transport layer / light emitting layer / electron injection layer / (cathode layer)
  • G (anode layer) / hole injection layer / hole transport layer / light emitting layer / electron injection layer / (cathode layer)
  • H (anode layer) / light emitting layer / electron
  • the materials of the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer can be known materials.
  • Each of the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer can be formed, for example, by a coating method in the same manner as the organic functional layer 7.
  • the electron injection layer may contain an alkali metal or alkaline earth metal, or an oxide or fluoride of an alkali metal or alkaline earth metal.
  • a film formation method of the electron injection layer a coating method, a vacuum evaporation method and the like can be mentioned.
  • the thickness of the electron injection layer is preferably 0.5 nm to 20 nm.
  • the electron injecting layer is preferably a thin film from the viewpoint of suppressing an increase in drive voltage of the organic EL element 1 particularly when the insulating property is strong, and the thickness thereof is, for example, 0.5 nm to 10 nm. Is preferable, and from the viewpoint of electron injection property, 2 nm to 7 nm is preferable.
  • the organic EL element 1 may have a single layer organic functional layer 7 or may have two or more organic functional layers 7. Assuming that the laminated structure disposed between the anode layer 5 and the cathode layer 9 in any one of the layer configurations (a) to (i) is “structural unit A”, the organic function of two layers As a structure of the organic EL element which has the layer 7, the layer structure shown to following (j) can be mentioned, for example.
  • the layer configurations of two (structural unit A) may be the same as or different from each other.
  • the charge generation layer is a layer that generates holes and electrons by applying an electric field.
  • Examples of the charge generation layer include thin films formed of vanadium oxide, ITO, molybdenum oxide, and the like.
  • (structural unit B) x represents a laminate in which (structural units B) are stacked in x stages.
  • the layer configuration of plural (structural unit B) may be the same or different.
  • a plurality of organic functional layers 7 may be directly stacked to form an organic EL element without providing a charge generation layer.
  • the form which forms the anode layer 5 on the support substrate 3 was demonstrated as an example.
  • a roll in which the anode layer 5 is previously formed on the support substrate 3 may be used.
  • the embodiment in which the step of heating and drying the support substrate 3 is performed is described as an example.
  • the drying process of the support substrate 3 may not necessarily be performed.
  • the form which uses the cutting part 50 in cutting process S06 was demonstrated to an example.
  • the cutting blade used in the cutting step S06 may not include the elastic members 54 and 55. That is, the cutting blade may be used alone.
  • the mode using the cutting unit 50 shown in FIG. 7 has been described as an example.
  • the cutting unit may be configured as shown in FIG.
  • the cutting unit 50A includes a cutting blade B, a holding unit 52, and elastic members 54A and 55A.
  • the cutting unit 50A is different from the cutting unit 50 in the configuration of the elastic members 54A and 55A.
  • the elastic members 54A and 55A are disposed to face each other at a position where the cutting blade B is interposed therebetween.
  • the elastic members 54A are located outside the cutting blade B, and a plurality of (here, eight) elastic members are provided at predetermined intervals.
  • the elastic member 55A is disposed inside the frame-shaped cutting blade B, and has a shape (rectangular shape) along the cutting blade B.
  • the tip end of the elastic members 54A, 55A protrudes from the tip of the cutting blade B, as shown in FIG.
  • the elastic members 54, 55 (54A, 55A) are described as an example in which the elastic members 54, 55 (54A, 55A) are disposed in a pair facing the position sandwiching the cutting blade B.
  • the elastic member may be disposed only on one blade surface side.
  • the elastic member is an inner side of the frame in that the film can be discharged from the inside of the frame when cutting.
  • only the elastic member 54 or the elastic member 54A may be disposed.
  • a plurality of organic EL units 10 are formed on the support substrate 3 at predetermined intervals in the longitudinal direction (Y direction in FIG. 4) of the support substrate 3 and supported.
  • substrate 3 was demonstrated as an example. That is, an embodiment in which the organic EL units 10 are formed in two rows (plural rows) on the support substrate 3 has been described as an example. However, at least one row of the organic EL units 10 may be formed on the support substrate 3.
  • the anode layer is exemplified as the first electrode layer and the cathode layer is exemplified as the second electrode layer, but the first electrode layer may be a cathode layer and the second electrode layer may be an anode layer. . That is, the cathode layer may be disposed on the support substrate side.
  • the organic EL element was demonstrated to an example as an organic device.
  • the organic device may be an organic thin film transistor, an organic photodetector, an organic thin film solar cell or the like.
  • Example 1 A PET film having a thickness of 38 ⁇ m was bonded to an aluminum foil (JIS 1N30: hard) having a thickness of 30 ⁇ m, and then an olefin pressure-sensitive adhesive was applied to a thickness of 30 ⁇ m on the exposed surface of the aluminum foil.
  • An aluminum foil coated with the above-mentioned adhesive is pasted onto a sputtered film-forming surface of a 100 ⁇ m thick PEN film on which a copper sputtered film is formed, and a PET film, aluminum foil, pressure-sensitive adhesive, copper sputtered A laminate in which the membrane and the PEN film were laminated was obtained.
  • the PET film and the aluminum foil correspond to the sealing substrate 19
  • the copper sputter film corresponds to the cathode layer 9
  • the PEN film corresponds to the support substrate 3.
  • the cutting blade has a single-edged structure, and is cut by an NC processing machine so that the blade height is 1.3 mm and the apex angle (an angle formed by the first blade surface Ba and the second blade surface Bb) is 30 °.
  • the surface was coated by plating.
  • the elastic members 54A and 55A select a material that presses the surface of the film at approximately 1.3 kg / cm 2 when the holding portion 52 comes closest to the PET film at the time of cutting the laminate. .
  • the laminate was cut with a cutting blade. Specifically, the cutting blade was advanced in the order of PET film, aluminum foil, pressure-sensitive adhesive and PEN film to cut the laminate.
  • the cross section of the laminate was measured with a double scan high precision laser measurement device (product name: LT-9000, manufactured by Keyence Corporation).
  • the cross section of the laminate measured the cross section on the side of the one blade.
  • the measurement results are shown in FIG.
  • the horizontal axis indicates the position ( ⁇ m), and the vertical axis indicates the height ( ⁇ m).
  • "0" is one surface position of the PEN film to which the pressure sensitive adhesive is not bonded.
  • the pressure-sensitive adhesive protrudes about 20 ⁇ m with respect to the cross section of the PEN film after cutting the laminate.
  • the amount of protrusion of the pressure-sensitive adhesive was smaller than that of the single-edged blade. Therefore, it was found that the pressure sensitive adhesive can be more reliably protruded to the outside than the PEN film by cutting the laminate using a single blade as the cutting blade.
  • Example 2 As in Example 1, a laminate in which a PET film, an aluminum foil, a pressure sensitive adhesive and a PEN film were laminated was obtained.
  • the cutting blade has a single-edged structure, and is cut by an NC processing machine so that the blade height is 1.3 mm and the apex angle (the angle formed by the first blade surface Ba and the second blade surface Bb) is 40 °.
  • the surface was coated by plating.
  • the elastic members 54A and 55A select a material that presses the surface of the film at approximately 1.3 kg / cm 2 when the holding portion 52 comes closest to the PET film at the time of cutting the laminate. .
  • the laminate was cut under the same conditions as in Example 1.
  • the cross section of the laminate was measured with a double scan high precision laser measurement device (product name: LT-9000, manufactured by Keyence Corporation).
  • the cross section of the laminate measured the cross section on the side of the one blade.
  • the measurement results are shown in FIG. In FIG. 12, the horizontal axis indicates position ( ⁇ m), and the vertical axis indicates height ( ⁇ m). In the horizontal axis, "0" is one surface position of the PEN film to which the pressure sensitive adhesive is not bonded.
  • the pressure sensitive adhesive protruded about 20 ⁇ m with respect to the cross section of the PEN film.
  • SYMBOLS 1 organic EL element (organic device), 3 ... support substrate, 3a ... one main surface, 5 ... anode layer (1st electrode layer), 7 ... organic functional layer, 9 ... cathode layer (2nd electrode layer), 11: Sealing member, 17: adhesive bond portion, 19: sealing base material, B: cutting blade, Ba: first blade surface, Bb: second blade surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

有機デバイス1の製造方法は、有機デバイス部10を一方向において所定の間隔をあけて複数形成する形成工程と、各有機デバイス部10における第1電極層5及び第2電極層9それぞれの一部が露出し且つ複数の有機デバイス部10に跨がるように、一方向に延在する封止部材11を一方向に沿って貼り合わせる貼合工程と、封止部材11が貼合された複数の有機デバイス部10を個片化する裁断工程と、を含み、貼合工程では、導電性を有する材料を含む封止基材19と、感圧接着剤を含む粘接着部17とを有する封止部材11を有機デバイス部10に貼り合わせ、裁断工程では、封止部材11側から裁断刃Bを進入させると共に、裁断された後の粘接着部17が封止基材19よりも外側に突出するように封止部材11を裁断する。

Description

有機デバイスの製造方法及び有機デバイス
 本発明は、有機デバイスの製造方法及び有機デバイスに関する。
 従来の有機デバイスとしては、例えば、特許文献1に記載されたものが知られている。特許文献1に記載の有機デバイスは、基板上に、少なくとも第1電極を含む陽極層と、発光層を含む有機化合物層と、第2電極を含む陰極層と、封止部材と、を有する。特許文献1に記載の有機デバイスでは、封止部材は、少なくとも一層の樹脂基材と、少なくとも1層のバリア層と、を有する。
特開2007-73332号公報
 上記封止部材のバリア層としては、導電性を有する材料を含む封止基材が用いられ得る。封止部材が当該封止基材を含む構成において、有機デバイスを製造する場合、以下のような問題が生じ得る。有機デバイスを製造する場合、第1電極及び第2電極の一部が露出するように封止部材を複数の有機デバイス部に貼り合わせた後に裁断し、有機デバイスごとに個片化する。封止部材を裁断するときには、裁断刃を封止部材に対して進入させる。このとき、導電性を有する材料から形成される封止基材が裁断刃に引きずられて、封止基材が電極層(陽極層、陰極層)と接触するおそれがある。封止基材と電極層とが接触すると、陽極層と陰極層とが導通して短絡するおそれがある。これにより、有機デバイスが機能しなくなり、有機デバイスの信頼性が低下し得る。
 本発明の一側面によれば、信頼性の低下を抑制できる有機デバイスの製造方法及び有機デバイスを提供することを目的とする。
 本発明の一側面に係る有機デバイスの製造方法は、一方向に延在する支持基板の一方の主面上に、少なくとも第1電極層、有機機能層及び第2電極層をこの順番で積層した有機デバイス部を、一方向において所定の間隔をあけて複数形成する形成工程と、各有機デバイス部における第1電極層及び第2電極層それぞれの一部が露出し且つ複数の有機デバイス部に跨がるように、一方向に延在する封止部材を一方向に沿って貼り合わせる貼合工程と、封止部材が貼合された複数の有機デバイス部を個片化する裁断工程と、を含み、貼合工程では、導電性を有する材料を含む封止基材と、感圧接着剤を含む粘接着部とを有する封止部材を有機デバイス部に貼り合わせ、裁断工程では、封止部材側から裁断刃を進入させると共に、裁断された後の粘接着部が封止基材よりも外側に突出するように封止部材を裁断する。
 本発明の一側面に係る有機デバイスの製造方法では、裁断工程では、封止部材側から裁断刃を進入させると共に、裁断された後の粘接着部が封止基材よりも外側に突出するように封止部材を裁断する。このように、粘接着部を封止基材よりも外側に突出させることにより、導電性を有する材料を含む封止基材が裁断刃に引きずられた場合であっても、粘接着部によって、第1電極層及び/又は第2電極層と封止部材とが接触する(電気的に接続される)ことを回避できる。したがって、封止基材を介して、第1電極層と第2電極層とが電気的に接続されて短絡することを防止できる。その結果、有機デバイスの製造方法では、信頼性の低下を抑制できる。
 一実施形態においては、裁断工程では、片刃の構造を有する裁断刃を用い、裁断刃において当該裁断刃の進入方向に対して傾斜角度が小さい方の面を有機デバイス部側に位置させて、裁断刃を封止部材に進入させてもよい。裁断刃は、封止部材に進入する際、封止部材に対して圧力を加える。裁断刃が封止部材に進入するにつれて、裁断刃の傾斜している面が封止部材に対して加える圧力は大きくなる。裁断刃が加える圧力は、進行方向に対して傾斜角度が大きい面の方が、傾斜角度が小さい面に比べて大きくなる。したがって、裁断刃において傾斜角度が小さい面を有機デバイス部側に位置させて裁断刃を封止部材に進入させると、裁断刃の傾斜角度が大きい面側から加わる圧力により、傾斜角度が大きい面側に位置する封止部材中の粘接着部は傾斜角度が小さい面側に移動する。封止部材の裁断後、傾斜角度が小さい面側に移動した粘接着部が、裁断前の位置に戻ろうとし、その結果、粘接着部が封止基材よりも外側に突出する。このようにして、粘接着部を封止基材よりも外側に突出させることができる。
 本発明の一側面に係る有機デバイスは、支持基板上に、少なくとも第1電極層、有機機能層及び第2電極層がこの順番で積層された有機デバイス部と、有機デバイス部における第1電極層及び第2電極層それぞれの一部が露出するように、有機デバイス部上に配置された封止部材と、を備え、封止部材は、少なくとも、導電性を有する材料を含む封止基材と、感圧接着剤を含む粘接着部とが積層されて構成されており、粘接着部は、封止基材よりも外側に突出している。
 本発明の一側面に係る有機デバイスでは、粘接着部は、封止基材よりも外側に突出している。これにより、粘接着部によって、第1電極層及び/又は第2電極層と封止部材とが接触する(電気的に接続される)ことを回避できる。したがって、封止基材を介して、第1電極層と第2電極層とが電気的に接続されて短絡することを防止できる。その結果、有機デバイスでは、信頼性の低下を抑制できる。
 本発明の一側面によれば、信頼性の低下を抑制できる。
図1は、一実施形態に係る有機デバイスの製造方法により製造された有機EL素子の断面構成を示す図である。 図2は、有機EL素子の断面構成を示す図である。 図3は、有機EL素子の製造方法を示すフローチャートである。 図4は、有機デバイス部に封止部材を貼り合わせた状態を示す斜視図である。 図5は、裁断工程を説明するための図である。 図6は、裁断工程を説明するための図である。 図7は、裁断部を示す図である。 図8は、裁断刃の構成を示す図である。 図9(a)、図9(b)及び図9(c)は、裁断工程を詳細に説明するための図である。 図10は、変形例に係る裁断部を示す図である。 図11は、測定結果を示す図である。 図12は、測定結果を示す図である。
 以下、添付図面を参照して、本発明の好適な実施形態について詳細に説明する。図面の説明において同一又は相当要素には同一符号を付し、重複する説明は省略する。
 図1及び図2に示されるように、本実施形態の有機デバイスの製造方法によって製造される有機EL素子(有機デバイス)1は、支持基板3と、陽極層(第1電極層)5と、有機機能層7と、陰極層(第2電極層)9と、封止部材11と、を備えている。陽極層5、有機機能層7及び陰極層9は、有機EL部(有機デバイス部)10を構成している。以下では、断らない限り、ボトムエミッション型の有機EL素子1を説明する。しかしながら、有機EL素子1は、トップエミッション型のデバイスでもよい。
[支持基板]
 支持基板3は、可視光(波長400nm~800nmの光)に対して透光性を有する樹脂から構成されている。支持基板3は、フィルム状の基板(フレキシブル基板、可撓性を有する基板)である。支持基板3の厚さは、例えば、30μm以上500μm以下である。支持基板3が樹脂の場合は、ロールツーロール方式の連続時の基板ヨレ、シワ、及び伸びの観点からは45μm以上、可撓性の観点からは125μm以下が好ましい。
 支持基板3は、例えば、プラスチックフィルムである。支持基板3の材料は、例えば、ポリエーテルスルホン(PES);ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂;ポリエチレン(PE)、ポリプロピレン(PP)、環状ポリオレフィン等のポリオレフィン樹脂;ポリアミド樹脂;ポリカーボネート樹脂;ポリスチレン樹脂;ポリビニルアルコール樹脂;エチレン-酢酸ビニル共重合体のケン化物;ポリアクリロニトリル樹脂;アセタール樹脂;ポリイミド樹脂;エポキシ樹脂等を含む。
 支持基板3の材料は、上記樹脂の中でも、耐熱性が高く、線膨張率が低く、かつ、製造コストが低いことから、ポリエステル樹脂、又はポリオレフィン樹脂が好ましく、ポリエチレンレテフタレート、又はポリエチレンナフタレートがより好ましい。これらの樹脂は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 支持基板3の一方の主面3a上には、ガスバリア層、或いは、水分バリア層が配置されていてもよい。支持基板3の他方の主面3bは、発光面である。支持基板3の他方の主面3bには、光取り出しフィルムが設けられていてもよい。光取り出しフィルムは、粘着層によって、支持基板3の他方の主面3bに貼合されていてもよい。支持基板3は、薄膜ガラスであってもよい。支持基板3が薄膜ガラスの場合、その厚さは、強度の観点からは30μm以上、可撓性の観点からは100μm以下が好ましい。
[陽極層]
 陽極層5は、支持基板3の一方の主面3a上に配置されている。陽極層5には、光透過性を示す電極層が用いられる。光透過性を示す電極としては、電気伝導度の高い金属酸化物、金属硫化物及び金属等の薄膜を用いることができ、光透過率の高い薄膜が好適に用いられる。例えば酸化インジウム、酸化亜鉛、酸化スズ、インジウム錫酸化物(Indium Tin Oxide:略称ITO)、インジウム亜鉛酸化物(Indium Zinc Oxide:略称IZO)、金、白金、銀、銅等から形成される薄膜が用いられ、これらの中でもITO、IZO、又は酸化スズから形成される薄膜が好適に用いられる。
 陽極層5として、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機物の透明導電膜を用いてもよい。陽極層5として、上記で挙げられた金属又は金属合金等をメッシュ状にパターニングした電極、或いは、銀を含むナノワイヤーがネットワーク状に形成されている電極を用いてもよい。
 陽極層5の厚さは、光の透過性、電気伝導度等を考慮して決定することができる。陽極層5の厚さは、通常、10nm~10μmであり、好ましくは20nm~1μmであり、さらに好ましくは50nm~200nmである。
 陽極層5の形成方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法等のドライ成膜法、インクジェット法、スリットコーター法、グラビア印刷法、スクリーン印刷法、スプレーコーター法等の塗布法を挙げることができる。陽極層5は、さらにフォトリソ法、ドライエッチング法、レーザートリミング法等を用いてパターンを形成することができる。塗布法を用いて支持基板3上に直接塗布することで、フォトリソ法、ドライエッチング法、レーザートリミング法等を用いることなくパターンを形成することもできる。
[有機機能層]
 有機機能層7は、陽極層5の主面(支持基板3に接する面の反対側)及び支持基板3の一方の主面3a上に配置されている。有機機能層7は、発光層を含んでいる。有機機能層7は、通常、主として蛍光及び/又はりん光を発光する発光材料、或いは該発光材料とこれを補助する発光層用ドーパント材料を含む。発光層用ドーパント材料は、例えば発光効率を向上させたり、発光波長を変化させたりするために加えられる。蛍光及び/又はりん光を発光する発光材料は、低分子化合物であってもよいし、高分子化合物であってもよい。有機機能層7を構成する有機物としては、例えば下記の色素材料、金属錯体材料、高分子材料等の蛍光及び/又はりん光を発光する発光材料、又は、下記の発光層用ドーパント材料等を挙げることができる。
(色素材料)
 色素材料としては、例えばシクロペンダミン及びその誘導体、テトラフェニルブタジエン及びその誘導体、トリフェニルアミン及びその誘導体、オキサジアゾール及びその誘導体、ピラゾロキノリン及びその誘導体、ジスチリルベンゼン及びその誘導体、ジスチリルアリーレン及びその誘導体、ピロール及びその誘導体、チオフェン化合物、ピリジン化合物、ペリノン及びその誘導体、ペリレン及びその誘導体、オリゴチオフェン及びその誘導体、オキサジアゾールダイマー、ピラゾリンダイマー、キナクリドン及びその誘導体、クマリン及びその誘導体等を挙げることができる。
(金属錯体材料)
 金属錯体材料としては、例えばTb、Eu、Dy等の希土類金属、又はAl、Zn、Be、Pt、Ir等を中心金属に有し、オキサジアゾール、チアジアゾール、フェニルピリジン、フェニルベンゾイミダゾール、キノリン構造等を配位子に有する金属錯体等を挙げることができる。金属錯体としては、例えばイリジウム錯体、白金錯体等の三重項励起状態からの発光を有する金属錯体、アルミニウムキノリノール錯体、ベンゾキノリノールベリリウム錯体、ベンゾオキサゾリル亜鉛錯体、ベンゾチアゾール亜鉛錯体、アゾメチル亜鉛錯体、ポルフィリン亜鉛錯体、フェナントロリンユーロピウム錯体等を挙げることができる。
(高分子材料)
 高分子材料としては、例えばポリパラフェニレンビニレン及びその誘導体、ポリチオフェン及びその誘導体、ポリパラフェニレン及びその誘導体、ポリシラン及びその誘導体、ポリアセチレン及びその誘導体、ポリフルオレン及びその誘導体、ポリビニルカルバゾール及びその誘導体、上記色素材料、又は金属錯体材料を高分子化した材料等を挙げることができる。
(発光層用ドーパント材料)
 発光層用ドーパント材料としては、例えばペリレン及びその誘導体、クマリン及びその誘導体、ルブレン及びその誘導体、キナクリドン及びその誘導体、スクアリウム及びその誘導体、ポルフィリン及びその誘導体、スチリル色素、テトラセン及びその誘導体、ピラゾロン及びその誘導体、デカシクレン及びその誘導体、フェノキサゾン及びその誘導体等を挙げることができる。
 有機機能層7の厚さは、通常約2nm~200nmである。有機機能層7は、例えば、上記のような発光材料を含む塗布液(例えばインク)を用いる塗布法により形成される。発光材料を含む塗布液の溶媒としては、発光材料を溶解するものであれば、限定されない。上記のような発光材料は、真空蒸着によって形成されてもよい。
[陰極層]
 陰極層9は、有機機能層7の主面(陽極層5に接する面の反対側)及び支持基板3の一方の主面3a上に配置されている。陰極層9の材料としては、例えばアルカリ金属、アルカリ土類金属、遷移金属及び周期表第13族金属等を用いることができる。陰極層9の材料としては、具体的には、例えばリチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属、前記金属のうちの2種以上の合金、前記金属のうちの1種以上と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうちの1種以上との合金、又はグラファイト若しくはグラファイト層間化合物等が用いられる。合金の例としては、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金等を挙げることができる。
 陰極層9としては、例えば、導電性金属酸化物、又は、導電性有機物等から形成される透明導電性電極を用いることができる。導電性金属酸化物としては、具体的には、酸化インジウム、酸化亜鉛、酸化スズ、ITO、IZO等を挙げることができ、導電性有機物としてポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等を挙げることができる。陰極層9は、2層以上を積層した積層体で構成されていてもよい。後述の電子注入層が陰極層9として用いられる場合もある。
 陰極層9の厚さは、電気伝導度、耐久性を考慮して設定される。陰極層9の厚さは、通常、10nm~10μmであり、好ましくは20nm~1μmであり、さらに好ましくは50nm~500nmである。
 陰極層9の形成方法としては、例えば、インクジェット法、スリットコーター法、グラビア印刷法、スクリーン印刷法、スプレーコーター法等の塗布法、真空蒸着法、スパッタリング法、金属薄膜を熱圧着するラミネート法等を挙げることができ、真空蒸着法、又はスパッタリング法が好ましい。
[封止部材]
 封止部材11は、少なくとも有機機能層7を覆うように有機EL素子1において最上部に配置されている。封止部材11は、粘接着部17と、封止基材19と、を有している。封止部材11は、粘接着部17と、バリア層18と、封止基材19と、を有していてもよい。封止部材11が、粘接着部17、バリア層18及び封止基材19を有している場合、封止部材11は、粘接着部17、バリア層18及び封止基材19の順番で積層されている。粘接着部17は、前記構成においては、バリア層18及び封止基材19を陽極層5、有機機能層7及び陰極層9に接着させるために用いられる。
 粘接着部17は、具体的には、感圧接着剤である。感圧接着剤は、好ましくは、α-オレフィン系樹脂及び粘着付与剤を含有する。α-オレフィン系樹脂及び粘着付与剤に特に限定は無く、従来公知のものを使用することができる。α-オレフィン系樹脂としては、例えば、ポリエチレン、ポリイソブチレン等の単独重合体又は共重合体等が挙げられる。該共重合体としては、2種以上のα-オレフィンを重合して得られる共重合体、α-オレフィンとα-オレフィン以外の単量体(例えば、スチレン、非共役ジエン等)とを重合して得られる共重合体等が挙げられる。感圧接着剤は、添加剤を含有していてもよい。添加剤としては、例えば、吸湿性金属酸化物(例えば、酸化カルシウム、焼成ハイドロタルサイト等)、吸湿性金属酸化物以外の無機充填剤(例えば、シリカ、マイカ、タルク等)が挙げられる。
 バリア層18若しくは封止基材19は、ガスバリア機能、特に水分バリア機能を有する。バリア層18としては、例えばケイ素酸化物(SiO)、アルミニウム酸化物(Al)又はチタン酸化物(TiO)で形成される膜が挙げられる。封止基材19は、導電性を有する材料を含む。封止基材19は、例えば、金属箔を含む。金属箔としては、バリア性の観点から、銅、アルミニウム、又はステンレスが好ましい。金属箔の厚さは、ピンホール抑制の観点から厚い程好ましいが、フレキシブル性の観点も考慮すると10μm~50μmが好ましい。封止基材19が金属箔を含む場合、バリア層18を省略してもよい。
 封止基材19は、金属箔のみで形成されていてもよく、金属箔を含む複数の層で形成されてもよい。封止基材19が複数の層で形成される場合、封止基材19における、バリア層18若しくは粘接着部17が形成された面の反対側の面には、例えば、プラスチックフィルムが接着されていてもよい。接着されるプラスチックフィルムとしては、例えば、ポリエーテルスルホン(PES);ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂;ポリエチレン(PE)、ポリプロピレン(PP)、環状ポリオレフィン等のポリオレフィン樹脂;ポリアミド樹脂;ポリカーボネート樹脂;ポリスチレン樹脂;ポリビニルアルコール樹脂;エチレン-酢酸ビニル共重合体のケン化物;ポリアクリロニトリル樹脂;アセタール樹脂;ポリイミド樹脂;エポキシ樹脂等が挙げられる。これにより、導電性を有する材料が外部に露出しない形態を実現することができる。
 本実施形態では、図2に示されるように、粘接着部17は、封止基材19よりも突出している。具体的には、粘接着部17は、突出部17a,17bを有する。突出部17a,17bは、陽極層5及び陰極層9の露出部分が配置されている第1方向(図1に左右方向)に直交する第2方向(図2の左右方向)おいて、粘接着部17に設けられている。突出部17a,17bは、封止基材19の端面よりも上記第2方向において外側に突出している。突出部17a,17bの突出量は、適宜設定される。
[有機EL素子の製造方法]
 続いて、上記構成を有する有機EL素子1の製造方法について説明する。
 支持基板3が可撓性を有し、長手方向に延在する基板である形態では、図3に示される基板乾燥工程S01から貼合工程S05まで、ロールツーロール方式が採用され得る。
 有機EL素子1を製造する場合、最初に、支持基板3を加熱し、乾燥させる(基板乾燥工程S01)。次に、乾燥された支持基板3の一方の主面3a上に、陽極層5を形成する(陽極層形成工程(形成工程)S02)。陽極層5は、陽極層5の説明の際に例示した形成方法で形成し得る。支持基板3上には、陽極層5が、支持基板3の長手方向において所定の間隔をあけて複数形成されると共に、支持基板3の幅方向(一方向に直交する他方向)において所定の間隔をあけて複数(本実施形態では2つ)形成される。
 続いて、陽極層5上に、有機機能層7を形成する(有機機能層形成工程(形成工程)S03)。有機機能層7は、有機機能層7の説明の際に例示した形成方法で形成し得る。次に、有機機能層7上に、陰極層9を形成する(陰極層形成工程(形成工程)S04)。陰極層9は、陰極層9の説明の際に例示した形成方法で形成し得る。以上により、図3に示されるように、支持基板3上には、有機EL部10が、支持基板3の長手方向(図3のY方向)において所定の間隔をあけて複数形成されると共に、支持基板3の幅方向(図3のX方向)において所定の間隔をあけて複数(本実施形態では2つ)形成される。つまり、支持基板3の長手方向に沿って、有機EL部10の列が2列形成される。
 続いて、封止部材11を貼り合わせる(貼合工程S05)。封止部材11は、所定の幅を有し、支持基板3の長手方向に延在する。具体的には、封止部材11は、図4に示されるように、陽極層5及び陰極層9のそれぞれの一部が露出するように幅が設定され、帯状を呈している。封止部材11は、可撓性を有している。封止部材11は、封止基材19の一方の面に粘接着部17が設けられている。封止部材11は、封止基材19の一方の面にバリア層18を介して粘接着部17が形成された後に帯状に切断されてもよいし、封止基材19を帯状に切断した後に封止基材19の一方の面にバリア層18を介して粘接着部17を形成してもよい。
 封止部材11は、陽極層5の一部及び陰極層9の一部が露出するように、有機EL部10上に貼付される。具体的には、封止部材11は、複数の有機EL部10に跨って一方向に沿って貼付される。ロールツーロール方式では、支持基板3を搬送しながら、支持基板3上に形成された有機EL部10と封止部材11とを貼り合わせる。支持基板3と封止部材11とは、ローラ(図示省略)の間を通過する。これにより、支持基板3及び封止部材11は、ローラによって、圧力が付与される。これにより、粘接着部17と有機EL部10とが密着する。有機EL部10と封止部材11とを貼り合わせるときは、水分濃度の低い環境で行うことが好ましく、特に窒素雰囲気で行われることが好ましい。
 続いて、封止部材11が貼合された複数の有機EL部10を個片化する(裁断工程S06)。図4に示されるように、裁断工程S06では、裁断線Lに沿って支持基板3及び封止部材11を裁断し、封止部材11が貼合された複数の有機EL部10を個片化する。具体的には、図5及び図6に示されるように、支持基板3を支持体100で支持して、裁断刃Bで支持基板3を裁断する。図5は、図4のX方向に沿った断面をY方向から見た図であり、陽極層5及び有機機能層7を含む位置での断面を示している。図6は、図4のX方向に沿った断面をY方向から見た図であり、陽極層5及び有機機能層7を含まない位置での断面を示している。
 図7に示されるように、裁断刃Bは、裁断部50に設けられている。裁断部50は、裁断刃Bと、裁断刃Bを保持する保持部(基部)52と、弾性部材54,55と、を有している。保持部52は、例えば、ベニヤ板等の板部材である。裁断刃Bは、裁断線Lに応じた形状であり、枠状を呈している。本実施形態では、裁断刃Bは、4枚の刃部材が一体に設けられている。裁断刃Bは、例えば、裁断刃Bの保持部52側の端部が保持部52に埋設されることにより、保持部52に保持されている。他の一例として、裁断刃Bは、NC(numerical control)加工機を使用して保持部52の一部を切削して削り出された刃であって、裁断刃Bと保持部52とが一体となっていてもよい。この場合、裁断刃Bと保持部52とは同じ素材になり得る。
 図8に示されるように、裁断刃Bは、片刃の構造を有する。本明細書において、片刃の構造とは、一方の刃面及び他方の刃面が傾斜しており、他方の刃面は一方の刃面よりも傾斜角度が小さい構造である。裁断刃Bは、第1刃面Ba及び第2刃面Bbを有する。
 第1刃面Baは、裁断刃Bの高さ方向に沿った直線に対して傾斜角度θ1を成している。第2刃面Bbは、裁断刃Bの高さ方向に沿った直線に対して傾斜角度θ2を成している。第1刃面Baの傾斜角度θ1は、第2刃面Bbの傾斜角度θ2よりも大きい。言い換えれば、第2刃面Bbの傾斜角度θ2は、第1刃面Baの傾斜角度θ1よりも小さい。裁断された後において、粘接着部17を封止基材19よりも外側に突出させやすくする観点からは、傾斜角度θ1は、15°よりも大きいことが好ましく、30°以上であることがより好ましい。封止基材19の変形を抑制する観点からは、傾斜角度θ1は、50°よりも小さいことが好ましく、40°以下であることがより好ましい。裁断工程S06において、封止部材11の変形を抑制する観点からは、傾斜角度θ2は、0°以上であり且つ15°よりも小さいことが好ましい。
 一実施形態では、裁断刃Bの第1刃面Baは、裁断刃Bの高さ方向に沿った直線に対して約40°の傾斜角度θ1を成している。第2刃面Bbは、裁断刃Bの高さ方向に沿った直線に対して約1°の傾斜角度θ2を成している。すなわち、裁断刃Bの第2刃面Bbは、裁断刃Bの進入方向に対して、第1刃面Baよりも傾斜角度が小さい。
 裁断刃は、裁断対象物に進入すると、裁断対象物から圧力が加えられる。具体的には、裁断対象物に裁断刃が進入すると、裁断刃の幅方向において圧力が加えられる。一方の刃面が傾斜しており、他方の刃面が傾斜していない構造を有する裁断刃においては、裁断刃が進入するにつれて、傾斜している面に対して加わる圧力が大きくなる。このとき、傾斜していない面には、圧力がほとんど加えられない。そのため、裁断刃が裁断対象物に進入するにつれて、傾斜している面に対する圧力が大きくなり、裁断刃が進入方向に対して曲げられることがある。その結果、裁断対象物を精度良く裁断することができないおそれがある。
 本実施形態の裁断刃Bでは、第1刃面Ba及び第2刃面Bbの両面が傾斜している。これにより、第1刃面Ba及び第2刃面Bbの両面が圧力を受ける。これにより、封止部材11に対して、第1刃面Baが受ける圧力の一部を、第2刃面Bbが受ける圧力で相殺することができる。したがって、裁断刃Bを真っ直ぐに進入させることができる。その結果、裁断刃Bでは、封止部材11を精度良く裁断することができる。
 裁断刃Bは、第2刃面Bbが内側を向くように配置されている。本実施形態では、枠状を呈する裁断刃Bにおいて、第2刃面Bbが互いに対向するように配置されている。本実施形態の裁断刃Bでは、第2刃面Bbが弾性部材54と対向するように(第1刃面Baが弾性部材55と対向するように)配置されている。
 弾性部材54,55は、例えば、ゴム、スポンジ等が挙げられる。弾性部材54,55は、保持部52に固定されている。一実施形態として、裁断工程S06において、支持基板3を押さえ付けやすくする観点で、弾性部材54,55は、裁断刃Bを間に挟む位置に対向して一対配置されている。本実施形態では、弾性部材54,55の組が、所定の間隔をあけて複数(ここでは10組)設けられている。弾性部材54,55の先端部(保持部52に接合されている端部とは反対側の端部)は、図7に示されるように、裁断刃Bの先端(刃先)よりも突出している。
 弾性部材54,55の作用(機能)について、図9(a)~図9(c)を参照して説明する。図9(a)~図9(c)では、支持基板3を裁断する形態を一例に説明する。図9(a)に示されるように、切断箇所に裁断刃Bを位置させる。このとき、裁断刃Bよりも先端部が突出する弾性部材54,55が支持基板3を押さえ付ける。図9(b)に示されるように、裁断刃Bを支持基板3に進入させると、弾性部材54,55が支持基板3と保持部52との間に挟まれ、保持部52により押圧されることで縮む。そして、図9(c)に示されるように、裁断刃Bが支持基板3を裁断して元の位置に戻ると、弾性部材54,55も伸びて元の状態に戻る。裁断刃Bが支持基板3から退避するとき、弾性部材54,55により支持基板3が押圧されている。これにより、裁断刃Bが支持基板3から引き上げられるときに、裁断刃Bに支持基板3が引っ張られて、支持基板3が反り上がることが抑制される。裁断刃Bが封止部材11、有機EL部10及び支持基板3を切断するときには、封止部材11の封止基材19が反り上がることを抑制できる。裁断工程S06では、以上のような構成を有する裁断部50を複数用いる。これにより、裁断工程S06では、一度に複数の有機EL素子1を個片化できる。
 裁断工程S06では、図5及び図6に示されるように、複数の有機EL部10が形成された支持基板3を支持体100で支持させる。そして、裁断部50の裁断刃Bを、支持基板3の一方の主面3a側、封止部材11が貼合されている領域は封止部材11側から進入させる。裁断刃Bは、第2刃面Bbが有機EL部10側(有機EL部10が形成されている側)を向くように封止部材11に進入させる。裁断刃Bは、その先端が支持基板3の他方の主面3bに到達する位置まで進行させる。裁断刃Bの進行中、裁断刃Bの第1刃面Ba側から加わる圧力により、第1刃面Ba側に位置する粘接着部は第2刃面Bb側に移動する。封止部材11の裁断後、第2刃面Bb側に移動した粘接着部が、裁断前の位置に戻ろうとし、これにより、粘接着部17が封止基材19よりも外側に突出する。以上の工程を経て、封止部材11が貼合された複数の有機EL部10が個片化される。以上により、図1及び図2に示される有機EL素子1が製造される。
 以上説明したように、本実施形態に係る有機EL素子1の製造方法では、裁断工程S06では、封止部材11側から裁断刃Bを進入させると共に、裁断された後の粘接着部17が封止基材19よりも外側に突出するように封止部材11を裁断する。このように、粘接着部17を封止基材19よりも外側に突出させることにより、導電性を有する材料を含む封止基材19が裁断刃Bに引きずられた場合であっても、粘接着部17によって、陽極層5及び/又は陰極層9と封止部材11とが接触する(電気的に接続される)ことを回避できる。したがって、封止基材19を介して、陽極層5と陰極層9とが電気的に接続されて短絡することを防止できる。その結果、有機EL素子1の製造方法では、信頼性の低下を抑制できる。
 本実施形態に係る有機EL素子1の製造方法では、裁断工程S06では、片刃の構造を有する裁断刃Bを用い、裁断刃Bにおいて当該裁断刃Bの進入方向に対して傾斜角度が小さい第2刃面Bbを有機EL部10側に位置させて、裁断刃Bを封止部材11に進入させる。裁断刃Bは、封止部材11に進入する際、封止部材11に対して圧力を加える。裁断刃Bが封止部材11に進入するにつれて、裁断刃Bの傾斜している面が封止部材11に加える圧力は大きくなる。裁断刃Bが加える圧力は、進行方向に対して傾斜角度が第1刃面Baの方が、傾斜角度が小さい第2刃面Bbに比べて大きくなる。したがって、裁断刃Bにおいて傾斜角度が小さい第2刃面Bbを有機EL部10側に位置させて裁断刃Bを封止部材11に進入させると、裁断刃Bの傾斜角度が大きい第1刃面Ba側から加わる圧力により、第1刃面Ba側に位置する封止部材11中の粘接着部は第2刃面Bb側に移動する。封止部材11の裁断後、第2刃面Bb側に移動した粘接着部が、裁断前の位置に戻ろうとし、その結果、粘接着部17が封止基材19よりも外側に突出する。このようにして、粘接着部17を封止基材19よりも外側に突出させることができる。
 本実施形態に係る製造方法等で得られた有機EL素子1は、粘接着部17が封止基材19よりも外側に突出している。このように、粘接着部17が封止基材19よりも外側に突出していることによって、導電性を有する材料を含む封止基材19が裁断刃Bに引きずられた場合であっても、陽極層5及び/又は陰極層9と封止部材11とが接触する(電気的に接続される)ことを回避できる。したがって、封止基材19を介して、陽極層5と陰極層9とが電気的に接続されて短絡することを防止できる。その結果、有機EL素子1では、信頼性の低下を抑制できる。
 以上、本発明の実施形態について説明してきたが、本発明は必ずしも上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で様々な変更が可能である。
 例えば、上記実施形態では、陽極層5と陰極層9との間に発光層を含む有機機能層7が配置された有機EL素子1を例示した。しかし、有機機能層7の構成はこれに限定されない。有機機能層7は、以下の構成を有していてもよい。
(a)(陽極層)/発光層/(陰極層)
(b)(陽極層)/正孔注入層/発光層/(陰極層)
(c)(陽極層)/正孔注入層/発光層/電子注入層/(陰極層)
(d)(陽極層)/正孔注入層/発光層/電子輸送層/電子注入層/(陰極層)
(e)(陽極層)/正孔注入層/正孔輸送層/発光層/(陰極層)
(f)(陽極層)/正孔注入層/正孔輸送層/発光層/電子注入層/(陰極層)
(g)(陽極層)/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/(陰極層)
(h)(陽極層)/発光層/電子注入層/(陰極層)
(i)(陽極層)/発光層/電子輸送層/電子注入層/(陰極層)
 ここで、記号「/」は、記号「/」を挟む各層が隣接して積層されていることを示す。上記(a)に示す構成は、上記実施形態における有機EL素子1の構成を示している。
 正孔注入層、正孔輸送層、電子輸送層及び電子注入層のそれぞれの材料は、公知の材料を用いることができる。正孔注入層、正孔輸送層、電子輸送層及び電子注入層のそれぞれは、例えば、有機機能層7と同様に塗布法により形成できる。
 ここで、電子注入層は、アルカリ金属若しくはアルカリ土類金属、又は、アルカリ金属若しくはアルカリ土類金属の酸化物、フッ化物を含有していてもよい。電子注入層の成膜法としては、塗布法、真空蒸着法等を挙げることができる。酸化物及びフッ化物の場合は、電子注入層の厚さは0.5nm~20nmが好ましい。電子注入層は、特に絶縁性が強い場合は、有機EL素子1の駆動電圧上昇を抑制する観点からは、薄膜であることが好ましく、その厚さは、例えば、0.5nm~10nmであることが好ましく、電子注入性の観点からは、2nm~7nmであることが好ましい。
 有機EL素子1は、単層の有機機能層7を有していてもよいし、2層以上の有機機能層7を有していてもよい。上記(a)~(i)の層構成のうちのいずれか1つにおいて、陽極層5と陰極層9との間に配置された積層構造を「構造単位A」とすると、2層の有機機能層7を有する有機EL素子の構成として、例えば、下記(j)に示す層構成を挙げることができる。2個ある(構造単位A)の層構成は、互いに同じであっても、異なっていてもよい。
(j)陽極層/(構造単位A)/電荷発生層/(構造単位A)/陰極層
 ここで電荷発生層とは、電界を印加することにより、正孔と電子とを発生する層である。電荷発生層としては、例えば酸化バナジウム、ITO、酸化モリブデン等から形成される薄膜を挙げることができる。
 「(構造単位A)/電荷発生層」を「構造単位B」とすると、3層以上の有機機能層7を有する有機EL素子の構成として、例えば、以下の(k)に示す層構成を挙げることができる。
(k)陽極層/(構造単位B)x/(構造単位A)/陰極層
 記号「x」は、2以上の整数を表し、「(構造単位B)x」は、(構造単位B)がx段積層された積層体を表す。複数ある(構造単位B)の層構成は同じでも、異なっていてもよい。
 電荷発生層を設けずに、複数の有機機能層7を直接的に積層させて有機EL素子を構成してもよい。
 上記実施形態では、支持基板3上に陽極層5を形成する形態を一例に説明した。しかし、支持基板3上に陽極層5を予め形成したロールを用いてもよい。
 上記実施形態では、有機EL素子1の製造方法において、支持基板3を加熱して乾燥させる工程を実施する形態を一例に説明した。しかし、支持基板3の乾燥工程は必ずしも実施しなくてもよい。
 上記実施形態では、裁断工程S06において裁断部50を用いる形態を一例に説明した。しかし、裁断工程S06に用いる裁断刃は、弾性部材54,55を備えていなくてもよい。すなわち、裁断刃を単体で用いてもよい。
 上記実施形態では、図7に示される裁断部50を用いる形態を一例に説明した。しかし、裁断部は、図10に示される構成であってもよい。図10に示されるように、裁断部50Aは、裁断刃Bと、保持部52と、弾性部材54A,55Aと、を有している。裁断部50Aは、弾性部材54A,55Aの構成が、裁断部50と異なる。弾性部材54A,55Aは、裁断刃Bを間に挟む位置に対向して配置されている。弾性部材54Aは、裁断刃Bの外側に位置し、所定の間隔をあけて複数(ここでは8個)設けられている。弾性部材55Aは、枠状の裁断刃Bの内側に配置されており、裁断刃Bに沿った形状(矩形状)を呈している。弾性部材54A,55Aの先端部(保持部52に接合されている端部とは反対側の端部)は、図10に示されるように、裁断刃Bの先端よりも突出している。
 上記実施形態では、弾性部材54,55(54A,55A)が、裁断刃Bを挟む位置に対向して一対で配置されている形態を一例に説明した。しかし、弾性部材は、片方の刃面側にのみ配置されていてもよい。例えば、裁断刃Bが、図7又は図10に示されるように、枠状を呈している場合、裁断する際に枠内からフィルムを排出できるようにする観点で、弾性部材は、枠の内側に配置される弾性部材54又は弾性部材54Aのみとしてもよい。
 上記実施形態では、図4に示されるように、支持基板3上に、支持基板3の長手方向(図4のY方向)において所定の間隔をあけて有機EL部10を複数形成すると共に、支持基板3の幅方向(図4のX方向)において所定の間隔をあけて有機EL部10を複数形成する形態を一例に説明した。つまり、支持基板3上に有機EL部10を2列(複数列)形成する形態を一例に説明した。しかし、有機EL部10は、少なくとも、支持基板3上に1列形成されればよい。
 上記実施形態では、封止部材11の裁断に片刃の裁断刃Bを用いて、粘接着部17を封止基材19よりも外側に突出させる形態を一例に説明した。しかし、粘接着部17を突出させるための方法は、これに限定されない。
 上記実施形態では、第1電極層として陽極層を例示し、第2電極層として陰極層を例示したが、第1電極層が陰極層であり、第2電極層が陽極層であってもよい。すなわち、陰極層が支持基板側に配置されていてもよい。
 上記実施形態では、有機デバイスとして、有機EL素子を一例に説明した。有機デバイスは、有機薄膜トランジスタ、有機フォトディテクタ、有機薄膜太陽電池等であってもよい。
 以下、実施例に基づいて本発明をより具体的に説明するが、本発明はこれに限定されない。
[実施例1]
 厚み38μmのPETフィルムを、厚さ30μmのアルミ箔(JIS 1N30:硬質)に接着した後、アルミ箔の露出した面にオレフィン系感圧接着剤を30μmの厚みで塗布した。銅スパッタ膜が成膜された厚さ100μmのPENフィルムのスパッタ膜成膜面上に、上記接着剤を塗布したアルミ箔を貼合して、PETフィルム、アルミ箔、感圧接着剤、銅スパッタ膜及びPENフィルムが積層された積層体を得た。当該積層体において、PETフィルム及びアルミ箔は封止基材19に相当し、銅スパッタ膜は陰極層9に相当し、PENフィルムは支持基板3に相当する。
 裁断刃は、片刃の構造であり、刃高1.3mm、頂角(第1刃面Baと第2刃面Bbとが成す角度)が30°となるようにNC加工機により削り出し、ニッケルメッキによって表面をコーティングした。裁断刃は、一方の刃面(第2刃面Bb)が保持部52(図10参照)に対して垂直となるように、すなわちθ1=30°、θ2=0°となるように、保持部52に配置した。弾性部材54A,55A(図10参照)は、積層体の裁断時において、保持部52がPETフィルムに最も接近したときに当該フィルムの表面を約1.3kg/cmで加圧する材料を選択した。
 積層体を、裁断刃で裁断した。具体的には、裁断刃を、PETフィルム、アルミ箔、感圧接着剤及びPENフィルムの順番で進行させて、積層体を裁断した。積層体の断面を、ダブルスキャン高精度レーザ測定器(製品名:LT-9000、株式会社キーエンス製)で測定した。積層体の断面は、上記一方の刃面側の断面を測定した。測定結果を、図11に示す。図11では、横軸は位置(Position)[μm]を示しており、縦軸は高さ(Hight)[μm]を示している。横軸において、「0」は、感圧接着剤が貼合されていないPENフィルムの一方の表面位置である。図11において、実線は、片刃(θ1=30°、θ2=0°)の測定結果を示しており、破線は、両刃(θ1=15°、θ2=15°)の測定結果を示している。
 図11に示されるように、裁断刃として片刃を用いた場合には、積層体の裁断後、PENフィルムの断面に対して、感圧接着剤が約20μm突出していた。裁断刃として両刃を用いた場合には、片刃の場合よりも感圧接着剤の突出量が小さかった。したがって、裁断刃として片刃を用いて積層体を裁断することにより、より確実に、感圧接着剤をPENフィルムよりも外側に突出させることができることが分かった。
[実施例2]
 実施例1と同様に、PETフィルム、アルミ箔、感圧接着剤及びPENフィルムが積層された積層体を得た。
 裁断刃は、片刃の構造であり、刃高1.3mm、頂角(第1刃面Baと第2刃面Bbとが成す角度)が40°となるようにNC加工機により削り出し、ニッケルメッキによって表面をコーティングした。裁断刃は、一方の刃面(第2刃面Bb)が保持部52(図10参照)に対して垂直となるように、すなわちθ1=40°、θ2=0°となるように、保持部52に配置した。弾性部材54A,55A(図10参照)は、積層体の裁断時において、保持部52がPETフィルムに最も接近したときに当該フィルムの表面を約1.3kg/cmで加圧する材料を選択した。
 実施例1と同様の条件で、積層体を裁断した。積層体の断面を、ダブルスキャン高精度レーザ測定器(製品名:LT-9000、株式会社キーエンス製)で測定した。積層体の断面は、上記一方の刃面側の断面を測定した。測定結果を、図12に示す。図12では、横軸は位置(Position)[μm]を示しており、縦軸は高さ(Hight)[μm]を示している。横軸において、「0」は、感圧接着剤が貼合されていないPENフィルムの一方の表面位置である。
 図12に示されるように、積層体の裁断後、PENフィルムの断面に対して、感圧接着剤が約20μm突出していた。
 1…有機EL素子(有機デバイス)、3…支持基板、3a…一方の主面、5…陽極層(第1電極層)、7…有機機能層、9…陰極層(第2電極層)、11…封止部材、17…粘接着部、19…封止基材、B…裁断刃、Ba…第1刃面、Bb…第2刃面。

Claims (3)

  1.  一方向に延在する支持基板の一方の主面上に、少なくとも第1電極層、有機機能層及び第2電極層をこの順番で積層した有機デバイス部を、前記一方向において所定の間隔をあけて複数形成する形成工程と、
     各前記有機デバイス部における前記第1電極層及び前記第2電極層それぞれの一部が露出し且つ複数の前記有機デバイス部に跨がるように、前記一方向に延在する封止部材を前記一方向に沿って貼り合わせる貼合工程と、
     前記封止部材が貼合された複数の前記有機デバイス部を個片化する裁断工程と、を含み、
     前記貼合工程では、導電性を有する材料を含む封止基材と、感圧接着剤を含む粘接着部とを有する前記封止部材を前記有機デバイス部に貼り合わせ、
     前記裁断工程では、前記封止部材側から裁断刃を進入させると共に、裁断された後の前記粘接着部が前記封止基材よりも外側に突出するように前記封止部材を裁断する、有機デバイスの製造方法。
  2.  前記裁断工程では、片刃の構造を有する前記裁断刃を用い、前記裁断刃において当該裁断刃の進入方向に対して傾斜角度が小さい方の面を前記有機デバイス部側に位置させて、前記裁断刃を前記封止部材に進入させる、請求項1に記載の有機デバイスの製造方法。
  3.  支持基板上に、少なくとも第1電極層、有機機能層及び第2電極層がこの順番で積層された有機デバイス部と、
     前記有機デバイス部における前記第1電極層及び前記第2電極層それぞれの一部が露出するように、前記有機デバイス部上に配置された封止部材と、を備え、
     前記封止部材は、少なくとも、導電性を有する材料を含む封止基材と、感圧接着剤を含む粘接着部とが積層されて構成されており、
     前記粘接着部は、前記封止基材よりも外側に突出している、有機デバイス。
PCT/JP2018/029110 2017-08-02 2018-08-02 有機デバイスの製造方法及び有機デバイス WO2019027014A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/635,033 US20200243803A1 (en) 2017-08-02 2018-08-02 Method for manufacturing organic device, and organic device
EP18841529.3A EP3664580A4 (en) 2017-08-02 2018-08-02 ORGANIC DEVICE AND ORGANIC DEVICE MANUFACTURING PROCESS
KR1020207005108A KR20200036885A (ko) 2017-08-02 2018-08-02 유기 디바이스의 제조 방법 및 유기 디바이스
JP2019534586A JPWO2019027014A1 (ja) 2017-08-02 2018-08-02 有機デバイスの製造方法及び有機デバイス
CN201880049596.0A CN110945968A (zh) 2017-08-02 2018-08-02 有机器件的制造方法及有机器件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017150139 2017-08-02
JP2017-150139 2017-08-02

Publications (1)

Publication Number Publication Date
WO2019027014A1 true WO2019027014A1 (ja) 2019-02-07

Family

ID=65232832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029110 WO2019027014A1 (ja) 2017-08-02 2018-08-02 有機デバイスの製造方法及び有機デバイス

Country Status (6)

Country Link
US (1) US20200243803A1 (ja)
EP (1) EP3664580A4 (ja)
JP (1) JPWO2019027014A1 (ja)
KR (1) KR20200036885A (ja)
CN (1) CN110945968A (ja)
WO (1) WO2019027014A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073332A (ja) 2005-09-07 2007-03-22 Konica Minolta Holdings Inc 有機エレクトロルミネッセンスパネル、有機エレクトロルミネッセンスパネルの製造方法
JP2008077855A (ja) * 2006-09-19 2008-04-03 Konica Minolta Holdings Inc 有機エレクトロルミネッセンスパネル、有機エレクトロルミネッセンスパネルの製造方法
JP2010170776A (ja) * 2009-01-21 2010-08-05 Konica Minolta Holdings Inc 有機エレクトロニクス素子およびその製造方法
WO2015016082A1 (ja) * 2013-07-29 2015-02-05 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子の製造方法、製造装置及び有機エレクトロルミネッセンス素子
WO2016103889A1 (ja) * 2014-12-25 2016-06-30 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子の製造方法及び有機エレクトロルミネッセンス素子
JP2017052964A (ja) * 2008-12-03 2017-03-16 テーザ・ソシエタス・ヨーロピア 電子的装置のカプセル化方法
JP6393362B1 (ja) * 2017-04-25 2018-09-19 住友化学株式会社 有機デバイスの製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010067721A1 (ja) * 2008-12-10 2010-06-17 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子
US20100167002A1 (en) * 2008-12-30 2010-07-01 Vitex Systems, Inc. Method for encapsulating environmentally sensitive devices

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073332A (ja) 2005-09-07 2007-03-22 Konica Minolta Holdings Inc 有機エレクトロルミネッセンスパネル、有機エレクトロルミネッセンスパネルの製造方法
JP2008077855A (ja) * 2006-09-19 2008-04-03 Konica Minolta Holdings Inc 有機エレクトロルミネッセンスパネル、有機エレクトロルミネッセンスパネルの製造方法
JP2017052964A (ja) * 2008-12-03 2017-03-16 テーザ・ソシエタス・ヨーロピア 電子的装置のカプセル化方法
JP2010170776A (ja) * 2009-01-21 2010-08-05 Konica Minolta Holdings Inc 有機エレクトロニクス素子およびその製造方法
WO2015016082A1 (ja) * 2013-07-29 2015-02-05 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子の製造方法、製造装置及び有機エレクトロルミネッセンス素子
WO2016103889A1 (ja) * 2014-12-25 2016-06-30 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子の製造方法及び有機エレクトロルミネッセンス素子
JP6393362B1 (ja) * 2017-04-25 2018-09-19 住友化学株式会社 有機デバイスの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3664580A4

Also Published As

Publication number Publication date
EP3664580A1 (en) 2020-06-10
CN110945968A (zh) 2020-03-31
EP3664580A4 (en) 2021-02-24
JPWO2019027014A1 (ja) 2020-08-20
US20200243803A1 (en) 2020-07-30
KR20200036885A (ko) 2020-04-07

Similar Documents

Publication Publication Date Title
WO2017057241A1 (ja) 有機el素子及び有機el素子の製造方法
JP6393362B1 (ja) 有機デバイスの製造方法
JP6284670B1 (ja) 有機デバイスの製造方法
JP6744130B2 (ja) 有機デバイスの製造方法
WO2019027014A1 (ja) 有機デバイスの製造方法及び有機デバイス
JP6559758B2 (ja) 電子デバイスの製造方法
US11108028B2 (en) Manufacturing method for organic electronic device
JP6647237B2 (ja) 有機el素子及び有機el素子の製造方法
JP6375016B1 (ja) 電極付き基板、積層基板及び有機デバイスの製造方法
JP6129938B1 (ja) 有機デバイスの製造方法及び有機デバイス用基板
WO2017154575A1 (ja) 有機デバイスの製造方法
WO2017130955A1 (ja) 有機el素子
JP6097369B1 (ja) パターンの製造方法
CN108029176B (zh) 有机电子设备的制造方法及密封构件的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18841529

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019534586

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207005108

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018841529

Country of ref document: EP

Effective date: 20200302