WO2019026982A1 - Basic aluminum chloride solution and method for producing same - Google Patents

Basic aluminum chloride solution and method for producing same Download PDF

Info

Publication number
WO2019026982A1
WO2019026982A1 PCT/JP2018/028961 JP2018028961W WO2019026982A1 WO 2019026982 A1 WO2019026982 A1 WO 2019026982A1 JP 2018028961 W JP2018028961 W JP 2018028961W WO 2019026982 A1 WO2019026982 A1 WO 2019026982A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum chloride
basic aluminum
less
basicity
chloride solution
Prior art date
Application number
PCT/JP2018/028961
Other languages
French (fr)
Japanese (ja)
Inventor
啓之 大森
俊太 古谷
真聖 長友
章史 八尾
敦 高木
将功 塚本
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Publication of WO2019026982A1 publication Critical patent/WO2019026982A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/48Halides, with or without other cations besides aluminium
    • C01F7/56Chlorides
    • C01F7/57Basic aluminium chlorides, e.g. polyaluminium chlorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents

Definitions

  • the present invention relates to a basic aluminum chloride solution used as a coagulant and the like, and a method for producing the same.
  • Basic aluminum chloride (Poly Aluminum Chloride; PAC) is a coagulant widely used along with the sulfate band for the purpose of purification of raw water and the like.
  • This PAC is an inorganic polymer generally represented by [Al 2 (OH) n Cl (6-n) ] m (0 ⁇ n ⁇ 6, 10 ⁇ m).
  • the ratio of OH to Al in this polymer is referred to as the basicity, and those having a basicity of 45 or more and 60 or less are widely used for raw water treatment.
  • PAC is stored in the form of an aqueous solution or in the form of powder.
  • PAC is originally produced in the form of an aqueous solution in many cases, and usually, it is stored or transported in the form of an aqueous solution, and a method of introducing it into raw water to be treated as an aqueous solution of PAC (hereinafter sometimes referred to as "PAC solution") Will be adopted.
  • the PAC solution is mixed with raw water using a large pump or stirrer in a water purification plant to be used. Therefore, PAC solutions with extremely high viscosity can load these devices.
  • PAC solutions are required to have no deterioration in performance or increase in viscosity for at least half a year or more.
  • a method for producing PAC (1) a method of dissolving a readily soluble alumina gel in hydrochloric acid or an aluminum salt of hydrochloric acid to obtain PAC, (2) adding a calcium compound to a mixture of aluminum chloride and aluminum sulfate Or calcium chloride and calcium carbonate are added to aluminum sulfate and sulfate ion is removed as calcium sulfate (gypsum) to obtain PAC, (3) Heating aluminum hydroxide, which is poorly soluble in hydrochloric acid at normal temperature and pressure, There is a method of reacting with hydrochloric acid in a pressurized atmosphere to obtain PAC.
  • a method of mixing a low basicity PAC solution and an alumina gel which is an improvement of the above-mentioned method (1), has mainly been performed.
  • a PAC solution and an alkaline solution having a basicity of less than 50 are simultaneously poured into a tensioned reaction vessel while maintaining the pH in the range of 6 to 9 under stirring to produce an alumina gel.
  • Patent Document 2 a basic aluminum chloride solution and a sodium aluminate solution are mixed so that the pH is in the range of 4 to 11 to prepare an alumina gel-containing solution, and then a basicity of 25 to 65 in basicity is obtained.
  • a method of mixing for example, with an aluminum chloride solution to produce a PAC solution having a basicity of 45 to 83.5.
  • Patent Documents 3 and 4 have basicities of 60 to 75, respectively, by adding an alkali to the low basicity PAC solution obtained by the above-mentioned methods (3) and (2), respectively. Methods are disclosed to improve on 60-70.
  • Patent Document 1 and Patent Document 2 are characterized in that an alumina gel and a PAC solution are separately produced, and both are mixed and dissolved in the latter stage.
  • the dissolution rate of the alumina gel is low at a low temperature, and the gelation progresses simultaneously with the dissolution at a high temperature. Therefore, in order to improve the basicity while suppressing the increase in viscosity of the PAC solution, it has been necessary to strictly control manufacturing conditions such as the addition speed of the alumina gel and the stirring temperature and speed at the time of dissolution.
  • An object of the present invention is to provide a method for producing a basic aluminum chloride solution having high aggregation performance and high storage stability at low cost, in view of the above problems and circumstances.
  • the present inventors have obtained chloride ion source by adding alkali to PAC solution with low basicity to increase basicity, thereby obtaining chloride ion concentration. It has been found that the PAC solution has high aggregation performance and high storage stability.
  • the present invention includes a basic aluminum chloride represented by [Al 2 (OH) n Cl (6-n) ] m (0 ⁇ n ⁇ 6, m ⁇ 10) in order to solve the above problems.
  • a basicity of 63 or more and 75 or less including a chlorination step of adding a chloride ion source and an alkali to a basic aluminum chloride solution (raw material solution or low basicity PAC solution) having a basicity of less than 63;
  • the present invention also includes a basic aluminum chloride represented by [Al 2 (OH) n Cl (6-n) ] m (0 ⁇ n ⁇ 6, m ⁇ 10), and the base of the basic aluminum chloride
  • a basic aluminum chloride solution target solution or highly basic PAC solution having a degree of 63 or more and 75 or less and a viscosity of 5 mPa ⁇ s or more and 200 mPa ⁇ s or less is provided.
  • the present invention it is possible to provide a production method capable of producing a basic aluminum chloride solution (target solution or highly basic PAC solution) having high aggregation performance and high storage stability at low cost.
  • a basic aluminum chloride (PAC) represented by [Al 2 (OH) n Cl (6-n) ] m (0 ⁇ n ⁇ 6, m ⁇ 10) is included, and the basicity is less than 63.
  • Production of a basic aluminum chloride solution (target solution or high basicity PAC solution) including a chlorine addition step of adding a chloride ion source and an alkali to a basic aluminum chloride solution (raw material solution or low basicity PAC solution) A method is provided.
  • the basic aluminum chloride solution (target solution or highly basic PAC solution) obtained by this method has a basicity of 63 or more and 75 or less, and a viscosity of 5 mPa ⁇ s or more and 200 mPa ⁇ s or less.
  • the PAC solution has a concentration of aluminum oxide in the range of 10 to 11% by mass when PAC contained is converted to aluminum oxide, and the concentration of aluminum oxide can be measured by the method shown in JWWA K 154. is there.
  • the viscosity of a PAC solution refers to the absolute viscosity at room temperature (20-25 ° C.).
  • the value of viscosity a value measured by a viscosity measurement method using a vibration viscometer defined in JIS Z 8803: 2011 is used.
  • the viscosity of the PAC solution is 200 mPa ⁇ s or less, preferably 100 mPa ⁇ s or less, and more preferably 50 mPa ⁇ s or less, in consideration of the load on the pump or stirrer at the time of use.
  • the viscosity of the PAC solution there is no lower limit to the viscosity of the PAC solution, but since the viscosity of pure water is 1 to 2 mPa ⁇ s, the viscosity of the PAC solution obtained by the method of the present invention is usually 5 mPa ⁇ s or more.
  • the PAC solution obtained by the method of the present invention has a viscosity in the range of 5 mPa ⁇ s or more and 200 mPa ⁇ s or less even after the latter half of the production.
  • PAC is said to have the effect of promoting the aggregation of suspended matter and removing suspended matter by neutralizing the charge of suspended matter, but it has been reported in recent years that PAC polymerizes in raw water It is reported that the turbidity removal effect by taking in suspended solids and forming flocs is larger than that of charge neutralization.
  • PAC solution is mixed with raw water after pre-dilution in a water treatment plant.
  • PAC with a high degree of polymerization it is considered that partial polymerization of PAC itself occurs in the stage of the pre-mixing, from the level of activity.
  • the ability to take in suspended solids and the ability to form flocs are considered to be inferior, and as a result, the ability to remove suspended solids is inferior. That is, even if the basicity is the same, the PAC solution having a lower viscosity tends to have a higher turbidity removal effect.
  • the basic aluminum chloride solution (target solution or highly basic PAC solution) obtained by the method of the present invention preferably has a weight ratio of Cl / Al 2 O 3 of 0.75 or more, and 0.85. It is more preferable to be above, and it is particularly preferable to be 0.90 or more.
  • the weight ratio of Cl / Al 2 O 3 is small and the chloride ion concentration is low relative to the Al 2 O 3 concentration, gelation proceeds when the base is highly basified.
  • the weight ratio of Cl / Al 2 O 3 is large and the chloride ion concentration is too high, the performance of the PAC solution is not significantly affected, but the influence on the corrosion of the apparatus and piping becomes remarkable.
  • the weight ratio of / Al 2 O 3 be 1.25 or less.
  • the Al 2 O 3 concentration mentioned here is a value used as a reference value of JWWA, and is a concentration obtained by converting the aluminum ion concentration contained in the PAC solution into Al 2 O 3 .
  • the sulfate ion concentration of the basic aluminum chloride solution marketed it is prescribed
  • the sulfate ion is said to contribute to the improvement of the aggregation performance by forming a crosslinked structure of aluminum ions.
  • the aggregation performance of PAC itself is high, and when the concentration of sulfate ion is too high, aggregation is promoted in part and poly does not sufficiently exhibit turbidity removal effect. In some cases, aggregates of only aluminum chloride may be formed.
  • the sulfate ion concentration of the basic aluminum chloride solution obtained by the method of this invention it is more preferable that it is 2.5 mass% or less.
  • the standard (JWWA K 154: 2016) of the water supply PAC of the Japan Water Works Association is 45 to 75, and the PAC solution having a basicity of less than 63 in the present invention has a basicity of 45 or more and 60 or less for commercial products.
  • PAC solution can be used.
  • the method for producing PAC having a basicity of less than 63 is not particularly limited. For example, after reacting aluminum hydroxide and sulfuric acid in water, mixing calcium chloride and a calcium compound and removing sulfate ion as gypsum is obtained. Can.
  • a calcium compound calcium carbonate, calcium hydroxide, calcium oxide and the like can be used.
  • PAC solution synthesized under a high-temperature and high-pressure atmosphere of over 100 ° C. and over 1 atm by mixing aluminum hydroxide and hydrochloric acid (aqueous solution of hydrogen chloride) and using an autoclave.
  • an alkali such as sodium carbonate is added to a PAC solution having a low basicity (eg, a PAC solution having a basicity of less than 50) as a PAC solution having a basicity of less than 63 (raw material solution or PAC solution having low basicity).
  • a PAC solution having a basicity of less than 63 although the basicity is enhanced by mixing with an alumina gel may be used.
  • the viscosity of a PAC solution having a basicity of less than 63 (low basicity PAC solution), which is a raw material, is preferably 1 mPa ⁇ s to 50 mPa ⁇ s, more preferably 2 mPa ⁇ s to 20 mPa ⁇ s, and 2 mPa ⁇ s.
  • the viscosity is preferably 10 mPa ⁇ s or less.
  • Cl / Al 2 O 3 of PAC solution basicity of less than 63 preferably 0.25 to 0.90, more preferably 0.50 or more 0.87 or less.
  • potassium chloride, calcium chloride, sodium chloride, magnesium chloride and the like can be used as a chloride ion source to be added in the chlorination step, but sodium chloride is preferred from the viewpoint of availability and solubility.
  • the addition amount of the chloride ion source is the amount of chloride ion contained in the PAC solution having a basicity of less than 63 to be added and the weight ratio of Cl / Al 2 O 3 as the target of basic aluminum chloride.
  • the ratio can be appropriately adjusted, but the [Cl] / [Al] molar ratio, which is the ratio of chlorine atoms contained in the chloride ion source to be added to Al atoms in a PAC solution having a basicity of less than 63, is 0.01 or more is preferable and 0.05 or more is especially preferable.
  • the [Cl] / [Al] mol ratio is preferably 1 or less, more preferably 0.8 or less .
  • the alkali added in the chlorination step is preferably a carbonate or hydroxide salt of an alkali metal, a carbonate or hydroxide salt of an alkaline earth metal or the like.
  • carbonates or hydroxides of alkali metals include sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide and the like, and as carbonates or hydroxides of alkaline earth metals, calcium carbonate , Magnesium carbonate, calcium hydroxide, magnesium hydroxide and the like.
  • the inventors have found that the mild reaction between PAC and alkali is important in that the basicity of PAC can be increased while preventing gelation of the PAC solution.
  • concentrated sodium hydroxide with high solubility is added to the PAC solution, the reaction with PAC is severe, and dehydration condensation may locally occur to precipitate aluminum hydroxide.
  • the generated carbonic acid causes stirring to proceed, and it is possible to achieve high basification under relatively mild conditions.
  • an alkaline earth metal carbonate or hydroxide salt having a lower solubility than an alkali metal carbonate or hydroxide salt as the alkali, the reaction of over basification proceeds mildly and residue Can reduce the amount of In particular, it is preferable to use calcium carbonate or calcium hydroxide, which can be obtained relatively inexpensively, as the alkali.
  • the sulfate ion when included in the PAC and calcium carbonate or calcium hydroxide is used as the alkali, the sulfate ion in the PAC, which is said to promote polymerization between PACs to become a larger polymer, is converted to calcium ions Combine and precipitate as gypsum. This reaction mechanism is also considered to contribute to suppression of polymerization between PACs.
  • alkali having a low solubility such as calcium carbonate, calcium hydroxide, magnesium carbonate or magnesium hydroxide and an alkali having a high solubility such as sodium hydroxide or potassium hydroxide in combination.
  • an alkali having a low solubility such as calcium carbonate, calcium hydroxide, magnesium carbonate or magnesium hydroxide
  • an alkali having a high solubility such as sodium hydroxide or potassium hydroxide in combination.
  • a plurality of salts may be added simultaneously or separately separately.
  • the addition amount of the alkali can be appropriately adjusted according to the basicity of the PAC solution having a basicity of less than 63 to be added and the intended basicity of the PAC solution, but the hydroxyl group contained in the alkali to be added 0.1 or more is preferable and, as for [OH] / [Al] molar ratio which is a ratio with respect to the Al atom in PAC solution whose basicity is less than 63, 0.4 or more is especially preferable.
  • the addition amount is too large, the gelation occurs, so that the [OH] / [Al] molar ratio is preferably 1.05 or less, and particularly preferably 1 or less.
  • the alkali is a carbonate
  • the amount of hydroxyl groups can be calculated, assuming that the CO 3 2- ion corresponds to 2 equivalents of the OH - ion.
  • the chloride ion source and the alkali may be added simultaneously or separately separately.
  • an acid addition step of adding an acid to a basic aluminum chloride solution may be performed.
  • Hydrochloric acid, sulfuric acid, nitric acid or the like can be used as the acid to be added in this acid addition step.
  • sulfuric acid causes an increase in sulfate ion, which may increase the viscosity of the PAC solution unexpectedly.
  • nitric acid may fail to satisfy the nitrate nitrogen concentration of 1.0 mg / L or less as defined in the JWWA standard. Therefore, it is preferable to use hydrochloric acid.
  • the [H] / [Al] molar ratio which is the ratio of the hydrogen atom contained in the acid to be added to the Al atom in the PAC solution having a basicity of less than 63, is preferably 0.001 or more, and 0.01 or more Is particularly preferred.
  • the addition amount of the acid to be added is preferably 1 or less and particularly preferably 0.5 or less.
  • the reaction vessel used in the manufacturing method of the present invention it is desirable to use a metal or the like as a glass lining or rubber lining since corrosion by chlorine and acid occurs.
  • the treatment conditions may be heating or cooling, or may be carried out under pressure, but since the reaction rate is industrially fast enough, it may be carried out at normal temperature and pressure.
  • the reaction time is preferably 1 hour or more for sufficient reaction to proceed, and is preferably 24 hours or less from the viewpoint of production efficiency.
  • the inside of the reaction vessel is preferably agitated.
  • alumina gel and PAC solution are separately produced, and compared with the method of mixing and dissolving both in the latter stage. Manufacturing cost can be reduced.
  • the PAC solution is an aqueous solution of PAC, which is an inorganic polymer as shown in FIG.
  • the addition of alkali to the PAC solution raises the activity of PAC by removing the proton from the H 2 O group which is the ligand of the inorganic polymer and converting it to an OH group.
  • the OH group causes a polymerization reaction between the polymers to form a crosslinked structure, whereby the viscosity of the PAC solution is increased, and gelation proceeds when a certain limit is exceeded.
  • Example 1 After adding 8.2 g of sodium carbonate and 4.0 g of sodium chloride to 100 g of the above-mentioned low basicity PAC solution, 2.0 g of a 36% aqueous hydrochloric acid solution (0.72 g as the amount of hydrogen chloride) was added. Then, the undissolved component was removed by filtering the obtained reaction liquid, and the PAC solution which raised basicity was obtained.
  • Example 2 As described in Table 1, a PAC solution with high basicity was obtained in the same manner as in Example 1 except that the addition amount of the base used as the alkali, the addition amount of sodium chloride, and the addition amount of the acid were changed. . Example 5 did not add the acid.
  • Comparative Examples 3 and 4 As described in Table 1, a PAC solution with high basicity was obtained in the same manner as in Example 1 except that the addition amount of the base used as the alkali, the addition amount of sodium chloride, and the addition amount of the acid were changed. . In Comparative Example 3, a part of the PAC solution after half a year was gelated, and the viscosity measurement could not be performed. Moreover, in Comparative Example 4, part of the gelation occurred immediately after the production, and the viscosity measurement and the jar test could not be performed.
  • the Cl concentration was determined by making dilutions of the PAC solution, adding calcium carbonate and potassium chromate solution and back titration with 0.1 M AgNO 3 . Also, the Al 2 O 3 concentration was measured according to the standard of JWWA K 154: 2016. The measured Cl concentration was divided by the Al 2 O 3 concentration to determine the weight ratio of Cl / Al 2 O 3 .
  • viscosity The viscosity was measured at room temperature (25 ° C.) using a vibrating viscometer VISCOMATE VM 100A (manufactured by Seconik Co., Ltd.) based on a viscosity measurement method using a vibrating viscometer described in JIS Z 8803: 2011. In addition, when the viscosity was very high and it could be treated as a solid, it was judged to be gelled.
  • the evaluation results of the PAC solutions obtained in Examples 1 to 6 and Comparative Examples 1 to 4 are shown in Table 1.
  • the viscosity was also evaluated after storage for half a year at room temperature (20 to 25 ° C.) other than immediately after preparation of the PAC solution.
  • the concentration of aluminum oxide was in the range of 10 to 11% by mass for both the low basicity PAC solution and the high basicity PAC solution.
  • the PAC solutions described in Examples 1 to 6 have higher basicity than the PAC solution of basicity 50 of Comparative Example 1, and can suppress the increase in viscosity. Therefore, as a result of the agglutination test, it was possible to remove suspended solids to a low turbidity, and it was shown that the agglutination performance was excellent.
  • the PAC solutions described in Examples 1 to 6 have a viscosity of 15.3 to 102.1 mPa ⁇ s even after storage for half a year, and a maximum of 200 mPa ⁇ s or less at maximum, and a half year at room temperature (20 to 25 ° C.) The increase in viscosity after storage was suppressed to less than twice.
  • Comparative Example 2 by adding a large amount of calcium carbonate when synthesizing a PAC solution from aluminum hydroxide, PAC having a high basicity of 63 in basicity can be obtained, but the viscosity is high and gelation occurs. It has gone.
  • Comparative Example 3 only alkali is added to PAC having a basicity of 50 to increase the basicity, but since a chloride ion source is not added, a high viscosity PAC solution having a viscosity of 214 mPa ⁇ s is obtained. After half a year, it has gelled.
  • Comparative Example 4 when a large amount of alkali was added to the PAC solution having a basicity of 50 and a PAC solution having a basicity of more than 75 was obtained, gelation occurred at the time of production. That is, as in Comparative Examples 2 to 3, the chloride ion source is not added and the basic composition is increased by changing the initial composition of the feed or by adding alkali, or the chloride ion source as in Comparative Example 4 Even if it was added, if it was attempted to be highly basified by an excessive amount of alkali, gelation would occur and it could not be used as a PAC solution.
  • Comparative Example 3 the viscosity is high, the polymerization is already in progress, and it is considered that the ability to take in suspended solids while polymerizing in raw water is inferior, and the aggregation performance is compared with Example 1 having the same basicity. And the aggregation ability was not high as high as the basicity. That is, the PAC solutions of Examples 1 to 6 having high basicity and low viscosity resulted in the most excellent aggregation ability.
  • Example 7 5.5 g of calcium hydroxide and 3.8 g of sodium chloride were added to 100 g of the above-mentioned low basicity PAC solution. Then, the undissolved component was removed by filtering the obtained reaction liquid, and the PAC solution which raised basicity was obtained.
  • Examples 8 to 14 As described in Table 2, a PAC of high basicity is prepared in the same manner as in Example 7 except that the type of base used as the alkali, the addition amount of the base, the addition amount of sodium chloride and the addition amount of the acid are changed. A solution was obtained. The acid was added after the addition of the alkali and sodium chloride, and a 36% aqueous hydrochloric acid solution was used as the acid. In Examples 9 and 13, no acid was added.
  • Example 7 As a result of carrying out overbasing using calcium hydroxide, it is understood that not only a high yield can be obtained, but it also works effectively for the removal of suspended solids.
  • Example 8 when the addition amount of sodium chloride was increased compared with Example 1, and hydrochloric acid was added, viscosity reduction was possible, without a yield falling.
  • Example 9 the amount of sodium chloride added was larger than in Example 1, and hydrochloric acid was not added. As a result, it was possible to lower the viscosity, although not as much as adding hydrochloric acid.
  • Example 10 when the addition amount of sodium chloride was made equivalent to Example 1 and hydrochloric acid was added, it was possible to lower the viscosity. Also, the yield was high.
  • Example 11 in place of calcium hydroxide, when basification was performed with calcium carbonate, the basification could be performed without any problem, and a high yield value was obtained.
  • Example 12 when basification was performed using magnesium carbonate in place of calcium hydroxide, the basification could be performed without any problem, and a high yield value was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

Disclosed is a method for producing a basic aluminum chloride solution (a desired solution or a PAC solution having a high basicity) that has a basicity of from 63 to 75 (inclusive) and a viscosity of from 5 mPa·s to 200 mPa·s (inclusive), which comprises a chlorine addition step wherein a chloride ion source and an alkali are added to a basic aluminum chloride solution (a starting material solution or a PAC solution having a low basicity) that contains a basic aluminum chloride represented by formula [Al2(OH)nCl(6-n)]m (wherein 0 < n < 6 and m ≤ 10) and has a basicity of less than 63. This method is able to produce a basic aluminum chloride solution (a desired solution or a PAC solution having a high basicity) which exhibits high aggregation performance and high storage stability at low cost.

Description

塩基性塩化アルミニウム溶液及びその製造方法Basic aluminum chloride solution and method for producing the same
 本発明は、凝集剤などとして使用される塩基性塩化アルミニウム溶液及びその製造方法に関するものである。 The present invention relates to a basic aluminum chloride solution used as a coagulant and the like, and a method for producing the same.
 塩基性塩化アルミニウム(Poly Aluminum Chloride;PAC)は、原水の浄化などを目的として、硫酸バンドとならんで広く使用されている凝集剤である。このPACは一般的に[Al2(OH)nCl(6-n)m(0<n<6、10≦m)で表される無機ポリマーである。このポリマー中のAlに対するOHの割合を塩基度と呼び、塩基度45以上60以下のものが原水処理に広く用いられている。 Basic aluminum chloride (Poly Aluminum Chloride; PAC) is a coagulant widely used along with the sulfate band for the purpose of purification of raw water and the like. This PAC is an inorganic polymer generally represented by [Al 2 (OH) n Cl (6-n) ] m (0 <n <6, 10 ≦ m). The ratio of OH to Al in this polymer is referred to as the basicity, and those having a basicity of 45 or more and 60 or less are widely used for raw water treatment.
 近年、集中豪雨などによる一時的な降雨量の増加による原水の汚濁や、温暖化による原水の温度上昇に伴う藻の大量発生などにより、原水中に含まれる濁質が増加する傾向にある。そのため、凝集性能の高いPACが求められてきた。 In recent years, turbidity contained in raw water tends to increase due to pollution of raw water due to temporary increase in rainfall amount due to torrential rain and large amount of algae caused by temperature rise of raw water due to global warming. Therefore, PAC with high aggregation performance has been required.
 塩基度の高いPAC、特に塩基度が65以上のPACを使用することにより、少ない添加量で高い凝集性能が得られるといわれている。しかしながら、高い塩基度のPACの水溶液は、加水分解によるPACの自己重合、すなわちポリマー化が進みやすく、粘度が高くなりやすいという問題点があった。 It is said that high aggregation performance can be obtained with a small addition amount by using PAC having high basicity, particularly PAC having a basicity of 65 or more. However, an aqueous solution of highly basic PAC has a problem that self-polymerization of PAC by hydrolysis, that is, polymerization tends to proceed, and viscosity tends to be high.
 一方、PACは水溶液の形態や粉末の形態で保存される。PACは元々、水溶液の形態で製造される場合が多く、通常、水溶液の形態で保存や輸送され、処理される原水にPACの水溶液(以下「PAC溶液」という場合がある)として投入する方法が採用される。PAC溶液は使用する浄水場などにおいて、大型のポンプや攪拌器を用いて原水と混合する。そのため、極端に高い粘度を有するPAC溶液はこれらの機器に負荷をかけてしまう。また、PAC溶液は、原水の濁度の変化に応じて随時使用するため、ある程度まとまった量を長期にわたって保管する必要がある。そのため、PAC溶液は少なくとも半年以上にわたって、性能の劣化や粘度の増加がないことが求められている。 On the other hand, PAC is stored in the form of an aqueous solution or in the form of powder. PAC is originally produced in the form of an aqueous solution in many cases, and usually, it is stored or transported in the form of an aqueous solution, and a method of introducing it into raw water to be treated as an aqueous solution of PAC (hereinafter sometimes referred to as "PAC solution") Will be adopted. The PAC solution is mixed with raw water using a large pump or stirrer in a water purification plant to be used. Therefore, PAC solutions with extremely high viscosity can load these devices. In addition, since the PAC solution is used as needed according to the change in the turbidity of the raw water, it is necessary to store the combined amount to a certain extent for a long time. Therefore, PAC solutions are required to have no deterioration in performance or increase in viscosity for at least half a year or more.
 従来のPACの製造方法としては、(1)易溶性のアルミナゲルを、塩酸、又は塩酸のアルミニウム塩に溶解してPACを得る方法、(2)塩化アルミニウムと硫酸アルミニウムの混合物にカルシウム化合物を添加するか、硫酸アルミニウムに塩化カルシウムと炭酸カルシウムを添加し、硫酸イオンを硫酸カルシウム(石膏)として除去してPACを得る方法、(3)常温常圧で塩酸に難溶の水酸化アルミニウムを、加熱加圧雰囲気で塩酸と反応させてPACを得る方法、などがある。 As a conventional method for producing PAC, (1) a method of dissolving a readily soluble alumina gel in hydrochloric acid or an aluminum salt of hydrochloric acid to obtain PAC, (2) adding a calcium compound to a mixture of aluminum chloride and aluminum sulfate Or calcium chloride and calcium carbonate are added to aluminum sulfate and sulfate ion is removed as calcium sulfate (gypsum) to obtain PAC, (3) Heating aluminum hydroxide, which is poorly soluble in hydrochloric acid at normal temperature and pressure, There is a method of reacting with hydrochloric acid in a pressurized atmosphere to obtain PAC.
 高い塩基度を持つPAC溶液を得るために、前述の(1)の方法を改良した、低塩基度のPAC溶液とアルミナゲルを混合する方法が主に行われていた。例えば、特許文献1では、張水した反応容器に、攪拌下pH6~9の範囲に維持しつつ、塩基度が50未満のPAC溶液とアルカリ溶液を同時に注下してアルミナゲルを生成し、得られたアルミナゲルを塩基度が50未満の塩基性塩化アルミニウム溶液に添加して塩基度60~80のPAC溶液を製造する方法が開示されている。特許文献2には、塩基性塩化アルミニウム溶液とアルミン酸ナトリウム溶液とをpHが4~11の範囲になるように混合し、アルミナゲル含有液を調製した上で、塩基度25~65の塩基性塩化アルミニウム溶液と混合して、例えば塩基度45~83.5のPAC溶液を製造する方法が開示されている。 In order to obtain a PAC solution having a high basicity, a method of mixing a low basicity PAC solution and an alumina gel, which is an improvement of the above-mentioned method (1), has mainly been performed. For example, in Patent Document 1, a PAC solution and an alkaline solution having a basicity of less than 50 are simultaneously poured into a tensioned reaction vessel while maintaining the pH in the range of 6 to 9 under stirring to produce an alumina gel. Disclosed is a method of producing a PAC solution having a basicity of 60 to 80 by adding the obtained alumina gel to a basic aluminum chloride solution having a basicity of less than 50. In Patent Document 2, a basic aluminum chloride solution and a sodium aluminate solution are mixed so that the pH is in the range of 4 to 11 to prepare an alumina gel-containing solution, and then a basicity of 25 to 65 in basicity is obtained. Disclosed is a method of mixing, for example, with an aluminum chloride solution to produce a PAC solution having a basicity of 45 to 83.5.
 一方、特許文献3及び4には、それぞれ上述の(3)、(2)の方法で得られた低塩基度のPAC溶液に対して、アルカリを添加することで塩基度をそれぞれ60~75、60~70に向上させる方法が開示されている。 On the other hand, Patent Documents 3 and 4 have basicities of 60 to 75, respectively, by adding an alkali to the low basicity PAC solution obtained by the above-mentioned methods (3) and (2), respectively. Methods are disclosed to improve on 60-70.
特開平7-172824号公報Japanese Patent Application Laid-Open No. 7-172824 特開2014-024694号公報Unexamined-Japanese-Patent No. 2014-024694 特開昭51-106339号公報Japanese Patent Application Laid-Open No. 51-106339 特開昭53-1699号公報JP-A-53-1699
 特許文献1及び特許文献2の方法は、アルミナゲルとPAC溶液を別々に製造し、後段で両者を混合・溶解することを特徴とする。アルミナゲルをPAC溶液中に溶解する工程では、低温ではアルミナゲルの溶解速度が遅く、高温では溶解と同時にゲル化が進行してしまう。そのため、PAC溶液の粘度の上昇を抑えながら塩基度の向上を行うためには、アルミナゲルの添加速度、溶解する際の撹拌温度や撹拌速度などの製造条件を厳しく管理する必要があった。 The methods of Patent Document 1 and Patent Document 2 are characterized in that an alumina gel and a PAC solution are separately produced, and both are mixed and dissolved in the latter stage. In the step of dissolving the alumina gel in the PAC solution, the dissolution rate of the alumina gel is low at a low temperature, and the gelation progresses simultaneously with the dissolution at a high temperature. Therefore, in order to improve the basicity while suppressing the increase in viscosity of the PAC solution, it has been necessary to strictly control manufacturing conditions such as the addition speed of the alumina gel and the stirring temperature and speed at the time of dissolution.
 また、特許文献1及び特許文献2の方法は、アルミナゲルとPAC溶液を別々に製造、後段で両者を混合・溶解するため、アルミナゲルとPAC溶液を個別の設備で製造する必要があり、設備点数が増加し、コストが高くなるなど生産効率が悪いという問題もあった。 Further, in the methods of Patent Document 1 and Patent Document 2, since the alumina gel and the PAC solution are separately produced, and both are mixed and dissolved in the latter stage, the alumina gel and the PAC solution need to be produced in separate facilities. There is also a problem that the production efficiency is poor, such as an increase in points and an increase in cost.
 一方、特許文献3、4に記載の、低塩基度のPAC溶液に対して、アルカリを添加する方法では、塩基度の向上に伴い、アルカリの添加時やPAC溶液の保管中にPAC溶液が粘度の増加を生じてゲル化するなど、PAC溶液の保存安定性が悪化してしまうという問題があった。 On the other hand, in the method of adding an alkali to a low basicity PAC solution described in Patent Documents 3 and 4, as the basicity is improved, the viscosity of the PAC solution is added when the alkali is added or during storage of the PAC solution. There is a problem that storage stability of the PAC solution is deteriorated such as gelation due to an increase in
 本発明は、上記問題と実情に鑑み、高い凝集性能と高い保存安定性を持つ塩基性塩化アルミニウム溶液を低コストで生産可能な製造方法を提供することを目的とする。 An object of the present invention is to provide a method for producing a basic aluminum chloride solution having high aggregation performance and high storage stability at low cost, in view of the above problems and circumstances.
 本発明者らは鋭意研究の結果、塩基度の低いPAC溶液に、アルカリを加えて塩基度を高くする際に、塩化物イオン源も加えて、塩化物イオン濃度を高めることで、得られたPAC溶液が、高い凝集性能及び高い保存安定性を有することを見出した。 As a result of intensive studies, the present inventors have obtained chloride ion source by adding alkali to PAC solution with low basicity to increase basicity, thereby obtaining chloride ion concentration. It has been found that the PAC solution has high aggregation performance and high storage stability.
 すなわち、本発明は上記の課題を解決するために、[Al2(OH)nCl(6-n)m(0<n<6、m≦10)で表される塩基性塩化アルミニウムを含み、塩基度が63未満の塩基性塩化アルミニウム溶液(原料溶液または低塩基度PAC溶液)に対して、塩化物イオン源及びアルカリを加える塩素添加工程を含む、塩基度が63以上75以下であり、粘度が5mPa・s以上200mPa・s以下である塩基性塩化アルミニウム溶液(目的溶液または高塩基度PAC溶液)の製造方法を提供する。 That is, the present invention includes a basic aluminum chloride represented by [Al 2 (OH) n Cl (6-n) ] m (0 <n <6, m ≦ 10) in order to solve the above problems. A basicity of 63 or more and 75 or less, including a chlorination step of adding a chloride ion source and an alkali to a basic aluminum chloride solution (raw material solution or low basicity PAC solution) having a basicity of less than 63; Provided is a method for producing a basic aluminum chloride solution (target solution or highly basic PAC solution) having a viscosity of 5 mPa · s or more and 200 mPa · s or less.
 また、本発明は、[Al2(OH)nCl(6-n)m(0<n<6、m≦10)で表される塩基性塩化アルミニウムを含み、前記塩基性塩化アルミニウムの塩基度が63以上75以下であり、粘度が5mPa・s以上200mPa・s以下である、塩基性塩化アルミニウム溶液(目的溶液または高塩基度PAC溶液)を提供する。 The present invention also includes a basic aluminum chloride represented by [Al 2 (OH) n Cl (6-n) ] m (0 <n <6, m ≦ 10), and the base of the basic aluminum chloride A basic aluminum chloride solution (target solution or highly basic PAC solution) having a degree of 63 or more and 75 or less and a viscosity of 5 mPa · s or more and 200 mPa · s or less is provided.
 本発明により、高い凝集性能と高い保存安定性を持つ塩基性塩化アルミニウム溶液(目的溶液または高塩基度PAC溶液)を低コストで生産可能な製造方法を提供することができる。 According to the present invention, it is possible to provide a production method capable of producing a basic aluminum chloride solution (target solution or highly basic PAC solution) having high aggregation performance and high storage stability at low cost.
PACの構造式を示す図。The figure which shows the structural formula of PAC.
詳細な説明Detailed description
 以下、本発明の実施態様について以下に説明する。なお、本発明の範囲は、これらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更し、実施することができる。 Hereinafter, embodiments of the present invention will be described below. Note that the scope of the present invention is not limited to these descriptions, and can be appropriately changed and implemented without departing from the spirit of the present invention other than the following examples.
 本発明では、[Al2(OH)nCl(6-n)m(0<n<6、m≦10)で表される塩基性塩化アルミニウム(PAC)を含み、塩基度が63未満の塩基性塩化アルミニウム溶液(原料溶液または低塩基度PAC溶液)に対して、塩化物イオン源及びアルカリを加える塩素添加工程を含む、塩基性塩化アルミニウム溶液(目的溶液または高塩基度PAC溶液)の製造方法が提供される。この方法で得られた塩基性塩化アルミニウム溶液(目的溶液または高塩基度PAC溶液)は、塩基度が63以上75以下であり、粘度が5mPa・s以上200mPa・s以下である。なお、PAC溶液は、含有するPACを酸化アルミニウムに換算した場合の酸化アルミニウムの濃度が10~11質量%の範囲にあり、酸化アルミニウムの濃度はJWWA K 154に示されている方法で測定可能である。 In the present invention, a basic aluminum chloride (PAC) represented by [Al 2 (OH) n Cl (6-n) ] m (0 <n <6, m ≦ 10) is included, and the basicity is less than 63. Production of a basic aluminum chloride solution (target solution or high basicity PAC solution) including a chlorine addition step of adding a chloride ion source and an alkali to a basic aluminum chloride solution (raw material solution or low basicity PAC solution) A method is provided. The basic aluminum chloride solution (target solution or highly basic PAC solution) obtained by this method has a basicity of 63 or more and 75 or less, and a viscosity of 5 mPa · s or more and 200 mPa · s or less. The PAC solution has a concentration of aluminum oxide in the range of 10 to 11% by mass when PAC contained is converted to aluminum oxide, and the concentration of aluminum oxide can be measured by the method shown in JWWA K 154. is there.
 PACの塩基度は、JWWA(公益社団法人日本水道協会) K 154によって示されている方法で測定可能である。つまり、PACの塩基度は、上記のPACの化学式における(n/6)×100(%)で表され、塩基度100はn=6であり、PACがClを含有しないので水酸化アルミニウムであることを意味し、塩基度0はn=0であり、PACがOHを含有しないので塩化アルミニウムであることを意味する。凝集性及び粘度の観点から、PACの塩基度は63以上75以下であることが好ましく、65以上73以下であることが特に好ましい。PACの塩基度が低いと、原水中に含まれる濁質が多い場合に濁質除去のために必要なPACの量が増大し、塩基度が高すぎる際には、PACは粘度が増大したり、ゲル化したりしやすくなる。 The basicity of PAC can be measured by the method indicated by JWWA (Japan Water Works Association) K 154. That is, the basicity of PAC is represented by (n / 6) × 100 (%) in the chemical formula of PAC, basicity 100 is n = 6, and since PAC does not contain Cl, it is aluminum hydroxide. It means that basicity 0 is n = 0, and since PAC does not contain OH, it means that it is aluminum chloride. From the viewpoint of aggregation and viscosity, the basicity of PAC is preferably 63 or more and 75 or less, and particularly preferably 65 or more and 73 or less. When the basicity of PAC is low, the amount of PAC required for turbidity removal increases when the amount of suspended matter contained in the raw water is large, and when the basicity is too high, the viscosity of PAC increases. , It becomes easy to gel.
 PAC溶液の粘度は、室温(20~25℃)での絶対粘度のことを指す。本明細書において、粘度の値は、JIS Z 8803:2011に規定される振動粘度計による粘度測定方法で測定した値を用いる。PAC溶液の粘度は、使用時のポンプや攪拌器への負荷を考慮すると、200mPa・s以下であり、100mPa・s以下であることが好ましく、50mPa・s以下であることがさらに好ましい。PAC溶液の粘度に下限は特にないが、純水の粘度が1~2mPa・sであることから、本発明の方法で得られたPAC溶液の粘度は、通常は5mPa・s以上である。本発明の方法で得られたPAC溶液は、製造後半年が経過しても、粘度が5mPa・s以上200mPa・s以下の範囲にある。 The viscosity of a PAC solution refers to the absolute viscosity at room temperature (20-25 ° C.). In the present specification, as the value of viscosity, a value measured by a viscosity measurement method using a vibration viscometer defined in JIS Z 8803: 2011 is used. The viscosity of the PAC solution is 200 mPa · s or less, preferably 100 mPa · s or less, and more preferably 50 mPa · s or less, in consideration of the load on the pump or stirrer at the time of use. There is no lower limit to the viscosity of the PAC solution, but since the viscosity of pure water is 1 to 2 mPa · s, the viscosity of the PAC solution obtained by the method of the present invention is usually 5 mPa · s or more. The PAC solution obtained by the method of the present invention has a viscosity in the range of 5 mPa · s or more and 200 mPa · s or less even after the latter half of the production.
 重合度と粘度の間に正の相関関係があるとされている有機ポリマーに対して、無機ポリマーでは単量体と重合体を直接観察できる例はほとんどなく、重合度と粘度に関する研究例はあまりなかった。PACの場合には、重合の進行に伴ってゲル化することが知られていることから、粘度と重合度の間に正の相関関係があると考えられる。つまり、PACの初期重合度が高いものほど、粘度が高い傾向にあり、粘度の大小をもって重合度の大小を比較できると考えられる。 In contrast to organic polymers that are considered to have a positive correlation between the degree of polymerization and the viscosity, there are few examples where inorganic monomers can directly observe monomers and polymers, and there are not many studies on the degree of polymerization and viscosity. It was not. In the case of PAC, it is known that gelation occurs as the polymerization proceeds, so it is considered that there is a positive correlation between viscosity and degree of polymerization. That is, the higher the initial degree of polymerization of PAC, the higher the viscosity, and it is considered that the degree of polymerization can be compared by the degree of viscosity.
 PACには、濁質の電荷を中和することにより、濁質同士の凝集を促進し、濁質を除去する効果があるとされているが、近年の報告では、原水中でPACが重合しながら濁質を取り込み、フロックを形成することによる濁質除去効果が、電荷中和の効果に比べて大きいことが報告されている。通常、PAC溶液は浄水場において、予備希釈を行った上で原水と混合される。重合度の高いPACを使用した場合、その活性の高さから、予備混合の段階から、一部でPAC自身の重合が生じているものと考えられる。その結果、原水中でそれ以上の重合が十分に起きないため、濁質を取り込む能力や、フロックを形成する能力が劣ると考えられ、結果的に濁質除去効果に劣ってしまう。すなわち、塩基度が同じでも、より粘度が低いPAC溶液のほうが、濁質除去効果が高くなる傾向にある。 PAC is said to have the effect of promoting the aggregation of suspended matter and removing suspended matter by neutralizing the charge of suspended matter, but it has been reported in recent years that PAC polymerizes in raw water It is reported that the turbidity removal effect by taking in suspended solids and forming flocs is larger than that of charge neutralization. Usually, PAC solution is mixed with raw water after pre-dilution in a water treatment plant. When PAC with a high degree of polymerization is used, it is considered that partial polymerization of PAC itself occurs in the stage of the pre-mixing, from the level of activity. As a result, since the further polymerization does not occur sufficiently in the raw water, the ability to take in suspended solids and the ability to form flocs are considered to be inferior, and as a result, the ability to remove suspended solids is inferior. That is, even if the basicity is the same, the PAC solution having a lower viscosity tends to have a higher turbidity removal effect.
 また、本発明の方法で得られた塩基性塩化アルミニウム溶液(目的溶液または高塩基度PAC溶液)は、Cl/Al23の重量割合が0.75以上であることが好ましく、0.85以上であることがさらに好ましく、0.90以上であることが特に好ましい。Cl/Al23の重量割合が小さく、塩化物イオン濃度がAl23濃度に対して低い場合には、高塩基度化した際にゲル化が進行してしまう。一方、Cl/Al23の重量割合が大きく、塩化物イオン濃度が高すぎる場合、PAC溶液の性能には大きな影響はないものの、装置や配管の腐食等への影響が顕著となるためCl/Al23の重量割合は1.25以下であることが望ましい。ここでいうAl23濃度とは、JWWAの基準値として用いられる値であり、PAC溶液中に含まれるアルミニウムイオン濃度をAl23に換算した濃度である。 The basic aluminum chloride solution (target solution or highly basic PAC solution) obtained by the method of the present invention preferably has a weight ratio of Cl / Al 2 O 3 of 0.75 or more, and 0.85. It is more preferable to be above, and it is particularly preferable to be 0.90 or more. In the case where the weight ratio of Cl / Al 2 O 3 is small and the chloride ion concentration is low relative to the Al 2 O 3 concentration, gelation proceeds when the base is highly basified. On the other hand, if the weight ratio of Cl / Al 2 O 3 is large and the chloride ion concentration is too high, the performance of the PAC solution is not significantly affected, but the influence on the corrosion of the apparatus and piping becomes remarkable. It is desirable that the weight ratio of / Al 2 O 3 be 1.25 or less. The Al 2 O 3 concentration mentioned here is a value used as a reference value of JWWA, and is a concentration obtained by converting the aluminum ion concentration contained in the PAC solution into Al 2 O 3 .
 また、市販されている塩基性塩化アルミニウム溶液の硫酸イオン濃度については、JWWAの規格により3.5質量%以下と定められている。硫酸イオンは、アルミニウムイオン同士の架橋構造を形成することにより、凝集性能の向上に寄与するとされている。しかしながら、高塩基度PACの場合においてはPAC自体の凝集性能が高く、硫酸イオン濃度が高すぎる場合には、一部で凝集が促進してしまい、十分に濁質除去効果を発揮することなくポリ塩化アルミニウムのみの凝集体を形成してしまうことがある。そのため、本発明の方法で得られた塩基性塩化アルミニウム溶液の硫酸イオン濃度は3.0質量%以下が好ましく、2.5質量%以下であることがさらに好ましい。また、硫酸イオン濃度が低すぎる場合には、凝集が生じにくくなるため、0.5質量%以上であることが好ましく、0.8質量%以上であることがより好ましい。 Moreover, about the sulfate ion concentration of the basic aluminum chloride solution marketed, it is prescribed | regulated as 3.5 mass% or less by the specification of JWWA. The sulfate ion is said to contribute to the improvement of the aggregation performance by forming a crosslinked structure of aluminum ions. However, in the case of high basicity PAC, the aggregation performance of PAC itself is high, and when the concentration of sulfate ion is too high, aggregation is promoted in part and poly does not sufficiently exhibit turbidity removal effect. In some cases, aggregates of only aluminum chloride may be formed. Therefore, 3.0 mass% or less is preferable, and, as for the sulfate ion concentration of the basic aluminum chloride solution obtained by the method of this invention, it is more preferable that it is 2.5 mass% or less. Moreover, since it becomes difficult to produce aggregation when a sulfate ion concentration is too low, it is preferable that it is 0.5 mass% or more, and it is more preferable that it is 0.8 mass% or more.
 日本水道協会の水道用PACの塩基度の規格(JWWA K 154:2016)は45~75であり、本発明における塩基度が63未満のPAC溶液としては、市販品の塩基度が45以上60以下のPAC溶液を使用できる。塩基度が63未満のPACの製造方法は特に限定されず、例えば、水中で水酸化アルミニウムと硫酸を反応させた後、塩化カルシウム及びカルシウム化合物を混合し、硫酸イオンを石膏として除去して得ることができる。カルシウム化合物としては、炭酸カルシウム、水酸化カルシウム、酸化カルシウムなどを使用できる。また、水酸化アルミニウムと塩酸(塩化水素の水溶液)とを混合し、オートクレーブを用いて、100℃超かつ1気圧超の高温高圧雰囲気下で合成したPAC溶液を用いることもできる。 The standard (JWWA K 154: 2016) of the water supply PAC of the Japan Water Works Association is 45 to 75, and the PAC solution having a basicity of less than 63 in the present invention has a basicity of 45 or more and 60 or less for commercial products. PAC solution can be used. The method for producing PAC having a basicity of less than 63 is not particularly limited. For example, after reacting aluminum hydroxide and sulfuric acid in water, mixing calcium chloride and a calcium compound and removing sulfate ion as gypsum is obtained. Can. As a calcium compound, calcium carbonate, calcium hydroxide, calcium oxide and the like can be used. Further, it is also possible to use a PAC solution synthesized under a high-temperature and high-pressure atmosphere of over 100 ° C. and over 1 atm, by mixing aluminum hydroxide and hydrochloric acid (aqueous solution of hydrogen chloride) and using an autoclave.
 なお、塩基度63未満のPAC溶液(原料溶液または低塩基度PAC溶液)として、塩基度が低いPAC溶液(例えば、塩基度50未満のPAC溶液)に対して、炭酸ナトリウム等のアルカリが添加されたり、アルミナゲルと混合されたりして、塩基度が高められたが、塩基度が63未満であるPAC溶液を用いてもよい。 In addition, an alkali such as sodium carbonate is added to a PAC solution having a low basicity (eg, a PAC solution having a basicity of less than 50) as a PAC solution having a basicity of less than 63 (raw material solution or PAC solution having low basicity). Alternatively, a PAC solution having a basicity of less than 63 although the basicity is enhanced by mixing with an alumina gel may be used.
 また、原料である塩基度が63未満のPAC溶液(低塩基度PAC溶液)の粘度は、1mPa・s以上50mPa・s以下が好ましく、2mPa・s以上20mPa・s以下がより好ましく、2mPa・s以上10mPa・s以下が特に好ましい。また、塩基度が63未満のPAC溶液のCl/Al23は、0.25以上0.90以下が好ましく、0.50以上0.87以下がより好ましい。 In addition, the viscosity of a PAC solution having a basicity of less than 63 (low basicity PAC solution), which is a raw material, is preferably 1 mPa · s to 50 mPa · s, more preferably 2 mPa · s to 20 mPa · s, and 2 mPa · s. The viscosity is preferably 10 mPa · s or less. Also, Cl / Al 2 O 3 of PAC solution basicity of less than 63, preferably 0.25 to 0.90, more preferably 0.50 or more 0.87 or less.
 本発明において、塩素添加工程において添加する塩化物イオン源としては、塩化カリウム、塩化カルシウム、塩化ナトリウム、塩化マグネシウムなどが使用可能だが、その入手のし易さ及び溶解度の高さから塩化ナトリウムが好ましい。塩化物イオン源の添加量は、添加する対象である塩基度が63未満のPAC溶液に含まれる塩化物イオンの量と、塩基性塩化アルミニウムの目的とするCl/Al23の重量割合に合わせて適宜調整することができるが、添加する塩化物イオン源に含まれる塩素原子の、塩基度が63未満のPAC溶液中のAl原子に対する比である、[Cl]/[Al]mol比は、0.01以上が好ましく、0.05以上が特に好ましい。一方、添加量が多すぎる場合には、凝集性能が低下する原因となるため、[Cl]/[Al]mol比は、1以下であることが好ましく、0.8以下であることがより好ましい。 In the present invention, potassium chloride, calcium chloride, sodium chloride, magnesium chloride and the like can be used as a chloride ion source to be added in the chlorination step, but sodium chloride is preferred from the viewpoint of availability and solubility. . The addition amount of the chloride ion source is the amount of chloride ion contained in the PAC solution having a basicity of less than 63 to be added and the weight ratio of Cl / Al 2 O 3 as the target of basic aluminum chloride. The ratio can be appropriately adjusted, but the [Cl] / [Al] molar ratio, which is the ratio of chlorine atoms contained in the chloride ion source to be added to Al atoms in a PAC solution having a basicity of less than 63, is 0.01 or more is preferable and 0.05 or more is especially preferable. On the other hand, if the addition amount is too large, the aggregation performance will be lowered, so the [Cl] / [Al] mol ratio is preferably 1 or less, more preferably 0.8 or less .
 本発明において、塩素添加工程において添加するアルカリは、アルカリ金属の炭酸塩又は水酸化物塩、アルカリ土類金属の炭酸塩又は水酸化物塩などが好ましい。アルカリ金属の炭酸塩又は水酸化物塩としては、炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム、水酸化カリウムなどを挙げることができ、アルカリ土類金属の炭酸塩又は水酸化物塩としては、炭酸カルシウム、炭酸マグネシウム、水酸化カルシウム、水酸化マグネシウムなどを挙げることができる。 In the present invention, the alkali added in the chlorination step is preferably a carbonate or hydroxide salt of an alkali metal, a carbonate or hydroxide salt of an alkaline earth metal or the like. Examples of carbonates or hydroxides of alkali metals include sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide and the like, and as carbonates or hydroxides of alkaline earth metals, calcium carbonate , Magnesium carbonate, calcium hydroxide, magnesium hydroxide and the like.
 特に、本発明者らは、PACとアルカリとが、穏やかに反応することが、PAC溶液のゲル化を防ぎながらPACの塩基度を高くできることに重要であることを見出した。溶解度の高い水酸化ナトリウムを濃厚液でPAC溶液に添加する場合には、PACとの反応が激烈であり、局所的に脱水縮合が発生して水酸化アルミニウムが析出してしまう場合があるのに対し、溶解度の劣る炭酸ナトリウムを添加する場合には、発生する炭酸によって攪拌が進行し、比較的穏やかな条件で高塩基度化することが可能である。 In particular, the inventors have found that the mild reaction between PAC and alkali is important in that the basicity of PAC can be increased while preventing gelation of the PAC solution. When concentrated sodium hydroxide with high solubility is added to the PAC solution, the reaction with PAC is severe, and dehydration condensation may locally occur to precipitate aluminum hydroxide. On the other hand, in the case of adding poorly soluble sodium carbonate, the generated carbonic acid causes stirring to proceed, and it is possible to achieve high basification under relatively mild conditions.
 一方で、炭酸ナトリウムを用いた比較的穏やかな反応であったとしても、局所的に発生する水酸化物イオンにより局所的にポリ塩化アルミニウムがゲル化したり、水酸化アルミニウムが析出したりする。これらのゲルや析出物は、炭酸ナトリウムの一部を取り込んで凝結し、不溶解成分となっており、塩基度を高めた後のPAC溶液中に残渣として残存する。この残渣中にはAlイオンが取り込まれているため、残渣を除去する工程で、原料である塩基度が63未満のPAC溶液に含まれるアルミニウムのうち、得られた塩基度が63以上75以下のPAC溶液に含まれるアルミニウムの割合を示すAl収率が低下してしまう。 On the other hand, even if it is a relatively mild reaction using sodium carbonate, locally generated hydroxide ions cause gelation of polyaluminum chloride and precipitation of aluminum hydroxide. These gels and precipitates take in and condense part of sodium carbonate, become insoluble components, and remain as residues in the PAC solution after raising the basicity. Since Al ions are taken into this residue, in the step of removing the residue, the obtained basicity is 63 or more and 75 or less among the aluminum contained in the PAC solution having a basicity of less than 63 as the raw material The Al yield, which indicates the proportion of aluminum contained in the PAC solution, is reduced.
 そのため、アルカリ金属の炭酸塩又は水酸化物塩よりも溶解度の低い、アルカリ土類金属の炭酸塩又は水酸化物塩をアルカリに用いることで、高塩基度化の反応が穏やかに進行し、残渣の発生する量を抑えることができる。特に、比較的安価に入手できる炭酸カルシウムまたは水酸化カルシウムをアルカリとして用いることが好ましい。さらに、PAC中に硫酸イオンを含み、アルカリとして炭酸カルシウムや水酸化カルシウムを使用する場合、PAC間で重合してさらに大きなポリマーとなることを促進するといわれているPAC中の硫酸イオンがカルシウムイオンと結合して石膏として沈殿する。この反応機構も、PAC間の重合の抑制に寄与しているものと考えられる。 Therefore, by using an alkaline earth metal carbonate or hydroxide salt having a lower solubility than an alkali metal carbonate or hydroxide salt as the alkali, the reaction of over basification proceeds mildly and residue Can reduce the amount of In particular, it is preferable to use calcium carbonate or calcium hydroxide, which can be obtained relatively inexpensively, as the alkali. Furthermore, when the sulfate ion is included in the PAC and calcium carbonate or calcium hydroxide is used as the alkali, the sulfate ion in the PAC, which is said to promote polymerization between PACs to become a larger polymer, is converted to calcium ions Combine and precipitate as gypsum. This reaction mechanism is also considered to contribute to suppression of polymerization between PACs.
 また、アルカリとして、複数の塩を併用してもよい。例えば、炭酸カルシウムや水酸化カルシウム、炭酸マグネシウム、水酸化マグネシウムのように溶解度の低いアルカリと、水酸化ナトリウムや水酸化カリウムなどの溶解度の高いアルカリを併用することが考えられる。併用する際、複数の塩は同時に添加されてもよいし、別々に逐次に添加されてもよい。 Moreover, you may use together several salt as alkali. For example, it is conceivable to use an alkali having a low solubility such as calcium carbonate, calcium hydroxide, magnesium carbonate or magnesium hydroxide and an alkali having a high solubility such as sodium hydroxide or potassium hydroxide in combination. When used in combination, a plurality of salts may be added simultaneously or separately separately.
 アルカリの添加量は、添加する対象である塩基度が63未満のPAC溶液の塩基度と、PAC溶液の目的とする塩基度に合わせて適宜調整することができるが、添加するアルカリに含まれる水酸基の、塩基度が63未満のPAC溶液中のAl原子に対する比である、[OH]/[Al]mol比は、0.1以上が好ましく、0.4以上が特に好ましい。一方、添加量が多すぎる場合には、ゲル化してしまうため、[OH]/[Al]mol比は、1.05以下であることが好ましく、1以下であることが特に好ましい。なお、アルカリが炭酸塩の場合はCO3 2-イオンが2当量のOH-イオンに対応するとして、水酸基の量を計算できる。 The addition amount of the alkali can be appropriately adjusted according to the basicity of the PAC solution having a basicity of less than 63 to be added and the intended basicity of the PAC solution, but the hydroxyl group contained in the alkali to be added 0.1 or more is preferable and, as for [OH] / [Al] molar ratio which is a ratio with respect to the Al atom in PAC solution whose basicity is less than 63, 0.4 or more is especially preferable. On the other hand, when the addition amount is too large, the gelation occurs, so that the [OH] / [Al] molar ratio is preferably 1.05 or less, and particularly preferably 1 or less. When the alkali is a carbonate, the amount of hydroxyl groups can be calculated, assuming that the CO 3 2- ion corresponds to 2 equivalents of the OH - ion.
 なお、塩素添加工程において、塩化物イオン源とアルカリは、同時に添加されてもよいし、別々に逐次に添加されてもよい。 In the chlorination step, the chloride ion source and the alkali may be added simultaneously or separately separately.
 本発明において、前記塩素添加工程の後に、塩基性塩化アルミニウム溶液に酸を加える酸添加工程を行ってもよい。この酸添加工程において添加する酸は、塩酸、硫酸、硝酸等が使用可能である。但し、硫酸添加は硫酸イオンの増加を招き、図らずもPAC溶液の粘度が増大する場合がある。また、硝酸添加は、JWWAの規格で規定されている硝酸態窒素(nitrate nitrogen)濃度1.0mg/L以下を満足しなくなる可能性がある。そのため、塩酸を使用することが好ましい。なお、添加する酸に含まれる水素原子の、塩基度が63未満のPAC溶液中のAl原子に対する比である[H]/[Al]mol比は、0.001以上が好ましく、0.01以上が特に好ましい。一方、添加する酸の添加量が多すぎる場合には、得られるPAC溶液の塩基度が低下する原因となるため、1以下であることが好ましく、0.5以下であることが特に好ましい。 In the present invention, after the chlorination step, an acid addition step of adding an acid to a basic aluminum chloride solution may be performed. Hydrochloric acid, sulfuric acid, nitric acid or the like can be used as the acid to be added in this acid addition step. However, the addition of sulfuric acid causes an increase in sulfate ion, which may increase the viscosity of the PAC solution unexpectedly. In addition, the addition of nitric acid may fail to satisfy the nitrate nitrogen concentration of 1.0 mg / L or less as defined in the JWWA standard. Therefore, it is preferable to use hydrochloric acid. The [H] / [Al] molar ratio, which is the ratio of the hydrogen atom contained in the acid to be added to the Al atom in the PAC solution having a basicity of less than 63, is preferably 0.001 or more, and 0.01 or more Is particularly preferred. On the other hand, when the addition amount of the acid to be added is too large, it causes the basicity of the obtained PAC solution to decrease, so it is preferably 1 or less and particularly preferably 0.5 or less.
 本発明の製造方法に用いる反応槽は、塩素や酸による腐食が生じることから、金属等をガラスライニング、または、ゴムライニングして用いることが望ましい。処理条件としては、加熱または冷却してもよく、加圧して実施してもかまわないが、反応速度は工業的に見て十分に速いため、常温常圧で実施すればよい。反応時間は、十分な反応が進行するためには1時間以上であることが望ましく、製造効率の観点から、24時間以内であることが望ましい。塩素添加工程及び酸添加工程において、反応槽内は撹拌されることが好ましい。 In the reaction vessel used in the manufacturing method of the present invention, it is desirable to use a metal or the like as a glass lining or rubber lining since corrosion by chlorine and acid occurs. The treatment conditions may be heating or cooling, or may be carried out under pressure, but since the reaction rate is industrially fast enough, it may be carried out at normal temperature and pressure. The reaction time is preferably 1 hour or more for sufficient reaction to proceed, and is preferably 24 hours or less from the viewpoint of production efficiency. In the chlorination step and the acid addition step, the inside of the reaction vessel is preferably agitated.
 本発明では、一つの反応槽で、塩基度が高く安定性の高いPAC溶液を製造することができるため、アルミナゲルとPAC溶液を別々に製造し、後段で両者を混合・溶解する方法に比べて、製造コストを下げることができる。 In the present invention, since a PAC solution having high basicity and high stability can be produced in one reaction vessel, alumina gel and PAC solution are separately produced, and compared with the method of mixing and dissolving both in the latter stage. Manufacturing cost can be reduced.
 PAC溶液は、図1に示すような無機ポリマーであるPACの水溶液である。PAC溶液へのアルカリの添加は、無機ポリマーの配位子であるH2O基からプロトンを奪い、OH基へと変換することにより、PACの活性を上昇させる。このOH基がポリマー間の重合反応を生じ、架橋構造を形成することにより、PAC溶液の粘性が増大し、一定の限度を超えた場合にはゲル化が進行する。このとき、塩化物イオンが系内に多く存在すると、重合反応を抑制することにより架橋構造の形成を阻害し、PAC溶液の粘性の増加を抑制することができる。PAC溶液への酸の添加も同様の効果を有していると考えられる。つまり、PAC溶液への酸の添加により生じたプロトンが活性の高いOH基と優先的に結合するために、PAC溶液の活性を低下させるとともに安定化させると考えられる。 The PAC solution is an aqueous solution of PAC, which is an inorganic polymer as shown in FIG. The addition of alkali to the PAC solution raises the activity of PAC by removing the proton from the H 2 O group which is the ligand of the inorganic polymer and converting it to an OH group. The OH group causes a polymerization reaction between the polymers to form a crosslinked structure, whereby the viscosity of the PAC solution is increased, and gelation proceeds when a certain limit is exceeded. At this time, when a large amount of chloride ion is present in the system, the formation of a crosslinked structure can be inhibited by suppressing the polymerization reaction, and the increase in viscosity of the PAC solution can be suppressed. Addition of acid to the PAC solution is believed to have the same effect. That is, it is considered that the activity of the PAC solution is reduced and stabilized because the proton generated by the addition of the acid to the PAC solution preferentially bonds to the highly active OH group.
 以下、実施例及び比較例により、本発明のPAC溶液を詳細に説明する。しかし、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。 Hereinafter, the PAC solution of the present invention will be described in detail by examples and comparative examples. However, the present invention is not limited to the following examples unless the gist is exceeded.
<低塩基度PAC溶液の作成>
 水酸化アルミニウムを硫酸中に溶解後、塩化カルシウム及び炭酸カルシウムを混合し、硫酸イオンを石膏として除去して塩基度50、Cl/Al23=0.74、粘度5.95mPa・sのPAC水溶液100gを得た。
<Preparation of low basicity PAC solution>
After aluminum hydroxide is dissolved in sulfuric acid, calcium chloride and calcium carbonate are mixed, and sulfate ion is removed as gypsum to obtain PAC having a basicity of 50, Cl / Al 2 O 3 = 0.74, viscosity 5.95 mPa · s 100 g of an aqueous solution was obtained.
<実施例1>
 前述の低塩基度PAC溶液100gに、炭酸ナトリウム8.2gと塩化ナトリウム4.0gを添加したのち、36%塩酸水溶液2.0g(塩化水素の量としては0.72g)を添加した。その後、得られた反応液を濾過することにより不溶解成分を除去し、塩基度を高めたPAC溶液を得た。
Example 1
After adding 8.2 g of sodium carbonate and 4.0 g of sodium chloride to 100 g of the above-mentioned low basicity PAC solution, 2.0 g of a 36% aqueous hydrochloric acid solution (0.72 g as the amount of hydrogen chloride) was added. Then, the undissolved component was removed by filtering the obtained reaction liquid, and the PAC solution which raised basicity was obtained.
<実施例2~6>
 表1に記載のように、アルカリとして用いた塩基の添加量、塩化ナトリウムの添加量、酸の添加量を変更する以外は、実施例1と同様にして、高塩基度のPAC溶液を得た。実施例5は酸を添加しなかった。
Examples 2 to 6
As described in Table 1, a PAC solution with high basicity was obtained in the same manner as in Example 1 except that the addition amount of the base used as the alkali, the addition amount of sodium chloride, and the addition amount of the acid were changed. . Example 5 did not add the acid.
<比較例1>
 低塩基度のPAC溶液について、各種評価を行った。
Comparative Example 1
Various evaluations were performed on the low basicity PAC solution.
<比較例2>
 前述の低塩基度のPAC溶液の作成方法において、PAC合成時の炭酸カルシウム添加量を1.5倍にすることにより、塩基度63のPAC溶液100gを得た。すでに一部がゲル化しており、粘度測定及びジャーテストを実施できなかった。
Comparative Example 2
In the above-described method of preparing a low basicity PAC solution, 100 g of a PAC solution having a basicity of 63 was obtained by multiplying the amount of calcium carbonate added at the time of PAC synthesis by 1.5. It was already partially gelled and no viscosity measurement and jar test could be performed.
<比較例3~4>
 表1に記載のように、アルカリとして用いた塩基の添加量、塩化ナトリウムの添加量、酸の添加量を変更する以外は、実施例1と同様にして、高塩基度のPAC溶液を得た。なお、比較例3では、半年後のPAC溶液の一部がゲル化しており、粘度測定が実施できなかった。また、比較例4では、製造直後から一部がゲル化しており、粘度測定及びジャーテストを実施できなかった。
Comparative Examples 3 and 4
As described in Table 1, a PAC solution with high basicity was obtained in the same manner as in Example 1 except that the addition amount of the base used as the alkali, the addition amount of sodium chloride, and the addition amount of the acid were changed. . In Comparative Example 3, a part of the PAC solution after half a year was gelated, and the viscosity measurement could not be performed. Moreover, in Comparative Example 4, part of the gelation occurred immediately after the production, and the viscosity measurement and the jar test could not be performed.
[Cl/Al23の重量割合の測定]
 Cl濃度は、PAC溶液の希釈液を作製し、炭酸カルシウム及びクロム酸カリウム溶液を添加し、0.1MのAgNO3を用いた逆滴定により測定した。また、Al23濃度は、JWWA K 154:2016の基準に従って測定した。測定したCl濃度をAl23濃度で除してCl/Al23の重量割合を求めた。
[Measurement of weight ratio of Cl / Al 2 O 3 ]
The Cl concentration was determined by making dilutions of the PAC solution, adding calcium carbonate and potassium chromate solution and back titration with 0.1 M AgNO 3 . Also, the Al 2 O 3 concentration was measured according to the standard of JWWA K 154: 2016. The measured Cl concentration was divided by the Al 2 O 3 concentration to determine the weight ratio of Cl / Al 2 O 3 .
[塩基度の測定]
 塩基度はJWWA K 154:2016の基準に従って測定した。
[Measurement of basicity]
Basicity was measured according to the standard of JWWA K 154: 2016.
[粘度]
 粘度は、JIS Z 8803:2011に記載の振動粘度計による粘度測定方法に準拠した振動式粘度計VISCOMATE VM 100A(セコニック社製)を用いて室温(25℃)にて測定した。なお、粘度が非常に高く、固体として取り扱えるような場合には、ゲル化したと判断した。
[viscosity]
The viscosity was measured at room temperature (25 ° C.) using a vibrating viscometer VISCOMATE VM 100A (manufactured by Seconik Co., Ltd.) based on a viscosity measurement method using a vibrating viscometer described in JIS Z 8803: 2011. In addition, when the viscosity was very high and it could be treated as a solid, it was judged to be gelled.
[凝集試験(ジャーテスト)]
 ジャーテストもJWWA K 154:2016の基準に従って実施し、凝集試験後の上澄み水の濁度を測定した。
[Aggregation test (Jar test)]
The jar test was also performed according to the standard of JWWA K 154: 2016, and the turbidity of the supernatant water after the agglutination test was measured.
 実施例1~6、比較例1~4で得られたPAC溶液の評価結果を表1に示す。なお、粘度については、PAC溶液の製造直後以外に、室温(20~25℃)で半年間保管した後にも評価を行った。また、実施例1~6において、低塩基度のPAC溶液及び高塩基度のPAC溶液のいずれも、酸化アルミニウムの濃度が10~11質量%の範囲にあった。 The evaluation results of the PAC solutions obtained in Examples 1 to 6 and Comparative Examples 1 to 4 are shown in Table 1. The viscosity was also evaluated after storage for half a year at room temperature (20 to 25 ° C.) other than immediately after preparation of the PAC solution. In Examples 1 to 6, the concentration of aluminum oxide was in the range of 10 to 11% by mass for both the low basicity PAC solution and the high basicity PAC solution.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、実施例1~6に記載のPAC溶液(高塩基度PAC溶液)は、比較例1の塩基度50のPAC溶液に比べて、塩基度が高く、粘度の増加を抑制できたため、凝集試験の結果、低い濁度にまで濁質を除去することができ、凝集性能に優れることを示した。また、実施例1~6に記載のPAC溶液は、半年保管後でも粘度が15.3~102.1mPa・sであり、最大でも200mPa・s以下であり、室温(20~25℃)で半年間保管した後の粘度の増加は2倍以下に抑制されていた。 From the results of Table 1, the PAC solutions described in Examples 1 to 6 (highly basicity PAC solutions) have higher basicity than the PAC solution of basicity 50 of Comparative Example 1, and can suppress the increase in viscosity. Therefore, as a result of the agglutination test, it was possible to remove suspended solids to a low turbidity, and it was shown that the agglutination performance was excellent. In addition, the PAC solutions described in Examples 1 to 6 have a viscosity of 15.3 to 102.1 mPa · s even after storage for half a year, and a maximum of 200 mPa · s or less at maximum, and a half year at room temperature (20 to 25 ° C.) The increase in viscosity after storage was suppressed to less than twice.
 また、比較例2では、水酸化アルミニウムからPAC溶液を合成する際に炭酸カルシウムを多く加えることで、塩基度63の高い塩基度を持つPACを得ることができたが、粘度が高く、ゲル化してしまった。また、比較例3では、塩基度50のPACにアルカリのみを加えて塩基度を高くしたが、塩化物イオン源が添加されていないため、粘度214mPa・sの高粘度のPAC溶液が得られ、半年後はゲル化してしまった。さらに、比較例4では、塩基度50のPAC溶液にアルカリを多量に加えて、塩基度75を超えるPAC溶液を得た場合、製造時にゲル化してしまった。すなわち、比較例2~3のように塩化物イオン源を添加しないで、初期の仕込み組成の変更やアルカリ添加によって、高塩基度化を図った場合や、比較例4のように塩化物イオン源を添加しても過度の多量のアルカリにより高塩基度化を図った場合、ゲル化が生じてしまいPAC溶液として使用できなくなった。 Further, in Comparative Example 2, by adding a large amount of calcium carbonate when synthesizing a PAC solution from aluminum hydroxide, PAC having a high basicity of 63 in basicity can be obtained, but the viscosity is high and gelation occurs. It has gone. In addition, in Comparative Example 3, only alkali is added to PAC having a basicity of 50 to increase the basicity, but since a chloride ion source is not added, a high viscosity PAC solution having a viscosity of 214 mPa · s is obtained. After half a year, it has gelled. Furthermore, in Comparative Example 4, when a large amount of alkali was added to the PAC solution having a basicity of 50 and a PAC solution having a basicity of more than 75 was obtained, gelation occurred at the time of production. That is, as in Comparative Examples 2 to 3, the chloride ion source is not added and the basic composition is increased by changing the initial composition of the feed or by adding alkali, or the chloride ion source as in Comparative Example 4 Even if it was added, if it was attempted to be highly basified by an excessive amount of alkali, gelation would occur and it could not be used as a PAC solution.
 なお、比較例3では、粘度が高く、既に重合が進んでおり、原水中で自身が重合しながら濁質を取り込む能力が劣ると考えられ、塩基度が同等の実施例1に比べると凝集性能が低く、塩基度の高さほどには凝集能力が高くない結果となった。すなわち、塩基度が高く、粘度が低い実施例1~6のPAC溶液が、凝集能力に最も優れる結果となった。 In Comparative Example 3, the viscosity is high, the polymerization is already in progress, and it is considered that the ability to take in suspended solids while polymerizing in raw water is inferior, and the aggregation performance is compared with Example 1 having the same basicity. And the aggregation ability was not high as high as the basicity. That is, the PAC solutions of Examples 1 to 6 having high basicity and low viscosity resulted in the most excellent aggregation ability.
<実施例7>
 前述の低塩基度PAC溶液100gに、水酸化カルシウム5.5gと塩化ナトリウム3.8gを添加した。その後、得られた反応液を濾過することにより不溶解成分を除去し、塩基度を高めたPAC溶液を得た。
Example 7
5.5 g of calcium hydroxide and 3.8 g of sodium chloride were added to 100 g of the above-mentioned low basicity PAC solution. Then, the undissolved component was removed by filtering the obtained reaction liquid, and the PAC solution which raised basicity was obtained.
[収率の評価]
塩基度を高めたPAC溶液について、以下の式に基づいて、アルミニウム重量を基準とした場合の反応後の収率を求めた。収率は97%であった。
[アルミニウム収率(%)]
 =[反応後のAl23換算重量]/[反応前のAl23換算重量]×100
[Evaluation of yield]
With respect to the PAC solution with increased basicity, the yield after reaction based on the weight of aluminum was determined based on the following equation. The yield was 97%.
[Aluminum yield (%)]
= [Weight after reaction Al 2 O 3 conversion] / [weight before Al 2 O 3 reaction] × 100
[硫酸イオン濃度の測定]
 硫酸イオン濃度はJWWA K 154の基準に従って測定した。その結果、高塩基度化の処理をした後のPACの硫酸イオン濃度は2.2重量%であった。
[Measurement of sulfate ion concentration]
The sulfate ion concentration was measured according to the standard of JWWA K 154. As a result, the sulfate ion concentration of PAC after the treatment for hyperbasing was 2.2% by weight.
<実施例8~14>
 表2に記載のように、アルカリとして用いた塩基の種類、塩基の添加量、塩化ナトリウムの添加量、酸の添加量を変更する以外は、実施例7と同様にして、高塩基度のPAC溶液を得た。なお、酸はアルカリと塩化ナトリウムの添加後に添加し、酸として36%塩酸水溶液を使用した。実施例9、13は、酸を添加しなかった。
Examples 8 to 14
As described in Table 2, a PAC of high basicity is prepared in the same manner as in Example 7 except that the type of base used as the alkali, the addition amount of the base, the addition amount of sodium chloride and the addition amount of the acid are changed. A solution was obtained. The acid was added after the addition of the alkali and sodium chloride, and a 36% aqueous hydrochloric acid solution was used as the acid. In Examples 9 and 13, no acid was added.
 実施例7~14で得られたPAC溶液の評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
The evaluation results of the PAC solutions obtained in Examples 7 to 14 are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 表2の結果から、本発明のPACは、比較例1の塩基度の低いPACに比べて凝集性能に優れ、かつ粘度の増加が抑制できていることがわかる。
 実施例7では、水酸化カルシウムを用いて高塩基度化を行った結果、高収率が得られるだけでなく、濁質の除去に対しても効果的に働くことがわかる。
 実施例8では、塩化ナトリウムの添加量を実施例1に比べて増やし、塩酸を添加したところ、収率が低下することなく低粘度化が可能であった。
 実施例9では、塩化ナトリウムの添加量を実施例1に比べて多くし、塩酸については添加しなかった。その結果、塩酸添加ほどではないものの、低粘度化が可能であった。また収率も高い値が得られた。
 実施例10では、塩化ナトリウムの添加量を実施例1と同等程度とし、塩酸を添加したところ、低粘度化が可能であった。また収率も高い値が得られた。
 実施例11では、水酸化カルシウムに代えて、炭酸カルシウムで高塩基度化を行ったところ、問題なく高塩基度化でき、また収率も高い値が得られた。
 実施例12では、水酸化カルシウムに代えて、炭酸マグネシウムで高塩基度化を行ったところ、問題なく高塩基度化でき、収率も高い値が得られた。
From the results in Table 2, it can be seen that the PAC of the present invention is superior in aggregation performance to the PAC with low basicity of Comparative Example 1 and can suppress the increase in viscosity.
In Example 7, as a result of carrying out overbasing using calcium hydroxide, it is understood that not only a high yield can be obtained, but it also works effectively for the removal of suspended solids.
In Example 8, when the addition amount of sodium chloride was increased compared with Example 1, and hydrochloric acid was added, viscosity reduction was possible, without a yield falling.
In Example 9, the amount of sodium chloride added was larger than in Example 1, and hydrochloric acid was not added. As a result, it was possible to lower the viscosity, although not as much as adding hydrochloric acid. Also, the yield was high.
In Example 10, when the addition amount of sodium chloride was made equivalent to Example 1 and hydrochloric acid was added, it was possible to lower the viscosity. Also, the yield was high.
In Example 11, in place of calcium hydroxide, when basification was performed with calcium carbonate, the basification could be performed without any problem, and a high yield value was obtained.
In Example 12, when basification was performed using magnesium carbonate in place of calcium hydroxide, the basification could be performed without any problem, and a high yield value was obtained.
 一方、実施例13、14のように炭酸ナトリウムを用いて高塩基度化した場合、酸の添加の如何に関わらず、収率が実施例7から12に比べて低い結果となった。 On the other hand, when using sodium carbonate as in Examples 13 and 14 to make the sample highly basic, the yield was lower than in Examples 7 to 12 regardless of the addition of the acid.

Claims (14)

  1. [Al2(OH)nCl(6-n)m(0<n<6、m≦10)で表される塩基性塩化アルミニウムを含み、塩基度が63未満の塩基性塩化アルミニウム溶液に対して、塩化物イオン源及びアルカリを加える塩素添加工程を含む、塩基度が63以上75以下であり、粘度が5mPa・s以上200mPa・s以下である塩基性塩化アルミニウム溶液の製造方法。 For a basic aluminum chloride solution containing a basic aluminum chloride represented by [Al 2 (OH) n Cl (6-n) ] m (0 <n <6, m ≦ 10) and having a basicity of less than 63 A method for producing a basic aluminum chloride solution having a basicity of 63 to 75 and a viscosity of 5 mPa · s to 200 mPa · s, including a chlorine addition step of adding a chloride ion source and an alkali.
  2. 前記塩化物イオン源が、塩化カリウム、塩化カルシウム、塩化ナトリウム及び塩化マグネシウムからなる群から選ばれる少なくとも一つである、請求項1に記載の塩基性塩化アルミニウム溶液の製造方法。 The method for producing a basic aluminum chloride solution according to claim 1, wherein the chloride ion source is at least one selected from the group consisting of potassium chloride, calcium chloride, sodium chloride and magnesium chloride.
  3. 前記アルカリが、炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム及び水酸化カリウム、からなる群から選ばれる少なくとも一つを含む、請求項1又は2に記載の塩基性塩化アルミニウム溶液の製造方法。 The method for producing a basic aluminum chloride solution according to claim 1 or 2, wherein the alkali comprises at least one selected from the group consisting of sodium carbonate, potassium carbonate, sodium hydroxide and potassium hydroxide.
  4. 前記アルカリが、炭酸カルシウム、炭酸マグネシウム、水酸化カルシウム及び水酸化マグネシウムからなる群から選ばれる少なくとも一つを含む、請求項1又は2に記載の塩基性塩化アルミニウム溶液の製造方法。 The method for producing a basic aluminum chloride solution according to claim 1 or 2, wherein the alkali comprises at least one selected from the group consisting of calcium carbonate, magnesium carbonate, calcium hydroxide and magnesium hydroxide.
  5. 前記塩素添加工程の後に、
     塩基性塩化アルミニウム溶液に、塩酸、硫酸及び硝酸からなる群から選ばれる少なくとも一つの酸を加える酸添加工程を含む、請求項1~4のいずれか1項に記載の塩基性塩化アルミニウム溶液の製造方法。
    After the chlorination step,
    The production of the basic aluminum chloride solution according to any one of claims 1 to 4, comprising an acid addition step of adding at least one acid selected from the group consisting of hydrochloric acid, sulfuric acid and nitric acid to a basic aluminum chloride solution. Method.
  6. 水中で水酸化アルミニウムと硫酸を反応させる工程と、
     さらに、炭酸カルシウム、水酸化カルシウム及び酸化カルシウムからなる群から選ばれるカルシウム化合物と、塩化カルシウムとを加える工程と、
     沈殿した硫酸カルシウムを除去し、塩基度が63未満の塩基性塩化アルミニウム溶液を得る工程と、
     前記塩基性塩化アルミニウム溶液に対して、塩化物イオン源及びアルカリを加える塩素添加工程とを含む、
     塩基度が63以上75以下であり、粘度が5mPa・s以上200mPa・s以下である塩基性塩化アルミニウム溶液の製造方法。
    Reacting aluminum hydroxide and sulfuric acid in water;
    Furthermore, the step of adding a calcium compound selected from the group consisting of calcium carbonate, calcium hydroxide and calcium oxide, and calcium chloride,
    Removing the precipitated calcium sulfate to obtain a basic aluminum chloride solution having a basicity of less than 63;
    And adding a chloride ion source and an alkali to the basic aluminum chloride solution.
    A method for producing a basic aluminum chloride solution having a basicity of 63 or more and 75 or less and a viscosity of 5 mPa · s or more and 200 mPa · s or less.
  7. 100℃超かつ1気圧超の高温高圧雰囲気下で、水酸化アルミニウムと塩酸を反応させ、塩基度が63未満の塩基性塩化アルミニウム溶液を得る工程と、
     前記塩基性塩化アルミニウム溶液に対して、塩化物イオン源及びアルカリを加える塩素添加工程とを含む、
     塩基度が63以上75以下であり、粘度が5mPa・s以上200mPa・s以下である塩基性塩化アルミニウム溶液の製造方法。
    Reacting the aluminum hydroxide with hydrochloric acid in a high-temperature, high-pressure atmosphere of more than 100 ° C. and more than 1 atmosphere to obtain a basic aluminum chloride solution having a basicity of less than 63;
    And adding a chloride ion source and an alkali to the basic aluminum chloride solution.
    A method for producing a basic aluminum chloride solution having a basicity of 63 or more and 75 or less and a viscosity of 5 mPa · s or more and 200 mPa · s or less.
  8. 製造された塩基性塩化アルミニウム溶液のCl/Al23の重量割合が、0.75以上1.25以下である、請求項1~7に記載の塩基性塩化アルミニウム溶液の製造方法。 The method for producing a basic aluminum chloride solution according to any one of claims 1 to 7, wherein the weight ratio of Cl / Al 2 O 3 of the produced basic aluminum chloride solution is 0.75 or more and 1.25 or less.
  9. [Al2(OH)nCl(6-n)m(0<n<6、m≦10)で表される塩基性塩化アルミニウムを含み、塩基度が63未満で、粘度が1mPa・s以上50mPa・s以下で、Cl/Al23の重量割合が0.50以上0.87未満の塩基性塩化アルミニウム溶液に対して、炭酸ナトリウム、水酸化カルシウム、炭酸カルシウム及び炭酸マグネシウムからなる群から選ばれる一つを含むアルカリ及び塩化ナトリウムを加える塩素添加工程と、
     更に、塩酸を添加する酸添加工程とを含む、
    塩基度が63以上75以下で、粘度が5mPa・s以上200mPa・s以下で、Cl/Al23の重量割合が、0.90以上1.25以下である塩基性塩化アルミニウム溶液の製造方法。
    [Al 2 (OH) n Cl (6-n) ] m (0 <n <6, m ≦ 10) containing basic aluminum chloride, having a basicity of less than 63, and a viscosity of 1 mPa · s or more From a group consisting of sodium carbonate, calcium hydroxide, calcium carbonate and magnesium carbonate to a basic aluminum chloride solution having a weight ratio of Cl / Al 2 O 3 of 50 mPa · s or less and 0.50 or more and less than 0.87 A chlorine addition step of adding an alkali containing one selected and sodium chloride,
    And an acid addition step of adding hydrochloric acid.
    A method of producing a basic aluminum chloride solution having a basicity of 63 or more and 75 or less, a viscosity of 5 mPa · s or more and 200 mPa · s or less, and a weight ratio of Cl / Al 2 O 3 of 0.90 or more and 1.25 or less .
  10. 前記塩素添加工程において、添加するアルカリに含まれる水酸基の、塩基度が63未満の塩基性塩化アルミニウム溶液中のAl原子に対する比である、[OH]/[Al]mol比は、0.1以上1.05以下であり、
     前記塩素添加工程において、添加する塩化物イオン源に含まれる塩素原子の、塩基度が63未満の塩基性塩化アルミニウム溶液中のAl原子に対する比である、[Cl]/[Al]mol比は、0.01以上1以下であり、
     前記酸添加工程において、添加する酸に含まれる水素原子の、塩基度が63未満の塩基性塩化アルミニウム溶液中のAl原子に対する比である[H]/[Al]mol比は、0.001以上1以下である、
    請求項9に記載の塩基性塩化アルミニウム溶液の製造方法。
    In the chlorination step, the [OH] / [Al] molar ratio, which is the ratio of the hydroxyl group contained in the added alkali to the Al atom in the basic aluminum chloride solution having a basicity of less than 63, is 0.1 or more 1.05 or less,
    In the chlorination step, a [Cl] / [Al] molar ratio, which is a ratio of a chlorine atom contained in a chloride ion source to be added to an Al atom in a basic aluminum chloride solution having a basicity of less than 63, is 0.01 or more and 1 or less,
    In the acid addition step, the [H] / [Al] molar ratio, which is the ratio of the hydrogen atom contained in the acid to be added to the Al atom in the basic aluminum chloride solution having a basicity of less than 63, is 0.001 or more 1 or less,
    The manufacturing method of the basic aluminum chloride solution of Claim 9.
  11. 製造された塩基性塩化アルミニウム溶液の硫酸イオン濃度が3.0質量%以下である、請求項1~10に記載の塩基性塩化アルミニウム溶液の製造方法。 The method for producing a basic aluminum chloride solution according to any one of claims 1 to 10, wherein the sulfate ion concentration of the produced basic aluminum chloride solution is 3.0% by mass or less.
  12. [Al2(OH)nCl(6-n)m(0<n<6、m≦10)で表される塩基性塩化アルミニウムを含み、
     前記塩基性塩化アルミニウムの塩基度が63以上75以下であり、粘度が5mPa・s以上200mPa・s以下である、塩基性塩化アルミニウム溶液。
    Contains basic aluminum chloride represented by [Al 2 (OH) n Cl (6-n) ] m (0 <n <6, m ≦ 10),
    The basic aluminum chloride solution, wherein the basicity of the basic aluminum chloride is 63 or more and 75 or less, and the viscosity is 5 mPa · s or more and 200 mPa · s or less.
  13. 前記塩基性塩化アルミニウムのCl/Al23の重量割合が、0.75以上1.25以下である、請求項12に記載の塩基性塩化アルミニウム溶液。 The basic aluminum chloride solution according to claim 12, wherein the weight ratio of Cl / Al 2 O 3 of the basic aluminum chloride is 0.75 or more and 1.25 or less.
  14. 請求項12又は13に記載の塩基性塩化アルミニウム溶液からなる水処理用凝集剤。 A flocculant for water treatment comprising the basic aluminum chloride solution according to claim 12 or 13.
PCT/JP2018/028961 2017-08-04 2018-08-02 Basic aluminum chloride solution and method for producing same WO2019026982A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-151172 2017-08-04
JP2017151172 2017-08-04

Publications (1)

Publication Number Publication Date
WO2019026982A1 true WO2019026982A1 (en) 2019-02-07

Family

ID=65232915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028961 WO2019026982A1 (en) 2017-08-04 2018-08-02 Basic aluminum chloride solution and method for producing same

Country Status (2)

Country Link
JP (1) JP2019031431A (en)
WO (1) WO2019026982A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6845195B2 (en) * 2018-09-26 2021-03-17 朝日化学工業株式会社 Highly basic aluminum chloride
CN111995020B (en) * 2020-08-26 2022-09-23 常熟理工学院 Preparation method of polymeric magnesium aluminum cerium chloride coagulant
JP7017283B1 (en) * 2021-09-30 2022-02-08 浅田化学工業株式会社 Aqueous solution of highly basic aluminum chloride and its manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4931142A (en) * 1972-07-18 1974-03-20
JPS5024325A (en) * 1973-06-07 1975-03-15
JPS51106339A (en) * 1975-03-17 1976-09-21 Taimei Kagaku Kogyo Kk
JPS53100194A (en) * 1977-02-15 1978-09-01 Central Glass Co Ltd Production of basic aluminum chloride
JPH10230102A (en) * 1997-02-18 1998-09-02 Kanto Denka Kogyo Co Ltd Manufacture of iron-containing polyaluminum chloride aqueous solution
US20070092433A1 (en) * 2005-10-21 2007-04-26 Reheis, Inc. Process for producing stable polyaluminum hydroxychloride and polyaluminum hydroxychlorosulfate aqueous solutions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4931142A (en) * 1972-07-18 1974-03-20
JPS5024325A (en) * 1973-06-07 1975-03-15
JPS51106339A (en) * 1975-03-17 1976-09-21 Taimei Kagaku Kogyo Kk
JPS53100194A (en) * 1977-02-15 1978-09-01 Central Glass Co Ltd Production of basic aluminum chloride
JPH10230102A (en) * 1997-02-18 1998-09-02 Kanto Denka Kogyo Co Ltd Manufacture of iron-containing polyaluminum chloride aqueous solution
US20070092433A1 (en) * 2005-10-21 2007-04-26 Reheis, Inc. Process for producing stable polyaluminum hydroxychloride and polyaluminum hydroxychlorosulfate aqueous solutions

Also Published As

Publication number Publication date
JP2019031431A (en) 2019-02-28

Similar Documents

Publication Publication Date Title
WO2019026982A1 (en) Basic aluminum chloride solution and method for producing same
KR101661179B1 (en) Preparation process of high basic polyaluminium chloride coagulants
JP5986448B2 (en) Method for producing sulfate group-containing polyaluminum chloride
MX2009000866A (en) Polyaluminum calcium hydroxychlorides and methods of making the same.
JP2019052079A (en) Basic aluminum chloride solution and production method thereof
JPH0367967B2 (en)
JP6860196B2 (en) Method for producing basic aluminum chloride solution
JP2006225175A (en) Method of manufacturing transparent liquid fertilizer
KR101252710B1 (en) Poly aluminum calcium chloride inorganic coagulant with high basicity for water-treatment and method of preparing the same
KR101612513B1 (en) Method for preparing polyaliminium chloride-based inorganic coagulants having high basicity
JP5213515B2 (en) Method for producing iron-silica water treatment flocculant
TWI764044B (en) Overbased aluminum chloride and method for producing the same
JPH07172824A (en) Production of solution of highly basic aluminum chloride containing sulfate ion
JP6904151B2 (en) Method for producing highly basic aluminum chloride containing sulfate ion
JP2991987B2 (en) Basic aluminum chloride and method for producing the same
KR100622295B1 (en) Preparation method of polyaluminiumchloride
RU2359913C1 (en) Substance on basis of magnesium hydroxoaluminate, containing coprecipitated aluminium hydroxide, and way of its obtaining
KR101119623B1 (en) Inorganic cohesive agents for water-treatment and Preparing method thereof
JP6277074B2 (en) Sulfate radical-modified basic aluminum chloride aqueous solution and method for producing the same
JP2020079200A (en) Method for producing highly basic aluminum chloride
JP6186528B1 (en) Method for producing basic aluminum chloride
KR100960151B1 (en) Coagulant composition and manufacturing method thereof
JPS61200103A (en) Production of acrylamide polymer decomposed by hofmann decomposition
JPH0360774B2 (en)
JP2018076199A (en) Method for producing sulfate radical-containing basic aluminum chloride solution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18841893

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18841893

Country of ref document: EP

Kind code of ref document: A1