JP6845195B2 - Highly basic aluminum chloride - Google Patents

Highly basic aluminum chloride Download PDF

Info

Publication number
JP6845195B2
JP6845195B2 JP2018181034A JP2018181034A JP6845195B2 JP 6845195 B2 JP6845195 B2 JP 6845195B2 JP 2018181034 A JP2018181034 A JP 2018181034A JP 2018181034 A JP2018181034 A JP 2018181034A JP 6845195 B2 JP6845195 B2 JP 6845195B2
Authority
JP
Japan
Prior art keywords
aluminum chloride
basic aluminum
solution
basicity
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018181034A
Other languages
Japanese (ja)
Other versions
JP2020050540A (en
Inventor
勇介 藤井
勇介 藤井
博章 北山
博章 北山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Co Ltd
Original Assignee
Asahi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=69975464&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6845195(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asahi Chemical Co Ltd filed Critical Asahi Chemical Co Ltd
Priority to JP2018181034A priority Critical patent/JP6845195B2/en
Priority to KR1020190113318A priority patent/KR102337418B1/en
Priority to TW108133350A priority patent/TWI764044B/en
Priority to CN201910892381.1A priority patent/CN110950369A/en
Publication of JP2020050540A publication Critical patent/JP2020050540A/en
Application granted granted Critical
Publication of JP6845195B2 publication Critical patent/JP6845195B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/48Halides, with or without other cations besides aluminium
    • C01F7/56Chlorides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Geology (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Silicon Compounds (AREA)

Description

本発明は、高塩基性塩化アルミニウム、それを含む水処理用凝集剤組成物およびその製造方法に関する。 The present invention relates to highly basic aluminum chloride, a water treatment flocculant composition containing the same, and a method for producing the same.

近年、飲料水中のアルミニウムに関して濃度規制が行われるようになり、世界保健機構(WHO)の飲料水水質ガイドラインでは、0.2mg/L、米国環境保護庁の安全飲料水法第二種飲料水規制では0.05〜0.2mg/L(暫定)、欧州連合の飲料水水質基準ではガイドレベルを0.05mg/L、最大許容濃度を0.2mg/Lと定めている。 In recent years, the concentration of aluminum in drinking water has been regulated, and the World Health Organization (WHO) drinking water quality guideline is 0.2 mg / L, which is the Safe Drinking Water Act Class 2 Drinking Water Regulation of the US Environmental Protection Agency. The European Union's drinking water quality standards stipulate a guide level of 0.05 mg / L and a maximum permissible concentration of 0.2 mg / L.

一方、日本においても厚生労働省が定めた水道水質に関する基準の快適水質項目にAlが示され、その目標値を0.2mg/L以下と定めている。 On the other hand, in Japan as well, Al is indicated in the comfortable water quality item of the standard regarding tap water quality set by the Ministry of Health, Labor and Welfare, and the target value is set to 0.2 mg / L or less.

河川水から飲料水とするためには、通常塩基性塩化アルミニウムによる浄水用凝集剤を使用することが多く、この塩基性塩化アルミニウムは、一般的に、加圧下で塩酸とアルミニウム水和物を反応させて、塩基性塩化アルミニウムとし、これに硫酸又は水溶性硫酸塩を添加し含硫酸塩塩基性塩化アルミニウム(PAC)が製造されている。塩基度は40%〜60%である。 In order to convert river water into drinking water, a coagulant for water purification using basic aluminum chloride is usually used, and this basic aluminum chloride generally reacts hydrochloric acid and aluminum hydrate under pressure. The basic aluminum chloride is obtained, and sulfuric acid or a water-soluble sulfate is added thereto to produce sulfate-containing basic aluminum chloride (PAC). The basicity is 40% to 60%.

また塩基度を上げ凝集性能を向上させる製法として、特許文献1(特許6186528)に開示されている方法がある。すなわち塩基性塩化アルミニウムにアルカリ(炭酸ナトリウム、アルミン酸ソーダなど)を加えゲル化させたのち、このゲルを塩基性塩化アルミニウム溶液に加え溶解して高塩基性塩化アルミニウムを得る方法である。この場合73%程度の高塩基度の塩基性塩化アルミニウム得られることが示されている。この方法を以下ゲル法と称する。 Further, as a manufacturing method for increasing the basicity and improving the aggregation performance, there is a method disclosed in Patent Document 1 (Patent 6186528). That is, it is a method in which an alkali (sodium carbonate, sodium aluminate, etc.) is added to basic aluminum chloride to gel it, and then this gel is added to a basic aluminum chloride solution and dissolved to obtain highly basic aluminum chloride. In this case, it has been shown that basic aluminum chloride having a high basicity of about 73% can be obtained. This method is hereinafter referred to as a gel method.

特許第6186528号公報Japanese Patent No. 6186528

塩基度を上げ凝集性能を向上させた高塩基性塩化アルミニウム凝集剤は河川水の変動による凝集特性のバラつきが少ないという利点があり、塩基度を極限にまで高めることで残存Al等の低減が可能な凝集剤とすることが期待できるものの、特許文献1の発明では、塩基性塩化アルミニウムの塩基度を高めて行くときに、塩基度が75%を超えると急激に増粘するという問題点がある。 A highly basic aluminum chloride flocculant with increased basicity and improved aggregation performance has the advantage that there is little variation in aggregation characteristics due to fluctuations in river water, and it is possible to reduce residual Al, etc. by increasing the basicity to the utmost limit. Although it can be expected to be a solid flocculant, the invention of Patent Document 1 has a problem that when the basicity of basic aluminum chloride is increased, the viscosity rapidly increases when the basicity exceeds 75%. ..

また最近では、飲料水の水質基準がさらに厳しくなり、有機成分の含有量ができるだけ小さく(E260の値により評価)、クリプトスポリジウム、ピコプランクトンなどの生物由来の微粒子(微粒子数の個数により評価)の値が極めて低いことが望まれている。 Recently, the water quality standards for drinking water have become stricter, the content of organic components is as small as possible (evaluated by the value of E260), and biologically-derived fine particles such as cryptosporidium and picoplankton (evaluated by the number of fine particles). It is hoped that the value will be extremely low.

発明者らは、鋭意努力を重ね、前記アルミナゲル法の改良について検討した結果、アルミナゲル化に際しての原料の塩化アルミニウム第一溶液中のSOの含有量、アルミナゲルを溶解するための塩化アルミニウム第二溶液中のSOの含有量を、共にSO/Alのモル比で0〜0.1とすること、溶解後の塩基性塩化アルミニウム溶液に炭酸アルカリを添加し反応を完結させ塩基度を80%〜90%に高めること、これらの溶解熟成を40℃〜80℃の加温下で行うこと、により、高塩基度にもかかわらず極めて安定した高塩基性塩化アルミニウム溶液が得られることを見出し、本発明を完成した。
以上
We, repeated extensive studies, the results of investigation of the improvement of the alumina gel method, the content of SO 4 aluminum chloride first solution of raw materials during the alumina gel, aluminum chloride to dissolve the alumina gel Set the SO 4 content in the second solution to 0 to 0.1 in terms of the molar ratio of SO 4 / Al 2 O 3 , and add alkali carbonate to the dissolved basic aluminum chloride solution to complete the reaction. By increasing the basicity to 80 % to 90 % and performing the dissolution and aging of these under heating at 40 ° C to 80 ° C, a highly basic aluminum chloride solution that is extremely stable despite the high basicity can be obtained. The present invention was completed by finding that it can be obtained.
that's all

そして、得られた高塩基性塩化アルミニウムを凝集剤として使用することにより、処理後の浄水中の残存Al濃度、微生物由来の微粒子数、および有機物の含有量を示すE260値を、いずれも顕著に低下させることに成功した。 Then, by using the obtained highly basic aluminum chloride as a flocculant, the residual Al concentration in the purified water after the treatment, the number of fine particles derived from microorganisms, and the E260 value indicating the content of organic substances are all remarkably increased. I succeeded in lowering it.

本発明の目的は、このような高塩基性塩化アルミニウムおよびそれを用いた浄水用凝集剤を提供し、残存Alの低減と共に、微粒子数の低減、E260値の低減をも可能な凝集剤を提供することにある。 An object of the present invention is to provide such highly basic aluminum chloride and a coagulant for water purification using the same, and to provide a coagulant capable of reducing the number of fine particles and the E260 value as well as reducing residual Al. To do.

すなわち本発明は、組成が、M/Al(モル比)=0.8〜2.2(Mはアルカリ金属のモル数を示す)、E/Al(モル比)=0〜0.3(Eはアルカリ土類金属のモル数を示す)、Cl/Al(モル比)=1.0〜3.0、SO/Al(モル比)=0〜0.26であり、塩基度が80%〜90%であることを特徴とする高塩基性塩化アルミニウムである。 That is, in the present invention, the composition is M / Al 2 O 3 (molar ratio) = 0.8 to 2.2 (M indicates the number of moles of alkali metal), E / Al 2 O 3 (molar ratio) = 0. ~ 0.3 (E indicates the number of moles of alkaline earth metal), Cl / Al 2 O 3 (molar ratio) = 1.0 to 3.0, SO 4 / Al 2 O 3 (molar ratio) = 0 It is a highly basic aluminum chloride having a basicity of about 0.26 and a basicity of 80 % to 90%.

また本発明は、さらにSi化合物をSi/Al(モル比)=0.001〜0.1含むことを特徴とする。 The present invention is further characterized by further containing a Si compound of Si / Al 2 O 3 (molar ratio) = 0.001 to 0.1.

さらにまた本発明は、前記記載の高塩基性塩化アルミニウムを水にAl換算で8重量%〜12重量%含むことを特徴とする水処理用凝集剤である。 Furthermore, the present invention is a water treatment flocculant, which comprises the above-mentioned highly basic aluminum chloride in water in an amount of 8% by weight to 12% by weight in terms of Al 2 O 3.

本発明によると、塩基性塩化アルミニウムの塩基度を80%〜90%にまで高めることができ、保存安定性にも優れ、凝集剤として使用することにより処理後の浄水中の残存Al、E260の値および微粒子数を共に顕著に減少させることが可能である。 According to the present invention, the basicity of basic aluminum chloride can be increased from 80 % to 90 %, the storage stability is excellent, and by using it as a coagulant, the residual Al, E260 in purified water after treatment can be used. Both the value and the number of fine particles can be significantly reduced.

本発明は、組成が、M/Al2O3(モル比)=0.8〜2.2(Mはアルカリ金属のモル数を示す)、E/Al2O3(モル比)=0〜0.3(Eはアルカリ土類金属のモル
数を示す)、Cl/Al2O3(モル比)=1.0〜3.0、SO4/Al2O3(モル比)=0〜0.35であり、塩基度が80%〜90%である高塩基性塩化アルミニウムである。
In the present invention, the composition is M / Al2O3 (molar ratio) = 0.8 to 2.2 (M indicates the number of moles of alkali metal), E / Al2O3 (molar ratio) = 0 to 0.3 (E is The number of moles of alkaline earth metal is shown), Cl / Al2O3 (molar ratio) = 1.0 to 3.0, SO4 / Al2O3 (molar ratio) = 0 to 0.35, and the basicity is 80 % to 90. % Is highly basic aluminum chloride.

本発明において、高塩基性塩化アルミニウム中のアルカリ金属は、Al1モルに対し、0.8〜2.2モル、好ましくは1.3〜1.9モル含まれる。アルカリ金属が、Al1モルに対し0.8モル未満では、残存Al、E260および微粒子数の低減効果が十分には得られず、また、2.2モルを超えると増粘して製造困難となる。 In the present invention, the alkali metal overbased chloride in aluminum, to Al 2 O 3 1 mol, 0.8 to 2.2 mol, preferably included 1.3 to 1.9 moles. If the amount of the alkali metal is less than 0.8 mol with respect to 1 mol of Al 2 O 31 , the effect of sufficiently reducing the number of residual Al, E260 and fine particles cannot be sufficiently obtained, and if it exceeds 2.2 mol, the viscosity is increased. It becomes difficult to manufacture.

本発明において、Mで示されるアルカリ金属としては、リチウム、カリウム、ナトリウム、ルビジウムなどがあげられ、カリウム、ナトリウムが好ましい。 In the present invention, examples of the alkali metal represented by M include lithium, potassium, sodium and rubidium, and potassium and sodium are preferable.

また、本発明において、高塩基性塩化アルミニウム中のアルカリ土類金属は、Al1モルに対し、0〜0.3モル、好ましくは0.02〜0.2モル含まれる。アルカリ土類金属はAl1モルに対しこのアルカリ土類金属は、ケイ素化合物との相乗効果により、さらに凝集性を高める効果がある。アルカリ土類金属はAl1モルに対し0.3モルを超えると効果は飽和する。 Further, in the present invention, overbased alkaline earth metal chloride in aluminum, to Al 2 O 3 1 mol to 0.3 mol and, preferably 0.02 to 0.2 mol. Alkaline earth metal has an effect of further enhancing cohesiveness due to a synergistic effect with a silicon compound, whereas Al 2 O 31 mol is produced. The effect of alkaline earth metal is saturated when it exceeds 0.3 mol with respect to 1 mol of Al 2 O 31.

また、本発明において、Eで示されるアルカリ土類金属としては、ベリリウム、マグネシウム、カルシウム、バリウムなどがあげられ、マグネシウム、カルシウムが好ましい。 Further, in the present invention, examples of the alkaline earth metal represented by E include beryllium, magnesium, calcium and barium, and magnesium and calcium are preferable.

また、本発明において、高塩基性塩化アルミニウム中のClは、Al1モルに対し、1.0〜3.0モル、好ましくは2.0〜3.0モル含まれる。このClは、Alに結合しているClとアルカリ金属に結合しているClを合算したものである。塩基度が高くなるほど、Alに結合しているClが少なくなり、アルカリ金属に結合しているClが多くなる。 Further, in the present invention, Cl in highly basic aluminum chloride is contained in an amount of 1.0 to 3.0 mol, preferably 2.0 to 3.0 mol, based on 1 mol of Al 2 O 31. This Cl is the sum of Cl bonded to Al and Cl bonded to an alkali metal. The higher the basicity, the less Cl is bound to Al and the more Cl is bound to the alkali metal.

また、本発明において、高塩基性塩化アルミニウム中のSOは、Al1モルに対しSOを0〜0.35モル、好ましくは0.05〜0.25モル含まれる。 Further, in the present invention, SO 4 in highly basic aluminum chloride contains 0 to 0.35 mol, preferably 0.05 to 0.25 mol, of SO 4 with respect to 1 mol of Al 2 O 31.

本発明においては、SO(硫酸根)は、河川の種類によっては含まなくても可能である。SOは凝集性を高くする効果があるが、残留Alの低減効果についてはマイナスの効果があり、残留Alの低減を目的とする場合は、できるだけ少ない方が良い。 In the present invention, SO 4 (sulfate root) can be omitted depending on the type of river. SO 4 has the effect of increasing the cohesiveness, but has a negative effect on the effect of reducing residual Al, and when the purpose is to reduce residual Al, it is better to reduce it as much as possible.

本発明において、アルカリ土類金属は、前記のとおり、ケイ素化合物との相乗効果により、さらに凝集性を高めることができ、特にSOによる凝集性が必要な河川水に対しては、マグネシウム、ケイ素と組合せることによりSOの含有量を減らすことが可能となるので、アルカリ土類金属とケイ素化合物とを併用することが好ましい。 In the present invention, alkaline earth metal, as described above, the synergistic effect with the silicon compound, it is possible to further increase the cohesive properties, especially for SO 4 by cohesion river water required, magnesium, silicon Since it is possible to reduce the SO 4 content by combining with, it is preferable to use an alkaline earth metal and a silicon compound in combination.

ケイ素化合物は、高塩基性塩化アルミニウム中に、ケイ素としてAl1モルに対し0.001〜0.1モル、好ましくは0.01〜0.05モル含まれる。 The silicon compound is contained in highly basic aluminum chloride in an amount of 0.001 to 0.1 mol, preferably 0.01 to 0.05 mol, based on 1 mol of Al 2 O 31 as silicon.

ケイ素は凝集性を高めると共に特に高濁度での処理水に効果がある。0.001モルより少ないと、凝集性に改善が認められず、0.1モルを超えても効果が飽和するので好ましくない。 Silicon enhances cohesiveness and is particularly effective for treated water at high turbidity. If it is less than 0.001 mol, no improvement in cohesiveness is observed, and if it exceeds 0.1 mol, the effect is saturated, which is not preferable.

本発明の高塩基性塩化アルミニウムの塩基度は、80%〜90%であり、本発明では高塩基度の塩基性塩化アルミニウムが可能である。
The basicity of the highly basic aluminum chloride of the present invention is 80 % to 90 %, and the highly basic aluminum chloride of the present invention is possible.

また、本発明の水処理用凝集剤組成物は、前記高塩基性塩化アルミニウムを水にAl換算で8重量%〜12重量%、好ましくは10重量%〜11重量%含み、使用する河川水やその他の採水される水の水質によって適宜濃度を変更することができる。 The water treatment flocculant composition of the present invention, the high basic aluminum chloride in terms of Al 2 O 3 in water 8% to 12% by weight, preferably comprises 10 wt% to 11 wt%, used The concentration can be changed as appropriate depending on the quality of river water and other sampled water.

本発明の水処理用凝集剤組成物は、種々の添加剤を使用することもでき、添加剤としては凝集作用を阻害せず、凝集処理がなされた処理水の飲用に支障のないものであれば、特に限定されない。 In the water treatment coagulant composition of the present invention, various additives can be used, and the additive does not inhibit the agglutinating action and does not hinder the drinking of the treated water which has been agglutinated. For example, there is no particular limitation.

具体的な添加剤としては、例えば高分子凝集剤、クエン酸ナトリウム、グルコン酸ナトリウムなどがあげられる。 Specific examples of the additive include a polymer flocculant, sodium citrate, sodium gluconate and the like.

本発明の水処理用凝集剤組成物は、高塩基性塩化アルミニウムを水に所定の濃度となるように添加、混合することにより使用することができる。 The coagulant composition for water treatment of the present invention can be used by adding and mixing highly basic aluminum chloride to water so as to have a predetermined concentration.

本発明の水処理用凝集剤組成物は、凝集剤として使用すると、処理後の処理水中の残存Al、E260および微粒子数は顕著に減少する。 When the coagulant composition for water treatment of the present invention is used as a coagulant, the number of residual Al, E260 and fine particles in the treated water after the treatment is remarkably reduced.

本発明の高塩基性塩化アルミニウムは、
(1)SO含有量(SO/Al(モル比))が0〜0.1であり塩基度が40%〜65%の塩基性塩化アルミニウム第一溶液を、アルカリ溶液と反応させアルミナゲルを生成させる第一工程と、
(2)第一工程で得られるアルミナゲルを、SO含有量(SO/Al(モル比))が0〜0.1であり塩基度が40%〜55%の塩基性塩化アルミニウム第二溶液に、40℃〜80℃で添加し溶解する第二工程と、
(3)第二工程で得られる溶液に炭酸アルカリを添加し塩基度80%〜90%の塩基性塩化アルミニウム第三溶液を得る第三工程と、
(4)第三工程で得られる第三溶液を、40℃〜90℃で熟成して熟成溶液を得る第四工程と、
(5)第四工程で得られる熟成溶液に硫酸塩を添加して、該熟成溶液中のSO含有量をSO/Al(モル比)=0〜0.35に調製する第五工程を経ることにより製造することができる。
The highly basic aluminum chloride of the present invention
(1) A first solution of basic aluminum chloride having an SO 4 content (SO 4 / Al 2 O 3 (molar ratio)) of 0 to 0.1 and a basicity of 40% to 65% is reacted with an alkaline solution. The first step of forming an alumina gel and
(2) The alumina gel obtained in the first step has a SO 4 content (SO 4 / Al 2 O 3 (molar ratio)) of 0 to 0.1 and a basicity of 40% to 55%. The second step of adding and dissolving in the second aluminum solution at 40 ° C to 80 ° C, and
(3) In the third step, an alkali carbonate is added to the solution obtained in the second step to obtain a third solution of basic aluminum chloride having a basicity of 80 % to 90%.
(4) The fourth step of aging the third solution obtained in the third step at 40 ° C. to 90 ° C. to obtain an aging solution, and
(5) Sulfate is added to the aging solution obtained in the fourth step to adjust the SO 4 content in the aging solution to SO 4 / Al 2 O 3 (molar ratio) = 0 to 0.35. It can be manufactured by going through five steps.

第一工程では、SO含有量(SO/Al(モル比))が0〜0.1であり塩基度が40%〜65%の塩基性塩化アルミニウム第一溶液を、アルカリ溶液と反応させアルミナゲルを生成させる。 In the first step, a basic first solution of aluminum chloride having an SO 4 content (SO 4 / Al 2 O 3 (molar ratio)) of 0 to 0.1 and a basicity of 40% to 65% was prepared as an alkaline solution. To produce an alumina gel.

この第一工程で用いる塩基性塩化アルミニウムの第一溶液は、特に限定されないが通常塩基度40%〜65%のものであり、既知の方法で製造されるものであればよく、たとえばオートクレーブ中で塩酸と水酸化アルミニウムとを反応させることにより製造することができる。 The first solution of basic aluminum chloride used in this first step is not particularly limited, but usually has a basicity of 40% to 65%, and may be produced by a known method, for example, in an autoclave. It can be produced by reacting hydrochloric acid with aluminum hydroxide.

その1例をあげると、35%塩酸:649g、水酸化アルミニウム(含水率2.6%):325.3g、水:35.7gをオートクレーブ中で160℃、160分反応させて合成されるものである。 As an example, it is synthesized by reacting 35% hydrochloric acid: 649 g, aluminum hydroxide (moisture content 2.6%): 325.3 g, and water: 35.7 g in an autoclave at 160 ° C. for 160 minutes. Is.

また、本発明において、第一工程で用いる原料のアルカリ溶液は、そのpHが10以上のアルカリ溶液であればよく、たとえば、水酸化ナトリウム、水酸化カリウムなどの水酸化アルカリ金属、アルミン酸ナトリウム、アルミン酸カリウムなどのアルミン酸アルカリ金属塩を含む溶液があげられる。炭酸ナトリウム、炭酸カリウムなどの炭酸アルカリ金属塩も使用することができる。 Further, in the present invention, the alkaline solution of the raw material used in the first step may be an alkaline solution having a pH of 10 or more, for example, alkali metal hydroxide such as sodium hydroxide and potassium hydroxide, sodium aluminate, and the like. Examples thereof include a solution containing an aluminate alkali metal salt such as potassium aluminate. Alkali metal carbonates such as sodium carbonate and potassium carbonate can also be used.

これらの内、水酸化アルカリ金属、炭酸アルカリ金属塩を単独で用いる場合には、ナトリウムの含有量が多くなり、必然的に製品の塩基性塩化アルミニウム中に、塩化ナトリウムの量が多く含まれることになるので、アルミン酸アルカリ金属塩と併用することが好ましい。 Of these, when alkali metal hydroxide and alkali metal carbonate are used alone, the sodium content is high, and the basic aluminum chloride of the product inevitably contains a large amount of sodium chloride. Therefore, it is preferable to use it in combination with an alkali metal aluminate salt.

アルミン酸ナトリウム、アルミン酸カリウムなどのアルミン酸アルカリ金属塩は、アルミナ分が塩基度向上に寄与し、所定の塩基度にするために必要なNa量を少なくし、反応による残留塩化ナトリウムの量を少なくすることができるので好ましい。また、アルミン酸アルカリのアルカリ金属とAlモル比は、1.0〜2.0のものが使用できる。 In alkali metal aluminate salts such as sodium aluminate and potassium aluminate, the alumina content contributes to the improvement of basicity, reduces the amount of Na required to achieve a predetermined basicity, and reduces the amount of residual sodium chloride due to the reaction. It is preferable because it can be reduced. Further, an alkali metal of alkali aluminate and Al 2 O 3 molar ratio of 1.0 to 2.0 can be used.

この塩基性塩化アルミニウム中には、前記アルカリ金属に加えて、アルカリ土類金属がAl1モルに対し0〜0.3モル、特に好ましくは0.02〜0.2モル含まれる。 In addition to the alkali metal, the basic aluminum chloride contains 0 to 0.3 mol, particularly preferably 0.02 to 0.2 mol , of alkaline earth metal with respect to 1 mol of Al 2 O 31.

またこの塩基性塩化アルミニウム中には、ClがAl1モルに対し1.0〜3.0モル、特に好ましくは2.0〜3.0モル含まれる。このClは、Alに結合しているClとアルカリ金属に結合しているClを合算したものである。1.0モル未満であっても、3.0モルを超えても塩基性塩化アルミニウムの安定性が悪くなるので好ましくない。 Further, this basic aluminum chloride contains 1.0 to 3.0 mol, particularly preferably 2.0 to 3.0 mol, of Cl with respect to 1 mol of Al 2 O 31. This Cl is the sum of Cl bonded to Al and Cl bonded to an alkali metal. Even if it is less than 1.0 mol or more than 3.0 mol, the stability of basic aluminum chloride deteriorates, which is not preferable.

またこの塩基性塩化アルミニウム中には、SOがAl1モルに対し0〜0.26モル含まれる。このSOは凝集性に対し補助的に用いられ、水の種類によっては含まなくても可能である。

Further, this basic aluminum chloride contains 0 to 0.26 mol of SO 4 with respect to 1 mol of Al 2 O 31. This SO 4 is used as a supplement to cohesiveness and can be omitted depending on the type of water.

塩基性塩化アルミニウム中にMgなどアルカリ土類金属を含有させる方法としては、第一工程における塩基性塩化アルミニウム第1溶液に塩化マグネシウムなどと混合溶解する方法、第二工程における原料の塩基性塩化アルミニウム第2溶液に塩化マグネシウムなどとして混合溶解する方法をあげることができる。 As a method of containing an alkaline earth metal such as Mg in basic aluminum chloride, a method of mixing and dissolving with magnesium chloride or the like in a first solution of basic aluminum chloride in the first step, and a method of mixing and dissolving basic aluminum chloride as a raw material in the second step. A method of mixing and dissolving as magnesium chloride or the like in the second solution can be mentioned.

SOを含有させる方法としては、第一工程における原料の塩基性塩化アルミニウム第一溶液にSO化合物などと混合溶解する方法、第二工程における原料の塩基性塩化アルミニウム第2溶液にSO化合物などとして混合溶解する方法が挙げられ、第二工程で得られる溶解液にSO化合物を添加してもよい。 SO 4 in order to incorporate the is a method of mixing and dissolving the like SO 4 Compound basic aluminum chloride first solution of the material in the first step, SO 4 compound to a basic aluminum chloride the second solution of the material in the second step include a method of mixing and dissolving the like, to the solution obtained in the second step may be added SO 4 compound.

SO化合物としては、硫酸バンド、硫酸アルカリ金属塩、硫酸アルカリ土類金属塩、硫酸などがあげられ、このうち、硫酸バンド、硫酸ナトリウム、硫酸マグネシウムが好ましい。 The SO 4 compound, aluminum sulfate, alkali metal sulfates, alkaline earth metal sulfates, be mentioned include sulfuric acid, Among them, aluminum sulfate, sodium sulfate, magnesium sulfate is preferred.

ここで留意しなければならないのは、塩基性塩化アルミニウム溶液(第一溶液)にSOが含まれる場合、このSOの濃度は、Al1モルに対し0〜0.1モルである必要がある。0.1モルを超えた場合には第三工程以降で増粘し、ゲル化し易く、固化しやすくなるので好ましくない。 It must be noted here, if it contains SO 4 basic aluminum chloride solution (first solution), the concentration of the SO 4 is Al 2 O 3 1 mol at 0 to 0.1 mole There must be. If it exceeds 0.1 mol, it is not preferable because it thickens in the third and subsequent steps, easily gels, and easily solidifies.

アルミナゲル生成に際しては、pHが10以上の前記アルカリ溶液に、前記第一溶液を添加して反応させる。アルミナゲル生成の初期状態においては、前記強アルカリ溶液に酸性の塩基性塩化アルミニウム第一溶液を添加することにより析出したアルミナゲルは速やかにアルカリ溶液に溶解する。 When forming an alumina gel, the first solution is added to the alkaline solution having a pH of 10 or more and reacted. In the initial state of alumina gel formation, the alumina gel precipitated by adding the acidic basic aluminum chloride primary solution to the strong alkaline solution is rapidly dissolved in the alkaline solution.

反応が進むとアルミナゲルを溶解したアルカリ溶液は、過飽和になり、アルミナゲルを析出するが、pH10以上の反応液中で混合して、アルミナゲルを調製することにより、この析出アルミナゲルは酸に難溶性の結晶性アルミナゲルには成長せず易溶性アルミナゲルとなる。 As the reaction proceeds, the alkaline solution in which the alumina gel is dissolved becomes hypersaturated and precipitates the alumina gel. By mixing in a reaction solution having a pH of 10 or higher to prepare the alumina gel, the precipitated alumina gel becomes an acid. It does not grow into a poorly soluble crystalline alumina gel and becomes an easily soluble alumina gel.

また、前記アルカリ溶液と塩基性塩化アルミニウム第一溶液の混合時の温度を0〜40℃に維持することで、アルカリ環境下においても安定的にアルミナゲルを生成できる。更に、生成したアルミナゲルは、第二工程に移行する前に熟成することが好ましい。 Further, by maintaining the temperature at the time of mixing the alkaline solution and the basic aluminum chloride first solution at 0 to 40 ° C., an alumina gel can be stably produced even in an alkaline environment. Further, it is preferable that the produced alumina gel is aged before moving to the second step.

この熟成により、第二工程での溶解がさらに容易になる。この熟成時の温度も0℃〜40℃が好ましい。混合・熟成時の温度が40℃を越えると、アルミナゲルのポリマー化が進みすぎ、出来上がりの塩基性塩化アルミが半透明の白く濁ったものになるため、好ましくない。熟成時間は、0〜2時間程度行うことが好ましい。 This aging further facilitates dissolution in the second step. The temperature at the time of aging is also preferably 0 ° C. to 40 ° C. If the temperature during mixing and aging exceeds 40 ° C., the alumina gel is polymerized too much, and the finished basic aluminum chloride becomes translucent, white and turbid, which is not preferable. The aging time is preferably about 0 to 2 hours.

第二工程では、第一工程で得られるアルミナゲルを、SO含有量(SO/Al(モル比))が0〜0.1であり塩基度が40%〜55%の塩基性塩化アルミニウム第二溶液に、40℃〜80℃で添加し溶解する。この場合、アルミナゲル溶液に、前記第二溶液を添加してもよい。 In the second step, the alumina gel obtained in the first step is a base having an SO 4 content (SO 4 / Al 2 O 3 (molar ratio)) of 0 to 0.1 and a basicity of 40% to 55%. It is added to a second solution of aluminium chloride at 40 ° C to 80 ° C and dissolved. In this case, the second solution may be added to the alumina gel solution.

前記第二溶液は、前記第一工程で用いる塩基性塩化アルミニウム第一溶液と同様にして製造したものを用いることができる。 As the second solution, one produced in the same manner as the basic aluminum chloride first solution used in the first step can be used.

さらに、第二工程で得られる溶解液は、溶解時および/または溶解後に50℃〜90℃で加温処理を行うことが好ましい。処理時間は、1〜3時間行う。この処理により、未溶解アルミナゲルを少なくすると共に塩基性塩化アルミニウムを安定化させ、保管時の析出沈降を防止することができる。 Further, the dissolution liquid obtained in the second step is preferably subjected to a heating treatment at 50 ° C. to 90 ° C. at the time of dissolution and / or after dissolution. The processing time is 1 to 3 hours. By this treatment, undissolved alumina gel can be reduced, basic aluminum chloride can be stabilized, and precipitation and sedimentation during storage can be prevented.

この塩基性塩化アルミニウム溶液(第二溶液)についても、SOが含まれる場合には、このSOの濃度は、第一溶液と同様、Al1モルに対し0〜0.1モルである必要がある。0.1モルを超えた場合には溶解後のアルミナゲルが再びゲル化し易く、固化し易くなるので好ましくない。特に塩基度が高くなると、この傾向が著しい。 When SO 4 is contained in this basic aluminum chloride solution (second solution), the concentration of this SO 4 is 0 to 0.1 mol with respect to 1 mol of Al 2 O 31 as in the first solution. Must be. If it exceeds 0.1 mol, the dissolved alumina gel tends to gel again and solidify, which is not preferable. This tendency is remarkable especially when the basicity is high.

第三工程では、第二工程で得られた溶液に炭酸ナトリウム、炭酸カリウムなどの炭酸アルカリを添加し、塩基度を80%〜90%とした塩基性塩化アルミニウム第三溶液を得る。 In the third step, an alkali carbonate such as sodium carbonate or potassium carbonate is added to the solution obtained in the second step to obtain a basic aluminum chloride third solution having a basicity of 80 % to 90%.

第四工程では、塩基性塩化アルミニウム第三溶液を50℃〜80℃の温度を維持した状態で2時間程度熟成をする。これにより安定化された塩基度80%〜90%の高塩基性塩化アルミニウムの熟成溶液を得ることができる。 In the fourth step, the basic aluminum chloride third solution is aged for about 2 hours while maintaining the temperature of 50 ° C. to 80 ° C. As a result, a stabilized aged solution of highly basic aluminum chloride having a basicity of 80 % to 90% can be obtained.

次いで、熟成溶液に、硫酸塩を添加して、SO含有量が0〜0.35となるよう調整することにより、本発明の高塩基性塩化アルミニウムを製造することができる。
なお、SO含有量が前記範囲に足りない場合には、その必要量(第一、第二溶液にSOを一部含有している場合には必要量からその量を差し引いた量)を添加して、高塩基性塩化アルミニウムとする。またマグネシウム含ませる場合には、前記のとおり、いずれかの工程に塩化マグネシウムの形態で添加するのが好ましい。
Then, the aging solution, by adding sulfate by SO 4 content is adjusted to be 0 to 0.35, it is possible to produce a highly basic aluminum chloride of the present invention.
If the SO 4 content is less than the above range, the required amount (if the first and second solutions contain a part of SO 4 , the required amount minus the required amount) is used. Add to make highly basic aluminum chloride. When magnesium is included, it is preferable to add magnesium chloride to any of the steps as described above.

硫酸塩としては、硫酸バンド、硫酸ナトリウム、硫酸マグネシウムなどを使用することができる。 As the sulfate, a sulfate band, sodium sulfate, magnesium sulfate and the like can be used.

以下、実施例によって本発明をより詳細に説明するが、本発明は、かかる実施例によって限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to such Examples.

実施例1
アルミン酸ナトリウム溶液(Al換算19.7%、NaO換算20.2%)109.0gと、ケイ酸ナトリウム溶液(SiO換算28%、NaO換算10%)7.0gを混合した。
Example 1
Sodium aluminate solution (Al 2 O 3 in terms of 19.7%, Na 2 O in terms of 20.2%) 109.0 g and sodium silicate solution (SiO 2 conversion 28%, Na 2 O in terms of 10%) 7.0 g Was mixed.

これに塩基性塩化アルミニウム溶液(塩基度49.7%、Al濃度19.1%、SO濃度0%)126.7gを混合し、アルミナゲルを生成した。その後、このアルミナゲルを室温で0.25〜2時間熟成し、さらに塩基性塩化アルミニウム溶液(塩基度49.7%、Al濃度19.1%、SO濃度0%)281.1gを添加し溶解した。 126.7 g of a basic aluminum chloride solution (basicity 49.7%, Al 2 O 3 concentration 19.1%, SO 4 concentration 0%) was mixed with this to produce an alumina gel. Then, this alumina gel is aged at room temperature for 0.25 to 2 hours, and further, 281.1 g of a basic aluminum chloride solution (basicity 49.7%, Al 2 O 3 concentration 19.1%, SO 4 concentration 0%). Was added and dissolved.

この溶液を40℃〜80℃で60〜180分熟成し、炭酸ナトリウム28.4gを添加して塩基度を高めた。さらにこの塩基性塩化アルミニウム溶液を40℃〜90℃で60〜240分間熟成した。 This solution was aged at 40 ° C. to 80 ° C. for 60 to 180 minutes, and 28.4 g of sodium carbonate was added to increase the basicity. Further, this basic aluminum chloride solution was aged at 40 ° C. to 90 ° C. for 60 to 240 minutes.

その後、液体硫酸バンド(Al8.0%、SO22.3%)30.8gと塩化マグネシウム6水和物12gを添加し、最終的に塩基度80.5%の高塩基性塩化アルミニウム溶液(Al10.3%)を得た。 Then, 30.8 g of a liquid sulfuric acid band (Al 2 O 3 8.0%, SO 4 22.3%) and 12 g of magnesium chloride hexahydrate were added, and finally, high basicity with a basicity of 80.5%. An aluminum chloride solution (Al 2 O 3 10.3%) was obtained.

得られた高塩基性塩化アルミニウムの組成は、Si/Al(モル比)=0.03、Na/Al(モル比)=1.3、Mg/Al(モル比)=0.06、Cl/Al(モル比)=2.7、SO/Al(モル比)=0.07であり、得られた高塩基性塩化アルミニウムは、ほとんど増粘せず保存安定性も非常に良好であった。 The composition of the obtained highly basic aluminum chloride is Si / Al 2 O 3 (molar ratio) = 0.03, Na / Al 2 O 3 (molar ratio) = 1.3, Mg / Al 2 O 3 (molar ratio). Ratio) = 0.06, Cl / Al 2 O 3 (molar ratio) = 2.7, SO 4 / Al 2 O 3 (molar ratio) = 0.07, and the obtained highly basic aluminum chloride was There was almost no thickening and the storage stability was very good.

この高塩基性塩化アルミニウムについて、河川水を用いて、凝集剤としての性能を下記の試験条件により評価した。組成を表1に、結果は表2に示す。 The performance of this highly basic aluminum chloride as a flocculant was evaluated using river water under the following test conditions. The composition is shown in Table 1 and the results are shown in Table 2.

<試験条件>
ビーカーに河川水1リットルを入れ、急速攪拌(100rpm:64cm/sec)しながら高塩基性塩化アルミニウムを添加し、引き続き上記条件と同じ急速攪拌1分、緩速攪拌(60rpm;38cm/sec)を10分行い、10分間静置し、上澄液をサイホンにて採取し、濁度、残留アルミ濃度、E260(紫外部吸光度:トリハロメタン除去率) 、微粒子数を求めた。
<Test conditions>
Put 1 liter of river water in a beaker, add highly basic aluminum chloride with rapid stirring (100 rpm: 64 cm / sec), and then continue with rapid stirring (60 rpm; 38 cm / sec) for 1 minute under the same conditions as above. Perform for 10 minutes, allow to stand for 10 minutes, collect the supernatant with a siphon, turbidity, residual aluminum concentration, E260 (ultraviolet absorbance: trihalomethane removal rate). , The number of fine particles was calculated.

また、高塩基性塩化アルミニウムを50℃のウォーターバスに保管して、保存安定性を目視にて確認した。 Further, the highly basic aluminum chloride was stored in a water bath at 50 ° C., and the storage stability was visually confirmed.

<測定方法>
濁度:前記上澄み液を試料として、濁度計(日本電色工業株式会社製、WA−6000)を用いて測定した。
<Measurement method>
Turbidity: The supernatant was used as a sample and measured using a turbidity meter (WA-6000, manufactured by Nippon Denshoku Industries Co., Ltd.).

残留アルミニウム濃度:前記上澄み液を試料として、0.5μmのろ紙(アドバンテック東洋株式会社製 GC-90)を用いてろ過したろ液をICP発光分光法を用いて測定した。ICP発光分光分析装置は、VARIAN製ICP−OES、SPS5000を用いた。 Residual aluminum concentration: Using the supernatant as a sample, the filtrate filtered using a 0.5 μm filter paper (GC-90 manufactured by Advantech Toyo Co., Ltd.) was measured by ICP emission spectroscopy. As the ICP emission spectroscopic analyzer, ICP-OES and SPS5000 manufactured by VARIAN were used.

E260:前記上澄み液を試料として、0.5μmのろ紙(アドバンテック東洋株式会社製 GC-90)を用いてろ過したろ液を、光路長1cmの石英ガラスセルを用いて分光光度計(株式会社島津製作所 UV−2400PC)にて波長260nmの吸光度を測定した。 E260: Using the supernatant as a sample, a filtrate filtered using a 0.5 μm filter paper (GC-90 manufactured by Advantech Toyo Co., Ltd.) is used as a spectrophotometer (Shimadzu Co., Ltd.) using a quartz glass cell with an optical path length of 1 cm. The absorbance at a wavelength of 260 nm was measured at a UV-2400 PC factory.

微粒子数:高感度濁度計(日本電色工業株式会社製 NP−6000T)を用いて測定した。 Number of fine particles: Measured using a high-sensitivity turbidity meter (NP-6000T manufactured by Nippon Denshoku Industries Co., Ltd.).

<評価>
濁度は測定値で評価した。保存安定性は50℃のウォーターバスに保管して、目視で評価した。残存アルミニウム濃度、E260および微粒子数は測定値で評価した。
<Evaluation>
The turbidity was evaluated by the measured value. Storage stability was evaluated visually by storing in a water bath at 50 ° C. The residual aluminum concentration, E260 and the number of fine particles were evaluated by measured values.

実施例2
実施例1のケイ酸ナトリウム溶液、塩化マグネシウム6水和物および液体硫酸バンドを添加せず、他は実施例1と同様にして高塩基性塩化アルミニウムを得た。組成は表1に示す。また実施例1と同様に試験をして評価した。結果を表2に示す。
Example 2
Highly basic aluminum chloride was obtained in the same manner as in Example 1 except that the sodium silicate solution of Example 1, magnesium chloride hexahydrate and liquid sulfate band were not added. The composition is shown in Table 1. Moreover, the test was performed and evaluated in the same manner as in Example 1. The results are shown in Table 2.

実施例3
実施例1における炭酸ナトリウムを、60.6g添加する以外は、実施例1と同様にして塩基度90%の高塩基性塩化アルミニウムを得た。組成は表1に示す。また実施例1と同様に試験をして評価した。結果を表2に示す。
Example 3
Highly basic aluminum chloride having a basicity of 90% was obtained in the same manner as in Example 1 except that 60.6 g of sodium carbonate in Example 1 was added. The composition is shown in Table 1. Moreover, the test was performed and evaluated in the same manner as in Example 1. The results are shown in Table 2.

実施例4
実施例3の第五工程にて、不足分のSOを添加するため、硫酸ナトリウムを26.6g添加する以外は、実施例3と同様にして高塩基性塩化アルミニウムを得た。組成は表1に示す。また実施例1と同様に試験をして評価した。結果を表2に示す。
Example 4
In the fifth step of Example 3, high-basic aluminum chloride was obtained in the same manner as in Example 3 except that 26.6 g of sodium sulfate was added in order to add the shortage of SO 4. The composition is shown in Table 1. Moreover, the test was performed and evaluated in the same manner as in Example 1. The results are shown in Table 2.

参考例1
実施例1の炭酸ナトリウムを14.5g添加する以外は、実施例1と同様にして、塩基度を75.5%の高塩基性塩化アルミニウムを得た。組成は表1に示す。また実施例1と同様に試験をして評価した。結果を表2に示す。
Reference example 1
Highly basic aluminum chloride having a basicity of 75.5% was obtained in the same manner as in Example 1 except that 14.5 g of sodium carbonate of Example 1 was added. The composition is shown in Table 1. Moreover, the test was performed and evaluated in the same manner as in Example 1. The results are shown in Table 2.

参考例2
アルミン酸ナトリウム溶液(Al2O3換算19.7%、Na2O換算20.2%)110.7gと、基性塩化アルミニウム溶液(塩基度49.7%、Al2O3濃度19.1%、SO4濃度0%)128.7gを混合し、アルミナゲルを生成した。その後、このアルミナゲルを室温で0.25〜2時間熟成し、さらに塩基性塩化アルミニウム溶液(塩基度49.7%、Al2O3濃度19.1%、SO4濃度0%)273.8gを添加し溶解した。この溶液を40℃〜80℃で60〜180分熟成し、炭酸ナトリウム14.5gを添加して塩基度を高めた。
Reference example 2
Sodium aluminate solution (19.7% in terms of Al2O3, 20.2% in terms of Na2O) 110.7 g and basic aluminum chloride solution (basicity 49.7%, Al2O3 concentration 19.1%, SO4 concentration 0%) 128 .7 g was mixed to produce an alumina gel. Then, this alumina gel is aged at room temperature for 0.25 to 2 hours, and 273.8 g of a basic aluminum chloride solution (basicity 49.7%, Al2O3 concentration 19.1%, SO4 concentration 0%) is added and dissolved. did. This solution was aged at 40 ° C. to 80 ° C. for 60 to 180 minutes, and 14.5 g of sodium carbonate was added to increase the basicity.

さらにこの塩基性塩化アルミニウム溶液を40℃〜90℃で60〜240分間熟成した。その後、液体硫酸バンド(Al8.0%、SO22.3%)39.7gを添加し、最終的に塩基度75.5%の高塩基性塩化アルミニウム溶液(Al10.2%)を得た。また実施例1と同様に試験をして評価した。結果を表2に示す。 Further, this basic aluminum chloride solution was aged at 40 ° C. to 90 ° C. for 60 to 240 minutes. Then, 39.7 g of a liquid sulfate band (Al 2 O 3 8.0%, SO 4 22.3%) was added, and finally a highly basic aluminum chloride solution (Al 2 O 3) having a basicity of 75.5% was added. 10.2%) was obtained. Moreover, the test was performed and evaluated in the same manner as in Example 1. The results are shown in Table 2.

比較例1
実施例1の高塩基性塩化アルミニウムに代えて、市販(朝日化学工業株式会社製)のPAC(Al:10.3%、塩基度:52%、SO:2.6%(SO/Al(モル比)=0.27)を実施例1と同様にして評価した。結果を表2に示す。
Comparative Example 1
Instead of the highly basic aluminum chloride of Example 1, a commercially available (manufactured by Asahi Chemical Co., Ltd.) PAC (Al 2 O 3 : 10.3%, basicity: 52%, SO 4 : 2.6% (SO) 4 / Al 2 O 3 (molar ratio) = 0.27) was evaluated in the same manner as in Example 1. The results are shown in Table 2.

比較例2
アルミン酸ナトリウム溶液(Al換算19.7%、NaO換算20.2%)109.0gと、ケイ酸ナトリウム溶液(SiO換算28%、NaO換算10%)7.0gを混合した。
Comparative Example 2
Sodium aluminate solution (Al 2 O 3 in terms of 19.7%, Na 2 O in terms of 20.2%) 109.0 g and sodium silicate solution (SiO 2 conversion 28%, Na 2 O in terms of 10%) 7.0 g Was mixed.

これに塩基性塩化アルミニウム溶液(塩基性塩化アルミニウム、塩基度52%、Al10.3%、SO2.6%、Cl11.4%)231.4gを混合し、アルミナゲルを生成した。 231.4 g of a basic aluminum chloride solution (basic aluminum chloride, basicity 52%, Al 2 O 3 10.3%, SO 4 2.6%, Cl 11.4%) was mixed with this to produce an alumina gel. did.

ついで、このアルミナゲルを室温で0.25〜2時間熟成し、さらに塩基性塩化アルミニウム溶液(塩基度49.7%、Al19.1%)290.9g、液体硫酸バンド(Al8.0%、SO22.3%)5.3gおよび塩化マグネシウム6水和物12gを添加し溶解した。 Then, this alumina gel was aged at room temperature for 0.25 to 2 hours, and further, 290.9 g of a basic aluminum chloride solution (basicity 49.7%, Al 2 O 3 19.1%), a liquid sulfuric acid band (Al 2). 5.3 g of O 3 8.0%, SO 4 22.3%) and 12 g of magnesium chloride hexahydrate were added and dissolved.

この溶液を30℃〜50℃で90分間熟成し、塩基度71%の高塩基性塩化アルミニウム溶液(Al10.3%)を実施例1と同様にして評価した。結果を表2に示す。 This solution was aged at 30 ° C. to 50 ° C. for 90 minutes, and a highly basic aluminum chloride solution (Al 2 O 3 10.3%) having a basicity of 71% was evaluated in the same manner as in Example 1. The results are shown in Table 2.

比較例3
金属アルミニウム片45.5gを塩酸(35.6%)94.6gで溶解させて、塩基性塩化アルミニウム溶液(塩基度83.3%、Al23.1%)402.4gを得た。
Comparative Example 3
45.5 g of metallic aluminum pieces were dissolved in 94.6 g of hydrochloric acid (35.6%) to obtain 402.4 g of a basic aluminum chloride solution (basicity 83.3%, Al 2 O 3 23.1%). ..

これに、液体硫酸バンド112.1gを添加して混合した。その後、炭酸ナトリウムを13.0g添加して、80℃で120分間溶解熟成させ、塩基性塩化アルミニウム溶液を得た。 To this, 112.1 g of a liquid sulfate band was added and mixed. Then, 13.0 g of sodium carbonate was added, and it was dissolved and aged at 80 ° C. for 120 minutes to obtain a basic aluminum chloride solution.

得られた高塩基性塩化アルミニウムの組成は、Na/Al(モル比)=0.3、Cl/Al(モル比)=0.9、SO/Al(モル比)=0.26であった。組成は表1に示すが、50℃での安定性が悪く、また評価での濁度が1以上となり、使用できるものではなかった。 The composition of the obtained highly basic aluminum chloride was Na / Al 2 O 3 (molar ratio) = 0.3, Cl / Al 2 O 3 (molar ratio) = 0.9, SO 4 / Al 2 O 3 (molar ratio). (Mole ratio) = 0.26. The composition is shown in Table 1, but the stability at 50 ° C. was poor, and the turbidity in the evaluation was 1 or more, so that it could not be used.

比較例4
比較例2の液体硫酸バンド添加前までに炭酸ナトリウムを7g添加して、熟成温度を65℃とした以外は、実施例2と同様にして、塩基度73.5%の高塩基性塩化アルミニウムを得た。この溶液を実施例1と同様にして評価した。結果を表2に示す。
Comparative Example 4
Highly basic aluminum chloride having a basicity of 73.5% was obtained in the same manner as in Example 2 except that 7 g of sodium carbonate was added before the addition of the liquid sulfate band of Comparative Example 2 to set the aging temperature to 65 ° C. Obtained. This solution was evaluated in the same manner as in Example 1. The results are shown in Table 2.

Claims (3)

組成が、M/Al(モル比)=0.8〜2.2(Mはアルカリ金属のモル数を示す)、E/Al(モル比)=0〜0.3(Eはアルカリ土類金属のモル数を示す)、Cl/Al(モル比)=1.0〜3.0、SO/Al(モル比)=0〜0.26であり、塩基度が80%〜90%であることを特徴とする高塩基性塩化アルミニウム。 The composition is M / Al 2 O 3 (molar ratio) = 0.8 to 2.2 (M indicates the number of moles of alkali metal), E / Al 2 O 3 (molar ratio) = 0 to 0.3 (molar ratio). E indicates the number of moles of alkaline earth metal), Cl / Al 2 O 3 (molar ratio) = 1.0 to 3.0, SO 4 / Al 2 O 3 (molar ratio) = 0 to 0.26. A highly basic aluminum chloride having a basicity of 80 % to 90%. さらにSi化合物をSi/Al(モル比)=0.001〜0.1含むことを特徴
とする請求項1に記載の高塩基性塩化アルミニウム。
The highly basic aluminum chloride according to claim 1, further comprising a Si compound of Si / Al 2 O 3 (molar ratio) = 0.001 to 0.1.
請求項1または2に記載の高塩基性塩化アルミニウムを水にAl換算で8重量%〜12重量%含むことを特徴とする水処理用凝集剤組成物。 A water treatment flocculant composition comprising the highly basic aluminum chloride according to claim 1 or 2 in water in an amount of 8% by weight to 12% by weight in terms of Al 2 O 3.
JP2018181034A 2018-09-26 2018-09-26 Highly basic aluminum chloride Active JP6845195B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018181034A JP6845195B2 (en) 2018-09-26 2018-09-26 Highly basic aluminum chloride
KR1020190113318A KR102337418B1 (en) 2018-09-26 2019-09-16 High alkaline aluminium chloride and method for manufacturing the same
TW108133350A TWI764044B (en) 2018-09-26 2019-09-17 Overbased aluminum chloride and method for producing the same
CN201910892381.1A CN110950369A (en) 2018-09-26 2019-09-20 Highly alkaline aluminum chloride and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018181034A JP6845195B2 (en) 2018-09-26 2018-09-26 Highly basic aluminum chloride

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2020028690A Division JP6682714B1 (en) 2020-02-21 2020-02-21 Method for producing highly basic aluminum chloride
JP2020199783A Division JP2021046353A (en) 2020-12-01 2020-12-01 Highly basic aluminum chloride and its production method

Publications (2)

Publication Number Publication Date
JP2020050540A JP2020050540A (en) 2020-04-02
JP6845195B2 true JP6845195B2 (en) 2021-03-17

Family

ID=69975464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018181034A Active JP6845195B2 (en) 2018-09-26 2018-09-26 Highly basic aluminum chloride

Country Status (4)

Country Link
JP (1) JP6845195B2 (en)
KR (1) KR102337418B1 (en)
CN (1) CN110950369A (en)
TW (1) TWI764044B (en)

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4850998A (en) * 1971-11-01 1973-07-18
JPS54125196A (en) * 1978-03-24 1979-09-28 Nippon Steel Chem Co Ltd Manufacture of aqueous solution of basic aluminum chloride
JPS61286219A (en) * 1985-06-08 1986-12-16 Taki Chem Co Ltd Preparation of aluminium polychloride
FR2687394B1 (en) * 1992-02-18 1994-03-25 Elf Atochem Sa NOVEL ALUMINUM POLYCHLOROSULFATES, PROCESS FOR THEIR PREPARATION AND THEIR APPLICATIONS.
JPH06186528A (en) 1992-12-18 1994-07-08 Fujitsu General Ltd Color liquid crystal display device
JP2991987B2 (en) * 1997-03-04 1999-12-20 多木化学株式会社 Basic aluminum chloride and method for producing the same
CN1288086C (en) * 2005-03-29 2006-12-06 煤炭科学研究总院抚顺分院 Method for preparing polyaluminium chloride through catalyst of deposed molecular sieve
US20070092433A1 (en) * 2005-10-21 2007-04-26 Reheis, Inc. Process for producing stable polyaluminum hydroxychloride and polyaluminum hydroxychlorosulfate aqueous solutions
CN101437753B (en) * 2006-01-06 2013-02-06 耐克斯特凯姆股份有限公司 Polyaluminum chloride and aluminum chlorohydrate, processes and compositions: high-basicity and ultra high-basicity products
JP4953458B2 (en) * 2008-02-28 2012-06-13 多木化学株式会社 Novel basic aluminum chloride, process for producing the same and use thereof
CN102363536A (en) * 2011-09-29 2012-02-29 深圳市中润水工业技术发展有限公司 Application of high-basicity polyaluminum chloride in reduction of residual aluminum content of drinking water
JP5986448B2 (en) * 2012-07-25 2016-09-06 多木化学株式会社 Method for producing sulfate group-containing polyaluminum chloride
CN107074575B (en) * 2014-09-12 2019-05-28 尤萨科有限责任公司 The manufacturing method of aluminium chloride derivative
CN104724803B (en) * 2015-03-10 2016-08-24 重庆大学 A kind of preparation method and applications of coagulant
CN104761030B (en) * 2015-03-20 2017-07-21 杭州萧山三江净水剂有限公司 Dyeing waste water special efficient aluminium polychloride and preparation method thereof
KR102175414B1 (en) * 2016-03-31 2020-11-06 아사히 가가쿠 고교 가부시키가이샤 Highly basic aluminum chloride and its manufacturing method
JP6860196B2 (en) * 2017-01-20 2021-04-14 大明化学工業株式会社 Method for producing basic aluminum chloride solution
JP2019031431A (en) * 2017-08-04 2019-02-28 セントラル硝子株式会社 Basic aluminum chloride solution and production method thereof

Also Published As

Publication number Publication date
KR20200035349A (en) 2020-04-03
JP2020050540A (en) 2020-04-02
CN110950369A (en) 2020-04-03
TWI764044B (en) 2022-05-11
TW202030149A (en) 2020-08-16
KR102337418B1 (en) 2021-12-08

Similar Documents

Publication Publication Date Title
JP4953458B2 (en) Novel basic aluminum chloride, process for producing the same and use thereof
WO2013184699A1 (en) Method for removing sulfate anions from an aqueous solution
JPH0796447B2 (en) Method for producing high-purity silica
JP4104773B2 (en) Method for producing flocculant for water purification
JP6682714B1 (en) Method for producing highly basic aluminum chloride
JP6845195B2 (en) Highly basic aluminum chloride
JP2021046353A (en) Highly basic aluminum chloride and its production method
JP6186545B1 (en) Highly basic aluminum chloride and method for producing the same
JP7057738B2 (en) Manufacturing method of copper sulfide powder and copper sulfide powder
KR101801455B1 (en) Copper pyrithione aggregate and use of same
JPH0859230A (en) Production of aqueous solution of basic aluminum acetate
JP6717618B2 (en) Liquid containing hypochlorite
JP2991987B2 (en) Basic aluminum chloride and method for producing the same
JP6186528B1 (en) Method for producing basic aluminum chloride
JP4136107B2 (en) Flocculant for water purification and method for producing the same
JP6322517B2 (en) Method for producing sulfate radical-modified basic aluminum chloride aqueous solution
JP4468568B2 (en) Water treatment flocculant, method for producing the same, and water treatment method
JP2910493B2 (en) Stabilization method of sodium hypochlorite solution
JP2000070609A (en) High-concentration flocculant
IE72505B1 (en) Basic aluminium chlorosulphate the process for producing it and its use as a flocculating agent
JP4646055B2 (en) Tantalum oxide sol and method for producing the same
JP6901807B1 (en) Treatment method of water containing selenate ion
JP2023065134A (en) Liquid composition, method of producing liquid composition, and method of storing liquid composition
JPH10230102A (en) Manufacture of iron-containing polyaluminum chloride aqueous solution
JP2001162108A (en) Method for manufacturing iron-aluminum combined flocculant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190920

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190920

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200609

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201201

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201203

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20201222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201223

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201224

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210225

R150 Certificate of patent or registration of utility model

Ref document number: 6845195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250