WO2019026055A1 - Sistema automático de deshidratación solar de doble pared y doble cámara - Google Patents

Sistema automático de deshidratación solar de doble pared y doble cámara Download PDF

Info

Publication number
WO2019026055A1
WO2019026055A1 PCT/IB2018/055884 IB2018055884W WO2019026055A1 WO 2019026055 A1 WO2019026055 A1 WO 2019026055A1 IB 2018055884 W IB2018055884 W IB 2018055884W WO 2019026055 A1 WO2019026055 A1 WO 2019026055A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
double
beds
ventilation
dehydrating system
Prior art date
Application number
PCT/IB2018/055884
Other languages
English (en)
French (fr)
Inventor
Bayardo Emilio CADAVID GOMEZ
José Alfredo PALACIO FERNANDEZ
Original Assignee
Institucion Universitaria Pascual Bravo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institucion Universitaria Pascual Bravo filed Critical Institucion Universitaria Pascual Bravo
Publication of WO2019026055A1 publication Critical patent/WO2019026055A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23NMACHINES OR APPARATUS FOR TREATING HARVESTED FRUIT, VEGETABLES OR FLOWER BULBS IN BULK, NOT OTHERWISE PROVIDED FOR; PEELING VEGETABLES OR FRUIT IN BULK; APPARATUS FOR PREPARING ANIMAL FEEDING- STUFFS
    • A23N12/00Machines for cleaning, blanching, drying or roasting fruits or vegetables, e.g. coffee, cocoa, nuts
    • A23N12/08Machines for cleaning, blanching, drying or roasting fruits or vegetables, e.g. coffee, cocoa, nuts for drying or roasting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/28Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun

Definitions

  • the present invention relates to the sector of mechanical engineering, specifically with energy applications and more specifically with the field of solar dehydration in any industry where drying stages are needed, such as the food industry, production of organic fertilizers or drying of wet organic waste, among others.
  • the present invention corresponds to the development of an automatic double wall and double chamber solar dehydration system.
  • Dehydration is a technique widely applied in different types of industries, such as the food industry, in the production of organic fertilizers, drying of waste, etc.
  • the dehydration processes carried out on a small and large scale involve a large energy consumption.
  • the time required by traditional processes, such as the marijuana dehydration method is very high and requires constant supervision, which causes increases in operating costs, delays in marketing and delays in processes.
  • the need for an automatic dehydration system that reduces energy consumption and operating times is a reality in practice, especially in light of today's environmental problems.
  • patent CN 104896885 refers to a solar drying greenhouse with electronic control means and independent drying chambers.
  • the system uses solar energy as a heat source for drying, has electronic control means and humidity and temperature sensors that help monitor the process.
  • the system also includes additional sources of heat, which is why it is not completely autonomous.
  • it does not have positioning trays to dispose the drying material, nor does it store solar energy in any way.
  • other systems have been developed for the drying of vegetable elements such as the one disclosed in patent CN104544535, in which it is applied in the curing of yellow tobacco by exposure and use of the sun.
  • the development comprises a vertical movement support for drying and bending tobacco leaves.
  • the vertical movement system allows to increase the drying capacity per unit area, and also makes the process more efficient in terms of temperature.
  • this device is designed exclusively for the drying and curing of tobacco, and its application in other industries is not contemplated.
  • it does not include humidity and / or temperature sensors, so the control of these crucial parameters is not precise.
  • a greenhouse was developed with a rotation system for the dehydration of food exclusively.
  • the system like the previous ones, has solar energy for the drying process.
  • it consists of a greenhouse that has a movement mechanism for the location of the drying material.
  • the air circulation is performed with respect to the rotating mechanism of food drying.
  • the system has a thermostat, it does not have humidity sensors.
  • the disclosed dehydration systems do not store solar energy in any way in any way, so the use of energy is incomplete.
  • these are simple chamber spaces, with a single insulating layer, and do not provide any improvement to the traditional method of drying by greenhouse in this aspect.
  • the present invention relates to the development of an automatic double wall and double chamber solar dehydration system characterized in that it comprises a storage and air heating assembly with a structural design that allows better external insulation and control of humidity conditions and temperature inside, as well as an increase in the drying area.
  • the system of the present invention comprises, on the one hand, a double-walled and double-chamber structure in a high-density material, which forms the storage and air-heating assembly; and, on the other hand, it includes a temperature control mechanism associated with a set of mobile or static vertical positioning beds, an arrangement that increases the drying area. It also has an embedded control subsystem, which includes at least one electronic card connected to humidity and temperature sensors. In addition, a set of relays associated with a ventilation mechanism and its respective control subsystem. Finally, the system comprises a set of energy storage and conversion, with at least one solar panel, at least one charge regulator, at least one battery and at least one DC / AC converter.
  • the temperature control mechanism includes or couples automated subsystems that evacuate moisture and control the variables of temperature, humidity and air flow.
  • the system developed by the present invention reduces by 30% the drying time compared to traditional systems and maintains the organoleptic characteristics required by the market.
  • the system of the present invention includes a set of elements that provides improvements in the traditional method of drying by greenhouse of a single chamber, the distribution system and movement of the drying material, the automated control of the device and the use of energy solar. In this way, the current technical problem is solved and the efficiency in the energy consumption required in the process is improved.
  • FIG. 1 External view of the invention with detail of the preheating chamber (1), drying chamber (2), upper air exchange fans between the chambers and the outside (3), lower fans in air ducts (4) ) and air ducts (5).
  • Figure 2 View of the subsystem of beds of vertical movement inside the structure of figure 1 or drying chamber (2) with detail of linear motors of vertical load (6), external structure of guide, support and evacuation of humidity ( 7), containing beds (8) and a ventilation mechanism parallel to the beds (9).
  • Figure 3 Variation of the weight in grams of Mentha spp. through the time dried in the system of the present invention.
  • the present invention relates to the development of an automatic double wall and dual chamber solar dehydration system characterized in that it comprises a storage and air heating assembly with a structural design that leads to better external insulation and control of the conditions of humidity and temperature inside, as well as an increase in the drying area.
  • the double chamber and double chamber solar dehydration automatic system comprises a storage and heating assembly, formed by an external structure constructed with transparent polyethylene (1) and an internal structure constructed with black polyethylene ( 2), inside this last structure (figure 2) there is a temperature control mechanism, associated with a set of vertical positioning beds with an embedded control subsystem that also comprises an electronic control mechanism and a set of sensors and another suitable relay in a single cabinet (10), which also houses ventilation control means for the evacuation of moist air from the internal chamber to the outside (3), the exchange or circulation of air between chambers (4) ) and ventilation parallel to the beds to evacuate moisture close to plant material (9).
  • the solar dehydration system comprises an external structure ( Figure 1), a subsystem of vertical positioning beds ( Figure 2), an electronic actuation mechanism for temperature control and a storage assembly. , energy conversion and air recirculation controlled also by the same electronic system all concentrated in a cabinet (10).
  • the external structure is composed of a double wall and double chamber, an external or preheating chamber (1), and an internal or drying chamber (2).
  • This structure forms a storage and air heating assembly.
  • the preheating chamber (1) acquires by means of the greenhouse effect, a temperature gain that allows it through air ducts (5) and lower fans (4) to supply this thermal excess to the internal or drying chamber (2) in the which are the mobile beds (8) that make up the set of beds.
  • the external structure comprising the system of the invention is formed by a high-density insulating material, which traps the heat inside the chambers.
  • this high density material comprises, among others, that they are high density polymers, which correspond to synthetic materials, composed of organic molecules with a high molecular weight. They are thermoplastic and lightweight materials, easy to transport and handle.
  • the set of vertical positioning beds can be mobile or static, and forms a temperature control mechanism since, inside the drying chamber, there are thermal levels that vary according to the time of day or solar radiation at each instant and the temperature stored in the intermediate chamber.
  • the mobile bed is located and / or mobilized at the thermal level that best adjusts to a desired temperature.
  • the set of vertical positioning beds is composed of linear motors of vertical load (6), an external structure of guide, support and evacuation of humidity (7), a series of beds containing (8) ) and a ventilation mechanism parallel to the beds (9).
  • the set of vertical positioning beds comprises at least 12 mobile beds controlled by packages of up to 3 beds, an electronic subsystem housed in a cabinet (10) that governs all the linear actuators and acquires the signals from the sensors to be processed and take the Appropriate control decision
  • an electronic subsystem contained in a cabinet (10) governed by an embedded control system includes at least one electronic card connected to humidity and temperature sensors, and a set of relays associated with other control means of ventilation They evacuate the air from the preheating chamber to the drying chamber and to the outside, the moisture extracted to the plants.
  • Said ventilation control means operate the upper cooling fans (3) between the chambers (1, 2) and the outside; the lower fans (4) of exchange between the superheat chamber (1) and the drying chamber (2); and a ventilation mechanism parallel to the beds (9).
  • the energy storage and conversion assembly comprises at least one solar panel, at least one charge regulator for charging the battery or for feeding the DC motors of the mobile beds, at least one battery and the less a DC / AC converter that allows powering the AC motors for the ventilation system.
  • the automatic solar dehydration system has a series of fans (3, 4, 9) and air ducts (5) that generate an air flow at several levels: a ventilation mechanism parallel to the beds (9) generate flow inside the drying chamber; the lower fans (4) generate flow between the preheating chamber (1) and the drying chamber (2); and the upper fans (3) generate flow between the chambers (1, 2) and the outside. Particularly, all depend on the humidity level inside according to the sensors installed in the system and controlled by means of ventilation control.
  • the system measures the humidity and temperature in the interior, intermediate chamber and the exterior and activates all the ventilation mechanisms (3), (4) and (9) according to the level of humidity close to the plants, in the internal chamber, intermediate chamber and exterior of the system, since the temperature is controlled by the vertical movement of the beds, the ductor allow a connection between the intermediate chamber and the lower chamber of the internal chamber to inject more dry air into the chamber. the bottom.
  • the system of lower fans (4) and air ducts (5) is activated between the drying chamber (2) and the preheating chamber (1).
  • the system of upper fans (3) and air ducts (5) is activated to the outside.
  • a mechanism of ventilation parallel to the beds (9), are activated periodically especially at the beginning of the dehydration process which is when more moisture is extracted to the product.
  • the solar dehydration system forms an external structure, which is composed of a double wall of high density plastic polymer.
  • This structure houses the storage and heating assembly, the temperature control mechanism and the bed set.
  • the high density plastic polymer composing the external and internal structure can be a high density polyethylene (PE) of transparent color and black respectively, or for both structures a polymer of polyvinyl chloride (PVC).
  • PE high density polyethylene
  • PVC polyvinyl chloride
  • the embedded control subsystem card is an iOS Leonardo card with protection for humidity, temperature, and weight measurement, time recording and memory storage in a SD type memory.
  • axial fans of at least 20 watts are preferred for the ventilators (4) of the ducts (5) and the fans (9) of the moving beds (8).
  • fans at the top of the system (3) exchange between the cameras (1, 2) and outside, fans of at least 60 watts are preferred.
  • the mobile beds (8) preferably employ linear motors (6) of 12v with stroke length greater than or equal to 50cm and moving load greater than 50kg.
  • the ventilation mechanism parallel to the beds (9) corresponds to fans.
  • the first test that was designed was to carry out a dehydration of plant material with the solar dehydration system.
  • the calibration of the weighing system by measuring loads of known weight, such as beds or load cells (5Kg each).
  • loads of known weight such as beds or load cells (5Kg each).
  • an initial measurement of the cells loaded with 30Kg of plant material was carried out, which in this case consisted of fresh mint leaves.
  • Weight curves ( Figure 3), humidity ( Figure 4) and temperature ( Figure 5) were made during the drying process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

La presente invención se refiere a un sistema automático de deshidratación solar de doble pared y doble cámara que se caracteriza porque comprende un conjunto de almacenamiento y calentamiento de aire con un diseño estructural que permite un mejor aislamiento externo y control de las condiciones de humedad y temperatura al interior, al igual que un incremento en el área de secado. El sistema de la presente invención comprende, por un lado, una estructura de doble pared y doble cámara en un material de alta densidad, que conforma el conjunto de almacenamiento y calentamiento de aire; y, por otro lado, incluye un mecanismo de control de temperatura asociado a un conjunto de camas de posicionamiento vertical móvil o estático, disposición que aumenta el área de secado.

Description

Sistema automático de deshidratación solar de doble pared y doble cámara
Descripción Sector Tecnológico
La presente invención se relaciona con el sector de la Ingeniería mecánica, específicamente con aplicaciones energéticas y más específicamente con el campo de la deshidratación solar en cualquier industria donde se necesiten etapas de secado, como la industria de alimentos, de producción de abonos orgánicos o de secado de residuos orgánicos húmedos, entre otras.
La presente invención corresponde al desarrollo de un sistema automático de deshidratación solar de doble pared y doble cámara.
Estado del Arte Previo
La deshidratación es una técnica ampliamente aplicada en distintos tipos de industrias, como la industria de alimentos, en la producción de abonos orgánicos, secado de residuos, etc. Particularmente, los procesos de deshidratación llevados a cabo a pequeña y gran escala implican un gran consumo de energía. Además, el tiempo requerido por procesos tradicionales, como el método de deshidratación mediante marquesina, es muy elevado y requiere de supervisión permanente, lo que ocasionan aumentos en los costos de operación, retrasos en la comercialización y demoras en los procesos. La necesidad de un sistema automático de deshidratación, que reduzca el consumo energético y los tiempos de operación se constituye como una realidad en la práctica, especialmente a la luz de las problemáticas medioambientales de la actualidad.
Por consiguiente, se ha dado paso al desarrollo de sistemas para la deshidratación solar de material vegetal, así como en la patente CN 104896885 que se refiere a un invernadero de secado solar con medios de control electrónico y cámaras de secado independientes. El sistema utiliza energía solar como fuente de calor para el secado, posee medios de control electrónicos y sensores de humedad y temperatura que ayudan a monitorear el proceso. Sin embargo, el sistema también incluye fuentes adicionales de calor, por lo cual no es completamente autónomo. Además, no posee bandejas de posicionamiento para disponer el material de secado, ni almacena la energía solar de ninguna forma. Igualmente, se han desarrollado otros sistemas para el secado de elemento vegetales como el divulgado en la patente CN104544535, en que se aplica en la curación del tabaco amarillo mediante la exposición y aprovechamiento del sol. El desarrollo comprende un soporte de movimiento vertical para el secado y doblado de las hojas de tabaco. Además, utiliza energía solar dentro de un invernadero para la deshidratación de las hojas de tabaco. El sistema de movimiento vertical permite aumentar la capacidad de secado por unidad de área, y también hace el proceso más eficiente en términos de temperatura. Sin embargo, este dispositivo está diseñado exclusivamente para el secado y curado de tabaco, y su aplicación en otras industrias no está contemplado. Además, no incluye sensores de humedad y/o temperatura, por lo cual el control de estos parámetros cruciales no es preciso.
Finalmente, en sistemas como el de la patente US 5974957 A, se desarrolló un invernadero con sistema de rotación para la deshidratación de comida exclusivamente. El sistema, al igual que los anteriores, dispone energía solar para el proceso de secado. Además, consiste en un invernadero que posee un mecanismo de movimiento para la ubicación del material de secado. La circulación de aire se realiza con respecto al mecanismo rotativo de secado de la comida. Sin embargo, aunque el sistema posee un termostato, carece de sensores de humedad.
Los sistemas de deshidratación divulgados no almacenan en ningún caso la energía solar de ninguna forma, por lo cual el aprovechamiento de la energía es incompleto. En los casos de los invernaderos, se trata de espacios de cámara sencilla, con una sola capa aislante, y no entregan ninguna mejora al método tradicional de secado por invernadero en este aspecto. No existe ninguna invención que entregue sistemas novedosos en cuanto a la disposición del invernadero y sus capas aislantes, a la manera de disponer y circular el material de secado, al control de las variables de interés, ni al aprovechamiento eficiente de la energía solar.
Descripción de la Invención
La presente invención se refiere al desarrollo de un sistema automático de deshidratación solar de doble pared y doble cámara que se caracteriza porque comprende un conjunto de almacenamiento y calentamiento de aire con un diseño estructural que permite un mejor aislamiento externo y control de las condiciones de humedad y temperatura al interior, al igual que un incremento en el área de secado. El sistema de la presente invención comprende, por un lado, una estructura de doble pared y doble cámara en un material de alta densidad, que conforma el conjunto de almacenamiento y calentamiento de aire; y, por otro lado, incluye un mecanismo de control de temperatura asociado a un conjunto de camas de posicionamiento vertical móvil o estático, disposición que aumenta el área de secado. Asimismo, cuenta con un subsistema de control embebido, que incluye al menos una tarjeta electrónica conectada a unos sensores de humedad y temperatura. Además, de un conjunto de relés asociado a un mecanismo de ventilación y su respectivo subsistema de control. Finalmente, el sistema comprende un conjunto de almacenamiento y conversión de energía, con al menos un panel solar, al menos un regulador de carga, al menos una batería y al menos un convertidor DC/AC.
Particularmente, el mecanismo de control de temperatura incluye o acopla subsistemas automatizados que evacúan la humedad y controlan las variables de temperatura, humedad y flujo de aire. El sistema desarrollado por la presente invención reduce en un 30% el tiempo de secado en comparación a sistemas tradicionales y mantiene las características organolépticas requeridas por el mercado. El sistema de la presente invención incluye un conjunto de elementos que entrega mejoras en cuanto al método tradicional de secado por invernadero de una sola cámara, al sistema de distribución y movimiento del material de secado, al control automatizado del dispositivo y al aprovechamiento de la energía solar. De esta manera se da solución al problema técnico actual y se mejora la eficiencia en el consumo energético requerido en el proceso.
Descripción de las figuras
Figura 1. Vista externa de la invención con detalle de la cámara de precalentamiento (1), cámara de secado (2), ventiladores superiores de intercambio de aire entre las cámaras y el exterior (3), ventiladores inferiores en ductos de aire (4) y ductos de aire (5).
Figura 2. Vista del subsistema de camas de movimiento vertical al interior de la estructura de la figura 1 o cámara de secado (2) con detalle de motores lineales de carga vertical (6), estructura externa de guía, soporte y evacuación de humedad (7), camas contenedoras (8) y un mecanismo de ventilación paralela a las camas (9). Figura 3. Variación del peso en gramos de muestra de Mentha spp. a través del tiempo secada en el sistema de la presente invención.
Figura 4. Variación de humedad en porcentaje a través del tiempo con el sistema de la presente invención.
Figura 5. Variación de temperatura en grados Celsius a través del tiempo con el sistema de la presente invención.
Descripción detallada
La presente invención se refiere al desarrollo de un sistema automático de deshidratación solar de doble pared y doble cámara que se caracteriza porque comprende un conjunto de almacenamiento y calentamiento de aire con un diseño estructural que conlleva a un mejor aislamiento externo y control de las condiciones de humedad y temperatura al interior, al igual que un incremento en el área de secado.
En el aspecto más general de la invención, el sistema automático de deshidratación solar de doble pared y doble cámara comprende un conjunto de almacenamiento y calentamiento, conformado por una estructura externa construida con polietileno transparente (1) y una estructura interna construida con polietileno negro (2), al interior de esta última estructura (figura 2) se tiene, un mecanismo de control de temperatura, asociado a un conjunto de camas de posicionamiento vertical con un subsistema de control embebido que comprende también un mecanismo de control electrónico y un conjunto de sensores y otro de relés adecuados en un solo gabinete (10), que alberga además unos medios de control de ventilación para la evacuación del aire húmedo desde la cámara interna hacia el exterior (3), el intercambio o circulación de aire entre cámaras (4) y la ventilación paralela a las camas para evacuar la humedad cercana al material vegetal (9). En este aspecto general de la presente invención, el sistema de deshidratación solar comprende una estructura externa (Figura 1), un subsistema de camas de posicionamiento vertical (Figura 2), un mecanismo de actuación electrónica para el control de temperatura y un conjunto de almacenamiento, conversión de energía y recirculación de aire controlado también mediante el mismo sistema electrónico todo concentrado en un gabinete (10). En este mismo aspecto de la invención, la estructura externa está compuesta por una doble pared y doble cámara, una cámara externa o de precalentamiento (1), y una cámara interna o de secado (2). Esta estructura conforma un conjunto de almacenamiento y calentamiento de aire. Particularmente, la cámara de precalentamiento (1) adquiere mediante efecto invernadero, una ganancia de temperatura que le permite mediante ductos de aire (5) y ventiladores inferiores (4) suministrar este excedente térmico a la cámara interna o de secado (2) en la cual se encuentran las camas móviles (8) que conforman el conjunto de camas.
Más particularmente, la estructura externa que comprende el sistema de la invención se conforma por un material aislante de alta densidad, que atrapa el calor al interior de las cámaras. En este aspecto particular de la invención, este material de alta densidad comprende, entre otros, que son polímeros de alta densidad, que corresponden con materias sintéticas, compuestas por moléculas orgánicas con un elevado peso molecular. Son materiales termoplásticos y ligeros, de fácil transporte y manipulación.
En otro aspecto de la invención, el conjunto de camas de posicionamiento vertical puede ser móvil o estático, y conforma un mecanismo de control de temperatura ya que, al interior de la cámara de secado, se presentan unos niveles térmicos que varían de acuerdo a la hora del día o a la radiación solar en cada instante y a la temperatura almacenada en la cámara intermedia. La cama móvil se localiza y/o moviliza en el nivel térmico que mejor se ajusta a una temperatura deseada.
En este mismo aspecto de la invención, el conjunto de camas de posicionamiento vertical está compuesto por unos motores lineales de carga vertical (6), una estructura externa de guía, soporte y evacuación de humedad (7), una serie de camas contenedoras (8) y un mecanismo de ventilación paralela a las camas (9). El conjunto de camas de posicionamiento vertical comprende al menos 12 camas móviles controladas por paquetes de hasta 3 camas, un subsistema electrónico albergado en un gabinete (10) que gobierna todos los actuadores lineales y adquiere las señales de los sensores para ser procesadas y tomar la decisión de control adecuada
En este aspecto de la invención, un subsistema electrónico contenido en un gabinete (10) gobernado por un sistema de control embebido incluye al menos una tarjeta electrónica conectada a sensores de humedad y temperatura, y un conjunto de relés asociado a otros medios de control de ventilación que evacúan el aire de la cámara de precalentamlento a la cámara de secado y al exterior, la humedad extraída a las plantas. Dichos medios de control de ventilación, operan los ventiladores superiores (3) de intercambio entre las cámaras (1 , 2) y el exterior; los ventiladores inferiores (4) de intercambio entre la cámara de p recalentamiento (1) y la de secado (2); y un mecanismo de ventilación paralela a las camas (9).
En este mismo aspecto de la invención, el conjunto de almacenamiento y conversión de energía comprende al menos un panel solar, al menos un regulador de carga para cargar la batería o para alimentar los motores DC de las camas móviles, al menos una batería y al menos un convertidor DC/AC que permite alimentar los motores de corriente alterna para el sistema de ventilación.
En el mismo aspecto de la invención, el sistema automático de deshidratación solar cuenta con una serie de ventiladores (3, 4, 9) y ductos de aire (5) que generan un flujo de aire en varios niveles: un mecanismo de ventilación paralela a las camas (9) generan flujo al interior de la cámara de secado; los ventiladores inferiores (4) generan flujo entre la cámara de precalentamiento (1) y la cámara de secado (2); y los ventiladores superiores (3) generan flujo entre las cámaras (1 , 2) y el exterior. Particularmente, todos dependen del nivel de humedad al interior de acuerdo a los sensores instalados en el sistema y controlado mediante los medios de control de ventilación.
En otro aspecto de la invención, el sistema mide la humedad y temperatura en el interior, cámara intermedia y el exterior y activa todos los mecanismos de ventilación (3), (4) y (9) de acuerdo al nivel de humedad cercano a las plantas, en la cámara interna, cámara intermedia y exterior del sistema , ya que la temperatura se controla mediante el movimiento vertical de las camas, los ductor permiten una conexión entre la cámara intermedia y el inferior de la cámara interna para inyectar más aire seco en la parte inferior. Particularmente, en horas finales del día, se activa el sistema de ventiladores inferiores (4) y ductos de aire (5) entre la cámara de secado (2) y la de precalentamiento (1). En el día, siempre y cuando la humedad en el exterior sea menor a la presente en la cámara interna e intermedia, se activa el sistema de ventiladores superiores (3) y ductos de aire (5) hacia el exterior. Un mecanismo de ventilación paralela a las camas (9), se activan en forma periódica especialmente al inicio del proceso de deshidratación que es cuando más humedad se extrae al producto.
Modalidades preferidas En el aspecto preferido de la invención, el sistema de deshidratación solar conforma una estructura externa, que está compuesta por una doble pared de polímero de plástico de alta densidad. Esta estructura alberga el conjunto de almacenamiento y calentamiento, el mecanismo de control de temperatura y el conjunto de camas.
En este mismo aspecto preferido de la invención, el polímero de plástico de alta densidad que compone la estructura externa e interna puede ser un polietileno (PE) de alta densidad (PEAD) de color transparente y negro respectivamente, o para ambas estructuras un polímero de policloruro de vinilo (PVC).
En este mismo aspecto de la invención, la tarjeta del subsistema de control embebido es una tarjeta arduino Leonardo con protección para medición de humedad, temperatura, y peso, registro de tiempo y almacenamiento de memoria en una memoria tipo SD.
En este mismo aspecto de la invención, para los ventiladores (4) de los ductos (5) y los ventiladores (9) de las camas móviles (8) se prefieren ventiladores axiales de al menos 20 vatios. Para los ventiladores de la parte superior del sistema (3), de intercambio entre las cámaras (1 , 2) y el exterior, se prefieren ventiladores de al menos 60 vatios.
En este mismo aspecto, las camas móviles (8) emplean preferiblemente motores lineales (6) de 12v con longitud de carrera mayor o igual a 50cm y carga en movimiento superior a 50kg.
En este mismo aspecto de la invención, el mecanismo de ventilación paralela a las camas (9) corresponde con ventiladores.
Ejemplos
Prueba del sistema de deshidratación solar con material vegetal
La primera prueba que se diseñó consistió en llevar a cabo una deshidratación de material vegetal con el sistema de deshidratación solar. En primer lugar, se realizó la calibración del sistema de pesaje mediante la medición de cargas de peso conocido, como las camas o celdas de carga (5Kg c/u). Una vez se calibró el sistema de pesaje, se llevó a cabo una medición inicial de las celdas cargadas con 30Kg material vegetal, que en este caso consistió en hojas de menta frescas. Se realizaron curvas de peso (Figura 3), humedad (Figura 4) y temperatura (Figura 5) durante el proceso de secado.
Se alcanzó una pérdida de peso total de 5Kg al transcurso de 4 días. La literatura reporta que con los sistemas tradicionales se han alcanzado perdidas de peso en la menta en una relación similar (5:1) al transcurso de 5 días. La presente invención entrega por lo tanto una mejora del 30% en el tiempo de secado.

Claims

Reivindicaciones
1 . Un sistema deshidratador automático, caracterizado porque comprende una estructura externa de doble pared y doble cámara, que conforma el conjunto de almacenamiento y calentamiento de aire, un conjunto de camas de posicionamiento vertical asociado a un mecanismo de control, un conjunto de almacenamiento y conversión de energía y un mecanismo de ventilación.
2. El sistema deshidratador automático de la Reivindicación 1 , en donde la estructura compuesta por una doble pared y doble cámara comprende una cámara externa o de precalentamiento (1) y una cámara interna o de secado (2).
3. El sistema deshidratador automático de la Reivindicación 1 a 2, en donde el conjunto de camas se localiza en la cámara interna o de secado (2).
4. El sistema deshidratador automático de la Reivindicación 2, en donde la cámara de precalentamiento (1) suministra mediante los ductos de aire (5) y ventiladores inferiores (4) un excedente térmico a la cámara interna o de secado (2).
5. El sistema deshidratador automático de la Reivindicación 1 a 4, en donde el subsistema de camas de posicionamiento vertical móvil o estático conforma un mecanismo de control de temperatura al interior de la cámara de secado (2), que presenta unos niveles térmicos por los cuales el conjunto de camas se moviliza.
6. El sistema deshidratador automático de la Reivindicación 1 , en donde el conjunto de camas de posicionamiento vertical comprende un subsistema de control embebido que incluye al menos una tarjeta electrónica conectada a sensores de humedad y temperatura y un conjunto de relés asociado a unos medios de control de ventilación.
7. El sistema deshidratador automático de la Reivindicación a 6, caracterizado porque comprende una estructura externa de guía, soporte y evacuación de humedad (7).
8. El sistema deshidratador automático de la Reivindicación 1 a 6, caracterizado porque la estructura externa, comprende una cámara interna que contiene en su interior al menos 12 camas móviles controladas por paquetes de a 3 (8) y movimiento vertical controlado por motores lineales (6) y una estructura externa de guía, soporte y evacuación de humedad (7), asociada a un ventilador paralelo a cada cama (9), un subsistema de ventilación conectado al exterior y controlado mediante sistema electrónico, y un conjunto de ventilación en la cámara interna dependiente del nivel de humedad en el interior (4) y un ducto de ventilación (5).
PCT/IB2018/055884 2017-08-04 2018-08-04 Sistema automático de deshidratación solar de doble pared y doble cámara WO2019026055A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CONC2017/0007948A CO2017007948A1 (es) 2017-08-04 2017-08-04 Sistema automático de deshidratación solar de doble pared y doble cámara
CONC2017/0007948 2017-08-04

Publications (1)

Publication Number Publication Date
WO2019026055A1 true WO2019026055A1 (es) 2019-02-07

Family

ID=65233672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/055884 WO2019026055A1 (es) 2017-08-04 2018-08-04 Sistema automático de deshidratación solar de doble pared y doble cámara

Country Status (2)

Country Link
CO (1) CO2017007948A1 (es)
WO (1) WO2019026055A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201900010599A1 (it) * 2019-07-01 2021-01-01 Santomiele S R L Essiccatore e relativo metodo di essiccazione per frutti

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4207684A (en) * 1978-05-01 1980-06-17 Stice J Daniel Crop drying apparatus utilizing solar energy
US4221059A (en) * 1976-12-15 1980-09-09 Solar Saver International Solar food dryer
US5960560A (en) * 1997-12-11 1999-10-05 Stoll; Fedna Thermal solar dehydrator
GB2490971A (en) * 2011-05-18 2012-11-21 Gordon Finlay Macbean Crop drying apparatus utilizing solar heating

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4221059A (en) * 1976-12-15 1980-09-09 Solar Saver International Solar food dryer
US4207684A (en) * 1978-05-01 1980-06-17 Stice J Daniel Crop drying apparatus utilizing solar energy
US5960560A (en) * 1997-12-11 1999-10-05 Stoll; Fedna Thermal solar dehydrator
GB2490971A (en) * 2011-05-18 2012-11-21 Gordon Finlay Macbean Crop drying apparatus utilizing solar heating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201900010599A1 (it) * 2019-07-01 2021-01-01 Santomiele S R L Essiccatore e relativo metodo di essiccazione per frutti

Also Published As

Publication number Publication date
CO2017007948A1 (es) 2019-03-08

Similar Documents

Publication Publication Date Title
US11596113B2 (en) Controlled agricultural system with energy wheel for treating recirculating air and method of using same
AU2010328690B2 (en) Greenhouse and forced greenhouse climate control system and method
KR101267633B1 (ko) 습도를 기준으로 하는 최적의 체감 온도 제어 시스템
KR20130049790A (ko) 흡입 배출식 전기 냉 온풍 장치
WO2019026055A1 (es) Sistema automático de deshidratación solar de doble pared y doble cámara
KR101834822B1 (ko) 멀티존 온도균일제어형 농산물 건조장치
KR20170139336A (ko) 폐열회수와 신선외기유입형 멀티존 온도균일제어타입 농산물 건조장치
US10959395B2 (en) Poultry curtain trailer system
CN104457153A (zh) 全天候紫外烘晒箱
ES2704128T3 (es) Procedimiento para la automatización del modo de funcionamiento de un secador solar híbrido para plantas y secador solar híbrido correspondiente
ES2966581T3 (es) Línea de producción con sistema de calefacción y/o enfriamiento de flujo continuo de alimento y superficie calentada para la reproducción y/o cría de insectos, método para la cría de insectos y usos asociados
US9915434B2 (en) Air temperature regulating assembly using thermal storage
KR200424159Y1 (ko) 농수산물 건조기
CN207556178U (zh) 一种烘干机及烘干系统
CN205284271U (zh) 一种自主加热去湿的粮仓及其测控系统
KR101496253B1 (ko) 버섯 재배온실
KR101692301B1 (ko) 자돈농장용 배합사료 저장조
ES2966848T3 (es) Superficie de producción con sistema de calefacción y/o enfriamiento bajo el suelo del alimento para insectos, uso de un sistema bajo el suelo y método para criar insectos que usa el mismo
RU2723327C1 (ru) Способ хранения зерна в емкости
RU2311598C1 (ru) Сушилка семян
JP2005337568A (ja) 穀物除湿乾燥方法およびその装置
KR20170003797A (ko) 회전식 농수산물 온풍 건조장치
KR101548245B1 (ko) 온실형 건조장치
RU2703789C1 (ru) Способ хранения зерна в емкости
RU2138939C1 (ru) Устройство для обеспечения параметров воздушной среды в хранилищах плодоовощной продукции

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18840858

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18840858

Country of ref document: EP

Kind code of ref document: A1