WO2019025380A1 - Procédé de préparation d'une couche d'usure à la surface d'une composition hydraulique - Google Patents

Procédé de préparation d'une couche d'usure à la surface d'une composition hydraulique Download PDF

Info

Publication number
WO2019025380A1
WO2019025380A1 PCT/EP2018/070624 EP2018070624W WO2019025380A1 WO 2019025380 A1 WO2019025380 A1 WO 2019025380A1 EP 2018070624 W EP2018070624 W EP 2018070624W WO 2019025380 A1 WO2019025380 A1 WO 2019025380A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
weight
hydraulic binder
granulate
less
Prior art date
Application number
PCT/EP2018/070624
Other languages
English (en)
Inventor
Michael ARCHAMBAULT
Original Assignee
Chryso
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chryso filed Critical Chryso
Priority to EP18743829.6A priority Critical patent/EP3661891A1/fr
Publication of WO2019025380A1 publication Critical patent/WO2019025380A1/fr
Priority to ZA2020/00629A priority patent/ZA202000629B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements

Definitions

  • the present invention relates to a method for preparing a wear layer on the surface of a composition based on hydraulic binder, especially a concrete composition.
  • a wear layer may be formed on the hydraulic composition surface to enhance its aesthetic appearance and slip resistance.
  • wear layers refers to processes using a mixture of hardening granules, cement, additives or additives intended to be incorporated into a fresh hydraulic composition so as to give it certain properties of mechanical strength, aesthetics or flatness.
  • the built-in wear layer is a constituent element of the pavement (it is called monolithic paving).
  • cured concrete surface treatment processes can be implemented:
  • the invention relates to a method of forming a wear layer on at least a part of a surface of a composition based on hydraulic binder to be treated comprising the steps of:
  • composition comprising:
  • a composition is applied to at least a portion of a surface of a composition based on fresh hydraulic binder.
  • hydraulic binder is understood to mean any compound having the property of hydrating in the presence of water and whose hydration makes it possible to obtain a solid having mechanical characteristics.
  • the hydraulic binder may be a cement according to the EN 197-1 standard of 2012 and in particular a cement of CEM I, CEM II, CEM III, CEM IV or CEM V type according to the Cement NF EN 197-1 standard of 2012. Cement can therefore in particular include mineral additions.
  • the term "mineral additions” refers to slags (as defined in the Cement NF EN 197-1 standard of 2012 paragraph 5.2.2), steel slags, pozzolanic materials (as defined in the standard Cement NF EN 197-1 paragraph 5.2.3), fly ash (as defined in standard Cement NF EN 197-1 paragraph 5.2.4), calcined schists (as defined in the Cement NF EN 197-1 section 5.2. 5), limescale (as defined in standard Cement NF EN 197-1 paragraph 5.2.6) or even fumes of silicas (as defined in standard Cement NF EN 197-1 paragraph 5.2.7) or their compositions .
  • compositions based on hydraulic binder to be treated by the process according to the invention are preferably concrete compositions.
  • concrete is meant a mixture of hydraulic binders, aggregates, sands, water, optionally additives, and possibly mineral additions.
  • cement also includes mortars.
  • treated concretes can meet the requirements of the NF P 1 1 -213-1 standards of 2007 for slabs for industrial use or similar and NF P 1 1 -213-3 of 2007 for slabs intended for individual houses.
  • the term "fresh” refers to such hydraulic binder-based compositions when they have been tempered with water, but have not yet hardened.
  • the composition applied during step a) comprises at least one hydraulic binder, typically cement.
  • the hydraulic binder of the applied composition is according to the EN 197-1 standard and can in particular be a cement of CEM I, CEM II, CEM III, CEM IV or CEM V type according to the NF EN 197-1 Cement standard.
  • the composition applied in step a) comprises from 5 to 50% by weight, in particular from 10 to 40% by weight, preferably from 20 to 35% by weight of hydraulic binder (s) relative to weight of the composition.
  • the composition applied during step a) comprises at least one granulate.
  • aggregates means a set of grains of average diameter between 0 and 125 mm.
  • the granulate may be mineral, synthetic, or a mixture thereof. Depending on their diameter, mineral aggregates are classified into one of six families: fillers, sand, sand, gravels, chippings and ballast (standard XP P 18-545 of September 201 1).
  • the most widely used aggregates are the following: fillers, which have a diameter of less than 2 mm and for which at least 85% of the aggregates have a diameter less than 1.25 mm and at least 70% of the aggregates have a diameter less than 0.063 mm, sands with a diameter between 0 and 4 mm (in standard 13-242 of 2008, diameter up to 6 mm), graves with a diameter greater than 6.3 mm, chippings of diameter included between 2 mm and 63 mm. Sand is therefore included in the definition of granulate according to the invention.
  • the fillers may in particular be of calcareous, siliceous or dolomitic origin.
  • the aggregates used in the composition of step a) preferably have a maximum diameter according to standard NF EN 933-1 of May 2012 of less than 5 mm. Larger aggregates exceed in fact more than the surface of the hydraulic composition obtained at the end of the process, which causes their premature wear by friction, and therefore adversely affects the durability of the wear layer.
  • the aggregates may have a maximum diameter according to the NF EN 933-1 standard of May 2012 greater than 5 mm. In this case, it is necessary that the thickness of the wear layer be thicker and a low hollow deactivating composition should be used. However, obtaining a thicker wear layer involves using larger amounts of composition applied in step a), which is disadvantageous in terms of cost.
  • At least one granule of the composition has a Los Angeles LA coefficient less than or equal to 50, in particular less than or equal to 35, typically less than or equal to 25, preferably less than or equal to 20.
  • at least 30% by weight in particular at least 50% by weight, preferably at least 70% by weight, or even at least 90% by weight of the aggregates of the composition have an LA less than or equal to 50, in particular less than or equal to 35, typically less than or equal to 25, preferably less than or equal to 20.
  • the European standard EN 1097-2 of 2010 describes the Los Angeles test.
  • the aggregates whose Los Angeles LA coefficient is less than or equal to 50 are advantageously resistant to shocks and friction. As a result, the wear layer obtained at the end of the process has improved durability.
  • At least one granulate of the composition has a Mohs hardness greater than or equal to 4, in particular greater than or equal to 5, for example greater than or equal to 6, in particular greater than or equal to 7.
  • at least 30% by weight, in particular at least 50% by weight, preferably at least 70% by weight, or even at least 90% by weight of the aggregates of the composition have a hardness according to the Mohs scale greater than or equal to 4, in particular greater than or equal to 5, for example greater than or equal to 6, in particular greater than or equal to 7.
  • the Mohs scale accounts for the hardness of the aggregate.
  • Mohs scale hardnesses of talc, gypsum, calcite, fluorite, apatite, orthoclase, quartz, topaz, corundum and diamond are respectively 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10.
  • Talc and gypsum can be scratched with a fingernail (Mohs hardness of 2.5).
  • Calcite and fluorite can be scratched by steel (hardness on the Mohs scale of 4.5 to 6.5).
  • Aggregates whose hardness according to the Mohs scale is greater than or equal to 4 are advantageously hard. As a result, the wear layer obtained at the end of the process has improved durability.
  • Granules of marble, corundum, metal shot or a mixture of these are particularly suitable mineral aggregates.
  • Such aggregates are commercially available, for example from the company O.M.G. (Onyx and Granulated Marbles) or Omya Fused Minerals.
  • Artificial aggregates also called synthetic, can also be used. Different categories of synthetic aggregates exist. There are in particular synthetic mineral aggregates. In this category, we can distinguish:
  • crushed such as crushed crystalline slag and granulated blast furnace slag obtained by cooling with water.
  • Corundums are electro-fused aluminas that can be classified into 3 main types:
  • Brown corundum (alumina doped with typically from 1.5% to 3% of TiO 2 )
  • Alag aggregates from Kerneos which are fused aluminum silico-aluminous crushed granulated aggregates containing 40% of alumina.
  • some synthetic aggregates may have an organic matrix.
  • synthetic aggregates then generally comprise a polymeric matrix of synthetic origin and optionally a pigment and / or a dye.
  • the synthetic aggregate comprises:
  • At least one colored luminescent composite pigment comprising:
  • said colored luminescent composite pigment generally having an average particle size measured in volume by laser granulometry (ISO 13320: 2009 standard) of between about 50 and about 2000 ⁇ , in particular between about 60 and about 2000 ⁇ , preferably between about 60 and about 500 ⁇ , for example between about 75 and about 200 ⁇ .
  • Synthetic aggregate generally comprises:
  • Such synthetic granulate may be prepared as described in WO 2017/055531 (particularly pages 13 and 14).
  • these synthetic aggregates have an average particle size of between approximately 0.1 and 10 mm (size measured according to ISO 13320: 2009 standards for aggregates having a size of 500 ⁇ or less, or NF EN 933-1 of May 2012 for aggregates with a size greater than 500 ⁇ ).
  • the Average particle size is the average diameter of the aggregates. This size can be measured in volume by laser granulometry (ISO 13320: 2009 standard) or in weight by sieving (measured according to standard NF EN 933-1 of May 2012).
  • the synthetic aggregates preferably have a maximum diameter according to the NF EN 933-1 standard of May 2012 of less than 5 mm.
  • the transparent matrix is in particular compatible with the alkaline pH of the hydraulic binder compositions, and is preferably chosen from polymethyl methacrylate (PMMA), polycarbonate (PC), polyvinyl chloride (PVC), polyurethane (PU), styrene acrylonitrile (SAN) copolymers and their derivatives such as ABS (acrylonitrile / butadiene / styrene) or glass, preferably PMMA.
  • PMMA polymethyl methacrylate
  • PC polycarbonate
  • PVC polyvinyl chloride
  • PU polyurethane
  • SAN styrene acrylonitrile copolymers and their derivatives such as ABS (acrylonitrile / butadiene / styrene) or glass, preferably PMMA.
  • the term "luminescent pigment” is understood to mean any compound capable of absorbing photons emitted by natural or artificial light and render a light emission in the case of reduced brightness or in the absence of luminosity. .
  • Luminescence includes phosphorescence and fluorescence.
  • the luminescent pigment is a photoluminescent pigment.
  • the luminescent pigment will be chosen according to the color, in reduced brightness or in the absence of brightness, which is desired.
  • the luminescent pigment will be selected to have a remanence of several hours after exposure to natural or artificial light.
  • the luminescent pigment has an average particle size measured in volume by laser granulometry (ISO 13320: 2009 standard) between about 60 and about 2000 ⁇ , preferably between about 60 and about 500 ⁇ , for example between about 75 and about 200 ⁇ .
  • the luminescent pigment may be organic or inorganic, the mineral pigments being preferred because of their greater durability, especially in the open air.
  • the luminescent organic pigments are chosen in particular from naphthalimides, coumarins, xanthenes, thioxanthenes, naphtholactams, azlactones, methines, oxazines and thiazines, or their mixture.
  • the luminescent inorganic pigments are especially chosen from:
  • glasses of phosphate doped with rare earths
  • LiNbO 3 doped with rare earths
  • TiO 2 doped with rare earths
  • LaPO 4 Ce and / or Tb
  • LaPO 4 Eu
  • CePO 4 Tb
  • the luminescent pigment is chosen from zinc sulphide and strontium or calcium aluminates doped with rare earths, or mixtures thereof.
  • the luminescent pigment is chosen from rare earth-doped strontium and calcium aluminates.
  • the luminescent pigment particles are porous and have a percentage of pores by volume, in particular measured by mercury porosity according to the IS015901-1: 2005 standard, of between 1 and 90%, preferably between approximately 2 and approximately 50%. .
  • the term "dye” is understood to mean a substance, or a mixture of substances, which makes it possible, when it is used in a material, to give a color to this material. absorbing or reflecting specific wavelength radiation. This substance or mixture may be soluble or insoluble in the material in question.
  • the dye will make it possible to fix the color of the material in the light, in particular in the light of the day.
  • the dye will be chosen according to the desired color, it is also possible to use dye mixtures.
  • the dye may be organic or inorganic in nature.
  • the dye may especially be in the form of a powder, a powder in suspension.
  • the organic dyes may especially be chosen from nitroso compounds
  • xanthene quinoline, anthraquinone, phthalocyanine, metal complex type, isoindolinone, isoindoline, quinacridone, perinone, perylene, diketopyrrolopyrrole, thioindigo, dioxazine, triphenylmethane, quinophthalone.
  • the dye may also be a special effects dye.
  • pearlescent pigments such as white pearlescent pigments such as titanium mica, or mica-bismuth oxychloride, colored pearlescent pigments such as titanium mica with iron oxides, mica titanium with in particular ferric blue or chromium oxide, titanium mica with an organic pigment of the aforementioned type as well as pearlescent pigments based on bismuth oxychloride.
  • the dye may also be a fluorescent dye (or brightener).
  • fluorescent dyes may be of interest, especially for safety displays.
  • the effect of the dye can be enhanced by combination with an optical brightener for example.
  • This brightener (or combination of brighteners) may for example be chosen from stilbene derivatives.
  • the addition of a fluorescent dye (or an optical brightener) advantageously also makes it possible to modulate the night color of the luminescent pigment.
  • the dye is chosen from oxides of iron, barium, chromium, cadmium, zinc, cobalt, nickel and titanium and carbon black.
  • the size of the dye particles is smaller than the size of the luminescent pigment particles.
  • the average size of the dye particles is at least 10 times smaller than that of the luminescent pigment.
  • the dye has an average particle size measured in volume by laser granulometry (ISO 13320: 2009 standard) of between about 0.1 and about 10 ⁇ measured by volume by laser granulometry (ISO 13320: 2009 standard).
  • the composition applied in step a) generally comprises from 30 to 90% by weight, in particular from 50 to 85% by weight, preferably from 60 to 80% by weight of granules (s) relative to the weight of the composition.
  • composition applied in step a) may comprise a pigment or a mixture of pigments, preferably such as CIE ⁇ 2000 between:
  • CIE ⁇ 2000 (also referred to as “CIE 2000” or “ ⁇ 2000”) is as defined by the International Commission on Illumination ("International Commission on Illumination "CIE in English) in the standard CIE S 014-6 / E of 201 3).
  • the mixture comprises all the components of the applied composition (the hydraulic binder, the pigment (s), and the optional plasticizer) in the same relative proportions, except the aggregates.
  • the mixture is therefore free of granules.
  • This mixture corresponds to the material that will be visible between the aggregates of the wear layer.
  • the color of this mixture is thus adapted to that of the aggregate so as not to bring out any possible gap in the dig.
  • the color of the wear layer is thus homogeneous.
  • the composition comprises less than 5% by weight, especially from 0.5 to 3% by weight, preferably from 1 to 2.5% by weight of pigment (s) (cumulative proportion of pigments for a mixture of pigments) relative to the weight of the composition.
  • the composition applied in step a) may also comprise a fluidizing additive agent, which makes it possible to improve the incorporation of the wear layer on the surface of the fresh hydraulic composition and / or to improve the homogeneity of the distribution of the pigment and the hydraulic binder of the composition on the surface of the fresh hydraulic composition.
  • a fluidizing additive agent which makes it possible to improve the incorporation of the wear layer on the surface of the fresh hydraulic composition and / or to improve the homogeneity of the distribution of the pigment and the hydraulic binder of the composition on the surface of the fresh hydraulic composition.
  • water-reducing additive an additive to reduce the amount of water required for the production of a composition based on hydraulic binder.
  • the fluidizing additive may be chosen from the family of comb-structure polymers, compounds comprising a polyalkoxylated chain and at least one aminoalkylenephosphonic group, or from old-generation plasticizers such as sugars, gluconic acid and acids. lignosulfonic acids, polynaphthalenesulphonic acids, polymelamine sulphonic acids and their salts, alone or in composition.
  • the comb structure polymers are especially chosen from polycarboxylate main chain comb copolymers bearing grafted side chains of polyalkylene oxide (or PCP).
  • the compounds comprising a polyalkoxylated chain and at least one amino-alkylene phosphonic group may be chosen from the compounds of formula (I):
  • R is a hydrogen atom or a monovalent hydrocarbon group having from 1 to 18 carbon atoms and optionally one or more heteroatoms;
  • the R are similar or different from each other and represent an alkylene such as ethylene, propylene, butylene, amylene, octylene or cyclohexene, or an arylene such as styrene or methylstyrene, the R, optionally contain one or more heteroatoms;
  • Q is a hydrocarbon group having 2 to 18 carbon atoms and optionally one or more heteroatoms
  • A is an alkylidene group having 1 to 5 carbon atoms
  • the R j are similar or different from each other and can be chosen from:
  • alkyl group comprising from 1 to 18 carbon atoms and capable of bearing [R-O (Ri-O) n ], R and R groups, having the abovementioned meanings,
  • R k designating a group such that R , preferably R k is selected from a group A-PO 3 H 2 , A having the meaning mentioned above; and an alkyl group having from 1 to 18 carbon atoms and capable of bearing [R-O (RrO) n ], R and R groups, having the abovementioned meanings;
  • B denotes an alkylene group containing from 2 to 18 carbon atoms
  • n is a number greater than or equal to 0
  • r is the number of groups [R-0 (RrO) n ] carried by the set of R ,
  • Q, N and R may together form one or more rings, which ring (s) may further contain one or more other heteroatoms.
  • a polyalkoxylated polyphosphonate consisting of a water-soluble or water-dispersible organic compound having at least one amino-di- (alkylene-phosphonic) group and at least one polyoxyalkylated chain or at least one of its salts.
  • R is a methyl group
  • the R are ethylene and propylene groups, not being between 30 and 50
  • r + q is 1
  • Q is an ethylene group
  • A is methylene
  • y is 1
  • R is CH 2 -PO 3 H 2 .
  • fluidizing additive contained in the products CHRYSO®Fluid Optima 100 and CHRYSO®Fluid Optima 175 available from the company CHRYSO.
  • the sugars can be chosen from glucose, fructose, sucrose, meritose, lactose, maltotriose, dextrose, maltose, galactose, mannose, glycogen, or one of their compositions.
  • the preferred plasticizer is chosen from polynaphthalenesulphonic acids and their salts.
  • the fluidizing additive may preferably be chosen from polycarboxylate main chain comb copolymers bearing polyalkyleneoxide (or PCP) grafted side chains or the compounds of formula (I), or their composition.
  • the content of the fluidizing additive in the composition applied in step a) is less than 1% by weight, in particular from 0.001 to 1% by weight, preferably from 0.005 to 0.5% by weight relative to the weight. of the composition.
  • composition applied in step a) comprises, or even consists of:
  • pigment (s) less than 5% by weight, especially 0.5 to 3% by weight, preferably 1 to 2.5% by weight of pigment (s), and
  • the composition applied during step a) is preferably pulverulent.
  • the composition can be applied by dusting, manually or with a suitable device, including a "color spreader" of the company Triple Hard Tools.
  • Step a) can be repeated, which implies that the composition can be applied in one or more layers, for example 2 or 3 layers.
  • Steps a) and b) can also be repeated, typically once (the process then comprises steps a), b), a) and then b)) or twice (the method comprises steps a), b), a ), (b), (a) and (b)).
  • step a) is repeated, or if steps a) and b) are repeated (in both cases, the composition is then applied in several layers), the amount of composition applied to each step a) is as much as the number of steps a) is high, so that the final amount of composition applied is as defined above.
  • the operator waits for the composition applied to become wet in contact with the fresh hydraulic composition before being floated.
  • the method comprises a step b) of float, which can be carried out manually with a trowel, or with a mechanical finisher, commonly called helicopter.
  • the method then comprises a step c) of applying a surface deactivating composition to the at least a portion of the surface on which the composition has been applied.
  • a “surface deactivator” is an agent for delaying the setting of concrete on the surface, that is to say to delay or inhibit phenomena related to this setting such as hydration phenomena, thereby inducing a hardening later of the composition.
  • setting is meant the passage to the solid state by hydration reaction of the binder.
  • the deactivating composition In contact with the surface of the fresh hydraulic binder composition, the deactivating composition penetrates by diffusion to a certain depth and induces a retardation of setting.
  • the depth of the layer retarded by the deactivating composition also called digging capacity or attack force, will be chosen mainly according to the size of the granules present.
  • the objective is to make the aggregates appear on the surface, so the attack force will depend on the desired aesthetic effect as well as the size of the aggregates.
  • the deactivating composition will have to be chosen according to the desired effect, typically the larger the aggregates, the greater the need for the composition to have a high attack force.
  • the deactivating composition comprises a set retarder. It may be in the form of a solution in an aqueous or oily solvent or in a petroleum fraction, or in the form of a dispersion in an aqueous or oily solvent or in a petroleum fraction, in particular in the form of a suspension or in the form of an emulsion.
  • set retarder means a compound having the effect of delaying the setting of the composition based on hydraulic binder, that is to say to delay or inhibit the phenomena related to this setting, such as the hydration phenomena, thereby inducing a later hardening of the composition.
  • a surface-setting retarder delays the setting time of a composition based on hydraulic binder in which it has been introduced at a dosage of at most 5% by dry weight relative to the weight of said hydraulic binder, setting time being measured according to test EN480-2 (2006).
  • setting time is delayed by at least 30 minutes with respect to a control hydraulic binder composition.
  • oil a solvent comprising fats of vegetable origin, animal or mineral, which may be liquid at room temperature or not. These oils can be recycled or regenerated. However, when they are not liquid at room temperature, the The composition is preferably prepared at a temperature at which all its components are liquid.
  • the vegetable oil may especially be chosen from rapeseed oil, palm oil, coconut oil, castor oil, peanut oil, grape seed oil, corn oil, canola oil, linseed oil, coconut oil, soybean oil, sunflower oil and their compositions.
  • the animal oils can be chosen in particular from tallow, suintine, lard oil, herring oil, cod liver oil, sardine oil, fish oil and oil. lanolin and their compositions.
  • the mineral oils may in particular be aliphatic, paraffinic or naphthenic oils, they include, in particular, the fractions comprising on average 8 to 30 carbon atoms, preferably 1 to 25 carbon atoms, alone or in composition, in particular mineral oil. clear. Preferred oils will be mineral oils
  • emulsion denotes both water-in-oil emulsions and oil-in-water emulsions, the oil being chosen in particular from the oils mentioned above.
  • the retarder of the deactivating composition used in the process according to the invention is chosen from the compounds known for this purpose.
  • the surface-setting retarder of the deactivating composition in aqueous solvent may be chosen from compounds known for this purpose, such as carboxylic acids, their salts and their derivatives; carbohydrates, especially sugars, their salts and derivatives; but also lignosulfonic acid, phosphonic acids, in particular those carrying amino or hydroxy groups, their salts and their derivatives; or inorganic acids such as phosphoric acid, their salts and derivatives.
  • derivatives of carboxylic acids, carbohydrates, lignosulfonic acids, phosphonic acids, in particular those bearing amino or hydroxy groups; and inorganic acids also include the salts of these derivatives.
  • the surface-setting retarder of the deactivating composition in aqueous solution is preferably selected from carboxylic acids, their salts and their derivatives; sugars, their salts and their derivatives; or one of their compositions.
  • the surface-setting retarder of the deactivating composition may be chosen in particular from glucose, fructose, sucrose, meritose, lactose, maltotriose, dextrose, maltose, galactose and mannose. glycogen or one of their compositions.
  • carboxylic acids mention may in particular be made of maleic acid and hydroxycarboxylic acids and among these in particular citric acid, tartaric acid, malic acid, gluconic acid, and lactic acid, their salts or one of their compositions.
  • carboxylic acid salts mention may be made of sodium salts, calcium salts or potassium salts.
  • carboxylic acid derivatives is intended to denote their salts and esters, by way of a particular example, mention may be made of ethyl acetate.
  • the derivatives include lactones.
  • the surface-setting retarder of the deactivating composition in oily solution may be chosen from the compounds known for this purpose, such as those disclosed in application EP 2 935 140, in particular the alkyl esters of hydroxycarboxylic acids which are soluble in oils / solvents. , or dispersible in oils / solvents. It is for example an alkyl ester of citric acid such as triethyl citrate.
  • the retarder of the deactivating composition used in the emulsions may be chosen from the aqueous solvent retarders and the oily solvent retarders defined above.
  • the retardant of the deactivating composition in solution in an emulsion may be chosen from carboxylic or hydroxycarboxylic acids which may comprise a saturated or unsaturated carbon chain and have 1, 2 or 3 hydroxyl groups, it may also be be in the form of a salt, especially sodium salt, potassium salt or calcium salt.
  • the acid is preferably selected from acetic acid, gluconic acid, citric acid, tartaric acid, maleic acid, their compositions or their salts. Particularly preferred are citric acid, malic acid and tartaric acid.
  • the emulsion preferably comprises from 5 to 50% by weight of oily phase, preferably from 10 to 40% and from 50 to 95% by weight of aqueous phase, preferably from 60 to 90%.
  • the deactivating composition further comprises a surfactant.
  • the surfactant is preferably a non-quaternary amine surfactant. Such oil-in-water emulsions are described in application WO 2012/056162.
  • the surface-setting retarder of the deactivating composition in solution in the petroleum fractions may be chosen from the aforementioned retarders for the aqueous or oily phases which are ground and then dispersed within the petroleum fractions.
  • the deactivating composition generally comprises from 0.1 to 20% by weight of surface setting retarder.
  • CHRYSO® DecoLav P, CHRYSO® DecoLav N, CHRYSO® DecoLav, CHRYSO® DecoWash and CHRYSO® DecoBrush deactivators are particularly recommended.
  • the method then comprises a step d) of curing the composition based on fresh hydraulic binder, which generally lasts from 8 to 24 hours, and then a step e) of removing the surface uncured hydraulic binder layer, typically by washing with water jet under high pressure or by brushing.
  • the surface-retarded hydraulic binder composition layer remains friable and can be removed, so as to reveal the aggregates on the surface of the workpiece, imparting a particular aesthetic appearance to the wear layer.
  • the removal of the uncured hydraulic binder layer is typically carried out by water jet washing, generally under high pressure, or by brushing.
  • a composition based on hydraulic binder at least a part of a surface of which comprises a wear layer is obtained.
  • the method may comprise, after step e), a step f) of application of a protective coating, in particular a water-repellent and / or anti-stain coating, for example a stain or varnish (in particular chosen from the CHRYSO® Finisol ranges, CHRYSO® Rocasol, CHRYSO® Fuge, CHRYSO® Pareflo, Modern "Cure and Seal” method)) on at least part of the wear layer.
  • a protective coating in particular chosen from the CHRYSO® Finisol ranges, CHRYSO® Rocasol, CHRYSO® Fuge, CHRYSO® Pareflo, Modern "Cure and Seal” method
  • This coating gives the wear layer additional protection, which further improves its durability, and / or stain-resistant, water-repellent and / or aesthetic properties, for example a shiny effect.
  • the varnish can be matt or glossy, transparent or colored.
  • the invention relates to a composition based on hydraulic binder at least a portion of a surface comprises a wear layer obtainable by the method according to any one of the preceding claims.
  • the wear layer comprises in particular the aggregates as defined above, which allows it to have improved durability.
  • the durability of the wear layer can in particular be assessed according to the tests described in standard NF P 1 1 -101 of 2016 "Industrial floor activity - method of measuring resistance to rolling wear".
  • the following example illustrates the invention.
  • Table 1 composition of paving concrete to be treated
  • a wear layer composition was prepared by mixing the following ingredients (Table 2):
  • Table 2 composition of the composition applied in step a)
  • the black granulate 1, 25-2.5 is supplied by the company OMG. Its LA Los Angeles coefficient is 17.7. Its hardness according to the Mohs scale is 4.
  • the CHRYSO®Color Black Andalusian dye was obtained by formulating pigments of iron oxides in proportions allowing to have a coloration identical to that of the granulate.
  • Conpac 500 is a PCP powder marketed by Peramin.
  • the composition of Table 2 was dusted by hand (step a)), ensuring a regular distribution on the surface of the concrete to be treated, at a dosage of 2.5 kg / m 2 .
  • the deposited powder was moistened by absorbing water from the paving concrete by capillary action. Once all the powder has been moistened, it has been floated manually (step b)) (mechanical spraying is possible for large surfaces).
  • a second layer of this same composition was then sprinkled step a)) at the same dosage, and floated after moistening (step b)).
  • a deactivator, CHRYSO® DecoLav Pico was sprayed at 200 ml / m 2 (step c)). 24 hours later (step d)), the deactivated layer was removed by high pressure washing (step e)).
  • the paving concrete is then protected by a black wear layer, combining aesthetics, anti-slip appearance and good resistance to wear.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Luminescent Compositions (AREA)

Abstract

L'invention concerne un procédé de formation d'une couche d'usure sur au moins une partie d'une surface d'une composition à base de liant hydraulique à traiter comprenant les étapes consistant à : a) appliquer une composition comprenant : - au moins un liant hydraulique, et - au moins un granulat dont le coefficient Los Angeles LA est inférieur ou égal à 0, sur au moins une partie d'une surface d'une composition à base de liant hydraulique fraiche, b) talocher la au moins une partie de la surface sur laquelle la composition a été appliquée, puis c) appliquer une composition de désactivant de surface sur la au moins une partie de la surface sur laquelle la composition a été appliquée, puis d) faire durcir la composition à base de liant hydraulique fraîche, puis e) éliminer la couche de liant hydraulique non durcie en surface, et la composition à base de liant hydraulique dont au moins une partie d'une surface comprend une couche d'usure susceptible d'être obtenue. Cette couche d'usure présente une durabilité améliorée.

Description

Procédé de préparation d'une couche d'usure
à la surface d'une composition hydraulique
La présente invention concerne un procédé de préparation d'une couche d'usure à la surface d'une composition à base de liant hydraulique, notamment une composition de béton.
Une couche d'usure peut être formée à la surface de composition hydraulique afin d'améliorer son aspect esthétique et ses propriétés antidérapantes.
Comme expliqué au chapitre 3 du Guide Technique des sols à usage industriel (e- cahier du CSTB, cahier 3577 V3, janvier 2010) on désigne, par couches d'usure, les procédés mettant en œuvre un mélange de granulats durcisseurs, de ciment, d'additifs ou d'adjuvants destinés à être incorporés à une composition hydraulique fraiche de façon à lui conférer certaines propriétés de résistance mécanique, d'esthétique ou de planéité. La couche d'usure incorporée est un élément constitutif du dallage (on parle de dallage monolithique). Notamment pour rendre cette couche d'usure anti-dérapante, des procédés de traitement de surface du béton durci peuvent être mis en œuvre :
par attaque mécanique (typiquement par projection de sable). Toutefois, cette méthode génère de nombreuses poussières, notamment de la silice alvéolaire, qui sont dangereuses pour l'opérateur, ou
- par attaque acide. L'utilisation d'acide est également dangereuse pour l'opérateur. De plus, les acides projetés sont corrosifs et sont susceptibles d'abîmer tous les matériaux avec lesquels ils entrent au contact autour du site d'application. L'élimination de l'acide appliqué est donc délicate.
Toutefois, quelles que soient les méthodes utilisées, les couches d'usure à de faible rugosité de surface formées par les méthodes usuelles s'abîment dans le temps. Le développement de couches d'usure présentant une durabilité améliorée est requis.
A cet effet, selon un premier objet, l'invention concerne un procédé de formation d'une couche d'usure sur au moins une partie d'une surface d'une composition à base de liant hydraulique à traiter comprenant les étapes consistant à :
a) appliquer une composition comprenant :
au moins un liant hydraulique, et
au moins un granulat dont le coefficient Los Angeles LA selon la norme EN 1097-2 de 2010 est inférieur ou égal à 50,
sur au moins une partie d'une surface d'une composition à base de liant hydraulique fraiche, b) talocher la au moins une partie de la surface sur laquelle la composition a été appliquée, puis
c) appliquer une composition de désactivant de surface sur la au moins une partie de la surface sur laquelle la composition a été appliquée, puis
d) faire durcir la composition à base de liant hydraulique fraîche, puis
e) éliminer la couche de liant hydraulique non durcie en surface.
Lors de l'étape a), une composition est appliquée sur au moins une partie d'une surface d'une composition à base de liant hydraulique fraîche.
On entend par le terme « liant hydraulique » tout composé ayant la propriété de s'hydrater en présence d'eau et dont l'hydratation permet d'obtenir un solide ayant des caractéristiques mécaniques. Le liant hydraulique peut être un ciment selon la norme EN 197-1 de 2012 et notamment un ciment de type CEM I, CEM II, CEM III, CEM IV ou CEM V selon la norme Ciment NF EN 197-1 de 2012. Le ciment peut donc en particulier comprendre des additions minérales.
L'expression « additions minérales » désigne les laitiers (tels que définis dans la norme Ciment NF EN 197-1 de 2012 paragraphe 5.2.2), les laitiers d'aciérie, les matériaux pouzzolaniques (tels que définis dans la norme Ciment NF EN 197-1 paragraphe 5.2.3), les cendres volantes (telles que définies dans la norme Ciment NF EN 197-1 paragraphe 5.2.4), les schistes calcinés (tels que définis dans la norme Ciment NF EN 197-1 paragraphe 5.2.5), les calcaires (tels que définis dans la norme Ciment NF EN 197-1 paragraphe 5.2.6) ou encore les fumées de silices (telles que définies dans la norme Ciment NF EN 197-1 paragraphe 5.2.7) ou leurs compositions. D'autres ajouts, non actuellement reconnus par la norme Ciment NF EN 197-1 (2012), peuvent aussi être utilisés. Il s'agit notamment des métakaolins, tels que les métakaolins de type A conformes à la norme NF P 18-513 de 2012, et des additions siliceuses, telles que les additions siliceuses de minéralogie Qz conformes à la norme NF P 18-509 de 2012.
Les compositions à base de liant hydraulique à traiter par le procédé selon l'invention sont de préférence des compositions de béton.
Par le terme « béton », on entend un mélange de liants hydrauliques, de granulats, de sables, d'eau, éventuellement d'additifs, et éventuellement d'additions minérales. Le terme « béton » comprend également les mortiers. Les bétons traités peuvent en particulier répondre aux exigences des normes NF P 1 1 -213-1 de 2007 pour les dallages à usage industriel ou assimilés et NF P 1 1 -213-3 de 2007 pour les dallages destinés à des maisons individuelles.
On entend par le terme « fraîche » qualifier de telles compositions à base de liant hydraulique lorsqu'elles ont été gâchées avec de l'eau, mais n'ont pas encore durci. La composition appliquée lors de l'étape a) comprend au moins un liant hydraulique, typiquement du ciment. Le liant hydraulique de la composition appliquée est selon la norme EN 197-1 et peut notamment être un ciment de type CEM I, CEM II, CEM III, CEM IV ou CEM V selon la norme Ciment NF EN 197-1 .
Généralement, la composition appliquée à l'étape a) comprend de 5 à 50% en poids, notamment de 10 à 40% en poids, de préférence de 20 à 35% en poids de liant(s) hydraulique(s) par rapport au poids de la composition.
La composition appliquée lors de l'étape a) comprend au moins un granulat. Par le terme « granulats », on entend un ensemble de grains de diamètre moyen compris entre 0 et 125 mm. Le granulat peut être minéral, synthétique, ou un mélange de ceux-ci. Selon leur diamètre, les granulats minéraux sont classés dans l'une des six familles suivantes : fillers, sablons, sables, graves, gravillons et ballast (norme XP P 18-545 de septembre 201 1 ). Les granulats les plus utilisés sont les suivants : les fillers, qui ont un diamètre inférieur à 2 mm et pour lesquels au moins 85 % des granulats ont un diamètre inférieur à 1 ,25 mm et au moins 70 % des granulats ont un diamètre inférieur à 0,063 mm, les sables de diamètre compris entre 0 et 4 mm (dans la norme 13-242 de 2008, le diamètre pouvant aller jusqu'à 6 mm), les graves de diamètre supérieur à 6,3 mm, les gravillons de diamètre compris entre 2 mm et 63 mm. Les sables sont donc compris dans la définition de granulat selon l'invention. Les fillers peuvent notamment être d'origine calcaire, siliceux ou dolomitique.
Les granulats utilisés dans la composition de l'étape a) ont de préférence un diamètre maximal selon la norme NF EN 933-1 de mai 2012 inférieur à 5 mm. Des granulats plus gros dépassent en effet plus de la surface de la composition hydraulique obtenue à la fin du procédé, ce qui provoque leur usure prématurée par frottement, et nuit donc à la durabilité de la couche d'usure. En alternative, les granulats peuvent avoir un diamètre maximal selon la norme NF EN 933-1 de mai 2012 supérieur à 5 mm. Dans ce cas, il est nécessaire que l'épaisseur de la couche d'usure soit plus épaisse et il convient d'utiliser une composition de désactivant de creuse faible. Toutefois, obtenir une couche d'usure plus épaisse implique d'utiliser des quantités plus importantes de composition appliquées lors de l'étape a), ce qui est désavantageux en termes de coût.
Au moins un granulat de la composition a un coefficient Los Angeles LA inférieur ou égal à 50, notamment inférieur ou égal à 35, typiquement inférieur ou égal à 25, de préférence inférieur ou égal à 20. De préférence, au moins 30% en poids, notamment au moins 50% en poids, de préférence au moins 70% en poids, voire au moins 90% en poids des granulats de la composition présentent un LA inférieur ou égal à 50, notamment inférieur ou égal à 35, typiquement inférieur ou égal à 25, de préférence inférieur ou égal à 20. La norme européenne EN 1097-2 de 2010 décrit l'essai Los Angeles.
Les granulats dont le coefficient Los Angeles LA est inférieur ou égal à 50 sont avantageusement résistants aux chocs et aux frottements. En conséquence, la couche d'usure obtenue à la fin du procédé présente une durabilité améliorée.
Plus le coefficient Los Angeles LA est élevé, moins le granulat est résistant. Plus précisément, l'essai Los Angeles permet de mesurer les résistances combinées aux chocs et à la détérioration progressive par frottement réciproque des éléments d'un granulat.
De préférence, au moins un granulat de la composition a une dureté selon l'échelle de Mohs supérieure ou égale à 4, notamment supérieure ou égale à 5, par exemple supérieure ou égale à 6, en particulier supérieure ou égale à 7. De préférence, au moins 30% en poids, notamment au moins 50% en poids, de préférence au moins 70% en poids, voire au moins 90% en poids des granulats de la composition présentent une dureté selon l'échelle de Mohs supérieure ou égale à 4, notamment supérieure ou égale à 5, par exemple supérieure ou égale à 6, en particulier supérieure ou égale à 7.
L'échelle de Mohs rend compte de la dureté du granulat. Par exemple, les duretés selon l'échelle de Mohs du talc, du gypse, de la calcite, de la fluorine, de l'apatite, de l'orthose, du quartz, de la topaze, du corindon et du diamant sont respectivement de 1 , 2, 3, 4, 5, 6, 7, 8, 9 et 10. Le talc et le gypse peuvent être rayés avec un ongle (de dureté selon l'échelle de Mohs de 2,5). La calcite et la fluorine peuvent être rayées par l'acier (de dureté selon l'échelle de Mohs de 4,5 à 6,5). Les granulats dont la dureté selon l'échelle de Mohs est supérieure ou égale à 4 sont avantageusement durs. En conséquence, la couche d'usure obtenue à la fin du procédé présente une durabilité améliorée.
Des granulats de marbre, de corindon, en grenaille métallique ou d'un mélange de ceux-ci sont des granulats minéraux particulièrement adaptés. De tels granulats sont disponibles dans le commerce, par exemple auprès de la société O.M.G. (Onyx et Marbres Granulés) ou Omya Fused Minerais.
Des granulats artificiels, aussi appelés synthétiques, peuvent également être utilisés. Différentes catégories de granulats synthétiques existent. Il y a en particulier des granulats synthétiques minéraux. Dans cette catégorie, nous pouvons distinguer :
- des sous-produits industriels, souvent concassés, comme le laitier cristallisé concassé et le laitier granulé de haut fourneau obtenus par refroidissement à l'eau.
- des granulats à hautes caractéristiques, élaborés industriellement tels que le corindon, le carbure de silicium ou l'émeri ; des granulats métalliques tels que l'acier doux, le fer doux, la fonte, éventuellement traités pour obtenir une bonne affinité avec l'eau et le ciment.
Les corindons sont des alumines électrofondues que l'on peut classer en 3 grands types :
- Les corindons blancs (alumine pure)
- Les corindons bruns (alumines dopées par typiquement de 1 ,5% à 3% de Ti02)
- Les solutions solides à matrices de corindon parmi lesquelles nous pouvons citer les corindons zircone (alumine à 25% et 42% de zircone) et les oxynitrures d'aluminium (AION).
On peut aussi citer les granulats Alag de la société Kerneos, qui sont des granulats concassés synthétiques silico-alumineux-calciques obtenus par fusion et contenant 40% d'alumine.
D'autre part, certains granulats synthétiques peuvent avoir une matrice organique.
Ces granulats synthétiques comprennent alors généralement une matrice polymérique d'origine synthétique et éventuellement un pigment et/ou un colorant. Dans un mode de réalisation, le granulat synthétique comprend :
- une matrice transparente, et
- au moins un pigment composite luminescent coloré, comprenant :
- au moins un pigment luminescent, et
- au moins un colorant de couleur différente du pigment luminescent, et
ledit pigment composite luminescent coloré présentant généralement une taille moyenne de particule mesurée en volume par granulométrie laser (norme ISO 13320:2009) comprise entre environ 50 et environ 2000 μηι, notamment environ entre 60 et environ 2000 μηι, de préférence entre environ 60 et environ 500 μηι, par exemple entre environ 75 et environ 200 μηι.
Le granulat synthétique comprend généralement :
- de 0,001 % à 99,999% en poids, notamment de 0,5% à 60% en poids, en particulier de 5% et 50% en poids de pigment composite luminescent, et
- de 99,999% à 0,001 % en poids, notamment de 99,5% à 40% en poids, en particulier de 95% et 50% en poids de matrice transparente.
Un tel granulat synthétique peut être préparé comme décrit dans la demande WO 2017/055531 (notamment pages 13 et 14).
De préférence, ces granulats synthétiques présentent une taille de particule moyenne comprise entre environ 0,1 et 10 mm (taille mesurée selon les normes ISO 13320:2009 pour les granulats présentant une taille inférieure ou égale à 500 μηι ou NF EN 933-1 de mai 2012 pour des granulats présentant une taille supérieure à 500 μηι). La taille de particule moyenne correspond au diamètre moyen des granulats. Cette taille peut être mesurée en volume par granulométrie laser (norme ISO 13320:2009) ou en poids par tamisage (mesurée selon la norme NF EN 933-1 de mai 2012).
Pour les raisons explicitées ci-dessus, les granulats synthétiques ont de préférence un diamètre maximal selon la norme NF EN 933-1 de mai 2012 inférieur à 5 mm.
De préférence, la matrice transparente est notamment compatible avec le pH alcalin des compositions de liant hydraulique, et est de préférence choisie parmi le polyméthacrylate de méthyle (PMMA), le polycarbonate (PC), le polychlorure de vinyle (PVC), le polyuréthane (PU), les copolymères styrène acrylonitrile (SAN) et leurs dérivés comme l'ABS (acrylonitrile / butadiène /styrène) ou du verre, de préférence du PMMA.
Dans le cadre de la présente invention, on entend par le terme « pigment luminescent » tout composé capable d'absorber des photons émis par la lumière naturelle ou artificielle et restituer une émission de lumière en cas de luminosité réduite ou en l'absence de luminosité. La luminescence englobe la phosphorescence et la fluorescence. De préférence, dans le cadre de la présente invention, le pigment luminescent est un pigment photoluminescent. Le pigment luminescent sera choisi en fonction de la couleur, en luminosité réduite ou en l'absence de luminosité, qui est souhaitée. De préférence, le pigment luminescent sera choisi pour avoir une rémanence de plusieurs heures après son exposition à la lumière naturelle ou artificielle. De préférence, le pigment luminescent présente une taille moyenne de particule mesurée en volume par granulométrie laser (norme ISO 13320:2009) comprise entre environ entre 60 et environ 2000 μηι, de préférence entre environ 60 et environ 500 μηι, par exemple entre environ 75 et environ 200 μπι.
De manière générale, le pigment luminescent peut être organique ou minéral, les pigments minéraux étant préférés du fait de leur durabilité plus importante, notamment en plein air.
Les pigments organiques luminescents sont notamment choisis parmi les naphthalimides, coumarines, xanthènes, thioxanthènes, naphtholactames, azlactones, méthines, oxazines et les thiazines, ou leur mélange.
Les pigments inorganiques luminescents sont notamment choisis parmi :
- les sulfures, comme par exemple, CaS:Bi, CaSrS:Bi, ZnS:Cu, ZnS:Pb2+, ZnS:Mn2+, ZnCdS:Cu, AB2S4 (où A=métal alcalino-terreux; B=aluminium), ZnS, ZnS:Ag, ZnS:Cu:CI, ZnS:Cu:AI, (Ce3(SiS4)2X (où X=CI, Br, I), La3-xCex(SiS4)2l (où 0<x<1 ), SrS:Cr, SrS dopé par des terres rares où Mn, CdS:Mn, Y202S:(Er,Yb) ;
- les fluorures, comme par exemple, AF3 (où A=La3+ , Ce3+ , Y3+) et AF2 (Al3+ , Mg2+ , Ca2+ , Pb2+) et contenant au moins un ion luminescent choisi dans le groupe comprenant les ions métalliques trivalents (Cr3+, Fe3+, etc.) ou les terres rares (Y3+, Pr3+, Nd3+, Sm3+, Eu3+, Tb3+, Dy3+, Ho3+, Er3+, Tm3+, Yb3+), LnF3, ALnF4, ALn2F8, ALn3F10 (où Ln=terre rare ou yttrium, A ion alcalin monovalent, et contenant au moins un ion luminescent choisi dans le groupe composé des ions métalliques trivalents (Cr3+, Fe3+, etc.) ou des terres rares (Y3+, Pr3+, Nd3+, Sm3+, Eu3+, Tb3+, Dy3+, Ho3+, Er3+, Tm3+, Yb3+), EF3 (E=Ga3+, ln3+, Bi3+ et contenant au moins un ion luminescent choisi dans le groupe composé des ions métalliques trivalents (Cr3+, Fe3+, etc.) ou des terres rares (Y3+, Pr3+, Nd3+, Sm3+, Eu3+, Tb3+, Dy3+, Ho3+, Er3+, Tm3+, Yb3+), Sn_ xEu2+ xSiF6.2H20 (où 0<x<0,5), M1-xEux 2+ SiF6 (où 0<x<0,2 et M est choisi notamment parmi le calcium et la baryum), K2YF5 (dopé avec Gd3+ , Tb3+ , Eu3+ ou Pr3+ ), LiYF4 (dopé avec Gd3+ , Tb3+ , Eu3+ où Pr3+ ), NaLnF4 (où Ln=lanthanide ou Y), NaYF4:Pr3+ , Na(Y,Yb)F4:Pr3+ , Na3AIF6 contenant au moins un ion luminescent choisi dans le groupe composé des ions trivalents (Cr3+, Fe3+, etc.) ou des terres rares (Y3+, Pr3+, Nd3+, Sm3+, Eu3+, Tb3+, Dy3+, Ho3+, Er3+, Tm3+, Yb3+), Bal_iF3:Eu3+, BaY2F8:Eu3+, BaSiF6:Eu3+, [alpha]-NaYF4:Pr3+ ou LiGdF4:Eu3+ ;
les oxydes luminescents comme par exemple, MAI204 (où M=un ou plusieurs métaux choisis parmi le calcium, strontium et baryum, l'oxyde pouvant être dopé par l'europium comme activateur de luminescence et pouvant éventuellement contenir d'autres activateurs comme par exemple le lanthane, le cérium, le praséodyme, le néodyme, le samarium, le gadolinium, le dysprosium, l'holmium, l'erbium, le thulium, l'ytterbium, le lutétium ou l'étain et le bismuth comme co-activateurs comme dans le SrAI204(Eu2+,Dy3+), (M'xM'v)AI204 (où x+y=1 et M' et M" sont différents et choisis parmi le calcium, le strontium et le baryum, l'oxyde pouvant être dopée par l'europium comme activateur et pouvant éventuellement contenir d'autres activateurs comme par exemple le lanthane, le cérium, le praséodyme, le néodyme, le samarium, le gadolinium, le dysprosium, l'holmium, l'erbium, le thulium, l'ytterbium, le lutétium ou l'étain et le bismuth comme co-activateurs, M1-xAI204-x(où M est au moins un métal choisi parmi le calcium, le strontium et le baryum ou dans lequel M comprend le magnésium et au moins un métal choisi parmi le calcium, le strontium et le baryum, où x est non nul et de préférence compris entre -0,3 et 0,6, l'oxyde pouvant être dopé par l'europium comme activateur and et pouvant éventuellement contenir d'autres activateurs comme par exemple le lanthane, le cérium, le praséodyme, le néodyme, le samarium, le gadolinium, le dysprosium, l'holmium, l'erbium, le thulium, l'ytterbium, le lutétium ou l'étain et le bismuth comme co-activateurs, LnB03 où Ln=au moins une terre rare, M4AI14025 où M=un ou plusieurs métaux choisis parmi le calcium, strontium et baryum, l'oxyde pouvant être dopé par l'europium comme activateur et pouvant éventuellement contenir d'autres activateurs comme par exemple le lanthane, le cérium, le praséodyme, le néodyme, le samarium, le gadolinium, le dysprosium, l'holmium, l'erbium, le thulium, l'ytterbium, le lutétium ou l'étain et le bismuth comme co-activateurs) ; Sr4AI15025 ; M(ll)1-xEu(ll)xM(lll)pEu(lll)qTb(lll)rBgO 6 où M(ll) est au moins un métal bivalent choisi parmi le baryum, le strontium, le plomb et le calcium,
M(lll) est choisi parmi le lanthane, le gadolinium, l'yttrium, le cérium, le lutétium et le bismuth, 0<x<0,2, p, q et r sont non nuls, strictement compris entre -1 et 1 tels que p+q+r=1 , Ln1 -xTbxMgB5O10 où Ln= terre rare ou yttrium et 0<x<1 , M5(1.a)Eu5a 2+ Si4X6
Figure imgf000009_0001
où 0<c<1 , La!-xSrrixOBr (où 0<x<0,1 ), ZnO:Zn, ZnO:Ga203:Bi, CaTi03:Pr3+, La2Ti05:Pr3+, La2Ti207:Pr3+, (La,Pr)2Ti207,
(La,Yb,Pr)2Ti207, YB03:(Eu3+, Tb3+, Gd3+), Y3B06:Eu3+, LnB03 (dopé avec Eu3+, Tb3+, Pr3+ ou Tm3+, dopé ou co-dopé avec Ce3+ ou Gd3+ et Eu3+, Tb3+, Pr3+, Tm3+ ou Pr3+), Ln3B06 (dopé avec Eu3+, Tb3+, Pr3+ ou Tm3+, dopé ou co-dopé avec Ce3+ ou Gd3+ et Eu3+, Tb3+, Pr3+, Tm3+ ou Pr3+), Ln(B02)3 (dopé avec Eu3+, Tb3+, Pr3+ ou Tm3+, dopé ou co-dopé avec Ce3+ ou Gd3+ et Eu3+, Tb3+, Pr3+, Tm3+ ou Pr3+), Si02 (dopé avec des terres rares), Si02:(Sm3+ ,AI3+ ), AI(2_x_y)(Y,Ln)x03:yM (où M=Cr203, V205, NiO, W03, CuO, FeO, Fe203 et Ln=Er, La, Yb, Sm, Gd et leurs mélanges et 0,48<x<<1 ,51 et 0,007<y<0,2), Al203 (dopé avec des terres rares),
- des verres de phosphate (dopé avec des terres rares), LiNb03 (dopé avec des terres rares), Ti02 (dopé avec des terres rares), LaP04:Ce et/ou Tb, LaP04:Eu, CeP04:Tb,
MAI2B207:Eu2+ (où M=Sr, Ca), M2B509X:Eu (où M=Ca, Sr, Ba et X=CI, Br), CaS04:Eu, CaS04:Eu, LaMgB5Oi0:Ce où Mn, Y203:Eu, Gd203:Eu, (Y0.7Gd0.3)2O3:Eu, CoAI204, Mg4Ge05.5F:Mn, (Sr,Mg)3(P04)2:Sn, Y3AI5012:Ce, BaMgAI10Oi7:Eu, BaMg2AI16027:Eu, (Ce,Tb)MgAlnOi9, (Ce,Gd,Tb)MgB5Oi0, (Ce,Gd,Tb)MgB5Oi0:Mn, LaP04:(Ce,Tb), Sr2AI14025:Eu, Ca5(P04)3(F,CI):(Sb,Mn), (La,Ce,Tb)(P04)3:(Ce,Tb),
CeOo.es bOo.asMgAlndg, baryum-titanium phosphates, (Ba,Sr,Ca)2Si04:Eu, SrAI12019:Ce, BaSi205:Pb, (Sr,Zn)MgSi207:Pb, SrB407:Eu, (Gd,La)B306:Bi, Sr2P207:Eu, BaMgAI10O17:Eu, Mn, Zn2Si04:Mn, YV04:(Eu,Sm,Dy), AW04 (où A=Ca, Ba, Pb, Cd, Zn, Mg), ln203:(Er,Tb), GdAI(B03)4:Nd, Zr02:Eu3+ , GdV04:(Bi,Eu) ;
- le phosphore rouge ; et
- les nitrites de métaux alcalins ou alcalino-terreux.
De préférence, le pigment luminescent est choisi parmi le sulfure de zinc et les aluminates de strontium ou de calcium dopés par des terres rares, ou leurs mélanges. De préférence, le pigment luminescent est choisi parmi les aluminates de strontium et de calcium dopés par des terres rares. De préférence, les particules de pigment luminescent sont poreuses et présentent un pourcentage de pores en volume, notamment mesuré par porosité au mercure selon la norme IS015901 -1 :2005, compris entre 1 et 90%, de préférence entre environ 2 et environ 50%.
Dans le cadre de la présente invention, on entend par le terme «colorant » une substance, ou un mélange de substances, permettant, lorsqu'elle(il) est utilisé(e) dans un matériau, de donner une couleur à ce matériau en absorbant ou en réfléchissant des radiations de longueur d'onde spécifiques. Cette substance, ou ce mélange, peut être soluble ou insoluble dans le matériau en question. Le colorant va permettre de fixer la couleur du matériau à la lumière, notamment à la lumière du jour. Le colorant va être choisi en fonction de la couleur souhaitée, il est également possible d'utiliser des mélanges de colorants. Le colorant peut être de nature organique ou inorganique. Le colorant peut notamment se présenter sous la forme d'une poudre, d'une poudre en suspension.
Les colorants organiques peuvent notamment être choisis parmi les composés nitroso
(composé comprenant un groupe NO), nitro (composé comprenant un groupe N02), azo (composé comprenant un groupe HN=NH), xanthène, quinoléine, anthraquinone, phtalocyanine, de type complexe métallique, isoindolinone, isoindoline, quinacridone, périnone, pérylène, dicétopyrrolopyrrole, thioindigo, dioxazine, triphénylméthane, quinophtalone. Le colorant peut aussi être un colorant à effets spéciaux. Il peut s'agir d'un colorant à effets spéciaux, c'est-à-dire qui crée d'une manière générale une apparence colorée (caractérisée par une certaine nuance, une certaine vivacité et une certaine clarté) non uniforme et changeante en fonction des conditions d'observation (lumière, température, angles d'observation...). Ils s'opposent par-là même aux colorants blancs ou colorés qui procurent une teinte uniforme opaque, semi-transparente ou transparente classique. A titre de pigments à effets spéciaux, on peut citer les pigments nacrés tels que les pigments nacrés blancs tels que le mica titane, ou mica-oxychlorure de bismuth, les pigments nacrés colorés tels que le mica titane avec des oxydes de fer, le mica titane avec notamment du bleu ferrique ou de l'oxyde de chrome, le mica titane avec un pigment organique du type précité ainsi que les pigments nacrés à base d'oxychlorure de bismuth.
Le colorant peut également être un colorant fluorescent (ou azurant). De tels colorants fluorescents peuvent être intéressants, notamment pour des affichages de sécurité. L'effet du colorant peut être renforcé par combinaison avec un azurant optique par exemple. Cet azurant (ou combinaison d'azurants) peut par exemple être choisi parmi les dérivés de stilbène. L'ajout d'un colorant fluorescent (ou d'un azurant optique) permet avantageusement également de moduler la couleur de nuit du pigment luminescent. De préférence, le colorant est choisi parmi les oxydes de fer, baryum, chrome, cadmium, zinc, cobalt, nickel et titane et le noir de carbone.
De préférence, pour les colorants non solubles, la taille des particules de colorant est plus faible que la taille des particules de pigment luminescent. De préférence, la taille moyenne des particules de colorants est au moins 1 0 fois plus petite que celle du pigment luminescent. De préférence, le colorant présente une taille moyenne de particule mesurée en volume par granulométrie laser (norme ISO 13320:2009) comprise entre environ 0, 1 et environ 1 0 μηι mesurée en volume par granulométrie laser (norme ISO 13320:2009).
La composition appliquée à l'étape a) comprend généralement de 30 à 90% en poids, notamment de 50 à 85% en poids, de préférence de 60 à 80% en poids de granulat(s) par rapport au poids de la composition.
La composition appliquée à l'étape a) peut comprendre un pigment ou un mélange de pigments, de préférence tel que le CIE ΔΕ 2000 entre :
- la couleur d'un mélange correspondant à la composition appliquée à l'étape a) sans le(s) granulat(s), et
- la couleur du(es) granulat(s),
est inférieur ou égal à 49, notamment à 1 0, de préférence à 3. CIE ΔΕ 2000 (également nommé « CIE 2000 » ou «ΔΕ 2000 » ) est tel que défini par la Commission internationale de l'éclairage (« International Commission on Illumination » CIE en anglais) dans la norme CIE S 014-6/E de 201 3). Le mélange comprend tous les composants de la composition appliquée (le liant hydraulique, le(s) pigment(s), et l'éventuel fluidifiant) ce dans les mêmes proportions relatives, sauf les granulats. Le mélange est donc exempt de granulat. Ce mélange correspond à la matière qui sera visible entre les granulats de la couche d'usure. La couleur de ce mélange est ainsi adaptée à celle du granulat afin de ne pas faire ressortir un éventuel écart de creuse. La couleur de la couche d'usure est ainsi homogène.
Généralement, la composition comprend moins de 5% en poids, notamment de 0,5 à 3% en poids, de préférence de 1 à 2,5% en poids de pigment(s) (proportion cumulée en pigments pour un mélange de pigments) par rapport au poids de la composition.
La composition appliquée à l'étape a) peut également comprendre un agent additif fluidifiant, qui permet d'améliorer l'incorporation de la couche d'usure à la surface de la composition hydraulique fraîche et/ou d'améliorer l'homogénéité de la répartition du pigment et du liant hydraulique de la composition à la surface de la composition hydraulique fraîche. Dans le cadre de l'invention on entend par « additif fluidifiant », également nommé « additif réducteur d'eau », un additif permettant de diminuer la quantité d'eau nécessaire à la réalisation d'une composition à base de liant hydraulique. Ces additifs sont notamment définis par la norme NF EN 934-2+A1 (2012) qui définit en particulier les adjuvants tels que les plastifiants réducteurs d'eau et les superplastifiants hauts réducteurs d'eau.
L'additif fluidifiant peut être choisi dans la famille des polymères à structure peigne, des composés comprenant une chaîne polyalkoxylée et au moins un groupement amino- alkylène phosphonique, ou des plastifiants d'ancienne génération comme les sucres, l'acide gluconique, les acides lignosulfoniques, les acides polynaphtalène sulfoniques, les acides polymélamine sulfoniques et leurs sels, seuls ou en composition.
Les polymères à structure peigne sont notamment choisis parmi les copolymères en peigne à chaîne principale polycarboxylate portant des chaînes latérales greffées de polyoxyde d'alkylène (ou PCP).
Les composés comprenant une chaîne polyalkoxylée et au moins un groupement amino-alkylène phosphonique peuvent être choisis parmi les composés de formule (I) :
Rj
[R-0(RrO)n]r+q[Q(-N /)y] (I) ^A-P03H2 dans laquelle :
R est un atome d'hydrogène ou un groupe hydrocarboné monovalent comportant de 1 à 18 atomes de carbone et éventuellement un ou plusieurs hétéroatomes ;
les R, sont semblables ou différents entre eux et représentent un alkylène comme l'éthylène, le propylène, le butylène, l'amylène, l'octylène ou le cyclohexène, ou un arylène comme le styrène ou le méthylstyrène, les R, renferment éventuellement un ou plusieurs hétéroatomes ;
Q est un groupe hydrocarboné comportant de 2 à 18 atomes de carbone et éventuellement un ou plusieurs hétéroatomes ;
A est un groupe alkylidène comportant de 1 à 5 atomes de carbone ;
les Rj sont semblables ou différents entre eux et peuvent être choisis parmi:
le groupe A-P03H2, A ayant la signification précitée,
- le groupe alkyle comportant de 1 à 18 atomes de carbone et pouvant porter des groupements [R-0(Ri-0)n], R et R, ayant les significations précitées,
et le groupe
Figure imgf000013_0001
-B-N
^A-P03H2
Rk désignant un groupement tel que R,, de préférence Rk est choisi parmi un groupe A- PO3H2, A ayant la signification précitée ; et un groupe alkyle comportant de 1 à 18 atomes de carbone et pouvant porter des groupements [R-0(RrO)n], R et R, ayant les significations précitées ;
- B désignant un groupement alkylène comportant de 2 à 18 atomes de carbone,
"n" est un nombre supérieur ou égal à 0,
"r" est le nombre des groupes [R-0(RrO)n] portés par l'ensemble des R,,
"q" est le nombre des groupes [R-0(RiO)n] portés par Q, la somme
"r+q" est comprise entre 1 et 10,
"y" est un nombre entier compris entre 1 et 3,
Q, N et les R, peuvent former ensemble un ou plusieurs cycles, ce ou ces cycles pouvant en outre contenir un ou plusieurs autres hétéroatomes.
Particulièrement préféré est un polyphosphonate polyalkoxylé constitué d'un composé organique hydrosoluble ou hydrodispersible comportant au moins un groupement amino- di-(alkylène-phosphonique) et au moins une chaîne polyoxyalkylée ou au moins un de ses sels. En particulier, les composés de formule (I) dans laquelle R est un groupe méthyle, les R, sont des groupements éthylène et propylène, n'étant compris entre 30 et 50, r+q vaut 1 , Q est un groupe éthylène, A est un groupe méthylène, y vaut 1 et R, correspond au groupe CH2-PO3H2.
De tels composés sont notamment décrits dans la demande EP 0 663 892. De préférence, ce composé est notamment contenu dans le produit CHRYSO®Fluid Optima 100 disponible auprès de la société CHRYSO.
On peut citer comme exemple particulier d'additif fluidifiant contenu dans les produits CHRYSO®Fluid Optima 100 et CHRYSO®Fluid Optima 175 disponibles auprès de la société CHRYSO.
Les sucres peuvent être choisis parmi le glucose, le fructose, le saccharose, le méritose, le lactose, le maltotriose, le dextrose, le maltose, le galactose, le mannose, le glycogène, ou l'un de leurs compositions.
Parmi les plastifiants d'ancienne génération, le plastifiant préféré est choisi parmi les acides polynaphtalènes sulfoniques et leurs sels. L'additif fluidifiant peut de préférence être choisi parmi les copolymères peignes à chaîne principale polycarboxylate portant des chaînes latérales greffées de polyoxyde d'alkylène (ou PCP) ou les composés de formule (I), ou leur composition.
De préférence, la teneur en additif fluidifiant dans la composition appliquée à l'étape a) est moins de 1 % en poids, notamment de 0,001 à 1 % en poids, de préférence de 0,005 à 0,5 % en poids par rapport au poids de la composition.
Dans un mode de réalisation, la composition appliquée à l'étape a) comprend, voire consiste en :
de 30 à 90% en poids, notamment de 50 à 85% en poids, de préférence de 60 à 80% en poids de granulat(s),
de 5 à 50% en poids, notamment de 10 à 40% en poids, de préférence de 20 à 35% en poids de liant(s) hydraulique(s),
moins de 5% en poids, notamment de 0,5 à 3% en poids, de préférence de 1 à 2,5% en poids de pigment(s), et
- moins de 1 % en poids, notamment de 0,001 à 1 % en poids, de préférence de 0,005 à 0,5 % en poids d'additif fluidifiant.
La composition appliquée lors de l'étape a) est de préférence pulvérulente. La composition peut être appliquée par saupoudrage, manuellement ou avec un dispositif adapté, notamment un « color spreader » de la société Triple Hard Tools.
L'étape a) peut être répétée, ce qui implique que la composition peut être appliquée en une ou plusieurs couches, par exemple 2 ou 3 couches.
Les étapes a) et b) peuvent également être répétées, typiquement une fois (le procédé comprend alors les étapes a), b), a) puis b)) ou deux fois (le procédé comprend les étapes a), b), a), b), a) puis b)).
Généralement, de 0,1 à 20 kg, notamment de 2 à 10 kg, de préférence de 5 à 7 kg de composition ont été appliqués par m2 de surface. Cette quantité est généralement indépendante du nombre de couches de composition appliquée. Ainsi, si l'étape a) est répétée, ou si les étapes a) et b) sont répétées (dans les deux cas, la composition est alors appliquée en plusieurs couches), la quantité de composition appliquée à chaque étape a) est d'autant plus faible que le nombre d'étapes a) est élevée, pour que la quantité finale de composition appliquée soit telle que définie ci-dessus.
Typiquement, l'opérateur attend que la composition appliquée s'humidifie au contact de la composition hydraulique fraîche avant de la talocher.
Le procédé comprend une étape b) de talochage, qui peut être réalisée manuellement avec une taloche, ou avec une finisseuse mécanique, appelée couramment hélicoptère. Le procédé comprend alors une étape c) d'application d'une composition de désactivant de surface sur la au moins une partie de la surface sur laquelle la composition a été appliquée.
Un « désactivant de surface » est un agent permettant de retarder la prise du béton en surface, c'est-à-dire de retarder ou inhiber les phénomènes liés à cette prise tels que les phénomènes d'hydratation, induisant de ce fait un durcissement plus tardif de la composition.
Par le terme « prise » on entend le passage à l'état solide par réaction d'hydratation du liant.
Au contact avec la surface de la composition de liant hydraulique fraîche, la composition de désactivant pénètre par diffusion sur une certaine profondeur et y induit un retard de prise. La profondeur de la couche retardée par la composition de désactivant, aussi appelée capacité de creuse ou force d'attaque, sera choisie principalement en fonction de la taille des granulats présents. L'objectif est de faire apparaître les granulats à la surface, ainsi, la force d'attaque dépendra de l'effet esthétique recherché ainsi que de la taille des granulats. La composition de désactivant devra être choisi en fonction de l'effet désiré, typiquement, plus les granulats seront gros plus la composition devra présenter une force d'attaque importante.
La composition de désactivant comprend un retardateur de prise. Elle peut être sous forme de solution dans un solvant aqueux ou huileux ou dans une coupe pétrolière, ou sous forme de dispersion dans un solvant aqueux ou huileux ou dans une coupe pétrolière, notamment sous forme de suspension ou sous forme d'émulsion.
Dans le cadre de cet exposé, on entend par le terme « retardateur de prise» désigner un composé ayant pour effet de retarder la prise de la composition à base de liant hydraulique, c'est-à-dire de retarder ou inhiber les phénomènes liés à cette prise tels que les phénomènes d'hydratation, induisant de ce fait un durcissement plus tardif de la composition. De manière générale, un retardateur de prise de surface retarde le temps de prise d'une composition à base de liant hydraulique dans laquelle il a été introduit à un dosage d'au plus 5% en poids sec par rapport au poids dudit liant hydraulique, le temps de prise étant mesuré selon le test EN480-2 (2006). De préférence, le temps de prise est retardé d'au moins 30 minutes par rapport à une composition à base de liant hydraulique témoin.
Dans le cadre de l'invention, on entend par « solvant huileux » un solvant comprenant des matières grasses d'origines végétales, animales ou minérales, qui peuvent être liquides à température ambiante ou non. Ces huiles peuvent être recyclées ou régénérées. Toutefois, lorsqu'elles ne sont pas liquides à température ambiante, la composition est préparée de préférence à une température à laquelle tous ses composants sont liquides.
L'huile végétale peut notamment être choisie parmi l'huile de colza, l'huile de palme, l'huile de coprah, l'huile de ricin, l'huile d'arachide, l'huile de pépin de raisin, l'huile de maïs, l'huile de canola, l'huile de lin, l'huile de noix de coco, l'huile de soja, l'huile de tournesol et leurs compositions.
Les huiles animales peuvent être choisies en particulier parmi le suif, la suintine, l'huile de lard, l'huile de hareng, l'huile de foie de morue, l'huile de sardine, l'huile de poisson et l'huile de lanoline et leurs compositions.
Les huiles minérales peuvent notamment être des huiles aliphatiques, paraffiniques ou naphténiques, elles incluent en particulier les fractions comportant en moyenne 8 à 30 atomes de carbone, de préférence 1 1 à 25 atomes de carbone, seules ou en composition, notamment l'huile minérale claire. Les huiles privilégiées seront les huiles minérales
CnH2n+2, avec n compris entre 8 et 19.
Dans le cadre de la présente invention, on entend par « émulsion » désigner à la fois les émulsions eau dans huile et les émulsions huile dans eau, l'huile étant notamment choisie parmi les huiles mentionnées ci-dessus.
Le retardateur de la composition de désactivant utilisé dans le procédé selon l'invention est choisi parmi les composés connus pour cet effet.
Le retardateur de prise de surface de la composition de désactivant en solvant aqueux peut être choisi parmi les composés connus à cet effet, comme les acides carboxyliques, leurs sels et leurs dérivés ; les hydrates de carbone, notamment les sucres, leurs sels et dérivés ; mais aussi l'acide lignosulfonique, les acides phosphoniques en particulier ceux portant des groupements amino ou hydroxy, leurs sels et leurs dérivés ; ou les acides inorganiques comme l'acide phosphorique, leurs sels et dérivés.
Dans le cadre de la présente invention, les dérivés d'acides carboxyliques, d'hydrates de carbone, d'acides lignosulfoniques les acides phosphoniques en particulier ceux portant des groupements amino ou hydroxy ; et d'acides inorganiques, incluent également les sels de ces dérivés.
Le retardateur de prise de surface de la composition de désactivant en solution aqueuse est de préférence choisi parmi les acides carboxyliques, leurs sels et leurs dérivés ; les sucres, leurs sels et leurs dérivés ; ou un de leurs compositions.
Parmi les sucres, le retardateur de prise de surface de la composition de désactivant peut être choisi en particulier parmi le glucose, le fructose, le saccharose, le méritose, le lactose, le maltotriose, le dextrose, le maltose, le galactose, le mannose, le glycogène ou l'un de leurs compositions. Parmi les acides carboxyliques, on peut mentionner en particulier l'acide maléique et les acides hydroxycarboxyliques et parmi ceux-ci notamment l'acide citrique, l'acide tartrique, l'acide malique, l'acide gluconique, et l'acide lactique, leurs sels ou l'un de leurs compositions.
Parmi les sels d'acide carboxylique on peut citer les sels de sodium, les sels de calcium ou les sels de potassium. A titre d'exemple particulier on peut citer le citrate de sodium, le tartrate de sodium ou le gluconate de sodium.
On entend par les dérivés d'acides carboxyliques notamment désigner leurs sels et esters, à titre d'exemple particulier on peut citer l'acétate d'éthyle.
Lorsqu'il s'agit d'acides hydroxycarboxyliques, les dérivés incluent les lactones.
Le retardateur de prise de surface de la composition de désactivant en solution huileuse peut être choisi parmi les composés connus à cet effet, comme ceux divulgués dans la demande EP 2 935 140, notamment les esters alkyliques d'acides hydroxycarboxyliques solubles dans les huiles/solvants, ou dispersibles dans les huiles/solvants. Il s'agit par exemple d'un ester alkylique d'acide citrique tel que le citrate de triéthyle.
Le retardateur de la composition de désactivant utilisé dans les émulsions peut être choisi parmi les retardateurs en solvant aqueux et les retardateurs en solvant huileux définis ci-dessus.
Le retardateur de la composition de désactivant en solution dans une émulsion, notamment dans une émulsion huile dans eau peut être choisi parmi les acides carboxyliques ou hydroxycarboxyliques pouvant comporter une chaîne carbonée saturée ou insaturée et posséder 1 , 2 ou 3 groupes hydroxyle, il peut également être sous la forme d'un sel, notamment sel de sodium, sel de potassium ou sel de calcium. L'acide est de préférence choisi parmi l'acide acétique, l'acide gluconique, l'acide citrique, l'acide tartrique, l'acide maléique, leurs compositions ou leurs sels. Sont particulièrement préférés l'acide citrique, l'acide malique et l'acide tartrique. Dans le cas d'émulsion huile dans eau l'émulsion comprend de préférence de 5 à 50% en poids de phase huileuse, de préférence de 10 à 40% et de 50 à 95% en poids de phase aqueuse, de préférence de 60 à 90%. Dans le cas d'une émulsion, la composition désactivante comprend en outre un tensioactif. Pour les émulsions huile dans eau le tensioactif est de préférence un tensioactif aminé non quaternaire. De telles émulsions huile dans eau sont décrites dans la demande WO 2012/056162.
Le retardateur de prise de surface de la composition de désactivant en solution dans les coupes pétrolières peut être choisi parmi les retardateurs précités pour les phases aqueuses ou huileuses qui sont broyés puis dispersés au sein des coupes pétrolières. La composition de désactivant comprend généralement de 0,1 à 20% en poids de retardateur de prise de surface.
Les désactivants des gammes CHRYSO® DecoLav P, CHRYSO® DecoLav N, CHRYSO® DecoLav, CHRYSO® DecoWash, CHRYSO® DecoBrush sont particulièrement recommandés.
Le procédé comprend alors une étape d) de durcissement de la composition à base de liant hydraulique fraîche, qui dure généralement de 8 à 24h, puis une étape e) d'élimination de la couche de liant hydraulique non durcie en surface, typiquement par lavage au jet d'eau sous haute pression ou par brossage. En effet, la couche de composition de liant hydraulique retardée en surface reste friable et peut être éliminée, de sorte à faire apparaître les granulats à la surface de la pièce, conférant un aspect esthétique particulier à la couche d'usure. L'élimination de la couche de liant hydraulique non durcie est typiquement effectuée par lavage au jet d'eau, généralement sous haute pression, ou par brossage. A la fin de l'étape e), une composition à base de liant hydraulique dont au moine une partie d'une surface comprend une couche d'usure est obtenue.
Le procédé peut comprendre, après l'étape e), une étape f) d'application d'un revêtement de protection notamment hydrofuge et/ou antitache, par exemple une lasure ou un vernis (en particulier choisi parmi les gammes CHRYSO® Finisol, CHRYSO® Rocasol, CHRYSO® Fuge, CHRYSO® Pareflo, Moderne Méthode « Cure and Seal »)) sur au moins une partie de la couche d'usure. Ce revêtement confère à la couche d'usure une protection supplémentaire, ce qui améliore encore sa durabilité, et/ou des propriétés antitaches, hydrofuges et/ou esthétiques, par exemple un effet brillant. Le vernis peut être mat ou brillant, transparent ou coloré.
Selon un deuxième objet, l'invention concerne une composition à base de liant hydraulique dont au moins une partie d'une surface comprend une couche d'usure susceptible d'être obtenue par le procédé selon l'une quelconque des revendications précédentes. La couche d'usure comprend notamment les granulats tels que définis ci- dessus, ce qui lui permet de présenter une durabilité améliorée.
La durabilité de la couche d'usure peut notamment s'apprécier selon les tests décrits dans la norme NF P 1 1 -101 de 2016 « Activité des sols industriels - Méthode de mesure de résistance à l'usure par roulage ». L'exemple ci-après illustre l'invention. Exemple :
Un béton de dallage dont la composition est donnée ci-dessous (tableau 1 ) a été coulé avec une épaisseur de 150 mm sur un treillis métallique soudé selon les normes NF EN 13670/CN (2013) et NF DTU 21 (2004).
Figure imgf000019_0001
Tableau 1 : composition du béton de dallage à traiter
Sa mise en place a été effectuée au moyen d'une barre de répartition avec deux passes croisées. Sa surface a ensuite été talochée.
Une composition pour couche d'usure a été préparée en mélangeant les ingrédients suivants (tableau 2) :
Figure imgf000019_0002
Tableau 2 : composition de la composition appliquée à l'étape a)
Le granulat Noir 1 ,25-2,5 est fourni par la société OMG. Son coefficient Los Angeles LA est de 17,7. Sa dureté selon l'échelle de Mohs est de 4.
Le colorant CHRYSO®Color Noir andalou a été obtenu par formulation de pigments d'oxydes de fer dans des proportions permettant d'avoir une coloration identique à celle du granulat.
Le Conpac 500 est un PCP en poudre commercialisé par la société Peramin.
La composition du tableau 2 a été saupoudrée à la main (étape a)), en veillant à une répartition régulière à la surface du béton de dallage à traiter, à raison d'un dosage de 2,5 kg/m2. La poudre déposée s'est humidifiée en absorbant de l'eau du béton de dallage par capillarité. Une fois toute la poudre humidifiée, elle a été talochée manuellement (étape b)) (un talochage mécanique est possible pour les grandes surfaces). Une deuxième couche de cette même composition a alors été saupoudrée étape a)), au même dosage, et talochée après humidification (étape b)). Un désactivant, le CHRYSO® DecoLav Pico, a été pulvérisé à raison de 200 ml/m2 (étape c)). 24 heures après (étape d)), la couche désactivée a été retirée par lavage haute pression (étape e)). Le béton de dallage est alors protégé par une couche d'usure noire, alliant à la fois esthétique, aspect antidérapant et une bonne résistance à l'usure.

Claims

REVENDICATIONS
1 .- Procédé de formation d'une couche d'usure sur au moins une partie d'une surface d'une composition à base de liant hydraulique à traiter comprenant les étapes consistant à :
a) appliquer une composition comprenant :
au moins un liant hydraulique, et
au moins un granulat dont le coefficient Los Angeles LA selon la norme EN
1097-2 de 2010 est inférieur ou égal à 50,
sur au moins une partie d'une surface d'une composition à base de liant hydraulique fraîche,
b) talocher la au moins une partie de la surface sur laquelle la composition a été appliquée, puis
c) appliquer une composition de désactivant de surface sur la au moins une partie de la surface sur laquelle la composition a été appliquée, puis
d) faire durcir la composition à base de liant hydraulique fraîche, puis
e) éliminer la couche de liant hydraulique non durcie en surface.
2. - Procédé selon la revendication 1 , dans lequel la composition à base de liant hydraulique à traiter est du béton.
3. - Procédé selon l'une quelconque des revendications 1 à 2, dans lequel le au moins un granulat a un coefficient Los Angeles LA inférieur ou égal à 35, typiquement inférieur ou égal à 25, de préférence inférieur ou égal à 20.
4. - Procédé selon l'une quelconque des revendications 1 à 3, dans lequel le au moins un granulat a une dureté selon l'échelle de Mohs est supérieure ou égale à 4.
5. - Procédé selon la revendication 4, dans lequel le au moins un granulat a une dureté selon l'échelle de Mohs est supérieure ou égale à 7.
6. - Procédé selon l'une quelconque des revendications 1 à 5, dans lequel le au moins un granulat est en marbre, en corindon, ou en grenaille métallique.
7.- Procédé selon l'une quelconque des revendications 1 à 5, dans lequel le au moins un granulat est un granulat synthétique comprenant : - une matrice transparente, et
- au moins un pigment composite luminescent coloré, comprenant :
- au moins un pigment luminescent, et
- au moins un colorant de couleur différente du pigment luminescent.
8- Procédé selon l'une quelconque des revendications 1 à 7, dans lequel le au moins un granulat a un diamètre maximal selon la norme NF EN 933-1 de mai 2012 inférieur à 5 mm.
9.- Procédé selon l'une quelconque des revendications 1 à 8, dans lequel la composition appliquée à l'étape a) comprend un pigment ou un mélange de pigments, tel que le CIE ΔΕ 2000 entre :
- la couleur d'un mélange correspondant à la composition appliquée à l'étape a) sans le(s) granulat(s), et
- la couleur du(es) granulat(s),
est inférieur ou égal à 49, notamment à 10, de préférence à 3.
10. - Procédé selon l'une quelconque des revendications 1 à 9, dans lequel la composition appliquée à l'étape a) comprend un additif fluidifiant.
1 1 . - Procédé selon l'une quelconque des revendications 1 à 10, dans lequel la composition appliquée à l'étape a) comprend :
de 30 à 90% en poids, notamment de 50 à 85% en poids, de préférence de 60 à 85% en poids de granulat(s),
- de 5 à 50% en poids, notamment de 10 à 40% en poids, de préférence de 20 à 35% en poids de liant(s) hydraulique(s),
moins de 5% en poids, notamment de 0,5 à 3% en poids, de préférence de 1 à 2,5% en poids de pigment(s), et
moins de 1 % en poids, notamment de 0,001 à 1 % en poids, de préférence de 0,005 à 0,5 % en poids d'additif fluidifiant.
12. - Procédé selon l'une quelconque des revendications 1 à 1 1 , dans lequel l'étape a) est répétée.
13.- Procédé selon l'une quelconque des revendications 1 à 12, dans lequel de 0,1 à 20 kg, notamment de 2 à 10 kg, de préférence de 5 à 7 kg de composition ont été appliqués par m2 de surface.
14.- Procédé selon l'une quelconque des revendications 1 à 13, comprenant, après l'étape e), une étape f) d'application d'un revêtement de protection, notamment hydrofuge et/ou antitache, sur au moins une partie de la couche d'usure.
15.- Composition à base de liant hydraulique dont au moins une partie d'une surface comprend une couche d'usure susceptible d'être obtenue par le procédé selon l'une quelconque des revendications précédentes.
PCT/EP2018/070624 2017-07-31 2018-07-30 Procédé de préparation d'une couche d'usure à la surface d'une composition hydraulique WO2019025380A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18743829.6A EP3661891A1 (fr) 2017-07-31 2018-07-30 Procédé de préparation d'une couche d'usure à la surface d'une composition hydraulique
ZA2020/00629A ZA202000629B (en) 2017-07-31 2020-01-30 Method for preparing a surface course at the surface of a hydraulic composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1757274 2017-07-31
FR1757274A FR3069537B1 (fr) 2017-07-31 2017-07-31 Procede de preparation d'une couche d'usure a la surface d'une composition hydraulique

Publications (1)

Publication Number Publication Date
WO2019025380A1 true WO2019025380A1 (fr) 2019-02-07

Family

ID=60081002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/070624 WO2019025380A1 (fr) 2017-07-31 2018-07-30 Procédé de préparation d'une couche d'usure à la surface d'une composition hydraulique

Country Status (4)

Country Link
EP (1) EP3661891A1 (fr)
FR (1) FR3069537B1 (fr)
WO (1) WO2019025380A1 (fr)
ZA (1) ZA202000629B (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4748788A (en) * 1987-07-01 1988-06-07 Shaw Ronald D Surface seeded exposed aggregate concrete and method of producing same
EP0663892A1 (fr) 1992-10-12 1995-07-26 Chryso Sa Fluidifiants pour suspensions aqueuses de particules minerales et pates de liant hydraulique.
WO2012056162A1 (fr) 2010-10-26 2012-05-03 Chryso Désactivant de surface éliminable à sec
CN104532711A (zh) * 2014-12-20 2015-04-22 华南理工大学 一种水泥混凝土路面及其双层摊铺方法
EP2935140A2 (fr) 2012-12-21 2015-10-28 Dow Global Technologies LLC Agent d'étanchéité non-isocyanate pour l'étanchéification de verre
WO2017055531A1 (fr) 2015-09-30 2017-04-06 Chryso Pigment luminescent coloré, son procédé de préparation et ses utilisations

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4748788A (en) * 1987-07-01 1988-06-07 Shaw Ronald D Surface seeded exposed aggregate concrete and method of producing same
EP0663892A1 (fr) 1992-10-12 1995-07-26 Chryso Sa Fluidifiants pour suspensions aqueuses de particules minerales et pates de liant hydraulique.
WO2012056162A1 (fr) 2010-10-26 2012-05-03 Chryso Désactivant de surface éliminable à sec
EP2935140A2 (fr) 2012-12-21 2015-10-28 Dow Global Technologies LLC Agent d'étanchéité non-isocyanate pour l'étanchéification de verre
CN104532711A (zh) * 2014-12-20 2015-04-22 华南理工大学 一种水泥混凝土路面及其双层摊铺方法
WO2017055531A1 (fr) 2015-09-30 2017-04-06 Chryso Pigment luminescent coloré, son procédé de préparation et ses utilisations

Also Published As

Publication number Publication date
ZA202000629B (en) 2021-08-25
FR3069537A1 (fr) 2019-02-01
EP3661891A1 (fr) 2020-06-10
FR3069537B1 (fr) 2019-08-02

Similar Documents

Publication Publication Date Title
JP4810584B2 (ja) 新鮮なコンクリートまたはコーティング組成物を修飾する方法
KR100857916B1 (ko) 토양 고화재 및 이를 이용한 연약지반 처리공법
KR101740346B1 (ko) 지수 성능 및 자기 보수 기능을 가지는 콘크리트 구조물 단면 보수용 모르타르 조성물 및 이를 이용한 콘크리트 구조물 단면 보수 공법
KR101609697B1 (ko) 수중불분리용 시멘트 모르타르 조성물 및 이를 이용한 콘크리트 구조물의 보수공법
EP3247686B1 (fr) Liant a base de compose minéral solide riche en oxyde alcalino-terreux avec activateurs phosphatés
KR101911316B1 (ko) 콘크리트 구조물 보수·보강용 환경친화형 칼라 시멘트 모르타르 조성물 및 이를 이용한 콘크리트 구조물의 보수방법
EP2228352B1 (fr) Mortier specialement concu pour briques recuites
FR3041651B1 (fr) Pigment luminescent colore, son procede de preparation et ses utilisations
KR101729475B1 (ko) 콘크리트 구조물 표면 보호용 마감재 조성물 및 이를 이용한 콘크리트 구조물 표면보호공법
KR101031980B1 (ko) 강도 및 내구성이 우수한 속경성 마감재 조성물 및 이를 이용한 콘크리트 구조물의 보수공법
KR100971111B1 (ko) 보수성(保水性) 콘크리트 조성물 및 이를 이용한 콘크리트 포장 방법
EP3315472B1 (fr) Matériau à durcissement rapide, procédé pour le fabriquer, et composition de ciment à durcissement rapide l&#39;utilisant
FR3069537B1 (fr) Procede de preparation d&#39;une couche d&#39;usure a la surface d&#39;une composition hydraulique
EP2360132B1 (fr) Retardateur de prise appliqué en surface entrainant un durcissement élevé
KR101314697B1 (ko) 가용성 특수 규산염을 함유하는 흙콘크리트 조성물과 이를 이용한 표면강화형 흙포장공법
US11884600B2 (en) Method for preparing an improved finished concrete product
EP3328815A1 (fr) Procédé de création de motifs sur la surface d&#39;une composition à base de liant hydraulique par impression
KR101804786B1 (ko) 셀프 레벨링 마감재 조성물 및 이를 이용한 콘크리트 슬래브 바닥재 시공방법
KR101010341B1 (ko) 강도 및 내구성이 우수한 속경형 셀프레벨링 마감재 조성물 및 이를 이용한 콘크리트 구조물의 보수공법
KR101102249B1 (ko) 방청 몰탈을 이용한 철근콘크리트 구조물 보수보강공법
US11560337B2 (en) Additive for hydraulic binder useful to prevent the formation of rust-colored stains at the surface of hydraulic compositions
JPH01275454A (ja) セメント組成物
SU1089242A1 (ru) Тампонажный цемент
RU2464246C1 (ru) Модификатор бетонов и растворов
KR101139109B1 (ko) 흙포장 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18743829

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018743829

Country of ref document: EP

Effective date: 20200302