WO2019025038A1 - Procédé et dispositif pour la surveillance de la position finale de l'induit d'un actionneur électromagnétique - Google Patents

Procédé et dispositif pour la surveillance de la position finale de l'induit d'un actionneur électromagnétique Download PDF

Info

Publication number
WO2019025038A1
WO2019025038A1 PCT/EP2018/059457 EP2018059457W WO2019025038A1 WO 2019025038 A1 WO2019025038 A1 WO 2019025038A1 EP 2018059457 W EP2018059457 W EP 2018059457W WO 2019025038 A1 WO2019025038 A1 WO 2019025038A1
Authority
WO
WIPO (PCT)
Prior art keywords
armature
end position
coil
current
hysteresis loop
Prior art date
Application number
PCT/EP2018/059457
Other languages
German (de)
English (en)
Inventor
Andrey GADYUCHKO
Vladimir Kireev
Original Assignee
Ilmenauer Mechatronik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ilmenauer Mechatronik GmbH filed Critical Ilmenauer Mechatronik GmbH
Publication of WO2019025038A1 publication Critical patent/WO2019025038A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • H01F2007/185Monitoring or fail-safe circuits with armature position measurement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • H01F2007/1855Monitoring or fail-safe circuits using a stored table to deduce one variable from another
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • H01F2007/1861Monitoring or fail-safe circuits using derivative of measured variable

Definitions

  • the invention relates to methods for Ankerendlagenüberwachung an electromagnetic actuator with an excitation coil and with a relative to the excitation coil between a Startposi ⁇ tion and an end position movable armature and a pre ⁇ direction for performing this method.
  • Electromagnetic actuators as solenoid valves, electromag ⁇ genetic brakes, relays, etc. known .
  • Such electromag netic ⁇ actuator includes a magnetic circuit having an exciter coil and a ⁇ comparable with respect to the exciting coil between a starting position and an end position in an armature chamber slidably disposed anchor.
  • the magnetic circuit comprises a pole core against which the armature abuts when at a
  • Energizing the exciting coil of the armature is moved from the start position to the end position.
  • Some applications require monitoring the actuator for the position of its armature, whether it has actually reached the desired position or is malfunctioning. It is particularly important to know whether the anchor gear position correctly in its off ⁇ , ie start position or end position, ie end position.
  • Prior art assemblies and methods for the determina tion of the anchor layer ⁇ known in which sensors, such as. Differential transformers (LVDT), AMR, eddy current and neck sensors are used. However, such components cause additional costs, require an increased Bauaumbe ⁇ may represent an additional risk of default.
  • sensors such as. Differential transformers (LVDT), AMR, eddy current and neck sensors are used.
  • LVDT Differential transformers
  • AMR eddy current and neck sensors
  • Bauaumbe ⁇ may represent an additional risk of default.
  • sensorless methods for determining the An ⁇ kerstart- and anchor end position such as, for example, from EP 1 165 944 Bl. In this known method the Posi ⁇ tion of the armature is determined in response to the magnetic flux and the current through the excitation coil.
  • a method for determining functional states of an electromagnetic actuator be ⁇ known, in which the functional state is determined based on a comparison between a magnetic reference characteristic and ei ⁇ ner magnetic actual characteristic.
  • the magnetic reference characteristic describes a concatenated desired magnetic flux as a function of a current intensity.
  • the magnetic actual characteristic describes a concatenated magnetic actual flux as a function of the current intensity, wherein the concatenated magnetic actual flux from a current and voltage measurement in the control loop of the magnetic field during the operation of the actuator is he ⁇ averages.
  • the invention has for its object to provide a method for
  • Anchor position monitoring namely in particular for Ankerstartposi- tion monitoring and Ankerendpositionsüberwachung an electromagnetic actuator with an excitation coil and with ei ⁇ nem relative to the excitation coil between a start position and an end position movable anchor indicate, with which without the use of sensors an allowable or non-permissible position of the armature can be determined , Furthermore, a device suitable for this purpose should be specified.
  • This object is achieved by a method having the Merkma ⁇ len of claim 1 and an apparatus having the shopping ⁇ paint of claim 10.
  • This method for Ankerendlagenschreibwachung an electro ⁇ magnetic actuator with an excitation coil and a rela ⁇ tively movable to the exciter coil between a start position and an end position anchor is inventively characterized in that
  • a (h) characteristic curve formed as a hysteresis loop is determined from the voltage and current profile
  • the control of the excitation coil by means of a clamping ⁇ voltage pulse of small amplitude at the level of current applied to ⁇ operating voltage, which may be different zero or non-zero.
  • a short voltage pulse leads to an equally short-term current change, d. H . a reversible Stro- change of the coil current of the excitation coil with a same time ⁇ change of the magnetic flux in the magnetic circuit of the electromagnetic actuator.
  • the amplitude of such short-term ⁇ voltage pulse is as low as possible, but to choose as high as necessary to provide easily measurable current changes without simultaneously affects the function of the electro ⁇ magnetic actuator, d. H . a movement of the an ⁇ kers is initiated.
  • the duration of the voltage pulse depends on the electrical time constant of the electromagnetic actuator ⁇ rule with the criterion that the electrical training is the same process completed.
  • the voltage pulse causes a weak remagnetization of the ferromagnetic material of the magnetic circuit, which is represented in the created from the temporal voltage and current waveform ⁇ ( ⁇ ) characteristic as a hysteresis loop and which images the caused by the voltage pulse magnetic flux changes in the magnetic circuit of the electromagnetic actuator.
  • ⁇ nut at nt process of the invention or two physical effects of the soft magnetic material of the magnetic circuit of the electromagnetic actuator, namely, the non-linearity of the magnetic flux and the core loss.
  • the hysteresis loops of the created from the temporal course of voltage and current (i) characteristics are dependent on the anchor Posi ⁇ tion, so from the air gap between the armature and the pole core of the electromagnetic actuator.
  • This hysteresis loops ⁇ differ both in height due to the nonlinearity of the magnetic flux as well as in areas ⁇ content due to the hysterisis losses and WirbelStromver ⁇ .
  • This correlation between the anchor position in the end positions, d. H . in the start and end position and the shape of the hysteresis loops is used for Ankerendlagentechnikschreibung verwen ⁇ det to determine an allowable or a non-permissible anchor start ⁇ position or anchor end position.
  • the armature position monitoring of the electromagnetic actuator according to the invention can be performed at short intervals, so that a continuous online monitoring is possible.
  • first reference values for the flux amplitude and / or the FLAE ⁇ surface of the hysteresis loop in the start position of the armature ei ⁇ ner-energized exciting coil are determined, and
  • a permissible anchor position is detected if the determined
  • These first reference values for the flux amplitude and / or the surface of the hysteresis loops are determined in the starting position of the armature of a de-energized exciter coil of a generic electromagnetic actuator, whereby these reference values can be adapted by means of a calibration to the specific individual properties of the electromagnetic actuator used.
  • the starting position of the armature as a permissible anchor end position or anchor start position he ⁇ known.
  • second reference values for the flux amplitude and / or the area of the hysteresis loop in the start position of the armature in egg ⁇ ner energized exciting coil are determined, as non-permissible anchor position, the start position of the armature is detected if the flux amplitude determined and / or area of the hysteresis loop ⁇ with the second reference values when energized Erre ⁇ gerspule matches. This case occurs, for example. on, when the anchor is stuck in the starting position due to inadmissible occurred force effects, so that a movement in the Endposi ⁇ tion is prevented.
  • this second reference values is the anchor ei ⁇ nes same generic type electromagnetic actuator during energization of the excitation coil in its start position supported ⁇ th and the initi ⁇ wholesome of the voltage pulse voltage and current values in this state for determining the ⁇ ( ⁇ ) - ⁇ - line measured. Also this second reference values can be adapted with ⁇ means of a calibration to the specific individual characteristics of egg used electromagnetic actuator. According to a further advantageous embodiment of the invention, it is provided that
  • An allowable anchor end position is detected when the ermit ⁇ tte flux amplitude and / or surface of the hysteresis loop with the third reference values when energized excitation coil over ⁇ tunes, otherwise an unacceptable anchor end position is detected.
  • This third reference values for the flux amplitude and / or the area of the hysteresis loops are determined in the end position of the armature an energized exciting coil of a generic same electromagnetic actuator, said third Refe ⁇ rence values are adjusted by means of a calibration to the specific indi ⁇ ual characteristics of the electromagnetic actuator used can .
  • the Endposi ⁇ tion of the armature is detected as a valid anchor end position.
  • a further preferred embodiment of the invention ⁇ follow are fourth reference values for the flux amplitude and / o- determines the area of the hysteresis loop in the end position of the armature in a de-energized exciting coil, wherein as non-permissible armature end position, the end position of the armature is detected when the determined flux amplitude and / or FLAE ⁇ surface of the hysteresis loop with the fourth reference values in a de-energized exciting coil coincident.
  • This case occurs when the excitation coil is not energized, for example. when the armature clamped in the end position due to inadmissible occurred force effects, such that movement is ver ⁇ prevents back into the starting position.
  • this fourth reference values of the armature ei ⁇ nes same generic type electromagnetic actuator is held at unbestrom- ter exciting coil in its end position and nungs- the chip, initiated by a voltage pulse in this state, and current values for the determination of (i) characteristic gemes ⁇ sen. Also this fourth reference values can be adapted to the specific individual characteristics of the electromagnetic actuator used by a Ka ⁇ -calibration.
  • the voltage pulse is formed such that when no energization of the excitation coil, the amplitude of the reversible current change is smaller than a tightening current, with which the excitation coil for moving the armature in the final position
  • Figure 2 is a chart which A for carrying out the method erfindungsge ⁇ MAESSEN,
  • FIG. 3 shows a diagram with hysteresis-shaped ⁇ ( ⁇ ) characteristic curves in FIG.
  • Figure 4 is a graph of the flux changes the Darge ⁇ presented in Figure 1 hystereseförmigen ⁇ ( ⁇ ) characteristics
  • FIG. 5 shows a diagram of the surfaces of the hysteresis-shaped ⁇ ( ⁇ ) characteristic curves illustrated in FIG.
  • the Handsetlagenuberwachung invention is illustrated, for example ⁇ by way of an electromagnetic actuator, which an exciting coil with a magnetic circuit, has an in an anchor ⁇ space between a starting position and an end position against ⁇ over the excitation coil displaceable armature and a disposed in the magnetic circuit pole core.
  • an electromagnetic actuator which an exciting coil with a magnetic circuit, has an in an anchor ⁇ space between a starting position and an end position against ⁇ over the excitation coil displaceable armature and a disposed in the magnetic circuit pole core.
  • anchor end position therefore includes not only the end position but also the starting position of the armature in the following.
  • This control circuit 10 consists of a microcontroller 11 with a first output DOl and with a second output D02, a first input Dil and two A / D inputs A / Dl and A / D2.
  • a driver circuit 12 is controlled, with which a Be ⁇ operating voltage UB is applied to the exciter coil 1.
  • the voltage applied to the exciter coil 1 operating voltage u (t) is fed to the first A / D input DOl of the microcontroller 11 and detected and measured by the same.
  • the coil current i (t) is measured by means of a shunt resistor R by supplying the generated voltage drop Ui (t) to the second A / D input D02 of the microcontroller 11 for evaluation. Via the first input Dil a turn-on or Ausschaltbe ⁇ fails the microcontroller 11 is supplied.
  • the second output D02 indicates the result of the anchor end position monitoring, namely whether an allowable anchor end position "OK” or a non-permissible An ⁇ kerendlage "NOK" is present.
  • a switch-on or switch-off command of the control circuit 10 is supplied.
  • a power-off "Off" which exciting coil 1 is energized, i. E., The same is an operating voltage of 0 V is applied.
  • a voltage pulse is generated as the test pulse 1 in accordance with procedural ⁇ rens intimid S3, of the operating voltage is superimposed. This results in the excitation coil 1 to a short-term current change with equal ⁇ time change of magnetic flux in the magnetic circuit of the electromagnetic actuator. in this case, the amplitude of the
  • Voltage pulse selected so that the induced current change is measurable, but this change in current does not affect the function of the electromagnetic actuator, d. H . no movement of the armature causes.
  • the condi- supply must be fulfilled that the amplitude of the current change is interpreting ⁇ Lich lower than the starting current, which causes movement of the armature.
  • the amplitude of the test pulse 1 is chosen so that a current change of ⁇ , z. B. 0.2 A occurs. If, according to method step S2, a switch-on command " ⁇ " is present, the excitation coil 1 is energized, that is to say at the same is an operating voltage not equal to 0 V, which, for example, is a coil current of imax, for example 0.8 A. caused.
  • a voltage pulse is generated as TES shuts 2 according to process step S4, which is superimposed on the operating voltage.
  • is the Amplitude of the voltage pulse selected so that the current change caused thereby is measurable, but this Stro ⁇ change does not affect the function of the electromagnetic actuator, d. H . no movement of the armature causes.
  • the amplitude of the Testim ⁇ pulses 2 is chosen so that a current change of ⁇ , z. B. 0.2 A occurs.
  • test pulses 1 and 2 The duration of these test pulses 1 and 2 depends on the electrical time constant of the electromagnetic actuator with the criterion that the electrical compensation process is completed.
  • test pulses 1 and 2 cause a weak remagnetization of the ferromagnetic material from which the magnetic circuit of the electromagnetic actuator is constructed, which is mapped as a hysteresis loop H in each of a ⁇ ( ⁇ ) characteristic curve, as shown by way of example in FIG ,
  • This ⁇ ( ⁇ ) characteristics are u using the ge ⁇ measured in step S5 time voltage and current sequences (t) and i (t) both de-energized and when current is applied excitation ⁇ reel 1 in a step S 6 created and subsequently ⁇ lixd evaluated in a subsequent step S7.
  • this hysteresis loop H which is given by the Flussände ⁇ tion and the surface area, depends on the position of the armature relative to the excitation coil 1, so it is air gap ⁇ dependent.
  • the evaluation of this hysteresis H in United ⁇ method step S7 therefore, consists in a provision of a Ma ⁇ SLI for flow change, namely, the amplitude A of a Hys ⁇ tere esch softly H (see FIG. 3) and the area F.
  • the amplitude A is in the unit of the magnetic flux ⁇ as a function of the position of the armature, namely the stroke of the armature shown in Figure 4.
  • FIG. 5 shows the area F of the hysteresis loops H as a loss of magnetization in the corresponding unit of measurement J.
  • test pulses 1 and 2 are the end positions of the armature, that is in the start position and the end position at energized and de-energized exciting ⁇ coil 1 to the existing voltage level is superimposed on the excitation coil 1 in the voltage captures and current waveforms u (t) and i (t) and from this the (i) characteristics in the form of HystE ⁇ reseschleifen Hl to H4 are created.
  • ⁇ ( ⁇ ) characteristics are shown in the I- ⁇ diagram of Figure 3, and each have the shape of a ⁇ hysteresis loop.
  • the hysteresis loops Hl and H4 are from the voltage and current waveforms u (t) and i (t) with excitation coil 1 not energized and the hysteresis loops H2 and H3 from the voltage and current waveforms u (t) and i (t) energized exciter coil 1 created.
  • This hysteresis loops Hl to H4 are different both in amplitude Al to A4 due to the nonlinearity of the magnetic flux as well as in the area Fl to F4 on ⁇ due to hysterisis and eddy current losses.
  • the hysteresis loop Hl corresponds to the starting position of the armature in a de-energized exciting coil 1
  • the hysteresis loop H2 corresponds to the starting position of the armature when energized Erre ⁇ gerspule 1
  • the hysteresis loop of H3 corresponding to the Endposi ⁇ tion of the armature when energized
  • the exciting coil and the hysteresis ⁇ loop H4 corresponds the end position of the armature when the excitation coil is not energized.
  • the armature of the exciter coil 1 pulls the armature into the end position by means of the magnetic field generated by the exciter coil 1, thereby striking the pole core. In this end position, the armature is held by further energization of the exciter coil by means of a Hal ⁇ testroms. If the energization ends, the An ⁇ ker from the pole core and is pressed by means of a spring element in its start position. There are two "OK" states, namely the one
  • the curve K1 according to FIG. 4 describes the flow change starting from the starting position when the field coil 1 is de-energized
  • the curve K3 of FIG 5 describes in a de-energized exciting ⁇ coil 1, the change in area of the hysteresis loop starting from the start position (value Fl, first reference value) to the end position (F4, the fourth reference value), the curve K3 connects these basic parameters.
  • the curve K4 describes at Bestrom ⁇ ter exciting coil 1, the change in area of the hysteresis loop starting from the start position (value F2, second reference ⁇ value) to the end position (F3, the third reference value), whereby this curve K3 connects these two basic parameters.
  • step output S 9 is an "OK" -to- stand. If this is not the case, "NOK” state is output (see. step S8), regardless of whether the anchor in one of the end positions or in ei ⁇ ner any intermediate position is stuck.
  • the method step Sl 0 ends the method. If an "OK" state before, the position of the armature can be specified. If the first and third reference ⁇ values AI and Fl respectively. A3 and F3 with the current values over a ⁇ , the start position is resp., The end position of the anchor specified as an acceptable anchor end position.
  • the flux amplitude and the area of the hysteresis to be ⁇ armature end position control of an electromagnetic actuator, ⁇ as well loop are also possible to use only one of the two sizes for status monitoring.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnets (AREA)
  • Control Of Linear Motors (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

L'invention concerne un procédé et un dispositif pour la surveillance de la position finale de l'induit d'un actionneur électromagnétique comprenant une bobine d'excitation (1) et un induit mobile par rapport à la bobine d'excitation (1) entre une position de départ et une position finale. Selon ledit procédé, - une tension de service définissant la position de l'induit est appliquée à la bobine d'excitation (1), - une impulsion de tension, laquelle provoque une variation de courant réversible du courant de bobine ne modifiant pas la position de l'induit, la courbe temporelle de tension et de courant (u (t ), i (t)) déclenchée par l'impulsion de tension étant mesurée sur la bobine d'excitation (1), est superposée à la tension de service, une courbe caractéristique Ψ(i) réalisée sous la forme d'un cycle d'hystérésis (H) est définie à partir de la courbe de tension et de courant (u (t ), i (t) ), l'amplitude de flux (A) et/ou la surface (F) du cycle d'hystérésis (H) de la courbe caractéristique Ψ(i) sont déterminées, - pour l'amplitude de flux (A) et/ou la surface (F) du cycle d'hystérésis (H), respectivement au moins une valeur de référence (A1,...A4, F1 - F4) ou au moins une valeur de référence (A1 - A4, F1 -F4 ) est utilisée, et une comparaison de l'amplitude de flux (A) et/ou de la surface (F) déterminées du cycle d'hystérésis à la valeur de référence (A1,... A4, F1,... F4 ) respective ou à la valeur de référence (A1 - A4, F1 - F4 ) permet de définir une position finale fiable ou non fiable de l'induit.
PCT/EP2018/059457 2017-08-02 2018-04-12 Procédé et dispositif pour la surveillance de la position finale de l'induit d'un actionneur électromagnétique WO2019025038A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017117487.7 2017-08-02
DE102017117487.7A DE102017117487B4 (de) 2017-08-02 2017-08-02 Verfahren und Vorrichtung zur Ankerendlagenüberwachung eines elektromagnetischen Aktors

Publications (1)

Publication Number Publication Date
WO2019025038A1 true WO2019025038A1 (fr) 2019-02-07

Family

ID=62046873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/059457 WO2019025038A1 (fr) 2017-08-02 2018-04-12 Procédé et dispositif pour la surveillance de la position finale de l'induit d'un actionneur électromagnétique

Country Status (2)

Country Link
DE (1) DE102017117487B4 (fr)
WO (1) WO2019025038A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001006162A2 (fr) * 1999-07-16 2001-01-25 Parker Hannifin Corporation Procede et dispositif servant a mesurer la position d'une tige de soupape a solenoide
EP1165944A1 (fr) * 1999-03-30 2002-01-02 Siemens Aktiengesellschaft Procede permettant de determiner la position d'un induit
DE102008001397A1 (de) * 2008-04-25 2009-10-29 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines elektromagnetischen Aktors
DE102008040250A1 (de) * 2008-07-08 2010-01-14 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines elektromagnetischen Aktors
DE102011075935A1 (de) 2011-05-16 2012-11-22 Steinbeis GmbH & Co. KG für Technologietransfer Ermittlung von Funktionszuständen eines elektromagnetischen Aktors

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010063009B4 (de) 2010-12-14 2020-10-08 Vitesco Technologies GmbH Verfahren und Vorrichtung zur Charakterisierung einer Bewegung eines Kraftstoffinjektors mittels Erfassung und Auswertung einer magnetischen Hysteresekurve
DE102011083007B4 (de) 2011-09-20 2022-12-01 Zf Friedrichshafen Ag Verfahren und Ansteuervorrichtung zum Ansteuern eines elektromagnetischen Aktuators
DE102012000766A1 (de) 2012-01-18 2013-07-18 Voith Patent Gmbh Regelanordnung zum Regeln der Position eines Ankers eines Magnetaktors und Detektionsanordnung zum Detektieren der Position eines Ankers eines Magnetaktors

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1165944A1 (fr) * 1999-03-30 2002-01-02 Siemens Aktiengesellschaft Procede permettant de determiner la position d'un induit
EP1165944B1 (fr) 1999-03-30 2006-05-17 Siemens Aktiengesellschaft Procede permettant de determiner la position d'un induit
WO2001006162A2 (fr) * 1999-07-16 2001-01-25 Parker Hannifin Corporation Procede et dispositif servant a mesurer la position d'une tige de soupape a solenoide
DE102008001397A1 (de) * 2008-04-25 2009-10-29 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines elektromagnetischen Aktors
DE102008040250A1 (de) * 2008-07-08 2010-01-14 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines elektromagnetischen Aktors
DE102011075935A1 (de) 2011-05-16 2012-11-22 Steinbeis GmbH & Co. KG für Technologietransfer Ermittlung von Funktionszuständen eines elektromagnetischen Aktors

Also Published As

Publication number Publication date
DE102017117487A1 (de) 2019-02-07
DE102017117487B4 (de) 2024-06-13

Similar Documents

Publication Publication Date Title
EP1082586B1 (fr) Procede de detection de la position et de la vitesse de deplacement d'un element de reglage anime d'un mouvement de va-et-vient entre deux positions de commutation
DE112015000965B4 (de) Wechselstrom Antrieb für Kraftstoffinjektoren
DE102011075935B4 (de) Ermittlung von Funktionszuständen eines elektromagnetischen Aktors
DE102015209195A1 (de) Einrastventilanordnung mit Positionserkennung
DE102015208573B3 (de) Druckbestimmung in einem Kraftstoff-Einspritzventil
WO1998038656A1 (fr) Procede de reconnaissance de mouvements, utile notamment pour regler la vitesse d'impact d'un induit sur un element electromagnetique d'actionnement, et element d'actionnement pour mettre en oeuvre ce procede
DE102015206729A1 (de) Steuern eines Kraftstoffeinspritz-Magnetventils
EP1651485B1 (fr) Procede et dispositif pour produire et/ou ajuster un actionneur pouvant etre commande de maniere electromagnetique
DE102011016895B4 (de) Verfahren zur Bestimmung des Verschleißzustandes eines elektromagnetischen Aktors während dessen Betriebs
EP1165944B1 (fr) Procede permettant de determiner la position d'un induit
DE10020896A1 (de) Verfahren zur Bestimmung der Position eines Ankers/ eines Ventils
EP1819566A1 (fr) Appareil de regulation a commande electromagnetique et procede pour le realiser et/ou le regler
DE102010041880B4 (de) Ermitteln der ballistischen Flugbahn eines elektromagnetisch angetriebenen Ankers eines Spulenaktuators
DE4142996A1 (de) Verfahren zum messen der mechanischen bewegung eines magnetventilankers, insbesondere von elektrisch gesteuerten einspritzanlagen
DE102015206739B4 (de) Bestimmung eines Hubes eines Magnetventils
DE19910497A1 (de) Lagemessung eines in einer Magnetspule betätigten Magnetankers
DE102008043340A1 (de) Verfahren zur Positionserfassung des Magnetankers eines elektromagnetischen Aktuators
DE102007003211A1 (de) Vorrichtung und Verfahren zur Steuerung eines elektromagnetischen Ventils
WO2019025038A1 (fr) Procédé et dispositif pour la surveillance de la position finale de l'induit d'un actionneur électromagnétique
EP1651486B1 (fr) Procede et dispositif pour mesurer une pression de fluide au moyen d'un organe de regulation
EP2930724A2 (fr) Électrovanne et procédé de surveillance d'une position de réglage d'une électrovanne
DE102008040250A1 (de) Verfahren und Vorrichtung zum Betreiben eines elektromagnetischen Aktors
EP2482293A2 (fr) Dispositif de fonctionnement d'un aimant de levage
DE102016009048A1 (de) Elektromagnetische Ventileinrichtung für ein Fluid-System und Verfahren zum Ermitteln eines Fluiddrucks
DE102010041423A1 (de) Verfahren zum Einstellen der Größe eines Arbeitsluftspalts eines Magnetkreis-bauteils, Verfahren zum Bestimmen der Größe des Arbeitsluftspalts sowie entsprechende Einrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18719781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18719781

Country of ref document: EP

Kind code of ref document: A1