WO2019024620A1 - 基于调制信号的数据发射方法及装置、设备、存储介质 - Google Patents

基于调制信号的数据发射方法及装置、设备、存储介质 Download PDF

Info

Publication number
WO2019024620A1
WO2019024620A1 PCT/CN2018/092042 CN2018092042W WO2019024620A1 WO 2019024620 A1 WO2019024620 A1 WO 2019024620A1 CN 2018092042 W CN2018092042 W CN 2018092042W WO 2019024620 A1 WO2019024620 A1 WO 2019024620A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
wave signal
amplitude modulated
frequency
sine wave
Prior art date
Application number
PCT/CN2018/092042
Other languages
English (en)
French (fr)
Inventor
张博
孙波
杜清河
段奥琴
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US16/636,085 priority Critical patent/US11374802B2/en
Priority to EP18842044.2A priority patent/EP3664343B1/en
Publication of WO2019024620A1 publication Critical patent/WO2019024620A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/02Amplitude-modulated carrier systems, e.g. using on-off keying; Single sideband or vestigial sideband modulation
    • H04L27/04Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0076Allocation utility-based
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0018Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • Embodiments of the present invention relate to the technical field of digital information transmission, but are not limited to a data transmission method and apparatus, device, and storage medium based on a modulated signal.
  • the embodiment of the invention provides a data transmission method and device, a device and a storage medium based on a modulated signal, and adjusts the difference of the adjustment signal under the same signal bandwidth condition, thereby obtaining higher signal detection capability and reducing data transmission. Bit error rate.
  • An embodiment of the present invention provides a data transmission method based on a modulated signal, which is applied to a transmitting end, and the method includes:
  • the signal sequence is processed into a transmittable radio frequency signal and sent to the receiving end.
  • the embodiment of the present invention further provides a data transmitting apparatus based on a modulated signal, which is applied to a transmitting end, and the apparatus includes:
  • a calculation module configured to calculate a first amplitude modulated sine wave signal and a second amplitude modulated sine wave signal of each preset frequency point;
  • the mapping module is configured to map the data bit sequence to be transmitted into a signal sequence according to a preset mapping rule according to the first amplitude modulated sine wave signal and the second amplitude modulated sine wave signal of each preset frequency point;
  • a sending module configured to process the signal sequence into a transmittable radio frequency signal and send the signal to the receiving end.
  • the embodiment of the present invention further provides a data transmitting device based on a modulated signal, comprising a memory and a processor, wherein the memory stores a computer program executable on a processor, and the processor implements the foregoing based on the program The steps in the data transmission method of the modulated signal.
  • Embodiments of the present invention further provide a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the steps in the above-described modulation signal based data transmission method.
  • the data transmission method and device, device and storage medium based on modulated signal proposed by the embodiments of the present invention retain the advantages of the traditional digital communication technology, and use the convex optimization idea to constrain the signal transmission spectrum broadband indirectly or directly, and maximize the number.
  • the Euclidean distance of the signal modulation waveform reduces the received bit error rate.
  • the waveform of the modulated signal calculated according to the Lagrangian function is a sinusoidal signal with two small amplitude differences, so the spectrum utilization is highly concentrated on the carrier frequency, and there is no line spectrum component of the higher harmonics, and the frequency band utilization is high.
  • the dual-frequency smooth amplitude modulation waveform in the embodiment of the invention has a certain sinusoidal characteristic, and the frequency bandwidth is further reduced, and has better performance against the time selective fading channel scene.
  • the constant modulus dual-frequency smooth waveform in the present invention belongs to equal energy compliance information, and can avoid a certain degree of spectrum leakage.
  • FIG. 1 is a flow chart showing a data transmission method based on a modulated signal according to a first embodiment of the present invention
  • FIG. 2 is a schematic diagram showing a convergence curve of a Lagrangian multiplier with a number of iterations in the first embodiment of the present invention
  • Figure 3 is a schematic diagram of a modulation signal waveform in the first embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing a power spectrum of a modulated signal waveform and VWDK modulation (after going to a high-order line spectrum) in the first embodiment of the present invention
  • FIG. 5 is a schematic diagram of a BER of a modulated signal waveform and a VWDK modulation (after going to a high-order line spectrum) in the first embodiment of the present invention
  • FIG. 6 is a first schematic diagram of mapping a data bit sequence to be transmitted into a signal sequence in the first embodiment of the present invention
  • FIG. 7 is a second schematic diagram of mapping a data bit sequence to be transmitted into a signal sequence in the first embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a dual-frequency smooth amplitude modulation waveform in a second embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a waveform diagram of a modulation signal removal period component obtained by a dual-frequency smooth amplitude modulation waveform in a second embodiment of the present invention.
  • FIG. 10 is a schematic diagram showing a difference between a waveform diagram of a modulation signal removal period component obtained by a dual-frequency smooth amplitude modulation waveform and a standard sinusoidal signal in a unit bit period in the second embodiment of the present invention
  • FIG. 11 is a schematic diagram of a dual-frequency smooth amplitude modulation waveform and a power spectrum of VWDK modulation (after going to a high-order line spectrum) in the second embodiment of the present invention
  • FIG. 12 is a schematic diagram of a bit error rate graph of a dual-frequency smooth amplitude modulation waveform and VWDK modulation in the second embodiment of the present invention (after going to a high-order line spectrum);
  • Figure 13 is a diagram showing a power spectrum of an output signal of an original VWDK modulation method according to a third embodiment of the present invention.
  • FIG. 14 is a schematic diagram of a constant modulus dual-frequency smooth waveform power spectrum diagram of a third embodiment of the present invention.
  • 15 is a schematic diagram of a BER of a constant modulus dual-frequency smooth waveform and VWDK modulation according to a third embodiment of the present invention.
  • 16 is a schematic diagram showing the structure of a data transmitting apparatus based on a modulated signal according to a fourth embodiment of the present invention.
  • FIG. 17 is a schematic diagram of a hardware entity of a data transmitting device based on a modulated signal according to an embodiment of the present invention.
  • a first embodiment of the present invention a data transmission method based on a modulated signal, as shown in FIG. 1, is applied to a transmitting end, and the method includes:
  • Step S101 Calculate a first amplitude modulated sine wave signal and a second amplitude modulated sine wave signal of each preset frequency point.
  • step S101 includes: obtaining a first amplitude modulated sine of the preset frequency point by calculating a maximum Euclidean distance of the first modulation signal and the second modulation signal of the preset frequency point under a preset constraint condition. a wave signal and a second amplitude modulated sine wave signal;
  • the limiting condition includes at least one of the following: the Euclidean distance of the sinusoidal carrier frequency signal of the preset frequency point is less than the preset distance threshold, the modulation signal waveform energy is less than the preset energy threshold, and the DC component of the modulation signal is zero. .
  • the maximum Euclidean distance of the first modulated signal and the second modulated signal is expressed as follows:
  • T is the period of the modulated signal
  • S 0 (t) is a first modulated signal
  • S 1 (t) is a second modulated signal
  • the restrictions include:
  • sin( ⁇ 0 t) is a sinusoidal carrier frequency signal of a preset frequency point
  • ⁇ 0 is a preset frequency point
  • is a preset distance threshold
  • E is a preset energy threshold
  • a and B are constants.
  • the first modulation is maximized.
  • the Euclidean distance between the signal and the second modulated signal for better signal detection.
  • the smaller the Euclidean distance between the modulated signal and the sinusoidal carrier frequency signal the closer the modulation waveform is to the sinusoidal waveform, that is, the narrower the bandwidth occupied by the transmission; the DC component of the modulated signal in the unit bit period T is zero, which is beneficial to reduce the signal bandwidth extension of the low frequency.
  • the first amplitude modulated sine wave signal and the second amplitude modulated sine wave are obtained by calculating a maximum Euclidean distance of the first modulation signal and the second modulation signal at a preset frequency point under a preset constraint condition.
  • Wave signals including:
  • Step A1 Calculating a maximum Euclidean distance with respect to the first modulated signal and the second modulated signal, and a Lagrangian function of the limiting condition.
  • the Lagrangian function L is:
  • a, b, c, d, e, and f are Lagrangian multipliers, and a ⁇ 0, b ⁇ 0, c ⁇ 0, d ⁇ 0, e ⁇ 0, and f ⁇ 0.
  • Step A2 In the case where the Lagrangian function is a convex function, a modulation signal waveform function expression including a Lagrangian multiplier is obtained by calculating an extremum of the Lagrangian function.
  • the Lagrangian multiplier satisfies the following condition:
  • the modulation signal waveform function is:
  • the waveform of the modulated signal calculated according to the Lagrangian function is:
  • Step A3 Bring the modulation signal waveform function expression into the Lagrangian function, and calculate a convergence value of the Lagrangian multiplier according to the gradient descent method.
  • the value of the Euclidean distance using the appropriate fixed step size, selects the optimal initial value of each Lagrangian multiplier, and performs a one-dimensional search along the negative gradient direction.
  • (a, b, c, d), where k is the number of iterations. In this way, the convergence value of the optimal Lagrangian multiplier is obtained.
  • the initial values of the Lagrangian multipliers a, b, c, and d are 12, 3, 2, 1, respectively, and the first modulated signal S 0 (t) and the second modulated signal S 1 (t) in the simulation.
  • Step A4 Bring the convergence value of the Lagrangian multiplier into the modulation signal waveform function expression to obtain the first amplitude modulated sine wave signal and the second amplitude modulated sine wave signal as shown in FIG.
  • the modulated signal waveform obtained in this embodiment only includes the line spectrum component at the continuum spectrum and the carrier frequency, and the energy is highly concentrated at the carrier frequency, and there is no other harmonic component present, which satisfies the Federal Communications Commission (FCC).
  • FCC Federal Communications Commission
  • the requirements for the narrowband signal spectrum According to the FCC bandwidth requirement standard, when the modulation signal waveform obtained in this embodiment is the same as the VWDK modulation method in the 60 dB bandwidth (as shown in FIG. 4), the error rate curves of the two are compared under the maximum likelihood criterion, such as Figure 5 shows. The comparison found that to achieve the same bit error rate, the amplitude modulated sinusoidal waveform has a gain of 2.5dB.
  • Step S102 Map the data bit sequence to be transmitted into a signal sequence according to a preset mapping rule according to the first amplitude modulated sine wave signal and the second amplitude modulated sine wave signal of each preset frequency point.
  • f1 and f2 are preset two frequency points, and according to the manner of step S101, the first amplitude modulated sine wave signal and the second amplitude modulated sine wave signal corresponding to the frequency point f1 are respectively calculated and calculated.
  • the characteristics of the modulation waveform corresponding to the frequency point f1 are represented by (f1, A11, A12); wherein A11 is the amplitude value of the first amplitude-modulated sine wave signal corresponding to the frequency point f1; and A12 is the second amplitude-modulated sine wave corresponding to the frequency point f1.
  • the characteristics of the modulation waveform corresponding to the frequency point f1 are represented by (f2, A21, A22); wherein A21 is the amplitude value of the first amplitude-modulated sine wave signal corresponding to the frequency point f2; and A22 is the second amplitude-modulated sine wave corresponding to the frequency point f2.
  • the amplitude value of the signal is represented by (f2, A21, A22); wherein A21 is the amplitude value of the first amplitude-modulated sine wave signal corresponding to the frequency point f2; and A22 is the second amplitude-modulated sine wave corresponding to the frequency point f2.
  • the composite waveform of (f1, A11, A12) is used when transmitting bit 1
  • the synthesized waveform of (f2, A21, A22) is used when transmitting bit 0
  • the bit sequence to be transmitted is mapped. It is a signal sequence, where the signal sequence corresponds to the amplitude information of the signal waveform pre-stored in the hardware.
  • f1 and f2 are preset two frequency points, and according to the manner of step S101, the first amplitude modulated sine wave signal and the second amplitude modulated sine wave signal corresponding to the frequency point f1 are respectively calculated and calculated.
  • the characteristics of the modulation waveform corresponding to the frequency points f1 and f2 are represented by (f1, A11, f2, A21); wherein A11 is the amplitude value of the first amplitude modulated sine wave signal corresponding to the frequency point f1; A21 is the frequency corresponding to the frequency point f2 The amplitude value of an amplitude modulated sine wave signal.
  • the characteristics of the modulation waveform corresponding to the frequency points f1 and f2 are represented by (f1, A12, f2, A22); wherein A12 is the amplitude value of the second amplitude-modulated sine wave signal corresponding to the frequency point f1; A22 is the frequency corresponding to the frequency point f2 The amplitude value of the second amplitude modulated sine wave signal.
  • the composite waveform of (f1, A11, f2, A21) is used when transmitting bit 1
  • the composite waveform of (f1, A12, f2, A22) is used when transmitting bit 0.
  • the transmit bit sequence is mapped to a sequence of signals, wherein the sequence of signals corresponds to amplitude information of signal waveforms pre-stored in hardware.
  • Step S103 The signal sequence is processed into a transmittable radio frequency signal and sent to the receiving end.
  • step S103 includes: sequentially performing digital-to-analog conversion processing and filtering processing on the signal sequence to obtain a transmittable radio frequency signal.
  • the signal sequence is converted into an analog signal by a DAC (Digital to Analog Converter), and smoothed by a filter.
  • DAC Digital to Analog Converter
  • a second embodiment of the present invention is a data transmission method based on a modulated signal.
  • the method includes:
  • Step S201 respectively dividing the time domain coordinates of the first amplitude modulated sine wave signal and the second amplitude modulated sine wave signal into a set number of time domain segments, and respectively performing the polynomial function and the sine polynomial function on each time domain segment.
  • the first amplitude modulated sine wave signal and the second amplitude modulated sine wave signal shape are adjusted to obtain a first dual frequency smooth amplitude modulated wave signal and a second dual frequency smooth amplitude modulated wave signal;
  • Step S202 Map the data bit sequence to be transmitted into a signal sequence according to the first dual-frequency smoothed amplitude modulated wave signal and the second dual-frequency smoothed amplitude modulated wave signal.
  • Step S203 The signal sequence is processed into a transmittable radio frequency signal and sent to the receiving end.
  • the influence of the time selective fading factor on the modulated signal waveform should also be considered.
  • the second high frequency segmentation part of the sinusoidal signal is introduced at the units of the bits "0" and "1" respectively in accordance with the period 0 and the ⁇ phase. .
  • the modulated signal waveforms are adjusted on respective time domain segments by a polynomial function and a sinusoidal polynomial function, respectively.
  • S' 0 (t) is the adjusted first modulated signal
  • S' 1 (t) is a modulated second modulated signal
  • the present embodiment introduces a cubic polynomial function to smooth the waveforms of the high and low frequency signals, and smooth the selection of time points t L and t R to minimize the difference between the overall waveform and the sinusoidal waveform as much as possible, and determine the polynomial coefficients.
  • the process is as follows, including:
  • the difference between the modulation waveforms is increased or decreased by adjusting the values of the polynomial smoothing times t L , ⁇ , t R .
  • FIG. 8 , FIG. 9 and FIG. 10 are exemplary diagrams of the dual-frequency smooth amplitude modulation waveform according to the embodiment, and the de-high-order line spectrum operation method performed thereon is:
  • ⁇ 0 1
  • this embodiment satisfies the requirements of the narrowband signal spectrum given by the Federal Communications Commission (FCC). among them, Is the magnitude of each harmonic sin(nt).
  • FCC Federal Communications Commission
  • a data transmission method based on a modulated signal, based on the first dual-frequency smoothed amplitude modulated wave signal and the second dual-frequency smoothed amplitude modulated wave signal obtained in the second embodiment includes:
  • Step S301 sequentially performing the first dual-frequency smoothed amplitude modulated wave signal and the second dual-frequency smoothed amplitude modulated wave signal respectively: removing the sinusoidal carrier frequency signal, removing the higher harmonics, and adding the fundamental component to obtain the first constant mode double The frequency smoothed wave signal and the second constant modulus dual frequency smoothed wave signal.
  • Step S302 The root maps the data bit sequence to be transmitted into a signal sequence according to the first constant modulus dual-frequency smoothed wave signal and the second constant modulus dual-frequency smoothed wave signal.
  • Step S303 The signal sequence is processed into a transmittable radio frequency signal and sent to the receiving end.
  • the pair is doubled.
  • the frequency smoothed amplitude modulation waveform performs an equal energy processing operation, and the resulting modulated signal is recorded as: S 1final (t), S 0final (t).
  • a modulated signal of a narrow bandwidth is obtained by adjusting the polynomial smoothing values of the times t L , ⁇ , t R and the modulation of the finally compensated carrier component.
  • the carrier frequencies are taken for S' 1 (t) and S' 0 (t) respectively, resulting in:
  • the fundamental waveform (carrier frequency) component is added to the modulation waveform for the extraction of timing information to obtain:
  • the BER curves of the two obtained by coherent demodulation are shown in Fig. 15. It is found that only pay attention to the 60dB bandwidth of the main spectrum of the modulated waveform power spectrum and the carrier frequency line spectrum (as shown in Figure 13 and Figure 14).
  • SNR signal-to-noise ratio
  • the proposed scheme After the energy processing such as sending symbols is used, the proposed scheme has the same narrow bandwidth as the VWDK modulation scheme, and the bit error rate is higher than that before the signal processing. However, the signal-to-noise ratio of the proposed scheme is still the same as the error.
  • the signal-to-noise ratio of VWDK is about 2dB smaller at the time of code.
  • a fourth embodiment of the present invention a data transmitting apparatus based on a modulated signal waveform, as shown in FIG. 16, is applied to a transmitting end, and the apparatus includes the following components:
  • a calculation module 1601 configured to calculate a Lagrangian function for a maximum Euclidean distance of the first modulated signal and the second modulated signal, and a preset limiting condition.
  • the calculation module 1601 is configured to calculate a Lagrangian function for a maximum Euclidean distance of the first modulation signal and the second modulation signal, and a preset constraint condition;
  • the daily function is a convex function
  • a waveform representation of a modulation signal waveform including a Lagrangian multiplier is obtained;
  • the convergence value of the Lagrangian multiplier is calculated; and the convergence value of the Lagrangian multiplier is brought into the expression of the modulation signal waveform function to obtain The first amplitude modulated sine wave signal and the second amplitude modulated sine wave signal;
  • the limiting condition includes at least one of the following: the Euclidean distance of the sinusoidal carrier frequency signal of the preset frequency point is less than the preset distance threshold, the modulation signal waveform energy is less than the preset energy threshold, and the DC component of the modulation signal is zero. .
  • the mapping module 1602 is configured to send the bit sequence data to be transmitted to the receiving end according to the modulation signal waveform.
  • the transmitting module 1603 is configured to process the signal sequence into a transmittable radio frequency signal and send the signal to the receiving end.
  • the dual-frequency waveform generating module is configured to respectively divide time domain coordinates of the first amplitude modulated sine wave signal and the second amplitude modulated sine wave signal into a set number of time domain segments, and respectively perform a polynomial function and a sine polynomial function in each Adjusting the first amplitude modulated sine wave signal and the second amplitude modulated sine wave signal shape on the time domain segment to obtain a first dual frequency smooth amplitude modulated wave signal and a second dual frequency smooth amplitude modulated wave signal; according to the first dual frequency
  • the smoothed amplitude modulated wave signal and the second dual-frequency smoothed amplitude modulated wave signal map the sequence of data bits to be transmitted into a sequence of signals; the sequence of signals is processed into a transmittable RF signal and transmitted to the receiving end.
  • the apparatus further includes: a constant mode waveform generating module configured to sequentially perform the first dual-frequency smoothed amplitude modulated wave signal and the second dual-frequency smoothed amplitude modulated wave signal, respectively: removing the sinusoidal carrier frequency signal, Removing the higher harmonics and adding the fundamental component to obtain a first constant modulus dual-frequency smoothed wave signal and a second constant modulus dual-frequency smoothed wave signal; according to the first constant modulus dual-frequency smoothed wave signal and the second constant mode double
  • the frequency smoothed wave signal maps the data bit sequence to be transmitted into a signal sequence; the signal sequence is processed into a transmittable radio frequency signal and sent to the receiving end.
  • the data transmission method and device based on the modulated signal waveform introduced in the embodiment of the present invention retains the advantages of the traditional digital communication technology, and uses the convex optimization idea to indirectly or directly constrain the signal transmission spectrum bandwidth to maximize the digital signal modulation waveform.
  • the Euclidean distance reduces the bit error rate of reception.
  • the waveform of the modulated signal calculated according to the Lagrangian function is a sinusoidal signal with two small amplitude differences, so the spectrum utilization is highly concentrated on the carrier frequency, and there is no line spectrum component of the higher harmonics, and the frequency band utilization is high.
  • the dual-frequency smooth amplitude modulation waveform of the invention has certain sinusoidal characteristics, and the frequency bandwidth is further reduced, and has better performance against the time selective fading channel scene.
  • the constant modulus dual-frequency smooth waveform in the present invention belongs to equal energy compliance information, and can avoid a certain degree of spectrum leakage.
  • the above-mentioned modulation signal-based data transmission method is implemented in the form of a software function module, and is sold or used as a stand-alone product, it may also be stored in a computer readable storage medium. in.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • One data transmitting device is caused to perform all or part of the method described in various embodiments of the present invention.
  • an embodiment of the present invention provides a data transmission device based on a modulation signal, including a memory and a processor, where the memory stores a computer program executable on a processor, and the processor implements the foregoing when the program is executed. The steps in the data transmission method based on the modulated signal.
  • Embodiments of the present invention further provide a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the steps in the above-described modulation signal based data transmission method.
  • FIG. 17 is a schematic diagram of a hardware entity of a data transmitting device based on a modulated signal according to an embodiment of the present invention.
  • the hardware entity of the device 1700 includes: a processor 1701, a communication interface 1702, and a memory. 1703, where
  • the processor 1701 typically controls the overall operation of the device 1700.
  • Communication interface 1702 can cause devices to communicate with other terminals or servers over a network.
  • the memory 1703 is configured to store instructions and applications executable by the processor 1701, and may also cache data to be processed or processed by the processor 1701 and the devices in the device 1700, and may be flash memory (FLASH) or random access memory (Random Access). Memory, RAM) implementation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明实施例介绍了一种基于调制信号的数据发射方法及装置、设备、存储介质,该方法包括:计算各个预设频点的第一调幅正弦波信号和第二调幅正弦波信号;根据各个预设频点的第一调幅正弦波信号和第二调幅正弦波信号,按照预设的映射规则,将待发送的数据比特序列映射为信号序列;将所述信号序列处理为可发射的射频信号,并发送至接收端。

Description

基于调制信号的数据发射方法及装置、设备、存储介质
相关申请的交叉引用
本申请基于申请号为201710652076.6、申请日为2017年08月02日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以全文引入的方式引入本申请。
技术领域
本发明实施例涉及数字信息传输的技术领域,但不限于一种基于调制信号的数据发射方法及装置、设备、存储介质。
背景技术
随着通信技术的快速发展,现代社会信息传输的高效性、时效性、可靠性要求同步升高。频谱资源已成为当今稀缺的重要战略资源,无线电频谱资源的利用与开发问题越来越突出。为了得到高传输效率、低误码率的数据通信信息方案,近年来各种新的调制技术不断涌现,在单位频带内传输更高的数码率(以bps/Hz为量纲),以高频带利用率和低误码率作为应对当前频谱短缺的窄带调制技术的关键指标。在现有技术中提出了代表不同比特序列组对应的已调信号波形表达式,但由于信号周期分量的原因,高次离散线谱的存在大大拓展了频谱带宽。
发明内容
本发明实施例提出一种基于调制信号的数据发射方法及装置、设备、存储介质,在相同信号带宽条件下,调整了调整信号的差异,从而获得更高的信号检测能力,降低了数据传输的误码率。
本发明实施例提供了一种基于调制信号的数据发射方法,应用于发射 端,所述方法包括:
计算各个预设频点的第一调幅正弦波信号和第二调幅正弦波信号;
根据各个预设频点的第一调幅正弦波信号和第二调幅正弦波信号,按照预设的映射规则,将待发送的数据比特序列映射为信号序列;
将所述信号序列处理为可发射的射频信号,并发送至接收端。
本发明实施例还提出一种基于调制信号的数据发射装置,应用于发射端,所述装置包括:
计算模块,配置为计算各个预设频点的第一调幅正弦波信号和第二调幅正弦波信号;
映射模块,配置为根据各个预设频点的第一调幅正弦波信号和第二调幅正弦波信号,按照预设的映射规则,将待发送的数据比特序列映射为信号序列;
发送模块,配置为将所述信号序列处理为可发射的射频信号,并发送至接收端。
本发明实施例又提出一种基于调制信号的数据发射设备,包括存储器和处理器,所述存储器存储有可在处理器上运行的计算机程序,所述处理器执行所述程序时实现上述的基于调制信号的数据发射方法中的步骤。
本发明实施例再提出一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述的基于调制信号的数据发射方法中的步骤。
本发明实施例提出的基于调制信号的数据发射方法及装置、设备、存储介质,保留了传统数字通信技术的优点,采用凸优化思想间接或直接性的对信号传输频谱宽带进行约束,最大化数字信号调制波形的欧式距离,降低接收误码率。根据拉格朗日函数计算得到的调制信号波形为两个幅度差异很小的正弦波信号,因而频谱利用率高度集中于载频,不存在高次谐波的线谱分量,频带利用率高。本发明实施例中的双频平滑调幅波形具备 一定的类正弦特征,频率带宽进一步缩减,对抗时间选择性衰落信道场景有较好的性能。本发明中的恒模双频平滑波形属于等能量符合信息,可避免对一定程度的频谱泄露。
附图说明
图1是本发明第一实施例的基于调制信号的数据发射方法的流程图;
图2是本发明第一实施例中的拉格朗日乘子随迭代次数的收敛曲线的示意图;
图3是本发明第一实施例中的调制信号波形的示意图;
图4是本发明第一实施例中的调制信号波形与VWDK调制(去高次线谱后)的功率谱的示意图;
图5是本发明第一实施例中的调制信号波形与VWDK调制(去高次线谱后)的误码率曲线图的示意图;
图6是本发明第一实施例中的将待发送的数据比特序列映射为信号序列的示意图一;
图7是本发明第一实施例中的将待发送的数据比特序列映射为信号序列的示意图二;
图8是本发明第二实施例中的双频平滑调幅波形的示意图;
图9是本发明第二实施例中的双频平滑调幅波形得到的调制信号去除周期分量的波形图的示意图;
图10是本发明第二实施例中的单位比特周期内,双频平滑调幅波形下得到的调制信号去除周期分量的波形图与标准正弦信号之差的示意图;
图11是本发明第二实施例中的双频平滑调幅波形与VWDK调制的功率谱图(去高次线谱后)的示意图;
图12是本发明第二实施例中的双频平滑调幅波形与VWDK调制的误码率曲线图(去高次线谱后)的示意图;
图13是本发明第三实施例的原始VWDK调制方法的输出信号的功率谱图的示意图;
图14是本发明第三实施例的恒模双频平滑波形功率谱图的示意图;
图15是本发明第三实施例的恒模双频平滑波形与VWDK调制的误码率曲线图的示意图;
图16是本发明第四实施例的基于调制信号的数据发射装置的组成结构示意图;
图17为本发明实施例中基于调制信号的数据发射设备的一种硬件实体示意图。
具体实施方式
本发明第一实施例,一种基于调制信号的数据发射方法,如图1所示,应用于发射端,所述方法包括:
步骤S101:计算各个预设频点的第一调幅正弦波信号和第二调幅正弦波信号。
在其他实施例中,步骤S101,包括:在预设的限制条件下,通过计算预设频点的第一调制信号和第二调制信号的最大欧式距离,得到预设频点的第一调幅正弦波信号和第二调幅正弦波信号;
其中,所述限制条件至少包括以下之一:调制信号与预设频点的正弦载频信号的欧式距离小于预设距离阈值、调制信号波形能量小于预设能量阈值、调制信号的直流分量为零。
在其他实施例中,按照如下公式表示所述第一调制信号和第二调制信号的最大欧式距离:
Figure PCTCN2018092042-appb-000001
其中,T为调制信号的周期;
S 0(t)为第一调制信号;
S 1(t)为第二调制信号;
所述限制条件包括:
Figure PCTCN2018092042-appb-000002
Figure PCTCN2018092042-appb-000003
Figure PCTCN2018092042-appb-000004
Figure PCTCN2018092042-appb-000005
Figure PCTCN2018092042-appb-000006
Figure PCTCN2018092042-appb-000007
其中,sin(ω 0t)为预设频点的正弦载频信号;
ω 0为预设频点;
α为预设距离阈值;
E为预设能量阈值;
A、B为常数。
本实施例是在调制信号波形能量受限于E,调制信号与正弦载频信号的欧式距离受限于α,且单位比特周期T内调制信号直流分量为零的情况下,最大化第一调制信号与第二调制信号的欧式距离,从而获得更好的信号检测能力。调制信号与正弦载频信号的欧式距离越小,调制波形越接近于正弦波形,即传输占据的带宽越窄;单位比特周期T内调制信号直流分量为零,有利于降低低频的信号带宽扩展。
在其他实施例中,所述在预设的限制条件下,通过计算第一调制信号和第二调制信号在预设频点下的最大欧式距离,得到第一调幅正弦波信号和第二调幅正弦波信号,包括:
步骤A1:计算得到关于所述第一调制信号和第二调制信号的最大欧式距离,以及所述限制条件的拉格朗日函数。
所述拉格朗日函数L为:
Figure PCTCN2018092042-appb-000008
其中,a、b、c、d、e、f为拉格朗日乘子,且a≥0、b≥0、c≥0、d≥0、e≥0、f≥0。
步骤A2:在所述拉格朗日函数为凸函数的情况下,通过计算所述拉格朗日函数的极值,得到包含拉格朗日乘子的调制信号波形函数表达式。
当所述拉格朗日函数为凸函数时,所述拉格朗日乘子满足以下条件:
a+c-1>0,且
Figure PCTCN2018092042-appb-000009
当所述拉格朗日函数取得极小值时,调制信号波形函数为:
Figure PCTCN2018092042-appb-000010
为了满足单位比特周期内调制信号的直流分量为零的限制条件,根据所述拉格朗日函数计算得到的所述调制信号波形为:
Figure PCTCN2018092042-appb-000011
步骤A3:将所述调制信号波形函数表达式带入所述拉格朗日函数中,按照梯度下降法,计算得到拉格朗日乘子的收敛值。
使用梯度下降法,设调制信号波形能量最大为E=1,载频ω 0=1,调整第一调制信号S 0(t)和第二调制信号S 1(t)与正弦载频信号件的欧式距离的值,采用适当的固定步长step,选取各个拉格朗日乘子最优的初始值,并沿 其负梯度方向进行一维搜索,即求得
Figure PCTCN2018092042-appb-000012
且λ=(a,b,c,d),其中,k为迭代次数。通过此方式求出最优的拉格朗日乘子的收敛值。
例如:设拉格朗日乘子a,b,c,d的初值分别为12,3,2,1,仿真中第一调制信号S 0(t)和第二调制信号S 1(t)与正弦载频信号间欧式距离受限于α=270,得到的最优的拉格朗日乘子的收敛值如图2所示。
优选的,最优的拉格朗日乘子的收敛值为a=0.7,b=0.2,c=7.4,d=2。
步骤A4:将所述拉格朗日乘子的收敛值带入所述调制信号波形函数表达式中,得到如图3所示的所述第一调幅正弦波信号和第二调幅正弦波信号。
本实施例得到的所述调制信号波形,仅包含连续谱及载频处的线谱分量,能量高度集中于载频处,没有其他谐波分量的存在,满足美国联邦通信委员会(FCC)给定的窄带信号频谱的要求。按照FCC带宽要求标准,将该本实施例得到的所述调制信号波形与VWDK调制方法在60dB带宽相同时(如图4所示),比较最大似然准则下二者的误码率曲线,如图5所示。比较发现要达到相同的误码率,调幅正弦波形存在2.5dB的增益。
步骤S102:根据各个预设频点的第一调幅正弦波信号和第二调幅正弦波信号,按照预设的映射规则,将待发送的数据比特序列映射为信号序列。
例如,如图6所示,f1和f2为预设的两个频点,按照步骤S101的方式,分别计算出频点f1对应的第一调幅正弦波信号和第二调幅正弦波信号以及计算出频点f2对应的第一调幅正弦波信号和第二调幅正弦波信号。
采用(f1,A11,A12)表示频点f1对应的调制波形的特征;其中,A11为频点f1对应的第一调幅正弦波信号的幅度值;A12为频点f1对应的第二调幅正弦波信号的幅度值;
采用(f2,A21,A22)表示频点f1对应的调制波形的特征;其中,A21为频点f2对应的第一调幅正弦波信号的幅度值;A22为频点f2对应的第二调 幅正弦波信号的幅度值。
如果待发送的数据比特序列对10010,那么发送比特1时,采用(f1,A11,A12)的合成波形,发送比特0时采用(f2,A21,A22)的合成波形,将待发送比特序列映射为信号序列,其中信号序列对应硬件中预存储的信号波形的幅度信息。
又例如,如图7所示,f1和f2为预设的两个频点,按照步骤S101的方式,分别计算出频点f1对应的第一调幅正弦波信号和第二调幅正弦波信号以及计算出频点f2对应的第一调幅正弦波信号和第二调幅正弦波信号。
采用(f1,A11,f2,A21)表示频点f1和f2对应的调制波形的特征;其中,A11为频点f1对应的第一调幅正弦波信号的幅度值;A21为频点f2对应的第一调幅正弦波信号的幅度值。
采用(f1,A12,f2,A22)表示频点f1和f2对应的调制波形的特征;其中,A12为频点f1对应的第二调幅正弦波信号的幅度值;A22为频点f2对应的第二调幅正弦波信号的幅度值。
如果待发送的数据比特序列对10010,那么发送比特1时,采用(f1,A11,f2,A21)的合成波形,发送比特0时采用(f1,A12,f2,A22)的合成波形,将待发送比特序列映射为信号序列,其中信号序列对应硬件中预存储的信号波形的幅度信息。
步骤S103:将所述信号序列处理为可发射的射频信号,并发送至接收端。
在其他实施例中,步骤S103,包括:对所述信号序列依次进行数模转换处理和滤波处理,得到可发射的射频信号。
如图6和7所示,将信号序列通过DAC(Digital to Analog Converter)变为模拟信号,并通过滤波器进行平滑滤波处理。
本发明第二实施例,一种基于调制信号的数据发射方法,在第一实施 例得到的第一调幅正弦波信号和第二调幅正弦波信号的基础上,如所示,所述方法包括:
步骤S201:分别将所述第一调幅正弦波信号和第二调幅正弦波信号的时域坐标划分为设定数量的时域段,并通过多项式函数以及正弦多项式函数分别在各个时域段上对所述第一调幅正弦波信号和第二调幅正弦波信号形进行调整,得到第一双频平滑调幅波信号和第二双频平滑调幅波信号;
步骤S202:根据所述第一双频平滑调幅波信号和第二双频平滑调幅波信号将待发送的数据比特序列映射为信号序列。
步骤S203:将所述信号序列处理为可发射的射频信号,并发送至接收端。
在第一实施例得到的调制信号波形基础上,还应考虑时间选择性衰落因素对调制信号波形的影响。为了满足时域上更易于区分,在损失一定的能量效率的前提下,分别在比特“0”、“1”的单位符合周期0和π相位处,引入正弦信号的二次高频分段部分。
在其他实施例中,当将所述调制信号波形的时域坐标划分为5个时域段时,并通过多项式函数以及基于正弦多项式函数分别在各个时域段上对所述调制信号波形进行调整后,得到的第一双频平滑调幅波信号和第二双频平滑调幅波信号为:
Figure PCTCN2018092042-appb-000013
Figure PCTCN2018092042-appb-000014
其中,S′ 0(t)为调整后的第一调制信号;
S′ 1(t)为调制后的逻第二调制信号;
Figure PCTCN2018092042-appb-000015
Figure PCTCN2018092042-appb-000016
g=1/sin(τ);
0≤t L≤τ≤t R≤T/4。
在其他实施例中,本实施例引入三次多项式函数,平滑高低双频信号波形,平滑时间点t L和t R的选取以尽可能使其整体波形与正弦波形差异最小为目标,多项式系数的确定过程如下,包括:
1)在t=t L,t=t R点处
Figure PCTCN2018092042-appb-000017
Figure PCTCN2018092042-appb-000018
与多项式满足连续可导:
Figure PCTCN2018092042-appb-000019
2)在t=T-t R,t=T-t L点处,
Figure PCTCN2018092042-appb-000020
与多项式满足连续可导:
Figure PCTCN2018092042-appb-000021
Figure PCTCN2018092042-appb-000022
3)在t=t L,t=t R点处
Figure PCTCN2018092042-appb-000023
Figure PCTCN2018092042-appb-000024
与多项式满足连续可导:
Figure PCTCN2018092042-appb-000025
4)在t=T-t R,t=T-t L点处,
Figure PCTCN2018092042-appb-000026
与多项式满足连续可导:
Figure PCTCN2018092042-appb-000027
通过调整多项式平滑时刻t L、τ、t R的值,增大或缩小调制波形的差异。
图8、图9、图10为本实施例的双频平滑调幅波形的示例图,对其进行的去高次线谱操作式为:
Figure PCTCN2018092042-appb-000028
设ω 0=1,本实施例满足美国联邦通信委员会(FCC)给定的窄带信号频谱的要求。其中,
Figure PCTCN2018092042-appb-000029
是各次谐波sin(nt)的幅度。
调整多项式平滑时刻来调整信号的频谱带宽。如图11所示,为满足FCC要求的60dB带外功率衰减的双频平滑调幅波形与VWDK调制方法的功率 谱图,在最大似然准则下,采用相干解调得到的二者的误码率曲线图如图12所示。比较发现要达到相同的误码率,VWDK调制的信噪比SNR要比本设计方案的SNR增加约1.2dB。即本设计方案的误码性能优于相同频谱带宽条件下去线谱处理后的VWDK调制方法。
本发明第三实施例,一种基于调制信号的数据发射方法,在第二实施例得到的第一双频平滑调幅波信号和第二双频平滑调幅波信号基础上,所述方法包括:
步骤S301:分别对所述第一双频平滑调幅波信号和第二双频平滑调幅波信号依次执行:去除正弦载频信号、去除高次谐波以及添加基波分量,得到第一恒模双频平滑波信号和第二恒模双频平滑波信号。
步骤S302:根根据所述第一恒模双频平滑波信号和第二恒模双频平滑波信号将待发送的数据比特序列映射为信号序列。
步骤S303:将所述信号序列处理为可发射的射频信号,并发送至接收端。
由于逻辑信息0对应的第一调制信号以及逻辑信息1对应的第二调制信号的符合能量不同,为了避免频谱泄露的问题,即使得符号波形满足等能量传输的特性,在本实施例中对双频平滑调幅波形进行等能量处理操作,最终得到的调制信号记为:S 1final(t),S 0final(t)。通过调整多项式平滑时刻t L、τ、t R的值,以及最终补回的载频分量的调制,获得窄带宽的调制波形。
在其他实施例中,对S′ 1(t)和S′ 0(t)分别取载频,得到:
Figure PCTCN2018092042-appb-000030
Figure PCTCN2018092042-appb-000031
再去除其他高次谐波分量,得到:
Figure PCTCN2018092042-appb-000032
Figure PCTCN2018092042-appb-000033
最后对调制波形再加上基波(载频)分量,用于定时信息的提取,得到:
Figure PCTCN2018092042-appb-000034
Figure PCTCN2018092042-appb-000035
其中,C为常数。
如图13所示,是满足FCC要求的恒模双频平滑波形(t L=0.18,t=0.2,t R=0.22)。在最大似然准则下,采用相干解调得到的二者的误码率曲线图如图15所示。比较发现,仅关注调制波形功率谱主瓣与载频线谱的60dB带宽时(如图13所示、图14所示),要达到相同的误码率,VWDK调制的信噪比SNR要比本设计方案的SNR增加约1dB。而采用发送符号等能量处理后,使得所提方案与VWDK调制方案具有相同的极限窄带宽时,误码率较信号处理前升高,但此时所提方案的信噪比,仍比相同误码时VWDK的信噪比约小2dB。
本发明第四实施例,一种基于调制信号波形的数据发射装置,如图16所示,应用于发射端,所述装置包括以下组成部分:
1)计算模块1601,配置为计算得到关于所述第一调制信号和第二调制信号的最大欧式距离,以及预设的限制条件的拉格朗日函数。
在其他实施例中,计算模块1601,配置为计算得到关于所述第一调制信号和第二调制信号的最大欧式距离,以及预设的限制条件的拉格朗日函数;在所述拉格朗日函数为凸函数的情况下,通过计算所述拉格朗日函数的极值,得到包含拉格朗日乘子的调制信号波形函数表达式;将所述调制 信号波形函数表达式带入所述拉格朗日函数中,按照梯度下降法,计算得到拉格朗日乘子的收敛值;将所述拉格朗日乘子的收敛值带入所述调制信号波形函数表达式中,得到所述第一调幅正弦波信号和第二调幅正弦波信号;
其中,所述限制条件至少包括以下之一:调制信号与预设频点的正弦载频信号的欧式距离小于预设距离阈值、调制信号波形能量小于预设能量阈值、调制信号的直流分量为零。
2)映射模块1602,配置为根据所述调制信号波形将待发送的比特数列数据发送至接收端。
3)发送模块1603,配置为将所述信号序列处理为可发射的射频信号,并发送至接收端。
在其他实施例中,发送模块1603,配置为对所述信号序列依次进行数模转换处理和滤波处理,得到可发射的射频信号。
在其他实施例中,所述装置还包括:
双频波形生成模块,配置为分别将所述第一调幅正弦波信号和第二调幅正弦波信号的时域坐标划分为设定数量的时域段,并通过多项式函数以及正弦多项式函数分别在各个时域段上对所述第一调幅正弦波信号和第二调幅正弦波信号形进行调整,得到第一双频平滑调幅波信号和第二双频平滑调幅波信号;根据所述第一双频平滑调幅波信号和第二双频平滑调幅波信号将待发送的数据比特序列映射为信号序列;将所述信号序列处理为可发射的射频信号,并发送至接收端。
在其他实施例中,所述装置还包括:恒模波形生成模块,配置为分别对所述第一双频平滑调幅波信号和第二双频平滑调幅波信号依次执行:去除正弦载频信号、去除高次谐波以及添加基波分量,得到第一恒模双频平滑波信号和第二恒模双频平滑波信号;根据所述第一恒模双频平滑波信号和第二恒模双频平滑波信号将待发送的数据比特序列映射为信号序列;将 所述信号序列处理为可发射的射频信号,并发送至接收端。
本发明实施例中介绍的基于调制信号波形的数据发射方法及装置,保留了传统数字通信技术的优点,采用凸优化思想间接或直接性的对信号传输频谱宽带进行约束,最大化数字信号调制波形的欧式距离,降低接收误码率。根据拉格朗日函数计算得到的调制信号波形为两个幅度差异很小的正弦波信号,因而频谱利用率高度集中于载频,不存在高次谐波的线谱分量,频带利用率高。本发明中的双频平滑调幅波形具备一定的类正弦特征,频率带宽进一步缩减,对抗时间选择性衰落信道场景有较好的性能。本发明中的恒模双频平滑波形属于等能量符合信息,可避免对一定程度的频谱泄露。
需要说明的是,本发明实施例中,如果以软件功能模块的形式实现上述的基于调制信号的数据发射方法,并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台数据发射设备执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read Only Memory,ROM)、磁碟或者光盘等各种可以存储程序代码的介质。这样,本发明实施例不限制于任何特定的硬件和软件结合。
对应地,本发明实施例提供一种基于调制信号的数据发射设备,包括存储器和处理器,所述存储器存储有可在处理器上运行的计算机程序,所述处理器执行所述程序时实现上述的基于调制信号的数据发射方法中的步骤。
本发明实施例再提出一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述的基于调制信号的数据发射方法中的步骤。
这里需要指出的是:以上存储介质和设备实施例的描述,与上述方法实施例的描述是类似的,具有同方法实施例相似的有益效果。对于本发明存储介质和设备实施例中未披露的技术细节,请参照本发明方法实施例的描述而理解。
需要说明的是,图17为本发明实施例中基于调制信号的数据发射设备的一种硬件实体示意图,如图17所示,该设备1700的硬件实体包括:处理器1701、通信接口1702和存储器1703,其中
处理器1701通常控制设备1700的总体操作。
通信接口1702可以使设备通过网络与其他终端或服务器通信。
存储器1703配置为存储由处理器1701可执行的指令和应用,还可以缓存待处理器1701以及设备1700中各模块待处理或已经处理的数据,可以通过闪存(FLASH)或随机访问存储器(Random Access Memory,RAM)实现。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
通过实施方式的说明,应当可对本发明为达成预定目的所采取的技术手段及功效得以更加深入地了解,然而所附图示仅是提供参考与说明之用,并非用来对本发明加以限制。

Claims (16)

  1. 一种基于调制信号的数据发射方法,应用于发射端,所述方法包括:
    计算各个预设频点的第一调幅正弦波信号和第二调幅正弦波信号;
    根据各个预设频点的第一调幅正弦波信号和第二调幅正弦波信号,按照预设的映射规则,将待发送的数据比特序列映射为信号序列;
    将所述信号序列处理为可发射的射频信号,并发送至接收端。
  2. 根据权利要求1所述的方法,所述计算各个预设频点的第一调幅正弦波信号和第二调幅正弦波信号,包括:
    在预设的限制条件下,通过计算预设频点的第一调制信号和第二调制信号的最大欧式距离,得到预设频点的第一调幅正弦波信号和第二调幅正弦波信号;
    其中,所述限制条件至少包括以下之一:调制信号与预设频点的正弦载频信号的欧式距离小于预设距离阈值、调制信号波形能量小于预设能量阈值、调制信号的直流分量为零。
  3. 根据权利要求2所述的方法,所述在预设的限制条件下,通过计算预设频点的第一调制信号和第二调制信号的最大欧式距离,得到预设频点的第一调幅正弦波信号和第二调幅正弦波信号,包括:
    计算得到关于所述第一调制信号和第二调制信号的最大欧式距离,以及所述限制条件的拉格朗日函数;
    在所述拉格朗日函数为凸函数的情况下,通过计算所述拉格朗日函数的极值,得到包含拉格朗日乘子的调制信号波形函数表达式;
    将所述调制信号波形函数表达式带入所述拉格朗日函数中,按照梯度下降法,计算得到拉格朗日乘子的收敛值;
    将所述拉格朗日乘子的收敛值带入所述调制信号波形函数表达式中, 得到预设频点的第一调幅正弦波信号和第二调幅正弦波信号。
  4. 根据权利要求1所述的方法,所述将所述信号序列处理为可发射的射频信号,包括:
    对所述信号序列依次进行数模转换处理和滤波处理,得到可发射的射频信号。
  5. 根据权利要求1所述的方法,所述方法还包括:
    分别将所述第一调幅正弦波信号和第二调幅正弦波信号的时域坐标划分为设定数量的时域段,并通过多项式函数以及正弦多项式函数分别在各个时域段上对所述第一调幅正弦波信号和第二调幅正弦波信号形进行调整,得到第一双频平滑调幅波信号和第二双频平滑调幅波信号;
    根据所述第一双频平滑调幅波信号和第二双频平滑调幅波信号将待发送的数据比特序列映射为信号序列;
    将所述信号序列处理为可发射的射频信号,并发送至接收端。
  6. 根据权利要求5所述的方法,所述方法还包括:
    分别对所述第一双频平滑调幅波信号和第二双频平滑调幅波信号依次执行:去除正弦载频信号、去除高次谐波以及添加基波分量,得到第一恒模双频平滑波信号和第二恒模双频平滑波信号;
    根据所述第一恒模双频平滑波信号和第二恒模双频平滑波信号将待发送的数据比特序列映射为信号序列;
    将所述信号序列处理为可发射的射频信号,并发送至接收端。
  7. 根据权利要求3所述的方法,按照如下公式表示所述第一调制信号和第二调制信号的最大欧式距离:
    Figure PCTCN2018092042-appb-100001
    其中,T为调制信号的周期;
    S 0(t)为第一调制信号;
    S 1(t)为第二调制信号;
    所述限制条件包括:
    Figure PCTCN2018092042-appb-100002
    Figure PCTCN2018092042-appb-100003
    Figure PCTCN2018092042-appb-100004
    Figure PCTCN2018092042-appb-100005
    Figure PCTCN2018092042-appb-100006
    Figure PCTCN2018092042-appb-100007
    其中,sin(ω 0t)为预设频点的正弦载频信号;
    ω 0为预设频点;
    α为预设距离阈值;
    E为预设能量阈值;
    A、B为常数。
  8. 根据权利要求7所述的方法,当所述拉格朗日函数为凸函数时,所述拉格朗日乘子满足以下条件:
    a+c-1>0,且
    Figure PCTCN2018092042-appb-100008
    其中,a为所述拉格朗日函数中
    Figure PCTCN2018092042-appb-100009
    的拉格朗日乘子;
    b为所述拉格朗日函数中
    Figure PCTCN2018092042-appb-100010
    的拉格朗日乘子;
    c为所述拉格朗日函数中
    Figure PCTCN2018092042-appb-100011
    的拉格朗日乘子;
    d为所述拉格朗日函数中
    Figure PCTCN2018092042-appb-100012
    的拉格朗日乘子。
  9. 根据权利要求8所述的方法,根据所述拉格朗日函数计算得到的 所述第一调幅正弦波信号和第二调幅正弦波信号为:
    Figure PCTCN2018092042-appb-100013
  10. 一种基于调制信号的数据发射装置,应用于发射端,所述装置包括:
    计算模块,配置为计算各个预设频点的第一调幅正弦波信号和第二调幅正弦波信号;
    映射模块,配置为根据各个预设频点的第一调幅正弦波信号和第二调幅正弦波信号,按照预设的映射规则,将待发送的数据比特序列映射为信号序列;
    发送模块,配置为将所述信号序列处理为可发射的射频信号,并发送至接收端。
  11. 根据权利要求10所述的装置,所述计算模块,配置为:计算得到关于所述第一调制信号和第二调制信号的最大欧式距离,以及预设的限制条件的拉格朗日函数;在所述拉格朗日函数为凸函数的情况下,通过计算所述拉格朗日函数的极值,得到包含拉格朗日乘子的调制信号波形函数表达式;将所述调制信号波形函数表达式带入所述拉格朗日函数中,按照梯度下降法,计算得到拉格朗日乘子的收敛值;将所述拉格朗日乘子的收敛值带入所述调制信号波形函数表达式中,得到所述第一调幅正弦波信号和第二调幅正弦波信号;
    其中,所述限制条件至少包括以下之一:调制信号与预设频点的正弦载频信号的欧式距离小于预设距离阈值、调制信号波形能量小于预设能量阈值、调制信号的直流分量为零。
  12. 根据权利要求10所述的装置,发送模块,配置为:对所述信号 序列依次进行数模转换处理和滤波处理,得到可发射的射频信号。
  13. 根据权利要求10所述的装置,所述装置还包括:
    双频波形生成模块,配置为分别将所述第一调幅正弦波信号和第二调幅正弦波信号的时域坐标划分为设定数量的时域段,并通过多项式函数以及正弦多项式函数分别在各个时域段上对所述第一调幅正弦波信号和第二调幅正弦波信号形进行调整,得到第一双频平滑调幅波信号和第二双频平滑调幅波信号;根据所述第一双频平滑调幅波信号和第二双频平滑调幅波信号将待发送的数据比特序列映射为信号序列;将所述信号序列处理为可发射的射频信号,并发送至接收端。
  14. 根据权利要求13所述的装置,所述装置还包括:
    恒模波形生成模块,配置为分别对所述第一双频平滑调幅波信号和第二双频平滑调幅波信号依次执行:去除正弦载频信号、去除高次谐波以及添加基波分量,得到第一恒模双频平滑波信号和第二恒模双频平滑波信号;根据所述第一恒模双频平滑波信号和第二恒模双频平滑波信号将待发送的数据比特序列映射为信号序列;将所述信号序列处理为可发射的射频信号,并发送至接收端。
  15. 一种基于调制信号的数据发射设备,包括存储器和处理器,所述存储器存储有可在处理器上运行的计算机程序,所述处理器执行所述程序时实现权利要求1至9任一项所述的基于调制信号的数据发射方法中的步骤。
  16. 一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现权利要求1至9任一项所述的基于调制信号的数据发射方法中的步骤。
PCT/CN2018/092042 2017-08-02 2018-06-20 基于调制信号的数据发射方法及装置、设备、存储介质 WO2019024620A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/636,085 US11374802B2 (en) 2017-08-02 2018-06-20 Data transmission method, apparatus and device based on modulated signal, and storage medium
EP18842044.2A EP3664343B1 (en) 2017-08-02 2018-06-20 Data transmission method, apparatus and device based on modulated signal, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710652076.6A CN109391384B (zh) 2017-08-02 2017-08-02 一种基于调制信号的数据发射方法及装置
CN201710652076.6 2017-08-02

Publications (1)

Publication Number Publication Date
WO2019024620A1 true WO2019024620A1 (zh) 2019-02-07

Family

ID=65233159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092042 WO2019024620A1 (zh) 2017-08-02 2018-06-20 基于调制信号的数据发射方法及装置、设备、存储介质

Country Status (4)

Country Link
US (1) US11374802B2 (zh)
EP (1) EP3664343B1 (zh)
CN (1) CN109391384B (zh)
WO (1) WO2019024620A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1161601A (zh) * 1996-12-05 1997-10-08 张奇 调频、调幅重复调制理论
WO2010138442A1 (en) * 2009-05-28 2010-12-02 Bae Systems Information And Electronic Systems Integration Inc. Geometric detector for communicating through constant modulus (cm) interferers
CN102104577A (zh) * 2011-03-22 2011-06-22 华南理工大学 异步多子带频率及幅度联合调制数字通信系统与方法
CN202524419U (zh) * 2012-01-19 2012-11-07 成都锦华药业有限责任公司 信号调制系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04304727A (ja) * 1991-04-01 1992-10-28 Secom Co Ltd データ暗号化装置、データ復号化装置、及びデータ暗号化復号化装置
GB9217819D0 (en) * 1992-08-21 1992-10-07 Philips Electronics Uk Ltd Data coding system
US20010055353A1 (en) * 1998-04-04 2001-12-27 Mathew A. Rybicki Method and apparatus for amplitude and pulse modulation
DE10138218B4 (de) * 2001-08-03 2004-01-22 Atmel Germany Gmbh Verfahren zur Übertragung von Daten
EP1396932B1 (en) * 2002-09-05 2006-11-29 Hitachi, Ltd. Wireless communication apparatus
CN100421437C (zh) * 2003-09-08 2008-09-24 东南大学 高频带利用率的信息调制和解调方法
CN100372345C (zh) * 2004-09-20 2008-02-27 东南大学 等幅的高频带利用率的信息调制与解调方法
CN101060381A (zh) * 2006-05-23 2007-10-24 华为技术有限公司 信号收发方法及其装置
CN102217266B (zh) * 2008-11-19 2014-05-07 Lg电子株式会社 用于发送和接收信号的装置以及用于发送和接收信号的方法
EP2448203B1 (en) * 2010-10-29 2013-05-08 Blue Wonder Communications GmbH Method for defining a search sequence for soft-decision sphere decoding algorithm
CN102130755B (zh) * 2011-04-08 2013-05-08 电子科技大学 一种自适应空间调制方法
CN107683592B (zh) * 2016-05-11 2020-10-23 华为技术有限公司 数据处理方法、装置和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1161601A (zh) * 1996-12-05 1997-10-08 张奇 调频、调幅重复调制理论
WO2010138442A1 (en) * 2009-05-28 2010-12-02 Bae Systems Information And Electronic Systems Integration Inc. Geometric detector for communicating through constant modulus (cm) interferers
CN102104577A (zh) * 2011-03-22 2011-06-22 华南理工大学 异步多子带频率及幅度联合调制数字通信系统与方法
CN202524419U (zh) * 2012-01-19 2012-11-07 成都锦华药业有限责任公司 信号调制系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3664343A4 *

Also Published As

Publication number Publication date
EP3664343A1 (en) 2020-06-10
CN109391384B (zh) 2021-09-10
CN109391384A (zh) 2019-02-26
US11374802B2 (en) 2022-06-28
EP3664343A4 (en) 2021-04-21
EP3664343B1 (en) 2024-05-08
US20210399928A1 (en) 2021-12-23

Similar Documents

Publication Publication Date Title
Zhu et al. Simplified approach to optimized iterative clipping and filtering for PAPR reduction of OFDM signals
CN110224967B (zh) 用于峰值均值功率比降低的方法和发射器
CN106713213B (zh) 一种数字调制方法、解调方法、相关装置和系统
CN108667555A (zh) 一种相位调整方法、相关设备和通信系统
CN112019471A (zh) 一种基于多相结构的削峰方法、装置及计算机存储介质
CN112165442B (zh) 自适应加权的几何整形方法及装置
WO2022007699A1 (zh) 数据调制方法、通信设备及存储介质
CN116886203B (zh) 一种4维光信号的调制方法、装置及存储介质
KR20140096560A (ko) 무선 통신 시스템에서 시간-직각 진폭 변조를 지원하기 위한 방법 및 장치
WO2021232566A1 (zh) 扩频信号发送方法、扩频信号接收方法、装置、设备及介质
WO2019024620A1 (zh) 基于调制信号的数据发射方法及装置、设备、存储介质
CN109347779B (zh) 基于阈值矢量圆ofdm信号直接限幅技术的fpga实现方法
CN115299016A (zh) 多速率波峰因子降低
WO2023159886A1 (zh) 一种概率整形qam动态均衡及数字信号处理方法
CN113132279A (zh) 一种预失真处理方法、装置、设备和存储介质
CN114793144B (zh) 信号编码、解码方法、装置、电子设备、芯片及存储介质
CN112558335B (zh) 基于石墨烯结构星座的子标签无载波幅度相位调制方法
KR102071355B1 (ko) 인체를 이용한 데이터 전송 장치 및 그 방법
WO2020135458A1 (zh) 一种正交振幅调制qam信号调制和解调方法及装置
RU2786129C1 (ru) Способ и устройство на базе полифазной структуры для снижения пиковой нагрузки и носитель компьютерной информации
JP6373408B2 (ja) チャネル等化追跡装置、方法及び受信機
US9276788B2 (en) Joint demodulating and demapping of digital signal
CN112260980B (zh) 一种基于超前预测实现相位噪声补偿的硬件系统及其实现方法
CN114389928B (zh) 一种幅度受限的类高斯分布星座图设计方法
WO2022218265A1 (zh) 符号发送、接收方法、发送设备、接收设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18842044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018842044

Country of ref document: EP

Effective date: 20200302