WO2019024333A1 - 一种低功耗自动感光太阳眼镜 - Google Patents

一种低功耗自动感光太阳眼镜 Download PDF

Info

Publication number
WO2019024333A1
WO2019024333A1 PCT/CN2017/111986 CN2017111986W WO2019024333A1 WO 2019024333 A1 WO2019024333 A1 WO 2019024333A1 CN 2017111986 W CN2017111986 W CN 2017111986W WO 2019024333 A1 WO2019024333 A1 WO 2019024333A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
power supply
low
microprocessor
voltage
Prior art date
Application number
PCT/CN2017/111986
Other languages
English (en)
French (fr)
Inventor
林国起
林列寅
韩会黎
吴耕豪
Original Assignee
江门亿都半导体有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江门亿都半导体有限公司 filed Critical 江门亿都半导体有限公司
Priority to PL17920557.0T priority Critical patent/PL3611558T3/pl
Priority to KR1020197031145A priority patent/KR102174757B1/ko
Priority to JP2020509140A priority patent/JP6874214B2/ja
Priority to US16/607,194 priority patent/US10908435B2/en
Priority to EP17920557.0A priority patent/EP3611558B1/en
Priority to ES17920557T priority patent/ES2916843T3/es
Publication of WO2019024333A1 publication Critical patent/WO2019024333A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • G02C7/101Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses having an electro-optical light valve
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/08Auxiliary lenses; Arrangements for varying focal length
    • G02C7/081Ophthalmic lenses with variable focal length
    • G02C7/085Fluid-filled lenses, e.g. electro-wetting lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13318Circuits comprising a photodetector
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/6871Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13312Circuits comprising photodetectors for purposes other than feedback

Definitions

  • the invention relates to a pair of sunglasses, in particular to a low power automatic illuminating sunglasses.
  • sunglasses on the market today are usually all black sunglasses or sunglasses with a manual flip function. When wearing such sunglasses, from places with strong sun or strong light to places without sun or light. It is necessary to remove the sunglasses or lift the flip to get a better view. If the environment is frequently alternated, frequent operation of the glasses will increase unnecessary trouble.
  • the automatic sensitized sunglasses can automatically adjust the lens according to the change of the illumination environment, and use the liquid crystal to make the lens, and change the light transmittance of the lens by changing the voltage applied to the liquid crystal lens.
  • the automatic sensitized solar glasses consume large amounts of electricity and have a high output voltage frequency.
  • the USB charging mode is adopted, and a USB interface needs to be installed on the frame, which affects the appearance, and needs to be fully charged before each use, and the battery life is short. It is inconvenient to use and cannot meet the requirements for use at any time.
  • an object of the present invention is to provide an automatic photosensitive solar lens with low power consumption.
  • a low-power automatic sensitized sunglasses comprising a spectacle frame and two liquid crystal lenses disposed on the spectacle frame, a power supply module, a photosensor for sensing ambient luminosity, a microprocessor for adjusting a light and dark state of the liquid crystal lens, and a high frequency charge and discharge boost circuit for increasing an output voltage, the photosensor being coupled to a control input of the microprocessor, the power supply module being coupled to a power terminal of the microprocessor, the microprocessor
  • the boost control terminal is connected to the input end of the high frequency charge and discharge boost circuit, and further includes a low frequency switching drive circuit for switching the high and low voltages of the liquid crystal lens to drive, the high frequency charge and discharge boost circuit The output end is connected to the low frequency switching drive circuit, and the output end of the low frequency switching drive circuit is respectively connected to the two liquid crystal lenses.
  • the low frequency switching drive circuit is built in the microprocessor, the microprocessor further includes an oscillation power supply circuit and a frequency reduction circuit, and the oscillation power supply circuit provides high frequency charging for the high frequency charge and discharge boost circuit through the boost control terminal. a signal, the oscillating power supply circuit provides a low frequency switching signal to the low frequency switching drive circuit through the frequency down circuit. Relying on the oscillating power supply circuit, the charging frequency can be increased, thereby greatly increasing the supply voltage; the frequency reduction circuit can greatly reduce the frequency of the supply voltage, reduce the flip frequency of the driving voltage high and low levels, and reduce the power consumption of the glasses.
  • the microprocessor further includes a power driving circuit for supplying power to the internal portion of the microprocessor, the power supply module is connected to the power supply module through a power supply terminal and provides DC power supply, and the power supply driving circuit includes a pulse power supply circuit,
  • the pulse power supply circuit includes a pulse power supply output, and the pulse power supply circuit converts the direct current power from the power supply module into a pulse power supply signal output from the pulse power supply output end, and the pulse power supply output end is connected to the oscillation power supply circuit.
  • the pulse power supply generates a pulse supply signal for driving the internal device of the microprocessor, and the pulse supply signal is connected to the oscillation power supply circuit to provide a pulse supply signal for oscillating, and the oscillation power supply circuit generates the pulse supply signal
  • the high frequency charging signal is used for the high frequency charging and discharging boosting circuit.
  • the pulsed power supply circuit further includes a bias current output terminal for supplying a power supply voltage to the photosensor, the bias current output terminal being coupled to the power supply port of the photosensor.
  • the pulse power supply circuit also generates a bias current output terminal for supplying power to the external device, and the bias current output terminal supplies power to the photosensor.
  • another power supply circuit that is, It can be powered by a microprocessor to help simplify the circuit. If the photosensor used does not require additional power, the bias current output can be left floating.
  • the microprocessor further includes a voltage detecting circuit for detecting a photosensor voltage value, an input end of the voltage detecting circuit is connected to the photosensor, and an output end of the voltage detecting circuit is connected to the low frequency switching driving circuit.
  • the voltage detecting circuit detects a voltage value output by the photosensor, and when the voltage value is greater than a set threshold, the current glasses are considered to be in a state of strong light, and the voltage detecting circuit sends a switching signal to the low frequency switching driving circuit, so that The low frequency switching drive circuit works. If the voltage value is less than the set threshold value, the voltage detection circuit does not output a signal, the low frequency switching drive circuit stops outputting, and the liquid crystal lens returns to a normal state.
  • the voltage detecting circuit is connected to the low frequency switching driving circuit through a delay circuit, and further includes a delay control capacitor externally disposed on the microprocessor, and the delay control capacitor is connected to the delay circuit.
  • the photosensor and the microprocessor are disposed on a nose pad of the spectacle frame, and the power supply module is disposed on the nose pads of the spectacle frame or the two legs of the spectacle frame. This setting maximizes the effect of circuit components on the appearance of the glasses and improves the aesthetics of the sunglasses.
  • the photosensor includes two photodiodes and a fixed resistor, and the photodiode is connected in parallel with a fixed resistor. Two photodiodes can improve the sensitivity of the light. After connecting with the resistor, the optical signal can be directly converted into a voltage signal output, which triggers the microprocessor to work.
  • the power supply module is powered by a 1.55 volt button battery, and the output voltage of the high frequency charge and discharge boost circuit is 4 times of the battery voltage, that is, 6.2 volts.
  • the battery voltage is small, the current is less than 50 nanoamperes, and the boosting circuit can greatly increase the driving voltage, thereby achieving the effect of saving battery life.
  • the oscillating power supply circuit is a symmetrical positive and negative electric signal of a high frequency charging signal frequency of 185 Hz provided by the high frequency charging and discharging boosting circuit.
  • the delay controlled capacitance delay is an analog delay of 18 milliseconds per nanofarad.
  • the microprocessor is coupled to a 10 nanoampere input bias current and has an input impedance greater than 1000 megaohms.
  • the low frequency switching signal provided by the frequency reducing circuit to the low frequency switching driving circuit is a square wave signal having a frequency of 1/90 Hz.
  • the 1/90 Hz frequency causes the level to flip every 90 seconds, and when the LCD screen is off, it is low and consumes less power.
  • the liquid crystal lens includes an upper glass substrate and a lower glass substrate, and electrodes of the upper glass substrate and the lower glass substrate are respectively connected to output ends of the low frequency switching drive circuit of the microprocessor.
  • the invention has the beneficial effects that the low-power automatic sensitized sunglasses used in the invention automatically triggers the switch by intelligently sensing the change of the light illuminating on the spectacles, so that the lens changes in brightness and darkness, and the manual operation of the user is avoided. ,easy to use.
  • the light-sensing circuit greatly increases the input power supply voltage through the high-frequency charge and discharge boost circuit, and only needs to be connected to a small low-voltage battery to realize the work.
  • the low-frequency switching drive circuit is used to greatly reduce the frequency of the liquid crystal lens driving voltage, thereby effectively reducing the optical power of the lens. Consumption, power saving function, and extend the life of batteries and glasses.
  • FIG. 1 is a circuit block diagram of a low power automatic photosensitive solar lens of the present invention
  • Figure 2 is a schematic view of the structure of the present invention.
  • Figure 3 is a schematic view of the appearance of the present invention.
  • Figure 4 is a schematic structural view of a liquid crystal lens of the present invention.
  • FIG. 5 is a circuit schematic diagram of the present invention.
  • Figure 6 is a circuit schematic diagram of a power supply driving circuit of the present invention.
  • Figure 7 is a circuit schematic diagram of a voltage detecting circuit of the present invention.
  • Figure 8 is a circuit schematic diagram of a delay circuit of the present invention.
  • FIG. 9 is a circuit schematic diagram of an oscillating power supply circuit of the present invention.
  • FIG. 10 is a circuit schematic diagram of a frequency down circuit of the present invention.
  • Figure 11 is a circuit schematic diagram of the low frequency switching drive circuit of the present invention.
  • the lens frame 10 includes two liquid crystal lenses 50 disposed on the spectacle frame, a power supply module 20, a photosensor 30 for sensing ambient luminosity, a microprocessor 40 for adjusting the dimming state of the liquid crystal lens, and an output voltage for improving a high frequency charge and discharge boosting circuit 1, the photosensor 30 is connected to a control input SEI of the microprocessor 40, and the power supply module 20 is connected to a power terminal VDD of the microprocessor 40, the micro
  • the processor 40 includes a boost control terminal DC+/DC-, and the boost control terminal DC+/DC- is connected to the input end of the high frequency charge and discharge boost circuit 1, and further includes a low frequency switching drive for switching the high and low voltages of the liquid crystal lens drive.
  • the output end of the high frequency charge and discharge boosting circuit 1 is connected to the input terminal VLCD of the low frequency switching drive circuit 2, and the output terminals LCDA+/LCDA- of the low frequency switching drive circuit 2 are respectively connected to the two liquid crystal lenses 50.
  • the photosensitive device 30 disposed on the glasses intelligently senses the change of the light to automatically trigger the switch, so that the lens changes lightly and darkly, eliminating the user's manual operation and convenient use.
  • the photosensitive circuit passes through the high-frequency charge and discharge boosting circuit 1 to greatly increase the input power supply voltage, and can be operated only by connecting a small low-voltage battery, and at the same time, by switching the driving circuit 2 at a low frequency, the frequency of the driving voltage of the liquid crystal lens 50 is greatly reduced, thereby effectively Reduce the power consumption of glasses, achieve power-saving functions, and extend the life of batteries and glasses.
  • the low frequency switching drive circuit 2 is built in the microprocessor 40.
  • the microprocessor 40 is further provided with an oscillating power supply circuit 3 and a frequency down circuit 4, and the oscillating power supply circuit 3 is passed through
  • the voltage control terminal supplies a high frequency charging signal to the high frequency charging and discharging boosting circuit 1, and the oscillation power supply circuit 3 supplies a low frequency switching signal to the low frequency switching driving circuit 2 through the frequency down circuit 4.
  • the charging frequency can be increased, thereby greatly increasing the power supply voltage; the frequency reducing circuit 4 can greatly reduce the frequency of the power supply voltage, reduce the flip frequency of the driving voltage high and low levels, and reduce the power consumption of the glasses.
  • the power supply module 20 Since the power consumption of the present invention is very low, the power supply module 20 only needs to be powered by a 1.55 volt button battery, and the output voltage VLCD of the high frequency charge and discharge boost circuit 1 is four times the battery voltage, that is, 6.2 volts.
  • the button battery has a small voltage and a low cost, and the boosting circuit can greatly increase the driving voltage, thereby achieving the effect of saving battery life.
  • the frequency of the high frequency charging signal supplied from the oscillation power supply circuit 3 to the high frequency charge and discharge boosting circuit 1 is 185 Hz.
  • the low frequency switching signal supplied from the down converter circuit 4 to the low frequency switching drive circuit 2 is a square wave signal having a frequency of 1/90 Hz.
  • the 1/90 Hz frequency causes the level to flip every 90 seconds and consumes less power.
  • the microprocessor 40 further includes a power driving circuit 5 for supplying power to each device inside the microprocessor 40, and the power driving circuit 5 includes a pulse power circuit.
  • the pulsed power supply circuit is configured to generate a pulse power supply circuit, and the pulse power supply circuit is connected to the button battery through the power supply terminal VDD to obtain a DC voltage of 1.55V and converted into a pulse power supply signal output, and the pulse power supply circuit provides two pulse power supply signals: a pulse voltage
  • the signal PP and the pulse voltage signal Pn, the pulse voltage signal PP and the pulse voltage signal Pn are outputted to the oscillating power supply circuit 3 to provide a oscillating pulse power supply signal for the oscillating power supply circuit 3, and the pulse voltage signal PP is also used as the voltage detecting circuit 6 and The current source of the delay circuit 7.
  • the microprocessor 40 further includes a voltage detecting circuit 6 for detecting the voltage value of the photosensor 30, the input of which is connected to the photosensor 30, the voltage
  • the output of the detection circuit 6 is connected to a low frequency switching drive circuit.
  • the photosensor 30 includes two photodiodes and a fixed resistor, and the photodiode is connected in parallel with a fixed resistor. The use of two photodiodes can improve the sensitivity of the light.
  • the optical signal can be directly converted into a voltage signal and output to the voltage detecting circuit 6 through the SEI pin of the microprocessor 40.
  • the pulse voltage signal PP provides a pulse driving power supply for the voltage detecting circuit 6.
  • the gate circuit When the voltage value of the photosensor 30 is greater than 420 mV, the gate circuit is turned on, and the output terminal sens of the voltage detecting circuit 6 outputs a control signal. When the voltage value of the photosensor 30 is less than 375 mV, the output terminal sens of the voltage detecting circuit 6 stops the output of the control signal, and the voltage detecting circuit 6 is also provided with a TSENS port for detecting whether or not there is a control signal output.
  • the photosensor 30 generates a sufficient detection voltage without additional power supply.
  • additional power supply is required to operate normally.
  • the pulse power supply circuit further includes a bias current output terminal IBIAS for supplying a power supply voltage to the photosensor, and the bias current output terminal.
  • the IBIAS is connected to the power supply port of the photosensor, so that no additional power supply circuit can be used to supply power through the microprocessor 40, which helps to simplify the circuit. If the photosensor 30 is used without additional power supply, the bias current output IBIAS may be suspended.
  • the microprocessor 40 further includes a delay circuit 7, the output terminal sens of the voltage detecting circuit 6 is connected to the input terminal of the delay circuit 7, and the pulse voltage signal PP is used as a delay circuit.
  • the current source of the delay circuit 7 is connected to the input terminal of the low frequency switching drive circuit 2, and outputs the signal of the liquid crystal glasses switch to the low frequency switching drive circuit 2.
  • the delay time of the delay circuit 7 can be controlled.
  • the delay circuit 7 includes a CDO port for controlling the delay time.
  • the CDO port is connected with a delay control capacitor 60, and the delay control capacitor 60 is delayed by Nafira's 18 ms analog delay.
  • the delay circuit 7 further includes a TON test port for testing, which is connected in parallel with the output end of the delay circuit 7.
  • the oscillating power supply circuit of the present invention is an oscillator, and the pulse voltage signal PP and the pulse voltage signal Pn are input to an input end of the oscillating power supply circuit to provide a oscillating pulse power supply signal through the oscillating power supply.
  • the circuit converts the pulse voltage signal PP and the pulse voltage signal Pn into a high frequency charging signal, which is output from the boosting control terminals DC+ and DC-, respectively, and outputs a high frequency charging signal of 185 Hz.
  • the oscillating power supply circuit also outputs a pulse voltage signal of 185 Hz to the down-converting circuit 4 in parallel.
  • the oscillating power supply circuit also includes a TST test terminal for belonging to the test signal.
  • the frequency down circuit 4 is composed of a plurality of latches connected in series.
  • 14 latches are used to form a chain frequency divider, and the chain frequency divider is used to pass 185.
  • the square wave signal of the Hertz pulse voltage signal down-converted to 1/90 Hz is output to the low frequency switching drive circuit 2.
  • the high frequency charge and discharge boosting circuit 1 includes a rectifying circuit composed of two diode pair tube units D2A and D2B and charge and discharge capacitors C4, C5 and C8 connected to the diode pair tube units D2A and D2B.
  • the capacitor C4 is respectively connected to the common terminals of the boost control terminals DC+ and D2A
  • the capacitor C5 is respectively connected to the common terminals of the boost control terminals DC+ and D2B
  • one end of the D2A is connected to VDD
  • the other end is connected to the D2B and the pass capacitor C8 is boosted.
  • the control terminal is DC-connected, and the other end of D2B is connected to VSS.
  • the boost control terminal DC+ and DC- output a high-frequency charging signal of 185 Hz
  • the output voltage VLCD of 6.2V is output through the rectifying circuit and the charging and discharging capacitor
  • the presence of the high-frequency charge and discharge boosting circuit 1 requires only a button battery having a small voltage and a small volume to satisfy the power supply requirement of the entire circuit.
  • the low frequency switching drive circuit 2 includes two symmetric analog switch circuits and one logic switch circuit 21.
  • the output end of the high frequency charge and discharge boost circuit 1 is connected through the VLCD terminal of the microprocessor 40.
  • the LCD 2 is connected to the liquid crystal glasses through the LCDA of the microprocessor 40.
  • the first analog switch circuit 22 and the second analog switch circuit 23 are controlled by a logic switch circuit 21, which includes two control outputs, one for controlling the first analog switch circuit 22, and the other for The second analog switch circuit 23 is controlled, wherein the control signals of the two control terminals are opposite, so that the LCDA+ and the LCDA- can alternately output the voltage control signals.
  • the control terminal of the logic switching circuit includes an output terminal on from the delay circuit 7 and a 1/90 Hz square wave signal from the down-conversion circuit, and is controlled by the two signals, and the logic switching circuit receives the output from the output terminal.
  • the on signal is turned on, it is controlled by a 1/90 Hz square wave signal, so that LCDA+ and LCDA- are inverted at a frequency of 1/90 Hz, so that the liquid crystal lens 50 is flipped once in 90 seconds, which greatly reduces the driving voltage of the liquid crystal lens.
  • the frequency which effectively reduces the power consumption of the glasses, realizes the power saving function, and prolongs the service life of the battery and the glasses.
  • the photosensor 30 and the microprocessor 40 are disposed on the nose pads of the spectacle frame 10, and the power supply module 20 is disposed on the nose pads of the spectacle frame 10 or the two legs of the spectacle frame 10. on. This setting maximizes the effect of circuit components on the appearance of the glasses and improves the aesthetics of the sunglasses.
  • the liquid crystal lens includes an upper glass substrate 6 and a lower glass substrate 7, and electrodes of the upper glass substrate 6 and the lower glass substrate 7 are respectively connected to output terminals of the low frequency switching drive circuit 2 of the microprocessor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Eyeglasses (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

一种低功耗自动感光太阳眼镜,包括眼镜架(10)以及设在眼镜架(10)上的两个液晶镜片(50)、供电模块(20)、光敏器(30)、微处理器(40)和高频充放电升压电路(1),微处理器(40)包括用于切换液晶镜片(50)驱动高低电压的低频切换驱动电路(2)。通过设置在眼镜上的光敏器(30)智能感应光线的变化来自动触发开关,使镜片(50)发生明暗变化,免去用户手动操作,方便使用。通过高频充放电升压电路(1),有效提高输入的供电电压,只需连接小型低压电池即可实现工作,同时依靠低频切换驱动电路(2),大幅降低液晶镜片(50)驱动电压的频率,从而显著降低眼镜功耗,实现省电功能,延长电池及眼镜的使用寿命。

Description

一种低功耗自动感光太阳眼镜
技术领域
本发明涉及一种太阳眼镜,特别是一种低功耗自动感光太阳眼镜。
背景技术
为防止外界强光刺激造成人眼伤害,配戴太阳眼镜是人们常采用的保护措施之一。目前市场上的太阳眼镜,通常是全黑的墨镜或者是带有手动翻盖功能的墨镜,佩戴这种太阳眼镜,从有太阳或光线较强的地方到无太阳或光线不强的地方时,都需要将太阳眼镜移开或将翻盖掀起才有较好视野,如果环境频繁交替,频繁操作眼镜会增加不必要的麻烦。
现有技术中的自动感光太阳眼镜,可以针对光照环境变化自动调节镜片,其使用液晶做镜片,通过改变加在液晶镜片上的电压改变镜片的光透过率。目前的自动感光太阳眼镜耗电量大,输出电压频率较高,一般采用USB充电模式,需要在镜架上加装USB接口,影响美观,每次使用前都需要充满电,且续航时间较短,使用不方便,无法满足随时使用的要求。
发明内容
为解决上述问题,本发明的目的在于提供一种低功耗的自动感光太阳眼镜。
本发明解决其问题所采用的技术方案是:
一种低功耗自动感光太阳眼镜,包括眼镜架以及设在眼镜架上的两个液晶镜片、供电模块、用于感应环境光度的光敏器、用于调节液晶镜片光暗状态的微处理器和用于提高输出电压的高频充放电升压电路,所述光敏器与所述微处理器的控制输入端连接,所述供电模块与所述微处理器的电源端相连,所述微处理器包括升压控制端,所述升压控制端与高频充放电升压电路输入端连接,还包括用于切换液晶镜片驱动高低电压的低频切换驱动电路,所述高频充放电升压电路的输出端与低频切换驱动电路连接,所述低频切换驱动电路的输出端分别与两个液晶镜片连接。
进一步,所述低频切换驱动电路内置于微处理器中,微处理器还包括振荡电源电路和降频电路,所述振荡电源电路通过升压控制端为高频充放电升压电路提供高频充电信号,所述振荡电源电路通过降频电路向低频切换驱动电路提供低频切换信号。依靠振荡电源电路,可以提高充电频率,从而大幅提升供电电压;降频电路可以大幅降低供电电压的频率,减少驱动电压高低电平的翻转频率,减少眼镜的耗电量。
进一步,所述微处理器还包括用于为微处理器内部供电的电源驱动电路,所述供电模块通过电源端与供电模块连接并提供直流供电,所述电源驱动电路包括脉冲电源电路,所述脉冲电源电路包括脉冲电源输出端,所述脉冲电源电路将来自供电模块的直流电转换为脉冲供电信号从脉冲电源输出端输出,所述脉冲电源输出端与振荡电源电路连接。所述脉冲电源产生用于驱动微处理器内部器件工作的脉冲供电信号,所述脉冲供电信号与振荡电源电路连接提供用于起振的脉冲供电信号,所述振荡电源电路利用该脉冲供电信号产生高频充电信号供高频充放电升压电路工作。
进一步,所述脉冲电源电路还包括用于为光敏器提供供电电压的偏置电流输出端,所述偏置电流输出端与光敏器的供电端口连接。所述脉冲电源电路还产生一为外部器件供电的偏置电流输出端,所述偏置电流输出端为光敏器提供供电,对于部分需要额外供电的光敏器,无需再配置另外的供电电路,即可通过微处理器进行供电,有助于简化电路。若所采用的光敏器无需额外供电,则悬空所述偏置电流输出端即可。
进一步,所述微处理器还包括用于检测光敏器电压值的电压检测电路,所述电压检测电路的输入端与光敏器连接,电压检测电路的输出端与低频切换驱动电路连接。所述电压检测电路检测光敏器输出的电压值,当该电压值大于设定的阀值时,认为当前眼镜处于光线较强的状态,这时电压检测电路向低频切换驱动电路发送开关信号,使低频切换驱动电路工作,若电压值小于设定的阀值时,电压检测电路不输出信号,低频切换驱动电路停止输出,液晶镜片恢复正常状态。
进一步,所述电压检测电路通过一延时电路与低频切换驱动电路连接,还包括外置于微处理器的延时控制电容,所述延时控制电容与延时电路连接。通过设置延时电路和用于控制延时时间的延时控制电容,使低频切换驱动电路延时输出,避免瞬间的强光导致液晶镜片频繁降低透光率,让使用者体验感更好。
进一步,所述光敏器和微处理器设置在眼镜架的鼻托上,所述供电模块设置在眼镜架的鼻托或眼镜架的两根支腿上。这一设置最大化减少了电路元件对眼镜外观的影响,提高太阳眼镜的美观程度。
具体地,所述光敏器包括两个光敏二极管和一个固定电阻,所述光敏二极管与固定电阻并联连接。两个光敏二极管可以提高感光灵敏度,与电阻连接后可以直接将光信号转换成电压信号输出,触发微处理器工作。
具体地,所述供电模块使用一节1.55伏纽扣电池供电,所述高频充放电升压电路输出电压为电池电压的4倍即6.2伏。电池电压小,电流小于50纳安,通过升压电路可以大幅提高驱动电压,实现节省电池寿命的效果。
具体地,所述振荡电源电路为高频充放电升压电路提供的高频充电信号频率为185赫兹的对称正负电信号。
所述延时控制电容延迟为每纳法拉18毫秒的模拟延迟。所述微处理器接入一个10纳安输入偏置电流,并且输入阻抗大于1000兆欧姆。
进一步,所述降频电路向低频切换驱动电路提供的低频切换信号是频率为1/90赫兹的方波信号。1/90赫兹的频率使电平每90秒翻转一次,当液晶屏幕不亮时为低电平,耗电量少。
进一步,所述液晶镜片包括上玻璃基板和下玻璃基板,上玻璃基板、下玻璃基板的电极分别连接至所述微处理器的低频切换驱动电路的输出端。
本发明的有益效果是:本发明采用的一种低功耗自动感光太阳眼镜,通过设置在眼镜上的光敏器智能感应光线的变化来自动触发开关,使镜片发生明暗变化,免去用户手动操作,方便使用。感光电路通过高频充放电升压电路,大幅提高输入的供电电压,只需连接小型低压电池即可实现工作,同时依靠低频切换驱动电路,大幅降低液晶镜片驱动电压的频率,从而有效降低眼镜功耗,实现省电功能,延长电池及眼镜的使用寿命。
附图说明
下面结合附图和实例对本发明作进一步说明。
图1是本发明一种低功耗自动感光太阳眼镜的电路原理框图;
图2是本发明的结构示意图;
图3是本发明的外观示意图;
图4是本发明的液晶镜片的结构示意图;
图5是本发明的电路原理图;
图6是本发明电源驱动电路的电路原理图;
图7是本发明电压检测电路的电路原理图;
图8是本发明延时电路的电路原理图;
图9是本发明振荡电源电路的电路原理图;
图10是本发明降频电路的电路原理图;
图11是本发明低频切换驱动电路的电路原理图。
具体实施方式
参照图1至图4,本发明的一种低功耗自动感光太阳眼镜, 包括眼镜架10以及设在眼镜架上的两个液晶镜片50、供电模块20、用于感应环境光度的光敏器30、用于调节液晶镜片光暗状态的微处理器40和用于提高输出电压的高频充放电升压电路1,所述光敏器30与所述微处理器40的控制输入端SEI连接,所述供电模块20与所述微处理器40的电源端VDD相连,所述微处理器40包括升压控制端DC+/DC-,所述升压控制端DC+/DC-与高频充放电升压电路1输入端连接,还包括用于切换液晶镜片驱动高低电压的低频切换驱动电路2,所述高频充放电升压电路1的输出端与低频切换驱动电路2的输入端VLCD连接,所述低频切换驱动电路2的输出端LCDA+/LCDA-分别与两个液晶镜片50连接。通过设置在眼镜上的光敏器30智能感应光线的变化来自动触发开关,使镜片发生明暗变化,免去用户手动操作,方便使用。感光电路通过高频充放电升压电路1,大幅提高输入的供电电压,只需连接小型低压电池即可实现工作,同时依靠低频切换驱动电路2,大幅降低液晶镜片50驱动电压的频率,从而有效降低眼镜功耗,实现省电功能,延长电池及眼镜的使用寿命。
参照图1、图5所示,所述低频切换驱动电路2内置于微处理器40中,微处理器40内还设置有振荡电源电路3和降频电路4,所述振荡电源电路3通过升压控制端为高频充放电升压电路1提供高频充电信号,所述振荡电源电路3通过降频电路4向低频切换驱动电路2提供低频切换信号。依靠振荡电源电路3,可以提高充电频率,从而大幅提升供电电压;降频电路4可以大幅降低供电电压的频率,减少驱动电压高低电平的翻转频率,减少眼镜的耗电量。
由于本发明功耗十分低,所述供电模块20只需使用一节1.55伏纽扣电池供电,所述高频充放电升压电路1输出电压VLCD为电池电压的4倍即6.2伏。纽扣电池电压小,成本低,通过升压电路可以大幅提高驱动电压,实现节省电池寿命的效果。
所述振荡电源电路3为高频充放电升压电路1提供的高频充电信号频率为185赫兹。所述降频电路4向低频切换驱动电路2提供的低频切换信号是频率为1/90赫兹的方波信号。1/90赫兹的频率使电平每90秒翻转一次,耗电量少。
具体地,参照图1、图6所示,所述微处理器40还包括用于为微处理器40内部各器件提供供电的电源驱动电路5,所述电源驱动电路5包括一脉冲电源电路,所脉冲电源电路用于产生脉冲供电信号,所述脉冲电源电路通过电源端VDD与纽扣电池连接获取1.55V的直流电压并转换为脉冲供电信号输出,脉冲电源电路提供两路脉冲供电信号:脉冲电压信号PP和脉冲电压信号Pn,所述脉冲电压信号PP和脉冲电压信号Pn输出至振荡电源电路3中为振荡电源电路3提供起振脉冲供电信号,另外脉冲电压信号PP还作为电压检测电路6和延时电路7的电流源。
参照图1、图5和图7所示,所述微处理器40还包括用于检测光敏器30电压值的电压检测电路6,所述电压检测电路6的输入端与光敏器30连接,电压检测电路6的输出端与低频切换驱动电路连接。所述光敏器30包括两个光敏二极管和一个固定电阻,所述光敏二极管与固定电阻并联连接。采用两个光敏二极管可以提高感光灵敏度,与电阻连接后可以直接将光信号转换成电压信号通过微处理器40的SEI引脚输出到电压检测电路6中, 参照图7所示,脉冲电压信号PP为电压检测电路6提供脉冲驱动电源,当光敏器30的电压值大于420mV时,导通门电路,所述电压检测电路6的输出端sens输出控制信号,当光敏器30的电压值小于375mV时,电压检测电路6的输出端sens停止控制信号的输出,所述电压检测电路6还设置有用于检测是否有控制信号输出的TSENS端口。
本发明中,光敏器30无需额外进行供电即可产生足够的检测电压。而对于一些光敏器30需要额外进行供电才能正常工作,参照图6所示,所述脉冲电源电路还包括用于为光敏器提供供电电压的偏置电流输出端IBIAS,所述偏置电流输出端IBIAS与光敏器的供电端口连接,这样无需再配置另外的供电电路,即可通过微处理器40进行供电,有助于简化电路。若所采用的光敏器30无需额外供电,则悬空所述偏置电流输出端IBIAS即可。
参照图1、图8所示,微处理器40还包括一延时电路7,所述电压检测电路6的输出端sens与延时电路7的输入端连接,另外脉冲电压信号PP作为延时电路7的电流源,所述延时电路7的输出端on与低频切换驱动电路2的输入端连接,向低频切换驱动电路2输出液晶眼镜开关的信号。所述延时电路7的延时时间可以控制,延时电路7包括用于控制延时时间的CDO端口,所述CDO端口连接有延时控制电容60,所述延时控制电容60延迟为每纳法拉18毫秒的模拟延迟。为了测试延时电路7输出是否正常,所述延时电路7还包括用于进行测试的TON测试端口,所述TON测试端口与延时电路7的输出端on并联。
参照图9所示,为本发明的振荡电源电路,为一振荡器,所述脉冲电压信号PP和脉冲电压信号Pn输入至振荡电源电路的输入端为其提供起振脉冲供电信号,通过振荡电源电路将脉冲电压信号PP和脉冲电压信号Pn转换为高频充电信号,所述高频充电信号分别从升压控制端DC+和DC-输出,其输出的高频充电信号为185赫兹。另外,所述振荡电源电路还并联输出185赫兹的脉冲电压信号到降频电路4。所述振荡电源电路还包括用于属于测试信号的TST测试端。
参照图10所示,所述降频电路4由多路锁存器串联组成,具体本实施例中采用了14个锁存器组成链式分频器,通过该链式分频器,将185赫兹的脉冲电压信号降频到1/90赫兹的方波信号输出到低频切换驱动电路2。
参照图5所示,所述高频充放电升压电路1包括由两个二极管对管单元D2A和D2B组成的整流电路和与二极管对管单元D2A和D2B连接的充放电电容C4、C5和C8,其中电容C4分别连接升压控制端DC+和D2A公共端,电容C5分别连接升压控制端DC+和D2B公共端,所述D2A的一端连接VDD,另一端D2B连接及与通过电容C8与升压控制端DC-连接,D2B的另一端连接VSS,这样,当升压控制端DC+和DC-输出185赫兹的高频充电信号时,通过整流电路和充放电电容输出6.2V的输出电压VLCD,由于该高频充放电升压电路1的存在,只需采用电压及体积较小的纽扣电池即可满足整个电路的供电需求。
参照图11所示,所述低频切换驱动电路2包括两个对称的模拟开关电路和一个逻辑开关电路21,所述高频充放电升压电路1的输出端通过微处理器40的VLCD端连接到低频切换驱动电路2,并分别通过第一模拟开关电路22和第二模拟开关电路23连接至低频切换驱动电路2的输出端LCD1和LCD2,其中LCD1通过微处理器40的LCDA+连接液晶眼镜,LCD2通过微处理器40的LCDA-连接液晶眼镜。所述第一模拟开关电路22和第二模拟开关电路23受逻辑开关电路21控制,所述逻辑开关电路21控制包括两个控制输出端,一个用于控制第一模拟开关电路22,另一个用于控制第二模拟开关电路23,其中两个控制端的控制信号相反,因此LCDA+和LCDA-能交替输出的电压控制信号。
所述逻辑开关电路的控制端包括来自延时电路7的输出端on和来自降频电路的1/90赫兹的方波信号,受到该两个信号的控制,逻辑开关电路在接收到来自输出端on的开启信号后,受到1/90赫兹的方波信号控制,使LCDA+和LCDA-以1/90赫兹的频率翻转输出,进而使液晶镜片50在90秒翻转一次,大幅降低液晶镜片驱动电压的频率,从而有效降低眼镜功耗,实现省电功能,同时延长电池及眼镜的使用寿命。
参照图2、3所示,所述光敏器30和微处理器40设置在眼镜架10的鼻托上,所述供电模块20设置在眼镜架10的鼻托或眼镜架10的两根支腿上。这一设置最大化减少了电路元件对眼镜外观的影响,提高太阳眼镜的美观程度。
参照图4所示,所述液晶镜片包括上玻璃基板6和下玻璃基板7,上玻璃基板6、下玻璃基板7的电极分别连接至所述微处理器的低频切换驱动电路2的输出端。
以上所述,只是本发明的较佳实施例而已,本发明并不局限于上述实施方式,只要其以相同的手段达到本发明的技术效果,都应属于本发明的保护范围。

Claims (10)

  1. 一种低功耗自动感光太阳眼镜,包括眼镜架(10)以及设在眼镜架上的两个液晶镜片(50)、供电模块(20)、用于感应环境光度的光敏器(30)、用于调节液晶镜片光暗状态的微处理器(40)和用于提高输出电压的高频充放电升压电路(1),所述光敏器(30)与所述微处理器(40)的控制输入端连接,所述供电模块(20)与所述微处理器(40)的电源端相连,所述微处理器(40)包括升压控制端,所述升压控制端与高频充放电升压电路(1)输入端连接,还包括用于切换液晶镜片驱动高低电压的低频切换驱动电路(2),所述高频充放电升压电路(1)的输出端与低频切换驱动电路(2)连接,所述低频切换驱动电路(2)的输出端分别与两个液晶镜片(50)连接。
  2. 根据权利要求1所述的一种低功耗自动感光太阳眼镜,其特征在于:所述低频切换驱动电路(2)内置于微处理器(40)中,微处理器(40)还包括振荡电源电路(3)和降频电路(4),所述振荡电源电路(3)通过升压控制端为高频充放电升压电路(1)提供高频充电信号,所述振荡电源电路(3)通过降频电路向低频切换驱动电路(2)提供低频切换信号。
  3. 根据权利要求2所述的一种低功耗自动感光太阳眼镜,其特征在于:所述微处理器(40)还包括用于为微处理器(40)内部供电的电源驱动电路(5),所述供电模块(20)通过电源端(VDD)与供电模块(20)连接并提供直流供电,所述电源驱动电路(5)包括脉冲电源电路,所述脉冲电源电路包括脉冲电源输出端,所述脉冲电源电路将来自供电模块(20)的直流电转换为脉冲供电信号从脉冲电源输出端输出,所述脉冲电源输出端与振荡电源电路(3)连接。
  4. 根据权利要求3所述的一种低功耗自动感光太阳眼镜,其特征在于:所述脉冲电源电路还包括用于为光敏器(30)提供供电电压的偏置电流输出端,所述偏置电流输出端与光敏器的供电端口连接。
  5. 根据权利要求2所述的一种低功耗自动感光太阳眼镜,其特征在于:所述微处理器(40)还包括用于检测光敏器电压值的电压检测电路(6),所述电压检测电路(6)的输入端与光敏器连接,电压检测电路(6)的输出端与低频切换驱动电路连接。
  6. 根据权利要求5所述的一种低功耗自动感光太阳眼镜,其特征在于:所述电压检测电路(6)通过一延时电路(7)与低频切换驱动电路(2)连接,还包括外置于微处理器(40)的延时控制电容(60),所述延时控制电容(60)与延时电路(7)连接。
  7. 根据权利要求2所述的一种低功耗自动感光太阳眼镜,其特征在于:所述光敏器(30)和微处理器(40)设置在眼镜架(10)的鼻托上,所述供电模块(20)设置在眼镜架(10)的鼻托或眼镜架(10)的两根支腿上。
  8. 根据权利要求2所述的一种低功耗自动感光太阳眼镜,其特征在于:所述供电模块(20)使用一节1.55伏纽扣电池供电,所述高频充放电升压电路(1)输出电压为电池电压的4倍即6.2伏。
  9. 根据权利要求2所述的一种低功耗自动感光太阳眼镜,其特征在于:所述振荡电源电路(3)为高频充放电升压电路(1)提供的高频充电信号频率为185赫兹。
  10. 根据权利要求2所述的一种低功耗自动感光太阳眼镜,其特征在于:所述降频电路(4)向低频切换驱动电路(2)提供的低频切换信号是频率为1/90赫兹的方波信号。
PCT/CN2017/111986 2017-08-02 2017-11-21 一种低功耗自动感光太阳眼镜 WO2019024333A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PL17920557.0T PL3611558T3 (pl) 2017-08-02 2017-11-21 Automatycznie światłoczułe okulary przeciwsłoneczne o niskim zużyciu energii
KR1020197031145A KR102174757B1 (ko) 2017-08-02 2017-11-21 저전력소모 자동 감광성 선글라스
JP2020509140A JP6874214B2 (ja) 2017-08-02 2017-11-21 低消費電力の自動感光式サングラス
US16/607,194 US10908435B2 (en) 2017-08-02 2017-11-21 Automatically photosensitive sunglasses with low power consumption
EP17920557.0A EP3611558B1 (en) 2017-08-02 2017-11-21 Low-power consumption automatic photosensitive sunglasses
ES17920557T ES2916843T3 (es) 2017-08-02 2017-11-21 Gafas de sol fotosensibles automáticas de bajo consumo de energía

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201720961210.6U CN207198496U (zh) 2017-08-02 2017-08-02 一种低功耗自动感光太阳眼镜
CN201720961210.6 2017-08-02

Publications (1)

Publication Number Publication Date
WO2019024333A1 true WO2019024333A1 (zh) 2019-02-07

Family

ID=61796233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/111986 WO2019024333A1 (zh) 2017-08-02 2017-11-21 一种低功耗自动感光太阳眼镜

Country Status (9)

Country Link
US (1) US10908435B2 (zh)
EP (1) EP3611558B1 (zh)
JP (1) JP6874214B2 (zh)
KR (1) KR102174757B1 (zh)
CN (1) CN207198496U (zh)
ES (1) ES2916843T3 (zh)
PL (1) PL3611558T3 (zh)
PT (1) PT3611558T (zh)
WO (1) WO2019024333A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110597152B (zh) * 2019-10-21 2024-04-30 航宇救生装备有限公司 基于微控制器的防强闪光镜片开关态自适应控制电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4968127A (en) * 1988-11-23 1990-11-06 Russell James P Controllable, variable transmissivity eyewear
CN201203720Y (zh) * 2008-05-30 2009-03-04 北京市加华博来科技有限公司 全自动电控变色液晶太阳镜
CN101592791A (zh) * 2008-05-30 2009-12-02 北京市加华博来科技有限公司 全自动电子变色镜结构
CN101592809A (zh) * 2008-05-30 2009-12-02 北京市加华博来科技有限公司 液晶太阳镜的变色控制方法及装置
CN203786419U (zh) * 2014-04-23 2014-08-20 量子通信科技股份(香港)有限公司 一种基于液晶的变色太阳镜

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51124936A (en) * 1975-04-24 1976-10-30 Dainippon Toryo Co Ltd Glasses
JPS52143849A (en) * 1976-05-26 1977-11-30 Nitto Kohki Co Goggles for welding
JPS5474546U (zh) * 1977-11-05 1979-05-26
US5184156A (en) * 1991-11-12 1993-02-02 Reliant Laser Corporation Glasses with color-switchable, multi-layered lenses
JP2626455B2 (ja) * 1993-03-29 1997-07-02 セイコーエプソン株式会社 電子サングラス
JP2824212B2 (ja) * 1994-08-11 1998-11-11 国際電気株式会社 無線呼出受信機のlcd表示器用バックライト
JP3861682B2 (ja) * 2000-12-27 2006-12-20 カシオ計算機株式会社 フィールドシーケンシャル液晶表示装置
JP2009086255A (ja) * 2007-09-28 2009-04-23 Citizen Holdings Co Ltd 液晶シャッター並びにこの液晶シャッターを備えた電子サングラス、電子idカードホルダ及び電子ブレスレット
JP2013534847A (ja) * 2010-06-20 2013-09-09 エレンザ, インコーポレイテッド 特定用途向け集積回路を備える眼科デバイスおよび方法
US9351827B2 (en) * 2012-04-03 2016-05-31 Johnson & Johnson Vision Care, Inc. Lens driver for variable-optic electronic ophthalmic lens
US10416504B2 (en) * 2013-05-21 2019-09-17 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
JP2016161807A (ja) * 2015-03-03 2016-09-05 株式会社半導体エネルギー研究所 調光装置、調光システム、及び給電システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4968127A (en) * 1988-11-23 1990-11-06 Russell James P Controllable, variable transmissivity eyewear
CN201203720Y (zh) * 2008-05-30 2009-03-04 北京市加华博来科技有限公司 全自动电控变色液晶太阳镜
CN101592791A (zh) * 2008-05-30 2009-12-02 北京市加华博来科技有限公司 全自动电子变色镜结构
CN101592809A (zh) * 2008-05-30 2009-12-02 北京市加华博来科技有限公司 液晶太阳镜的变色控制方法及装置
CN203786419U (zh) * 2014-04-23 2014-08-20 量子通信科技股份(香港)有限公司 一种基于液晶的变色太阳镜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3611558A4 *

Also Published As

Publication number Publication date
EP3611558A1 (en) 2020-02-19
EP3611558A4 (en) 2021-01-20
KR20190126916A (ko) 2019-11-12
PL3611558T3 (pl) 2022-07-18
KR102174757B1 (ko) 2020-11-06
ES2916843T3 (es) 2022-07-06
CN207198496U (zh) 2018-04-06
PT3611558T (pt) 2022-06-15
US20200387011A1 (en) 2020-12-10
EP3611558B1 (en) 2022-04-27
JP6874214B2 (ja) 2021-05-19
JP2020518868A (ja) 2020-06-25
US10908435B2 (en) 2021-02-02

Similar Documents

Publication Publication Date Title
US8513892B2 (en) Illuminance sensor, and electronic equipment and semiconductor device using the same
WO2014153787A1 (zh) 一种led背光驱动电路及背光模组
WO2019015215A1 (zh) 直流电压变换电路及直流电压变换方法和液晶显示装置
CN201456997U (zh) 一种用于交通工具的遮光装置
CN101592791A (zh) 全自动电子变色镜结构
CN201203720Y (zh) 全自动电控变色液晶太阳镜
TWI381207B (zh) 液晶顯示器
CN101592809B (zh) 液晶太阳镜的变色控制方法
WO2015149474A1 (zh) 模拟电压源电路及显示装置
WO2019024333A1 (zh) 一种低功耗自动感光太阳眼镜
CN202923351U (zh) 一种可调汽车智能遮阳镜
CN210112353U (zh) 安防照明一体路灯系统
US7061462B1 (en) Driving scheme and electronic circuitry for the LCD electrooptical switching element
CN106249431B (zh) 一种智能滤光液晶太阳镜
CN113543411B (zh) 一种限流电路及其应用
KR19980013821A (ko) 액정 디스플레이의 자동 밝기 조절장치
CN211375222U (zh) 一种低功耗渐变太阳眼镜及其镜片控制系统
US8330093B2 (en) Apparatus and method for preventing charge pumping in series connected diode stacks
JP3256008B2 (ja) 自動調光回路
CN110165887A (zh) 一种电荷泵高速检测电路和方法
CN101592795B (zh) 全自动电子变色镜
US20230343272A1 (en) Control method of display module, display module and display device
CN101969732B (zh) 液晶显示器的背光模块保护电路
KR19980068470A (ko) 절전형 액정표시장치의 백라이트
CN209767690U (zh) 一种节能的液晶电视机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920557

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197031145

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020509140

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017920557

Country of ref document: EP

Effective date: 20191114

NENP Non-entry into the national phase

Ref country code: DE