WO2019024147A1 - 基于结构光的车轮多参数在线测量系统及其测量方法 - Google Patents

基于结构光的车轮多参数在线测量系统及其测量方法 Download PDF

Info

Publication number
WO2019024147A1
WO2019024147A1 PCT/CN2017/098573 CN2017098573W WO2019024147A1 WO 2019024147 A1 WO2019024147 A1 WO 2019024147A1 CN 2017098573 W CN2017098573 W CN 2017098573W WO 2019024147 A1 WO2019024147 A1 WO 2019024147A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
line
tread
profile
measuring device
Prior art date
Application number
PCT/CN2017/098573
Other languages
English (en)
French (fr)
Inventor
冯其波
董辉
郑发家
邵双运
谭志忠
赵晓华
Original Assignee
东莞市诺丽电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞市诺丽电子科技有限公司 filed Critical 东莞市诺丽电子科技有限公司
Priority to EP17920012.6A priority Critical patent/EP3561443A4/en
Priority to US16/469,752 priority patent/US10895451B2/en
Publication of WO2019024147A1 publication Critical patent/WO2019024147A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2513Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with several lines being projected in more than one direction, e.g. grids, patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61KAUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
    • B61K9/00Railway vehicle profile gauges; Detecting or indicating overheating of components; Apparatus on locomotives or cars to indicate bad track sections; General design of track recording vehicles
    • B61K9/12Measuring or surveying wheel-rims
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters
    • G01B11/10Measuring arrangements characterised by the use of optical techniques for measuring diameters of objects while moving
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters
    • G01B11/10Measuring arrangements characterised by the use of optical techniques for measuring diameters of objects while moving
    • G01B11/105Measuring arrangements characterised by the use of optical techniques for measuring diameters of objects while moving using photoelectric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/245Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using a plurality of fixed, simultaneously operating transducers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9515Objects of complex shape, e.g. examined with use of a surface follower device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • G06T2207/30252Vehicle exterior; Vicinity of vehicle
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils

Definitions

  • the invention relates to a wheel on-line measuring system and a measuring method thereof, in particular to a structured light-based wheel multi-parameter on-line measuring system and a measuring method thereof.
  • the wheel rim portion rubs against the inner side of the rail to cause the rim to wear.
  • the wheel tread often causes local abrasion due to braking or idling. Tread wear and rim wear can cause changes in the size of the wheel, which greatly affects ride comfort and operational stability.
  • the wear of the wheel exceeds a certain limit, there is a hidden danger that causes a major traffic accident. Therefore, the outer dimensions of the wheels are an important indicator of the state of the wheelset technology.
  • the model is generally used to visually inspect the wheel size in China, or to perform manual measurement using a special wheel size measuring gauge.
  • These detection methods need to accurately position the wheel during the measurement process, and have the disadvantages of inefficiency, poor reliability, low measurement accuracy, and long locomotive turnaround time, which cannot be overcome by static detection, and can not truly provide reliable repair for subway train wheelsets.
  • According to the information, and can not know the quality of the wheel in operation in a timely manner it is inevitable that the wheel with excessive wear is still in use, and there is a hidden danger of driving safety.
  • the existing detection technology uses the image analysis to determine the deformation of the wheelset. The technical solution is easily interfered by the ambient light and cannot reach the state of working around the clock.
  • the object of the present invention is to provide a multi-parameter on-line measurement system for wheel based on structured light and a measurement method thereof, so as to solve the problem that the current on-line measurement system of the wheel has poor reliability and low measurement accuracy.
  • the present invention mainly adopts the following technical solutions:
  • a structured light-based wheel multi-parameter on-line measuring system comprising a system controller, a wheel sensor, a first wheel on-line measuring device and a second wheel on-line measuring device, the wheel sensor, the first wheel on-line measuring device, and the second wheel
  • the online measuring devices are all connected to the system controller; and the wheel sensor, the first wheel online measuring device, and the second wheel online measuring device are sequentially arranged along the direction of the train and Row setting
  • the first wheel on-line measuring device and the second wheel in-line measuring device each include a tread structure light unit, a cross-sectional structure light unit and a two-dimensional image sensor, and the cross-sectional structure light unit, the tread structure light unit and the two-dimensional image sensor along Arranged outside the same rail;
  • the tread structure light unit emits n line lasers, wherein n ⁇ 2, when the n lines of laser light are projected onto the wheel, forming n wheel tread contour curves; the sectional structure light unit emits m lines a laser, wherein m ⁇ 1, when the m lines of laser light are projected onto the wheel, forming m wheel profile profiles; m wheel profile profiles intersecting n wheel tread profiles on the tread profile line from the inner side 60 a slowly varying region of ⁇ 80 mm; and the n wheel tread profile and the m wheel profile profiles are both within the imaging range of the two-dimensional image sensor.
  • the line laser is emitted by a laser emitting device
  • the laser emitting device includes a line laser source, a beam splitter and a mirror, and the beam splitter and the mirror divide the line laser source into a specific angle relationship Multiple line lasers.
  • the line laser is emitted by a laser emitting device, the laser emitting device comprising a line laser source and a binary optical beam splitter, the binary optical beam splitter dividing the line laser source into Multiple line lasers with a specific angular relationship.
  • the line laser is emitted by a laser emitting device, and the laser emitting device comprises a plurality of line laser sources, and the plurality of line laser sources are mounted at a specific angle and emit a plurality of line lasers forming a certain angular relationship. .
  • cross-sectional structure light unit of the first wheel on-line measuring device and the cross-sectional structure light unit of the second wheel on-line measuring device emit the same number of line lasers, and the corresponding pair of line lasers are projected to the same wheel cross-section circle. .
  • a method for measuring a multi-parameter on-wheel based on structured light comprising the following steps:
  • Step 2 Train wheel parameter detection:
  • the cross-sectional profiles of the m-line lasers of the structured light unit on the wheel are lp 1-1 , lp 1-2 , ..., lp 1-m , lp 2-1 , lp 2-2 , ..., lp 2- m , the tread structure of the first wheel on-line measuring device
  • the n 1 line of the light unit has a tread profile on the wheel of lt 1-1 , lt 1-2 , ..., lt 1-n1
  • the second wheel is measured online Tread structure of the device
  • the n 2 line laser of the light unit has a tread profile on the wheel of lt 2-1 , lt 2-2 , ..., lt 2-n2 , respectively, and two two-dimensional image sensors are taken at
  • Lt' 2-2 ..., lt' 2-n2 and the cross -sectional structure light profile lp' 1-1 , lp' 1-2 , ..., lp' 1-m , lp' 2-1 , Lp' 2-2 , ..., lp' 2-m ;
  • the first set of three-dimensionally reconstructed tread structure light contours lt' 1-1 , lt' 1-2 , ..., lt' 1-n1 , lt' 2- 1 , lt' 2-2 , ..., lt' 2-n2 are processed to synthesize a wheel tread curve lt', according to the tread curve lt', calculate the first set of wheel rim height and rim thickness by definition Or, for all n 1 +n 2 reconstructed tread profiles, respectively, to obtain n 1 + n 2 wheel rim height and rim thickness values, after removing the rim height and rim thickness values with larger errors, The average value of the wheel rim height and the rim thickness of the remaining wheels is averaged, and the wheel rim height and the rim thickness of the first group are calculated;
  • Step 3 Real-time judgment alarm: According to the measured wheel diameter, rim height, rim thickness and standard value measured in step 2, the difference is obtained; according to the diameter difference, the rim height difference, the rim thickness difference The value of the value determines whether an alarm prompt is needed; whether the alarm prompt is needed according to whether there is scratch and peeling, when all the parameters do not exceed the set value and there is no abrasion and peeling, it is considered safe; when one of them When more than one parameter exceeds the set value, or when there is scratch and peeling, the system determines that there is a hidden danger and gives an alarm.
  • the detection section is provided with a plurality of sets of the structured light-based multi-parameter on-line measurement system.
  • the plurality of sets of the structured light-based multi-parameter on-line measurement system are sequentially After shooting the different areas of the wheel, after the wheel rolls in the detection area for one week, the three-dimensional reconstruction and image splicing of multiple sets of structured light-based wheel multi-parameter on-line measurement system are obtained, and the complete contour of the train wheel is obtained.
  • the invention has the beneficial effects that: the tread structure light unit and the sectional structure light unit project the wheel profile contour and the tread contour on the wheel, and the two two-dimensional detectors take two images and obtain corresponding corresponding after three-dimensional reconstruction.
  • Two-part wheel tread and profile information can be obtained according to two images to obtain wheel diameter, rim height and rim thickness.
  • system reliability and measurement accuracy can be improved.
  • the active method of projecting the line laser to form the profile of the wheel profile and the tread profile is less affected by the ambient light; the diameter of the wheel is determined according to the contour of the two contours of the same circle, and the wheel is not precisely positioned.
  • FIG. 1 is a schematic structural view of a first embodiment of a structured light-based wheel multi-parameter on-line measuring system according to the present invention
  • FIG. 2 is a schematic view showing the distribution of the structured light-based multi-parameter on-line measuring system shown in FIG. 1;
  • FIG. 3 is a schematic view showing the configuration of a laser line of the tread structure light unit of FIG. 1;
  • FIG. 4 is a schematic structural view of a cross-sectional profile curve and two tread contour curves of the first wheel on-line measuring device of FIG. 1;
  • FIG. 5 is a schematic diagram of modifying a fitting circle diameter D 1 to a rolling circle according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic view showing the configuration of five lines of laser light of a cross-sectional structure light unit according to Embodiment 2 of the present invention.
  • FIG. 7 is a schematic structural view showing a profile curve of five wheel profiles formed when a line laser of a cross-sectional structure light unit is projected onto a wheel according to a second embodiment of the present invention
  • FIG. 8 is a schematic structural view showing a profile curve of nine wheel profiles formed when a line laser of a tread structure light unit is projected onto a wheel according to a second embodiment of the present invention
  • FIG. 9 is a schematic structural view of a five-wheel profile curve and nine wheel profile curves formed by a line laser of a cross-sectional structure light unit and a line laser of a tread structure light unit simultaneously projected onto a wheel;
  • FIG. 10 is a schematic diagram showing the distribution of multiple sets of the structured light-based wheel multi-parameter on-line measurement system according to the first embodiment and the second embodiment of the present invention.
  • the structured light-based wheel multi-parameter on-line measurement system includes a system controller (not shown)
  • the wheel sensor 10, the first wheel on-line measuring device 20, and the second wheel in-line measuring device 30, the wheel sensor 10, the first wheel in-line measuring device 20, and the second wheel in-line measuring device 30 are sequentially arranged side by side in the direction of the train. Settings.
  • the wheel sensor 10, the first wheel on-line measuring device 20, and the second wheel in-line measuring device 30 are all connected to the system controller; the midpoint of the first wheel in-line measuring device 20 and the second wheel in-line measuring device 30 is Point O, in the present embodiment, the first wheel on-line measuring device 20 and the second wheel in-line measuring device 30 are mirror-symmetrical with respect to a plane perpendicular to the rail 200 at an O point. Understandably, The first wheel on-line measuring device 20 and the second wheel in-line measuring device 30 may also be asymmetrically arranged.
  • the first wheel on-line measuring device 20 and the second wheel in-line measuring device 30 each include a tread structure light unit 21, a cross-sectional structure light unit 22, and a two-dimensional image sensor 23, and the cross-sectional structure light unit 22 and the tread structure light unit 21 And the two-dimensional image sensor 23 is arranged along the same rail, but the order of the three can be reversed.
  • the line laser light emitted by the cross-sectional structure light unit 22 of the first wheel in-line measuring device 20 is equal to the number of line laser beams emitted by the cross-sectional structural unit 22 of the second wheel in-line measuring device 20, and the corresponding pair of line lasers are projected to The section of the same wheel is rounded.
  • the tread structure light unit 21 can emit n line lasers, wherein n ⁇ 2.
  • the tread structure light unit 21 emits two line lasers. Adjusting the position and direction of the tread structure light unit 21 such that the two planes formed by the two line lasers are perpendicular to the inner side of the wheel 100, and when two lines of the two tread structure light units 21 are laser projected onto the wheel 100, respectively The wheel tread profile curves lt 1-1 and lt 1-2 are formed .
  • the two line lasers in the tread structure light unit 21 are emitted by a laser emitting device including a line laser source 211, one or more beam splitters 212, and a mirror 213.
  • the angle between the beam splitter 212 and the line laser exit plane is 60°, and the angle between the mirror 213 and the line laser exit plane is 45°.
  • the line laser light source 211 emits light through the beam splitter 212 and the mirror 213, and forms two line lasers perpendicular to the inner side surface of the wheel 100 at an angle of 30°.
  • the cross-sectional structure light unit 22 can emit m line lasers, where m ⁇ 1.
  • the position and direction of the cross-sectional structure light unit 22 are adjusted such that: a plane formed by the line laser of the cross-sectional structure light unit 22 is perpendicular to the horizontal plane, and an angle between the optical axis of the line laser and the horizontal plane is ⁇ , wherein 0° ⁇ ⁇ 60°; a line of laser light of a cross-sectional structure is projected onto the wheel to form a wheel profile curve lp 1-1 ; 3 the wheel profile curve lp 1-1 and the wheel tread profile lt 1- 1.
  • lt 1-2 intersects the slowly varying area of the inner surface of the tread contour line from 60 to 80 mm.
  • the measuring method of the structured light-based wheel multi-parameter on-line measuring system comprises the following steps:
  • Step 2 Train wheel parameter detection
  • Cross-sectional structure of the second wheel on-line measuring device 30 The cross-sectional profile of the line laser of the light unit 22 on the wheel is lp 1-1 , lp 2-1 , respectively, and the tread structure of the first wheel on-line measuring device 20 is two of the light unit 21
  • the tread profile of the strip laser on the wheel is lt 1-1 , lt 1-2 , respectively, and the tread surface of the second wheel on-line measuring device 30.
  • the two lines of the light unit 21 on the wheel have a tread profile of lt 2- 1 , lt 2-2 , two two-dimensional image sensors 23 capture a set of two sections of the bottom of the wheel profile and tread profile images P 1-1 and P 2-1 ;
  • Step 3 Real-time judgment alarm: According to the measured wheel diameter, rim height, rim thickness and standard value measured in step 2, the difference is obtained; according to the diameter difference, the rim height difference, the rim thickness difference The value of the value determines whether an alarm prompt is needed. Whether the alarm is required according to whether there is scratch and peeling, when all the parameters do not exceed the set value and there is no scratch and peeling, it is considered safe; one of them When more than one parameter exceeds the set value, or there is abrasion and peeling, the system determines that there is a hidden danger to alarm.
  • FIG. 6 to FIG. 10 it is a second embodiment of a structured light-based wheel multi-parameter on-line measurement system provided by the present invention.
  • the structured light-based wheel multi-parameter on-line measurement system of the present embodiment and the first embodiment Basically the same, including a system controller (not shown), a wheel sensor 10, a first wheel online measuring device 20, a second wheel online measuring device 30, the first wheel online measuring device 20, and a second wheel online measuring device
  • Each of the 30 includes a tread structure light unit 21, a cross-sectional structure light unit 22, and a two-dimensional image sensor 23; the cross-sectional structure light unit 22, the tread structure light unit 21, and the two-dimensional image sensor 23 are arranged along the same rail 200, and the order thereof Can be reversed.
  • the difference between this embodiment and the first embodiment is that the cross-sectional structure light unit 22 in the present embodiment emits five line lasers, and the tread structure light unit 21 emits nine line lasers.
  • the nine-line laser and the cross-sectional structure light unit 22 of the tread structure light unit 21 emits five line light sources each emitted by a laser emitting device.
  • the laser emitting device includes a line laser source 212 and a binary optical beam splitter 50.
  • the line laser source 212 of the tread structure light unit 21 is split by the binary optical beam splitter 50, and the line laser source 212 is used. It is divided into nine line lasers with a specific angular relationship and perpendicular to the same plane.
  • the line laser source of the cross-sectional structure light unit 22 is split by the binary optical beam splitter 50, and the line laser source is divided into a five-line laser having a specific angular relationship and perpendicular to the same plane.
  • Step 2 Train wheel parameter detection
  • the first set of three-dimensional contour image reconstruction according to the images P 1-1 and P 2-1 taken by the first two sets of two-dimensional image sensors 23, and the structured light parameters calibrated in step (2) of step one, Three-dimensional image reconstruction of P 1-1 and P 2-1 to obtain the tread structure light contours lt' 1-1 , lt' 1-2 , ..., lt' 1-5 , lt' 2-1 after three-dimensional reconstruction , lt' 2-2 , ..., lt' 2-5 and the cross-sectional structure light profile lp' 1-1 , lp' 1-2 , ..., lp' 1-9 , lp' 2-1 , lp' 2-2 , ..., lp' 2-9 ;
  • Step 3 Determine the alarm in real time.
  • the difference is determined by comparing the wheel diameter, the rim height, the rim thickness and the standard value measured in the third step. According to the diameter difference, the rim height difference, and the rim thickness difference, it is judged whether an alarm prompt is needed, and whether the alarm prompt is needed according to whether there is abrasion and peeling, when all the parameters do not exceed the set value and do not exist When scratching and peeling, it is considered safe; when one or more of the parameters exceeds the set value, or there is abrasion and peeling, the system determines that there is a hidden danger for alarm.
  • a plurality of sets of the multi-parameter on-line measuring system based on the structured light can be arranged along the forward direction of the train, and when the train passes through the detection area, multiple sets are provided.
  • the structured light-based wheel multi-parameter on-line measuring system sequentially photographs different areas of the wheel, and after the wheel rolls in the detection area, three-dimensional reconstruction and image of the plurality of sets of the structured light-based multi-parameter on-line measurement system are performed. Stitching, you can get the complete contour of the train wheels.
  • the beneficial effects of the present invention are: using the tread structure light unit 21 and the cross-sectional structure light unit 22
  • the wheel profile and the tread profile are projected on the wheel.
  • Two two-dimensional detectors capture two images, and after three-dimensional reconstruction, the corresponding two-part wheel tread and profile information can be obtained, and the wheel diameter can be obtained according to the two images.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Quality & Reliability (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种基于结构光的车轮多参数在线测量系统及其测量方法,测量系统包括车轮传感器(10)、第一车轮在线测量装置(20)及第二车轮在线测量装置(30),第一车轮在线测量装置(20)、第二车轮在线测量装置(30)均包括踏面结构光单元(21)、剖面结构光单元(22)及二维图像传感器(23);踏面结构光单元(21)与剖面结构光单元(22)在车轮上投影出剖面轮廓曲线与踏面轮廓曲线,二维图像传感器(23)摄取图像,并将图像三维重建获取踏面与剖面轮廓信息,根据获取的轮廓信息获得车轮直径、轮缘高及轮缘厚;可靠性及测量精度高,且减小了外界环境光的影响;还可根据同一个圆上两段剖面结构光轮廓拟合圆求出车轮直径,从而,无需对车轮进行精确定位。

Description

基于结构光的车轮多参数在线测量系统及其测量方法 技术领域
本发明涉及一种车轮在线测量系统及其测量方法,尤其涉及一种基于结构光的车轮多参数在线测量系统及其测量方法。
背景技术
列车在车轮通过弯道或道岔时,车轮轮缘部分与钢轨内侧面发生摩擦造成轮缘磨耗。另外,列车运行过程中,车轮踏面常因制动或空转打滑等原因产生局部擦伤。而踏面磨耗和轮缘磨耗会导致车轮外形尺寸发生改变,极大影响着乘坐舒适性和运行稳定性。当车轮的磨耗量超过一定限度时,存在引发重大行车事故的隐患。因此,车轮的外形尺寸是衡量轮对技术状态的重要指标。
目前国内一般采用样板目测检查车轮尺寸,或者使用专用轮箍尺寸检测量具进行人工测量。这些检测方式在测量过程中需对车轮进行精确定位,具有效率低下、可靠性差、测量精度低、占用机车周转时间长等静态检测无法克服的缺点,不能真正的为地铁列车轮对的检修提供可靠的依据信息,而且无法及时了解车轮在运行中的质量状况,必然出现磨耗过度的车轮仍在继续使用的情况,存在行车安全隐患。另外,现有的检测技术,通过采用图像分析进行轮对变形判断,该技术方案容易受环境光干扰较大,并不能达到全天候工作的状态。
发明内容
为此,本发明的目的在于提供一种基于结构光的车轮多参数在线测量系统及其测量方法,以解决目前车轮在线测量系统可靠性差及测量精度低的问题。
为实现上述目的,本发明主要采用以下技术方案:
一种基于结构光的车轮多参数在线测量系统,包括系统控制器、车轮传感器、第一车轮在线测量装置及第二车轮在线测量装置,所述车轮传感器、第一车轮在线测量装置、第二车轮在线测量装置均连接于系统控制器上;且车轮传感器、第一车轮在线测量装置、第二车轮在线测量装置沿列车前进方向依次并 排设置;
所述第一车轮在线测量装置、第二车轮在线测量装置均包括有踏面结构光单元、剖面结构光单元及二维图像传感器,所述剖面结构光单元、踏面结构光单元及二维图像传感器沿同一条钢轨外侧排列;
所述踏面结构光单元发射出n条线激光,其中,n≥2,所述n条线激光投射到车轮上时,形成n条车轮踏面轮廓曲线;所述剖面结构光单元发射出m条线激光,其中,m≥1,所述m条线激光投射到车轮上时,形成m条车轮剖面轮廓曲线;m条车轮剖面轮廓曲线与n条车轮踏面轮廓曲线相交于踏面轮廓线距内侧面60~80mm的缓变区域;且所述的n条车轮踏面轮廓曲线与m条车轮剖面轮廓曲线均位于所述二维图像传感器的成像范围内。
进一步地,所述线激光由激光发射装置发射而成,所述激光发射装置包括线激光光源、分光器及反射镜,所述分光器及反射镜将所述线激光光源分为具有特定角度关系的多条线激光。
进一步地,所述线激光由激光发射装置发射而成,所述激光发射装置包括一个线激光光源与一个二元光学分束器,所述二元光学分束器将所述线激光光源分为具有特定角度关系的多条线激光。
进一步地,所述线激光由激光发射装置发射而成,所述激光发射装置包括多个线激光光源,多个所述线激光光源呈特定角度安装并发射出构成有一定角度关系的多条线激光。
进一步地,所述第一车轮在线测量装置的剖面结构光单元与第二车轮在线测量装置的剖面结构光单元出射的线激光数量相等,且对应的每一对线激光都投射到同一车轮剖面圆。
一种基于结构光的车轮多参数在线测量方法,包括以下步骤:
步骤一、安装与标定:
(1)将所述的基于结构光的车轮多参数在线测量系统安装于检测路段;
(2)标定结构光参数;
步骤二、列车车轮参数检测:
(1)获取被测列车车轮轮廓信息:列车经过时,车轮传感器检测到车轮后, 第一车轮在线测量装置、第二车轮在线测量装置同时工作,记第一、第二车轮在线测量装置的剖面结构光单元的m条线激光在车轮上的剖面轮廓分别为lp1-1、lp1-2、……、lp1-m、lp2-1、lp2-2、……、lp2-m,第一车轮在线测量装置的踏面结构光单元的n1条线激光在车轮上的踏面轮廓分别为lt1-1、lt1-2、……、lt1-n1,第二车轮在线测量装置的踏面结构光单元的n2条线激光在车轮上的踏面轮廓分别为lt2-1、lt2-2、……、lt2-n2,两个二维图像传感器在k个时刻分别拍摄k组车轮底部两段剖面结构光与踏面结构光轮廓图像P1-1与P2-1、P1-2与P2-2、……、P1-k与P2-k,其中,k为自然数;
(2)第一组三维轮廓图像重建:根据第一组两个二维图像传感器拍摄的图像P1-1与P2-1,与步骤一第(2)步中标定的结构光参数,将P1-1与P2-1进行三维图像重建,得到三维重建后的踏面结构光轮廓lt’1-1、lt’1-2、……、lt’1-n1、lt’2-1、lt’2-2、……、lt’2-n2与三维重建后的剖面结构光轮廓lp’1-1、lp’1-2、……、lp’1-m、lp’2-1、lp’2-2、……、lp’2-m
(3)第一组被测车轮轮廓参数计算:对第一组三维重建后的踏面结构光轮廓lt’1-1、lt’1-2、……、lt’1-n1、lt’2-1、lt’2-2、……、lt’2-n2进行处理,合成一条车轮踏面曲线lt’,根据所述踏面曲线lt’,按定义计算出第一组车轮轮缘高与轮缘厚;或者对所有n1+n2条重建后的踏面轮廓分别处理,得到n1+n2个车轮轮缘高与轮缘厚数值,剔除误差较大的轮缘高与轮缘厚数值之后,对剩下的车轮轮缘高与轮缘厚数值取平均值,计算出第一组的车轮轮缘高与轮缘厚;
(4)第一组被测车轮直径计算:根据第一组三维图像重建后的m对剖面结构光轮廓lp’1-1与lp’2-1、lp’1-2与lp’2-2、……、lp’1-m与lp’2-m,拟合出m个圆C1、C2、……、Cm,根据拟合圆方程得出m个直径D1、D2、……、Dm;根据轮廓曲线lt’,将所述m个拟合圆直径D1、D2、……、Dm修正到滚动圆上,获得m个滚动圆直径值D1’、D2’、……、Dm’,剔除误差较大滚动圆直径值后再取平均,得到第一组的车轮直径值D;
(5)当k大于1时,对剩下k-1组图像P1-2与P2-2、……、P1-k与P2-k,重复步骤(2)~(4),计算出k-1组车轮轮缘高、轮缘厚与直径值;对k组车轮轮缘高、轮缘 厚与直径值,剔除误差较大的值后分别取平均,得到最终的被测轮轮缘高、轮缘厚与直径值;
(6)踏面擦伤与剥离识别:当轮对不存在擦伤或剥离时,k个时刻三维图像重建后所有剖面结构光轮廓都是连续缓变的弧线,当其中一条剖面结构光轮廓出现突变时,根据突变类型,判断擦伤或者剥离;
步骤三、实时判断报警:根据步骤二中测得的车轮直径、轮缘高、轮缘厚与标准值进行比较,求出差值;根据直径差值、轮缘高差值、轮缘厚差值的大小判断是否需要报警提示;根据是否存在擦伤与剥离判断是否需要报警提示,当所有的参数均没有超出设定值以及不存在擦伤与剥离时,则认定为安全;当其中的一个或一个以上的参数超出设定值时,或者存在擦伤与剥离时,系统认定存在隐患进行报警提示。
进一步地,在步骤一中,所述检测路段布置有多套所述基于结构光的车轮多参数在线测量系统,列车经过检测区域时,多套所述基于结构光的车轮多参数在线测量系统依次对车轮不同区域进行拍摄,车轮在检测区域滚动一周后,对多套基于结构光的车轮多参数在线测量系统的图片进行三维重建与图像拼接,得到列车车轮完整轮廓。
本发明的有益效果在于:采用踏面结构光单元与剖面结构光单元在车轮上投影出车轮剖面轮廓与踏面轮廓,两个二维探测器拍摄两副图像、经过三维重建后即可获得相对应的两部分车轮踏面与剖面轮廓信息,根据两幅图像即可获得车轮直径、轮缘高、轮缘厚;通过两个或多个二维图像传感器拍摄多幅图像,可以提高系统可靠性与测量精度;采用主动方式投射线激光形成车轮剖面轮廓与踏面轮廓,受外界环境光影响较小;根据同一个圆上两段剖面结构光轮廓拟合圆求出车轮直径,无需对车轮进行精确定位。
附图说明
图1为本发明基于结构光的车轮多参数在线测量系统的第一实施例的构成示意图;
图2为图1所示的基于结构光的车轮多参数在线测量系统的分布示意图;
图3为图1中踏面结构光单元的激光线的构成方式示意图;
图4为图1中第一车轮在线测量装置的一剖面轮廓曲线与两踏面轮廓曲线的结构示意图;
图5为本发明实施例一中将拟合圆直径D1修正到滚动圆的原理图;
图6为本发明实施例二中剖面结构光单元的五条线激光构成方式示意图;
图7为本发明实施例二中的剖面结构光单元的线激光投射到车轮上时,形成的五条车轮剖面轮廓曲线的结构示意图;
图8为本发明实施例二中的踏面结构光单元的线激光投射到车轮上时,形成的九条车轮剖面轮廓曲线的结构示意图;
图9为发明实施例二中的剖面结构光单元的线激光及踏面结构光单元的线激光同时投射到车轮上时,形成的五条车轮剖面轮廓曲线与九条车轮剖面轮廓曲线的结构示意图;
图10为本发明的实施例一、实施例二中均设有多套所述基于结构光的车轮多参数在线测量系统时的分布示意图。
具体实施方式
为了使本发明的技术方案能更清晰地表示出来,下面结合附图对本发明作进一步说明。
第一实施例:
如图1至图5所示,其为本发明提供的基于结构光的车轮多参数在线测量系统的第一实施例;所述基于结构光的车轮多参数在线测量系统包括系统控制器(图未示)、车轮传感器10、第一车轮在线测量装置20、第二车轮在线测量装置30,所述车轮传感器10、第一车轮在线测量装置20、第二车轮在线测量装置30沿列车前进方向依次并排设置。
所述车轮传感器10、第一车轮在线测量装置20、第二车轮在线测量装置30均连接于系统控制器上;所述第一车轮在线测量装置20与第二车轮在线测量装置30的中点为O点,本实施例中,所述第一车轮在线测量装置20及第二车轮在线测量装置30相对于过O点垂直于钢轨200的平面镜面对称。可以理解地, 所述第一车轮在线测量装置20及第二车轮在线测量装置30也可以为不对称设置。
所述第一车轮在线测量装置20、第二车轮在线测量装置30均包括踏面结构光单元21、剖面结构光单元22及二维图像传感器23,所述剖面结构光单元22、踏面结构光单元21及二维图像传感器23沿同一条钢轨排列,但三者的前后次序可以颠倒。所述第一车轮在线测量装置20的剖面结构光单元22发射的线激光与第二车轮在线测量装置20的剖面结构单元22发射的线激光数量相等,且对应的每一对线激光都投射到同一个车轮的剖面圆上。
所述踏面结构光单元21可发射出n条线激光,其中,n≥2。本实施例中,所述踏面结构光单元21发射出两条线激光。调整所述踏面结构光单元21的位置与方向,使得两条线激光构成的两平面与车轮100内侧面垂直,且两踏面结构光单元21中的两条线激光投射到车轮100上时,分别形成车轮踏面轮廓曲线lt1-1、lt1-2。所述踏面结构光单元21中的两所述线激光由一激光发射装置发射出,所述激光发射装置包括一个线激光光源211、一个或多个分光器212及一个反射镜213。所述分光器212与线激光出射平面夹角为60°,所述反射镜213与线激光出射平面夹角为45°。线激光光源211出射光经过分光器212与反射镜213后,形成垂直于车轮100内侧面、夹角为30°的两条线激光。
所述剖面结构光单元22可发射出m条线激光,其中,m≥1。本实施例中,所述剖面结构光单元22发射出一条线激光,即m=1。调整所述剖面结构光单元22的位置与方向,使得:①剖面结构光单元22的线激光构成的一个平面与水平面垂直、线激光的光轴与水平面夹角为θ,其中,0°<θ≤60°;②剖面结构光单元的一条线激光投射到车轮上时形成一条车轮剖面轮廓曲线lp1-1;③所述车轮剖面轮廓曲线lp1-1与所述车轮踏面轮廓曲线lt1-1、lt1-2相交于踏面轮廓线距内侧面60~80mm的缓变区域。
调整所述二维图像传感器23位置与方向,使得其测量范围覆盖所述剖面结构光单元22与所述踏面结构光单元21在车轮上投射的所有车轮踏面轮廓曲线与车轮剖面轮廓曲线,使得所述车轮踏面轮廓曲线与车轮剖面轮廓曲线都能成像在二维图像传感器23上。
本实施例中,所述基于结构光的车轮多参数在线测量系统的测量方法,包括以下步骤:
步骤一、安装与标定:
(1)将所述基于结构光的车轮多参数在线测量系统安装于检测路段;
(2)标定结构光参数;
步骤二、列车车轮参数检测;
(1)获取被测列车车轮轮廓信息:列车经过时,车轮传感器10检测到车轮后,第一车轮在线测量装置20、第二车轮在线测量装置30同时工作,记第一车轮在线测量装置20、第二车轮在线测量装置30的剖面结构光单元22的一条线激光在车轮上的剖面轮廓分别为lp1-1、lp2-1,第一车轮在线测量装置20的踏面结构光单元21的两条线激光在车轮上的踏面轮廓分别为lt1-1、lt1-2,第二车轮在线测量装置30的踏面结构光单元21的两条线激光在车轮上的踏面轮廓分别为lt2-1、lt2-2,两个二维图像传感器23拍摄一组车轮底部两段剖面轮廓与踏面轮廓图像P1-1与P2-1
(2)三维轮廓图像重建:根据两个二维图像传感器40拍摄的图像P1-1与P2-1,与步骤一第(2)步中标定的结构光参数,将P1-1与P2-1进行三维图像重建,得到三维重建后的踏面结构光轮廓lt’1-1、lt’1-2、lt’2-1、lt’2-2与三维重建后的剖面结构光轮廓lp’1-1、lp’2-1
(3)被测车轮轮廓参数计算:对三维重建后的踏面结构光轮廓lt’1-1、lt’1-2、lt’2-1、lt’2-2进行处理,合成一条车轮踏面曲线lt’,根据所述踏面曲线lt’,按定义计算出第一组车轮轮缘高与轮缘厚;或者对所有四条重建后的踏面轮廓分别处理,得到四个车轮轮缘高与轮缘厚数值,剔除误差较大的轮缘高与轮缘厚数值之后,对剩下的车轮轮缘高与轮缘厚数值取平均值,计算出第一组的车轮轮缘高与轮缘厚;
(4)被测车轮直径计算:根据三维图像重建后的1对剖面结构光轮廓lp’1-1与lp’2-1,拟合出1个圆C1,根据拟合圆方程得出直径D1。根据轮廓曲线lt’,将拟合圆直径D1修正到滚动圆上,获得滚动圆直径值D1’=D1-2Δd,即车轮直径值D=D1’;
(5)踏面擦伤与剥离识别:当轮对不存在擦伤或剥离时,三维图像重建后所有剖面结构光轮廓都是连续缓变的弧线,当其中一条剖面结构光轮廓出现突变时,根据突变类型,判断擦伤或者剥离;
步骤三、实时判断报警:根据步骤二中测得的车轮直径、轮缘高、轮缘厚与标准值进行比较,求出差值;根据直径差值、轮缘高差值、轮缘厚差值的大小判断是否需要报警提示,根据是否存在擦伤与剥离判断是否需要报警提示,当所有的参数均没有超出设定值以及不存在擦伤与剥离时,则认定为安全;当其中的一个或一个以上的参数超出设定值时,或者存在擦伤与剥离时,系统认定存在隐患进行报警。
实施例二
如图6至图10所示,其为本发明提供的基于结构光的车轮多参数在线测量系统的第二实施例,本实施例的基于结构光的车轮多参数在线测量系统与第一实施例基本相同,也包括系统控制器(图未示)、车轮传感器10、第一车轮在线测量装置20、第二车轮在线测量装置30,所述第一车轮在线测量装置20、第二车轮在线测量装置30均包括踏面结构光单元21、剖面结构光单元22及二维图像传感器23;所述剖面结构光单元22、踏面结构光单元21及二维图像传感器23沿同一条钢轨200排列,其前后次序可以颠倒。
本实施例与第一实施例的不同之处在于,本实施例中的剖面结构光单元22发射出五条线激光,踏面结构光单元21发射出九条线激光。所述踏面结构光单元21的九条线激光及剖面结构光单元22发射出五条线光源各由一激光发射装置发出。所述激光发射装置包括一个线激光光源212及一个二元光学分束器50,所述踏面结构光单元21的线激光光源212通过所述二元光学分束器50分光,将线激光光源212分为有特定角度关系且垂直于同一平面的九条线激光。所述剖面结构光单元22的线激光光源通过二元光学分束器50分光,将线激光光源分为有特定角度关系且垂直于同一平面的一五条线激光。
调整所述踏面结构光单元21的位置与方向,使得九条线激光构成的九个平面与车轮100内侧面垂直,且所述九条线激光投射到车轮100上时,形成九条 车轮踏面轮廓曲线。调整所述剖面结构光单元22的位置与方向,使得:①所有五条线激光构成的五个平面与水平面垂直、且所有五条线激光光轴与水平面夹角为θ,0°<θ≤60°;②所述五条线激光投射到车轮上时形成五条车轮剖面轮廓曲线;③所述五条车轮剖面轮廓曲线与所述九条车轮踏面轮廓曲线相交于踏面轮廓线缓变区域。
本实施例的基于结构光的车轮多参数在线测量系统的测量方法,包括以下步骤:
步骤一、安装与标定:
(1)将所述基于结构光的车轮多参数在线测量系统装置安装于检测路段;
(2)标定结构光参数;
步骤二、列车车轮参数检测;
(1)获取被测列车车轮轮廓信息:列车经过时,车轮传感器检测到车轮后,第一车轮在线测量装置20、第二车轮在线测量装置30同时工作,记第一车轮在线测量装置20、第二车轮在线测量装置30的剖面结构光单元22的九条线激光在车轮上的剖面轮廓分别为lp1-1、lp1-2、……、lp1-9、lp2-1、lp2-2、……、lp2-9,第一车轮在线测量装置20的踏面结构光单元21的五条线激光在车轮上的踏面轮廓分别为lt1-1、lt1-2、……、lt1-5,第二车轮在线测量装置30的踏面结构光单元21的五条线激光在车轮上的踏面轮廓分别为lt2-1、lt2-2、……、lt2-5,两个二维图像传感器23在3个时刻分别拍摄3组车轮底部两段剖面结构光轮廓图像与踏面结构光轮廓图像P1-1与P2-1、P1-2与P2-2、P1-3与P2-3
(2)第一组三维轮廓图像重建:根据第一组两个二维图像传感器23拍摄的图像P1-1与P2-1,与步骤一第(2)步中标定的结构光参数,将P1-1与P2-1进行三维图像重建,得到三维重建后的踏面结构光轮廓lt’1-1、lt’1-2、……、lt’1-5、lt’2-1、lt’2-2、……、lt’2-5与三维重建后的剖面结构光轮廓lp’1-1、lp’1-2、……、lp’1-9、lp’2-1、lp’2-2、……、lp’2-9
(3)第一组被测车轮轮廓参数计算:对第一组三维重建后的踏面结构光轮廓lt’1-1、lt’1-2、……、lt’1-5、lt’2-1、lt’2-2、……、lt’2-5进行处理,合成一条车轮踏面曲线lt’,根据所述踏面曲线lt’,按定义计算出第一组车轮轮缘高与轮缘厚;或 者对所有10条重建后的踏面轮廓分别处理,得到10个车轮轮缘高与轮缘厚数值,剔除误差较大的轮缘高与轮缘厚数值之后,对剩下的车轮轮缘高与轮缘厚数值取平均值,计算出第一组的车轮轮缘高与轮缘厚;
(4)第一组被测车轮直径计算:根据第一组三维图像重建后的9对剖面结构光轮廓lp’1-1与lp’2-1、lp’1-2与lp’2-2、……、lp’1-9与lp’2-9,拟合出9个圆C1、C2、……、C9,根据拟合圆方程得出9个直径D1、D2、……、D9;根据轮廓曲线lt’,将所述9个拟合圆直径D1、D2、……、D9修正到滚动圆上,获得9个滚动圆直径值D1’、D2’、……、D9’,剔除误差较大滚动圆直径值后再取平均,得到第一组的车轮直径值D。
(5)对第2组、第3组图像P1-2与P2-2、P1-3与P2-3,重复步骤(2)-(4),计算出第2组、第3组车轮轮缘高、轮缘厚与直径值。对3组车轮轮缘高、轮缘厚与直径值取平均,得到最终的被测轮轮缘高、轮缘厚与直径值。
(6)踏面擦伤与剥离识别:当轮对不存在擦伤或剥离时,3个时刻三维图像重建后所有剖面结构光轮廓都是连续缓变的弧线,当其中一条剖面结构光轮廓出现突变时,根据突变类型,判断擦伤或者剥离;
步骤三:实时判断报警。根据步骤三中测得的车轮直径、轮缘高、轮缘厚与标准值进行比较,求出差值。根据直径差值、轮缘高差值、轮缘厚差值的大小判断是否需要报警提示,根据是否存在擦伤与剥离判断是否需要报警提示,当所有的参数均没有超出设定值以及不存在擦伤与剥离时,则认定为安全;当其中的一个或一个以上的参数超出设定值时,或者存在擦伤与剥离时,系统认定存在隐患进行报警。
可以理解地,在实施例一及实施例二中,为了测量列车车轮完整轮廓,可沿列车前进方向布置多套所述基于结构光的车轮多参数在线测量系统,列车经过检测区域时,多套所述基于结构光的车轮多参数在线测量系统依次对车轮不同区域进行拍摄,车轮在检测区域滚动一周后,对多套所述基于结构光的车轮多参数在线测量系统的图片进行三维重建与图像拼接,可以得到列车车轮完整轮廓。
本发明的有益效果在于:采用踏面结构光单元21与剖面结构光单元22在 车轮上投影出车轮剖面轮廓与踏面轮廓,两个二维探测器拍摄两副图像、经过三维重建后即可获得相对应的两部分车轮踏面与剖面轮廓信息,根据两幅图像即可获得车轮直径、轮缘高、轮缘厚;通过两个或多个二维图像传感器23拍摄多幅图像,可以提高系统可靠性与测量精度;采用主动方式投射线激光形成车轮剖面轮廓与踏面轮廓,受外界环境光影响较小;根据同一个圆上两段剖面结构光轮廓拟合圆求出车轮直径,无需对车轮进行精确定位。
以上所述实施例仅表达了本发明的两种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (7)

  1. 一种基于结构光的车轮多参数在线测量系统,其特征在于:包括系统控制器、车轮传感器、第一车轮在线测量装置及第二车轮在线测量装置,所述车轮传感器、第一车轮在线测量装置、第二车轮在线测量装置均连接于系统控制器上;且车轮传感器、第一车轮在线测量装置、第二车轮在线测量装置沿列车前进方向依次并排设置;
    所述第一车轮在线测量装置、第二车轮在线测量装置均包括有踏面结构光单元、剖面结构光单元及二维图像传感器,所述剖面结构光单元、踏面结构光单元及二维图像传感器沿同一条钢轨外侧排列;
    所述踏面结构光单元发射出n条线激光,其中,n≥2,所述n条线激光投射到车轮上时,形成n条车轮踏面轮廓曲线;所述剖面结构光单元发射出m条线激光,其中,m≥1,所述m条线激光投射到车轮上时,形成m条车轮剖面轮廓曲线;m条车轮剖面轮廓曲线与n条车轮踏面轮廓曲线相交于踏面轮廓线距内侧面60mm~80mm的区域;且所述的n条车轮踏面轮廓曲线与m条车轮剖面轮廓曲线均位于所述二维图像传感器的成像范围内。
  2. 如权利要求1所述的基于结构光的车轮多参数在线测量系统,其特征在于:所述线激光由激光发射装置发射而成,所述激光发射装置包括线激光光源、分光器及反射镜,所述分光器及反射镜将所述线激光光源分为具有特定角度关系的多条线激光。
  3. 如权利要求1所述的基于结构光的车轮多参数在线测量系统,其特征在于:所述线激光由激光发射装置发射而成,所述激光发射装置包括一个线激光光源与一个二元光学分束器,所述二元光学分束器将所述线激光光源分为具有一定角度关系的多条线激光。
  4. 如权利要求1所述的基于结构光的车轮多参数在线测量系统,其特征在于:所述线激光由激光发射装置发射而成,所述激光发射装置包括多个线激光光源,多个所述线激光光源呈特定角度安装并发射出构成有特定角度关系的多条线激光。
  5. 如权利要求1所述的基于结构光的车轮多参数在线测量系统,其特征在于:所述第一车轮在线测量装置的剖面结构光单元与第二车轮在线测量装置的 剖面结构光单元出射的线激光数量相等,且对应的每一对线激光都投射到同一车轮剖面圆。
  6. 一种基于结构光的车轮多参数在线测量方法,其特征在于:包括以下步骤:
    步骤一、安装与标定:
    (1)将权利要求1~5中任一权利要求所述的基于结构光的车轮多参数在线测量系统安装于检测路段;
    (2)标定结构光参数;
    步骤二、列车车轮参数检测:
    (1)获取被测列车车轮轮廓信息:列车经过时,车轮传感器检测到车轮后,第一车轮在线测量装置、第二车轮在线测量装置同时工作,记第一、第二车轮在线测量装置的剖面结构光单元的m条线激光在车轮上的剖面轮廓分别为lp1-1、lp1-2、……、lp1-m、lp2-1、lp2-2、……、lp2-m,第一车轮在线测量装置的踏面结构光单元的n1条线激光在车轮上的踏面轮廓分别为lt1-1、lt1-2、……、lt1-n1,第二车轮在线测量装置的踏面结构光单元的n2条线激光在车轮上的踏面轮廓分别为lt2-1、lt2-2、……、lt2-n2,两个二维图像传感器在k个时刻分别拍摄k组车轮底部两段剖面结构光与踏面结构光轮廓图像P1-1与P2-1、P1-2与P2-2、……、P1-k与P2-k,其中,k为自然数;
    (2)第一组三维轮廓图像重建:根据第一组两个二维图像传感器拍摄的图像P1-1与P2-1,与步骤一第(2)步中标定的结构光参数,将P1-1与P2-1进行三维图像重建,得到三维重建后的踏面结构光轮廓lt’1-1、lt’1-2、……、lt’1-n1、lt’2-1、lt’2-2、……、lt’2-n2与三维重建后的剖面结构光轮廓lp’1-1、lp’1-2、……、lp’1-m、lp’2-1、lp’2-2、……、lp’2-m
    (3)第一组被测车轮轮廓参数计算:对第一组三维重建后的踏面结构光轮廓lt’1-1、lt’1-2、……、lt’1-n1、lt’2-1、lt’2-2、……、lt’2-n2进行处理,合成一条车轮踏面曲线lt’,根据所述踏面曲线lt’,按定义计算出第一组车轮轮缘高与轮缘厚;或者对所有n1+n2条重建后的踏面轮廓分别处理,得到n1+n2个车轮轮缘高与轮缘厚数值,剔除误差较大的轮缘高与轮缘厚数值之后,对剩下的车轮轮缘高与 轮缘厚数值取平均值,计算出第一组的车轮轮缘高与轮缘厚;
    (4)第一组被测车轮直径计算:根据第一组三维图像重建后的m对剖面结构光轮廓lp’1-1与lp’2-1、lp’1-2与lp’2-2、……、lp’1-m与lp’2-m,拟合出m个圆C1、C2、……、Cm,根据拟合圆方程得出m个直径D1、D2、……、Dm;根据轮廓曲线lt’,将所述m个拟合圆直径D1、D2、……、Dm修正到滚动圆上,获得m个滚动圆直径值D1’、D2’、……、Dm’,剔除误差较大滚动圆直径值后再取平均,得到第一组的车轮直径值D;
    (5)当k大于1时,对剩下k-1组图像P1-2与P2-2、……、P1-k与P2-k,重复步骤(2)~(4),计算出k-1组车轮轮缘高、轮缘厚与直径值;对k组车轮轮缘高、轮缘厚与直径值,剔除误差较大的值后分别取平均,得到最终的被测轮轮缘高、轮缘厚与直径值;
    (6)踏面擦伤与剥离识别:当轮对不存在擦伤或剥离时,k个时刻三维图像重建后所有剖面结构光轮廓都是连续缓变的弧线,当其中一条剖面结构光轮廓出现突变时,根据突变类型,判断擦伤或者剥离;
    步骤三、实时判断报警:根据步骤二中测得的车轮直径、轮缘高、轮缘厚与标准值进行比较,求出差值;根据直径差值、轮缘高差值、轮缘厚差值的大小判断是否需要报警提示;根据是否存在擦伤与剥离判断是否需要报警提示,当所有的参数均没有超出设定值以及不存在擦伤与剥离时,则认定为安全;当其中的一个或一个以上的参数超出设定值时,或者存在擦伤与剥离时,系统认定存在隐患进行报警提示。
  7. 如权利要求6所述的基于结构光的车轮多参数在线测量方法,其特征在于:在步骤一中,所述检测路段布置有多套所述基于结构光的车轮多参数在线测量系统,列车经过检测区域时,多套所述基于结构光的车轮多参数在线测量系统依次对车轮不同区域进行拍摄,车轮在检测区域滚动一周后,对多套基于结构光的车轮多参数在线测量系统的图片进行三维重建与图像拼接,得到列车车轮完整轮廓。
PCT/CN2017/098573 2017-08-03 2017-08-23 基于结构光的车轮多参数在线测量系统及其测量方法 WO2019024147A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17920012.6A EP3561443A4 (en) 2017-08-03 2017-08-23 ONLINE MEASUREMENT SYSTEM WITH MULTIPLE WHEEL PARAMETERS BASED ON STRUCTURED LIGHT AND MEASURING METHOD THEREOF
US16/469,752 US10895451B2 (en) 2017-08-03 2017-08-23 Structured light based wheel multiple parameter online measurement system and measurement method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710657356.6 2017-08-03
CN201710657356.6A CN107677212B (zh) 2017-08-03 2017-08-03 基于结构光的车轮多参数在线测量系统及其测量方法

Publications (1)

Publication Number Publication Date
WO2019024147A1 true WO2019024147A1 (zh) 2019-02-07

Family

ID=61134541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/098573 WO2019024147A1 (zh) 2017-08-03 2017-08-23 基于结构光的车轮多参数在线测量系统及其测量方法

Country Status (4)

Country Link
US (1) US10895451B2 (zh)
EP (1) EP3561443A4 (zh)
CN (1) CN107677212B (zh)
WO (1) WO2019024147A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112345540A (zh) * 2020-11-06 2021-02-09 合肥工业大学 一种基于圆形结构光检测内孔过盈配合表面拆卸损伤的检测方法
CN112429033A (zh) * 2019-08-25 2021-03-02 赵若群 一种轨道车辆轮饼参数在线测量装置及方法
CN114111634A (zh) * 2021-11-12 2022-03-01 先临三维科技股份有限公司 一种结构光投影模组及三维扫描装置
CN114705131A (zh) * 2022-06-02 2022-07-05 杭州灵西机器人智能科技有限公司 一种用于3d测量的可定位多线扫描产生方法和系统
CN115593464A (zh) * 2022-10-31 2023-01-13 华东交通大学(Cn) 一种高速列车车轮伤损评估方法、存储介质及计算机
CN117036441A (zh) * 2023-10-10 2023-11-10 天津哈威克科技有限公司 一种基于结构光的货车轮对三维重建系统及方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3575179A1 (en) * 2018-06-01 2019-12-04 ALSTOM Transport Technologies Train wheel measurement process, and associated system
CN109696123A (zh) * 2018-12-29 2019-04-30 广州微易轨道交通科技有限公司 基于线激光检测技术的车辆关键部件形位检测方法
CN110319779A (zh) * 2019-08-07 2019-10-11 厦门正新橡胶工业有限公司 橡胶半制品宽度尺寸在线检测装置及检测方法
CN111023998A (zh) * 2019-12-11 2020-04-17 神华铁路货车运输有限责任公司 踏面损伤测量设备、方法、装置和存储介质
CN111080632B (zh) * 2019-12-20 2023-05-26 石家庄铁道大学 一种轮对踏面多边形监测方法、装置及终端设备
US11718501B2 (en) 2020-04-06 2023-08-08 Otis Elevator Company Elevator sheave wear detection
CN112362019A (zh) * 2020-10-27 2021-02-12 广州计量检测技术研究院 一种车轮踏面轮廓检测仪校准测量方法、系统及装置
CN112595252A (zh) * 2020-12-22 2021-04-02 航天智造(上海)科技有限责任公司 一种手持式间隙与面差视觉测量设备
CN112651965B (zh) * 2021-01-14 2023-11-07 成都铁安科技有限责任公司 一种车轮踏面缺陷三维检测方法及其系统
CN113408074A (zh) * 2021-06-28 2021-09-17 吉林大学 一种轮对踏面参数测量方法及装置
CN113959375B (zh) * 2021-08-25 2023-07-07 广东技术师范大学 一种塔筒法兰平面度检测装备的图像采集方法
CN113703023B (zh) * 2021-09-06 2024-02-27 国家高速列车青岛技术创新中心 基于环境图像识别修正的轨道车辆实时定位方法及系统
CN113534740B (zh) * 2021-09-16 2021-11-19 沈阳机床(集团)有限责任公司 一种火车车轮轮缘踏面的检测数据分析及修复方法
CN114264491B (zh) * 2021-12-27 2023-07-21 中车青岛四方车辆研究所有限公司 轨道车辆轮对参数检测系统
CN114426039B (zh) * 2022-03-14 2023-06-30 浙江师范大学 一种基于城轨列车车轮踏面的点云数据处理方法
CN114923434B (zh) * 2022-04-29 2024-06-07 南京理工大学 一种基于多线结构光的轮对踏面曲线获取方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100999220A (zh) * 2006-12-18 2007-07-18 杭州电子科技大学 车辆轮对直径在线检测方法及装置
CN102788803A (zh) * 2012-07-09 2012-11-21 南京航空航天大学 列车轮对踏面和轮缘在线高速检测系统及其检测方法
CN104648440A (zh) * 2015-02-13 2015-05-27 北京交通大学 一种轮对几何参数在线测量系统及其方法
EP2977290A1 (en) * 2013-03-18 2016-01-27 Universidad Eafit System and method for inspecting the geometric parameters of the wheels of railway vehicles
CN105292179A (zh) * 2015-10-13 2016-02-03 东莞市诺丽电子科技有限公司 轮缘尺寸检测方法
CN105651168A (zh) * 2015-12-31 2016-06-08 成都铁安科技有限责任公司 一种测量车轮外形尺寸的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH646516A5 (fr) * 1982-02-25 1984-11-30 Speno International Procede et dispositif de mesure du profil transversal du champignon d'un rail d'une voie ferree.
DE3686988D1 (de) * 1985-08-12 1992-11-26 Hegenscheidt Gmbh Wilhelm Einrichtung zur vermessung von im fahrzeug eingebauten raedern von radsaetzen.
US5619587A (en) * 1991-05-10 1997-04-08 Aluminum Company Of America System and method for contactlessly gauging the thickness of a contoured object, such as a vehicle wheel
ES2122876B1 (es) * 1995-06-29 1999-08-01 Talgo Patentes Instalacion y procedimiento de medida de parametros de rodadura por vision artificial en ruedas de vehiculos ferroviarios.
US6909514B2 (en) * 2002-11-18 2005-06-21 Beena Vision Systems, Inc. Wheel profile inspection apparatus and method
DE202016104124U1 (de) * 2016-07-27 2016-10-19 AuE Kassel GmbH System zum Ermitteln von Eigenschaften mindestens eines Rades eines Schienenfahrzeugs

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100999220A (zh) * 2006-12-18 2007-07-18 杭州电子科技大学 车辆轮对直径在线检测方法及装置
CN102788803A (zh) * 2012-07-09 2012-11-21 南京航空航天大学 列车轮对踏面和轮缘在线高速检测系统及其检测方法
EP2977290A1 (en) * 2013-03-18 2016-01-27 Universidad Eafit System and method for inspecting the geometric parameters of the wheels of railway vehicles
CN104648440A (zh) * 2015-02-13 2015-05-27 北京交通大学 一种轮对几何参数在线测量系统及其方法
CN105292179A (zh) * 2015-10-13 2016-02-03 东莞市诺丽电子科技有限公司 轮缘尺寸检测方法
CN105651168A (zh) * 2015-12-31 2016-06-08 成都铁安科技有限责任公司 一种测量车轮外形尺寸的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3561443A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112429033A (zh) * 2019-08-25 2021-03-02 赵若群 一种轨道车辆轮饼参数在线测量装置及方法
CN112429033B (zh) * 2019-08-25 2023-09-29 北京镭格之光测量技术有限公司 一种轨道车辆轮饼参数在线测量装置及方法
CN112345540A (zh) * 2020-11-06 2021-02-09 合肥工业大学 一种基于圆形结构光检测内孔过盈配合表面拆卸损伤的检测方法
CN112345540B (zh) * 2020-11-06 2022-11-08 合肥工业大学 一种基于圆形结构光检测内孔过盈配合表面拆卸损伤的检测方法
CN114111634A (zh) * 2021-11-12 2022-03-01 先临三维科技股份有限公司 一种结构光投影模组及三维扫描装置
CN114705131A (zh) * 2022-06-02 2022-07-05 杭州灵西机器人智能科技有限公司 一种用于3d测量的可定位多线扫描产生方法和系统
CN114705131B (zh) * 2022-06-02 2022-08-26 杭州灵西机器人智能科技有限公司 一种用于3d测量的可定位多线扫描产生方法和系统
CN115593464A (zh) * 2022-10-31 2023-01-13 华东交通大学(Cn) 一种高速列车车轮伤损评估方法、存储介质及计算机
CN115593464B (zh) * 2022-10-31 2023-09-08 华东交通大学 一种高速列车车轮伤损评估方法、存储介质及计算机
CN117036441A (zh) * 2023-10-10 2023-11-10 天津哈威克科技有限公司 一种基于结构光的货车轮对三维重建系统及方法

Also Published As

Publication number Publication date
EP3561443A4 (en) 2020-03-04
EP3561443A1 (en) 2019-10-30
US20200149879A1 (en) 2020-05-14
US10895451B2 (en) 2021-01-19
CN107677212A (zh) 2018-02-09
CN107677212B (zh) 2019-04-23

Similar Documents

Publication Publication Date Title
WO2019024147A1 (zh) 基于结构光的车轮多参数在线测量系统及其测量方法
US10241195B1 (en) Method for assessing a condition of an axle of a moving vehicle
CN107200042B (zh) 一种列车车轮直径与圆度磨耗高精度在线检测方法及其检测装置
US7907265B2 (en) Method for the determination of the axle geometry of a vehicle
CN109017867B (zh) 钢轨波磨动态测量方法
US9803974B2 (en) Method and installation for measuring the glass distribution in containers
JP7010672B2 (ja) 車輪形状測定方法
CN108394426A (zh) 铁路车轮监测系统及方法
CN107101594B (zh) 一种提取轮轨车轮空间轮缘最低点的方法
CN105292181B (zh) 一种基于两种传感器的轮对尺寸在线检测方法及装置
CN108725511B (zh) 钢轨波磨弦测点的实时位置修正方法
US9557165B2 (en) Method for measuring end portion shape of threaded pipe or tube
CN108819980B (zh) 一种列车车轮几何参数在线动态测量的装置和方法
US20190323828A1 (en) Method for detecting shape of butt joint of welded steel pipe, and quality control method and apparatus for welded steel pipes using the shape detecting method
CN107685748A (zh) 基于激光位移传感器的列车车轮尺寸参数在线检测方法
CN109353372A (zh) 一种有轨电车轮对尺寸在线监测系统及方法
JP2018077220A5 (zh)
RU2430849C2 (ru) Способ контроля колеса колесной пары локомотива в движении
CN106091959B (zh) 一种城轨列车车轮轮缘顶点圆直径的检测方法及其系统
CN110686622A (zh) 一种列车车轮冲角的测量方法
CN106184284B (zh) 基于线激光多截面扫描的列车轮对直径自动化测量方法和系统
CN207510444U (zh) 一种列车车轮直径与圆度磨耗高精度在线检测装置
CN115854915A (zh) 一种车载式车轮不圆度在线动态测量方法及装置
Wu et al. Dynamic measurement for wheel diameter of train based on high-speed CCD and laser displacement sensors
EP2667149A1 (en) Measuring method for determining the section and the diameter of wheels of moving railway vehicles and measuring equipment used

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920012

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017920012

Country of ref document: EP

Effective date: 20190722

NENP Non-entry into the national phase

Ref country code: DE