WO2019023887A1 - 云台转动的方法、云台、飞行器、控制云台转动的方法及系统 - Google Patents

云台转动的方法、云台、飞行器、控制云台转动的方法及系统 Download PDF

Info

Publication number
WO2019023887A1
WO2019023887A1 PCT/CN2017/095284 CN2017095284W WO2019023887A1 WO 2019023887 A1 WO2019023887 A1 WO 2019023887A1 CN 2017095284 W CN2017095284 W CN 2017095284W WO 2019023887 A1 WO2019023887 A1 WO 2019023887A1
Authority
WO
WIPO (PCT)
Prior art keywords
pan
tilt
angle
rotation
received
Prior art date
Application number
PCT/CN2017/095284
Other languages
English (en)
French (fr)
Inventor
吴一凡
刘怀宇
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201780004413.9A priority Critical patent/CN108521813B/zh
Priority to PCT/CN2017/095284 priority patent/WO2019023887A1/zh
Publication of WO2019023887A1 publication Critical patent/WO2019023887A1/zh
Priority to US16/725,559 priority patent/US11279497B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/12Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction
    • F16M11/121Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction constituted of several dependent joints
    • F16M11/123Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction constituted of several dependent joints the axis of rotation intersecting in a single point, e.g. by using gimbals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/08Arrangements of cameras
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/18Heads with mechanism for moving the apparatus relatively to the stand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M13/00Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles
    • F16M13/02Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles for supporting on, or attaching to, an object, e.g. tree, gate, window-frame, cycle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/18Stabilised platforms, e.g. by gyroscope
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0016Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement characterised by the operator's input device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/56Accessories
    • G03B17/561Support related camera accessories
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45071Aircraft, airplane, ship cleaning manipulator, paint stripping
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • G05D1/0816Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft to ensure stability

Definitions

  • the invention relates to the technical field of cloud platform control, in particular to a method for rotating a cloud platform, a corresponding cloud platform, an aircraft, a method for controlling the rotation of the cloud platform, and a system for controlling the rotation of the cloud platform.
  • a gimbal is a support table in an aircraft that carries loads to keep the load stable.
  • a pan/tilt can be used to carry imaging equipment such as cameras, cameras, etc., to enable image recording by means of an aircraft.
  • the pan/tilt When the pan/tilt receives a command indicating the rotation of the gimbal from its outside (for example, the control device of the pan/tilt), the pan/tilt can be driven by the driving member.
  • the command is issued periodically, but the command is inevitably caused by the channel interference, the process/thread scheduling of the general-purpose processor, etc., and the time interval at which the gimbal receives the command is not equal. Even sometimes there are cases where tens of ms are unable to receive new commands, and then multiple commands are received consecutively within a few ms. In this paper, this case is called "transmission jitter".
  • the transmission jitter of the command during transmission will correspondingly cause delay and jamming of the pan-tilt rotation, which in turn affects the user experience.
  • the panning time can be set to the angle indicated by the received command in the shortest time by setting the rotation time of the gimbal to the angle indicated by the received command (also called "pTZ sensitivity"). Rather, it controls the rotation speed of the driving part to rotate the pan/tilt, so that the pan/tilt head rotates to the angle indicated by the received command after the set rotation time, so as to solve the problem that the command is not received for the pan-tilt during the set rotation time.
  • the rotation delay and the problem of the Caton is also called "pTZ sensitivity"
  • embodiments of the present disclosure provide a method for pan-tilt rotation, a corresponding pan/tilt, an aircraft, a method for controlling pan-tilt rotation, and a system for controlling pan-tilt rotation to better solve the pan-tilt rotation. Delays and problems with Caton.
  • a method of rotating performed at a gimbal comprising: controlling a driving member of the gimbal to be preset according to an received angle command for indicating a rotation angle of the gimbal Rotating time is rotated to the pan head rotation angle; determining whether a new angle command is received within the rotation time; and if a new angle command is not received within the rotation time, according to the previously received plurality of The pan/tilt rotation angle indicated by the angle command estimates the rotation angle of the next pan/tilt head, and controls the driving member to rotate from the current angle to the estimated pan/tilt rotation angle through the rotation time.
  • the method further comprises: if the new angle command is received within the rotation time, controlling the drive member to rotate from the current angle through the rotation time to The angle of rotation of the gimbal indicated by the new angle command.
  • a pan/tilt head comprising: a transceiver configured to receive an angle command for indicating a pan/tilt angle; a processor; and a memory storing computer executable instructions, The instructions, when executed by the processor, cause the processor to perform an operation of: controlling, according to the received angle command, a driving member of the pan/tilt head to rotate to the pan/tilt angle through a preset rotation time; determining the rotation Whether a new angle command is received within the time; and if a new angle command is not received within the rotation time, the angle of rotation of the pan/tilt indicated by the plurality of angle commands previously received is turned to the next pan/tilt angle An estimation is made and the drive member is controlled to rotate from the current angle to the estimated pan/tilt angle of rotation through the rotation time.
  • the instructions when executed by the processor, further cause the processor to: if a new angle command is received within the rotation time, then control The drive member is rotated from the current angle to the new angle command as indicated by the rotation time The pan tilt angle.
  • an aircraft comprising the pan/tilt head according to the second aspect.
  • a method for controlling pan/tilt rotation comprising: transmitting, by a control device, an angle command for indicating a pan/tilt angle of rotation to a pan/tilt in an aircraft;
  • the angle command to control, the driving member of the control gimbal is rotated to the pan tilt angle by a preset rotation time; the pan/tilt determines whether a new angle command is received during the rotation time; and if If no new angle command is received within the rotation time, the pan/tilt estimates the rotation angle of the next pan/tilt according to the pan/tilt rotation angle indicated by the plurality of angular commands received previously, and controls the driving member to pass the rotation.
  • the time is rotated from the current angle to the estimated pan/tilt angle of rotation.
  • the method further comprises: if a new angle command is received within the rotation time, the pan/tilt controls the drive member to pass the rotation time from a current angle Rotate to the pan/tilt angle indicated by the new angle command.
  • the method further comprises: sampling, by the control device, attitude data of the control device measured by the inertial measurement unit (IMU) at the sampling interval, and according to the sampling The current attitude data and the reference point posture data are calculated to calculate the pan/tilt rotation angle.
  • IMU inertial measurement unit
  • a system for controlling pan-tilt rotation comprising a control device and an aircraft, wherein the control device includes a transceiver configured to transmit to a cloud platform in the aircraft for indicating a cloud An angle command of the table rotation angle; and the aircraft includes a pan/tilt head, the pan/tilt head comprising: a transceiver configured to receive an angle command from the control device for indicating a pan/tilt angle of rotation; a processor; and a memory to store
  • the instruction is executed by a processor in the pan/tilt In the row, the processor is further caused to: if a new angle command is received within the rotation time, controlling the drive member to rotate from the current angle to the new angle command as indicated by the rotation time The pan tilt angle.
  • control device further includes: an IMU configured to measure attitude data of the control device; a processor; a memory storing computer executable instructions, the instructions being When the processor executes, the processor is configured to: perform sampling on the attitude data of the control device measured by the IMU at the sampling interval, and calculate the pan/tilt based on the sampled current posture data and the reference point posture data. The angle of rotation.
  • the attitude data includes a yaw angle/pitch angle/roll angle component.
  • the rotation time is set by the pan-tilt according to a count of intervals of the plurality of angular commands previously received, or is made by the control device according to the pan/tilt
  • the statistics are set.
  • the rotation time is set to a sampling interval and a predetermined time of the control device for the included IMU. The maximum between the sum of the margins and the predetermined time.
  • the predetermined margin is based on channel interference between the control device and the aircraft in which the pan/tilt is located, and a plurality of intermediate modules between the IMU and the pan/tilt Transfer and process performance to set.
  • control device is a smart wear device, a portable electronic device or a remote control lever.
  • the pan/tilt rotation angle indicated by the previously received plurality of angle commands is applied to the next pan/tilt head.
  • the rotation angle is estimated, and the driving member is controlled to rotate from the current angle to the estimated pan/tilt rotation angle through the rotation time, and the rotation delay of the gimbal can be improved if the receiving command interval of the gimbal exceeds the preset rotation time.
  • Caton
  • FIG. 1 schematically illustrates a flowchart of a method of rotation performed at a gimbal according to an exemplary embodiment of the present disclosure
  • Figure 2 is a schematic diagram showing the data transmission flow between the IMU in the control device and the pan/tilt of the aircraft;
  • Fig. 3 schematically shows an example of pan/tilt rotation in the case where an angle command is received and not received in a rotation time represented by a preset pan/tilt sensitivity
  • FIG. 4 schematically shows a structural block diagram of a pan/tilt head according to an exemplary embodiment of the present disclosure
  • FIG. 5 schematically illustrates a flowchart of a method for controlling pan/tilt rotation according to an exemplary embodiment of the present disclosure
  • FIG. 6 schematically shows a structural block diagram of a system for controlling pan-tilt rotation according to an exemplary embodiment of the present disclosure.
  • FIG. 1 schematically illustrates a flow chart of a method 100 of rotation performed at a gimbal, in accordance with an exemplary embodiment of the present disclosure. As shown in FIG. 1, method 100 can include steps S102 through S104.
  • the pan/tilt may control the driving member of the pan/tilt to rotate to the pan/tilt rotation angle according to the preset rotation time according to the received angle command for indicating the pan/tilt rotation angle.
  • the rotation time of turning the gimbal to the pan/tilt angle indicated by the received angle command is referred to as "pTZ sensitivity", which is characterized by the amount of time.
  • the angle command may be sent by a control device for controlling the pan/tilt.
  • the control device may be a smart wearable device (eg, controlling the pan/tilt via body control), a portable electronic device, or a remote control bar, but is not limited thereto.
  • the angle The command can be sent by the flight controller of the aircraft where the pan/tilt is located.
  • the present disclosure is not intended to define an entity that issues an angle command, and any entity that can issue an angle command is applicable to the technical solution of the present disclosure.
  • the pan/tilt rotation angle indicated by the angle command may be used by the control device to sample the attitude data of the control device measured by the IMU at the sampling interval, and according to the sampled current posture data and reference.
  • the point pose data is calculated.
  • the attitude data may include a yaw/pitch/roll component.
  • the driving member of the pan/tilt may be a motor for driving the pan/tilt for rotation.
  • the present disclosure is not intended to limit the implementation of the driving member, and any driving member that can drive the pan/tilt rotation Applicable to the technical solution of the present disclosure.
  • the pan-tilt sensitivity may be preset by the gimbal based on statistics of intervals of previously received plurality of angular commands.
  • the pan/tilt sensitivity may be preset by the control device based on the statistics made by the pan/tilt.
  • the statistics may be made for an interval of a plurality of historical angle commands received by the gimbal due to the transmission jitter of the command in the aircraft model in which the pan/tilt is located.
  • the pan-tilt sensitivity may be set to a sum of a sampling interval and a predetermined margin of the control device for the included IMU and the predetermined time The maximum between.
  • the pan/tilt sensitivity can be set as follows (denoted as Motion_time):
  • Motion_time MAX (10ms+IMU sampling interval, duration_80).
  • the predetermined margin may be set according to channel interference between the control device and the aircraft in which the pan/tilt is located, and transmission and processing performance of a plurality of intermediate modules between the IMU and the pan/tilt.
  • the wired transmission between the IMU in the control device and the 0-N intermediate modules including but not limited to the general purpose processor, the wired transmission module, the wireless transmission module) in the control device, the control device and the aircraft
  • 0-N intermediate modules in the aircraft including but not The wired transmission between the general-purpose processor, the wired transmission module, and the wireless transmission module, and the processing performance of all modules are factors that cause the transmission jitter of the angle command, thereby affecting the interval of the angular command received by the gimbal. Therefore, the predetermined margin preferably needs to be set in consideration of these factors.
  • the pan/tilt may determine whether a new angle command is received within the rotation time represented by the pan/tilt sensitivity.
  • step S104 the pan/tilt head can rotate the next pan/tilt head according to the pan/tilt rotation angle indicated by the plurality of previously received angle commands.
  • the angle is estimated and the drive member is rotated from the current angle to the estimated pan/tilt angle of rotation through the rotation time.
  • the frequency at which the control device sends the angle command is recorded as a constant FREQ Hz
  • the pan/tilt rotation angles indicated by the three angle commands recently received by the gimbal are respectively recorded as angle n , angle n-1 , and angle n-2 , and
  • the period PERIOD of the transmission angle command, the angular velocity angleVel x corresponding to the rotation angle of each gimbal, and the angular acceleration angleAccel x can be calculated as follows:
  • angleVel n (angle n -angle n-1 )*FREQ
  • angleVel n-1 (angle n-1 -angle n-2 )*FREQ
  • angleAccel n (angleVel n -angleVel n-1 )*FREQ
  • Angle n+1 angle n +angleVel n *PERIOD+angleAccel n *PEROID 2 /2.
  • step S105 the pan/tilt can control the drive member to rotate from the current angle to the new angle through the rotation time.
  • the pan/tilt angle indicated by the command is
  • FIG. 3 schematically shows an example of pan/tilt rotation in the case where an angle command is received and not received in a rotation time represented by a preset pan/tilt sensitivity, respectively. It should be understood that the examples of FIG. 3 are merely illustrative and not limiting.
  • the pan/tilt receives an angle command C i indicating that the gimbal is rotated to ⁇ i at time t i , and receives an angle command C i+ indicating that the gimbal is rotated to ⁇ i+1 at time t i+1 .
  • the interval between t i and t i+1 is less than motion_time, that is, when a new angle command C i+1 is received within the motion_time, the pan/tilt control driver receives the angle command C i+1 from the time t i is rotated by the angle of motion_time from t i+1 to the angle ⁇ i+1 indicated by the angle command C i +1 ; and the new angle is not received when the pan/tilt is rotated by the motion_time to the angle ⁇ i+1 Command, at this time, the pan/tilt estimates the next pan/tilt rotation angle ⁇ Es according to the pan/tilt rotation angle indicated by the previously received plurality of angle commands, and controls the driving member from the time (t i+1 +motion_time) through the motion_time The current angle ⁇ i+1 is rotated to the estimated pan/tilt angle ⁇ Es .
  • FIG. 4 schematically shows a structural block diagram of a pan/tilt head 400 according to an exemplary embodiment of the present invention.
  • the pan/tilt 400 can be used to perform the method 100 described with reference to FIG.
  • FIG. 4 For the sake of brevity, only the schematic structure of the pan/tilt according to an exemplary embodiment of the present disclosure will be described herein, and the details already detailed in the method 100 as described above with reference to FIG. 1 are omitted, and reference may be made to the method 100. Description in .
  • the platform 400 includes a transceiver 401 configured to receive an angular command from the control device for indicating the angle of rotation of the gimbal; a processing unit or processor 402, which may be a single unit or multiple A combination of units for performing different steps of the method; a memory 403 in which computer executable instructions are stored.
  • the instructions when executed by the processor 402, cause the processor 402 to perform the following operations:
  • the driving member of the control platform is rotated to the rotation angle of the pan/tilt head through a preset rotation time
  • the rotation angle of the pan/tilt head is estimated according to the pan/tilt rotation angle indicated by the plurality of angular commands received previously, and the driving member passes through the control unit.
  • the rotation time is rotated from the current angle to the estimated angle of rotation of the gimbal.
  • the instructions when executed by the processor 402, also cause the processor 402 to perform the following operations: if a new angle command is received within the rotation time, the driver is controlled The panning angle indicated by the rotation time from the current angle to the new angle command.
  • pan/tilt head 400 capable of performing the method 100 described with reference to FIG. 1 is also within the scope of the present disclosure.
  • FIG. 5 schematically illustrates a flow chart of a method 500 for controlling pan/tilt rotation, in accordance with an exemplary embodiment of the present disclosure.
  • method 500 can include steps S501 through S505.
  • steps S501 through S505. for the sake of brevity, details that have been detailed in the method 100 described with reference to FIG. 1 are omitted herein, and reference may be made to the description in the method 100.
  • step S501 the control device 501 may transmit an angle command for indicating the pan/tilt angle of rotation to the pan/tilt head 5021 in the aircraft 502.
  • control device samples the attitude data of the control device measured by the IMU at a sampling interval, and calculates the pan/tilt rotation angle based on the sampled current posture data and the reference point posture data.
  • the attitude data may include a yaw angle/pitch angle/roll angle component.
  • the pan/tilt head 5021 can control the driving member of the pan/tilt head to rotate to the pan tilt angle according to the received angle command.
  • step S503 the platform 5021 may determine whether a new angle command is received within the rotation time.
  • step S504 the pan/tilt head 5021 can rotate the next pan/tilt head according to the pan/tilt rotation angle indicated by the plurality of previously received angle commands. Estimating the angle and controlling the drive member to pass the rotation time The front angle is rotated to the estimated pan/tilt angle of rotation.
  • step S505 the pan/tilt head 5021 can control the drive member to rotate from the current angle to the new angle command as indicated by the rotation time.
  • the pan tilt angle is indicated by the rotation time.
  • FIG. 6 schematically illustrates a structural block diagram of a system 600 for controlling pan/tilt rotation, in accordance with an exemplary embodiment of the present invention.
  • FIG. 6 schematically illustrates a structural block diagram of a system 600 for controlling pan/tilt rotation, in accordance with an exemplary embodiment of the present invention.
  • the schematic structure of the system 600 according to an exemplary embodiment of the present disclosure will be described herein, and the method 100 as previously described with reference to FIG. 1 and the method 500 described with reference to FIG. 5 are omitted.
  • system 600 can include a control device 601 and an aircraft 602.
  • the control device 601 can include a transceiver 6011 configured to transmit an angle command for indicating a pan/tilt angle to the pan/tilt in the aircraft, an IMU 6012 configured to measure attitude data of the control device, and a processing unit or processor 6013
  • the processor 6013 can be a single unit or a combination of multiple units for performing different steps of the method; the memory 6014 stores computer executable instructions that, when executed by the processor 6013, cause the processor 6013 to execute The following operations: sampling the attitude data of the control device measured by the IMU at the sampling interval, and calculating the pan/tilt rotation angle according to the sampled current posture data and the reference point posture data.
  • Aircraft 602 may include a pan/tilt 6021. Further, the pan/tilt 6021 can include a transceiver 60211 configured to receive an angle command from the control device 601 for indicating a pan/tilt angle of rotation; a processing unit or processor 60212, which can be a single unit or multiple Combinations of units for performing the different steps of the method; and a memory 60213 having stored therein computer executable instructions that, when executed by the processor 60212, cause the processor 6012 to perform the following operations:
  • the driving member of the control platform is rotated to the rotation angle of the pan/tilt head through a preset rotation time
  • the rotation angle of the pan/tilt head is estimated according to the pan/tilt rotation angle indicated by the plurality of angular commands received previously, and the driving member passes through the control unit.
  • the rotation time is rotated from the current angle to the estimated angle of rotation of the gimbal.
  • the instructions when executed by the processor 60212, further cause the processor 6012 to: control the driver if a new angle command is received within the rotation time The panning angle indicated by the rotation time from the current angle to the new angle command.
  • the program running on the device may be a program that causes a computer to implement the functions of the embodiments of the present disclosure by controlling a central processing unit (CPU).
  • the program or information processed by the program may be temporarily stored in a volatile memory (such as a random access memory RAM), a hard disk drive (HDD), a non-volatile memory (such as a flash memory), or other memory system.
  • a volatile memory such as a random access memory RAM
  • HDD hard disk drive
  • non-volatile memory such as a flash memory
  • a program for realizing the functions of the embodiments of the present disclosure may be recorded on a computer readable recording medium.
  • the corresponding functions can be realized by causing a computer system to read programs recorded on the recording medium and execute the programs.
  • the so-called "computer system” herein may be a computer system embedded in the device, and may include an operating system or hardware (such as a peripheral device).
  • the "computer readable recording medium” may be a semiconductor recording medium, an optical recording medium, a magnetic recording medium, a recording medium of a short-term dynamic storage program, or any other recording medium readable by a computer.
  • circuitry e.g., monolithic or multi-chip integrated circuits.
  • Circuitry designed to perform the functions described in this specification can include general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or other programmable logic devices, discrete Gate or transistor logic, discrete hardware components, or any combination of the above.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • a general purpose processor may be a microprocessor or any existing processor, controller, microcontroller, or state machine.
  • the above circuit may be a digital circuit or an analog circuit.
  • One or more embodiments of the present disclosure may also be implemented using these new integrated circuit technologies in the context of new integrated circuit technologies that replace existing integrated circuits due to advances in semiconductor technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Gyroscopes (AREA)
  • Studio Devices (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Accessories Of Cameras (AREA)

Abstract

一种在云台处执行的转动方法(100),包括:根据接收到的用于指示云台转动角度的角度命令,控制云台的驱动件经过预先设置的转动时间转动到云台转动角度(S102);确定在转动时间内是否接收到新的角度命令(S103);以及如果在转动时间内没有接收到新的角度命令,则根据先前接收到的多个角度命令所指示的云台转动角度对下一云台转动角度进行估计,并控制驱动件经过转动时间从当前角度转动到估计出的云台转动角度(S104);以及一种相应的云台(400)、一种飞行器、一种用于控制云台转动的方法(500)、以及一种控制云台转动的系统(600)。

Description

云台转动的方法、云台、飞行器、控制云台转动的方法及系统
版权声明
本专利文件披露的内容包含受版权保护的材料。该版权为版权所有人所有。版权所有人不反对任何人复制专利与商标局的官方记录和档案中所存在的该专利文件或该专利披露。
技术领域
本发明涉及云台控制技术领域,尤其涉及云台转动的方法、相应的云台、飞行器、控制云台转动的方法、以及控制云台转动的系统。
背景技术
云台是飞行器中用于承载负载以保持负载稳定的支撑工作台。例如,云台可以用于承载相机、摄像机等影像设备,以实现借助于飞行器的影像记录。
当云台从其外部(例如,云台的控制设备)接收到指示云台转动的命令时,可以通过驱动件来驱动云台转动。通常,该命令是周期性发出的,但是该命令在传输过程中不可避免地由于信道干扰、通用处理器的进程/线程调度等因素的影响而导致云台收到该命令的时间间隔并不均等,甚至有时候出现几十ms都收不到新的命令、而后面又在几个ms内连续收到多条命令的情况,在本文中,将这种情况称为“传输抖动”。命令在传输过程中的传输抖动会相应地导致云台转动的延迟和卡顿,进而影响用户体验。
目前,可以通过设置云台转动到接收到的命令所指示的角度的转动时间(也称为“云台灵敏度”),使云台不是在最短时间内转动到接收到的命令所指示的角度,而是控制驱动件转动云台的转速,使云台经过所设置的转动时间才转动到接收到的命令所指示的角度,以解决在所设置的转动时间内接收不到命令给云台带来的转动延迟和卡顿的问题。然而在实际应用中,不可能将云台灵敏度所指示的转动时间设置为比云台的所有接收命令间隔都大,因为由于不可预测的命令的传输抖动,导致不可确定的云台的接收命令间隔,在这种情况下设置过大的转动时间将导致云台转动过慢而效率过低。因而,在命令的传输抖 动所导致的云台的接收命令间隔超过预先设置的云台灵敏度所指示的转动时间的情况下,通过设置云台灵敏度的方式仍然无法解决上述云台的转动延迟和卡顿的问题。
发明内容
有鉴于此,本公开的实施例提供了一种云台转动的方法、相应的云台、飞行器、控制云台转动的方法、以及控制云台转动的系统,以更好地解决云台的转动延迟和卡顿的问题。
根据本公开实施例的第一方面,提供了一种在云台处执行的转动方法,包括:根据接收到的用于指示云台转动角度的角度命令,控制云台的驱动件经过预先设置的转动时间转动到所述云台转动角度;确定在所述转动时间内是否接收到新的角度命令;以及如果在所述转动时间内没有接收到新的角度命令,则根据先前接收到的多个角度命令所指示的云台转动角度对下一云台转动角度进行估计,并控制所述驱动件经过所述转动时间从当前角度转动到估计出的云台转动角度。
在根据所述第一方面的示例性实施例中,所述方法还包括:如果在所述转动时间内接收到新的角度命令,则控制所述驱动件经过所述转动时间从当前角度转动到新的角度命令所指示的云台转动角度。
根据本公开实施例的第二方面,提供了一种云台,包括:收发器,被配置为接收用于指示云台转动角度的角度命令;处理器;以及存储器,存储有计算机可执行指令,所述指令在被处理器执行时,使处理器执行以下操作:根据接收到的角度命令,控制云台的驱动件经过预先设置的转动时间转动到所述云台转动角度;确定在所述转动时间内是否接收到新的角度命令;以及如果在所述转动时间内没有接收到新的角度命令,则根据先前接收到的多个角度命令所指示的云台转动角度对下一云台转动角度进行估计,并控制所述驱动件经过所述转动时间从当前角度转动到估计出的云台转动角度。
在根据所述第二方面的示例性实施例中,所述指令在被处理器执行时,还使所述处理器执行以下操作:如果在所述转动时间内接收到新的角度命令,则控制所述驱动件经过所述转动时间从当前角度转动到新的角度命令所指示的 云台转动角度。
根据本公开实施例的第三方面,提供了一种飞行器,包括根据第二方面所述的云台。
根据本公开实施例的第四方面,提供了一种用于控制云台转动的方法,包括:通过控制设备向飞行器中的云台发送用于指示云台转动角度的角度命令;云台根据接收到的所述角度命令,控制云台的驱动件经过预先设置的转动时间转动到所述云台转动角度;云台确定在所述转动时间内是否接收到新的角度命令;以及如果在所述转动时间内没有接收到新的角度命令,则云台根据先前接收到的多个角度命令所指示的云台转动角度对下一云台转动角度进行估计,并控制所述驱动件经过所述转动时间从当前角度转动到估计出的云台转动角度。
在根据所述第四方面的示例性实施例中,所述方法还包括:如果在所述转动时间内接收到新的角度命令,则云台控制所述驱动件经过所述转动时间从当前角度转动到新的角度命令所指示的云台转动角度。
在根据所述第四方面的示例性实施例中,所述方法还包括:通过控制设备以所述采样间隔对通过惯性测量单元(IMU)测量到的控制设备的姿态数据进行采样,并根据采样到的当前姿态数据和参考点姿态数据计算出所述云台转动角度。
根据本公开实施例的第五方面,提供了一种控制云台转动的系统,包括控制设备和飞行器,其中所述控制设备包括收发器,被配置为向飞行器中的云台发送用于指示云台转动角度的角度命令;以及所述飞行器包括云台,所述云台包括:收发器,被配置为接收来自控制设备的用于指示云台转动角度的角度命令;处理器;以及存储器,存储有计算机可执行指令,所述指令在被处理器执行时,使处理器执行以下操作:根据接收到的角度命令,控制云台的驱动件经过预先设置的转动时间转动到所述云台转动角度;确定在所述转动时间内是否接收到新的角度命令;以及如果在所述转动时间内没有接收到新的角度命令,则根据先前接收到的多个角度命令所指示的云台转动角度对下一云台转动角度进行估计,并控制所述驱动件经过所述转动时间从当前角度转动到估计出的云台转动角度。
在根据所述第五方面的示例性实施例中,所述指令在被云台中的处理器执 行时,还使所述处理器执行以下操作:如果在所述转动时间内接收到新的角度命令,则控制所述驱动件经过所述转动时间从当前角度转动到新的角度命令所指示的云台转动角度。
在根据所述第五方面的示例性实施例中,所述控制设备还包括:IMU,被配置为测量控制设备的姿态数据;处理器;存储器,存储有计算机可执行指令,所述指令在被处理器执行时,使处理器执行以下操作:以所述采样间隔对通过IMU测量到的控制设备的姿态数据进行采样,并根据采样到的当前姿态数据和参考点姿态数据计算出所述云台转动角度。
在根据所述第四和第五方面的示例性实施例中,姿态数据包括偏航角/俯仰角/滚转角分量。
在根据所述第一至第五方面的示例性实施例中,所述转动时间通过云台根据先前接收到的多个角度命令的间隔的统计来设置,或通过控制设备根据云台做出的所述统计来设置。
在根据所述第一至第五方面的示例性实施例中,如果预定比例的所述间隔均在预定时间内,则所述转动时间被设置为控制设备对所包括的IMU的采样间隔和预定裕量之和与所述预定时间之间的最大值。
在根据所述第一至第五方面的示例性实施例中,所述预定裕量根据控制设备与云台所在的飞行器之间的信道干扰、以及IMU与云台之间的多个中间模块的传输和处理性能来设置。
在根据所述第一至第五方面的示例性实施例中,所述控制设备是智能穿戴设备、便携式电子装置或遥控杆。
根据本公开的实施例提出的上述方案,在预先设置的转动时间内没有接收到新的角度命令的情况下,根据先前接收到的多个角度命令所指示的云台转动角度对下一云台转动角度进行估计,并控制驱动件经过所述转动时间从当前角度转动到估计出的云台转动角度,可以在云台的接收命令间隔超过预先设置的转动时间的情况下改善云台的转动延迟和卡顿。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对示例性实施例的 描述中将变得明显和容易理解,其中:
图1示意性地示出了根据本公开示例性实施例的在云台处执行的转动方法的流程图;
图2示意性地示出了控制设备中的IMU与飞行器的云台之间的数据传输流图;
图3示意性地分别示出了在预先设置的云台灵敏度所表征的转动时间内接收到和未接收到角度命令的情况下的云台转动示例;
图4示意性地示出了根据本公开示例性实施例的云台的结构框图;
图5示意性地示出了根据本公开示例性实施例的用于控制云台转动的方法的流程图;以及
图6示意性地示出了根据本公开示例性实施例的用于控制云台转动的系统的结构框图。
具体实施方式
下面详细描述本公开的示例性实施例,所述示例性实施例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能被解释为对本公开的任何限制。
以下将参照图1,对根据本公开示例性实施例的在云台处执行的转动方法进行描述。
图1示意性地示出了根据本公开示例性实施例的在云台处执行的转动方法100的流程图。如图1所示,方法100可以包括步骤S102至S104。
在步骤S102中,云台可以根据接收到的用于指示云台转动角度的角度命令,控制云台的驱动件经过预先设置的转动时间转动到所述云台转动角度。在本文中,将云台转动到接收到的角度命令所指示的云台转动角度的转动时间称为“云台灵敏度”,其以时间量来表征。
在一示例性实施例中,所述角度命令可以是通过用于控制云台的控制设备发送的。例如,该控制设备可以是智能穿戴设备(例如通过体感控来控制云台)、便携式电子装置、或遥控杆,但不限于此。在另一示例性实施例中,所述角度 命令可以是由云台所在飞行器的飞行控制器发送的。然而本公开不意在限定发出角度命令的实体,任何可以发出角度命令的实体都适用于本公开的技术方案。
在一示例性实施例中,角度命令所指示的云台转动角度可以通过控制设备以所述采样间隔对通过IMU测量到的控制设备的姿态数据进行采样,并根据采样到的当前姿态数据和参考点姿态数据计算得到。
在一示例性实施例中,姿态数据可以包括偏航角(yaw)/俯仰角(pitch)/滚转角(roll)分量。
在一示例性实施例中,云台的驱动件可以是电机,用于驱动云台进行转动,然而,本公开不意在对驱动件的实现方式进行限定,任何可以驱动云台转动的驱动件都适用于本公开的技术方案。
在一示例性实施例中,云台灵敏度可以由云台根据先前接收到的多个角度命令的间隔的统计来预先设置。在另一示例性实施例中,云台灵敏度可以由控制设备根据云台做出的所述统计来预先设置。
具体地,可以针对云台所在飞行器机型在典型情况下由于命令的传输抖动而导致的云台接收到的多个历史角度命令的间隔做出所述统计。
在一示例性实施例中,如果预定比例的所述间隔均在预定时间内,则云台灵敏度可以被设置为控制设备对所包括的IMU的采样间隔和预定裕量之和与所述预定时间之间的最大值。
例如,假设预定裕量设置为10ms,且从所述统计中找到包含例如80%的角度命令间隔(记为duration_80)都在30ms以内,则duration_80=30ms,因而可以如下设置云台灵敏度(记为motion_time):
motion_time=MAX(10ms+IMU采样间隔,duration_80)。
在一示例性实施例中,所述预定裕量可以根据控制设备与云台所在的飞行器之间的信道干扰、以及IMU与云台之间的多个中间模块的传输和处理性能来设置。
例如,参见图2,控制设备中的IMU与控制设备中的0-N个中间模块(包括但不限于通用处理器、有线传输模块、无线传输模块)之间的有线传输、控制设备与飞行器之间的有线或无线传输、飞行器中的0-N中间模块(包括但不 限于通用处理器、有线传输模块、无线传输模块)与云台之间的有线传输、以及所有模块的处理性能都是导致角度命令的传输抖动的因素,进而影响云台接收到的角度命令的间隔,因此所述预定裕量优选需要考虑这些因素来设置。
在步骤S103中,云台可以确定在云台灵敏度所表征的转动时间内是否接收到新的角度命令。
如果确定在所述转动时间内没有接收到新的角度命令,则方法100进行至步骤S104,其中云台可以根据先前接收到的多个角度命令所指示的云台转动角度对下一云台转动角度进行估计,并控制驱动件经过所述转动时间从当前角度转动到估计出的云台转动角度。
以下将结合一示例算法对云台的转动角度估计进行详细描述,然而本领域技术人员应理解,该示例算法仅是说明性的,而非限制性的。
例如,将控制设备发送角度命令的频率记为常量FREQ Hz,云台最近接收到的3个角度命令所指示的云台转动角度分别记为anglen、anglen-1、anglen-2,且
Figure PCTCN2017095284-appb-000001
根据上述信息可以计算得到发送角度命令的周期PERIOD、各云台转动角度对应的角速度angleVelx以及角加速度angleAccelx分别如下:
PEROID=1/FREQ
angleVeln=(anglen-anglen-1)*FREQ
angleVeln-1=(anglen-1-anglen-2)*FREQ
angleAcceln=(angleVeln-angleVeln-1)*FREQ
据此可以估计出下一云台转动角度anglen+1如下:
anglen+1=anglen+angleVeln*PERIOD+angleAcceln*PEROID2/2。
应注意,本公开并不意在对用作云台的转动角度估计的算法进行限定,任何适合的估计算法都适用于本公开的技术方案。
如果确定在所述转动时间内接收到新的角度命令,则方法100进行至步骤S105,其中云台可以控制驱动件经过所述转动时间从当前角度转动到新的角度 命令所指示的云台转动角度。
图3示意性地分别示出了在预先设置的云台灵敏度所表征的转动时间内接收到和未接收到角度命令的情况下的云台转动示例。应理解,图3的示例仅是说明性的,而非限制性的。
如图3所示,云台在时刻ti接收到指示云台转动到αi的角度命令Ci,在时刻ti+1接收到指示云台转动到αi+1的角度命令Ci+1,ti与ti+1之间的间隔小于motion_time,即,在motion_time内接收到新的角度命令Ci+1,则云台控制驱动件从接收到角度命令Ci+1的时刻ti起经过motion_time从ti+1处的角度转动到角度命令Ci+1所指示的角度αi+1;而在云台经过motion_time转动到角度αi+1时并未接收到新的角度命令,此时云台根据先前接收到的多个角度命令所指示的云台转动角度估计出下一云台转动角度αEs,并控制驱动件从时刻(ti+1+motion_time)经过motion_time从当前角度αi+1转动到估计出的云台转动角度αEs。倘若云台还未经过motion_time转动到αEs便在时刻ti+2接收到指示云台转动到αi+2的角度命令Ci+2,则如前所述,云台控制驱动件从接收到角度命令Ci+2的时刻ti+2起经过motion_time从ti+2处的角度转动到角度命令Ci+2所指示的角度αi+2
以下将参照图4,对根据本发明示例性实施例的云台的结构进行描述。图4示意性地示出了根据本发明示例性实施例的云台400的结构框图。云台400可以用于执行参考图1描述的方法100。为了简明,在此仅对根据本公开示例性实施例的云台的示意性结构进行描述,而省略了如前参考图1描述的方法100中已经详述过的细节,具体可参照在方法100中的描述。
如图4所示,云台400包括收发器401,被配置为接收来自控制设备的用于指示云台转动角度的角度命令;处理单元或处理器402,该处理器402可以是单个单元或者多个单元的组合,用于执行方法的不同步骤;存储器403,其中存储有计算机可执行指令。
在云台400用于执行方法100的示例性实施例中,所述指令在被处理器402执行时,使处理器402执行以下操作:
根据接收到的角度命令,控制云台的驱动件经过预先设置的转动时间转动到所述云台转动角度;
确定在所述转动时间内是否接收到新的角度命令;以及
如果在所述转动时间内没有接收到新的角度命令,则根据先前接收到的多个角度命令所指示的云台转动角度对下一云台转动角度进行估计,并控制所述驱动件经过所述转动时间从当前角度转动到估计出的云台转动角度。
在一示例性实施例中,所述指令在被处理器402执行时,还使所述处理器402执行以下操作:如果在所述转动时间内接收到新的角度命令,则控制所述驱动件经过所述转动时间从当前角度转动到新的角度命令所指示的云台转动角度。
本领域技术人员可以理解,包括能够执行参考图1描述的方法100的云台400的飞行器也落入本公开意在保护的范围之内。
以下将参照图5,对根据本公开示例性实施例的用于控制云台转动的方法进行描述。
图5示意性地示出了根据本公开示例性实施例的用于控制云台转动的方法500的流程图。如图5所示,方法500可以包括步骤S501至S505。为了简明,在此省略了在参照图1描述的方法100中已经详述过的细节,具体可参照在方法100中的描述。
在步骤S501中,控制设备501可以向飞行器502中的云台5021发送用于指示云台转动角度的角度命令。
在一示例性实施例中,控制设备以一采样间隔对通过IMU测量到的控制设备的姿态数据进行采样,并根据采样到的当前姿态数据和参考点姿态数据计算出所述云台转动角度。
在一示例性实施例中,姿态数据可以包括偏航角/俯仰角/滚转角分量。
在步骤S502中,云台5021可以根据接收到的所述角度命令,控制云台的驱动件经过预先设置的转动时间转动到所述云台转动角度。
在步骤S503中,云台5021可以确定在所述转动时间内是否接收到新的角度命令。
如果在所述转动时间内没有接收到新的角度命令,则方法500进行至步骤S504,其中云台5021可以根据先前接收到的多个角度命令所指示的云台转动角度对下一云台转动角度进行估计,并控制所述驱动件经过所述转动时间从当 前角度转动到估计出的云台转动角度。
如果在所述转动时间内没有接收到新的角度命令,则方法500进行至步骤S505,其中云台5021可以控制所述驱动件经过所述转动时间从当前角度转动到新的角度命令所指示的云台转动角度。
以下将参照图6,对根据本公开示例性实施例的用于控制云台转动的系统进行描述。图6示意性地示出了根据本发明示例性实施例的用于控制云台转动的系统600的结构框图。为了简明,在此仅对根据本公开示例性实施例的系统600的示意性结构进行描述,而省略了如前参考图1描述的方法100和参考图5描述的方法500中已经详述过的细节,具体可参照在方法100和500中的描述。
如图6所示,系统600可以包括控制设备601和飞行器602。
控制设备601可以包括:收发器6011,被配置为向飞行器中的云台发送用于指示云台转动角度的角度命令;IMU 6012,被配置为测量控制设备的姿态数据;处理单元或处理器6013,该处理器6013可以是单个单元或者多个单元的组合,用于执行方法的不同步骤;存储器6014,存储有计算机可执行指令,所述指令在被处理器6013执行时,使处理器6013执行以下操作:以所述采样间隔对通过IMU测量到的控制设备的姿态数据进行采样,并根据采样到的当前姿态数据和参考点姿态数据计算出所述云台转动角度。
飞行器602可以包括云台6021。进一步,云台6021可以包括:收发器60211,被配置为接收来自控制设备601的用于指示云台转动角度的角度命令;处理单元或处理器60212,该处理器60212可以是单个单元或者多个单元的组合,用于执行方法的不同步骤;以及存储器60213,其中存储有计算机可执行指令,所述指令在被处理器60212执行时,使处理器60212执行以下操作:
根据接收到的角度命令,控制云台的驱动件经过预先设置的转动时间转动到所述云台转动角度;
确定在所述转动时间内是否接收到新的角度命令;以及
如果在所述转动时间内没有接收到新的角度命令,则根据先前接收到的多个角度命令所指示的云台转动角度对下一云台转动角度进行估计,并控制所述驱动件经过所述转动时间从当前角度转动到估计出的云台转动角度。
在一示例性实施例中,所述指令在被处理器60212执行时,还使所述处理器60212执行以下操作:如果在所述转动时间内接收到新的角度命令,则控制所述驱动件经过所述转动时间从当前角度转动到新的角度命令所指示的云台转动角度。
运行在根据本公开的设备上的程序可以是通过控制中央处理单元(CPU)来使计算机实现本公开的实施例功能的程序。该程序或由该程序处理的信息可以临时存储在易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器系统中。
用于实现本公开各实施例功能的程序可以记录在计算机可读记录介质上。可以通过使计算机系统读取记录在所述记录介质上的程序并执行这些程序来实现相应的功能。此处的所谓“计算机系统”可以是嵌入在该设备中的计算机系统,可以包括操作系统或硬件(如外围设备)。“计算机可读记录介质”可以是半导体记录介质、光学记录介质、磁性记录介质、短时动态存储程序的记录介质、或计算机可读的任何其他记录介质。
用在上述实施例中的设备的各种特征或功能模块可以通过电路(例如,单片或多片集成电路)来实现或执行。设计用于执行本说明书所描述的功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、或其他可编程逻辑器件、分立的门或晶体管逻辑、分立的硬件组件、或上述器件的任意组合。通用处理器可以是微处理器,也可以是任何现有的处理器、控制器、微控制器、或状态机。上述电路可以是数字电路,也可以是模拟电路。因半导体技术的进步而出现了替代现有集成电路的新的集成电路技术的情况下,本公开的一个或多个实施例也可以使用这些新的集成电路技术来实现。
如上,已经参考附图对本公开的实施例进行了详细描述。但是,具体的结构并不局限于上述实施例,本公开也包括不偏离本公开主旨的任何设计改动。另外,可以在权利要求的范围内对本公开进行多种改动,通过适当地组合不同实施例所公开的技术手段所得到的实施例也包含在本公开的技术范围内。此外,上述实施例中所描述的具有相同效果的组件可以相互替代。

Claims (29)

  1. 一种在云台处执行的转动方法,包括:
    根据接收到的用于指示云台转动角度的角度命令,控制云台的驱动件经过预先设置的转动时间转动到所述云台转动角度;
    确定在所述转动时间内是否接收到新的角度命令;以及
    如果在所述转动时间内没有接收到新的角度命令,则根据先前接收到的多个角度命令所指示的云台转动角度对下一云台转动角度进行估计,并控制所述驱动件经过所述转动时间从当前角度转动到估计出的云台转动角度。
  2. 根据权利要求1所述的转动方法,还包括:
    如果在所述转动时间内接收到新的角度命令,则控制所述驱动件经过所述转动时间从当前角度转动到新的角度命令所指示的云台转动角度。
  3. 根据权利要求1或2所述的转动方法,其中
    所述转动时间通过云台根据先前接收到的多个角度命令的间隔的统计来设置,或通过控制设备根据云台做出的所述统计来设置。
  4. 根据权利要求3所述的转动方法,其中
    如果预定比例的所述间隔均在预定时间内,则所述转动时间被设置为控制设备对所包括的惯性测量单元IMU的采样间隔和预定裕量之和与所述预定时间之间的最大值。
  5. 根据权利要求4所述的转动方法,其中
    所述预定裕量根据控制设备与云台所在的飞行器之间的信道干扰、以及IMU与云台之间的多个中间模块的传输和处理性能来设置。
  6. 根据权利要求3至5中任一项所述的转动方法,其中所述控制设备是智能穿戴设备、便携式电子装置或遥控杆。
  7. 一种云台,包括:
    收发器,被配置为接收用于指示云台转动角度的角度命令;
    处理器;以及
    存储器,存储有计算机可执行指令,所述指令在被处理器执行时,使处理器执行以下操作:
    根据接收到的角度命令,控制云台的驱动件经过预先设置的转动时间转动到所述云台转动角度;
    确定在所述转动时间内是否接收到新的角度命令;以及
    如果在所述转动时间内没有接收到新的角度命令,则根据先前接收到的多个角度命令所指示的云台转动角度对下一云台转动角度进行估计,并控制所述驱动件经过所述转动时间从当前角度转动到估计出的云台转动角度。
  8. 根据权利要求7所述的云台,其中所述指令在被处理器执行时,还使所述处理器执行以下操作:
    如果在所述转动时间内接收到新的角度命令,则控制所述驱动件经过所述转动时间从当前角度转动到新的角度命令所指示的云台转动角度。
  9. 根据权利要求7或8所述的云台,其中所述转动时间通过云台根据先前接收到的多个角度命令的间隔的统计来设置,或通过控制设备根据云台做出的所述统计来设置。
  10. 根据权利要求9所述的云台,其中如果预定比例的所述间隔均在预定时间内,则所述转动时间被设置为控制设备对所包括的惯性测量单元IMU的采样间隔和预定裕量之和与所述预定时间之间的最大值。
  11. 根据权利要求10所述的云台,其中
    所述预定裕量根据控制设备与云台所在的飞行器之间的信道干扰、以及IMU与云台之间的多个中间模块的传输和处理性能来设置。
  12. 根据权利要求9至11中任一项所述的云台,其中所述控制设备是智能穿戴设备、便携式电子装置或遥控杆。
  13. 一种飞行器,包括根据权利要求7至12中任一项所述的云台。
  14. 一种用于控制云台转动的方法,包括:
    通过控制设备向飞行器中的云台发送用于指示云台转动角度的角度命令;
    云台根据接收到的所述角度命令,控制云台的驱动件经过预先设置的转动时间转动到所述云台转动角度;
    云台确定在所述转动时间内是否接收到新的角度命令;以及
    如果在所述转动时间内没有接收到新的角度命令,则云台根据先前接收到的多个角度命令所指示的云台转动角度对下一云台转动角度进行估计,并控制 所述驱动件经过所述转动时间从当前角度转动到估计出的云台转动角度。
  15. 根据权利要求14所述的方法,还包括:
    如果在所述转动时间内接收到新的角度命令,则云台控制所述驱动件经过所述转动时间从当前角度转动到新的角度命令所指示的云台转动角度。
  16. 根据权利要求14或15所述的方法,还包括:
    通过控制设备以一采样间隔对通过惯性测量单元IMU测量到的控制设备的姿态数据进行采样,并根据采样到的当前姿态数据和参考点姿态数据计算出所述云台转动角度。
  17. 根据权利要求16所述的方法,其中姿态数据包括偏航角/俯仰角/滚转角分量。
  18. 根据权利要求14至17中任一项所述的方法,其中
    所述转动时间通过云台根据先前接收到的多个角度命令的间隔的统计来设置,或通过控制设备根据云台做出的所述统计来设置。
  19. 根据权利要求18所述的方法,其中
    如果预定比例的所述间隔均在预定时间内,则所述转动时间被设置为控制设备对所包括的IMU的采样间隔和预定裕量之和与所述预定时间之间的最大值。
  20. 根据权利要求19所述的方法,其中
    所述预定裕量根据控制设备与云台所在的飞行器之间的信道干扰、以及IMU与云台之间的多个中间模块的传输和处理性能来设置。
  21. 根据权利要求16至20中任一项所述的方法,其中所述控制设备是智能穿戴设备、便携式电子装置或遥控杆。
  22. 一种控制云台转动的系统,包括控制设备和飞行器,其中
    所述控制设备包括收发器,被配置为向飞行器中的云台发送用于指示云台转动角度的角度命令;以及
    所述飞行器包括云台,所述云台包括:
    收发器,被配置为接收来自控制设备的用于指示云台转动角度的角度命令;
    处理器;以及
    存储器,存储有计算机可执行指令,所述指令在被处理器执行时,使处理器执行以下操作:
    根据接收到的角度命令,控制云台的驱动件经过预先设置的转动时间转动到所述云台转动角度;
    确定在所述转动时间内是否接收到新的角度命令;以及
    如果在所述转动时间内没有接收到新的角度命令,则根据先前接收到的多个角度命令所指示的云台转动角度对下一云台转动角度进行估计,并控制所述驱动件经过所述转动时间从当前角度转动到估计出的云台转动角度。
  23. 根据权利要求22所述的系统,其中所述指令在被云台中的处理器执行时,还使所述处理器执行以下操作:
    如果在所述转动时间内接收到新的角度命令,则控制所述驱动件经过所述转动时间从当前角度转动到新的角度命令所指示的云台转动角度。
  24. 根据权利要求22或23所述的系统,其中所述控制设备还包括:
    惯性测量单元IMU,被配置为测量控制设备的姿态数据;
    处理器;
    存储器,存储有计算机可执行指令,所述指令在被处理器执行时,使处理器执行以下操作:
    以所述采样间隔对通过IMU测量到的控制设备的姿态数据进行采样,并根据采样到的当前姿态数据和参考点姿态数据计算出所述云台转动角度。
  25. 根据权利要求24所述的系统,其中姿态数据包括偏航角/俯仰角/滚转角分量。
  26. 根据权利要求22至25中任一项所述的系统,其中所述转动时间通过云台根据先前接收到的多个角度命令的间隔的统计来设置,或通过控制设备根据云台做出的所述统计来设置。
  27. 根据权利要求26所述的系统,其中如果预定比例的所述间隔均在预定时间内,则所述转动时间被设置为控制设备对所包括的IMU的采样间隔和预定裕量之和与所述预定时间之间的最大值。
  28. 根据权利要求27所述的系统,其中所述预定裕量根据控制设备与云台所在的飞行器之间的信道干扰、以及IMU与云台之间的多个中间模块的传输和处理性能来设置。
  29. 根据权利要求22至28中任一项所述的系统,其中所述控制设备是智能穿戴设备、便携式电子装置或遥控杆。
PCT/CN2017/095284 2017-07-31 2017-07-31 云台转动的方法、云台、飞行器、控制云台转动的方法及系统 WO2019023887A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780004413.9A CN108521813B (zh) 2017-07-31 2017-07-31 云台转动的方法、云台、飞行器、控制云台转动的方法及系统
PCT/CN2017/095284 WO2019023887A1 (zh) 2017-07-31 2017-07-31 云台转动的方法、云台、飞行器、控制云台转动的方法及系统
US16/725,559 US11279497B2 (en) 2017-07-31 2019-12-23 Gimbal rotation method, gimbal, aircraft, and method and system for controlling rotation of gimbal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/095284 WO2019023887A1 (zh) 2017-07-31 2017-07-31 云台转动的方法、云台、飞行器、控制云台转动的方法及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/725,559 Continuation US11279497B2 (en) 2017-07-31 2019-12-23 Gimbal rotation method, gimbal, aircraft, and method and system for controlling rotation of gimbal

Publications (1)

Publication Number Publication Date
WO2019023887A1 true WO2019023887A1 (zh) 2019-02-07

Family

ID=63434159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/095284 WO2019023887A1 (zh) 2017-07-31 2017-07-31 云台转动的方法、云台、飞行器、控制云台转动的方法及系统

Country Status (3)

Country Link
US (1) US11279497B2 (zh)
CN (1) CN108521813B (zh)
WO (1) WO2019023887A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107077154B (zh) * 2016-08-17 2018-12-07 深圳市大疆灵眸科技有限公司 云台控制方法、装置、存储介质以及无人机
WO2019023887A1 (zh) * 2017-07-31 2019-02-07 深圳市大疆创新科技有限公司 云台转动的方法、云台、飞行器、控制云台转动的方法及系统
CN109246739B (zh) * 2018-09-21 2022-02-15 南京智讯越岭信息技术有限公司 共享无线信道下遥控信号传输的抗干扰方法
WO2021026748A1 (zh) * 2019-08-13 2021-02-18 深圳市大疆创新科技有限公司 拍摄检测方法、装置、云台、系统及存储介质
CN110557612B (zh) * 2019-08-30 2021-12-10 视联动力信息技术股份有限公司 一种监控设备的控制方法和视联网系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8521428B1 (en) * 2009-10-15 2013-08-27 Moog Inc. Heading determination using sensors mounted on rotatable assembly
CN105100714A (zh) * 2015-07-10 2015-11-25 东方网力科技股份有限公司 基于监控设备的云台的控制方法和装置
CN105652891A (zh) * 2016-03-02 2016-06-08 中山大学 一种旋翼无人机移动目标自主跟踪装置及其控制方法
CN105830129A (zh) * 2015-04-29 2016-08-03 深圳市大疆创新科技有限公司 云台控制方法、装置及系统
CN106249888A (zh) * 2016-07-28 2016-12-21 纳恩博(北京)科技有限公司 一种云台控制方法和装置
CN106525074A (zh) * 2016-10-13 2017-03-22 重庆零度智控智能科技有限公司 一种云台漂移的补偿方法、装置、云台和无人机
CN106742003A (zh) * 2015-11-20 2017-05-31 广州亿航智能技术有限公司 基于智能显示设备的无人机云台转动控制方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110304737A1 (en) * 2010-06-15 2011-12-15 Flir Systems, Inc. Gimbal positioning with target velocity compensation
US9921459B2 (en) * 2011-11-02 2018-03-20 Steven D. Wagner Actively stabilized payload support apparatus and methods
US9435520B2 (en) * 2012-08-16 2016-09-06 Ascendant Engineering Solutions Gimbal systems providing high-precision imaging capabilities in a compact form-factor
WO2014140356A1 (en) * 2013-03-15 2014-09-18 Freefly Systems Inc. Method for enabling manual adjustment of a pointing direction of an actively stabilized camera
US10095942B2 (en) * 2014-12-15 2018-10-09 Reflex Robotics, Inc Vision based real-time object tracking system for robotic gimbal control
US9927682B2 (en) * 2015-03-31 2018-03-27 Vantage Robotics, Llc Miniature stabilized unmanned aerial vehicle gimbal
EP3298458B1 (en) * 2015-05-27 2019-12-18 GoPro, Inc. Camera system using stabilizing gimbal
CN107077154B (zh) * 2016-08-17 2018-12-07 深圳市大疆灵眸科技有限公司 云台控制方法、装置、存储介质以及无人机
US10362228B2 (en) * 2016-10-22 2019-07-23 Gopro, Inc. Fast attitude error correction
US11060658B2 (en) * 2016-11-17 2021-07-13 Aurora Flight Sciences Corporation Gimbal stabilization system and method
CN108427407B (zh) * 2017-02-13 2021-03-05 昊翔电能运动科技(昆山)有限公司 云台控制方法、云台控制系统及云台设备
WO2019023887A1 (zh) * 2017-07-31 2019-02-07 深圳市大疆创新科技有限公司 云台转动的方法、云台、飞行器、控制云台转动的方法及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8521428B1 (en) * 2009-10-15 2013-08-27 Moog Inc. Heading determination using sensors mounted on rotatable assembly
CN105830129A (zh) * 2015-04-29 2016-08-03 深圳市大疆创新科技有限公司 云台控制方法、装置及系统
CN105100714A (zh) * 2015-07-10 2015-11-25 东方网力科技股份有限公司 基于监控设备的云台的控制方法和装置
CN106742003A (zh) * 2015-11-20 2017-05-31 广州亿航智能技术有限公司 基于智能显示设备的无人机云台转动控制方法
CN105652891A (zh) * 2016-03-02 2016-06-08 中山大学 一种旋翼无人机移动目标自主跟踪装置及其控制方法
CN106249888A (zh) * 2016-07-28 2016-12-21 纳恩博(北京)科技有限公司 一种云台控制方法和装置
CN106525074A (zh) * 2016-10-13 2017-03-22 重庆零度智控智能科技有限公司 一种云台漂移的补偿方法、装置、云台和无人机

Also Published As

Publication number Publication date
US20200130861A1 (en) 2020-04-30
CN108521813B (zh) 2021-06-22
US11279497B2 (en) 2022-03-22
CN108521813A (zh) 2018-09-11

Similar Documents

Publication Publication Date Title
WO2019023887A1 (zh) 云台转动的方法、云台、飞行器、控制云台转动的方法及系统
KR101707600B1 (ko) 멀티미디어 클립에 대한 비디오 안정화 적용
US20240118594A1 (en) Gimbal control method, device, and gimbal
JP2018140279A5 (zh)
US9462183B2 (en) Trigger for blade imaging based on a controller
JP2017523488A5 (zh)
EP3854071A1 (en) Systems and methods for stabilizing videos
CN105594190A (zh) 无模糊图像拍摄系统
GB2540809A (en) Task scheduling
US9612880B1 (en) Media device temperature management
JP2018110387A (ja) リアルタイムライブ環境でのバッファに基づく帯域幅測定および適応的データ送信のための方法およびシステム
CN110248082B (zh) 一种规划摄像机运动控制曲线的方法及装置
US11722772B2 (en) Systems and methods for changing stabilization of videos
JP2015095803A5 (zh)
US11560745B2 (en) Door closer diagnostics system
WO2019148348A1 (zh) 云台控制方法和装置
WO2019095139A1 (zh) 数据处理方法和设备
WO2021016855A1 (zh) 一种手持云台的控制方法、设备、手持云台及存储介质
WO2021102797A1 (zh) 一种云台控制方法、控制装置及控制系统
WO2021016857A1 (zh) 一种手持云台的控制方法、设备、手持云台及存储介质
US8078773B2 (en) Optimized transmission of signals between a disk drive controller and a motor controller using a serial port
WO2022016322A1 (zh) 云台及其性能的评估方法及装置、可移动平台
WO2021007697A1 (zh) 云台及其控制方法、外置控制装置
JP7049858B2 (ja) 動体追尾装置及びそのプログラム
US11785177B2 (en) Record-and-replay control device, replay control device, and record-and-replay control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17920408

Country of ref document: EP

Kind code of ref document: A1