WO2019022343A1 - 무선랜 시스템에서 신호의 송수신 방법 및 이를 위한 장치 - Google Patents

무선랜 시스템에서 신호의 송수신 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2019022343A1
WO2019022343A1 PCT/KR2018/004122 KR2018004122W WO2019022343A1 WO 2019022343 A1 WO2019022343 A1 WO 2019022343A1 KR 2018004122 W KR2018004122 W KR 2018004122W WO 2019022343 A1 WO2019022343 A1 WO 2019022343A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
combined
mapped
value
combining
Prior art date
Application number
PCT/KR2018/004122
Other languages
English (en)
French (fr)
Inventor
윤선웅
김진민
박성진
최진수
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/325,378 priority Critical patent/US10608789B2/en
Priority to KR1020197003018A priority patent/KR102130020B1/ko
Priority to CN201880052542.XA priority patent/CN110999199B/zh
Priority to EP18839391.2A priority patent/EP3565173B1/en
Publication of WO2019022343A1 publication Critical patent/WO2019022343A1/ko
Priority to US16/799,572 priority patent/US10972222B2/en
Priority to US17/196,615 priority patent/US11563523B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/06Channels characterised by the type of signal the signals being represented by different frequencies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • H04L1/0042Encoding specially adapted to other signal generation operation, e.g. in order to reduce transmit distortions, jitter, or to improve signal shape
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0625Transmitter arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2032Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner
    • H04L27/2053Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases
    • H04L27/206Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases using a pair of orthogonal carriers, e.g. quadrature carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2603Signal structure ensuring backward compatibility with legacy system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the following description relates to a method for transmitting and receiving signals of a station in a wireless local area network (WLAN) system and an apparatus therefor.
  • WLAN wireless local area network
  • the following description relates to a method and apparatus for a station operating in an OFDM (Orthogonal Frequency Division Multiplexing) mode to transmit and receive signals through two combined channels.
  • OFDM Orthogonal Frequency Division Multiplexing
  • IEEE 802.11a and b 2.4. GHz or 5 GHz
  • the IEEE 802.11b provides a transmission rate of 11 Mbps
  • the IEEE 802.11a provides a transmission rate of 54 Mbps
  • IEEE 802.11g employs Orthogonal Frequency-Division Multiplexing (OFDM) at 2.4 GHz to provide a transmission rate of 54 Mbps
  • IEEE 802.11n employs multiple input multiple output (OFDM), or OFDM (MIMO-OFDM), and provides transmission speeds of 300 Mbps for four spatial streams.
  • IEEE 802.11n supports channel bandwidth up to 40 MHz, which in this case provides a transmission rate of 600 Mbps.
  • the IEEE 802.11ax standard which supports a maximum of 160 MHz bandwidth and supports 8 spatial streams and supports a maximum speed of 1 Gbit / s, has been discussed in the IEEE 802.11ax standard.
  • IEEE 802.11ad defines performance enhancement for high-speed throughput in the 60 GHz band, and IEEE 802.11ay for introducing channel bonding and MIMO technology for the first time in such IEEE 802.11ad system is being discussed.
  • a station operating in an OFDM mode transmits and receives signals through two coupled channels and an apparatus therefor.
  • a method of transmitting a signal from a first station to a second station in a wireless local area network (WLAN) system comprising: To a first combined channel and a second combined channel included in a combined channel, the modulation symbol value for each pair of bits included in the combined channel and the conjugate value for the modulation symbol value; And transmitting signals mapped to the first combining channel and the second combining channel to the second STA through the combined channel including the first combining channel and the second combining channel, We propose a transmission method.
  • WLAN wireless local area network
  • a station apparatus for transmitting a signal in a wireless local area network (WLAN) system, comprising at least one RF (Radio Frequency) chain, A transmitting / receiving unit configured to transmit / receive data; And a processor coupled to the transceiver for processing a signal transmitted and received by the other station device, the processor comprising: a processor operative to receive, in each pair of bits included in the input encoded bits, Mapping a modulation symbol value for the modulation symbol to a first aggregated channel and a second combined channel included in the combined channel; And transmit signals mapped to the first combining channel and the second combining channel to the second STA through the combined channel including the first combining channel and the second combining channel, Lt; / RTI >
  • WLAN wireless local area network
  • the modulation symbol value for the Nth bit pair included in the input encoding bit is mapped to the Nth subcarrier in the first combining channel, and the modulation symbol for the Nth bit pair included in the input encoding bit Value may be mapped to the Nth subcarrier in the second combining channel.
  • the value N may be a natural number.
  • the modulation symbol for the N-th bit pair may be generated by applying a QPSK (Quadrature Phase Shift Keying) modulation method to the N-th bit pair.
  • QPSK Quadrature Phase Shift Keying
  • the first coupling channel and the second coupling channel may have a bandwidth corresponding to 2.16 GHz or 4.32 GHz, respectively.
  • the input encoding bit may further comprise an input encoding bit of a first spatial time stream and an input encoding bit of a second spatial time stream and wherein an input encoding bit of the first spatial time stream and an input encoding bit of an input
  • the encoding bits may each have a length corresponding to the number of coded bits per Orthogonal Frequency Division Multiplexing (OFDM) symbol.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the modulation symbol value for the Xth bit pair included in the input encoding bit of the first spatial time stream is mapped to the Xth subcarrier in the first combining channel and is included in the input encoding bit of the second spatial time stream.
  • the modulation symbol value for the Y-th bit pair may be mapped to the Y + Zth subcarrier in the first combining channel. In this case, a value that is a natural number may be applied to X, Y, and Z.
  • a value corresponding to one-half of the number of bits coded for each OFDM symbol may be applied as the Z value.
  • the conjugate value for the modulation symbol value for the Xth bit pair included in the input encoding bit of the first spatial time stream is mapped to the Xth subcarrier in the second combined channel, and the input of the second spatial time stream
  • the conjugate value for the modulation symbol value for the Yth bit pair included in the encoding bit may be mapped to the Y + Zth subcarrier in the second combining channel.
  • a physical protocol data unit (PPDU) including the transmitted signal includes a field indicating that a Staggered Quadrature Phase Shift Keying (SQPSK) modulation method is applied across the combined channels can do.
  • SQL Staggered Quadrature Phase Shift Keying
  • an EDMG (Enhanced Directional Multi Gigabit) OFDM (Orthogonal Frequency Division Multiplexing) mode PPDU may be applied as the PPDU.
  • the field may be included in the first EDMG header field included in the EDMG OFDM mode PPDU.
  • the field may be 'DCM (Dual Carrier Modulation) SQPSK Applied' field.
  • 'DCM Double Carrier Modulation
  • a method for receiving a signal from a second STA in a wireless local area network (WLAN) system comprising: ) And a second coupling channel; And decoding the received bit information based on a modulation symbol value mapped to the first combining channel and a conjugate value for the modulation symbol value mapped to the second combining channel.
  • a station apparatus for receiving a signal in a wireless local area network (WLAN) system, the apparatus comprising: at least one radio frequency (RF) chain; A transmitting and receiving unit configured to transmit and receive; And a processor coupled to the transceiver and configured to process a signal for transmitting and receiving signals with the other station device, the processor including a combined channel including a first aggregated channel and a second combined channel, Receive the signal through; And decoding the received bit information based on a modulation symbol value mapped to the first combining channel and a conjugate value for the modulation symbol value mapped to the second combining channel.
  • RF radio frequency
  • a station operating in the OFDM mode according to the present invention can transmit and receive signals with high reliability through two combined channels.
  • FIG. 1 is a diagram showing an example of a configuration of a wireless LAN system.
  • FIG. 2 is a diagram showing another example of the configuration of the wireless LAN system.
  • FIG 3 is a view for explaining a channel in a 60 GHz band for explaining a channel bonding operation according to an embodiment of the present invention.
  • FIG. 4 is a diagram for explaining a basic method of performing channel bonding in a wireless LAN system.
  • 5 is a diagram for explaining the configuration of the beacon interval.
  • FIG. 6 is a diagram for explaining a physical configuration of an existing radio frame.
  • FIGS. 7 and 8 are diagrams for explaining the configuration of a header field of the radio frame of FIG. 6.
  • FIG. 7 and 8 are diagrams for explaining the configuration of a header field of the radio frame of FIG. 6.
  • FIG. 9 is a diagram showing a PPDU structure applicable to the present invention.
  • FIG. 10 is a view showing a PPDU structure applicable to the present invention.
  • FIG. 11 is a simplified view of a method for transmitting a signal over a combined channel in accordance with a first method of the present invention.
  • FIG. 12 is a simplified view of a method for transmitting a signal over a combined channel in accordance with a second method of the present invention.
  • FIG. 13 is a flowchart illustrating a signal transmission method of a transmitter according to an exemplary embodiment of the present invention.
  • FIG. 14 is a diagram for explaining an apparatus for implementing the above-described method.
  • the mobile communication system to which the present invention is applied may be various.
  • a wireless LAN system will be described in detail as an example of a mobile communication system.
  • Wireless LAN Wireless LAN, WLAN
  • FIG. 1 is a diagram showing an example of a configuration of a wireless LAN system.
  • a WLAN system includes one or more Basic Service Sets (BSSs).
  • BSS is a collection of stations (STAs) that can successfully communicate and synchronize with each other.
  • the STA is a logical entity including a medium access control (MAC) and a physical layer interface for a wireless medium.
  • the STA includes an access point (AP) and a non-AP STA (Non-AP Station) .
  • a portable terminal operated by a user in the STA is a non-AP STA, and sometimes referred to as a non-AP STA.
  • the non-AP STA may be a terminal, a wireless transmit / receive unit (WTRU), a user equipment (UE), a mobile station (MS), a mobile terminal, May also be referred to as another name such as a Mobile Subscriber Unit.
  • WTRU wireless transmit / receive unit
  • UE user equipment
  • MS mobile station
  • mobile terminal May also be referred to as another name such as a Mobile Subscriber Unit.
  • An AP is an entity that provides a connection to a distribution system (DS) via a wireless medium to an associated station (STA).
  • the AP may be referred to as a centralized controller, a base station (BS), a Node-B, a base transceiver system (BTS), a personal basic service set central point / access point (PCP / AP)
  • the BSS can be divided into an infrastructure BSS and an independent BSS (IBSS).
  • IBSS independent BSS
  • the BBS shown in FIG. 1 is an IBSS.
  • the IBSS means a BSS that does not include an AP, and does not include an AP, so a connection to the DS is not allowed and forms a self-contained network.
  • FIG. 2 is a diagram showing another example of the configuration of the wireless LAN system.
  • the BSS shown in FIG. 2 is an infrastructure BSS.
  • the infrastructure BSS includes one or more STAs and APs.
  • communication between non-AP STAs is performed via an AP, but direct communication between non-AP STAs is possible when a direct link is established between non-AP STAs.
  • a plurality of infrastructure BSSs may be interconnected via DS.
  • a plurality of BSSs connected through a DS are referred to as an extended service set (ESS).
  • STAs included in an ESS can communicate with each other, and in the same ESS, a non-AP STA can move from one BSS to another while seamlessly communicating.
  • the DS is a mechanism for connecting a plurality of APs. It is not necessarily a network, and there is no limitation on the form of DS if it can provide a predetermined distribution service.
  • the DS may be a wireless network such as a mesh network, or may be a physical structure that links APs together.
  • FIG 3 is a view for explaining a channel in a 60 GHz band for explaining a channel bonding operation according to an embodiment of the present invention.
  • channel 2 of the channel shown in FIG. 3 is available in all areas and can be used as a default channel. Most of the points, except Australia, use channel 2 and channel 3, which can be used for channel bonding. However, the channel used for channel bonding may vary, and the present invention is not limited to a specific channel.
  • FIG. 4 is a diagram for explaining a basic method of performing channel bonding in a wireless LAN system.
  • FIG. 4 illustrates an example of combining two 20 MHz channels in an IEEE 802.11n system to operate with 40 MHz channel bonding.
  • 40/80/160 MHz channel bonding will be possible.
  • the exemplary two channels in FIG. 4 include a Primary Channel and a Secondary Channel, and the STA can review the channel status in the CSMA / CA manner for the main channel among the two channels. If the auxiliary channel is idle for a predetermined time (e.g., PIFS) at a time when the main channel idle during a constant backoff interval and the backoff count becomes zero, A secondary channel can be combined to transmit data.
  • a predetermined time e.g., PIFS
  • channel bonding when channel-bonding is performed based on contention, channel bonding can be performed only when the auxiliary channel remains idle for a predetermined time at the time when the backoff count for the main channel expires Therefore, the application of the channel bonding is very limited, and it is difficult to flexibly cope with the media situation.
  • an aspect of the present invention proposes a method of performing scheduling based access by transmitting AP scheduling information to STAs. Meanwhile, another aspect of the present invention proposes a method of performing channel access based on the above-described scheduling or on a contention-based basis independently of the above-described scheduling. According to another aspect of the present invention, there is provided a method of performing communication through a spatial sharing method based on beamforming.
  • 5 is a diagram for explaining the configuration of the beacon interval.
  • the time of media can be divided by beacon intervals.
  • the sub-intervals within the beacon interval may be referred to as Access Periods.
  • Different connection intervals within one beacon interval may have different connection rules.
  • the information on the connection interval may be transmitted to the non-AP STA or the non-PCP by an AP or a Personal Basic Service Set Control Point (PCP).
  • PCP Personal Basic Service Set Control Point
  • one beacon interval may include one BHI (Beacon Header Interval) and one DTI (Data Transfer Interval).
  • the BHI may include a Beacon Transmission Interval (BTI), an Association Beamforming Training (A-BFT), and an Announcement Transmission Interval (ATI) as shown in FIG.
  • BTI refers to the interval over which one or more DMG beacon frames can be transmitted.
  • A-BFT denotes a period during which the beamforming training performed by the STA that transmitted the DMG beacon frame during the preceding BTI is performed.
  • ATI means a request-response based management access interval between a PCP / AP and a non-PCP / non-AP STA.
  • the DTI Data Transfer Interval
  • CBAP Contention Based Access Period
  • SP service period
  • PHY MCS Note Control PHY 0 Single carrier PHY (SC PHY) 1, ..., 1225, ..., 31 (low power SC PHY) OFDM PHY 13, ..., 24
  • modulation modes can be used to satisfy different requirements (e.g., high throughput or stability). Depending on the system, some of these modes may be supported.
  • FIG. 6 is a diagram for explaining a physical configuration of an existing radio frame.
  • DMG Directional Multi-Gigabit
  • the preamble of the radio frame may include Short Training Field (STF) and Channel Estimation (CE).
  • the radio frame may include a header and a data field as payload and a TRN (Training) field for beamforming selectively.
  • FIGS. 7 and 8 are diagrams for explaining the configuration of a header field of the radio frame of FIG. 6.
  • FIG. 7 and 8 are diagrams for explaining the configuration of a header field of the radio frame of FIG. 6.
  • the header includes information indicating an initial value of scrambling, Modulation and Coding Scheme (MCS) Information on whether or not a physical protocol data unit (PPDU) is present, packet type, training length, aggregation status, beam training request status, last RSSI (received signal strength indicator), truncation status, HCS (Header Check Sequence) And the like.
  • MCS Modulation and Coding Scheme
  • the OFDM header includes information indicating an initial value of scrambling, information indicating the length of data, information indicating whether there is an additional PPDU, packet type, training length, aggregation status, beam training request status, last RSSI, (Header Check Sequence), and the like.
  • the header has 2 bits of reserved bits. In the following description, such reserved bits may be utilized as in the case of FIG.
  • the IEEE 802.11ay system is considering the introduction of channel bonding and MIMO technology for the first time in the existing 11ad system.
  • a new PPDU structure is needed.
  • existing 11ad PPDU structure has limitations in supporting legacy terminals and implementing channel bonding and MIMO.
  • a legacy preamble for supporting the legacy terminal a new field for the terminal 11ay after the legacy header field can be defined, and channel bonding and MIMO can be supported through the newly defined field.
  • FIG. 9 is a diagram showing a PPDU structure according to a preferred embodiment of the present invention.
  • the abscissa axis corresponds to the time domain
  • the ordinate axis corresponds to the frequency domain.
  • a frequency band for example, a 400 MHz band
  • a frequency band e.g., 1.83 GHz
  • a legacy preamble (legacy STF, legacy: CE) is transmitted in duplicate through each channel.
  • a new STF and a legacy preamble Gap filling of the CE field may be considered.
  • the PPDU structure according to the present invention transmits ay STF, ay CE, ay header B, payload in a wide band after the legacy preamble, legacy header and ay header A .
  • the ay header, the ay Payload field, etc. transmitted after the header field can be transmitted through the channels used for the bonding.
  • an enhanced directional multi-gigabit (EDMG) header may be used. The corresponding names may be used in combination.
  • a total of six or eight channels (2.16 GHz each) may exist in 11ay, and a maximum of four channels can be transmitted as a single STA.
  • the ay header and ay payload can be transmitted over 2.16GHz, 4.32GHz, 6.48GHz, and 8.64GHz bandwidths.
  • the PPDU format when the legacy preamble is repeatedly transmitted without performing the gap-filling as described above may be considered.
  • the month STF, ay CE, and ay header B without the GF-STF and GF-CE fields shown by the dotted line in FIG. 8 are changed to a wide band after the legacy preamble, legacy header, Transmission.
  • FIG. 10 is a view showing a PPDU structure applicable to the present invention.
  • the PPDU format described above can be summarized as shown in FIG. 10
  • the PPDU format applicable to the 11-ay system includes L-STF, L-CE, L-Header, EDMG-Header-A, EDMG-STF, EDMG-CEF, EDMG- TRN field, which may optionally be included according to the type of PPDU (e.g., SU PPDU, MU PPDU, etc.).
  • the portion including the L-STF, L-CE, and L-header fields can be called a non-EDMG region and the remaining portion can be called an EDMG region.
  • the L-STF, L-CE, L-Header, and EDMG-Header-A fields may be referred to as pre-EDMG modulated fields and the rest may be referred to as EDMG modulated fields.
  • the (legacy) preamble portion of the PPDU as described above is used for packet detection, automatic gain control (AGC), frequency offset estimation, synchronization, modulation (SC or OFDM) can be used for channel estimation.
  • the format of the preamble may be common to OFDM packets and SC packets.
  • the preamble may be composed of STF (Short Training Field) and CE (Channel Estimation) field located after the STF field.
  • STF Short Training Field
  • CE Channel Estimation
  • DCM Downlink Control Coding
  • OFDM Orthogonal Frequency Division Multiplexing
  • the present invention relates to a technique for transmitting / receiving a signal by applying a DCM SQPSK (Staggered Quadrature Phase Shift Keying) modulation method in a channel aggregation state in an OFDM mode, do.
  • DCM SQPSK Stablgered Quadrature Phase Shift Keying
  • the SQPSK modulation method is only one applicable modulation method, and in the other embodiments according to the present invention, a different modulation method can be applied.
  • the channel coupling referred to in the present invention is a combination of two channels defined in the 11ay system or the like (for example, 2.16 GHz + 2.16 GHz) or a combination of four channels (for example, 4.32 GHz + 4.32 GHz) .
  • the present invention proposes a signal transmission and reception method as follows.
  • the EDMG Header-A field of FIG. 10 may include the following fields.
  • Table 2 shows only some fields that can be included in the EDMG Header-A field as an example, and the EDMG Header-A field according to the present invention may also include fields other than the fields shown in Table 2.
  • the 'DCM SQPSK Applied' field included in the EMDG Header-A field can be utilized only for the SC mode, but not for the OFDM mode. This is because DCM SQPSK operation for OFDM mode is not defined.
  • the DCM SQPSK operation for the OFDM mode is newly defined, and thus the DCM SQPSK Applied field in the OFDM mode can be interpreted as follows.
  • the transmitter applies a method of one of the following methods to the receiver, Lt; / RTI >
  • FIG. 11 is a simplified view of a method for transmitting a signal over a combined channel in accordance with a first method of the present invention.
  • the transmitter can classify a signal to be transmitted into data symbols of a predetermined length. More specifically, the transmitter may divide the input encoded bits to be transmitted into data symbols of a predetermined length (or the number of coded bits per one OFDM symbol). At this time, the data symbols of the predetermined length may have 336 lengths, 734 lengths, 1134 lengths, or 1532 lengths.
  • the transmitter can generate a data symbol of 336 length units by applying a QPSK modulation method to a bit sequence to be transmitted.
  • the data symbol having the index m in the data symbol having the length of 336 may correspond to the [bit sequence having the index 2m, bit sequence having the index 2m + 1] of the bit sequence have.
  • the transmitter maps the data symbols divided by the predetermined length unit to the first combined channel or the second combined channel, and transmits the data symbols to the receiver.
  • the transmitter divides the data symbols (e.g., 336-length data symbols) classified into the predetermined length units into two groups, and groups each group (e.g., first half of the data symbols, second half of the data symbols may be mapped to a first combined channel or a second combined channel using an SQPSK modulation method.
  • the data symbols e.g., 336-length data symbols
  • groups each group e.g., first half of the data symbols, second half of the data symbols may be mapped to a first combined channel or a second combined channel using an SQPSK modulation method.
  • the transmitter may map a first value corresponding to a specific data symbol included in the first group and a second value, which is a conjugate value for the first value, to the first combined channel.
  • a half of the total number of sub-carriers included in the combined channel may be applied to the sub-carrier interval to which the first value and the second value are mapped.
  • the symbol value S (X) for the Xth data symbol included in the first group of FIG. 11 is mapped to the Xth subcarrier of the first combined channel, and the symbol pair of the Xth data symbol
  • the value (conj (S (X))) may be mapped to the 168 + Xth subcarrier of the first combined channel.
  • the transmitter may map a third value corresponding to a particular data symbol included in a second group and a fourth value, which is a conjugate value for the third value, to a second combined channel.
  • the sub-carrier interval in which the third value and the fourth value are mapped may be 1/2 of the total number of sub-carriers included in the combined channel.
  • the symbol value S (Y) for the Y-th data symbol included in the second group of FIG. 11 is mapped to the Y-th subcarrier of the second combined channel, and the symbol pair The value (conj (S (Y))) may be mapped to the 168 + Yth subcarrier of the second combined channel.
  • FIG. 11 shows a case of single channel aggregation (2.16 GHz + 2.16 GHz), where each combined channel is composed of 336 subcarriers, but in case of 2 channel bonding channel aggregation (4.32 GHz + 4.32 GHz) May be composed of 734 subcarriers.
  • the conjugate value (conj (S (Y)) of the symbol value for the Yth data symbol may be mapped to the 367 + Yth subcarrier of the second combined channel.
  • the first half of the data symbol is mapped to the first half of the first combined channel and the second half of the data symbol is mapped to the second half of the first combined channel, (The first half of the data symbols are mapped to the first half of the first aggregated channel.) Their conjugated repetitions are mapped to the second half of the first aggregated channel. Similarly, the second half of the data symbols are mapped to the first half of the second combined channel, and the second half of the data symbols are mapped to the second half of the second combined channel The second half of the data symbols are mapped to the first half of the second aggregated channel. Its conjugated repetitions are mapped to the second aggregated channel.
  • a symbol value for a modulated data symbol is mapped to a first combined channel, and a conjugate value for the symbol value is coupled to a second combined channel Lt; / RTI >
  • FIG. 12 is a simplified view of a method for transmitting a signal over a combined channel in accordance with a second method of the present invention.
  • a transmitter maps a symbol value of data symbols divided by the predetermined length unit and a conjugate repetition value (or conjugate value) to the symbol value to different combined channels, Lt; / RTI >
  • the transmitter sequentially maps the symbol values of the data symbols (e.g., 336-length data symbols) divided by the predetermined length unit to subcarriers of the first combined channel, (Repetition) values may be mapped to subcarriers of the second combined channel in order and transmitted to the receiver.
  • the symbol values of the data symbols e.g., 336-length data symbols
  • (Repetition) values may be mapped to subcarriers of the second combined channel in order and transmitted to the receiver.
  • the symbol value S (X) for the Xth data symbol among the data symbols (e.g., 336-length data symbols) classified by the predetermined length unit is mapped to the Xth subcarrier of the first combined channel
  • the conjugate repetition value conj (S (X)) for the Xth data symbol may be mapped to the Xth subcarrier of the second combined channel and transmitted.
  • the modulation method according to the second method has better performance than the modulation method according to the first method.
  • the SNR Signal to Noise Ratio
  • the SNR Signal to Noise Ratio of the first method (Option 1) and the second method (Option 2) may be as shown in the following table.
  • the second method has higher SNR gain than the first method in all cases where the PER (Packet Error Rate) is 1% and 0.1%.
  • the SNR Signal to Noise Ratio
  • the second method has higher SNR gain than the first method in all cases where the PER (Packet Error Rate) is 1% and 0.1%.
  • the SQPSK in channel aggregation (SQPSK) scheme in the channel combining according to the second method having better performance can be summarized as follows.
  • N CBPS denotes the number of coded bits per OFDM symbol
  • q denotes a group number
  • the N CBPS can be defined differently according to the modulation type and the number N SD of the data subcarriers per channel as follows.
  • FIG. 11 and 12 illustrate the case where N CBPS and N SD are 336.
  • Generates constellation positions for the first half of the OFDM subcarriers of the combined channel including the primary channel May generate constellation positions for the second half of the OFDM subcarriers of the combined channel including the primary channel It generates the constellation point for the first half of the OFDM subcarriers in the channel containing the primary 2.16 GHz and The constellation point for the second half of the OFDM subcarriers in the channel contains the primary 2.16 GHz).
  • P (k) refers to the index indicating the index of from N CBPS / 2 to N CBPS -1.
  • N CBPS N SD as in the present invention
  • the transmitter can separate input encoded bits for each spatial time stream into groups of N CBPS bits.
  • the encoded bits included in one group can be expressed by the following equation.
  • i ss represents a spatial time stream
  • q represents a group number
  • a bit pair of the encoded bits included in the one group Is a complex point, Lt; / RTI >
  • the k value is 0, 1, ... ... , And N SD / 2 - 1.
  • the transmitter converts the bit pairs of the input encoding bits for each spatial time stream into one complex position . ≪ / RTI >
  • q-th modulated data i ss-th spatial stream may be mapped to NSD data subcarriers of the q-th OFDM symbol in the i ss th spatial stream (The q th modulated data block of the i SS th spatial stream is mapped to N SD data subcarriers of the q th OFDM symbol of the i SS th spatial stream).
  • FIG. 13 is a flowchart illustrating a signal transmission method of a transmitter according to an exemplary embodiment of the present invention.
  • the transmitter uses a modulation symbol value (e.g., S (m)) for each pair of bits contained in the input encoded bits and a conjugate value (e.g., conj S (m)) to the first aggregated channel and the second combined channel included in the combined channel (S1310).
  • a modulation symbol value e.g., S (m)
  • a conjugate value e.g., conj S (m)
  • the transmitter maps the data symbol S (m) for the input encoding bit to the combined first channel, and conj (S (m)), which is the conjugate repetition value for the data symbol, Can be mapped to the combined second channel.
  • the number of data symbols for the input encoding bits may be set equal to the number of (data) sub-carriers included in each combined channel.
  • the transmitter maps the modulation symbol value for the Nth bit pair included in the input encoding bit to the Nth subcarrier in the first combining channel, and transmits the modulation symbol for the Nth bit pair included in the input encoding bit Value to the Nth subcarrier in the second combined channel.
  • the transmitter maps the S (x) to the first subcarrier of the first combining channel, It is possible to map conj (S (x)) which is the modulation repetition value for S (x) to the first subcarrier of the second combining channel.
  • the modulation symbol may be generated by applying a Quadrature Phase Shift Keying (QPSK) modulation method.
  • QPSK Quadrature Phase Shift Keying
  • the transmitter transmits signals mapped to the first combining channel and the second combining channel to the second STA through the combined channel including the first combining channel and the second combining channel (S1320 ). At this time, the transmitter may transmit the signal through one or more OFDM symbols of the combined channel.
  • the signal transmitted in step S1320 may be transmitted in a physical protocol data unit (PPDU).
  • the PPDU may include a field indicating that the Staggered Quadrature Phase Shift Keying (SQPSK) modulation scheme is applied to the combined signals along with the signal (or data).
  • SQL Staggered Quadrature Phase Shift Keying
  • the PPDU may be an Enhanced Directional Multi Gigabit (EDMG) mode Orthogonal Frequency Division Multiplexing (OFDM) mode PPDU.
  • EDMG Enhanced Directional Multi Gigabit
  • OFDM Orthogonal Frequency Division Multiplexing
  • the field may be included in a first EDMG header field (e.g., EDMG Header-A field) included in the EDMG OFDM mode PPDU.
  • the field may be a 'Dual Carrier Modulation (DCM) SQPSK Applied' field.
  • DCM 'Dual Carrier Modulation
  • the first coupling channel and the second coupling channel may have a bandwidth corresponding to 2.16 GHz or 4.32 GHz, respectively.
  • a method by which a transmitter transmits a signal via one or more OFDM symbols may be as follows.
  • the transmitter applies the DCM SPQSK modulation scheme on the input encoding bits, which include (in order) the input encoding bits of the first spatial time stream and the input encoding bits of the second spatial time stream, Channel and the second combined channel.
  • the input encoding bits corresponding to one OFDM symbol are respectively the input encoding bits of the first spatial time stream having a length corresponding to N CBPS (the number of bits coded per symbol) and the input encoding bits of the second spatial time stream Encoding bits may be included (in order).
  • a transmitter maps a modulation symbol value for an Xth bit pair included in an input encoding bit of the first spatial time stream to an Xth subcarrier in the first combining channel
  • the modulation symbol value for the Yth bit pair included in the input encoding bit of the second spatial time stream can be mapped to the Y + Zth subcarrier in the first combining channel (see FIG. 12).
  • the Z value may correspond to N CBPS / 2.
  • the transmitter maps the conjugate value for the modulation symbol value for the Xth bit pair included in the input encoding bit of the first spatial time stream to the Xth subcarrier in the second combining channel, And may map the conjugate value for the modulation symbol value of the Yth bit pair included in the input encoding bit of the spatial time stream to the Y + Zth subcarrier in the second combining channel.
  • the transmitter can map a signal corresponding to one OFDM symbol to the first combining channel and the second combining channel. That is, when the transmitter applies a DCM SQPSK modulation scheme to a signal corresponding to a plurality of OFDM symbols, the transmitter applies the DCM SQPSK modulation scheme for the signal corresponding to the one OFDM symbol, To the first combining channel and the second combining channel.
  • the transmitter may then transmit the signals mapped to the first and second combined channels to a receiver.
  • the at least one OFDM symbol may be transmitted in a data field (or another field) of the EDMG OFDM mode PPDU.
  • the receiver can receive the signal transmitted by the transmitter through the following method.
  • a receiver receives a signal transmitted over a combined channel comprising a first aggregated channel and a second combined channel.
  • the receiver then decodes the received bit information based on the modulation symbol value mapped to the first combining channel and the conjugate value for the modulation symbol value mapped to the second combining channel.
  • the receiver may receive a signal transmitted from the transmitter using a combining technique such as MRC (Maximum Ratio Combining). Accordingly, the receiver can obtain information on an input encoding bit that the transmitter intends to transmit, and the transmitter and the receiver can obtain a diversity gain through a DCM SQPSK modulation technique.
  • FIG. 14 is a diagram for explaining an apparatus for implementing the above-described method.
  • the wireless device 100 of FIG. 14 may correspond to the STA that transmits the signal described in the above description, and the wireless device 150 may correspond to the STA that receives the signal described in the above description.
  • the station transmitting the signal may correspond to the 11ay terminal or the PCP / AP supporting the 11ay system
  • the station receiving the signal may correspond to the 11ay terminal or the PCP / AP supporting the 11ay system.
  • the STA that transmits a signal is referred to as a transmitting apparatus 100
  • the STA that receives a signal is referred to as a receiving apparatus 150.
  • the transmitting apparatus 100 may include a processor 110, a memory 120 and a transmitting and receiving unit 130.
  • the receiving apparatus 150 may include a processor 160, a memory 170 and a transmitting and receiving unit 180 can do.
  • the transceivers 130 and 180 transmit / receive wireless signals and may be implemented in a physical layer such as IEEE 802.11 / 3GPP.
  • the processors 110 and 160 are implemented in the physical layer and / or the MAC layer and are connected to the transceiving units 130 and 180.
  • the processors 110 and 160 and / or the transceivers 130 and 180 may include application specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processors.
  • Memory 120, 170 may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium, and / or other storage units.
  • ROM read-only memory
  • RAM random access memory
  • flash memory memory card
  • storage medium storage medium
  • the method described above may be executed as a module (e.g., process, function) that performs the functions described above.
  • the module may be stored in memory 120,170 and executed by processor 110,160.
  • the memory 120, 170 may be located inside or outside the process 110, 160 and may be coupled to the process 110, 160 by well known means.
  • the present invention has been described on the assumption that the present invention is applied to an IEEE 802.11 based wireless LAN system, the present invention is not limited thereto.
  • the present invention can be applied to various wireless systems capable of data transmission based on channel bonding in the same manner.

Abstract

본 명세서는 OFDM(Orthogonal Frequency Division Multiplexing) 모드로 동작하는 스테이션이 2개의 결합된 채널을 통해 신호를 송수신하는 방법 및 이를 위한 장치에 대하여 제시한다. 본 발명의 신호 전송 방법은 입력 인코딩 비트에 포함된 각 비트 짝에 대한 변조 심볼 값과 상기 변조 심볼 값에 대한 켤레 값을 결합된 채널에 포함된 제1 결합 채널 및 제2 결합 채널 각각에 매핑하는 단계와 상기 제1 결합 채널 및 상기 제2 결합 채널에 매핑된 신호들을 상기 제1 결합 채널 및 상기 제2 결합 채널을 포함하는 상기 결합된 채널을 통해 다른 스테이션에게 전송하는 단계를 포함한다.

Description

무선랜 시스템에서 신호의 송수신 방법 및 이를 위한 장치
이하의 설명은 무선랜(WLAN) 시스템에서 스테이션의 신호의 송수신 방법 및 이를 위한 장치에 대한 것이다.
보다 구체적으로, 이하의 설명은 OFDM (Orthogonal Frequency Division Multiplexing) 모드로 동작하는 스테이션이 2개의 결합된 채널을 통해 신호를 송수신하는 방법 및 이를 위한 장치에 대한 것이다.
무선랜 기술에 대한 표준은 IEEE(Institute of Electrical and Electronics Engineers) 802.11 표준으로서 개발되고 있다. IEEE 802.11a 및 b는 2.4. GHz 또는 5 GHz에서 비면허 대역(unlicensed band)을 이용하고, IEEE 802.11b는 11 Mbps의 전송 속도를 제공하고, IEEE 802.11a는 54 Mbps의 전송 속도를 제공한다. IEEE 802.11g는 2.4 GHz에서 직교 주파수 분할 다중화(Orthogonal frequency-division multiplexing, OFDM)를 적용하여, 54 Mbps의 전송 속도를 제공한다. IEEE 802.11n은 다중입출력 OFDM(multiple input multiple output-OFDM, MIMO-OFDM)을 적용하여, 4 개의 공간적인 스트림(spatial stream)에 대해서 300 Mbps의 전송 속도를 제공한다. IEEE 802.11n에서는 채널 대역폭(channel bandwidth)을 40 MHz까지 지원하며, 이 경우에는 600 Mbps의 전송 속도를 제공한다.
상술한 무선랜 표준은 최대 160MHz 대역폭을 사용하고, 8개의 공간 스트림을 지원하여 최대 1Gbit/s의 속도를 지원하는 IEEE 802.11ac 표준을 거쳐, IEEE 802.11ax 표준화에 대한 논의가 이루어지고 있다.
한편, IEEE 802.11ad에서는 60 GHz 대역에서의 초고속 처리율을 위한 성능향상을 규정하고 있으며, 이러한 IEEE 802.11ad 시스템에 처음으로 채널 본딩 및 MIMO 기술을 도입하기 위한 IEEE 802.11ay에 대한 논의가 이루어지고 있다.
본 발명에서는 OFDM 모드로 동작하는 스테이션이 2개의 결합된 채널을 통해 신호를 송수신하는 방법 및 이를 위한 장치를 제안한다.
상술한 바와 같은 과제를 해결하기 위한 본 발명의 일 측면에서는, 무선랜(WLAN) 시스템에서 제1 스테이션(STA)이 제2 STA에게 신호를 전송하는 방법에 있어서, 입력 인코딩 비트 (input encoded bits)에 포함된 각 비트 짝 (pair of bits)에 대한 변조 심볼 값과 상기 변조 심볼 값에 대한 켤레 값을 결합된 채널에 포함된 제1 결합 채널 (aggregated channel) 및 제2 결합 채널 각각에 매핑; 및 상기 제1 결합 채널 및 상기 제2 결합 채널에 매핑된 신호들을 상기 제1 결합 채널 및 상기 제2 결합 채널을 포함하는 상기 결합된 채널을 통해 상기 제2 STA에게 전송;하는 것을 포함하는, 신호 전송 방법을 제안한다.
상술한 바와 같은 과제를 해결하기 위한 본 발명의 다른 측면에서는, 무선랜(WLAN) 시스템에서 신호를 전송하는 스테이션 장치에 있어서, 하나 이상의 RF(Radio Frequency) 체인을 가지고, 다른 스테이션 장치와 신호를 송수신하도록 구성되는 송수신부; 및 상기 송수신부와 연결되어, 상기 다른 스테이션 장치와 신호를 송수신한 신호를 처리하는 프로세서를 포함하되, 상기 프로세서는, 입력 인코딩 비트 (input encoded bits)에 포함된 각 비트 짝 (pair of bits)에 대한 변조 심볼 값과 상기 변조 심볼 값에 대한 켤레 값을 결합된 채널에 포함된 제1 결합 채널 (aggregated channel) 및 제2 결합 채널 각각에 매핑; 및 상기 제1 결합 채널 및 상기 제2 결합 채널에 매핑된 신호들을 상기 제1 결합 채널 및 상기 제2 결합 채널을 포함하는 상기 결합된 채널을 통해 상기 제2 STA에게 전송;하도록 구성되는, 스테이션 장치를 제안한다.
상기 구성에 있어, 상기 입력 인코딩 비트에 포함된 N 번째 비트 짝에 대한 변조 심볼 값은 상기 제1 결합 채널 내 N 번째 부반송파에 매핑되고, 상기 입력 인코딩 비트에 포함된 N 번째 비트 짝에 대한 변조 심볼 값에 대한 켤레 값은 상기 제2 결합 채널 내 N 번째 부반송파에 매핑될 수 있다. 이때, 상기 N로는 자연수인 값이 적용될 수 있다.
이때, 상기 N 번째 비트 짝에 대한 변조 심볼은, 상기 N 번째 비트 짝에 대해 QPSK (Quadrature Phase Shift Keying) 변조 방법이 적용되어 생성될 수 있다.
상기 구성에 있어, 상기 제1 결합 채널 및 상기 제2 결합 채널은 각각 2.16 GHz 또는 4.32 GHz 에 대응하는 대역폭을 가질 수 있다.
또한, 상기 입력 인코딩 비트는, 제1 공간 시간 스트림의 입력 인코딩 비트 및 제2 공간 시간 스트림의 입력 인코딩 비트를 포함하고, 상기 제1 공간 시간 스트림의 입력 인코딩 비트 및 상기 제2 공간 시간 스트림의 입력 인코딩 비트는 각각 OFDM (Orthogonal Frequency Division Multiplexing) 심볼 별 코딩된 비트의 개수에 대응하는 길이를 가질 수 있다.
이때, 상기 제1 공간 시간 스트림의 입력 인코딩 비트에 포함된 X 번째 비트 짝에 대한 변조 심볼 값은 상기 제1 결합 채널 내 X 번째 부반송파에 매핑되고, 상기 제2 공간 시간 스트림의 입력 인코딩 비트에 포함된 Y 번째 비트 짝에 대한 변조 심볼 값은 상기 제1 결합 채널 내 Y+Z 번째 부반송파에 매핑될 수 있다. 이 경우, 상기 X, Y, Z로는 자연수인 값이 적용될 수 있다.
여기서, 상기 Z 값으로는 상기 OFDM 심볼 별 코딩된 비트의 개수의 절반에 대응하는 값이 적용될 수 있다.
또한, 상기 제1 공간 시간 스트림의 입력 인코딩 비트에 포함된 X 번째 비트 짝에 대한 변조 심볼 값에 대한 켤레 값은 상기 제2 결합 채널 내 X 번째 부반송파에 매핑되고, 상기 제2 공간 시간 스트림의 입력 인코딩 비트에 포함된 Y 번째 비트 짝에 대한 변조 심볼 값에 대한 켤레 값은 상기 제2 결합 채널 내 Y+Z 번째 부반송파에 매핑될 수 있다.
상기 구성에 있어, 상기 전송되는 신호를 포함하는 물리 프로토콜 데이터 유닛(Physical Protocol Data Unit; PPDU)은 SQPSK (Staggered Quadrature Phase Shift Keying) 변조 방법이 상기 결합된 채널들에 걸쳐 적용됨을 지시하는 필드를 포함할 수 있다.
이때, 상기 PPDU로는 EDMG (Enhanced Directional Multi Gigabit) OFDM (Orthogonal Frequency Division Multiplexing) 모드 PPDU가 적용될 수 있다.
또한, 상기 필드는 상기 EDMG OFDM 모드 PPDU에 포함된 제1 EDMG 헤더 필드에 포함될 수 있다.
이때, 상기 필드는 'DCM (Dual Carrier Modulation) SQPSK Applied' 필드일 수 있다.
상술한 바와 같은 과제를 해결하기 위한 본 발명의 또 다른 측면에서는, 무선랜(WLAN) 시스템에서 제1 스테이션(STA)이 제2 STA으로부터 신호를 수신하는 방법에 있어서, 제1 결합 채널 (aggregated channel) 및 제2 결합 채널을 포함하는 결합된 채널을 통해 신호를 수신; 및 상기 제1 결합 채널에 매핑된 변조 심볼 값 및 상기 제2 결합 채널에 매핑된 상기 변조 심볼 값에 대한 켤레 값에 기반하여 수신된 비트 정보를 디코딩;하는 것을 포함하는, 신호 수신 방법을 제안한다.
상술한 바와 같은 과제를 해결하기 위한 본 발명의 또 다른 측면에서는, 무선랜(WLAN) 시스템에서 신호를 수신하는 스테이션 장치에 있어서, 하나 이상의 RF(Radio Frequency) 체인을 가지고, 다른 스테이션 장치와 신호를 송수신하도록 구성되는 송수신부; 및 상기 송수신부와 연결되어, 상기 다른 스테이션 장치와 신호를 송수신한 신호를 처리하는 프로세서를 포함하되, 상기 프로세서는, 제1 결합 채널 (aggregated channel) 및 제2 결합 채널을 포함하는 결합된 채널을 통해 신호를 수신; 및 상기 제1 결합 채널에 매핑된 변조 심볼 값 및 상기 제2 결합 채널에 매핑된 상기 변조 심볼 값에 대한 켤레 값에 기반하여 수신된 비트 정보를 디코딩;하도록 구성되는, 스테이션 장치를 제안한다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기와 같은 구성을 통해, 본 발명에 따른 OFDM 모드로 동작하는 스테이션은 2개의 결합된 채널을 통해 신뢰성 높게 신호를 송수신할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 도면은 본 발명에 대한 이해를 제공하기 위한 것으로서 본 발명의 다양한 실시형태들을 나타내고 명세서의 기재와 함께 본 발명의 원리를 설명하기 위한 것이다.
도 1은 무선랜 시스템의 구성의 일례를 나타낸 도면이다.
도 2는 무선랜 시스템의 구성의 다른 예를 나타낸 도면이다.
도 3은 본 발명의 일 실시형태에 따른 채널 본딩 동작 설명을 위한 60GHz 대역에서의 채널을 설명하기 위한 도면이다.
도 4는 무선랜 시스템에서 채널 본딩을 수행하는 기본적인 방법을 설명하기 위한 도면이다.
도 5는 비콘 간격의 구성을 설명하기 위한 도면이다.
도 6은 기존 무선 프레임의 물리 구성을 설명하기 위한 도면이다.
도 7 및 도 8은 도 6의 무선 프레임의 헤더 필드의 구성을 설명하기 위한 도면이다.
도 9는 본 발명에 적용 가능한 PPDU 구조를 도시한 도면이다.
도 10은 본 발명에 적용 가능한 PPDU 구조를 간단히 도시한 도면이다.
도 11은 본 발명의 제1 방법에 따라 결합된 채널을 통해 신호를 전송하는 방법을 간단히 나타낸 도면이다.
도 12는 본 발명의 제2 방법에 따라 결합된 채널을 통해 신호를 전송하는 방법을 간단히 나타낸 도면이다.
도 13은 본 발명의 일 예에 따른 송신기의 신호 전송 방법을 나타낸 흐름도이다.
도 14는 상술한 바와 같은 방법을 구현하기 위한 장치를 설명하기 위한 도면이다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다.
이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다. 몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시된다.
본 발명이 적용되는 이동통신 시스템은 다양하게 존재할 수 있으나, 이하에서는 이동통신 시스템의 일례로서 무선랜 시스템에 대해 구체적으로 설명한다.
1. 무선랜(Wireless LAN, WLAN ) 시스템
1-1. 무선랜 시스템 일반
도 1은 무선랜 시스템의 구성의 일례를 나타낸 도면이다.
도 1에 도시된 바와 같이, 무선랜 시스템은 하나 이상의 기본 서비스 세트(Basic Service Set, BSS)를 포함한다. BSS는 성공적으로 동기화를 이루어서 서로 통신할 수 있는 스테이션(Station, STA)의 집합이다.
STA는 매체 접속 제어(Medium Access Control, MAC)와 무선 매체에 대한 물리계층(Physical Layer) 인터페이스를 포함하는 논리 개체로서, 액세스 포인트(access point, AP)와 비AP STA(Non-AP Station)을 포함한다. STA 중에서 사용자가 조작하는 휴대용 단말은 Non-AP STA로써, 단순히 STA라고 할 때는 Non-AP STA을 가리키기도 한다. Non-AP STA는 단말(terminal), 무선 송수신 유닛(Wireless Transmit/Receive Unit, WTRU), 사용자 장비(User Equipment, UE), 이동국(Mobile Station, MS), 휴대용 단말(Mobile Terminal), 또는 이동 가입자 유닛(Mobile Subscriber Unit) 등의 다른 명칭으로도 불릴 수 있다.
그리고, AP는 자신에게 결합된 STA(Associated Station)에게 무선 매체를 통해 분배 시스템(Distribution System, DS)으로의 접속을 제공하는 개체이다. AP는 집중 제어기, 기지국(Base Station, BS), Node-B, BTS(Base Transceiver System), PCP/AP(personal basic service set central point/access point) 또는 사이트 제어기 등으로 불릴 수도 있다.
BSS는 인프라스트럭처(infrastructure) BSS와 독립적인(Independent) BSS(IBSS)로 구분할 수 있다.
도 1에 도시된 BBS는 IBSS이다. IBSS는 AP를 포함하지 않는 BSS를 의미하고, AP를 포함하지 않으므로, DS로의 접속이 허용되지 않아서 자기 완비적 네트워크(self-contained network)를 이룬다.
도 2는 무선랜 시스템의 구성의 다른 예를 나타낸 도면이다.
도 2에 도시된 BSS는 인프라스트럭처 BSS이다. 인프라스트럭처 BSS는 하나 이상의 STA 및 AP를 포함한다. 인프라스트럭처 BSS에서 비AP STA들 사이의 통신은 AP를 경유하여 이루어지는 것이 원칙이나, 비AP STA 간에 직접 링크(link)가 설정된 경우에는 비AP STA들 사이에서 직접 통신도 가능하다.
도 2에 도시된 바와 같이, 복수의 인프라스트럭처 BSS는 DS를 통해 상호 연결될 수 있다. DS를 통하여 연결된 복수의 BSS를 확장 서비스 세트(Extended Service Set, ESS)라 한다. ESS에 포함되는 STA들은 서로 통신할 수 있으며, 동일한 ESS 내에서 비AP STA는 끊김 없이 통신하면서 하나의 BSS에서 다른 BSS로 이동할 수 있다.
DS는 복수의 AP들을 연결하는 메커니즘(mechanism)으로서, 반드시 네트워크일 필요는 없으며, 소정의 분배 서비스를 제공할 수 있다면 그 형태에 대해서는 아무런 제한이 없다. 예컨대, DS는 메쉬(mesh) 네트워크와 같은 무선 네트워크일 수도 있고, AP들을 서로 연결시켜 주는 물리적인 구조물일 수도 있다.
이상을 바탕으로 무선랜 시스템에서 채널 본딩 방식에 대해 설명한다.
1-2. 무선랜 시스템에서의 채널 본딩
도 3은 본 발명의 일 실시형태에 따른 채널 본딩 동작 설명을 위한 60GHz 대역에서의 채널을 설명하기 위한 도면이다.
도 3에 도시된 바와 같이 60GHz 대역에서는 4개의 채널이 구성될 수 있으며, 일반 채널 대역폭은 2.16GHz일 수 있다. 60 GHz에서 사용 가능한 ISM 대역 (57 GHz ~ 66 GHz)은 각국 상황에 따라 다르게 규정될 수 있다. 일반적으로 도 3에 도시된 채널 중 채널 2는 모든 지역에서 사용 가능하여 default 채널로 사용될 수 있다. 호주를 제외한 대부분의 지적에서 채널 2 및 채널 3을 사용할 수 있으며, 이를 채널 본딩에 활용할 수 있다. 다만, 채널 본딩에 활용되는 채널은 다양할 수 있으며, 본 발명은 특정 채널에 한정되지 않는다.
도 4는 무선랜 시스템에서 채널 본딩을 수행하는 기본적인 방법을 설명하기 위한 도면이다.
도 4의 예는 IEEE 802.11n 시스템에서 2개의 20MHz 채널을 결합하여 40 MHz 채널 본딩으로 동작하는 것을 예를 들어 설명한다. IEEE 802.11ac 시스템의 경우 40/80/160 MHz 채널 본딩이 가능할 것이다.
도 4의 예시적인 2개의 채널은 주 채널(Primary Channel) 및 보조 채널(Secondary Channel)을 포함하여, STA는 상기 2개의 채널 중 주 채널에 대해 CSMA/CA 방식으로 채널 상태를 검토할 수 있다. 만일 주 채널이 일정한 백오프 간격(backoff interval) 동안 유휴(idle)하여 백오프 카운트가 0이 되는 시점에서, 보조 채널이 소정 시간(예를 들어, PIFS) 동안 유휴인 경우, STA는 주 채널 및 보조 채널을 결합하여 데이터를 전송할 수 있다.
다만, 도 4와 같이 경쟁 기반으로 채널 본딩을 수행하는 경우 상술한 바와 같이 주 채널에 대한 백오프 카운트가 만료되는 시점에서 보조 채널이 일정 시간 동안 유휴 상태를 유지한 경우에 한하여 채널 본딩이 가능하기 때문에 채널 본딩의 활용이 매우 제한적이며, 매체 상황에 유연하게 대응하기 어려운 측면이 있다.
이에 따라 본 발명의 일 측면에서는 AP가 STA들에게 스케줄링 정보를 전송하여 스케줄링 기반으로 접속을 수행하는 방안을 제안한다. 한편, 본 발명의 다른 일 측면에서는 상술한 스케줄링에 기반하여 또는 상술한 스케줄링과 독립적으로 경쟁 기반으로 채널 접속을 수행하는 방안을 제안한다. 아울러, 본 발명의 다른 일 측면에서는 빔포밍(beamforming)에 기반하여 공간 공유(Spatial Sharing) 기법을 통해 통신을 수행하는 방법에 대해 제안한다.
1-3. 비콘 간격 구성
도 5는 비콘 간격의 구성을 설명하기 위한 도면이다.
11ad 기반 DMG BSS 시스템에서 매체의 시간은 비콘 간격들로 나누어질 수 있다. 비콘 간격 내의 하위 구간들은 접속 구간(Access Period)로 지칭될 수 있다. 하나의 비콘 간격 내의 서로 다른 접속 구간은 상이한 접속 규칙을 가질 수 있다. 이와 같은 접속 구간에 대한 정보는 AP 또는 PCP (Personal basic service set Control Point)에 의해 non-AP STA 또는 non-PCP에게 전송될 수 있다.
도 5에 도시된 예와 같이 하나의 비콘 간격은 하나의 BHI (Beacon Header Interval)과 하나의 DTI (Data Transfer Interval)을 포함할 수 있다. BHI는 도 4에 도시된 바와 같이 BTI(Beacon Transmission Interval), A-BFT(Association Beamforming Training) 및 ATI(Announcement Transmission Interval)를 포함할 수 있다.
BTI는 하나 이상의 DMG 비콘 프레임이 전송될 수 있는 구간을 의미한다. A-BFT는 선행하는 BTI 동안 DMG 비콘 프레임을 전송한 STA에 의한 빔포밍 트레이닝이 수행되는 구간을 의미한다. ATI는 PCP/AP와 non-PCP/non-AP STA 사이에 요청-응답 기반의 관리 접속 구간을 의미한다.
한편, DTI(Data Transfer Interval)는 STA들 사이의 프레임 교환이 이루어지는 구간으로서, 도 5에 도시된 바와 같이 하나 이상의 CBAP(Contention Based Access Period) 및 하나 이상의 SP(Service Period)가 할당될 수 있다. 도 5에서는 2개의 CBAP과 2개의 SP가 할당되는 예를 도시하고 있으나, 이는 예시적인 것으로서 이에 한정될 필요는 없다.
이하에서는 본 발명이 적용될 무선랜 시스템에서의 물리계층 구성에 대해 구체적으로 살펴본다.
1-4. 물리계층 구성
본 발명의 일 실시형태에 따른 무선랜 시스템에서는 다음과 같은 3가지 다른 변조 모드를 제공할 수 있는 것을 가정한다.
PHY MCS Note
Control PHY 0
Single carrier PHY(SC PHY) 1, ..., 1225, ..., 31 (low power SC PHY)
OFDM PHY 13, ..., 24
이와 같은 변조 모드들은 서로 상이한 요구조건(예를 들어, 높은 처리율 또는 안정성)을 만족시키기 위해 이용될 수 있다. 시스템에 따라 이들 중 일부 모드만 지원할 수도 있다.
도 6은 기존 무선 프레임의 물리 구성을 설명하기 위한 도면이다.
모든 DMG (Directional Multi-Gigabit) 물리계층은 도 6에 도시된 바와 같은 필드들을 공통적으로 포함하는 것을 가정한다. 다만, 각각의 모드에 따라 개별적인 필드의 규정 방식 및 사용되는 변조/코딩 방식에 있어서 차이를 가질 수 있다.
도 6에 도시된 바와 같이 무선프레임의 프리엠블은 STF (Short Training Field) 및 CE (Channel Estimation)을 포함할 수 있다. 또한, 무선 프레임은 헤더, 및 패이로드로서 데이터 필드와 선택적으로 빔포밍을 위한 TRN(Training) 필드를 포함할 수 있다.
도 7 및 도 8은 도 6의 무선 프레임의 헤더 필드의 구성을 설명하기 위한 도면이다.
구체적으로 도 7은 SC(Single Carrier) 모드가 이용되는 경우를 도시하고 있다., SC 모드에서 헤더는 스크램블링의 초기값을 나타내는 정보, MCS (Modulation and Coding Scheme), 데이터의 길이를 나타내는 정보, 추가적인 PPDU(Physical Protocol Data Unit)의 존재 여부를 나타내는 정보, 패킷 타입, 트레이닝 길이, Aggregation 여부, 빔 트레이닝 요청 여부, 마지막 RSSI (Received Signal Strength Indicator), 절단(truncation) 여부, HCS (Header Check Sequence) 등의 정보를 포함할 수 있다. 또한, 도 7에 도시된 바와 같이 헤더는 4 비트의 유보 비트들(reserved bits)을 가지고 있으며, 이하의 설명에서는 이와 같은 유보 비트들을 활용할 수도 있다.
또한, 도 8은 OFDM 모드가 적용되는 경우의 헤더의 구체적인 구성을 도시하고 있다. OFDM 헤더는 스크램블링의 초기값을 나타내는 정보, MCS, 데이터의 길이를 나타내는 정보, 추가적인 PPDU의 존재 여부를 나타내는 정보, 패킷 타입, 트레이닝 길이, Aggregation 여부, 빔 트레이닝 요청 여부, 마지막 RSSI, 절단 여부, HCS (Header Check Sequence) 등의 정보를 포함할 수 있다. 또한, 도 8에 도시된 바와 같이 헤더는 2 비트의 유보 비트들을 가지고 있으며, 이하의 설명에서는 도 7의 경우와 마찬가지로 이와 같은 유보 비트들을 활용할 수도 있다.
상술한 바와 같이 IEEE 802.11ay 시스템은 기존 11ad 시스템에 처음으로 채널본딩 및 MIMO 기술의 도입을 고려하고 있다. 11ay에서 채널본딩 및 MIMO를 구현하기 위해서는 새로운 PPDU 구조가 필요하다. 즉, 기존 11ad PPDU 구조로는 레거시 단말을 지원함과 동시에 채널본딩과 MIMO를 구현하기에는 한계가 있다.
이를 위해 레거시 단말을 지원하기 위한 레거시 프리엠블, 레거시 헤더 필드 뒤에 11ay 단말을 위한 새로운 필드를 정의할 수 있으며, 여기서 새롭게 정의된 필드를 통하여 채널본딩과 MIMO를 지원할 수 있다.
도 9는 본 발명의 바람직한 일 실시형태에 따른 PPDU 구조를 도시한 도면이다. 도 9에서 가로축은 시간 영역에 세로축은 주파수 영역에 대응할 수 있다.
2개 이상의 채널을 본딩 하였을 때, 각 채널에서 사용되는 주파수 대역(예: 1.83GHz) 사이에는 일정 크기의 주파수 대역(예:400MHz 대역)이 존재할 수 있다. Mixed mode의 경우, 각 채널을 통하여 레거시 프리엠블 (레거시 STF, 레거시 :CE)이 duplicate로 전송되는데, 본 발명의 일 실시형태에서는 각 채널 사이의 400MHz 대역을 통하여 레거시 프리엠블과 함께 동시에 새로운 STF와 CE 필드의 전송(gap filling)을 고려할 수 있다.
이 경우, 도 9에 도시된 바와 같이, 본 발명에 따른 PPDU 구조는 ay STF, ay CE, ay 헤더 B, 페이로드(payload)를 레거시 프리엠블, 레거시 헤더 및 ay 헤더 A 이후에 광대역으로 전송하는 형태를 가진다. 따라서, 헤더 필드 다음에 전송되는 ay 헤더, ay Payload 필드 등은 본딩에 사용되는 채널들을 통하여 전송할 수 있다. 이하, ay 헤더를 레거시 헤더와 구분하기 위해 EDMG (enhanced directional multi-gigabit) 헤더라 명명할 수도 있으며, 해당 명칭은 혼용하여 사용될 수 있다.
일 예로, 11ay에는 총 6개 또는 8개의 채널(각 2.16 GHz)이 존재 할 수 있으며, 단일 STA으로는 최대 4개의 채널을 본딩하여 전송할 수 있다. 이에, ay 헤더와 ay Payload는 2.16GHz, 4.32GHz, 6.48GHz, 8.64GHz 대역폭을 통하여 전송할 수 있다.
또는, 상술한 바와 같은 Gap-Filling을 수행하지 않고 레거시 프리엠블을 반복하여 전송할 때의 PPDU 포맷 역시 고려할 수 있다.
이 경우, Gap-Filling을 수행하지 않아 도 8에서 점선으로 도시된 GF-STF 및 GF-CE 필드 없이 ay STF, ay CE 및 ay 헤더 B를 레거시 프리엠블, 레거시 헤더 및 ay 헤더 A 이후에 광대역으로 전송하는 형태를 가진다.
도 10은 본 발명에 적용 가능한 PPDU 구조를 간단히 도시한 도면이다. 상술한 PPDU 포맷을 간단히 정리하면 도 10과 같이 나타낼 수 있다
도 10에 도시된 바와 같이, 11ay 시스템에 적용 가능한 PPDU 포맷은 L-STF, L-CE, L-Header, EDMG-Header-A, EDMG-STF, EDMG-CEF, EDMG-Header-B, Data, TRN 필드를 포함할 수 있으며, 상기 필드들은 PPDU의 형태 (예: SU PPDU, MU PPDU 등)에 따라 선택적으로 포함될 수 있다.
여기서, L-STF, L-CE, L-header 필드를 포함하는 부분은 비 EDMG 영역 (Non-EDMG portion)이라 명명할 수 있고, 나머지 부분은 EDMG 영역이라 명명할 수 있다. 또한, L-STF, L-CE, L-Header, EDMG-Header-A 필드들은 pre-EDMG modulated fields라 명명될 수 있고, 나머지 부분은 EDMG modulated fields라 명명될 수 있다.
상기와 같은 PPDU의 (레거시) 프리앰블 부분은 패킷 검출 (packet detection), AGC (Automatic Gain Control), 주파수 오프셋 측정 (frequency offset estimation), 동기화 (synchronization), 변조 (SC 또는 OFDM)의 지시 및 채널 측정 (channel estimation)에 사용될 수 있다. 프리앰블의 포맷은 OFDM 패킷 및 SC 패킷에 대해 공통될 수 있다. 이때, 상기 프리앰블은 STF (Short Training Field) 및 상기 STF 필드 이후에 위치한 CE (Channel Estimation) 필드로 구성될 수 있다. (The preamble is the part of the PPDU that is used for packet detection, AGC, frequency offset estimation, synchronization, indication of modulation (SC or OFDM) and channel estimation. The format of the preamble is common to both OFDM packets and SC packets. The preamble is composed of two parts: the Short Training field and the Channel Estimation field.)
3. 본 발명에 적용 가능한 실시예
이하에서는, 상기와 같은 기술 구성에 기반하여 OFDM (Orthogonal Frequency Division Multiplexing) 모드에서의 DCM (Dual Carrier Modulation) 기법 및 이에 기반한 신호 송수신 방법에 대하여 상세히 설명한다.
보다 구체적으로, 본 발명에서는 OFDM 모드의 채널 결합 (Channel Aggregation) 상황에서 DCM SQPSK (Staggered Quadrature Phase Shift Keying) 변조 방법을 적용하여 신호를 송수신하는 방법을 중심으로 본 발명에서 제안하는 기술 구성에 대해 설명한다. 다만, 상기 SQPSK 변조 방법은 적용 가능한 변조 방법의 하나에 불과하며, 본 발명에 따른 다른 실시예에서는 이와는 상이한 변조 방법이 적용될 수 있다.
또한, 본 발명에서 언급하는 채널 결합이라 함은, 11ay 시스템 등에서 정의된 2개 채널이 결합되거나 (예: 2.16 GHz + 2.16 GHz), 4개 채널이 결합되는 (예: 4.32 GHz + 4.32 GHz) 구성을 모두 포함한다.
이와 같은 기술적 구성들에 기반하여 본 발명에서는 다음과 같은 신호 송수신 방법을 제안한다.
본 발명이 적용 가능한 11ay 시스템에 따르면, 도 10의 EDMG Header-A 필드는 하기 표와 같은 필드를 포함할 수 있다.
Field Number of bits Start bit
SU/MU Format 1 0
Channel Aggregation 1 1
BW 8 2
Primary Channel Number 3 10
Beamformed 1 13
Short/Long LDPC 1 14
STBC Applied 1 15
PSDU Length 22 16
Number of SS 3 38
EDMG-MCS 21 41
DCM SQPSK Applied 1 62
여기서, 표 2는 EDMG Header-A 필드에 포함 가능한 일부 필드만을 예시로 제시하였으며, 본 발명에 따른 EDMG Header-A 필드는 표 2에 도시된 필드 외 다른 필드들도 포함할 수 있다.
다만, 종래 시스템에 따르면, 상기 EMDG Header-A 필드에 포함된 'DCM SQPSK Applied' 필드는 SC 모드에 대해서만 활용 가능할 뿐, OFDM 모드에 대해서는 활용이 불가능하였다. 왜냐하면, OFDM 모드에 대한 DCM SQPSK 동작에 대해 정의가 되지 않았기 때문이다.
이에, 본 발명에서는 OFDM 모드에 대한 DCM SQPSK 동작을 새로이 정의하며, 이에 따라, OFDM 모드에서의 상기 DCM SQPSK Applied 필드는 다음과 같이 해석될 수 있다.
- “If set to 1 in EDMG OFDM mode PPDU, indicates that SPQSK across the aggregated channels was applied at the transmitter. Otherwise, set to 0.”
이처럼 EDMG Header-A 필드 내 'DCM SQPSK Applied' 필드의 값이 1로 설정되는 경우, 송신기(transmitter)는 아래에서 제안하는 방법 중 하나의 방법을 적용하여 결합된 채널을 통해 신호를 수신기(receiver)로 전송할 수 있다.
3.1. 제1 방법 (SQPK in each aggregated channel)
도 11은 본 발명의 제1 방법에 따라 결합된 채널을 통해 신호를 전송하는 방법을 간단히 나타낸 도면이다.
먼저, 송신기는 전송하고자 하는 신호를 일정 길이의 데이터 심볼로 구분할 수 있다. 보다 구체적으로, 송신기는 전송하고자 하는 입력 인코딩된 비트(input encoded bits)를 일정 길이의 데이터 심볼 (또는 하나의 OFDM 심볼별 코딩된 비트의 개수)로 구분할 수 있다. 이때, 상기 일정 길이의 데이터 심볼은 336 길이, 734 길이, 1134 길이 또는 1532 길이 등을 가질 수 있다.
일 예로, 송신기는 전송하고자 하는 비트 시퀀스 (bit sequence)에 대해 QPSK 변조 방법을 적용하여 336 길이 단위의 데이터 심볼을 생성할 수 있다. 이때, 상기 336 길이를 갖는 데이터 심볼 내 인덱스 m (여기서, m은 0 ~ 335)을 갖는 데이터 심볼은 상기 비트 시퀀스의 [인덱스 2m 을 갖는 비트 시퀀스, 인덱스 2m+1 을 갖는 비트 시퀀스]에 대응할 수 있다.
이어, 상기 송신기는, 도 11과 같이, 상기 일정 길이 단위로 구분된 데이터 심볼을 첫 번째 결합된 채널 또는 두 번째 결합된 채널에 매핑하여 수신기로 전송할 수 있다.
보다 구체적으로, 송신기는 상기 일정 길이 단위로 구분된 데이터 심볼들 (예: 336 길이의 데이터 심볼들)을 두 개의 그룹으로 구분하고, 각 그룹 (예: first half of the data symbols, second half of the data symbols)에 대응하는 데이터 심볼들을 SQPSK 변조 방법을 이용하여 첫 번째 결합된 채널 또는 두 번째 결합된 채널에 매핑할 수 있다.
이에 따라, 송신기는 첫 번째 그룹에 포함된 특정 데이터 심볼에 대응하는 제1 값 및 상기 제1 값에 대한 켤레 값인 제2 값을 첫 번째 결합된 채널에 매핑할 수 있다. 이때, 상기 제1 값 및 제2 값이 매핑되는 부반송파 간격은 상기 결합된 채널에 포함된 총 부반송파 개수의 1/2이 적용될 수 있다.
즉, 도 11의 첫 번째 그룹에 포함된 X번째 데이터 심볼에 대한 심볼 값 (S(X))는 첫 번째 결합된 채널의 X 번째 부반송파에 매핑되고, 상기 X 번째 데이터 심볼에 대한 심볼 값의 켤레 값 (conj(S(X)))은 첫 번째 결합된 채널의 168+X 번째 부반송파에 매핑될 수 있다.
이와 유사하게, 송신기는 두 번째 그룹에 포함된 특정 데이터 심볼에 대응하는 제3 값 및 상기 제3 값에 대한 켤레 값인 제4 값을 두 번째 결합된 채널에 매핑할 수 있다. 이때, 상기 제3 값 및 제4 값이 매핑되는 부반송파 간격은 상기 결합된 채널에 포함된 총 부반송파 개수의 1/2이 적용될 수 있다.
즉, 도 11의 두 번째 그룹에 포함된 Y번째 데이터 심볼에 대한 심볼 값 (S(Y))는 두 번째 결합된 채널의 Y 번째 부반송파에 매핑되고, 상기 Y 번째 데이터 심볼에 대한 심볼 값의 켤레 값 (conj(S(Y)))은 두 번째 결합된 채널의 168+Y 번째 부반송파에 매핑될 수 있다. 여기서, 도 11은 single channel aggregation (2.16 GHz + 2.16 GHz)인 경우를 나타낸 도면으로 각 결합된 채널이 336 부반송파로 구성되나, 2 channel bonding channel aggregation (4.32 GHz + 4.32 GHz)인 경우 각 결합된 채널은 734 부반송파로 구성될 수 있다. 이 경우, 상기 Y 번째 데이터 심볼에 대한 심볼 값의 켤레 값 (conj(S(Y)))은 두 번째 결합된 채널의 367+Y 번째 부반송파에 매핑될 수 있다.
상기 구성을 일반적으로 설명하면, 데이터 심볼의 제1 절반은 제1 결합된 채널의 제1 절반에 매핑되고, 상기 데이터 심볼의 제1 절반에 대한 켤레 반복은 상기 제1 결합된 채널의 제2 절반에 매핑된다 (The first half of data symbols are mapped to the first half of first aggregated channel. Its conjugated repetitions are mapped to second half of the first aggregated channel). 이와 유사하게, 데이터 심볼의 제2 절반은 제2결합된 채널의 제1 절반에 매핑되고, 상기 데이터 심볼의 제2 절반에 대한 켤레 반복은 상기 제2 결합된 채널의 제2 절반에 매핑된다 (The second half of data symbols are mapped to the first half of second aggregated channel. Its conjugated repetitions are mapped to second half of the second aggregated channel).
3.2. 제2 방법 (SQPK across the aggregated channels)
앞서 상술한 제1 방법과 달리, 본 발명에 따른 제2 방법에 따르면, 변조된 데이터 심볼에 대한 심볼 값은 첫 번째 결합된 채널에 매핑되고, 상기 심볼 값에 대한 켤레 값은 두 번째 결합된 채널에 매핑될 수 있다.
도 12는 본 발명의 제2 방법에 따라 결합된 채널을 통해 신호를 전송하는 방법을 간단히 나타낸 도면이다.
본 발명의 제2 방법에 따르면, 송신기는 상기 일정 길이 단위로 구분된 데이터 심볼들에 대한 심볼 값 및 상기 심볼 값에 대한 켤레 반복 값 (또는 켤레 값)을 서로 다른 결합된 채널에 매핑하여 수신기로 전송할 수 있다.
보다 구체적으로, 송신기는 상기 일정 길이 단위로 구분된 데이터 심볼들 (예: 336 길이의 데이터 심볼들)에 대한 심볼 값을 첫 번째 결합된 채널의 부반송파에 순서대로 매핑하고, 상기 데이터 심볼들에 대한 켤레 (반복) 값을 두 번째 결합된 채널의 부반송파에 순서대로 매핑하여 수신기로 전송할 수 있다.
이에 따라, 상기 일정 길이 단위로 구분된 데이터 심볼들 (예: 336 길이의 데이터 심볼들) 중 X 번째 데이터 심볼에 대한 심볼 값 (S(X))은 첫 번째 결합된 채널의 X 번째 부반송파에 매핑되어 전송되고, 상기 X 번째 데이터 심볼에 대한 켤레 반복 값 (conj(S(X)))은 두 번째 결합된 채널의 X 번째 부반송파에 매핑되어 전송될 수 있다.
상기와 같은 제1 방법 및 제2 방법에 대해 시뮬레이션을 한 결과, 제2 방법에 따른 변조 방법이 제1 방법에 따른 변조 방법보다 나은 성능을 가짐을 확인할 수 있다.
보다 구체적으로, 11ad CB 채널 모델의 경우, 제1 방법(Option 1)과 제2 방법(Option 2)의 SNR (Signal to Noise Ratio)는 하기 표와 같을 수 있다.
Figure PCTKR2018004122-appb-T000001
즉, PER (Packet Error Rate)가 1% 및 0.1 %인 경우 모두, 제2 방법이 제1 방법보다 높은 SNR 게인을 가짐을 알 수 있다.
또한, 11ad CR 채널 모델의 경우, 제1 방법(Option 1)과 제2 방법(Option 2)의 SNR (Signal to Noise Ratio)는 하기 표와 같을 수 있다.
Figure PCTKR2018004122-appb-T000002
즉, PER (Packet Error Rate)가 1% 및 0.1 %인 경우 모두, 제2 방법이 제1 방법보다 높은 SNR 게인을 가짐을 알 수 있다.
이처럼, 보다 나은 성능을 갖는 제2 방법에 따른 채널 결합에서의 SQPSK (SQPSK in channel aggregation) 기법을 정리하면, 다음과 같이 정리될 수 있다.
결합된 채널들에 걸쳐 SQPSK 변조가 적용되는 경우, 제1 공간 시간 스트림 (ists=1)의 입력 스트림과 제2 공간 시간 스트림 (ists=2)의 압력 스트림은 NCBPS 비트 의 그룹들로 다음과 같이 구별될 수 있다 (In SQPSK modulation across the aggregated channels, the input stream of the first space-time stream(ists=1) and the second space-time stream(ists=1) is broken into the groups of NCBPS bits as:)
Figure PCTKR2018004122-appb-M000001
상술한 설명에 있어, NCBPS는 심볼 별 코딩된 비트의 개수 (the number of coded bits per OFDM symbol)를 의미하고, q는 그룹 번호를 의미할 수 있다.
참고로, 상기 NCBPS는 변조 타입 및 채널 별 데이터 부반송파의 개수인 NSD에 따라 하기와 같이 다르게 정의될 수 있다.
Figure PCTKR2018004122-appb-T000003
이에, 도 11 및 도 12는 NCBPS 및 NSD 가 336 인 경우를 나타낸 것으로 이해될 수 있다.
앞서 구분된 각 공간 시간 스트림별 입력 스트림에 대한 각각의 비트 짝 (pair of bits) 인
Figure PCTKR2018004122-appb-I000001
Figure PCTKR2018004122-appb-I000002
, 여기서 k =
Figure PCTKR2018004122-appb-I000003
, 는 각각 복소 성상 위치 (complex constellation point)인
Figure PCTKR2018004122-appb-I000004
Figure PCTKR2018004122-appb-I000005
로 변환될 수 있다 (Each pair of bits 
Figure PCTKR2018004122-appb-I000006
and
Figure PCTKR2018004122-appb-I000007
k =
Figure PCTKR2018004122-appb-I000008
are converted into a complex constellation point
Figure PCTKR2018004122-appb-I000009
and
Figure PCTKR2018004122-appb-I000010
respectively).
여기서,
Figure PCTKR2018004122-appb-I000011
은 프라이머리 채널을 포함한 결합된 채널의 OFDM 부반송파들의 제1 절반을 위한 성상 위치를 생성하고,
Figure PCTKR2018004122-appb-I000012
은 프라이머리 채널을 포함한 결합된 채널의 OFDM 부반송파들의 제2 절반을 위한 성상 위치를 생성할 수 있다 (
Figure PCTKR2018004122-appb-I000013
generates the constellation point for the first half of the OFDM subcarriers in channel containing the primary 2.16GHz and
Figure PCTKR2018004122-appb-I000014
generates the constellation point for the second half of the OFDM subcarriers in channel containing the primary 2.16GHz).
또한, conj(
Figure PCTKR2018004122-appb-I000015
)은 프라이머리 채널을 포함하지 않은 결합된 채널의 OFDM 부반송파들의 제1 절반을 위한 성상 위치를 생성하고,
Figure PCTKR2018004122-appb-I000016
은 프라이머리 채널을 포함하지 않은 결합된 채널의 OFDM 부반송파들의 제2 절반을 위한 성상 위치를 생성할 수 있다 (conj(
Figure PCTKR2018004122-appb-I000017
) generates the constellation point for the first half of the OFDM subcarriers in channel that does not contain the primary channel and
Figure PCTKR2018004122-appb-I000018
generates the constellation point for the second half of the OFDM subcarriers in channel that does not contain the primary channel).
앞서 상술한 설명에서, P(k)는 NCBPS/2 부터 NCBPS -1 까지의 인덱스를 지시하는 인덱스를 의미한다. 이때, 본 발명과 같이 NCBPS = NSD인 경우, P(k)는 하기 수학식과 같이 나타낼 수 있다.
Figure PCTKR2018004122-appb-M000002
상기와 같은 구성은 다음과 같이 나타낼 수도 있다.
먼저, 송신기는 각 공간 시간 스트림 별 입력 인코딩된 비트를 NCBPS 비트의 그룹으로 구분할 수 있다. 이때, 하나의 그룹에 포함된 인코딩된 비트는 하기 수학식과 같이 나타낼 수 있다.
Figure PCTKR2018004122-appb-M000003
여기서, iss는 공간 시간 스트림을 나타내고, q는 그룹 번호를 나타낸다.
상기 하나의 그룹에 포함된 인코딩된 비트의 비트 짝
Figure PCTKR2018004122-appb-I000019
은 복소 위치 (complex point)
Figure PCTKR2018004122-appb-I000020
로 변환될 수 있다. 여기서, k 값은 0, 1, ……, NSD/2 - 1 값을 가질 수 있다.
다시 말해, 송신기는 상기 각 공간 시간 스트림별 입력 인코딩 비트들의 비트 짝을 하나의 복소 위치
Figure PCTKR2018004122-appb-I000021
로 변환할 수 있다.
이때, OFDM 모드에서 2개의 채널이 결합되거나 (예: 2.16 + 2.16 GHz) 4 개의 채널이 결합되는 (예: 4.32 + 4.32 GHz) 경우, 송신기는 상기 결합된 채널 중 제1 결합 채널 (iss=1) 및 제2 결합 채널 (iss=2)에 대한 복소 위치
Figure PCTKR2018004122-appb-I000022
를 하기 수학식과 같이 적용할 수 있다.
Figure PCTKR2018004122-appb-M000004
여기서, P(k)는 앞서 상술한 수학식 2와 같이 나타낼 수 있다.
이와 같은 과정을 통해, iss 번째 공간 스트림의 q 번째 변조된 데이터는 iss 째 공간 스트림의 q 번째 OFDM 심볼의 NSD 데이터 부반송파들에 매핑될 수 있다 (The qth modulated data block of the iSS th spatial stream is mapped to NSD data subcarriers of the qth OFDM symbol of the iSS th spatial stream).
도 13은 본 발명의 일 예에 따른 송신기의 신호 전송 방법을 나타낸 흐름도이다.
먼저, 송신기는 입력 인코딩 비트 (input encoded bits)에 포함된 각 비트 짝 (pair of bits)에 대한 변조 심볼 값(예: S(m))과 상기 변조 심볼 값에 대한 켤레 값 (예: conj (S(m))을 결합된 채널에 포함된 제1 결합 채널 (aggregated channel) 및 제2 결합 채널 각각에 매핑한다 (S1310).
보다 구체적으로, 도 12에 도시된 바와 같이, 송신기는 입력 인코딩 비트에 대한 데이터 심볼 S(m)은 결합된 제1 채널에 매핑하고, 상기 데이터 심볼에 대한 켤레 반복 값인 conj(S(m))은 결합된 제2 채널에 매핑할 수 있다. 이때, 상기 입력 인코딩 비트에 대한 데이터 심볼의 개수는 각 결합된 채널에 포함된 (데이터) 부반송파의 개수와 동일하게 설정될 수 있다.
이에 따라, 송신기는 상기 입력 인코딩 비트에 포함된 N 번째 비트 짝에 대한 변조 심볼 값을 상기 제1 결합 채널 내 N 번째 부반송파에 매핑하고, 상기 입력 인코딩 비트에 포함된 N 번째 비트 짝에 대한 변조 심볼 값에 대한 켤레 값을 상기 제2 결합 채널 내 N 번째 부반송파에 매핑할 수 있다. 즉, 도 12에 도시된 바와 같이, 입력 인코딩 비트에 대한 첫 번째 데이터 심볼 값을 S(x)라 하는 경우, 송신기는 상기 S(x)를 제1 결합 채널의 첫 번째 부반송파에 매핑하고, 상기 S(x)에 대한 변조 반복 값인 conj(S(x))를 제2 결합 채널의 첫 번째 부반송파에 매핑할 수 있다.
이와 같은 방법에 있어, 상기 변조 심볼은 QPSK (Quadrature Phase Shift Keying) 변조 방법이 적용되어 생성될 수 있다. 이와 같은 방법을 통해, OFDM 모드로 동작하는 송신기는 입력 인코딩 비트에 대해 DCM SQPSK 기법이 적용된 신호들을 제1 결합 채널 및 제2 결합 채널에 매핑할 수 있다.
이어, 상기 송신기는 상기 제1 결합 채널 및 상기 제2 결합 채널에 매핑된 신호들을 상기 제1 결합 채널 및 상기 제2 결합 채널을 포함하는 상기 결합된 채널을 통해 상기 제2 STA에게 전송한다 (S1320). 이때, 송신기는 상기 결합된 채널의 하나 이상의 OFDM 심볼을 통해 상기 신호를 전송할 수 있다.
상기 S1320 단계에서 전송되는 신호는 물리 프로토콜 데이터 유닛(Physical Protocol Data Unit; PPDU)에 포함되어 전송될 수 있다. 이때, 상기 PPDU는 상기 신호 (또는 데이터)와 함께 상기 신호 (또는 데이터)에 대해 SQPSK (Staggered Quadrature Phase Shift Keying) 변조 방법이 상기 결합된 채널들에 걸쳐 적용됨을 지시하는 필드를 포함할 수 있다.
일 예로, 상기 PPDU는 EDMG (Enhanced Directional Multi Gigabit) OFDM (Orthogonal Frequency Division Multiplexing) 모드 PPDU일 수 있다. 이때, 상기 필드는 상기 EDMG OFDM 모드 PPDU에 포함된 제1 EDMG 헤더 필드(예: EDMG Header-A 필드)에 포함될 수 있다. 여기서, 상기 필드는 'DCM (Dual Carrier Modulation) SQPSK Applied' 필드일 수 있다.
상기 구성에 있어, 상기 제1 결합 채널 및 상기 제2 결합 채널은 각각 2.16 GHz 또는 4.32 GHz에 대응하는 대역폭을 가질 수 있다.
보다 구체적으로, 송신기가 하나 이상의 OFDM 심볼을 통해 신호를 전송하는 방법은 하기와 같을 수 있다.
먼저, 송신기는 제1 공간 시간 스트림의 입력 인코딩 비트 및 제2 공간 시간 스트림의 입력 인코딩 비트를 (순서대로) 포함하는 입력 인코딩 비트에 대해 DCM SPQSK 변조 기법을 적용하여 대응하는 신호를 각각 제1 결합 채널 및 제2 결합 채널에 매핑할 수 있다. 이때, 하나의 OFDM 심볼에 대응하는 입력 인코딩 비트는 각각 NCBPS (심볼 별 코딩된 비트의 개수)에 대응하는 길이를 가지는 상기 제1 공간 시간 스트림의 입력 인코딩 비트 및 상기 제2 공간 시간 스트림의 입력 인코딩 비트를 (순서대로) 포함할 수 있다.
여기서, 본 발명에서 제안하는 일반적인 구성에 따르면, 송신기는 상기 제1 공간 시간 스트림의 입력 인코딩 비트에 포함된 X 번째 비트 짝에 대한 변조 심볼 값을 상기 제1 결합 채널 내 X 번째 부반송파에 매핑하고, 상기 제2 공간 시간 스트림의 입력 인코딩 비트에 포함된 Y 번째 비트 짝에 대한 변조 심볼 값은 상기 제1 결합 채널 내 Y+Z 번째 부반송파에 매핑할 수 있다 (도 12 참조). 여기서, 상기 Z 값은 NCBPS/2 에 대응할 수 있다.
이와 대응하여, 상기 송신기는 상기 제1 공간 시간 스트림의 입력 인코딩 비트에 포함된 X 번째 비트 짝에 대한 변조 심볼 값에 대한 켤레 값을 상기 제2 결합 채널 내 X 번째 부반송파에 매핑하고, 상기 제2 공간 시간 스트림의 입력 인코딩 비트에 포함된 Y 번째 비트 짝에 대한 변조 심볼 값에 대한 켤레 값을 상기 제2 결합 채널 내 Y+Z 번째 부반송파에 매핑할 수 있다.
상기와 같은 방법을 통해 송신기는 하나의 OFDM 심볼에 대응하는 신호를 제1 결합 채널 및 제2 결합 채널에 매핑할 수 있다. 즉, 송신기가 복수의 OFDM 심볼에 대응하는 신호에 대해 DCM SQPSK 변조 기법을 적용하는 경우, 상기 송신기는 앞서 상술한 하나의 OFDM 심볼에 대응하는 신호에 대한 DCM SQPSK 변조 기법을 복수 번 적용하여 해당 신호를 상기 제1 결합 채널 및 제2 결합 채널에 매핑할 수 있다.
이어, 상기 송신기는 상기 상기 제1 결합 채널 및 제2 결합 채널에 매핑된 신호를 수신기로 전송할 수 있다.
이때 상기 하나 이상의 OFDM 심볼은 EDMG OFDM 모드 PPDU의 데이터 필드 (또는 다른 필드)에 포함되어 전송될 수 있다.
수신기는 상기와 같은 방법을 통해 송신기가 전송한 신호를 하기와 같은 방법을 통해 수신할 수 있다.
먼저, 수신기는 제1 결합 채널 (aggregated channel) 및 제2 결합 채널을 포함하는 결합된 채널을 통해 전송되는 신호를 수신한다.
이어, 상기 수신기는 상기 제1 결합 채널에 매핑된 변조 심볼 값 및 상기 제2 결합 채널에 매핑된 상기 변조 심볼 값에 대한 켤레 값에 기반하여 수신된 비트 정보를 디코딩한다. 이를 위해, 상기 수신기는 MRC (Maximal Ratio Combining) 등 컴바이닝 기법을 활용하여 상기 송신기로부터 전송된 신호를 수신할 수 있다. 이를 통해, 상기 수신기는 상기 송신기가 전송하고자 한 입력 인코딩 비트에 대한 정보를 획득할 수 있고, 상기 송신기 및 수신기는 DCM SQPSK 변조 기법을 통해 다이버시티 이득을 획득할 수 있다.
4. 장치 구성
도 14는 상술한 바와 같은 방법을 구현하기 위한 장치를 설명하기 위한 도면이다.
도 14의 무선 장치(100)은 상술한 설명에서 설명한 신호를 전송하는 STA, 그리고 무선 장치(150)은 상술한 설명에서 설명한 신호를 수신하는 STA에 대응할 수 있다.
이때, 신호를 전송하는 스테이션은 11ay 시스템을 지원하는 11ay 단말 또는 PCP/AP에 대응될 수 있고, 신호를 수신하는 스테이션은 11ay 시스템을 지원하는 11ay 단말 또는 PCP/AP 에 대응할 수 있다.
이하, 설명의 편의를 위해 신호를 전송하는 STA은 송신 장치 (100)라 명명하고, 신호를 수신하는 STA은 수신 장치 (150)라 명명한다.
송신 장치 (100)는 프로세서(110), 메모리(120), 송수신부(130)를 포함할 수 있고, 수신 장치 (150)는 프로세서(160), 메모리(170) 및 송수신부(180)를 포함할 수 있다. 송수신부(130, 180)은 무선 신호를 송신/수신하고, IEEE 802.11/3GPP 등의 물리적 계층에서 실행될 수 있다. 프로세서(110, 160)은 물리 계층 및/또는 MAC 계층에서 실행되고, 송수신부(130, 180)와 연결되어 있다.
프로세서(110, 160) 및/또는 송수신부(130, 180)는 특정 집적 회로(application-specific integrated circuit, ASIC), 다른 칩셋, 논리 회로 및/또는 데이터 프로세서를 포함할 수 있다. 메모리(120, 170)은 ROM(read-only memory), RAM(random access memory), 플래시 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 유닛을 포함할 수 있다. 일 실시 예가 소프트웨어에 의해 실행될 때, 상기 기술한 방법은 상기 기술된 기능을 수행하는 모듈(예를 들어, 프로세스, 기능)로서 실행될 수 있다. 상기 모듈은 메모리(120, 170)에 저장될 수 있고, 프로세서(110, 160)에 의해 실행될 수 있다. 상기 메모리(120, 170)는 상기 프로세스(110, 160)의 내부 또는 외부에 배치될 수 있고, 잘 알려진 수단으로 상기 프로세스(110, 160)와 연결될 수 있다.
상술한 바와 같이 개시된 본 발명의 바람직한 실시형태에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시 형태를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 상술한 설명으로부터 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
상술한 바와 같은 본 발명은 IEEE 802.11 기반 무선랜 시스템에 적용되는 것을 가정하여 설명하였으나, 이에 한정될 필요는 없다. 본 발명은 채널 본딩에 기반하여 데이터 전송이 가능한 다양한 무선 시스템에 동일한 방식으로 적용될 수 있다.

Claims (15)

  1. 무선랜(WLAN) 시스템에서 제1 스테이션(STA)이 제2 STA에게 신호를 전송하는 방법에 있어서,
    입력 인코딩 비트 (input encoded bits)에 포함된 각 비트 짝 (pair of bits)에 대한 변조 심볼 값과 상기 변조 심볼 값에 대한 켤레 값을 결합된 채널에 포함된 제1 결합 채널 (aggregated channel) 및 제2 결합 채널 각각에 매핑; 및
    상기 제1 결합 채널 및 상기 제2 결합 채널에 매핑된 신호들을 상기 제1 결합 채널 및 상기 제2 결합 채널을 포함하는 상기 결합된 채널을 통해 상기 제2 STA에게 전송;하는 것을 포함하는, 신호 전송 방법.
  2. 제 1항에 있어서,
    상기 입력 인코딩 비트에 포함된 N 번째 비트 짝에 대한 변조 심볼 값은 상기 제1 결합 채널 내 N 번째 부반송파에 매핑되고,
    상기 입력 인코딩 비트에 포함된 N 번째 비트 짝에 대한 변조 심볼 값에 대한 켤레 값은 상기 제2 결합 채널 내 N 번째 부반송파에 매핑되고,
    상기 N은 자연수인, 신호 전송 방법.
  3. 제 2항에 있어서,
    상기 N 번째 비트 짝에 대한 변조 심볼은,
    상기 N 번째 비트 짝에 대해 QPSK (Quadrature Phase Shift Keying) 변조 방법이 적용되어 생성되는, 신호 전송 방법.
  4. 제 1항에 있어서,
    상기 제1 결합 채널 및 상기 제2 결합 채널은 각각 2.16 GHz 또는 4.32 GHz 에 대응하는 대역폭을 갖는, 신호 전송 방법.
  5. 제 1항에 있어서,
    상기 입력 인코딩 비트는,
    제1 공간 시간 스트림의 입력 인코딩 비트 및 제2 공간 시간 스트림의 입력 인코딩 비트를 포함하고,
    상기 제1 공간 시간 스트림의 입력 인코딩 비트 및 상기 제2 공간 시간 스트림의 입력 인코딩 비트는 각각 OFDM (Orthogonal Frequency Division Multiplexing) 심볼 별 코딩된 비트의 개수에 대응하는 길이를 갖는, 신호 전송 방법.
  6. 제 5항에 있어서,
    상기 제1 공간 시간 스트림의 입력 인코딩 비트에 포함된 X 번째 비트 짝에 대한 변조 심볼 값은 상기 제1 결합 채널 내 X 번째 부반송파에 매핑되고,
    상기 제2 공간 시간 스트림의 입력 인코딩 비트에 포함된 Y 번째 비트 짝에 대한 변조 심볼 값은 상기 제1 결합 채널 내 Y+Z 번째 부반송파에 매핑되고,
    상기 X, Y, Z는 자연수인, 신호 전송 방법.
  7. 제 6항에 있어서,
    상기 Z 값은 상기 OFDM 심볼 별 코딩된 비트의 개수의 절반에 대응하는, 신호 전송 방법.
  8. 제 6항에 있어서,
    상기 제1 공간 시간 스트림의 입력 인코딩 비트에 포함된 X 번째 비트 짝에 대한 변조 심볼 값에 대한 켤레 값은 상기 제2 결합 채널 내 X 번째 부반송파에 매핑되고,
    상기 제2 공간 시간 스트림의 입력 인코딩 비트에 포함된 Y 번째 비트 짝에 대한 변조 심볼 값에 대한 켤레 값은 상기 제2 결합 채널 내 Y+Z 번째 부반송파에 매핑되는, 신호 전송 방법.
  9. 제 1항에 있어서,
    상기 전송되는 신호를 포함하는 물리 프로토콜 데이터 유닛(Physical Protocol Data Unit; PPDU)은 SQPSK (Staggered Quadrature Phase Shift Keying) 변조 방법이 상기 결합된 채널들에 걸쳐 적용됨을 지시하는 필드를 포함하는, 신호 전송 방법.
  10. 제 9항에 있어서,
    상기 PPDU는 EDMG (Enhanced Directional Multi Gigabit) OFDM (Orthogonal Frequency Division Multiplexing) 모드 PPDU인, 신호 전송 방법.
  11. 제 10항에 있어서,
    상기 필드는 상기 EDMG OFDM 모드 PPDU에 포함된 제1 EDMG 헤더 필드에 포함되는, 신호 전송 방법.
  12. 제 11항에 있어서,
    상기 필드는 'DCM (Dual Carrier Modulation) SQPSK Applied' 필드인, 신호 전송 방법.
  13. 무선랜(WLAN) 시스템에서 제1 스테이션(STA)이 제2 STA으로부터 신호를 수신하는 방법에 있어서,
    제1 결합 채널 (aggregated channel) 및 제2 결합 채널을 포함하는 결합된 채널을 통해 신호를 수신; 및
    상기 제1 결합 채널에 매핑된 변조 심볼 값 및 상기 제2 결합 채널에 매핑된 상기 변조 심볼 값에 대한 켤레 값에 기반하여 수신된 비트 정보를 디코딩;하는 것을 포함하는, 신호 수신 방법.
  14. 무선랜(WLAN) 시스템에서 신호를 전송하는 스테이션 장치에 있어서,
    하나 이상의 RF(Radio Frequency) 체인을 가지고, 다른 스테이션 장치와 신호를 송수신하도록 구성되는 송수신부; 및
    상기 송수신부와 연결되어, 상기 다른 스테이션 장치와 신호를 송수신한 신호를 처리하는 프로세서를 포함하되,
    상기 프로세서는,
    입력 인코딩 비트 (input encoded bits)에 포함된 각 비트 짝 (pair of bits)에 대한 변조 심볼 값과 상기 변조 심볼 값에 대한 켤레 값을 결합된 채널에 포함된 제1 결합 채널 (aggregated channel) 및 제2 결합 채널 각각에 매핑; 및
    상기 제1 결합 채널 및 상기 제2 결합 채널에 매핑된 신호들을 상기 제1 결합 채널 및 상기 제2 결합 채널을 포함하는 상기 결합된 채널을 통해 상기 제2 STA에게 전송;하도록 구성되는, 스테이션 장치.
  15. 무선랜(WLAN) 시스템에서 신호를 수신하는 스테이션 장치에 있어서,
    하나 이상의 RF(Radio Frequency) 체인을 가지고, 다른 스테이션 장치와 신호를 송수신하도록 구성되는 송수신부; 및
    상기 송수신부와 연결되어, 상기 다른 스테이션 장치와 신호를 송수신한 신호를 처리하는 프로세서를 포함하되,
    상기 프로세서는,
    제1 결합 채널 (aggregated channel) 및 제2 결합 채널을 포함하는 결합된 채널을 통해 신호를 수신; 및
    상기 제1 결합 채널에 매핑된 변조 심볼 값 및 상기 제2 결합 채널에 매핑된 상기 변조 심볼 값에 대한 켤레 값에 기반하여 수신된 비트 정보를 디코딩;하도록 구성되는, 스테이션 장치.
PCT/KR2018/004122 2017-07-26 2018-04-09 무선랜 시스템에서 신호의 송수신 방법 및 이를 위한 장치 WO2019022343A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/325,378 US10608789B2 (en) 2017-07-26 2018-04-09 Method for transmitting and receiving signal in wireless LAN system and apparatus therefor
KR1020197003018A KR102130020B1 (ko) 2017-07-26 2018-04-09 무선랜 시스템에서 신호의 송수신 방법 및 이를 위한 장치
CN201880052542.XA CN110999199B (zh) 2017-07-26 2018-04-09 在无线lan系统中发送和接收信号的方法和用于该方法的设备
EP18839391.2A EP3565173B1 (en) 2017-07-26 2018-04-09 Method for transmitting and receiving signal in wireless lan system and apparatus therefor
US16/799,572 US10972222B2 (en) 2017-07-26 2020-02-24 Method of transmitting and receiving signals in WLAN system and device for the same
US17/196,615 US11563523B2 (en) 2017-07-26 2021-03-09 Method of transmitting and receiving signals in WLAN system and device for the same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201762537000P 2017-07-26 2017-07-26
US62/537,000 2017-07-26
US201762557119P 2017-09-11 2017-09-11
US62/557,119 2017-09-11
US201762557158P 2017-09-12 2017-09-12
US201762557151P 2017-09-12 2017-09-12
US62/557,158 2017-09-12
US62/557,151 2017-09-12

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/325,378 A-371-Of-International US10608789B2 (en) 2017-07-26 2018-04-09 Method for transmitting and receiving signal in wireless LAN system and apparatus therefor
US16/799,572 Continuation US10972222B2 (en) 2017-07-26 2020-02-24 Method of transmitting and receiving signals in WLAN system and device for the same

Publications (1)

Publication Number Publication Date
WO2019022343A1 true WO2019022343A1 (ko) 2019-01-31

Family

ID=65039609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004122 WO2019022343A1 (ko) 2017-07-26 2018-04-09 무선랜 시스템에서 신호의 송수신 방법 및 이를 위한 장치

Country Status (5)

Country Link
US (3) US10608789B2 (ko)
EP (1) EP3565173B1 (ko)
KR (1) KR102130020B1 (ko)
CN (1) CN110999199B (ko)
WO (1) WO2019022343A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10608789B2 (en) 2017-07-26 2020-03-31 Lg Electronics Inc. Method for transmitting and receiving signal in wireless LAN system and apparatus therefor
US11621741B2 (en) * 2021-02-25 2023-04-04 Raytheon Bbn Technologies Corp. Adaptive modulation, coding and spreading (AMCS) transmitter, receiver and methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140094583A (ko) * 2011-11-04 2014-07-30 퀄컴 인코포레이티드 롱 텀 에벌루션(LTE)에서 강화된 물리적 다운링크 제어 채널(e-PDCCH)의 구조
US20160330738A1 (en) * 2015-05-07 2016-11-10 Qualcomm Incorporated System and method for transmitting data payload in wb sc, aggregate sc, duplicate sc, ofdm transmission frames
US20160352552A1 (en) * 2015-05-26 2016-12-01 Mediatek Inc. Reliable Dual Sub-Carrier Modulation Schemes in High Efficiency WLAN
WO2017026778A1 (ko) * 2015-08-12 2017-02-16 엘지전자 주식회사 무선랜 시스템에서 시그널링 필드의 퍼뮤테이션 방법 및 이를 위한 장치
US20170207838A1 (en) * 2016-01-14 2017-07-20 Intel Corporation Apparatus, system and method of communicating according to a transmit space-frequency diversity scheme

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8040968B2 (en) * 2004-09-30 2011-10-18 Intel Corporation High rate, high diversity transmission on multiple transmit antennas
CN103416017B (zh) * 2010-11-12 2016-11-16 交互数字专利控股公司 用于执行信道聚合和媒介访问控制重传的方法和设备
JP6045690B2 (ja) * 2012-07-09 2016-12-14 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて動作チャネル情報を送受信する方法及び装置
CN103888402A (zh) * 2014-03-31 2014-06-25 电子科技大学 一种基于时域信道匹配的ofdm-tdcs的接收方案
CN108476030A (zh) * 2016-01-04 2018-08-31 中兴通讯股份有限公司 高度集成的智能集群微波数字无线电架构
US10103792B2 (en) * 2016-01-14 2018-10-16 Intel Corporation Apparatus, system and method of communicating a multiple-input-multiple-output (MIMO) transmission
US10225122B2 (en) * 2016-02-04 2019-03-05 Mediatek Inc. Low PAPR dual sub-carrier modulation scheme for BPSK in WLAN
US20170265217A1 (en) * 2016-03-09 2017-09-14 Intel Corporation Apparatus, system and method of communicating pilot signals according to a diversity scheme
US10454548B2 (en) * 2016-03-09 2019-10-22 Intel Corporation Apparatus, system and method of communicating according to a transmit space-frequency diversity scheme
US10097314B2 (en) * 2016-07-17 2018-10-09 Intel Corporation Apparatus, system and method of communicating a transmission encoded according to a low-density parity-check (LDPC) code
US10608789B2 (en) 2017-07-26 2020-03-31 Lg Electronics Inc. Method for transmitting and receiving signal in wireless LAN system and apparatus therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140094583A (ko) * 2011-11-04 2014-07-30 퀄컴 인코포레이티드 롱 텀 에벌루션(LTE)에서 강화된 물리적 다운링크 제어 채널(e-PDCCH)의 구조
US20160330738A1 (en) * 2015-05-07 2016-11-10 Qualcomm Incorporated System and method for transmitting data payload in wb sc, aggregate sc, duplicate sc, ofdm transmission frames
US20160352552A1 (en) * 2015-05-26 2016-12-01 Mediatek Inc. Reliable Dual Sub-Carrier Modulation Schemes in High Efficiency WLAN
WO2017026778A1 (ko) * 2015-08-12 2017-02-16 엘지전자 주식회사 무선랜 시스템에서 시그널링 필드의 퍼뮤테이션 방법 및 이를 위한 장치
US20170207838A1 (en) * 2016-01-14 2017-07-20 Intel Corporation Apparatus, system and method of communicating according to a transmit space-frequency diversity scheme

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3565173A4 *

Also Published As

Publication number Publication date
US11563523B2 (en) 2023-01-24
CN110999199A (zh) 2020-04-10
KR20190020144A (ko) 2019-02-27
KR102130020B1 (ko) 2020-07-03
EP3565173A4 (en) 2020-03-11
US20200195380A1 (en) 2020-06-18
US20190199478A1 (en) 2019-06-27
CN110999199B (zh) 2022-08-05
US20210194631A1 (en) 2021-06-24
EP3565173A1 (en) 2019-11-06
US10972222B2 (en) 2021-04-06
EP3565173B1 (en) 2021-06-09
US10608789B2 (en) 2020-03-31

Similar Documents

Publication Publication Date Title
WO2018164554A1 (ko) 무선랜 시스템에서 물리 프로토콜 데이터 유닛을 포함한 신호의 송수신 방법 및 이를 위한 장치
WO2016126034A1 (en) Methods and apparatus for transmitting/receiving he-sig b
WO2011112054A2 (ko) Mimo 시스템에서 데이터를 송수신하는 방법 및 장치
WO2017217632A1 (ko) 무선랜에서 he ra su ppdu 송수신 방법 및 이를 위한 장치
WO2017014551A1 (ko) 채널 본딩 기반 신호 전송 방법 및 이를 위한 장치
WO2017026784A1 (ko) 무선랜 시스템에서 제어 필드를 포함하는 제어 신호를 구성하는 방법 및 장치
WO2016167561A1 (ko) 무선랜 시스템에서 다수의 자원 유닛을 위해 사용되는 시그널 필드를 구성하는 방법 및 장치
WO2018048284A1 (ko) 무선랜 시스템에서의 신호 송수신 방법 및 이를 위한 장치
WO2016068669A1 (ko) 무선랜에서 자원 단위를 할당하는 방법 및 장치
WO2016027937A1 (ko) 액티브 스캐닝을 수행하는 방법 및 장치
WO2016085311A1 (ko) 무선랜 시스템에서 상향링크 다중 사용자 데이터에 대한 확인응답 신호 송수신 방법 및 이를 위한 장치
WO2016056830A1 (ko) 무선랜에서 파일롯 톤을 포함하는 자원 단위 상에서 데이터를 전송하는 방법 및 장치
WO2017105038A1 (ko) 무선 통신 시스템에서 유연한 자원할당을 지원하는 방법 및 이를 위한 장치
WO2017179939A2 (ko) 무선랜 시스템에서의 신호 송수신 방법 및 이를 위한 장치
WO2021225388A1 (ko) 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 무선 통신 단말
WO2017179901A1 (ko) 다중 사용자 캐스캐이딩 전송을 지원하는 무선 통신 방법 및 이를 사용하는 무선 통신 단말
WO2017116137A1 (ko) 무선랜 시스템에서의 동작 방법 및 이를 위한 장치
WO2018012920A1 (ko) 무선랜 시스템에서의 데이터 송수신 방법 및 이를 위한 장치
WO2016085286A1 (ko) 무선랜에서 서로 다른 파일롯 톤 패턴을 기반으로 한 데이터 전송 방법 및 장치
WO2018203603A1 (ko) 빔포밍 훈련
WO2016137201A1 (ko) 다수의 서브캐리어를 포함하는 자원유닛을 사용하여 신호를 송신하는 방법 및 장치
WO2017043911A1 (ko) 무선랜 시스템에서의 동작 방법 및 이를 위한 장치
WO2019045213A1 (ko) 무선랜 시스템에서 빔포밍을 지원하는 방법 및 이를 위한 장치
WO2018194234A1 (ko) 무선랜 시스템에서의 신호 송수신 방법 및 이를 위한 장치
WO2017043912A1 (ko) 무선랜 시스템에서의 신호 전송 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20197003018

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18839391

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018839391

Country of ref document: EP

Effective date: 20190802

NENP Non-entry into the national phase

Ref country code: DE