WO2011112054A2 - Mimo 시스템에서 데이터를 송수신하는 방법 및 장치 - Google Patents

Mimo 시스템에서 데이터를 송수신하는 방법 및 장치 Download PDF

Info

Publication number
WO2011112054A2
WO2011112054A2 PCT/KR2011/001742 KR2011001742W WO2011112054A2 WO 2011112054 A2 WO2011112054 A2 WO 2011112054A2 KR 2011001742 W KR2011001742 W KR 2011001742W WO 2011112054 A2 WO2011112054 A2 WO 2011112054A2
Authority
WO
WIPO (PCT)
Prior art keywords
data
field
frequency band
signal field
sig
Prior art date
Application number
PCT/KR2011/001742
Other languages
English (en)
French (fr)
Other versions
WO2011112054A3 (ko
Inventor
오종의
정민호
이석규
Original Assignee
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44564033&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011112054(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to CN201180023647.0A priority Critical patent/CN102893535B/zh
Priority to AU2011224961A priority patent/AU2011224961B2/en
Priority to EP22152196.6A priority patent/EP4020830A1/en
Priority to EP11753658.1A priority patent/EP2547002B1/en
Priority to BR112012022749-1A priority patent/BR112012022749B1/pt
Priority to DE112011100890T priority patent/DE112011100890T5/de
Priority to ES11753658.1T priority patent/ES2535604T3/es
Priority to MX2012010564A priority patent/MX2012010564A/es
Priority to PL11753658T priority patent/PL2547002T3/pl
Application filed by 한국전자통신연구원 filed Critical 한국전자통신연구원
Priority to EP18170742.3A priority patent/EP3393053B1/en
Priority to CA2792929A priority patent/CA2792929C/en
Priority to JP2012556993A priority patent/JP2013522950A/ja
Publication of WO2011112054A2 publication Critical patent/WO2011112054A2/ko
Publication of WO2011112054A3 publication Critical patent/WO2011112054A3/ko
Priority to US13/434,681 priority patent/US8654881B2/en
Priority to US14/147,447 priority patent/US9900067B2/en
Priority to US15/897,986 priority patent/US10374668B2/en
Priority to US16/524,093 priority patent/US10931337B2/en
Priority to US17/128,013 priority patent/US11496187B2/en
Priority to US17/968,797 priority patent/US12074665B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/0083Formatting with frames or packets; Protocol or part of protocol for error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0637Properties of the code
    • H04L1/0643Properties of the code block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information

Definitions

  • the present invention relates to a method and apparatus for transmitting and receiving data, and more particularly, to a method and apparatus for transmitting and receiving data in a MIMO system.
  • a wireless LAN basically includes an access point (AP) serving as an access point of a distribution system (DS) and a basic service set consisting of a plurality of STAs (STAs) rather than APs. BSS) mode or Independent BSS (IBSS) mode composed of STAs only. (Hereinafter, AP and STA are collectively referred to as “terminals.”)
  • MIMO multiple input multiple output
  • channel capacity increases as the number of antennas increases, thereby improving frequency efficiency.
  • MIMO systems can be classified into two types as follows. The first is SU-MIMO, which transmits multiple streams to only one user. The second is MU-MIMO, which removes the interference between users in the AP and transmits multiple streams to multiple users.
  • MU-MIMO has the advantage that multi-user diversity gain can be achieved with increasing channel capacity.
  • the MU-MIMO scheme can transmit multiple streams to multiple users using the same frequency band at the same time, thereby increasing throughput compared to conventional communication schemes.
  • the throughput of the wireless communication system can be increased by increasing the frequency band, but there is a disadvantage that the system cost is increased due to the increase of the frequency band.
  • the MU-MIMO method does not increase the frequency band, but the complexity increases significantly compared to the conventional communication method. Accordingly, standards such as 802.11ac are discussing ways to simultaneously apply MU-MIMO technology using a variable frequency according to the surrounding conditions.
  • a signal field including information on the data field is transmitted together with the data field.
  • the common signal field may be recognized by all users who belong to or do not belong to a common user group.
  • the common signal field is also used for auto-detection, which determines which communication system the transmitted data frame is generated, and therefore must be compatible. Therefore, there are restrictions on changing the format or configuration of the common signal field.
  • This common signal field is transmitted through a simple repetition scheme for SNR gain and frequency diversity gain.
  • the dedicated signal field cannot obtain the SNR gain and the frequency diversity gain at the same time even with a simple repetition structure like the common signal field.
  • An object of the present invention is to provide a method and apparatus for more efficiently transmitting a signal field transmitted together when a transmitting terminal transmits data to a receiving terminal in a MIMO system.
  • the present invention provides a method for transmitting data to a receiving terminal by a transmitting terminal in a MIMO system using a variable frequency band, and repeatedly generating a signal field according to a frequency band applied to the transmission of the data frame. And generating a data field including the data, generating a data frame including the signal field and the data field, and transmitting the data frame to the receiving terminal. do.
  • the present invention also provides a method for a receiving terminal to receive data from a transmitting terminal in a MIMO system using a variable frequency band, the method comprising: receiving a data frame including a signal field and a data field and using the signal field And acquiring the data included in the field, wherein the signal field is repeatedly included in the signal field according to a frequency band applied to the transmission of the data frame.
  • the present invention is a terminal for transmitting data to a receiving terminal in a MIMO system using a variable frequency band, the signal field generator for repeatedly generating a signal field according to the frequency band applied to the transmission of the data frame, the data It further comprises a data field generating unit for generating a data field comprising a data frame generating unit for generating a data frame including the signal field and the data field and a transmitting unit for transmitting the data frame to the receiving terminal It features.
  • the present invention is a terminal for receiving data from a transmitting terminal in a MIMO system using a variable frequency band, comprising a receiver for receiving a data frame including a signal field and a data field and using the signal field in the data field And a data acquiring unit for acquiring the data, wherein the signal field is repeatedly included in the signal field according to a frequency band applied to the transmission of the data frame.
  • the present invention when transmitting a dedicated signal field in the MU-MIMO system, by using the frequency band and the number of streams of the user to improve the performance of the signal field and reduce the transmission time, more information using the signal field There is an advantage that can be transmitted efficiently.
  • 1 is a structure of a data frame used in the data transmission and reception method of the present invention.
  • FIG. 2 illustrates an embodiment in which an AP transmits four streams through MU-MIMO beamforming using four antennas in an 80 MHz frequency band, and two STAs each receive a received stream using two antennas. Yes.
  • 3 is a structure of a VHT-SIG B field when an STA receives one stream in a 20 MHz frequency band.
  • VHT-SIG B is a structure of a VHT-SIG B field when the STA receives four streams in the 20 MHz frequency band.
  • 5 is a structure of a VHT-SIG B field when the STA receives four streams in the 80 MHz frequency band.
  • VHT-SIG B field is a structure of a VHT-SIG B field having two symbols when the STA receives one stream in the 20 MHz frequency band.
  • VHT-SIG B field is a structure of a VHT-SIG B field having two symbols when the STA receives four streams in a 20 MHz frequency band.
  • VHT-SIG B field is a structure of a VHT-SIG B field having one symbol when an STA receives four streams in a 20 MHz frequency band.
  • FIG. 9 illustrates an embodiment of transmitting SIG B over two symbols similar to VHT-SIG A when the STA receives one stream in a 40 MHz frequency band.
  • VHT-SIG B field having one symbol when an STA receives one stream in a 40 MHz frequency band.
  • FIG. 11 illustrates an embodiment in which a data transmission method according to the present invention is applied when an STA receives two streams in a 20 MHz frequency band.
  • 12 is an embodiment in which the data transmission method according to the present invention is applied when an STA receives three streams in a 20 MHz frequency band.
  • FIG. 13 illustrates an embodiment in which a data transmission method according to the present invention is applied when an STA receives four streams in a 20 MHz frequency band.
  • FIG. 14 is a diagram illustrating an example in which a data transmission method according to the present invention is applied when a STA receives one stream in a 40 MHz frequency band.
  • FIG. 15 illustrates an embodiment in which a data transmission method according to the present invention is applied when an STA receives two streams in a 40 MHz frequency band.
  • FIG. 16 illustrates an embodiment in which a data transmission method according to the present invention is applied when an STA receives three streams in a 40 MHz frequency band.
  • FIG. 17 illustrates an embodiment in which a data transmission method according to the present invention is applied when an STA receives one stream in an 80 MHz frequency band.
  • FIG. 18 illustrates an embodiment in which a data transmission method according to the present invention is applied when an STA receives two streams in an 80 MHz frequency band.
  • FIG. 19 illustrates an embodiment in which a data transmission method according to the present invention is applied when an STA receives three streams in an 80 MHz frequency band.
  • FIG. 20 illustrates an embodiment in which the data transmission method according to the present invention is applied when an STA receives four streams in an 80 MHz frequency band.
  • FIG. 25 illustrates an embodiment in which the data transmission method according to the present invention is applied when data is transmitted in a non-contiguous multi-channel in an 80 MHz frequency band.
  • FIG. 26 illustrates an embodiment in which a data transmission method according to the present invention is applied when data is transmitted through three discontinuous multi-channels in an 80 MHz frequency band.
  • FIG. 27 illustrates an embodiment in which a data transmission method according to the present invention is applied when data is transmitted using a QPSK 1 symbol in a 20 MHz frequency band.
  • FIG. 28 illustrates an embodiment in which a data transmission method according to the present invention is applied when data is transmitted using a QPSK 1 symbol in a 40 MHz frequency band.
  • 29 shows an embodiment in which the data transmission method according to the present invention is applied when data is transmitted using a QPSK 1 symbol in an 80 MHz frequency band.
  • 30 is an embodiment in which the data transmission method according to the present invention is applied when data is transmitted in two discontinuous multi-channels using QPSK 1 symbol in an 80 MHz frequency band.
  • FIG. 31 illustrates an embodiment in which a data transmission method according to the present invention is applied when data is transmitted through three discontinuous multi-channels using a QPSK 1 symbol in an 80 MHz frequency band.
  • 32 is a view illustrating a data transmission method according to the present invention when a first stream is transmitted using two space-time streams in a 20 MHz frequency band and a second stream is simply transmitted.
  • FIG. 33 is a view illustrating a data transmission method according to the present invention in a case where a first stream is transmitted using two space-time streams and a second stream is simply transmitted in a 40 MHz frequency band.
  • FIG. 33 is a view illustrating a data transmission method according to the present invention in a case where a first stream is transmitted using two space-time streams and a second stream is simply transmitted in a 40 MHz frequency band.
  • FIG. 34 illustrates an embodiment in which the data transmission method according to the present invention is applied when one stream is transmitted using two space-time streams in a 20 MHz frequency band.
  • FIG. 35 is a view illustrating a data transmission method according to the present invention in a case where a first stream is transmitted using two space-time streams in a 20 MHz frequency band and a second stream is simply transmitted.
  • FIG. 36 illustrates an embodiment in which a first stream is transmitted using two space-time streams and a second stream is just transmitted in a 40 MHz frequency band.
  • FIG. 37 illustrates an embodiment in which a data transmission method according to the present invention is applied when a STA receives one stream in a 40 MHz frequency band.
  • FIG. 38 illustrates an embodiment in which a data transmission method according to the present invention is applied when an STA receives two streams in a 40 MHz frequency band.
  • FIG. 39 illustrates an embodiment in which a data transmission method according to the present invention is applied when an STA receives three streams in a 40 MHz frequency band.
  • FIG. 40 illustrates an embodiment in which a data transmission method according to the present invention is applied when an STA receives four streams in a 40 MHz frequency band.
  • FIG. 41 illustrates an embodiment in which a data transmission method according to the present invention is applied when an STA receives one stream in an 80 MHz frequency band.
  • FIG. 42 illustrates an embodiment in which a data transmission method according to the present invention is applied when an STA receives two streams in an 80 MHz frequency band.
  • 43 is a diagram illustrating an embodiment in which a data transmission method according to the present invention is applied when an STA receives three streams in an 80 MHz frequency band.
  • FIG. 44 illustrates an embodiment in which a data transmission method according to the present invention is applied when an STA receives four streams in an 80 MHz frequency band.
  • VHT-SIG B shows the bit allocation of the VHT-SIG B when the length of the VHT-SIG B is 26 bits in the 20 MHz band, 27 bits in the 40 MHz band, and 29 bits in the 80 MHz band.
  • FIG. 46 illustrates an embodiment in which the data transmission method according to the present invention is applied when an STA receives four streams in a 20 MHz frequency band when the number of bits of the VHT-SIG B is allocated as shown in FIG.
  • FIG. 47 illustrates an embodiment in which a data transmission method according to the present invention is applied when an STA receives four streams in a 40 MHz frequency band when the number of bits of the VHT-SIG B is allocated as shown in FIG.
  • FIG. 48 illustrates an embodiment in which the data transmission method according to the present invention is applied when an STA receives four streams in an 80 MHz frequency band when the number of bits of the VHT-SIG B is allocated as shown in FIG.
  • FIG. 49 shows that the length of the VHT-SIG B is 26 bits in the 20 MHz band, 27 bits in the 40 MHz band, 29 bits in the 80 MHz band, and a portion of the reserved bits included in the service field is used as the CRC bit.
  • VHT-SIG B shows the bit allocation of VHT-SIG B when the length of VHT-SIG B in SU-MIMO is 26 bits in 20 MHz band, 27 bits in 40 MHz band and 29 bits in 80 MHz band.
  • FIG. 51 illustrates an embodiment in which a data transmission method according to the present invention is applied when an STA receives four streams in a 20 MHz frequency band when the number of bits of the VHT-SIG B is allocated as shown in FIG.
  • FIG. 52 illustrates an embodiment in which the data transmission method according to the present invention is applied when an STA receives four streams in a 40 MHz frequency band when the number of bits of the VHT-SIG B is allocated as shown in FIG.
  • FIG. 53 illustrates an embodiment in which the data transmission method according to the present invention is applied when an STA receives four streams in an 80 MHz frequency band when the number of bits of the VHT-SIG B is allocated as shown in FIG.
  • the length of the VHT-SIG B is 26 bits in the 20 MHz band, 27 bits in the 40 MHz band, 29 bits in the 80 MHz band, and a portion of the reserved bits included in the service field is used as the CRC bit.
  • FIG. 55 illustrates an embodiment in which a data transmission method according to the present invention is applied when an STA receives four streams in a 20 MHz frequency band when a CDD scheme is used and different delays are applied to each antenna.
  • FIG. 56 illustrates an embodiment in which a data transmission method according to the present invention is applied when an STA receives four streams in a 40 MHz frequency band when a CDD scheme is used and different delays are applied to each antenna.
  • FIG. 57 illustrates an embodiment in which a data transmission method according to the present invention is applied when an STA receives four streams in an 80 MHz frequency band when a CDD scheme is used and different delays are applied to each antenna.
  • 58 is a configuration of a transmitting terminal according to an embodiment of the present invention.
  • 59 is a configuration of a receiving terminal according to an embodiment of the present invention.
  • FIG. 1 shows a structure of a data frame used in the data transmission / reception method of the present invention.
  • the training fields L-STF, L-LTF and the signal fields L-SIG are the same as those of the data frame used in the existing 802.11.
  • the frame of FIG. 1 further includes high-speed wireless communication, that is, dedicated fields for Very High Throughput (VHT).
  • VHT-STF and VHT-LTF are VHT dedicated training fields
  • VHT-SIG A and VHT-SIG B are VHT dedicated signal fields.
  • VHT-SIG B contains information about each of these data fields.
  • the VHT-SIG B may include length information of useful data included in the VHT-DATA field, modulation and coding scheme (MCS) information of the VHT-DATA field, and the like.
  • MCS modulation and coding scheme
  • the VHT-SIG B field includes information for each user, it is a dedicated signal field.
  • the VHT-SIG A field is a common signal field transmitted for all users to recognize.
  • FIG. 2 illustrates an embodiment in which an AP transmits four streams through MU-MIMO beamforming using four antennas in an 80 MHz frequency band, and two STAs each receive a received stream using two antennas. For example.
  • the VHT-SIG A field which is a common signal field, is repeated four times and transmitted as one stream, and MU-MIMO is not applied to this transmission.
  • the L-SIG field is present before the VHT-SIG A field in order to maintain backward compatibility with existing legacy equipment.
  • the VHT-TF field is used to perform channel estimation when using MU-MIMO beamforming, and may have a resolvable or non-resolvable form.
  • VHT-SIG A includes common information commonly applied to two STAs.
  • VHT-SIG A has a different structure from the signal field generated by legacy equipment, and thus is used for auto-detection of VHT equipment. At this time, by simply and repeatedly transmitting the VHT-SIG A in 20 MHz frequency units, the SNR gain and the frequency diversity gain can be simultaneously obtained.
  • VHT-SIG B which is a dedicated signal field, is transmitted including information applied to each STA. Therefore, the VHT-SIG B does not need to be transmitted using a simple repetition structure like the VHT-SIG A. In addition, even when transmitted using a simple repetition structure such as VHT-SIG A, VHT-SIG B cannot obtain both SNR gain and frequency diversity gain.
  • the present invention is to solve this problem, in transmitting a VHT-SIG B field, a method and apparatus for improving the transmission efficiency by using a new method, rather than a simple repetition method, such as the existing VHT-SIG A field, And the configuration of the data fields.
  • VHT-SIG B (hereinafter, SIG B) is modulated by BPSK and has an OFDM 1 symbol.
  • SIG B is modulated by BPSK and has an OFDM 1 symbol.
  • SIG B since there is only one SIG B, it may be transmitted as it is.
  • VHT-SIG B shows a structure of a VHT-SIG B field when an STA receives four streams in a 20 MHz frequency band.
  • four SIG Bs are transmitted.
  • SIG B is transmitted simply and repeatedly like VHT-SIG A, if the channel environment of a specific subcarrier of OFDM deteriorates during MU-MIMO beamforming, all four repeated bits are in the same situation. Therefore, although it is possible to obtain the SNR gain according to four iterations, the frequency diversity effect is not obtained.
  • FIG. 5 shows a structure of a VHT-SIG B field when an STA receives four streams in an 80 MHz frequency band.
  • the SNR gain and the frequency diversity gain can be obtained simultaneously even if SIG B is simply repeated in the frequency band. Therefore, the maximum performance can be obtained by simply repeating the method applied to the four streams in the embodiment of FIG. 4.
  • the method described with reference to FIGS. 4 and 5 may be equally applied to a 40 MHz frequency band or a 160 MHz band and two or three streams.
  • the information included in the VHT-SIG B field needs to be transmitted more stably than the information included in the VHT-DATA field. Therefore, the VHT-SIG B field is generally protected by BPSK modulation and transmission using a low code rate. Thus, the method described with reference to FIG. 4 or 5 may be more than necessary protection for VHT-SIG B.
  • VHT-SIG A In the case of VHT-SIG A, it must be recognized in 20MHz unit at the receiving end. Therefore, VHT-SIG A must repeatedly transmit the length of the symbol regardless of the number of symbols. However, repeatedly transmitting the VHT-SIG B by the corresponding symbol length may be a problem in terms of the above-described transmission performance and efficiency.
  • FIG. 6 shows a structure of a VHT-SIG B field having two symbols when the STA receives one stream in the 20 MHz frequency band.
  • SIG B is modulated with BPSK and has OFDM 2 symbols. In this case, since there is only one SIG B, it may be transmitted as it is.
  • FIG. 7 illustrates a structure of a VHT-SIG B field having two symbols when an STA receives four streams in a 20 MHz frequency band.
  • the SNR gain and the frequency diversity gain can be obtained.
  • the method as shown in FIG. 7 transmits over two symbols, thereby preventing efficient transmission. Therefore, the following transmission method is considered.
  • FIG. 8 illustrates a structure of a VHT-SIG B field having one symbol when an STA receives four streams in a 20 MHz frequency band.
  • the SIG B information which occupies two symbols when transmitted in one stream in the 20 MHz frequency band, may be efficiently transmitted using only one symbol.
  • FIG. 9 illustrates an embodiment in which an SIG B is transmitted over two symbols similar to VHT-SIG A when the STA receives one stream in the 40 MHz frequency band. Even in the embodiment of FIG. 9, although the performance can be obtained without repeating the SIG B, since the SIG B is transmitted over two symbols, the transmission is not efficient.
  • FIG. 10 illustrates a structure of a VHT-SIG B field having one symbol when the STA receives one stream in the 40 MHz frequency band.
  • the SIG B information which used to occupy two symbols when transmitted in one stream in the 40 MHz frequency band, can be efficiently transmitted over one symbol.
  • VHT-SIG B has two symbols when transmitted in one stream in a 20 MHz frequency band, even if the number of streams is increased or the frequency band is increased, one symbol can be efficiently transmitted.
  • the aforementioned methods can be extended as follows.
  • FIG. 11 illustrates an embodiment in which the data transmission method according to the present invention is applied when an STA receives two streams in a 20 MHz frequency band
  • FIG. 12 illustrates that the STA transmits three data transmission methods according to the present invention in a 20 MHz frequency band.
  • the embodiment applied when receiving a stream is shown.
  • stream 3 is composed of B1 corresponding to even bits of the codeword of SIG B1 and B2 corresponding to odd bits of the codeword of SIG B2.
  • Stream 3 thus transmitted may be combined at the receiving end.
  • FIG. 13 illustrates an embodiment in which the data transmission method according to the present invention is applied when an STA receives four streams in a 20 MHz frequency band.
  • SIG B1 is repeated in streams 1 and 3
  • SIG B2 is repeated in streams 2 and 4.
  • the frequency diversity gain is not obtained.
  • different interleaving may be applied to each stream to increase transmission performance.
  • FIG. 14 illustrates an embodiment in which a data transmission method according to the present invention is applied when a STA receives one stream in a 40 MHz frequency band
  • FIG. 15 illustrates a data transmission method according to the present invention in which two STAs are applied in a 40 MHz frequency band
  • FIG. 16 illustrates an embodiment applied to receiving streams
  • FIG. 16 illustrates an embodiment to which the data transmission method according to the present invention is applied when an STA receives three streams in a 40 MHz frequency band.
  • Different interleaving may be applied to each stream of FIGS. 14, 15, and 16.
  • FIG. 17 illustrates an embodiment in which a data transmission method according to the present invention is applied when an STA receives one stream in an 80 MHz frequency band
  • FIG. 18 illustrates a data transmission method according to the present invention in which two STAs are applied in an 80 MHz frequency band
  • 19 illustrates an embodiment applied to receiving a stream.
  • FIG. 19 illustrates an embodiment of applying a data transmission method according to the present invention when an STA receives three streams in an 80 MHz frequency band
  • FIG. 20 illustrates an embodiment of the present invention.
  • An embodiment in which a data transmission method is applied when an STA receives four streams in an 80 MHz frequency band is shown. Different interleaving may be applied to each of the streams of FIGS. 17, 18, 19, and 20.
  • FIG. 21 illustrates an embodiment in which the data transmission method according to the present invention is applied when a STA receives one stream in a 160 MHz frequency band
  • FIG. 22 illustrates two data transmission methods in the 160 MHz frequency band according to the present invention
  • 23 illustrates an embodiment applied to receiving streams
  • FIG. 23 illustrates an embodiment in which the data transmission method according to the present invention is applied when an STA receives three streams in a 160 MHz frequency band
  • FIG. 24 illustrates an embodiment of the present invention.
  • An embodiment in which a data transmission method is applied when an STA receives four streams in a 160 MHz frequency band is shown. Different interleaving may be applied to each stream of FIGS. 21, 22, 23, and 24.
  • FIG. 25 illustrates an embodiment in which the data transmission method according to the present invention is applied when data is transmitted in two non-contiguous multi-channels in an 80 MHz frequency band
  • FIG. 26 illustrates a data transmission method according to the present invention. An embodiment applied to data transmission in three discontinuous multi-channels in an 80 MHz frequency band is shown. Different interleaving may be applied to each stream of FIGS. 25 and 26.
  • FIG. 27 shows an embodiment in which the data transmission method according to the present invention is applied when data is transmitted using QPSK 1 symbol in a 20 MHz frequency band
  • FIG. 28 shows the QPSK 1 data transmission method according to the present invention in a 40 MHz frequency band
  • FIG. 29 illustrates an embodiment applied when data is transmitted using a symbol
  • FIG. 29 illustrates an embodiment where the data transmission method according to the present invention is applied when data is transmitted using a QPSK 1 symbol in an 80 MHz frequency band.
  • FIG. 30 shows an embodiment in which the data transmission method according to the present invention is applied when data is transmitted in two non-continuous multi-channels using QPSK 1 symbol in an 80 MHz frequency band
  • FIG. 31 shows data transmission according to the present invention.
  • An embodiment is applied to a method in which data is transmitted on three discontinuous multi-channels using a QPSK 1 symbol in an 80 MHz frequency band.
  • Different interleaving may be applied to each stream of FIGS. 27, 28, 29, 30, and 31.
  • the above-described transmission method of the present invention may also be applied to a case of transmitting one stream to a space-time block code (ALBC) code (STBC) through two antennas.
  • VHT-SIG B field may be transmitted to the STBC in the same manner as the data field, or the VHT-SIG B may be transmitted using one of two space-time streams.
  • the STHT-related information should be included in VHT-SIG A in advance and transmitted.
  • the STBC-related information may be included in VHT-SIG B and transmitted.
  • 32 shows an embodiment in which the data transmission method according to the present invention is applied when a first stream is transmitted using two space-time streams and a second stream is just transmitted in a 20 MHz frequency band.
  • 33 shows an embodiment in which the data transmission method according to the present invention is applied when a first stream is transmitted using two space-time streams and a second stream is just transmitted in a 40 MHz frequency band.
  • FIG. 34 shows an embodiment in which the data transmission method according to the present invention is applied to a case where one stream is transmitted using two Space-Time streams in a 20 MHz frequency band.
  • FIG. 35 shows an embodiment in which a data transmission method according to the present invention is applied when a first stream is transmitted using two space-time streams and a second stream is just transmitted in a 20 MHz frequency band.
  • FIG. 36 shows an embodiment in which the first stream is transmitted using two Space-Time streams and the second stream is just transmitted in a 40 MHz frequency band. In the embodiment of FIG. 36, efficient transmission is possible using one symbol.
  • the data transmission method according to the present invention is applicable even when only some streams are transmitted using STBC.
  • the data transmission method according to the present invention is applicable.
  • the present invention can achieve maximum diversity gain by repeatedly and efficiently transmitting a dedicated signal field in the frequency or stream domain.
  • This method can be applied to the case of transmitting a frame in a bandwidth of 40 MHz or 80 MHz using channel bonding.
  • some of the frequency tones used as guard bands can be used as frequency tones for data transmission.
  • the number of data transmission frequency tones in the 20 MHz band is 52
  • the number of data transmission frequency tones in the 40 MHz band is 108. That is, in 802.11n, the number of four data transmission frequency tones increases in the 40 MHz band by using channel bonding. Similarly, channel bonding in the 80 MHz band can further increase the number of transmission frequency tones.
  • the above-described VHT-SIG B field transmission method of the present invention can be applied to frame transmission using channel bonding.
  • the increased data transmission frequency tone may be used to increase the amount of data included in the signal field or the number of repetitions of the signal field. That is, the method according to the present invention can be applied even when the number of bits of the SIG B in the 40 MHz band or the 80 MHz band is larger than the number of SIG B bits in the 20 MHz band.
  • FIG. 37 illustrates an embodiment in which a data transmission method according to the present invention is applied when a STA receives one stream in a 40 MHz frequency band
  • FIG. 38 illustrates two streams of an STA in a 40 MHz frequency band according to the present invention.
  • An embodiment applied to the case of receiving a signal is shown.
  • FIG. 39 illustrates an embodiment in which the data transmission method according to the present invention is applied when the STA receives three streams in the 40 MHz frequency band
  • FIG. 40 illustrates the four data transmission methods in the 40 MHz frequency band according to the present invention.
  • the embodiment applied when receiving a stream is shown. Different interleaving may be applied to each stream of FIGS. 37, 38, 39, and 40.
  • FIG. 41 illustrates an embodiment in which a data transmission method according to the present invention is applied when an STA receives one stream in an 80 MHz frequency band
  • FIG. 42 illustrates two streams of an STA in an 80 MHz frequency band according to the present invention.
  • An embodiment applied to the case of receiving a signal is shown.
  • FIG. 43 shows an embodiment in which the data transmission method according to the present invention is applied when an STA receives three streams in an 80 MHz frequency band
  • FIG. 44 shows four data transmission methods in accordance with the present invention.
  • the embodiment applied when receiving a stream is shown. Different interleaving may be applied to each of the streams of FIGS. 41, 42, 43, and 44.
  • the number of bits of the SIG B and the number of frequency tones used for transmission are not a multiple of each other, some frequency tones may remain after the repetition of the SIG B.
  • a method of repeating or padding only a part of SIG B may be applied. This method is also applicable when the information of SIG B increases as the frequency bandwidth increases to 20 MHz, 40 MHz, and 80 MHz.
  • the transmission efficiency can be improved by changing the bit allocation of the VHT-SIG B for each frequency bandwidth and repeating the VHT-SIG B according to the number of transmittable frequency tones. For example, it is assumed that the number of usable data tones is 26 bits in the 20 MHz band, the number of usable data tones is 54 bits in the 40 MHz band, and the number of usable data tones in the 80 MHz band is 117 bits.
  • the length of the VHT-SIG B is 26 bits in the 20 MHz band, 27 bits in the 40 MHz band, and 29 bits in the 80 MHz band. Bit allocation in this case is shown in FIG.
  • FIG. 46 illustrates an embodiment in which the data transmission method according to the present invention is applied when the STA receives four streams in the 20 MHz frequency band when the number of bits of the VHT-SIG B is allocated as shown in FIG. 45.
  • FIG. 47 illustrates an embodiment in which the data transmission method according to the present invention is applied when the STA receives four streams in the 40 MHz frequency band when the number of bits of the VHT-SIG B is allocated as shown in FIG. 45.
  • FIG. 48 illustrates an embodiment in which the data transmission method according to the present invention is applied when the STA receives four streams in the 80 MHz frequency band when the number of bits of the VHT-SIG B is allocated as shown in FIG. 45.
  • Different interleaving may be applied to each stream of FIGS. 46, 47, and 48. 46, 47 and 48, the present invention is applicable even if the number of streams to be transmitted varies.
  • the bit allocation of the VHT-SIG B shown in FIG. 45 includes tail bits for convolutional codes.
  • VHT-SIG B of FIG. 45 does not include a CRC bit for determining whether an error of a codeword is error, it is difficult to secure data reliability.
  • some of the reserved bits included in the service field of the data field (4 to 8 bits) may be used as the CRC bit as shown in FIG. 49.
  • the CRC is simultaneously applied to the SIG B and the scrambler seed. Therefore, it is necessary to calculate the CRC for the variable length for each frequency band.
  • the VHT-SIG B field uses a low modulation scheme and a code rate (BPSK 1/2), and can be repeatedly coded into the frequency and antenna domains, thereby providing high reliability.
  • the service field uses the modulation method and the code rate as it is used for data transmission, reliability is relatively variable, and generally, reliability is lower than that of VHT-SIG B.
  • using the CRC not only error detection of information included in the VHT-SIG B field, but also error detection of the scrambler seed can be performed. Accordingly, when an error of the scrambler seed is detected, the PHY and MAC layers may be stopped accordingly, and thus, power savings may be expected.
  • the above method can also be applied to SU-MIMO.
  • SU-MIMO there may be a margin bit relative to VHT-SIG A.
  • MCS bits included in the VHT-SIG B field may be included in the VHT-SIG A field.
  • the number of bits of the field indicating the data length may be larger. 50 shows the bit allocation of the VHT-SIG B when the length of the VHT-SIG B in the SU-MIMO is 26 bits in the 20 MHz band, 27 bits in the 40 MHz band, and 29 bits in the 80 MHz band.
  • FIG. 51 illustrates an embodiment in which the data transmission method according to the present invention is applied when the STA receives four streams in the 20 MHz frequency band when the number of bits of the VHT-SIG B is allocated as shown in FIG. 50.
  • FIG. 52 illustrates an embodiment in which the data transmission method according to the present invention is applied when the STA receives four streams in the 40 MHz frequency band when the number of bits of the VHT-SIG B is allocated as shown in FIG. 50.
  • FIG. 53 illustrates an embodiment in which the data transmission method according to the present invention is applied when the STA receives four streams in the 80 MHz frequency band when the number of bits of the VHT-SIG B is allocated as shown in FIG. 50.
  • Different interleaving may be applied to each stream of FIGS. 51, 52, and 53. 51, 52, and 53 even if the number of streams to be transmitted varies, the present invention can be applied.
  • the VHT-SIG B field includes tail bits for convolutional codes.
  • the VHT-SIG B of FIG. 50 does not include a CRC bit for determining whether an error of a codeword is error, it is difficult to secure data reliability.
  • some of the reserved bits included in the service field of the data field (4 to 8 bits) may be used as the CRC bit as shown in FIG. 54.
  • the CRC is simultaneously applied to the SIG B and the scrambler seed. Therefore, it is necessary to calculate the CRC for the variable length for each frequency band.
  • the VHT-SIG B field uses a low modulation scheme and a code rate (BPSK 1/2), and can be repeatedly coded into the frequency and antenna domains, thereby providing high reliability.
  • the service field uses the modulation method and the code rate as it is used for data transmission, reliability is relatively variable, and generally, reliability is lower than that of VHT-SIG B.
  • using the CRC not only error detection of information included in the VHT-SIG B field, but also error detection of the scrambler seed can be performed. Accordingly, when an error of the scrambler seed is detected, the PHY and MAC layers may be stopped accordingly, and thus, power savings may be expected.
  • the VHT-SIG B field when the VHT-SIG B field is transmitted, the maximum diversity gain can be obtained even in the antenna domain by applying different interleaving in the frequency domain to different transport streams.
  • the VHT-SIG B field may be transmitted by applying a Cyclic Delay Divercity (CDD) technique without applying different interleaving for each transport stream.
  • CDD Cyclic Delay Divercity
  • FIG. 55 illustrates an embodiment in which a data transmission method according to the present invention is applied when an STA receives four streams in a 20 MHz frequency band when a CDD scheme is used and different delays are applied to each antenna.
  • FIG. 56 illustrates an embodiment in which a data transmission method according to the present invention is applied when an STA receives four streams in a 40 MHz frequency band when a CDD scheme is used and different delays are applied to each antenna.
  • FIG. 57 illustrates an embodiment in which a data transmission method according to the present invention is applied when an STA receives four streams in an 80 MHz frequency band when a CDD scheme is used and different delays are applied to each antenna. Different delays are applied to the streams of FIGS. 55, 56, and 57. 55, 56 and 57, the present invention can be applied even if the number of streams to be transmitted varies.
  • a spreading matrix to an antenna domain having a size of (number of transmission antennas ⁇ number of transmission antennas) may be additionally applied.
  • the spreading matrix when applying the multi-stream can be applied, and when the delay is applied for each stream, the spreading matrix when the single stream is applied can be applied.
  • FIG. 58 shows a configuration of a transmitting terminal according to an embodiment of the present invention.
  • the transmitting terminal 5802 includes a signal field generating unit 5804, a data field generating unit 5806, a data frame generating unit 5808, and a transmitting unit 5810.
  • the signal field generation unit 5804 repeatedly generates the signal field according to the frequency band applied to the transmission of the data frame.
  • the data field generation unit 5806 generates a data field including data to be transmitted to the receiving terminal.
  • the data frame generator 5808 generates a data frame including a signal field generated by the signal field generator 5804 and a data field generated by the data field generator 5806.
  • the transmitter 5810 transmits the data frame generated by the data frame generator 5808 to the receiving terminal.
  • the signal field may include a length field indicating the length of the data field, and the length field may have a different length depending on a frequency band applied to transmission of the data frame.
  • the signal field may include a Modulation and Coding Scheme (MCS) field indicating a modulation method and a coding method of the data field.
  • MCS Modulation and Coding Scheme
  • the signal field may be a dedicated signal field for delivering information for each user.
  • the data frame may include a CRC field for detecting an error of the signal field.
  • FIG. 59 shows a configuration of a receiving terminal according to an embodiment of the present invention.
  • the receiving terminal 5902 includes a receiving unit 5906 and a data obtaining unit 5906.
  • the receiver 5904 receives a data frame including a signal field and a data field.
  • the signal field may include a length field indicating the length of the data field, and the length field may have a different length depending on a frequency band applied to transmission of the data frame.
  • the signal field may include a Modulation and Coding Scheme (MCS) field indicating a modulation method and a coding method of the data field.
  • MCS Modulation and Coding Scheme
  • the signal field may be a dedicated signal field for delivering information for each user.
  • the data frame may include a CRC field for detecting an error of the signal field.
  • the data acquirer 5906 acquires data included in the data field by using a signal field included in the received data frame.
  • the data acquisition unit 5906 may acquire data using a length field, an MCS field, and the like included in the signal field.
  • the data acquirer 5906 may detect an error of the signal field by using the CRC field included in the data frame.
  • 60 is a flowchart illustrating a data transmission method of a transmitting terminal according to an embodiment of the present invention.
  • a signal field is repeatedly generated according to a frequency band applied to transmission of a data frame (6002).
  • a data field including data to be transmitted to the receiving terminal is generated.
  • a data frame including the generated signal field and data field is generated (6006).
  • the generated data frame is transmitted to the receiving terminal (6008).
  • the signal field may include a length field indicating the length of the data field, and the length field may have a different length depending on a frequency band applied to transmission of the data frame.
  • the signal field may include a Modulation and Coding Scheme (MCS) field indicating a modulation method and a coding method of the data field.
  • MCS Modulation and Coding Scheme
  • the signal field may be a dedicated signal field for delivering information for each user.
  • the data frame may include a CRC field for detecting an error of the signal field.
  • 61 is a flowchart illustrating a data receiving method of a receiving terminal according to an embodiment of the present invention.
  • a data frame including a signal field and a data field is received (6102).
  • the signal field may include a length field indicating the length of the data field, and the length field may have a different length depending on a frequency band applied to transmission of the data frame.
  • the signal field may include a Modulation and Coding Scheme (MCS) field indicating a modulation method and a coding method of the data field.
  • MCS Modulation and Coding Scheme
  • the signal field may be a dedicated signal field for delivering information for each user.
  • the data frame may include a CRC field for detecting an error of the signal field.
  • the data included in the data field is acquired using the signal field included in the received data frame (6104).
  • the receiving terminal may acquire data using a length field, an MCS field, and the like included in the signal field.
  • the receiving terminal may detect an error of the signal field using the CRC field included in the data frame.
  • the present invention when transmitting a dedicated signal field in the MU-MIMO system, by using the user's frequency band and the number of streams, such as to improve the performance of the signal field and reduce the transmission time, more information using the signal field Can be sent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 데이터를 송수신하는 방법 및 장치에 관한 것이다. 본 발명의 일 실시예에 의한, 가변 주파수 대역을 사용하는 MIMO 시스템에서 송신 단말이 수신 단말에 데이터를 송신하는 방법은, 상기 데이터 프레임의 송신에 적용되는 주파수 대역에 따라 반복적으로 시그널 필드를 생성하는 단계, 상기 데이터를 포함하는 데이터 필드를 생성하는 단계, 상기 시그널 필드 및 상기 데이터 필드를 포함하는 데이터 프레임을 생성하는 단계 및 상기 데이터 프레임을 상기 수신 단말에 송신하는 단계를 포함한다. 본 발명에 의하면 MIMO 시스템에서 송신 단말이 수신 단말로 데이터를 전송할 때 함께 전송되는 시그널 필드를 보다 효율적으로 전송할 수 있는 효과가 있다.

Description

MIMO 시스템에서 데이터를 송수신하는 방법 및 장치
본 발명은 데이터를 송수신하는 방법 및 장치에 관한 것으로, 보다 상세하게는 MIMO 시스템에서 데이터를 송수신하는 방법 및 장치에 관한 것이다.
무선 랜은 기본적으로 분산 시스템(Distribution System: DS)의 접속점 역할을 하는 액세스 포인트 (Access Point: AP)와, AP가 아닌 다수의 무선 단말(STAtion: STA)로 이루어진 기본 서비스 셋(Basic Service Set: BSS) 모드나, STA로만 구성되는 독립 기본 서비스 셋(Independent BSS: IBSS) 모드를 지원한다. (이하에서는 AP와 STA를 통칭하여 “단말”로 지칭한다.)
다중 안테나를 사용하는 무선 통신 시스템, 즉 MIMO(Multiple Input Multiple Output) 시스템에서는 안테나 개수의 증가에 따라 채널 용량이 증가하며, 이에 따라 주파수 효율을 높일 수 있다. MIMO 시스템은 다음과 같이 두 가지로 분류될 수 있다. 첫 번째는 하나의 사용자(Single User)에게만 다중 스트림을 전송하는 SU-MIMO이다. 두 번째는 AP에서 사용자 간의 간섭을 제거하여 여러 사용자(Multi User)에게 다중 스트림을 전송하는 MU-MIMO이다.
MU-MIMO는 채널 용량의 증가와 함께 다중 사용자 다이버시티 이득까지 얻을 수 있다는 장점이 있다. 또한 MU-MIMO 방식은 동시에 같은 주파수 대역을 사용하여 다중 스트림을 다중 사용자에게 전송할 수 있어서, 기존의 통신 방식에 비해 처리량(throughput)이 증가한다. 일반적으로, 주파수 대역을 증가시킴으로써 무선 통신 시스템의 처리량을 증가시킬 수 있으나, 주파수 대역 증가에 따른 시스템 비용이 증가하는 단점이 있다. 반면에 MU-MIMO 방식은 주파수 대역을 증가시키지 않지만 기존 통신 방식에 비해 복잡도가 크게 증가한다. 이에 따라 802.11ac와 같은 표준에서는 주변 상황에 따라 가변적인 주파수를 사용하면서 MU-MIMO 기술을 동시에 적용할 수 있는 방법들이 논의되고 있다.
이와 같이 가변 주파수 대역을 사용하면서 여러 명의 사용자에게 동시에 다중 안테나 스트림을 전송하는 무선 통신 시스템에서는, 데이터 필드와 함께, 해당 데이터 필드에 대한 정보를 포함하는 시그널 필드가 전송된다. 시그널 필드는 다음과 같이 두 가지로 나누어진다. 첫 번째는 사용자들에게 공통적으로 적용되는 정보를 포함하는 공통 시그널 필드(common signal field)이다. 두 번째는 각 사용자별로 적용되는 정보를 포함하는 전용 시그널 필드(dedicated signal field)이다. 공통 시그널 필드는 공통 사용자 그룹에 속하거나 속하지 않는 사용자 모두가 인지할 수 있다. 또한 공통 시그널 필드는 전송된 데이터 프레임이 어떤 통신 시스템에 의해 생성된 것인지를 판별하는 자동 검출(auto-detection)에 이용되므로, 호환성을 가져야 한다. 따라서 공통 시그널 필드의 포맷 또는 구성을 변경하는 데는 제약이 따른다.
이러한 공통 시그널 필드는 SNR Gain과 주파수 다이버시티 이득을 위해 단순 반복 구조를 통해 전송된다. 그러나 전용 시그널 필드는 공통 시그널 필드와 같이 단순 반복 구조를 이용하더라도 SNR Gain과 주파수 다이버시티 이득을 동시에 얻을 수 없다.
본 발명은 MIMO 시스템에서 송신 단말이 수신 단말로 데이터를 전송할 때 함께 전송되는 시그널 필드를 보다 효율적으로 전송할 수 있는 방법 및 장치를 제공하는 것을 목적으로 한다.
본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있고, 본 발명의 실시예에 의해 보다 분명하게 이해될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
이러한 목적을 달성하기 위한 본 발명은 가변 주파수 대역을 사용하는 MIMO 시스템에서 송신 단말이 수신 단말에 데이터를 송신하는 방법에 있어서, 상기 데이터 프레임의 송신에 적용되는 주파수 대역에 따라 반복적으로 시그널 필드를 생성하는 단계, 상기 데이터를 포함하는 데이터 필드를 생성하는 단계, 상기 시그널 필드 및 상기 데이터 필드를 포함하는 데이터 프레임을 생성하는 단계 및 상기 데이터 프레임을 상기 수신 단말에 송신하는 단계를 포함하는 것을 일 특징으로 한다.
또한 본 발명은 가변 주파수 대역을 사용하는 MIMO 시스템에서 수신 단말이 송신 단말로부터 데이터를 수신하는 방법에 있어서, 시그널 필드 및 데이터 필드를 포함하는 데이터 프레임을 수신하는 단계 및 상기 시그널 필드를 이용하여 상기 데이터 필드에 포함된 상기 데이터를 획득하는 단계를 포함하고, 상기 시그널 필드는 상기 데이터 프레임의 송신에 적용되는 주파수 대역에 따라 상기 시그널 필드에 반복적으로 포함되는 것을 다른 특징으로 한다.
또한 본 발명은 가변 주파수 대역을 사용하는 MIMO 시스템에서 수신 단말에 데이터를 송신하는 단말에 있어서, 상기 데이터 프레임의 송신에 적용되는 주파수 대역에 따라 반복적으로 시그널 필드를 생성하는 시그널 필드 생성부, 상기 데이터를 포함하는 데이터 필드를 생성하는 데이터 필드 생성부, 상기 시그널 필드 및 상기 데이터 필드를 포함하는 데이터 프레임을 생성하는 데이터 프레임 생성부 및 상기 데이터 프레임을 상기 수신 단말에 송신하는 송신부를 포함하는 것을 또 다른 특징으로 한다.
또한 본 발명은 가변 주파수 대역을 사용하는 MIMO 시스템에서 송신 단말로부터 데이터를 수신하는 단말에 있어서, 시그널 필드 및 데이터 필드를 포함하는 데이터 프레임을 수신하는 수신부 및 상기 시그널 필드를 이용하여 상기 데이터 필드에 포함된 상기 데이터를 획득하는 데이터 획득부를 포함하고, 상기 시그널 필드는 상기 데이터 프레임의 송신에 적용되는 주파수 대역에 따라 상기 시그널 필드에 반복적으로 포함되는 것을 또 다른 특징으로 한다.
전술한 바와 같은 본 발명에 의하면, MIMO 시스템에서 송신 단말이 수신 단말로 데이터를 전송할 때 함께 전송되는 시그널 필드를 보다 효율적으로 전송할 수 있는 장점이 있다.
또한 본 발명에 의하면 MU-MIMO 시스템에서 전용 시그널 필드를 전송할 때, 사용자의 주파수 대역과 스트림 개수 등을 활용하여 시그널 필드의 성능을 개선하고 전송 시간을 줄임으로써, 시그널 필드를 이용하여 보다 많은 정보를 효율적으로 전송할 수 있는 장점이 있다.
도 1은 본 발명의 데이터 송수신 방법에서 사용되는 데이터 프레임의 구조.
도 2는 80MHz 주파수 대역에서 AP가 4개의 안테나를 이용하여 MU-MIMO 빔포밍(beamforming)을 통해 4개의 스트림을 전송하고, 2개의 STA가 각각 2개의 안테나를 이용하여 수신된 스트림을 수신하는 실시예.
도 3은 20MHz 주파수 대역에서 STA가 1개의 스트림을 수신하는 경우의 VHT-SIG B 필드의 구조.
도 4는 20MHz 주파수 대역에서 STA가 4개의 스트림을 수신하는 경우의 VHT-SIG B 필드의 구조.
도 5는 80MHz 주파수 대역에서 STA가 4개의 스트림을 수신하는 경우의 VHT-SIG B 필드의 구조.
도 6은 20MHz 주파수 대역에서 STA가 1개의 스트림을 수신하는 경우, 2심볼을 갖는 VHT-SIG B 필드의 구조.
도 7은 20MHz 주파수 대역에서 STA가 4개의 스트림을 수신하는 경우, 2심볼을 갖는 VHT-SIG B 필드의 구조.
도 8은 20MHz 주파수 대역에서 STA가 4개의 스트림을 수신하는 경우, 1심볼을 갖는 VHT-SIG B 필드의 구조.
도 9는 40MHz 주파수 대역에서 STA가 1개의 스트림을 수신하는 경우, VHT-SIG A와 유사하게 2심볼에 걸쳐서 SIG B를 보내는 실시예.
도 10은 40MHz 주파수 대역에서 STA가 1개의 스트림을 수신하는 경우, 1심볼을 갖는 VHT-SIG B 필드의 구조.
도 11은 본 발명에 의한 데이터 전송 방법을 20MHz 주파수 대역에서 STA가 2개의 스트림을 수신하는 경우에 적용한 실시예.
도 12는 본 발명에 의한 데이터 전송 방법을 20MHz 주파수 대역에서 STA가 3개의 스트림을 수신하는 경우에 적용한 실시예.
도 13은 본 발명에 의한 데이터 전송 방법을 20MHz 주파수 대역에서 STA가 4개의 스트림을 수신하는 경우에 적용한 실시예.
도 14는 본 발명에 의한 데이터 전송 방법을 40MHz 주파수 대역에서 STA가 1개의 스트림을 수신하는 경우에 적용한 실시예.
도 15는 본 발명에 의한 데이터 전송 방법을 40MHz 주파수 대역에서 STA가 2개의 스트림을 수신하는 경우에 적용한 실시예.
도 16은 본 발명에 의한 데이터 전송 방법을 40MHz 주파수 대역에서 STA가 3개의 스트림을 수신하는 경우에 적용한 실시예.
도 17은 본 발명에 의한 데이터 전송 방법을 80MHz 주파수 대역에서 STA가 1개의 스트림을 수신하는 경우에 적용한 실시예.
도 18은 본 발명에 의한 데이터 전송 방법을 80MHz 주파수 대역에서 STA가 2개의 스트림을 수신하는 경우에 적용한 실시예.
도 19는 본 발명에 의한 데이터 전송 방법을 80MHz 주파수 대역에서 STA가 3개의 스트림을 수신하는 경우에 적용한 실시예.
도 20은 본 발명에 의한 데이터 전송 방법을 80MHz 주파수 대역에서 STA가 4개의 스트림을 수신하는 경우에 적용한 실시예.
도 25는 본 발명에 의한 데이터 전송 방법을 80MHz 주파수 대역에서 비연속(non-contiguous) 멀티 채널로 데이터가 전송되는 경우에 적용한 실시예.
도 26은 본 발명에 의한 데이터 전송 방법을 80MHz 주파수 대역에서 3개의 비연속 멀티 채널로 데이터가 전송되는 경우에 적용한 실시예.
도 27은 본 발명에 의한 데이터 전송 방법을 20MHz 주파수 대역에서 QPSK 1심볼을 사용하여 데이터가 전송되는 경우에 적용한 실시예.
도 28은 본 발명에 의한 데이터 전송 방법을 40MHz 주파수 대역에서 QPSK 1심볼을 사용하여 데이터가 전송되는 경우에 적용한 실시예.
도 29는 본 발명에 의한 데이터 전송 방법을 80MHz 주파수 대역에서 QPSK 1심볼을 사용하여 데이터가 전송되는 경우에 적용한 실시예.
도 30은 본 발명에 의한 데이터 전송 방법을 80MHz 주파수 대역에서 QPSK 1심볼을 사용하여 2개의 비연속 멀티 채널로 데이터가 전송되는 경우에 적용한 실시예.
도 31은 본 발명에 의한 데이터 전송 방법을 80MHz 주파수 대역에서 QPSK 1심볼을 사용하여 3개의 비연속 멀티 채널로 데이터가 전송되는 경우에 적용한 실시예.
도 32는 본 발명에 의한 데이터 전송 방법을 20MHz 주파수 대역에서 첫 번째 스트림은 2개의 Space-time 스트림을 사용하여 전송하고 두 번째 스트림은 그냥 전송하는 경우에 적용한 실시예.
도 33은 본 발명에 의한 데이터 전송 방법을 40MHz 주파수 대역에서 첫 번째 스트림은 2개의 Space-time 스트림을 사용하여 전송하고 두 번째 스트림은 그냥 전송하는 경우에 적용한 실시예.
도 34는 본 발명에 의한 데이터 전송 방법을 20MHz 주파수 대역에서 2개의 Space-Time 스트림을 이용하여 1개의 스트림을 전송하는 경우에 적용한 실시예.
도 35는 본 발명에 의한 데이터 전송 방법을 20MHz 주파수 대역에서 첫 번째 스트림은 2개의 Space-Time 스트림을 이용하여 전송하고 두 번째 스트림은 그냥 전송하는 경우에 적용한 실시예.
도 36은 40MHz 주파수 대역에서 첫 번째 스트림은 2개의 Space-Time 스트림을 이용하여 전송하고 두번째 스트림은 그냥 전송하는 경우에 적용한 실시예.
도 37은 본 발명에 의한 데이터 전송 방법을 40MHz 주파수 대역에서 STA가 1개의 스트림을 수신하는 경우에 적용한 실시예.
도 38은 본 발명에 의한 데이터 전송 방법을 40MHz 주파수 대역에서 STA가 2개의 스트림을 수신하는 경우에 적용한 실시예.
도 39는 본 발명에 의한 데이터 전송 방법을 40MHz 주파수 대역에서 STA가 3개의 스트림을 수신하는 경우에 적용한 실시예.
도 40은 본 발명에 의한 데이터 전송 방법을 40MHz 주파수 대역에서 STA가 4개의 스트림을 수신하는 경우에 적용한 실시예.
도 41은 본 발명에 의한 데이터 전송 방법을 80MHz 주파수 대역에서 STA가 1개의 스트림을 수신하는 경우에 적용한 실시예.
도 42는 본 발명에 의한 데이터 전송 방법을 80MHz 주파수 대역에서 STA가 2개의 스트림을 수신하는 경우에 적용한 실시예.
도 43은 본 발명에 의한 데이터 전송 방법을 80MHz 주파수 대역에서 STA가 3개의 스트림을 수신하는 경우에 적용한 실시예.
도 44는 본 발명에 의한 데이터 전송 방법을 80MHz 주파수 대역에서 STA가 4개의 스트림을 수신하는 경우에 적용한 실시예.
도 45는 VHT-SIG B의 길이가 20MHz 대역에서 26비트, 40MHz 대역에서 27비트이며 80MHz 대역에서는 29비트일 때의 VHT-SIG B의 비트 할당.
도 46은 도 45와 같이 VHT-SIG B의 비트 수가 할당될 때, 본 발명에 의한 데이터 전송 방법을 20MHz 주파수 대역에서 STA가 4개의 스트림을 수신하는 경우에 적용한 실시예.
도 47은 도 45와 같이 VHT-SIG B의 비트 수가 할당될 때, 본 발명에 의한 데이터 전송 방법을 40MHz 주파수 대역에서 STA가 4개의 스트림을 수신하는 경우에 적용한 실시예.
도 48은 도 45와 같이 VHT-SIG B의 비트 수가 할당될 때, 본 발명에 의한 데이터 전송 방법을 80MHz 주파수 대역에서 STA가 4개의 스트림을 수신하는 경우에 적용한 실시예.
도 49는 VHT-SIG B의 길이가 20MHz 대역에서 26비트, 40MHz 대역에서 27비트이며 80MHz 대역에서는 29비트이고, 서비스 필드에 포함된 예비 비트 일부를 CRC 비트로 사용하는 실시예.
도 50은 SU-MIMO에서 VHT-SIG B의 길이가 20MHz 대역에서 26비트, 40MHz 대역에서 27비트이며 80MHz 대역에서는 29비트일 때의 VHT-SIG B의 비트 할당.
도 51은 도 50과 같이 VHT-SIG B의 비트 수가 할당될 때, 본 발명에 의한 데이터 전송 방법을 20MHz 주파수 대역에서 STA가 4개의 스트림을 수신하는 경우에 적용한 실시예.
도 52는 도 50과 같이 VHT-SIG B의 비트 수가 할당될 때, 본 발명에 의한 데이터 전송 방법을 40MHz 주파수 대역에서 STA가 4개의 스트림을 수신하는 경우에 적용한 실시예.
도 53은 도 50과 같이 VHT-SIG B의 비트 수가 할당될 때, 본 발명에 의한 데이터 전송 방법을 80MHz 주파수 대역에서 STA가 4개의 스트림을 수신하는 경우에 적용한 실시예.
도 54는 VHT-SIG B의 길이가 20MHz 대역에서 26비트, 40MHz 대역에서 27비트이며 80MHz 대역에서는 29비트이고, 서비스 필드에 포함된 예비 비트 일부를 CRC 비트로 사용하는 실시예.
도 55는 CDD 기법이 이용되고 각 안테나별로 서로 다른 지연이 적용될 때, 본 발명에 의한 데이터 전송 방법을 20MHz 주파수 대역에서 STA가 4개의 스트림을 수신하는 경우에 적용한 실시예.
도 56은 CDD 기법이 이용되고 각 안테나별로 서로 다른 지연이 적용될 때, 본 발명에 의한 데이터 전송 방법을 40MHz 주파수 대역에서 STA가 4개의 스트림을 수신하는 경우에 적용한 실시예.
도 57은 CDD 기법이 이용되고 각 안테나별로 서로 다른 지연이 적용될 때, 본 발명에 의한 데이터 전송 방법을 80MHz 주파수 대역에서 STA가 4개의 스트림을 수신하는 경우에 적용한 실시예.
도 58은 본 발명의 일 실시예에 의한 송신 단말의 구성.
도 59는 본 발명의 일 실시예에 의한 수신 단말의 구성.
전술한 목적, 특징 및 장점은 첨부된 도면을 참조하여 상세하게 후술되며, 이에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 상세한 설명을 생략한다. 이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 도면에서 동일한 참조부호는 동일 또는 유사한 구성요소를 가리키는 것으로 사용된다.
도 1은 본 발명의 데이터 송수신 방법에서 사용되는 데이터 프레임의 구조를 나타낸다.
도 1에서, 트레이닝 필드(training field)인 L-STF, L-LTF와 시그널 필드인 L-SIG는 기존의 802.11에서 사용되는 데이터 프레임의 그것과 동일하다. 또한 도 1의 프레임은 고속 무선 통신, 즉 VHT(Very High Throughput) 전용 필드들을 더 포함한다. VHT-STF, VHT-LTF는 VHT 전용 트레이닝 필드이며, VHT-SIG A, VHT-SIG B는 VHT 전용 시그널 필드이다.
도 1의 데이터 프레임에는 여러 사용자에게 각각 전송되는 데이터를 포함하는 데이터 필드(VHT-DATA)가 존재한다. VHT-SIG B는 이 각각의 데이터 필드에 대한 정보를 포함한다. 예를 들면, VHT-SIG B에는 VHT-DATA 필드에 포함된 유용 데이터(useful data)의 길이 정보, VHT-DATA 필드의 변조 및 코딩 방법(Modulation and Coding Scheme: MCS) 정보 등이 포함될 수 있다. 이처럼 VHT-SIG B 필드는 각 사용자별 정보를 포함하고 있기 때문에, 전용 시그널 필드에 해당한다. 반면에 VHT-SIG A 필드는 모든 사용자가 인지할 수 있도록 전송되는 공통 시그널 필드이다.
도 2는 80MHz 주파수 대역에서 AP가 4개의 안테나를 이용하여 MU-MIMO 빔포밍(beamforming)을 통해 4개의 스트림을 전송하고, 2개의 STA가 각각 2개의 안테나를 이용하여 수신된 스트림을 수신하는 실시예를 나타낸다.
도 2의 실시예에서, 공통 시그널 필드인 VHT-SIG A 필드는 4번 반복되어 1개의 스트림으로서 전송되며, 이 전송에는 MU-MIMO가 적용되지 않는다. 도 2에서 VHT-SIG A 필드 앞에 L-SIG 필드가 존재하는 것은 기존의 레거시(legacy) 장비와의 하위 호환성(backward compatibility)을 유지하기 위해서이다. 그리고 VHT-TF 필드는 MU-MIMO 빔포밍을 사용할 때 채널 추정을 수행하기 위하여 사용되며, Resolvable 또는 Non-resolvable 형태를 가질 수 있다.
VHT-SIG A는 2개 STA에 공통적으로 적용되는 공통 정보를 포함한다. 또한 VHT-SIG A는 레거시 장비에서 생성되는 시그널 필드와는 다른 구조를 가짐으로써, VHT 장비의 자동 검출(auto-detection)에 사용된다. 이 때 VHT-SIG A를 20MHz 주파수 단위로 단순 반복하여 전송함으로써, SNR Gain과 주파수 다이버시티 이득을 동시에 얻을 수 있다.
이에 비해 전용 시그널 필드인 VHT-SIG B는 각 STA별로 적용되는 정보를 포함하여 전송된다. 따라서, VHT-SIG B는 VHT-SIG A와 같이 단순 반복 구조를 이용하여 전송될 필요가 없다. 또한 VHT-SIG A와 같이 단순 반복 구조를 이용하여 전송된다고 하더라도, VHT-SIG B는 SNR Gain과 주파수 다이버시티 이득을 동시에 얻을 수 없다.
본 발명은 이러한 문제점을 해결하기 위한 것으로, VHT-SIG B 필드를 전송함에 있어서, 기존의 VHT-SIG A 필드와 같이 단순 반복 방법이 아닌 새로운 방법을 이용함으로써 전송 효율을 높일 수 있는 방법 및 장치, 그리고 데이터 필드의 구성에 관한 것이다.
도 3은 20MHz 주파수 대역에서 STA가 1개의 스트림을 수신하는 경우의 VHT-SIG B 필드의 구조를 나타낸다. 여기서 VHT-SIG B(이하, SIG B)는 BPSK로 변조되고 OFDM 1 심볼을 갖는다. 도 3과 같은 경우 SIG B가 1개밖에 없으므로 그대로 전송되어도 무방하다.
도 4는 20MHz 주파수 대역에서 STA가 4개의 스트림(stream)을 수신하는 경우의 VHT-SIG B 필드의 구조를 나타낸다. 도 4의 실시예에서는 4개의 SIG B가 전송된다. 그런데 SIG B가 VHT-SIG A와 같이 단순 반복하여 전송될 경우, MU-MIMO 빔포밍시 OFDM의 특정 부반송파의 채널 환경이 악화되면 반복되는 4개의 비트가 모두 같은 상황에 놓이게 된다. 따라서 4번 반복에 따른 SNR gain을 얻을 수는 있으나, 주파수 다이버시티 효과는 얻지 못한다.
따라서 본 발명에서는 스트림 1 부터 스트림 4의 SIG B 에 서로 다른 인터리빙을 적용한다. SIG B의 부호화된 부호어의 같은 비트가 다른 스트림의 다른 부반송파에 실려 전송되게 하면, SNR gain과 주파수 다이버시티 이득을 동시에 얻을 수 있어 전송 성능이 개선된다.
도 5는 80MHz 주파수 대역에서 STA가 4개의 스트림을 수신하는 경우의 VHT-SIG B 필드의 구조를 나타낸다. 도 5의 실시예에서는 SIG B를 주파수 대역에서 단순 반복하여도 SNR gain과 주파수 다이버시티 이득을 동시에 얻을 수 있다. 따라서 도 4의 실시예에서 4개의 스트림에 적용된 방식을 단순히 반복함으로써 최대 성능을 얻을 수 있다.
40MHz 주파수 대역 또는 160MHz 대역, 그리고 스트림 개수가 2개나 3개인 경우에도 도 4 및 도 5를 통해 기술된 방법이 동일하게 적용될 수 있다.
한편, VHT-SIG B 필드에 포함되는 정보는 VHT-DATA 필드에 포함되는 정보에 비해 보다 안정적으로 전송되어야 할 필요가 있다. 따라서 VHT-SIG B 필드는 일반적으로 BPSK 변조 및 낮은 부호율을 이용하여 전송하는 등의 보호가 이루어진다. 따라서 도 4 또는 도 5를 통해 기술된 방법은 VHT-SIG B에 대한 필요 이상의 보호가 될 수 있다.
VHT-SIG A의 경우 수신단에서 반드시 20MHz 단위로 인식되어야 한다. 따라서 VHT-SIG A는 심볼 수와 관계 없이 해당 심볼 길이만큼을 반드시 반복하여 전송하여야 한다. 하지만 VHT-SIG B를 해당 심볼 길이만큼 반복 전송하는 것은 전술한 전송 성능과 효율성 면에서 문제가 될 수 있다.
도 6은 20MHz 주파수 대역에서 STA가 1개의 스트림을 수신하는 경우, 2심볼을 갖는 VHT-SIG B 필드의 구조를 나타낸다. 도 6에서 SIG B는 BPSK로 변조되고 OFDM 2 심볼을 갖는다. 이 경우 SIG B가 1개밖에 없으므로 그대로 전송되어도 무방하다.
도 7은 20MHz 주파수 대역에서 STA가 4개의 스트림을 수신하는 경우, 2심볼을 갖는 VHT-SIG B 필드의 구조를 나타낸다. 도 4의 실시예와 마찬가지로, 스트림별로 서로 다른 인터리빙을 적용함으로써, SNR gain과 주파수 다이버시티 이득을 얻을 수 있다.
하지만 SIG B를 반복하지 않아도 충분한 성능을 얻을 수 있는 경우라면, 도 7과 같은 방법은 2심볼에 걸쳐서 전송하기 때문에 효율적인 전송이 되지 못한다. 따라서 다음과 같은 전송 방법이 고려된다.
도 8은 20MHz 주파수 대역에서 STA가 4개의 스트림을 수신하는 경우, 1심볼을 갖는 VHT-SIG B 필드의 구조를 나타낸다. 도 8의 실시예에서는 20MHz 주파수 대역에서 1스트림으로 전송시에 2심볼을 차지하던 SIG B 정보를 1심볼만으로 효율적으로 전송할 수 있다.
데이터 프레임 전송에 적용되는 주파수 대역이 늘어날 때, 도 8과 유사한 방법을 고려할 수 있다. 도 9는 40MHz 주파수 대역에서 STA가 1개의 스트림을 수신하는 경우, VHT-SIG A와 유사하게 2심볼에 걸쳐서 SIG B를 보내는 실시예를 나타낸다. 도 9의 실시예에서도, SIG B를 반복하지 않아도 충분한 성능을 얻을 수 있음에도 불구하고 SIG B가 2심볼에 걸쳐서 전송되기 때문에 효율적인 전송이 되지 못한다.
도 10은 40MHz 주파수 대역에서 STA가 1개의 스트림을 수신하는 경우, 1심볼을 갖는 VHT-SIG B 필드의 구조를 나타낸다. 경우도 40MHz 주파수 대역에서 1 스트림으로 전송 시에 2심볼을 차지하던 SIG B 정보를 1심볼에 걸쳐서 효율적으로 전송할 수 있다.
이와 같이 VHT-SIG B가 20MHz 주파수 대역에서 1 스트림으로 전송될 때 2심볼을 갖는 경우에는, 스트림 개수가 늘어나거나 주파수 대역이 늘어나더라도 1심볼을 사용하여 효율적으로 전송할 수 있다. 또한 전술한 방법들은 아래와 같이 확장 가능하다.
도 11은 본 발명에 의한 데이터 전송 방법을 20MHz 주파수 대역에서 STA가 2개의 스트림을 수신하는 경우에 적용한 실시예를 나타내며, 도 12는 본 발명에 의한 데이터 전송 방법을 20MHz 주파수 대역에서 STA가 3개의 스트림을 수신하는 경우에 적용한 실시예를 나타낸다. 도 12의 실시예에서 스트림 3은 SIG B1의 부호어의 짝수 비트에 해당하는 B1과 SIG B2의 부호어의 홀수 비트에 해당하는 B2로 구성된다. 이렇게 전송된 스트림 3은 수신단에서 결합(combining)될 수 있다.
도 13은 본 발명에 의한 데이터 전송 방법을 20MHz 주파수 대역에서 STA가 4개의 스트림을 수신하는 경우에 적용한 실시예를 나타낸다. 도 13의 실시예에서는 스트림 1, 3에 SIG B1이 반복되고 스트림 2, 4에 SIG B2가 반복된다. 그러나 단순 반복의 경우 주파수 다이버시티 이득을 얻지 못하므로, 전술한 바와 같이 각 스트림에 서로 다른 인터리빙을 적용하여 전송 성능을 높일 수 있다.
도 14는 본 발명에 의한 데이터 전송 방법을 40MHz 주파수 대역에서 STA가 1개의 스트림을 수신하는 경우에 적용한 실시예를 나타내고, 도 15는 본 발명에 의한 데이터 전송 방법을 40MHz 주파수 대역에서 STA가 2개의 스트림을 수신하는 경우에 적용한 실시예를 나타내며, 도 16은 본 발명에 의한 데이터 전송 방법을 40MHz 주파수 대역에서 STA가 3개의 스트림을 수신하는 경우에 적용한 실시예를 나타낸다. 도 14, 도 15, 도 16의 각 스트림에는 서로 다른 인터리빙이 적용될 수 있다.
도 17은 본 발명에 의한 데이터 전송 방법을 80MHz 주파수 대역에서 STA가 1개의 스트림을 수신하는 경우에 적용한 실시예를 나타내고, 도 18은 본 발명에 의한 데이터 전송 방법을 80MHz 주파수 대역에서 STA가 2개의 스트림을 수신하는 경우에 적용한 실시예를 나타내며, 도 19는 본 발명에 의한 데이터 전송 방법을 80MHz 주파수 대역에서 STA가 3개의 스트림을 수신하는 경우에 적용한 실시예를 나타내고, 도 20은 본 발명에 의한 데이터 전송 방법을 80MHz 주파수 대역에서 STA가 4개의 스트림을 수신하는 경우에 적용한 실시예를 나타낸다. 도 17, 도 18, 도 19, 도 20의 각 스트림에는 서로 다른 인터리빙이 적용될 수 있다.
도 21은 본 발명에 의한 데이터 전송 방법을 160MHz 주파수 대역에서 STA가 1개의 스트림을 수신하는 경우에 적용한 실시예를 나타내고, 도 22는 본 발명에 의한 데이터 전송 방법을 160MHz 주파수 대역에서 STA가 2개의 스트림을 수신하는 경우에 적용한 실시예를 나타내며, 도 23은 본 발명에 의한 데이터 전송 방법을 160MHz 주파수 대역에서 STA가 3개의 스트림을 수신하는 경우에 적용한 실시예를 나타내고, 도 24는 본 발명에 의한 데이터 전송 방법을 160MHz 주파수 대역에서 STA가 4개의 스트림을 수신하는 경우에 적용한 실시예를 나타낸다. 도 21, 도 22, 도 23, 도 24의 각 스트림에는 서로 다른 인터리빙이 적용될 수 있다.
전술한 본 발명의 전송 방법은 멀티 채널을 이용하여 데이터 프레임이 전송될 때에도 적용될 수 있다. 도 25는 본 발명에 의한 데이터 전송 방법을 80MHz 주파수 대역에서 2개의 비연속(non-contiguous) 멀티 채널로 데이터가 전송되는 경우에 적용한 실시예를 나타내고, 도 26은 본 발명에 의한 데이터 전송 방법을 80MHz 주파수 대역에서 3개의 비연속 멀티 채널로 데이터가 전송되는 경우에 적용한 실시예를 나타낸다. 도 25, 도 26의 각 스트림에는 서로 다른 인터리빙이 적용될 수 있다.
전술한 본 발명의 전송 방법은 VHT-SIG B 필드가 BPSK 2심볼 대신에 QPSK 1심볼을 사용하는 경우에도 적용될 수 있다. 도 27은 본 발명에 의한 데이터 전송 방법을 20MHz 주파수 대역에서 QPSK 1심볼을 사용하여 데이터가 전송되는 경우에 적용한 실시예를 나타내고, 도 28은 본 발명에 의한 데이터 전송 방법을 40MHz 주파수 대역에서 QPSK 1심볼을 사용하여 데이터가 전송되는 경우에 적용한 실시예를 나타내며, 도 29는 본 발명에 의한 데이터 전송 방법을 80MHz 주파수 대역에서 QPSK 1심볼을 사용하여 데이터가 전송되는 경우에 적용한 실시예를 나타낸다. 또한 도 30은 본 발명에 의한 데이터 전송 방법을 80MHz 주파수 대역에서 QPSK 1심볼을 사용하여 2개의 비연속 멀티 채널로 데이터가 전송되는 경우에 적용한 실시예를 나타내며, 도 31은 본 발명에 의한 데이터 전송 방법을 80MHz 주파수 대역에서 QPSK 1심볼을 사용하여 3개의 비연속 멀티 채널로 데이터가 전송되는 경우에 적용한 실시예를 나타낸다. 도 27, 도 28, 도 29, 도 30, 도 31의 각 스트림에는 서로 다른 인터리빙이 적용될 수 있다.
전술한 본 발명의 전송 방법은 한 개의 스트림을 2개의 안테나를 통하여 STBC(Space-Time Block Code, Alamouti 부호)로 전송하는 경우에도 적용될 수 있다. 이 경우 VHT-SIG B 필드를 데이터 필드와 같은 방법으로 STBC로 전송할 수도 있고, 2개의 Space-Time 스트림 중 하나를 사용하여 VHT-SIG B를 전송할 수도 있다. 전자의 경우는 VHT-SIG A에 STBC 관련 정보를 미리 포함시켜 전송해야 하고, 후자의 경우는 STBC 관련 정보를 VHT-SIG B에 포함시켜 전송할 수 있다.
도 32는 본 발명에 의한 데이터 전송 방법을 20MHz 주파수 대역에서 첫 번째 스트림은 2개의 Space-time 스트림을 사용하여 전송하고 두 번째 스트림은 그냥 전송하는 경우에 적용한 실시예를 나타낸다. 도 33은 본 발명에 의한 데이터 전송 방법을 40MHz 주파수 대역에서 첫 번째 스트림은 2개의 Space-time 스트림을 사용하여 전송하고 두 번째 스트림은 그냥 전송하는 경우에 적용한 실시예를 나타낸다.
도 34는 본 발명에 의한 데이터 전송 방법을 20MHz 주파수 대역에서 2개의 Space-Time 스트림을 이용하여 1개의 스트림을 전송하는 경우에 적용한 실시예를 나타낸다. 도 35는 본 발명에 의한 데이터 전송 방법을 20MHz 주파수 대역에서 첫 번째 스트림은 2개의 Space-Time 스트림을 이용하여 전송하고 두 번째 스트림은 그냥 전송하는 경우에 적용한 실시예를 나타낸다. 도 36은 40MHz 주파수 대역에서 첫 번째 스트림은 2개의 Space-Time 스트림을 이용하여 전송하고 두번째 스트림은 그냥 전송하는 경우에 적용한 실시예를 나타낸다. 도 36의 실시예에서는 1심볼을 이용하여 효율적 전송이 가능하다.
본 발명에 의한 데이터 전송 방법은 일부 스트림만이 STBC를 이용하여 전송되는 경우에도 적용 가능하다. 또한 VHT-SIG B가 20MHz 대역에서 1스트림을 전송할 때 3 이상의 OFDM 심볼을 사용하는 경우에도 본 발명에 의한 데이터 전송 방법이 적용 가능하다.
이하에서는 다른 실시예를 통해 본 발명의 데이터 송수신 방법에 대하여 설명한다.
전술한 바와 같이, 본 발명은 전용 시그널 필드를 주파수 혹은 스트림 도메인으로 반복해서 효율적으로 전송함으로써 최대의 다이버시티 이득을 얻을 수 있다. 이와 같은 방법을 채널 본딩(Channel Bonding)을 이용하여 40MHz 또는 80MHz의 대역폭에서 프레임을 전송하는 경우에도 적용할 수 있다.
20MHz의 주파수 대역 2개를 본딩하여 40MHz 주파수 대역을 만들면, 가드 대역(guard band) 등으로 사용되던 주파수 톤 일부를 데이터 전송용 주파수 톤으로 사용할 수 있다. 예를 들어 802.11n의 경우, 20MHz 대역에서 데이터 전송 주파수 톤 수는 52개이고, 40MHz 대역의 데이터 전송 주파수 톤 수는 108개이다. 즉 802.11n에서는 채널 본딩을 이용함으로써 40MHz 대역에서 4개의 데이터 전송 주파수 톤 수가 증가한다. 같은 원리로 80MHz 대역에서 채널 본딩을 이용하면 전송 주파수 톤 수를 더욱 증가시킬 수 있다.
전술한 본 발명의 VHT-SIG B 필드 전송 방식을 채널 본딩을 이용한 프레임 전송에 적용할 수 있다. 이때 증가된 데이터 전송 주파수 톤은 시그널 필드에 포함되는 데이터의 양, 또는 시그널 필드의 반복 횟수를 늘리는데 사용 가능하다. 즉, 20MHz 대역의 SIG B 비트 수보다 40MHz 대역 또는 80MHz 대역의 SIG B의 비트 수가 더 많은 경우에도 본 발명에 의한 방법이 적용 가능하다.
도 37은 본 발명에 의한 데이터 전송 방법을 40MHz 주파수 대역에서 STA가 1개의 스트림을 수신하는 경우에 적용한 실시예이고, 도 38은 본 발명에 의한 데이터 전송 방법을 40MHz 주파수 대역에서 STA가 2개의 스트림을 수신하는 경우에 적용한 실시예를 나타낸다. 도 39는 본 발명에 의한 데이터 전송 방법을 40MHz 주파수 대역에서 STA가 3개의 스트림을 수신하는 경우에 적용한 실시예를 나타내고, 도 40은 본 발명에 의한 데이터 전송 방법을 40MHz 주파수 대역에서 STA가 4개의 스트림을 수신하는 경우에 적용한 실시예를 나타낸다. 도 37, 도 38, 도 39, 도 40의 각 스트림에는 서로 다른 인터리빙이 적용될 수 있다.
도 41은 본 발명에 의한 데이터 전송 방법을 80MHz 주파수 대역에서 STA가 1개의 스트림을 수신하는 경우에 적용한 실시예이고, 도 42는 본 발명에 의한 데이터 전송 방법을 80MHz 주파수 대역에서 STA가 2개의 스트림을 수신하는 경우에 적용한 실시예를 나타낸다. 도 43은 본 발명에 의한 데이터 전송 방법을 80MHz 주파수 대역에서 STA가 3개의 스트림을 수신하는 경우에 적용한 실시예를 나타내고, 도 44는 본 발명에 의한 데이터 전송 방법을 80MHz 주파수 대역에서 STA가 4개의 스트림을 수신하는 경우에 적용한 실시예를 나타낸다. 도 41, 도 42, 도 43, 도 44의 각 스트림에는 서로 다른 인터리빙이 적용될 수 있다.
SIG B의 비트 수와 전송에 사용되는 주파수 톤 수가 서로 배수관계가 아니면, SIG B의 반복 이후 일부 주파수톤이 남을 수 있다. 이러한 경우 SIG B의 일부분만을 반복하거나 패딩(Padding)하는 방법을 적용할 수 있다. 이 방법은 20MHz, 40MHz, 80MHz로 주파수 대역폭이 증가될 수록 SIG B의 정보가 증가되는 경우에도 적용 가능하다.
일반적으로 주파수 대역폭이 증가되면 같은 시간에 전송되는 데이터 양이 증가한다. 그에 따라 전송되는 데이터의 길이 정보 등을 VHT-SIG B에 포함시켜 전송할 경우에 VHT-SIG B 자체의 길이가 증가된다. 이 경우 주파수 대역폭 별로 VHT-SIG B의 비트 할당(allocation)을 변경하고, 전송 가능한 주파수 톤 수에 맞추어 VHT-SIG B를 반복함으로써 전송 효율을 높일 수 있다. 예를 들어 20MHz 대역에서는 사용 가능한 데이터 톤 수가 26비트이고, 40MHz 대역에서는 사용 가능한 데이터 톤 수가 54비트이며, 80MHz 대역에서 사용 가능한 데이터 톤 수가 117비트인 경우를 가정한다. 이 때 VHT-SIG B의 길이는 20MHz 대역에서 26비트, 40MHz 대역에서 27비트이며 80MHz 대역에서는 29비트가 된다. 이러한 경우의 비트 할당이 도 45에 나타나 있다.
도 46은 도 45와 같이 VHT-SIG B의 비트 수가 할당될 때, 본 발명에 의한 데이터 전송 방법을 20MHz 주파수 대역에서 STA가 4개의 스트림을 수신하는 경우에 적용한 실시예를 나타낸다. 도 47은 도 45와 같이 VHT-SIG B의 비트 수가 할당될 때, 본 발명에 의한 데이터 전송 방법을 40MHz 주파수 대역에서 STA가 4개의 스트림을 수신하는 경우에 적용한 실시예를 나타낸다. 도 48은 도 45와 같이 VHT-SIG B의 비트 수가 할당될 때, 본 발명에 의한 데이터 전송 방법을 80MHz 주파수 대역에서 STA가 4개의 스트림을 수신하는 경우에 적용한 실시예를 나타낸다. 도 46, 도 47, 도 48의 각 스트림에는 서로 다른 인터리빙이 적용될 수 있다. 도 46, 도 47, 도 48의 실시예에서 전송되는 스트림 개수가 달라지더라도 본 발명이 적용 가능하다.
도 45에 나타난 VHT-SIG B의 비트 할당은 길쌈부호를 위한 테일 비트를 포함한다. 그러나 도 45의 VHT-SIG B는 부호어의 오류 여부를 판단할 수 있는 CRC비트를 포함하고 있지 않아서 데이터의 신뢰성을 확보하기가 어렵다. 그러나 20MHz 대역의 경우 VHT-SIG B에 여유 비트가 없기 때문에, 도 49와 같이 데이터 필드의 서비스 필드에 포함되는 예비(Reserved) 비트 중 일부(4~8비트)를 CRC 비트로 사용할 수 있다.
도 49와 같은 비트 할당을 사용하는 경우, CRC는 SIG B와 스크램블러 시드(Scrambler Seed)에 동시에 적용된다. 따라서 주파수 대역별로 가변 길이에 대한 CRC 계산이 필요하다. VHT-SIG B 필드는 낮은 변조방식과 부호율(BPSK 1/2)을 이용하고, 주파수 및 안테나 도메인으로의 반복 부호화도 가능하므로 신뢰도가 높다. 반면에 서비스 필드는 데이터 전송에 사용되는 변조방식과 부호율을 그대로 사용하므로 신뢰도가 상대적으로 가변적이며, 일반적으로 VHT-SIG B보다 신뢰도가 낮다. 이 경우 CRC를 이용하면 VHT-SIG B 필드에 포함된 정보의 오류 검출 뿐만 아니라, 스크램블러 시드의 오류 검출도 가능하다. 이에 따라 스크램블러 시드의 오류가 검출되면 그에 따라 PHY, MAC 계층의 동작을 중단할 수 있으므로 전력 절감 효과도 기대할 수 있다.
전술한 방법은 SU-MIMO에도 적용될 수 있다. SU-MIMO에서는 VHT-SIG A에 상대적으로 여유 비트가 생길 수 있다. 따라서 SU-MIMO에서는 VHT-SIG B 필드에 포함되던 MCS 비트를 VHT-SIG A 필드에 포함시킬 수 있다. SU-MIMO에서는 사용 안테나 수가 더욱 많아 질 수 있으므로 데이터 길이를 나타내는 필드의 비트 수도 더 커질 수 있다. 도 50은 SU-MIMO에서 VHT-SIG B의 길이가 20MHz 대역에서 26비트, 40MHz 대역에서 27비트이며 80MHz 대역에서는 29비트일 때의 VHT-SIG B의 비트 할당을 나타낸다.
도 51은 도 50과 같이 VHT-SIG B의 비트 수가 할당될 때, 본 발명에 의한 데이터 전송 방법을 20MHz 주파수 대역에서 STA가 4개의 스트림을 수신하는 경우에 적용한 실시예를 나타낸다. 도 52는 도 50과 같이 VHT-SIG B의 비트 수가 할당될 때, 본 발명에 의한 데이터 전송 방법을 40MHz 주파수 대역에서 STA가 4개의 스트림을 수신하는 경우에 적용한 실시예를 나타낸다. 도 53은 도 50과 같이 VHT-SIG B의 비트 수가 할당될 때, 본 발명에 의한 데이터 전송 방법을 80MHz 주파수 대역에서 STA가 4개의 스트림을 수신하는 경우에 적용한 실시예를 나타낸다. 도 51, 도 52, 도 53의 각 스트림에는 서로 다른 인터리빙이 적용될 수 있다. 도 51, 도 52, 도 53의 실시예에서 전송되는 스트림 개수가 달라지더라도 본 발명이 적용 가능하다.
도 50과 같은 비트 할당을 사용하는 경우, VHT-SIG B 필드는 길쌈부호를 위한 테일 비트를 포함한다. 그러나 도 50의 VHT-SIG B는 부호어의 오류 여부를 판단할 수 있는 CRC비트를 포함하고 있지 않아서 데이터의 신뢰성을 확보하기가 어렵다. 그러나 20MHz 대역의 경우 VHT-SIG B에 여유 비트가 없기 때문에, 도 54와 같이 데이터 필드의 서비스 필드에 포함되는 예비(Reserved) 비트 중 일부(4~8비트)를 CRC 비트로 사용할 수 있다.
도 54와 같은 비트 할당을 사용하는 경우, CRC는 SIG B와 스크램블러 시드(Scrambler Seed)에 동시에 적용된다. 따라서 주파수 대역별로 가변 길이에 대한 CRC 계산이 필요하다. VHT-SIG B 필드는 낮은 변조방식과 부호율(BPSK 1/2)을 이용하고, 주파수 및 안테나 도메인으로의 반복 부호화도 가능하므로 신뢰도가 높다. 반면에 서비스 필드는 데이터 전송에 사용되는 변조방식과 부호율을 그대로 사용하므로 신뢰도가 상대적으로 가변적이며, 일반적으로 VHT-SIG B보다 신뢰도가 낮다. 이 경우 CRC를 이용하면 VHT-SIG B 필드에 포함된 정보의 오류 검출 뿐만 아니라, 스크램블러 시드의 오류 검출도 가능하다. 이에 따라 스크램블러 시드의 오류가 검출되면 그에 따라 PHY, MAC 계층의 동작을 중단할 수 있으므로 전력 절감 효과도 기대할 수 있다.
전술한 본 발명의 데이터 송수신 방법은 VHT-SIG B 필드를 전송할 때, 서로 다른 전송 스트림에 대하여 주파수 도메인으로 서로 다른 인터리빙을 적용함으로써, 안테나 도메인으로도 최대 다이버시티 이득을 얻을 수 있다. 하지만, 복잡도를 조금 줄이면서 유사한 효과를 얻기 위하여, 전송 스트림 별로 다른 인터리빙을 적용하지 않고, CDD(Cyclic Delay Divercity) 기법을 적용하여 VHT-SIG B 필드를 전송할 수 있다. 이러한 경우 전송 안테나별로 같은 데이터가 전송되는데, 각 안테나 별로 서로 다른 지연(delay)이 적용된다.
도 55는 CDD 기법이 이용되고 각 안테나별로 서로 다른 지연이 적용될 때, 본 발명에 의한 데이터 전송 방법을 20MHz 주파수 대역에서 STA가 4개의 스트림을 수신하는 경우에 적용한 실시예를 나타낸다. 도 56은 CDD 기법이 이용되고 각 안테나별로 서로 다른 지연이 적용될 때, 본 발명에 의한 데이터 전송 방법을 40MHz 주파수 대역에서 STA가 4개의 스트림을 수신하는 경우에 적용한 실시예를 나타낸다. 도 57은 CDD 기법이 이용되고 각 안테나별로 서로 다른 지연이 적용될 때, 본 발명에 의한 데이터 전송 방법을 80MHz 주파수 대역에서 STA가 4개의 스트림을 수신하는 경우에 적용한 실시예를 나타낸다. 도 55, 도 56, 도 57의 각 스트림에는 서로 다른 지연이 적용된다. 도 55, 도 56, 도 57의 실시예에서 전송되는 스트림 개수가 달라지더라도 본 발명이 적용 가능하다.
또한 본 발명의 VHT-SIG B 전송 방식에, (전송 안테나 수×전송 안테나 수)의 크기를 갖는 안테나 도메인으로의 스프레딩 매트릭스(Spreading Matrix)를 추가적으로 적용할 수도 있다. 스트림 별로 다른 인터리빙을 적용할 때는 멀티 스트림을 적용할 때의 스프레딩 매트릭스를 적용 가능하고, 스트림 별로 지연을 적용하여 전송할 때는 싱글 스트림을 적용할 때의 스프레딩 매트릭스를 적용할 수 있다.
도 58은 본 발명의 일 실시예에 의한 송신 단말의 구성을 나타낸다.
송신 단말(5802)은 시그널 필드 생성부(5804), 데이터 필드 생성부(5806), 데이터 프레임 생성부(5808), 송신부(5810)를 포함한다. 시그널 필드 생성부(5804)는 데이터 프레임의 송신에 적용되는 주파수 대역에 따라 반복적으로 시그널 필드를 생성한다. 데이터 필드 생성부(5806)는 수신 단말로 송신할 데이터를 포함하는 데이터 필드를 생성한다. 데이터 프레임 생성부(5808)는 시그널 필드 생성부(5804)에 의해 생성된 시그널 필드 및 데이터 필드 생성부(5806)에 의해 생성된 데이터 필드를 포함하는 데이터 프레임을 생성한다. 송신부(5810)는 데이터 프레임 생성부(5808)에 의해 생성된 데이터 프레임을 수신 단말로 송신한다.
여기서 시그널 필드는 데이터 필드의 길이를 나타내는 길이 필드를 포함할 수 있고, 길이 필드는 데이터 프레임의 송신에 적용되는 주파수 대역에 따라 다른 길이를 가질 수 있다. 또한 시그널 필드는 데이터 필드의 변조 방법 및 코딩 방법을 나타내는 MCS(Modulation and Coding Scheme) 필드를 포함할 수 있다. 또한 시그널 필드는 각 사용자별 정보를 전달하기 위한 전용 시그널 필드(dedicated signal field)일 수 있다. 그리고 데이터 프레임은 시그널 필드의 오류를 검출하기 위한 CRC 필드를 포함할 수 있다.
도 59는 본 발명의 일 실시예에 의한 수신 단말의 구성을 나타낸다.
수신 단말(5902)은 수신부(5904) 및 데이터 획득부(5906)를 포함한다. 수신부(5904)는 시그널 필드 및 데이터 필드를 포함하는 데이터 프레임을 수신한다.
여기서 시그널 필드는 데이터 필드의 길이를 나타내는 길이 필드를 포함할 수 있고, 길이 필드는 데이터 프레임의 송신에 적용되는 주파수 대역에 따라 다른 길이를 가질 수 있다. 또한 시그널 필드는 데이터 필드의 변조 방법 및 코딩 방법을 나타내는 MCS(Modulation and Coding Scheme) 필드를 포함할 수 있다. 또한 시그널 필드는 각 사용자별 정보를 전달하기 위한 전용 시그널 필드(dedicated signal field)일 수 있다. 그리고 데이터 프레임은 시그널 필드의 오류를 검출하기 위한 CRC 필드를 포함할 수 있다.
데이터 획득부(5906)는 수신된 데이터 프레임에 포함된 시그널 필드를 이용하여 데이터 필드에 포함된 데이터를 획득한다. 이 때 데이터 획득부(5906)는 시그널 필드에 포함된 길이 필드, MCS 필드 등을 이용하여 데이터를 획득할 수 있다. 또한 데이터 획득부(5906)는 데이터 프레임에 포함된 CRC 필드를 이용하여 시그널 필드의 오류를 검출할 수 있다.
도 60은 본 발명의 일 실시예에 의한 송신 단말의 데이터 송신 방법의 흐름도이다.
먼저 데이터 프레임의 송신에 적용되는 주파수 대역에 따라 반복적으로 시그널 필드를 생성한다(6002). 또한 수신 단말로 전송할 데이터를 포함하는 데이터 필드를 생성한다(6004). 그리고나서 생성된 시그널 필드 및 데이터 필드를 포함하는 데이터 프레임을 생성한다(6006). 그 후 생성된 데이터 프레임을 수신 단말로 송신한다(6008).
여기서 시그널 필드는 데이터 필드의 길이를 나타내는 길이 필드를 포함할 수 있고, 길이 필드는 데이터 프레임의 송신에 적용되는 주파수 대역에 따라 다른 길이를 가질 수 있다. 또한 시그널 필드는 데이터 필드의 변조 방법 및 코딩 방법을 나타내는 MCS(Modulation and Coding Scheme) 필드를 포함할 수 있다. 또한 시그널 필드는 각 사용자별 정보를 전달하기 위한 전용 시그널 필드(dedicated signal field)일 수 있다. 그리고 데이터 프레임은 시그널 필드의 오류를 검출하기 위한 CRC 필드를 포함할 수 있다.
도 61은 본 발명의 일 실시예에 의한 수신 단말의 데이터 수신 방법의 흐름도이다.
먼저 시그널 필드 및 데이터 필드를 포함하는 데이터 프레임을 수신한다(6102). 여기서 시그널 필드는 데이터 필드의 길이를 나타내는 길이 필드를 포함할 수 있고, 길이 필드는 데이터 프레임의 송신에 적용되는 주파수 대역에 따라 다른 길이를 가질 수 있다. 또한 시그널 필드는 데이터 필드의 변조 방법 및 코딩 방법을 나타내는 MCS(Modulation and Coding Scheme) 필드를 포함할 수 있다. 또한 시그널 필드는 각 사용자별 정보를 전달하기 위한 전용 시그널 필드(dedicated signal field)일 수 있다. 그리고 데이터 프레임은 시그널 필드의 오류를 검출하기 위한 CRC 필드를 포함할 수 있다.
그리고 나서 수신된 데이터 프레임에 포함된 시그널 필드를 이용하여 데이터 필드에 포함되 데이터를 획득한다(6104). 이 때 수신 단말은 시그널 필드에 포함된 길이 필드, MCS 필드 등을 이용하여 데이터를 획득할 수 있다. 또한 수신 단말은 데이터 프레임에 포함된 CRC 필드를 이용하여 시그널 필드의 오류를 검출할 수 있다.
본 발명에 의하면 MU-MIMO 시스템에서 전용 시그널 필드를 전송할 때, 사용자의 주파수 대역과 스트림 개수 등을 활용하여 시그널 필드의 성능을 개선하고 전송 시간을 줄임으로써, 시그널 필드를 이용하여 보다 많은 정보를 효율적으로 전송할 수 있다.
전술한 본 발명은, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니다.

Claims (14)

  1. 가변 주파수 대역을 사용하는 MIMO 시스템에서 송신 단말이 수신 단말에 데이터를 송신하는 방법에 있어서,
    상기 데이터 프레임의 송신에 적용되는 주파수 대역에 따라 반복적으로 시그널 필드를 생성하는 단계;
    상기 데이터를 포함하는 데이터 필드를 생성하는 단계;
    상기 시그널 필드 및 상기 데이터 필드를 포함하는 데이터 프레임을 생성하는 단계; 및
    상기 데이터 프레임을 상기 수신 단말에 송신하는 단계를 포함하는
    데이터 송신 방법.
  2. 제1항에 있어서,
    상기 시그널 필드는
    상기 데이터 필드의 길이를 나타내는 길이 필드를
    포함하는 데이터 송신 방법.
  3. 제2항에 있어서,
    상기 길이 필드는
    상기 데이터 프레임의 송신에 적용되는 주파수 대역에 따라 다른 길이를 갖는
    데이터 송신 방법.
  4. 제1항에 있어서,
    상기 시그널 필드는
    상기 데이터 필드의 변조 방법 및 코딩 방법을 나타내는 MCS 필드를
    포함하는 데이터 송신 방법.
  5. 제1항에 있어서,
    상기 시그널 필드는
    전용 시그널 필드(dedicated signal field)인
    데이터 송신 방법.
  6. 제1항에 있어서,
    상기 데이터 프레임은
    상기 시그널 필드의 오류를 검출하기 위한 CRC 필드를 포함하는
    데이터 송신 방법.
  7. 가변 주파수 대역을 사용하는 MIMO 시스템에서 수신 단말이 송신 단말로부터 데이터를 수신하는 방법에 있어서,
    시그널 필드 및 데이터 필드를 포함하는 데이터 프레임을 수신하는 단계; 및
    상기 시그널 필드를 이용하여 상기 데이터 필드에 포함된 상기 데이터를 획득하는 단계를 포함하고,
    상기 시그널 필드는
    상기 데이터 프레임의 송신에 적용되는 주파수 대역에 따라 상기 시그널 필드에 반복적으로 포함되는 데이터 수신 방법.
  8. 제7항에 있어서,
    상기 시그널 필드는
    상기 데이터 필드의 길이를 나타내는 길이 필드를
    포함하는 데이터 수신 방법.
  9. 제8항에 있어서,
    상기 길이 필드는
    상기 데이터 프레임의 송신에 적용되는 주파수 대역에 따라 다른 길이를 갖는
    데이터 수신 방법.
  10. 제7항에 있어서,
    상기 시그널 필드는
    상기 데이터 필드의 변조 방법 및 코딩 방법을 나타내는 MCS 필드를
    포함하는 데이터 수신 방법.
  11. 제7항에 있어서,
    상기 시그널 필드는
    전용 시그널 필드(dedicated signal field)인
    데이터 수신 방법.
  12. 제7항에 있어서,
    상기 데이터 프레임은
    상기 시그널 필드의 오류를 검출하기 위한 CRC 필드를 포함하는
    데이터 수신 방법.
  13. 가변 주파수 대역을 사용하는 MIMO 시스템에서 수신 단말에 데이터를 송신하는 단말에 있어서,
    상기 데이터 프레임의 송신에 적용되는 주파수 대역에 따라 반복적으로 시그널 필드를 생성하는 시그널 필드 생성부;
    상기 데이터를 포함하는 데이터 필드를 생성하는 데이터 필드 생성부;
    상기 시그널 필드 및 상기 데이터 필드를 포함하는 데이터 프레임을 생성하는 데이터 프레임 생성부; 및
    상기 데이터 프레임을 상기 수신 단말에 송신하는 송신부를 포함하는
    송신 단말.
  14. 가변 주파수 대역을 사용하는 MIMO 시스템에서 송신 단말로부터 데이터를 수신하는 단말에 있어서,
    시그널 필드 및 데이터 필드를 포함하는 데이터 프레임을 수신하는 수신부; 및
    상기 시그널 필드를 이용하여 상기 데이터 필드에 포함된 상기 데이터를 획득하는 데이터 획득부를 포함하고,
    상기 시그널 필드는
    상기 데이터 프레임의 송신에 적용되는 주파수 대역에 따라 상기 시그널 필드에 반복적으로 포함되는 수신 단말.
PCT/KR2011/001742 2010-03-12 2011-03-11 Mimo 시스템에서 데이터를 송수신하는 방법 및 장치 WO2011112054A2 (ko)

Priority Applications (18)

Application Number Priority Date Filing Date Title
EP11753658.1A EP2547002B1 (en) 2010-03-12 2011-03-11 Method and apparatus for transmitting and receiving data in a mimo system
CA2792929A CA2792929C (en) 2010-03-12 2011-03-11 Method and apparatus for transmitting and receiving data in a mimo system
EP18170742.3A EP3393053B1 (en) 2010-03-12 2011-03-11 Method and apparatus for transmitting and receiving data in a mimo system
JP2012556993A JP2013522950A (ja) 2010-03-12 2011-03-11 Mimoシステムにおけるデータを送受信する方法及び装置
AU2011224961A AU2011224961B2 (en) 2010-03-12 2011-03-11 Method and apparatus for transmitting and receiving data in a MIMO system
DE112011100890T DE112011100890T5 (de) 2010-03-12 2011-03-11 Verfahren und Vorrichtung zum Senden und Empfangen von Daten in einem MIMO-System
ES11753658.1T ES2535604T3 (es) 2010-03-12 2011-03-11 Método y aparato para transmitir y recibir datos en un sistema MIMO
MX2012010564A MX2012010564A (es) 2010-03-12 2011-03-11 Metodo y aparato para transmitir y recibir datos en un sistema de multiple entrada multiple salida.
PL11753658T PL2547002T3 (pl) 2010-03-12 2011-03-11 Sposób i urządzenie do nadawania i odbierania danych w systemie MIMO
CN201180023647.0A CN102893535B (zh) 2010-03-12 2011-03-11 用于在多输入多输出系统中传送和接收数据的方法和设备
EP22152196.6A EP4020830A1 (en) 2010-03-12 2011-03-11 Method and apparatus for transmitting and receiving data in a mimo system
BR112012022749-1A BR112012022749B1 (pt) 2010-03-12 2011-03-11 Método e equipamento para transmitir e receber dados em rede local sem fio
US13/434,681 US8654881B2 (en) 2010-03-12 2012-03-29 Method and apparatus for transmitting and receiving data in a MIMO system
US14/147,447 US9900067B2 (en) 2010-03-12 2014-01-03 Method and apparatus for transmitting and receiving data in a MIMO system
US15/897,986 US10374668B2 (en) 2010-03-12 2018-02-15 Method and apparatus for transmitting and receiving data in a MIMO system
US16/524,093 US10931337B2 (en) 2010-03-12 2019-07-28 Method and apparatus for transmitting and receiving data in a MIMO system
US17/128,013 US11496187B2 (en) 2010-03-12 2020-12-19 Method and apparatus for transmitting and receiving data in a MIMO system
US17/968,797 US12074665B2 (en) 2010-03-12 2022-10-19 Method and apparatus for transmitting and receiving data in a MIMO system

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
KR20100022122 2010-03-12
KR10-2010-0022122 2010-03-12
KR20100065898 2010-07-08
KR10-2010-0065898 2010-07-08
KR20100066458 2010-07-09
KR10-2010-0066458 2010-07-09
KR10-2010-0068167 2010-07-14
KR20100068167 2010-07-14
KR10-2010-0072506 2010-07-27
KR20100072506 2010-07-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/434,681 Continuation US8654881B2 (en) 2010-03-12 2012-03-29 Method and apparatus for transmitting and receiving data in a MIMO system

Publications (2)

Publication Number Publication Date
WO2011112054A2 true WO2011112054A2 (ko) 2011-09-15
WO2011112054A3 WO2011112054A3 (ko) 2012-02-23

Family

ID=44564033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/001742 WO2011112054A2 (ko) 2010-03-12 2011-03-11 Mimo 시스템에서 데이터를 송수신하는 방법 및 장치

Country Status (13)

Country Link
US (6) US8654881B2 (ko)
EP (4) EP4020830A1 (ko)
JP (5) JP2013522950A (ko)
KR (1) KR101202197B1 (ko)
CN (2) CN105227267B (ko)
AU (1) AU2011224961B2 (ko)
BR (1) BR112012022749B1 (ko)
CA (1) CA2792929C (ko)
DE (1) DE112011100890T5 (ko)
ES (2) ES2535604T3 (ko)
MX (1) MX2012010564A (ko)
PL (2) PL2547002T3 (ko)
WO (1) WO2011112054A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014010786A1 (ko) * 2012-07-09 2014-01-16 엘지전자 주식회사 무선 통신 시스템에서 동작 채널 정보를 송수신하는 방법 및 장치
CN112865940A (zh) * 2016-01-06 2021-05-28 松下知识产权经营株式会社 发送装置、发送方法和控制处理的集成电路

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2012010564A (es) 2010-03-12 2012-11-23 Korea Electronics Telecomm Metodo y aparato para transmitir y recibir datos en un sistema de multiple entrada multiple salida.
US8718169B2 (en) 2010-06-15 2014-05-06 Qualcomm Incorporated Using a field format on a communication device
KR101883892B1 (ko) * 2011-10-13 2018-08-01 한국전자통신연구원 통신 시스템에서 데이터 송수신 장치 및 방법
KR102068282B1 (ko) * 2012-06-13 2020-01-20 한국전자통신연구원 다중 대역폭을 지원하는 무선랜 시스템의 통신 방법 및 장치
US20140254389A1 (en) * 2013-03-05 2014-09-11 Qualcomm Incorporated Systems and methods for monitoring wireless communications
US9344238B2 (en) * 2013-04-15 2016-05-17 Qualcomm Incorporated Systems and methods for backwards-compatible preamble formats for multiple access wireless communication
US9729285B2 (en) * 2013-06-13 2017-08-08 Avago Technologies General Ip (Singapore) Pte. Ltd Flexible OFDMA packet structure for wireless communications
WO2015190779A1 (ko) * 2014-06-08 2015-12-17 엘지전자 주식회사 무선랜 시스템에서 상향링크 다중 사용자 전송 방법 및 이를 위한 장치
CN107431676B (zh) * 2014-08-26 2021-02-19 英特尔Ip公司 用于发送高效无线局域网信号字段的装置、方法和介质
US10075269B2 (en) 2014-09-12 2018-09-11 Lg Electronics Inc. Method for transmitting data in WLAN system, and device for same
CA2957037C (en) 2014-09-12 2023-12-12 Newracom, Inc. System and method for packet information indication in communication systems
US9906391B2 (en) * 2014-09-16 2018-02-27 Qualcomm Incorporated Methods and apparatus for packet acquisition in mixed-rate wireless communication networks
US20160087825A1 (en) * 2014-09-19 2016-03-24 Qualcomm Incorporated Methods and apparatus for early detection of high efficiency wireless packets in wireless communication
US9974053B2 (en) * 2014-10-09 2018-05-15 Lg Electronics Inc. Method and apparatus for allocating wireless resources according to resource allocation setting in WLAN
US9877323B1 (en) * 2014-10-28 2018-01-23 Newracom, Inc. OFDMA mapping for clients with various bandwidths
DE102015115777B4 (de) * 2014-10-29 2020-01-30 Intel IP Corporation Gerät, Verfahren und Computer-lesbares Medium für das Übertragen eines Hoch-Effizienz-Drahtlos-Lokalnetzwerk-Signalfeldes für schmale und grosse Bandbreiten-Zuweisungen
EP3221988B1 (en) * 2014-11-21 2019-07-24 Telefonaktiebolaget LM Ericsson (publ) Method and apparatus for multimedia broadcast multicast service transmission
US9954595B2 (en) * 2014-11-25 2018-04-24 Qualcomm Incorporated Frame format for low latency channel bonding
ES2783548T3 (es) * 2014-12-02 2020-09-17 Lg Electronics Inc Método para la asignación de recursos de trama de banda ancha en un sistema inalámbrico y aparato para el mismo
US20160204915A1 (en) 2015-01-14 2016-07-14 Xiaogang Chen Apparatus, computer readable medium, and method for generating and receiving signal fields in a high efficiency wireless local-area network
US11057253B2 (en) 2015-02-02 2021-07-06 Lg Electronics Inc. Methods and apparatus for transmitting/receiving HE-SIG B
KR101989898B1 (ko) * 2015-03-04 2019-06-17 엘지전자 주식회사 무선랜 시스템에서 제어 정보를 포함하는 무선 프레임 전송 방법 및 이를 위한 장치
US10270635B2 (en) 2015-04-03 2019-04-23 Lg Electronics Inc. Method and device for configuring signal field in wireless LAN system
US10021695B2 (en) 2015-04-14 2018-07-10 Qualcomm Incorporated Apparatus and method for generating and transmitting data frames
WO2016178474A1 (ko) * 2015-05-06 2016-11-10 엘지전자 주식회사 다중 시그널링 필드를 포함하는 무선 프레임 전송 방법 및 이를 위한 장치
US10057924B2 (en) * 2015-05-27 2018-08-21 Intel IP Corporation High efficiency signal field in high efficiency wireless local area network
EP3306883B1 (en) * 2015-06-03 2020-11-25 Panasonic Intellectual Property Management Co., Ltd. Transmission device and transmission method for aggregate physical layer protocol data unit
US10334568B2 (en) * 2015-07-28 2019-06-25 Lg Electronics Inc. Wireless frame transmission method on basis of signaling field sorting of each band and device for same
WO2017135770A1 (ko) 2016-02-04 2017-08-10 엘지전자 주식회사 무선랜 시스템에서 이진 시퀀스를 사용하여 stf 신호를 생성하는 방법 및 장치
US10356784B2 (en) * 2016-06-14 2019-07-16 Lg Electronics Inc. Method and apparatus for constructing control field including information regarding resource unit in wireless local area network system
US10700793B2 (en) * 2017-09-12 2020-06-30 Astronics Aerosat Information transfer using discrete-frequency signals and instantaneous frequency measurement
US11303504B2 (en) * 2020-06-09 2022-04-12 T-Mobile Usa, Inc. Data link error feedback signaling
CN113259348A (zh) * 2021-05-12 2021-08-13 深圳信息职业技术学院 异构数据处理方法、装置、计算机设备及存储介质

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5287556A (en) * 1990-09-28 1994-02-15 Motorola, Inc. Interference reduction using an adaptive receiver filter, signal strength, and BER sensing
EP2293452B1 (en) 2000-07-05 2012-06-06 LG ELectronics INC. Method of puncturing a turbo coded data block
US7194009B2 (en) 2001-04-14 2007-03-20 John Wai Tsang Eng Full-service broadband cable modem system
US7062703B1 (en) 2003-07-28 2006-06-13 Cisco Technology, Inc Early detection of false start-of-packet triggers in a wireless network node
ES2714800T3 (es) * 2004-01-08 2019-05-30 Sony Corp Dispositivos de comunicación inalámbrica
US7324605B2 (en) 2004-01-12 2008-01-29 Intel Corporation High-throughput multicarrier communication systems and methods for exchanging channel state information
US7055086B2 (en) 2004-04-06 2006-05-30 Cisco Technology, Inc. Method and apparatus for protecting parts of a packet in a wireless network
EP1592160B1 (en) 2004-04-29 2008-03-26 Matsushita Electric Industrial Co., Ltd. Superframe error coding in digital audio broadcasting systems
WO2005125047A1 (en) 2004-06-16 2005-12-29 Philips Intellectual Property & Standards Gmbh Distributed resource reservation in a wireless adhoc network
DE102004038834B4 (de) 2004-08-10 2006-11-02 Siemens Ag Verfahren zum Erzeugen von Präambel- und Signalisierungsstrukturen in einem MIMO-OFDM-Übertragungssystem
WO2006020568A1 (en) 2004-08-11 2006-02-23 Interdigital Technology Corporation Channel sounding for improved system performance
US7924935B2 (en) 2004-09-30 2011-04-12 Nortel Networks Limited Channel sounding in OFDMA system
US9385843B2 (en) 2004-12-22 2016-07-05 Qualcomm Incorporated Method and apparatus for using multiple modulation schemes for a single packet
US7577438B2 (en) 2005-04-25 2009-08-18 Interdigital Technology Corporation Method and system for efficient addressing and power savings in wireless systems
JP4316646B2 (ja) * 2005-05-10 2009-08-19 三菱電機株式会社 端末制御装置及び無線lanシステム
JP2007081702A (ja) * 2005-09-13 2007-03-29 Toshiba Corp 無線受信装置及び無線受信方法
JP4583319B2 (ja) 2006-02-08 2010-11-17 株式会社エヌ・ティ・ティ・ドコモ 移動局及び基地局
KR100924684B1 (ko) 2006-07-18 2009-11-03 삼성전자주식회사 광대역 무선통신시스템에서 통신 장치 및 방법
JP4378368B2 (ja) * 2006-09-13 2009-12-02 京セラ株式会社 移動体通信システム、基地局装置、移動局装置、およびマルチキャリア通信方法
US8306060B2 (en) 2006-11-07 2012-11-06 Samsung Electronics Co., Ltd. System and method for wireless communication of uncompressed video having a composite frame format
JP5135358B2 (ja) 2007-02-14 2013-02-06 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Harqを実装するシステムにおけるコードワード対レイヤ・マッピング
CN101136894B (zh) * 2007-03-23 2012-11-28 中兴通讯股份有限公司 可扩展的ofdm及ofdma带宽分配的方法和系统
US20090031185A1 (en) * 2007-07-23 2009-01-29 Texas Instruments Incorporated Hybrid arq systems and methods for packet-based networks
US8503283B2 (en) * 2008-06-12 2013-08-06 Nokia Corporation Channel access protocol for wireless communication
US8891350B2 (en) * 2008-07-07 2014-11-18 Mediatek Inc. Method and apparatus of data transmission over guard sub-carriers in multi-carrier OFDM systems
CN101646198B (zh) * 2008-08-07 2013-10-30 夏普株式会社 LTE-Advanced系统下行链路的实现方法、基站和用户设备
US8351519B2 (en) * 2008-08-15 2013-01-08 Qualcomm Incorporated Embedding information in an 802.11 signal field
US8295395B2 (en) 2008-09-30 2012-10-23 Apple Inc. Methods and apparatus for partial interference reduction within wireless networks
US8665691B2 (en) 2009-02-05 2014-03-04 Sony Corporation Frame and data pattern structure for multi-carrier systems
EP2420023B1 (en) * 2009-04-13 2014-08-27 Marvell World Trade Ltd. Physical layer frame format for WLAN
US9485783B2 (en) * 2009-05-07 2016-11-01 Qualcomm Incorporated Enhanced multichannel access for very high throughput
US8526351B2 (en) * 2009-06-05 2013-09-03 Broadcom Corporation Channel characterization and training within multiple user, multiple access, and/or MIMO wireless communications
US8599804B2 (en) * 2009-08-07 2013-12-03 Broadcom Corporation Distributed signal field for communications within multiple user, multiple access, and/or MIMO wireless communications
KR20110027533A (ko) 2009-09-09 2011-03-16 엘지전자 주식회사 다중 안테나 시스템에서 제어정보 전송 방법 및 장치
WO2011050320A1 (en) * 2009-10-23 2011-04-28 Marvell World Trade Ltd. Number of streams indication for wlan
CN102598803B (zh) 2009-11-03 2016-06-01 马维尔国际贸易有限公司 通信设备中的功率节省
US8325644B2 (en) 2009-11-06 2012-12-04 Qualcomm Incorporated Mixed mode preamble design for signaling number of streams per client
US8675575B2 (en) 2009-12-23 2014-03-18 Intel Corporation Scheduling mechanisms for media access control protection and channel sounding
KR101331674B1 (ko) * 2010-02-12 2013-11-20 엘지전자 주식회사 무선랜 시스템에서 제어 정보 전송 방법 및 장치
US8417253B2 (en) * 2010-02-23 2013-04-09 Intel Corporation Bandwidth and channel notification for wide-channel wireless communication
US8472537B2 (en) 2010-03-02 2013-06-25 Harris Corporation Systems and associated methods to reduce signal field symbol peak-to-average power ratio (PAPR)
US9794032B2 (en) * 2010-03-05 2017-10-17 Lg Electronics Inc. PPDU receiving method and apparatus based on the MIMO technique in a WLAN system
MX2012010564A (es) * 2010-03-12 2012-11-23 Korea Electronics Telecomm Metodo y aparato para transmitir y recibir datos en un sistema de multiple entrada multiple salida.
US8873582B2 (en) * 2010-04-08 2014-10-28 Lg Electronics Inc. Method for transmitting PPDU in wireless local area network and apparatus for the same
US9397785B1 (en) * 2010-04-12 2016-07-19 Marvell International Ltd. Error detection in a signal field of a WLAN frame header
US9025428B2 (en) * 2010-04-14 2015-05-05 Qualcomm Incorporated Allocating and receiving tones for a frame
US8867574B2 (en) * 2010-06-02 2014-10-21 Qualcomm Incorporated Format of VHT-SIG-B and service fields in IEEE 802.11AC
US8718169B2 (en) * 2010-06-15 2014-05-06 Qualcomm Incorporated Using a field format on a communication device
US9860037B2 (en) 2010-07-21 2018-01-02 Qualcomm, Incorporated Method and apparatus for ordering sub-fields of VHT-SIG-A and VIT-SIG-B fields
US8465905B2 (en) * 2011-04-04 2013-06-18 Eastman Kodak Company Printing conductive lines

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014010786A1 (ko) * 2012-07-09 2014-01-16 엘지전자 주식회사 무선 통신 시스템에서 동작 채널 정보를 송수신하는 방법 및 장치
CN104471873A (zh) * 2012-07-09 2015-03-25 Lg电子株式会社 在无线通信系统中用于收发操作信道信息的方法和设备
US9516647B2 (en) 2012-07-09 2016-12-06 Lg Electronics Inc. Method and apparatus for transreceiving operating channel information in wireless communication system
CN112865940A (zh) * 2016-01-06 2021-05-28 松下知识产权经营株式会社 发送装置、发送方法和控制处理的集成电路

Also Published As

Publication number Publication date
JP2020188493A (ja) 2020-11-19
KR101202197B1 (ko) 2012-11-16
EP4020830A1 (en) 2022-06-29
US20190349039A1 (en) 2019-11-14
US20120213305A1 (en) 2012-08-23
PL3393053T3 (pl) 2022-09-26
MX2012010564A (es) 2012-11-23
PL2547002T3 (pl) 2015-08-31
US10374668B2 (en) 2019-08-06
EP2547002B1 (en) 2015-02-25
US10931337B2 (en) 2021-02-23
BR112012022749B1 (pt) 2021-09-14
JP2019135863A (ja) 2019-08-15
AU2011224961B2 (en) 2014-11-06
AU2011224961A1 (en) 2012-11-08
JP2017123678A (ja) 2017-07-13
BR112012022749A2 (pt) 2019-12-17
CN105227267B (zh) 2018-09-11
DE112011100890T5 (de) 2012-12-27
JP2013522950A (ja) 2013-06-13
ES2535604T3 (es) 2015-05-13
US20210126680A1 (en) 2021-04-29
CN105227267A (zh) 2016-01-06
US11496187B2 (en) 2022-11-08
CA2792929A1 (en) 2011-09-15
US8654881B2 (en) 2014-02-18
CN102893535A (zh) 2013-01-23
EP3393053A1 (en) 2018-10-24
ES2924198T3 (es) 2022-10-05
US20230038272A1 (en) 2023-02-09
CN102893535B (zh) 2015-11-25
JP6741814B2 (ja) 2020-08-19
WO2011112054A3 (ko) 2012-02-23
EP2911313B1 (en) 2018-06-27
US9900067B2 (en) 2018-02-20
US20140119327A1 (en) 2014-05-01
EP2547002A4 (en) 2013-01-16
US20180175917A1 (en) 2018-06-21
JP7095032B2 (ja) 2022-07-04
JP2015201858A (ja) 2015-11-12
CA2792929C (en) 2016-05-24
KR20110103357A (ko) 2011-09-20
EP2911313A1 (en) 2015-08-26
US12074665B2 (en) 2024-08-27
JP6342363B2 (ja) 2018-06-13
EP2547002A2 (en) 2013-01-16
EP3393053B1 (en) 2022-05-11
JP6532904B2 (ja) 2019-06-19

Similar Documents

Publication Publication Date Title
WO2011112054A2 (ko) Mimo 시스템에서 데이터를 송수신하는 방법 및 장치
WO2016140533A1 (ko) 무선랜 시스템에서 제어 정보를 포함하는 무선 프레임 전송 방법 및 이를 위한 장치
US9826532B1 (en) Orthogonal frequency division multiple access resource request
WO2016133371A1 (ko) 다중 사용자 전송을 위한 시그널링 방법 및 이를 이용한 무선 통신 단말과 무선 통신 방법
WO2016032216A1 (ko) 무선 통신 방법 및 이를 이용한 무선 통신 단말
WO2011112052A2 (ko) Mimo 시스템에서 데이터를 송수신하는 방법 및 장치
WO2011053070A2 (ko) 다중 사용자 무선 통신 시스템에서 제어 및 훈련 심볼 전송 방법
WO2010095802A1 (en) Coexistent channel access method
WO2011087280A2 (en) Method for generating preamble in multi-user multi-input multi-output system, and data transmission apparatus and user terminal using the method
WO2017179901A1 (ko) 다중 사용자 캐스캐이딩 전송을 지원하는 무선 통신 방법 및 이를 사용하는 무선 통신 단말
WO2016076511A1 (ko) 무선랜 시스템에서 프레임 전송 방법
WO2012053866A2 (ko) 무선 통신 시스템에서 데이터 블록 전송 방법 및 전송기
WO2018048284A1 (ko) 무선랜 시스템에서의 신호 송수신 방법 및 이를 위한 장치
WO2016027937A1 (ko) 액티브 스캐닝을 수행하는 방법 및 장치
WO2016159476A1 (ko) 무선 통신 시스템의 송수신 장치 및 방법
WO2021225388A1 (ko) 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 무선 통신 단말
WO2016032195A1 (ko) 무선 통신 시스템의 송수신 장치 및 방법
US10080222B1 (en) Orthogonal frequency division multiple access short frame format
WO2016056808A1 (ko) 무선랜에서 단일 자원 단위를 기반으로 무선 자원을 할당하는 방법 및 장치
WO2019022343A1 (ko) 무선랜 시스템에서 신호의 송수신 방법 및 이를 위한 장치
WO2017191936A2 (ko) 무선랜 시스템에서의 신호 송수신 방법 및 이를 위한 장치
WO2016035943A1 (ko) Txop 보호 방법 및 장치
WO2016129824A1 (ko) 무선랜에서 mu 전송을 위한 매체 보호 방법 및 장치
WO2017018849A1 (ko) 시그널링 필드를 이용하는 무선 통신 방법 및 무선 통신 단말
WO2017175956A1 (ko) 무선랜 시스템에서 반복 변조방식으로 신호를 전송하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180023647.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11753658

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2012556993

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011753658

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2792929

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/010564

Country of ref document: MX

Ref document number: 1120111008902

Country of ref document: DE

Ref document number: 112011100890

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 8608/CHENP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2011224961

Country of ref document: AU

Date of ref document: 20110311

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012022749

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012022749

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120910